Science.gov

Sample records for induces fodrin redistribution

  1. Bombardment-induced segregation and redistribution

    SciTech Connect

    Lam, N.Q.; Wiedersich, H.

    1986-04-01

    During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilbrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed. 74 refs., 7 figs., 1 tab.

  2. Gelation and fodrin purification from rat brain extracts.

    PubMed

    Levilliers, N; Péron-Renner, M; Coffe, G; Pudles, J

    1986-06-01

    Extracts from rat brain tissue have been shown to give rise to a gel which exhibits the following features. It is mainly enriched in actin and in a high-molecular-weight protein with polypeptide chains of 235 and 240 kDa, which we identified as fodrin. Tubulin is also a major component of the gel but it appears to be trapped non-specifically during the gelation process. Gelation is pH-, ionic strength- and Ca2+-concentration-dependent, and is optimal under the conditions which promote the interaction between polymerized actin and fodrin. In a similar way to that described for the purification of rat brain actin (Levilliers, N., Péron-Renner, M., Coffe, G. and Pudles, J. (1984) Biochimie 66, 531-537), we used the gelation system as a selective means of recovering fodrin from the mixture of a low-ionic-strength extract from whole rat brain and a high-ionic-strength extract of the particulate fraction. From this gel, fodrin was purified with a good yield by a simple procedure involving gel dissociation in 0.5 M KCl and depolymerization in 0.7 M KI, Bio-Gel A-15m chromatography, followed by ammonium sulfate precipitation. PMID:3707993

  3. The prototypical 4.1R-10-kDa domain and the 4.1g-10-kDa paralog mediate fodrin-actin complex formation.

    PubMed

    Kontrogianni-Konstantopoulos, A; Frye, C S; Benz, E J; Huang, S C

    2001-06-01

    A complex family of 4.1R isoforms has been identified in non-erythroid tissues. In this study we characterized the exonic composition of brain 4.1R-10-kDa or spectrin/actin binding (SAB) domain and identified the minimal sequences required to stimulate fodrin/F-actin association. Adult rat brain expresses predominantly 4.1R mRNAs that carry an extended SAB, consisting of the alternative exons 14/15/16 and part of the constitutive exon 17. Exon 16 along with sequences carried by exon 17 is necessary and sufficient to induce formation of fodrin-actin-4.1R ternary complexes. The ability of the respective SAB domains of 4.1 homologs to sediment fodrin/actin was also investigated. 4.1G-SAB stimulates association of fodrin/actin, although with an approximately 2-fold reduced efficiency compared with 4.1R-10-kDa, whereas 4.1N and 4.1B do not. Sequencing of the corresponding domains revealed that 4.1G-SAB carries a cassette that shares significant homology with 4.1R exon 16, whereas the respective sequence is divergent in 4.1N and absent from brain 4.1B. An approximately 150-kDa 4.1R and an approximately 160-kDa 4.1G isoforms are present in PC12 lysates that occur in vivo in a supramolecular complex with fodrin and F-actin. Moreover, proteins 4.1R and 4.1G are distributed underneath the plasma membrane in PC12 cells. Collectively, these observations suggest that brain 4.1R and 4.1G may modulate the membrane mechanical properties of neuronal cells by promoting fodrin/actin association. PMID:11274145

  4. Estradiol induces functional inactivation of p53 by intracellular redistribution.

    PubMed

    Molinari, A M; Bontempo, P; Schiavone, E M; Tortora, V; Verdicchio, M A; Napolitano, M; Nola, E; Moncharmont, B; Medici, N; Nigro, V; Armetta, I; Abbondanza, C; Puca, G A

    2000-05-15

    Estrogen treatment of MCF-7 cells grown in serum-free medium induced a modification of the intracellular distribution of p53 protein. Western blot analysis and immunofluorescence staining showed that p53 was localized in the nucleus of untreated cell and that after 48 h of hormone treatment, it was mostly localized in the cytoplasm. This effect was blocked by the antiestrogen ICI182,780. Intracellular redistribution of p53 was correlated to a reduced expression of the WAF1/CIP1 gene product and to the presence of degradation fragments of p53 in the cytosol. Estradiol treatment prevented the growth inhibition induced by oligonucleotide transfection, simulating DNA damage. This observation indicated that the wild-type p53 gene product present in the MCF-7 cell could be inactivated by estradiol through nuclear exclusion to permit the cyclin-dependent phosphorylation events leading to the G1-S transition. In addition, the estradiol-induced inactivation of p53 could be involved in the tumorigenesis of estrogen-dependent neoplasm. PMID:10825127

  5. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.

    PubMed

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. PMID:27181354

  6. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    SciTech Connect

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-14

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO{sub 2} (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  7. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    NASA Astrophysics Data System (ADS)

    Josefsson, Gabriella; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel; Gamstedt, E. Kristofer

    2015-06-01

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  8. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    SciTech Connect

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  9. Au and Ti induced charge redistributions on monolayer WS2

    NASA Astrophysics Data System (ADS)

    Zhu, Hui-Li; Yang, Wei-Huang; Wu, Ya-Ping; Lin, Wei; Kang, Jun-Yong; Zhou, Chang-Jie

    2015-07-01

    By using the first-principles calculations, structural and electronic properties of Au and Ti adsorbed WS2 monolayers are studied systematically. For Au-adsorbed WS2, metallic interface states are induced in the middle of the band gap across the Fermi level. These interface states origin mainly from the Au-6s states. As to the Ti adsorbed WS2, some delocalized interface states appear and follow the bottom of conduction band. The Fermi level arises into the conduction band and leads to the n-type conducting behavior. The n-type interface states are found mainly come from the Ti-3d and W-5d states due to the strong Ti-S hybridization. The related partial charge densities between Ti and S atoms are much higher and increased by an order of magnitude as compared with that of Au-adsorbed WS2. Therefore, the electron transport across the Ti-adsorbed WS2 system is mainly by the resonant transport, which would further enhances the electronic transparency when monolayer WS2 contacts with metal Ti. These investigations are of significant importance in understanding the electronic properties of metal atom adsorption on monolayer WS2 and offer valuable references for the design and fabrication of 2D nanodevices. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321102, 11304257, and 61227009), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2011J05006, 2009J05149, and 2014J01026), the Foundation from Department of Education of Fujian Province, China (Grant No. JA09146), Huang Hui Zhen Foundation of Jimei University, China (Grant No. ZC2010014), and the Scientific Research Foundation of Jimei University, China (Grant Nos. ZQ2011008 and ZQ2009004).

  10. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building.

    PubMed

    Takeda, S; Yamazaki, H; Seog, D H; Kanai, Y; Terada, S; Hirokawa, N

    2000-03-20

    Kinesin superfamily proteins (KIFs) comprise several dozen molecular motor proteins. The KIF3 heterotrimer complex is one of the most abundantly and ubiquitously expressed KIFs in mammalian cells. To unveil the functions of KIF3, microinjection of function-blocking monovalent antibodies against KIF3 into cultured superior cervical ganglion (SCG) neurons was carried out. They significantly blocked fast axonal transport and brought about inhibition of neurite extension. A yeast two-hybrid binding assay revealed the association of fodrin with the KIF3 motor through KAP3. This was further confirmed by using vesicles collected from large bundles of axons (cauda equina), from which membranous vesicles could be prepared in pure preparations. Both immunoprecipitation and immunoelectron microscopy indicated the colocalization of fodrin and KIF3 on the same vesicles, the results reinforcing the evidence that the cargo of the KIF3 motor consists of fodrin-associating vesicles. In addition, pulse-labeling study implied partial comigration of both molecules as fast flow components. Taken together, the KIF3 motor is engaged in fast axonal transport that conveys membranous components important for neurite extension. PMID:10725338

  11. Potassium-induced charge redistribution on Si(111) surfaces studied by core-level photoemission spectroscopy

    SciTech Connect

    Ma, Y. ); Chen, C.T.; Meigs, G.; Sette, F. ); Illing, G. ); Shigakawa, H. )

    1992-03-15

    High-resolution core-level photoemission spectra of the K/Si(111)(7{times}7) surface system are presented. The Si 2{ital p} results show that potassium adsorption induces a Si 2{ital p} core level to shift to o/Ihighero/P binding energy, i.e., to the opposite direction than that expected from the Si-K electronegativity differences. This result is compared with that of the K/Si(111)({radical}3 {times} {radical}3 ){ital R}30{degree}-B system and is interpreted in terms of the K-induced charge redistribution between the Si-adatom--rest-atom pair.

  12. Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution.

    PubMed

    Imrich, Richard; Tibenska, Elena; Koska, Juraj; Ksinantova, Lucia; Kvetnansky, Richard; Bergendiova-Sedlackova, Katarina; Blazicek, Pavol; Vigas, Milan

    2004-06-01

    Stress response is considered an important factor in the modulation of immune function. Neuroendocrine hormones, including catecholamines, affect the process of immune cell redistribution, important for cell-mediated immunity. This longitudinal investigation was aimed at evaluating the effect of repeated stress-induced elevation of catecholamines on immune cell redistribution and expression of adhesive molecules. We assessed the responses of epinephrine (EPI), norepinephrine (NE), cortisol, changes in lymphocytes subpopulations, and percentages of CD11a+, CD11b+, and CD62L+ lymphocytes to a 20-min treadmill exercise of an intensity equal to 80% of the individual's Vo(2)max. The exercise was performed before and after 6 weeks of endurance training consisting of a 1-h run 4 times a week (ET) and after 5 days of bed rest (HDBR) in 10 healthy males. We did not observe any significant changes in the basal levels of EPI, NE, and cortisol in the plasma, nor in the immune parameters after ET and HDBR. The exercise test led to a significant (P <.001) elevation of EPI and NE levels after both ET and HDBR, a significant elevation (P <.01) of cortisol after HDBR, an increase in the absolute numbers of leukocytes, granulocytes, monocytes, CD3+, CD4+, CD8+, CD16+, CD19+ lymphocytes, percentage of CD11a+ and CD11b+ lymphocytes, and to a decrease of CD62L1 before, after ET, and after HDBR. We found comparable changes in all measured immune parameters after ET and HDBR. In conclusion, repeated stress-induced elevation of EPI and NE was not associated with an alteration in immune cell redistribution found in response to the single bout of exercise. PMID:15240377

  13. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems

    PubMed Central

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p’-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis. PMID:26601698

  14. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems.

    PubMed

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p'-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis. PMID:26601698

  15. Cytoskeletal architecture and immunocytochemical localization of fodrin in the terminal web of the ciliated epithelial cell.

    PubMed

    Kobayashi, N; Hirokawa, N

    1988-01-01

    In order to understand the cytoskeletal architecture at the terminal web of the ciliated cell, we examined chicken tracheal epithelium by quick-freeze deep-etch (QFDE) electron microscopy combined with immunocytochemistry of fodrin. At the terminal web, the cilia ended into the basal bodies and then to the rootlets. The rootlets were composed of several filaments and globular structures attached regularly to them. Decoration with myosin subfragment 1 (S1) revealed that some actin filaments ran parallel to the apical plasma membrane between the basal bodies, and other population traveled perpendicularly or obliquely, i.e., along the rootlets. Some actin filaments were connected to the surface of the basal bodies and the basal feet. Among the basal bodies and the rootlets there existed three kinds of fine crossbridges, which were not decorated with S1. In the deeper part of the terminal web, intermediate filaments were observed between the rootlets and were sometimes crosslinked with the rootlets. Immunocytochemistry combined with the QFDE method revealed that fodrin was a component of fine crossbridges associated with the basal bodies. We concluded that an extensive crosslinker system among the basal bodies and the rootlets along with networks of actin and intermediate filaments formed a structural basis for the effective beating of cilia. PMID:3208297

  16. Lactacystin requires reactive oxygen species and Bax redistribution to induce mitochondria-mediated cell death

    PubMed Central

    Perez-Alvarez, Sergio; Solesio, Maria E; Manzanares, Jorge; Jordán, Joaquín; Galindo, María F

    2009-01-01

    Background and purpose: The proteasome inhibitor model of Parkinson's disease (PD) appears to reproduce many of the important behavioural, imaging, pathological and biochemical features of the human disease. However, the mechanisms involved in the lactacystin-induced, mitochondria-mediated apoptotic pathway remain poorly defined. Experimental approach: We have used lactacystin as a specific inhibitor of the 20S proteasome in the dopaminergic neuroblastoma cell line SH-SY5Y. We over-expressed a green fluorescent protein (GFP)–Bax fusion protein in these cells to study localization of Bax. Free radical scavengers were used to assess the role of reactive oxygen species (ROS) in these pathways. Key results: Lactacystin triggered a concentration-dependent increase in cell death mediated by the mitochondrial apoptotic pathway, and induced a change in mitochondrial membrane permeability accompanied by cytochrome c release. The participation of Bax protein was more critical than the formation of the permeability transition pore in mitochondria. GFP–Bax over-expression demonstrated Bax redistribution from the cytosol to mitochondria after the addition of lactacystin. ROS, but not p38 mitogen-activated protein kinase, participated in lactacystin-induced mitochondrial Bax translocation. Lactacystin disrupted the intracellular redox state by increasing ROS production and depleting endogenous antioxidant systems such as glutathione (GSH). Pharmacological depletion of GSH, using l-buthionine sulphoxide, potentiated lactacystin-induced cell death. Lactacystin sensitized neuroblastoma cells to oxidative damage, induced by subtoxic concentrations of 6-hydroxydopamine. Conclusions and implications: The lactacystin-induced, mitochondrial-mediated apoptotic pathway involved interactions between ROS, GSH and Bax. Lactacystin could constitute a potential factor in the development of sporadic PD. PMID:19785649

  17. Field-Induced Point Defect Redistribution in Metal Oxides: Mesoscopic Length Scale Phenomena

    NASA Astrophysics Data System (ADS)

    Moballegh, Ali

    continuously monitored. To understand spatial variations in chemistry and possible changes in microstructure, we utilize a combination of cathodoluminescence spectroscopy (CL), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). After electrical degradation, correlating electrical characterization measurements with electron microscopy analyses provides insight into the redistribution of point defects as a function of electric field and time. Diode-like rectification behavior was observed in crystals subjected to an applied voltage in the low electric field regime (< 75V/cm). One-dimensional and homogenous defect redistribution along both and results in accumulation of point defects and the formation of highly reduced substoichiometric regions near the cathode, which leads to the Schottky barrier degradation. The CL spectroscopy shows that titanium interstitials dominate the point defect redistribution process in this region. The reversibility of the rectification behavior, examined for both crystallographic directions, shows that the process can be influenced by the anisotropy of rutile. At degradation fields on the order of 56 V/cm at 200°C, although the degradation of Schottky barrier is mostly reversible along , formation of extended structural defects is not recovered during the application of a reverse bias and results in an irreversible rectification behavior along direction. We also identify electric field regimes (> 175 V/cm) in which the concentrations of point defects become large enough to induce higher-dimensional defects such as dislocations and the formation of Magneli phases. We find that the condensation of point defects into Magneli phases at the electrodes depletes point defect concentration in the bulk, thus increasing the bulk resistivity. The Magneli phases formed near the cathode are found to be stable, and not reversible, at 200°C for the times and fields studied. The defect condensation processes have significant

  18. An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation.

    PubMed

    Souroullas, George P; Jeck, William R; Parker, Joel S; Simon, Jeremy M; Liu, Jie-Yu; Paulk, Joshiawa; Xiong, Jessie; Clark, Kelly S; Fedoriw, Yuri; Qi, Jun; Burd, Christin E; Bradner, James E; Sharpless, Norman E

    2016-06-01

    B cell lymphoma and melanoma harbor recurrent mutations in the gene encoding the EZH2 histone methyltransferase (EZH2), but the carcinogenic role of these mutations is unclear. Here we describe a mouse model in which the most common somatic Ezh2 gain-of-function mutation (EZH2(Y646F) in human; Ezh2(Y641F) in mouse) is conditionally expressed. Expression of Ezh2(Y641F) in mouse B cells or melanocytes caused high-penetrance lymphoma or melanoma, respectively. Overexpression of the anti-apoptotic protein Bcl2, but not the oncoprotein Myc, or loss of the tumor suppressor protein p53 (encoded by Trp53 in mice) further accelerated lymphoma progression. Expression of the mutant Braf but not the mutant Nras oncoprotein further accelerated melanoma progression. Although expression of Ezh2(Y641F) globally increased the abundance of trimethylated Lys27 of histone H3 (H3K27me3), it also caused a widespread redistribution of this repressive mark, including a loss of H3K27me3 that was associated with increased transcription at many loci. These results suggest that Ezh2(Y641F) induces lymphoma and melanoma through a vast reorganization of chromatin structure, inducing both repression and activation of polycomb-regulated loci. PMID:27135738

  19. Agonist-induced redistribution of calponin in contractile vascular smooth muscle cells.

    PubMed

    Parker, C A; Takahashi, K; Tao, T; Morgan, K G

    1994-11-01

    Calponin is a thin filament-associated protein that has been implicated in playing an auxiliary regulatory role in smooth muscle contraction. We have used immunofluorescence and digital imaging microscopy to determine the cellular distribution of calponin in single cells freshly isolated from the ferret portal vein. In resting cells calponin is distributed throughout the cytosol, associated with filamentous structures, and is excluded from the nuclear area of the cell. The ratio of surface cortex-associated calponin to cytosol-associated calponin (R) was found to be 0.639 +/- 0.021. Upon depolarization of the cell with physiological saline solution containing 96 mM K+, the distribution of calponin did not change from that of a resting cell (R = 0.678 +/- 0.025, P = 0.369). Upon stimulation with an agonist (10 microM phenylephrine) that is known to activate protein kinase C (PKC) in these cells, the cellular distribution of calponin changed from primarily cytosolic to primarily surface cortex associated (R = 1.24 +/- 0.085, P < 0.001). This agonist-induced redistribution of calponin was partially inhibited by the PKC inhibitor calphostin, overlapped in time with PKC translocation, and preceded contraction of these cells. These results suggest that the physiological function of calponin may be to mediate agonist-activated contraction via a PKC-dependent pathway. PMID:7526695

  20. Zinc asparaginate supplementation induces redistribution of toxic trace elements in rat tissues and organs.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Yu; Ajsuvakova, Olga P; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The primary objective of the current study was the investigation of the influence of zinc asparaginate supplementation for 7 and 14 days on toxic metal and metalloid content in rat organs and tissues. Rats obtained zinc asparaginate in doses of 5 and 15 mg/kg/day for 7 and 14 days. At the end of the experiment rat tissues and organs (liver, kidney, heart, m. gastrocnemius, serum, and hair) were collected for subsequent analysis. Estimation of Zn, Al, As, Li, Ni, Sn, Sr content in the harvested organs was performed using inductively coupled plasma mass spectrometry at NexION 300D. The obtained data showed that intragastric administration of zinc significantly increased liver, kidney and serum zinc concentrations. Seven-day zinc treatment significantly affected the toxic trace element content in the animals' organs. Zinc supplementation significantly decreased particularly liver aluminium, nickel, and tin content, whereas lead tended to increase. Zinc-induced changes in kidney metal content were characterized by elevated lithium and decreased nickel concentration. Zinc-induced alteration of myocardical toxic element content was multidirectional. Muscle aluminium and lead concentration were reduced in response to zinc supplementation. At the same time, serum and hair toxic element concentrations remained relatively stable after 7-day zinc treatment. Zinc asparaginate treatment of 14 days significantly depressed liver and elevated kidney lithium content, whereas a significant zinc-associated decrease was detected in kidney strontium content. Zinc supplementation for 14 days resulted also in multidirectional changes in the content of heart toxic elements. At the same time, significant zinc-associated decrease in muscle lithium and nickel levels was observed. Fourteen-day zinc treatment resulted in significantly increased serum arsenic and tin concentrations, whereas hair trace element content remained relatively stable. Generally, the obtained data indicate a

  1. Zinc asparaginate supplementation induces redistribution of toxic trace elements in rat tissues and organs

    PubMed Central

    Skalny, Andrey A.; Medvedeva, Yulia S.; Alchinova, Irina B.; Karganov, Mikhail Yu.; Ajsuvakova, Olga P.; Skalny, Anatoly V.; Nikonorov, Alexandr A.

    2015-01-01

    The primary objective of the current study was the investigation of the influence of zinc asparaginate supplementation for 7 and 14 days on toxic metal and metalloid content in rat organs and tissues. Rats obtained zinc asparaginate in doses of 5 and 15 mg/kg/day for 7 and 14 days. At the end of the experiment rat tissues and organs (liver, kidney, heart, m. gastrocnemius, serum, and hair) were collected for subsequent analysis. Estimation of Zn, Al, As, Li, Ni, Sn, Sr content in the harvested organs was performed using inductively coupled plasma mass spectrometry at NexION 300D. The obtained data showed that intragastric administration of zinc significantly increased liver, kidney and serum zinc concentrations. Seven-day zinc treatment significantly affected the toxic trace element content in the animals’ organs. Zinc supplementation significantly decreased particularly liver aluminium, nickel, and tin content, whereas lead tended to increase. Zinc-induced changes in kidney metal content were characterized by elevated lithium and decreased nickel concentration. Zinc-induced alteration of myocardical toxic element content was multidirectional. Muscle aluminium and lead concentration were reduced in response to zinc supplementation. At the same time, serum and hair toxic element concentrations remained relatively stable after 7-day zinc treatment. Zinc asparaginate treatment of 14 days significantly depressed liver and elevated kidney lithium content, whereas a significant zinc-associated decrease was detected in kidney strontium content. Zinc supplementation for 14 days resulted also in multidirectional changes in the content of heart toxic elements. At the same time, significant zinc-associated decrease in muscle lithium and nickel levels was observed. Fourteen-day zinc treatment resulted in significantly increased serum arsenic and tin concentrations, whereas hair trace element content remained relatively stable. Generally, the obtained data indicate a

  2. Location of a protein of the fodrin-spectrin-TW260/240 family in the mouse intestinal brush border.

    PubMed

    Hirokawa, N; Cheney, R E; Willard, M

    1983-03-01

    We have determined that a protein of the fodrin-spectrin-TW260/240 (FST) family is a component of the thin fibrils (approximately 5 nm wide, 100-200 nm long) that cross-link bundles of actin filaments to adjacent actin bundles and to the plasma membrane in the terminal web of the brush border of the intestinal epithelium. When isolated brush borders were incubated with anti-fodrin antibodies and prepared for electron microscopy by the quick-freeze, deep-etch technique, these approximately 5 nm fibrils were specifically decorated with the antibody. In addition, these cross-linking fibrils disappeared when the anti-fodrin-reactive proteins were extracted from the brush border. We conclude that FST is a component of a cross-linking system composed of approximately 5 nm fibrils that are morphologically distinct from the approximately 8 nm myosin-containing fibrils which were identified by anti-myosin decoration. In addition to linking actin bundles to adjacent actin bundles and to the plasma membrane, these FST fibrils may mediate actin-vesicle, actin-intermediate filament and vesicle-plasma membrane linkages. PMID:6831563

  3. Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications

    NASA Astrophysics Data System (ADS)

    Bosi, Ferdinando; Skogby, Henrik; Hålenius, Ulf

    2016-05-01

    Iron-bearing oxy-dravite was thermally treated in air and hydrogen atmosphere at 800 °C to study potential changes in Fe, Mg and Al ordering over the octahedrally coordinated Y and Z sites and to explore possible applications to intersite geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that heating Fe-bearing tourmalines results in disordering of Fe over Y and Z balanced by ordering of Mg at Y, whereas Al does not change appreciably. The Fe disorder depends on temperature, but less on redox conditions. The degree of Fe3+-Fe2+ reduction is limited despite strongly reducing conditions, indicating that the f O2 conditions do not exclusively control the Fe oxidation state at the present experimental conditions. Untreated and treated samples have similar short- and long-range crystal structures, which are explained by stable Al-extended clusters around the O1 and O3 sites. In contrast to the stable Al clusters that preclude any temperature-dependent Mg-Al order-disorder, there occurs Mg diffusion linked to temperature-dependent exchange with Fe. Ferric iron mainly resides around O2- at O1 rather than (OH)-, but its intersite disorder induced by thermal treatment indicates that Fe redistribution is the driving force for Mg-Fe exchange and that its diffusion rates are significant at these temperatures. With increasing temperature, Fe progressively disorders over Y and Z, whereas Mg orders at Y according to the order-disorder reaction: YFe + ZMg → ZFe + YMg. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks and imply that successful tourmaline geothermometers may be developed by thermal calibration of the Mg-Fe order-disorder reaction, whereas any thermometers based on Mg-Al disorder will be insensitive and involve large uncertainties.

  4. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation.

    PubMed

    Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S

    2016-04-01

    In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated

  5. Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa.

    PubMed

    Spinaci, Marcella; Volpe, Sara; Bernardini, Chiara; de Ambrogi, Marco; Tamanini, Carlo; Seren, Eraldo; Galeati, Giovanna

    2006-01-01

    Heat shock proteins, besides their protective function against stresses, have been recently indicated as key factors for sperm fertilizing ability. Since sexing sperm by high-speed flow-cytometry subjects them to different physical, mechanical, and chemical stresses, the present study was designed to verify, by immunofluorescence and Western blot, whether the sorting procedure induces any modification in the amount and cellular distribution of heat shock proteins 60, 70, and 90 (Hsp60, Hsp70, Hsp90). Immunolocalization and Western blot quantification of both Hsp60 and Hsp90 did not reveal differences between unsorted and sorted semen. On the contrary, a redistribution of Hsp70 immunoreactivity from the equatorial subsegment toward the equator of sperm cells was recorded after sorting; this relocation suggests capacitation-like changes of sperm membrane. This modification seems to be caused mainly by incubation with Hoechst 33342, while both passage of sperm through flow cytometer and laser beam represent only minor stimuli. A further Hsp70 redistribution seems to be due to the final steps of sperm sorting, charging, and deflection of drops, and to the dilution during collection. On the other hand, staining procedure and mechanical stress seem to be the factors most injurious to sperm viability. Moreover, Hsp70 relocation was deeply influenced by the storage method. In fact, storing sexed spermatozoa, after centrifugation, in a small volume in presence of seminal plasma induced a reversion of Hsp70 redistribution, while storage in the diluted catch fluid of collection tubes caused Hsp70 relocation in most sorted spermatozoa. PMID:16870948

  6. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    SciTech Connect

    S.S. Medley, R. Andre, R.E. Bell, D.S. Darrow, C.W. Domier, E.D. Fredrickson, N.N. Gorelenkov, S.M. Kaye, B.P. LeBlanc, K.C. Lee, F.M. Levinton, D. Liu, N.C. Luhmann, Jr., J.E. Menard, H. Park, D. Stutman, A.L. Roquemore, K. Tritz, H. Yuh and the NSTX Team

    2007-11-15

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ~ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvénic (f ~ 20 – 150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvénic modes only cause redistribution and the energetic ions remain confined.

  7. Theoretical investigation of intramolecular vibrational energy redistribution in HFCO and DFCO induced by an external field.

    PubMed

    Pasin, Gauthier; Iung, Christophe; Gatti, Fabien; Richter, Falk; Léonard, Céline; Meyer, Hans-Dieter

    2008-10-14

    The present paper is devoted to a full quantum mechanical study of the intramolecular vibrational energy redistribution in HFCO and DFCO. In contrast to our previous studies [Pasin et al., J. Chem. Phys. 124, 194304 (2006) and 126, 024302 (2007)], the dynamics is now performed in the presence of an external time-dependent field. This more closely reflects the experimental conditions. A six-dimensional dipole surface is computed. The multiconfiguration time-dependent Hartree method is exploited to propagate the corresponding six-dimensional wave packets. Special emphasis is placed on the excitation of the out-of-plane bending vibration and on the dissociation of the molecule. In the case of DFCO, we predict that it is possible to excite the out-of-plane bending mode of vibration and to drive the dissociation to DF+CO with only one laser pulse with a fixed frequency and without excitation of an electronic state. PMID:19045144

  8. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography

    PubMed Central

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M.

    2016-01-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal–plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials. PMID:26868040

  9. Viscosity of Water under Electric Field: Anisotropy Induced by Redistribution of Hydrogen Bonds.

    PubMed

    Zong, Diyuan; Hu, Han; Duan, Yuanyuan; Sun, Ying

    2016-06-01

    The viscosity of water under an external electric field of 0.00-0.90 V/nm was studied using both molecular dynamics simulations and atomistic modeling accounting for intermolecular potentials. For all temperatures investigated, the water viscosity becomes anisotropic under an electric field: the viscosity component parallel to the field increases monotonically with the field strength, E, while the viscosity perpendicular to the field first decreases and then increases with E. This anisotropy is believed to be mainly caused by the redistribution of hydrogen bonds under the electric field. The preferred orientation of hydrogen bonds along the field direction leads to an increase of the energy barrier of a water molecule to its neighboring site, and hence increases the viscosity in that direction. However, the probability of hydrogen bonds perpendicular to the electric field decreases with E, together with the increase of the average number of hydrogen bonds per molecule, causing the perpendicular component of water viscosity to first decrease and then increase with the electric field. PMID:27163345

  10. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography.

    PubMed

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M

    2016-01-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal-plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials. PMID:26868040

  11. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M.

    2016-02-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal-plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials.

  12. Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication

    PubMed Central

    Jheng, Jia-Rong; Wang, Shin-Chyang; Jheng, Chao-Rih; Horng, Jim-Tong

    2016-01-01

    GRP78/BiP is an endoplasmic reticulum (ER) chaperone protein with the important function of maintaining ER homeostasis, and the overexpression of GRP78/BiP alleviates ER stress. Our previous studies showed that infection with enterovirus 71 (EV71), a (+)RNA picornavirus, induced GRP78/BiP upregulation; however, ectopic GRP78/BiP overexpression in ER downregulates virus replication and viral particle formation. The fact that a virus infection increases GRP78/BiP expression, which is unfavorable for virus replication, is counterintuitive. In this study, we found that the GRP78/BiP protein level was elevated in the cytoplasm instead of in the ER in EV71-infected cells. Cells transfected with polyinosinic–polycytidylic acid, a synthetic analog of replicative double-stranded RNA (dsRNA), but not with viral proteins, also exhibited upregulation and elevation of GRP78/BiP in the cytosol. Our results further demonstrate that EV71 infections induce the dsRNA/protein kinase R-dependent cytosolic accumulation of GRP78/BiP. The overexpression of a GRP78/BiP mutant lacking a KDEL retention signal failed to inhibit both dithiothreitol-induced eIF2α phosphorylation and viral replication in the context of viral protein synthesis and viral titers. These data revealed that EV71 infection might cause upregulation and aberrant redistribution of GRP78/BiP to the cytosol, thereby facilitating virus replication. PMID:27004760

  13. Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication.

    PubMed

    Jheng, Jia-Rong; Wang, Shin-Chyang; Jheng, Chao-Rih; Horng, Jim-Tong

    2016-01-01

    GRP78/BiP is an endoplasmic reticulum (ER) chaperone protein with the important function of maintaining ER homeostasis, and the overexpression of GRP78/BiP alleviates ER stress. Our previous studies showed that infection with enterovirus 71 (EV71), a (+)RNA picornavirus, induced GRP78/BiP upregulation; however, ectopic GRP78/BiP overexpression in ER downregulates virus replication and viral particle formation. The fact that a virus infection increases GRP78/BiP expression, which is unfavorable for virus replication, is counterintuitive. In this study, we found that the GRP78/BiP protein level was elevated in the cytoplasm instead of in the ER in EV71-infected cells. Cells transfected with polyinosinic-polycytidylic acid, a synthetic analog of replicative double-stranded RNA (dsRNA), but not with viral proteins, also exhibited upregulation and elevation of GRP78/BiP in the cytosol. Our results further demonstrate that EV71 infections induce the dsRNA/protein kinase R-dependent cytosolic accumulation of GRP78/BiP. The overexpression of a GRP78/BiP mutant lacking a KDEL retention signal failed to inhibit both dithiothreitol-induced eIF2α phosphorylation and viral replication in the context of viral protein synthesis and viral titers. These data revealed that EV71 infection might cause upregulation and aberrant redistribution of GRP78/BiP to the cytosol, thereby facilitating virus replication. PMID:27004760

  14. Model for roughening and ripple instability due to ion-induced mass redistribution [Addendum to H. Hofsäss, Appl. Phys. A 114 (2014) 401, "Surface instability and pattern formation by ion-induced erosion and mass redistribution"

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans

    2015-05-01

    Carter and Vishnyakov introduced a model (CV model) to describe roughening and ripple instability due to ion-induced mass redistribution. This model is based on the assumption that the irradiated surface layer on a static solid substrate is described by a viscous incompressible thin film bound to the substrate by a "no slip" and "no transport" kinematic boundary condition, i.e. similar to a thin film of viscous paint. However, this boundary condition is incomplete for a layer under ion irradiation. The boundary condition must allow exchange of atoms between the substrate and the irradiated film, so that the thickness of the film is always determined by the size of the collision cascade, independent of the evolution of the surface height profile. In addition, the film thickness depends on the local ion incidence angle, which leads to a time dependence of the film thickness at a given position. The equation of motion of the surface and interface profiles for these boundary conditions is introduced, and a new curvature-dependent coefficient is found which is absent in the CV model. This curvature coefficient depends on the angular derivative of the layer thickness and the atomic drift velocity at the film surface induced by recoil events. Such a stabilizing curvature coefficient was introduced in Appl. Phys. A 114 (2014) 401 and is most pronounced at intermediate angles.

  15. Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films.

    PubMed

    Chen, Xinxin; Zhu, Xiaojian; Xiao, Wen; Liu, Gang; Feng, Yuan Ping; Ding, Jun; Li, Run-Wei

    2015-04-28

    Reversible nanoscale magnetization reversal controlled merely by electric fields is still challenging at the moment. In this report, first-principles calculation indicates that electric field-induced magnetization reversal can be achieved by the appearance of unidirectional magnetic anisotropy along the (110) direction in Fe-deficient cobalt ferrite (CoFe(2-x)O4, CFO), as a result of the migration and local redistribution of the Co(2+) ions adjacent to the B-site Fe vacancies. In good agreement with the theoretical model, we experimentally observed that in the CFO thin films the nanoscale magnetization can be reversibly and nonvolatilely reversed at room temperature via an electrical ion-manipulation approach, wherein the application of electric fields with appropriate polarity and amplitude can modulate the size of magnetic domains with different magnetizations up to 70%. With the low power consumption (subpicojoule) characteristics and the elimination of external magnetic field, the observed electric field-induced magnetization reversal can be used for the construction of energy-efficient spintronic devices, e.g., low-power electric-write and magnetic-read memories. PMID:25794422

  16. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of

  17. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    SciTech Connect

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  18. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release.

    PubMed

    Garant, K A; Shmulevitz, M; Pan, L; Daigle, R M; Ahn, D-G; Gujar, S A; Lee, P W K

    2016-02-11

    Reovirus is a naturally oncolytic virus that preferentially replicates in Ras-transformed cells and is currently undergoing clinical trials as a cancer therapeutic. Ras transformation promotes reovirus oncolysis by enhancing virion disassembly during entry, viral progeny production, and virus release through apoptosis; however, the mechanism behind the latter is not well understood. Here, we show that reovirus alters the intracellular location of oncogenic Ras to induce apoptosis of H-RasV12-transformed fibroblasts. Reovirus infection decreases Ras palmitoylation levels and causes accumulation of Ras in the Golgi through Golgi fragmentation. With the Golgi being the site of Ras palmitoylation, treatment of target cells with the palmitoylation inhibitor, 2-bromopalmitate (2BP), prompts a greater accumulation of H-RasV12 in the Golgi, and a dose-dependent increase in progeny virus release and subsequent spread. Conversely, tethering H-RasV12 to the plasma membrane (thereby preventing its movement to the Golgi) allows for efficient virus production, but results in basal levels of reovirus-induced cell death. Analysis of Ras downstream signaling reveals that cells expressing cycling H-RasV12 have elevated levels of phosphorylated JNK (c-Jun N-terminal kinase), and that Ras retained at the Golgi body by 2BP increases activation of the MEKK1/MKK4/JNK signaling pathway to promote cell death. Collectively, our data suggest that reovirus induces Golgi fragmentation of target cells, and the subsequent accumulation of oncogenic Ras in the Golgi body initiates apoptotic signaling events required for virus release and spread. PMID:25961930

  19. Photo-induced halide redistribution in organic–inorganic perovskite films

    PubMed Central

    deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-01-01

    Organic–inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced ‘brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance. PMID:27216703

  20. Photo-induced halide redistribution in organic–inorganic perovskite films

    DOE PAGESBeta

    deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulovic, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-24

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging themore » same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. In conclusion, our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.« less

  1. Photo-induced halide redistribution in organic-inorganic perovskite films

    NASA Astrophysics Data System (ADS)

    Dequilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced `brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.

  2. Photo-induced halide redistribution in organic-inorganic perovskite films.

    PubMed

    deQuilettes, Dane W; Zhang, Wei; Burlakov, Victor M; Graham, Daniel J; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J; Ginger, David S; Stranks, Samuel D

    2016-01-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance. PMID:27216703

  3. Glucose Transporter Type 4 Redistribution on the Membrane Induced by Insulin through Akt in Hydrocortisone Treatment in Rat Skeletal Muscles.

    PubMed

    Chen, Chien-Min; Chiu, Lian; Chen, Hung-Chi; Cheng, Chun-Yuan; Shyu, Woei-Cherng; Chou, Chii-Wen; Lu, Cheng-You; Lin, Chung-Tien

    2015-10-31

    Hydrocortisone is a growth hormone frequently used in the treatment of low back pain. Hydrocortisone treatment has an anti-inflammation effect, which also inactivates glucose transporter type 4 (GLUT4) by p38 mitogen-activated protein kinase (MAPK) inhibition. Translocation of GLUT4 regulates body glucose homeostasis and muscle repair and is induced by insulin. In this study, 56 SD rats were divided into seven groups, and were treated with insulin or hydrocortisone in sedentary or exercise training groups. The muscle proteins and biochemical blood parameters were analyzed after 7 days of treatments. The results showed that the serum glucose increased in hydrocortisone treatment accompanied by GLUT4 inactivation in both the sedentary and exercise training rats. In the exercise training groups, GLUT4 was redistributed on the plasma membrane on co-treatment with insulin and hydrocortisone through Akt phosphorylation. Insulin treatment exerted a compensatory feedback effect on the GLUT4 translocation on hydrocortisone co-treatment, which was the cause of GLUT4 inactivation. PMID:26387653

  4. Resource redistribution patterns induced by rapid vegetation shifts and their impacts on land degradation at the desert margins

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Huxman, T. E.; D'Odorico, P.; Collins, S. L.

    2008-12-01

    A common form of land degradation at the desert margins involves the rapid interconversion of vegetation between grasses and woody plants, with ecohydrological and biogeochemical consequences. Here we show, using a combination of field experiments and a spatially explicit model, that the process of degradation can be facilitated both by an increase in heterogeneity (shrub encroachment in to grasslands) and in homogeneity (exotic annual grass invasion into desert shrublands) of soil resources, depending on the plant functional type inducing the change in soil resource distribution. The changes in resource distribution affect patterns of plant productivity and degradation potential. The distribution of soil resources (nutrients and soil moisture), in turn, are controlled by the feedbacks between aeolian/hydrologic transport processes, vegetation and disturbance. Disturbances like fire and grazing greatly affect the rates and patterns of resource redistribution in these systems. Thus, the feedbacks among ecological-hydrological and geomorphic processes acting at patch scale affect the emerging vegetation patterns in these arid landscapes with impacts on regional climate and desertification.

  5. Higher certainty of the laser-induced damage threshold test with a redistributing data treatment

    NASA Astrophysics Data System (ADS)

    Jensen, Lars; Mrohs, Marius; Gyamfi, Mark; Mädebach, Heinrich; Ristau, Detlev

    2015-10-01

    As a consequence of its statistical nature, the measurement of the laser-induced damage threshold holds always risks to over- or underestimate the real threshold value. As one of the established measurement procedures, the results of S-on-1 (and 1-on-1) tests outlined in the corresponding ISO standard 21 254 depend on the amount of data points and their distribution over the fluence scale. With the limited space on a test sample as well as the requirements on test site separation and beam sizes, the amount of data from one test is restricted. This paper reports on a way to treat damage test data in order to reduce the statistical error and therefore measurement uncertainty. Three simple assumptions allow for the assignment of one data point to multiple data bins and therefore virtually increase the available data base.

  6. Higher certainty of the laser-induced damage threshold test with a redistributing data treatment

    SciTech Connect

    Jensen, Lars; Mrohs, Marius; Gyamfi, Mark; Mädebach, Heinrich; Ristau, Detlev

    2015-10-15

    As a consequence of its statistical nature, the measurement of the laser-induced damage threshold holds always risks to over- or underestimate the real threshold value. As one of the established measurement procedures, the results of S-on-1 (and 1-on-1) tests outlined in the corresponding ISO standard 21 254 depend on the amount of data points and their distribution over the fluence scale. With the limited space on a test sample as well as the requirements on test site separation and beam sizes, the amount of data from one test is restricted. This paper reports on a way to treat damage test data in order to reduce the statistical error and therefore measurement uncertainty. Three simple assumptions allow for the assignment of one data point to multiple data bins and therefore virtually increase the available data base.

  7. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine

    PubMed Central

    Voulalas, Pamela J.; Schetz, John; Undieh, Ashiwel S.

    2011-01-01

    We investigated the subcellular distribution of dopamine D1, D2 and D5 receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D1 receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D2 receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D5 receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D5 receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D1 receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D5 and D2 receptor subtypes were not significantly altered by cocaine treatment. These data imply that D5 receptors are predominantly cytoplasmic, D2 receptors are diffusely distributed within the cell, whereas D1 receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation. PMID:21236347

  8. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    NASA Astrophysics Data System (ADS)

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-02-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices.

  9. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution.

    PubMed

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction's electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  10. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    PubMed Central

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  11. Opioid-induced redistribution of 6TM and 7TM μ opioid receptors: A hypothesized mechanistic facilitator model of opioid-induced hyperalgesia.

    PubMed

    Wang, Wei; Wang, Yan; Zhang, Wei; Jin, Xiaoju; Liu, Yusheng; Xu, Shiqin; Lei, Liming; Shen, Xiaofeng; Guo, Xirong; Xia, Xiaoqiong; Wang, Fuzhou

    2016-08-01

    Opioids are still the most popular form of pain treatment, but many unavoidable side effects make opioids a big challenge in effective pain management. Opioid-induced hyperalgesia (OIH), a paradoxical phenomenon, portrays an increased sensitivity to harmful stimuli caused by opioid exposure. Changes in the neural modulation are considered a major contributor to the development of OIH. Activation of opioid receptors (ORs) and corresponding downstream molecules are the vital composition of functional performance of opioids. Increasing interests were proposed of the interaction between ORs and other neural transmitter systems such as glutamatergic, GABAergic and adrenergic ones to the genesis of OIH. G protein coupled μ-opioid receptor (MOR) was studied comprehensively on its role in the development of OIH. In addition to the relationship between MOR and other neurotransmitter receptors, a new intracellular MOR that has six transmembrane (6TM) domains was identified, and found to perform a pro-nociceptive task in contrast to the counterpart 7TM isoform. A mechanistic model of OIH in which both 6TM and 7TM MORs undergoing membrane redistribution upon opioid exposure is proposed which eventually facilitates the neurons more sensitive to nociceptive stimulation than that of the preceding opioid exposure. PMID:27116700

  12. Visualization of distinct patterns of subcellular redistribution of the thyrotropin-releasing hormone receptor-1 and gqalpha /G11alpha induced by agonist stimulation.

    PubMed Central

    Drmota, T; Novotny, J; Gould, G W; Svoboda, P; Milligan, G

    1999-01-01

    The rat thyrotropin-releasing hormone receptor-1 (TRHR-1) was modified by the addition of green fluorescent protein (GFP) and expressed stably in HEK293 cells. Extensive overlap of plasma membrane distribution of autofluorescent TRHR-1-GFP with that of the phosphoinositidase C-linked G-proteins Gqalpha/G11alpha, identified by indirect immunofluorescence, was monitored concurrently. Addition of thyrotropin-releasing hormone resulted in rapid separation of TRHR-1-GFP and Gqalpha/G11alpha signals as the receptor was internalized. This situation persisted for more than an hour. At longer time periods a fraction of the cellular Gqalpha/G11alpha was also internalized, although much of the Gqalpha/G11alpha immunoreactivity remained associated with the plasma membrane. Parallel experiments, in which the cellular distribution of TRHR-1-GFP and Gqalpha/G11alpha immunoreactivity were monitored in sucrose-gradient fractions following cell disruption, also demonstrated a rapid, agonist-induced movement of TRHR-1-GFP away from the plasma membrane to low-density vesicular fractions. At later time points, a fraction of the cellular Gqalpha/G11alpha immunoreactivity was also redistributed to overlapping, but non-identical, low-density-vesicle-containing fractions. Pretreatment of the cells with cytochalasin D or nocodazole prevented agonist-induced redistribution of G-protein but not TRHR-1-GFP, further indicating resolution of the mechanics of these two processes. The combination of a GFP-modified receptor and immunostaining of the G-proteins activated by that receptor allows, for the first time, concurrent analysis of the varying dynamics and bases of internalization and redistribution of two elements of the same signal-transduction cascade. PMID:10333499

  13. Negative capacitance induced by redistribution of oxygen vacancies in the fatigued BiFeO3-based thin film

    NASA Astrophysics Data System (ADS)

    Ke, Qingqing; Lou, Xiaojie; Yang, Haibo; Kumar, Amit; Zeng, Kaiyang; Wang, John

    2012-07-01

    The capacitance dispersion in La and Mg co-substituted BiFeO3 thin film has been studied at different stages of polarization switching. A negative capacitance (NC) behavior is observed in the sample that is fatigued above 109 switching cycles. The origin of the NC is investigated through analyzing relaxation processes and charge transport kinetics by admittance spectroscopy. An activation energy of ˜0.6 eV and a zero field mobility μ0=5.33±0.02×10-13m2/Vs are thus obtained. A physical mechanism is proposed to explain this behavior. It involves a redistribution of oxygen vacancies, which are trapped at the film/electrode interface during the fatigue process.

  14. STRESS-INDUCED REDISTRIBUTION OF IMMUNE CELLS - FROM BARRACKS TO BOULEVARDS TO BATTLEFIELDS: A TALE OF THREE HORMONES - CURT RICHTER AWARD WINNER

    PubMed Central

    Dhabhar, Firdaus S.; Malarkey, William B.; Neri, Eric; McEwen, Bruce S.

    2012-01-01

    Background The surveillance and effector functions of the immune system are critically dependent on the appropriate distribution of immune cells in the body. An acute or short-term stress response induces a rapid and significant redistribution of immune cells among different body compartments. Stress-induced leukocyte redistribution may be a fundamental survival response that directs leukocyte subpopulations to specific target organs during stress, and significantly enhances the speed, efficacy and regulation of an immune response. Immune responses are generally enhanced in compartments (e.g., skin) that are enriched with leukocytes, and suppressed in compartments that are depleted of leukocytes during/following stress. The experiments described here were designed to elucidate the: 1) Time-course, trajectory, and subpopulation-specificity of stress-induced mobilization and trafficking of blood leukocytes. 2) Individual and combined actions of the principal stress hormones, norepinephrine (NE), epinephrine (EPI), and corticosterone (CORT), in mediating mobilization or trafficking of specific leukocyte subpopulations. 3) Effects of stress/stress hormones on adhesion molecule, L-selectin (CD62L), expression by each subpopulation to assess its adhesion / functional / maturation status. Methods Male Sprague Dawley rats were stressed (short-term restraint, 2–120 min), or adrenalectomized and injected with vehicle (VEH), NE, EPI, CORT, or their combinations, and blood was collected for measurement of hormones and flow cytometric quantification of leukocyte subpopulations. Results Acute stress induced an early increase/mobilization of neutrophils, lymphocytes, helper T cells (Th), cytolytic T cells (CTL), and B cells into the blood, followed by a decrease/trafficking of all cell types out of the blood, except neutrophil numbers that continued to increase. CD62L expression was increased on neutrophils, decreased on Th, CTL, and natural killer (NK) cells, and showed a

  15. An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel β-structure and induces TDP-43 redistribution.

    PubMed

    Zhu, Li; Xu, Meng; Yang, Mengxue; Yang, Yanlian; Li, Yang; Deng, Jianwen; Ruan, Linhao; Liu, Jianghong; Du, Sidan; Liu, Xuehui; Feng, Wei; Fushimi, Kazuo; Bigio, Eileen H; Mesulam, Marsel; Wang, Chen; Wu, Jane Y

    2014-12-20

    TDP-43 proteinopathies are clinically and genetically heterogeneous diseases that had been considered distinct from classical amyloid diseases. Here, we provide evidence for the structural similarity between TDP-43 peptides and other amyloid proteins. Atomic force microscopy and electron microscopy examination of peptides spanning a previously defined amyloidogenic fragment revealed a minimal core region that forms amyloid fibrils similar to the TDP-43 fibrils detected in FTLD-TDP brain tissues. An ALS-mutant A315E amyloidogenic TDP-43 peptide is capable of cross-seeding other TDP-43 peptides and an amyloid-β peptide. Sequential Nuclear Overhauser Effects and double-quantum-filtered correlation spectroscopy in nuclear magnetic resonance (NMR) analyses of the A315E-mutant TDP-43 peptide indicate that it adopts an anti-parallel β conformation. When added to cell cultures, the amyloidogenic TDP-43 peptides induce TDP-43 redistribution from the nucleus to the cytoplasm. Neuronal cultures in compartmentalized microfluidic-chambers demonstrate that the TDP-43 peptides can be taken up by axons and induce axonotoxicity and neuronal death, thus recapitulating key neuropathological features of TDP-43 proteinopathies. Importantly, a single amino acid change in the amyloidogenic TDP-43 peptide that disrupts fibril formation also eliminates neurotoxicity, supporting that amyloidogenesis is critical for TDP-43 neurotoxicity. PMID:25113748

  16. Mitigation of Insulin Resistance by Mangiferin in a Rat Model of Fructose-Induced Metabolic Syndrome Is Associated with Modulation of CD36 Redistribution in the Skeletal Muscle.

    PubMed

    Zhou, Liang; Pan, Yongquan; Chonan, Ritsu; Batey, Robert; Rong, Xianglu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2016-01-01

    Mangiferin is one of the prominent active components responsible for the antidiabetic property of many traditional herbs, but its underlying mechanisms of action remain unclear. CD36 in skeletal muscle is known to contribute to the etiology of insulin resistance by facilitating fatty acid uptake. This study investigated the effect of mangiferin on insulin resistance. The results showed that treatment of Wistar-Kyoto rats with mangiferin (15 mg/kg, once daily, by oral gavage) for 7 weeks inhibited chronic liquid fructose consumption-induced increases in plasma insulin concentrations at the baseline and during oral glucose tolerance test (OGTT), and the homeostasis model assessment of insulin resistance index. It also suppressed the increases in fasted plasma nonesterified fatty acid (NEFA) concentration and the adipose tissue insulin resistance index. Mechanistically, mangiferin neither affected intakes of fructose and chow, and the increase in epididymal and perirenal fat, nor attenuated fructose-induced hypertension. In contrast, mangiferin attenuated fructose-induced acceleration of plasma NEFA clearance during OGTT, and tended to decrease excessive triglyceride accumulation in gastrocnemius. Immunofluorescence staining and subsequent rating of CD36-expressing fibers in gastrocnemius revealed that mangiferin restored fructose-stimulated sarcolemmal CD36 overexpression and decreased intracellular CD36 distribution. In addition, the effects of mangiferin on the parameters associated with insulin resistance and abnormal fatty acid metabolism were absent in the spontaneously hypertensive rats carrying numerous nonfunctional mutations in the CD36 gene. Thus, these results suggest that mangiferin treatment mitigates insulin resistance in a rat model of fructose-induced metabolic syndrome by modulating sarcolemmal and intracellular CD36 redistribution in the skeletal muscle. PMID:26498906

  17. EGCG in Green Tea Induces Aggregation of HMGB1 Protein through Large Conformational Changes with Polarized Charge Redistribution

    PubMed Central

    Meng, Xuan-Yu; Li, Baoyu; Liu, Shengtang; Kang, Hongsuk; Zhao, Lin; Zhou, Ruhong

    2016-01-01

    As a major effective component in green tea, (−)-epigallocatechin-3-gallate (EGCG)’s potential benefits to human health have been widely investigated. Recent experimental evidences indicate that EGCG can induce the aggregation of HMGB1 protein, a late mediator of inflammation, which subsequently stimulates the autophagic degradation and thus provides protection from lethal endotoxemia and sepsis. In this study, we use molecular dynamics (MD) simulations to explore the underlying molecular mechanism of this aggregation of HMGB1 facilitated by EGCG. Our simulation results reveal that EGCG firmly binds to HMGB1 near Cys106, which supports previous preliminary experimental evidence. A large HMGB1 conformational change is observed, where Box A and Box B, two homogenous domains of HMGB1, are repositioned and packed together by EGCG. This new HMGB1 conformation has large molecular polarity and distinctive electrostatic potential surface. We suggest that the highly polarized charge distribution leads to the aggregation of HMGB1, which differs from the previous hypothesis that two HMGB1 monomers are linked by the dimer of EGCG. Possible aggregating modes have also been investigated with potential of mean force (PMF) calculations. Finally, we conclude that the conformation induced by EGCG is more aggregation-prone with higher binding free energies as compared to those without EGCG. PMID:26899177

  18. Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers.

    PubMed

    Schmidt, Søren Fisker; Larsen, Bjørk Ditlev; Loft, Anne; Nielsen, Ronni; Madsen, Jesper Grud Skat; Mandrup, Susanne

    2015-09-01

    The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type-specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby specifically repressing super-enhancer-associated cell identity genes. PMID:26113076

  19. Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers

    PubMed Central

    Schmidt, Søren Fisker; Larsen, Bjørk Ditlev; Loft, Anne; Nielsen, Ronni; Madsen, Jesper Grud Skat; Mandrup, Susanne

    2015-01-01

    The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type–specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby specifically repressing super-enhancer-associated cell identity genes. PMID:26113076

  20. Redistribution of static stress, induced by the 2002-2003 Etna eruption, triggers seismic activity: a viscoelastic numerical model

    NASA Astrophysics Data System (ADS)

    Pulvirenti, Fabio; Aloisi, Marco

    2014-05-01

    The principal aim of this study is the investigation of the relationship between the push of the dike-forming magmatic intrusions and the faulting process in terms of earthquakes generation. A complete time-dependent 3D finite element model for the 2002-2003 eruption at Mount Etna is presented. The model, which takes into account the topography, medium heterogeneities and principal fault systems, is developed in a viscoelastic environment by a generalized Maxwell rheological description. To investigate where fault slips were encouraged or not and consequently how earthquakes may have been triggered, we look at the Coulomb stress changes induced by the magma uprising, during the co-intrusive and post-intrusive periods, focusing on the area of Pernicana Fault and S. Venerina Fault, which have been reactivated during the studied eruption. The temporal variation of the Coulomb stress changes allows to know the time of maximum stress transfer and then to infer the areas where there is an higher probability of earthquake occurrence. Results show positive stress changes for Pernicana Fault in accordance to the time, location and depth of the 27th October 2002 Pernicana earthquakes (Mmax = 3.8). Moreover, the amount of Coulomb stress changes on S. Venerina Fault, as induced by dike-forming intrusions, is not enough to trigger the 29th October Santa Venerina earthquakes (Mmax = 4.4), two days after the start of the eruption. The necessary Coulomb stress changes value to trigger the 29th S. Venerina Fault earthquakes is instead reached if we consider them as aftershocks of the 27th October Pernicana biggest earthquake. Acknowledgments This work was supported by MED-SUV Project.

  1. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats.

    PubMed

    Poudyal, Hemant; Panchal, Sunil K; Waanders, Jennifer; Ward, Leigh; Brown, Lindsay

    2012-02-01

    Chia seeds contain the essential fatty acid, α-linolenic acid (ALA). This study has assessed whether chia seeds attenuated the metabolic, cardiovascular and hepatic signs of a high-carbohydrate, high-fat (H) diet [carbohydrates, 52% (wt/wt); fat, 24% (wt/wt) with 25% (wt/vol) fructose in drinking water] in rats. Diets of the treatment groups were supplemented with 5% chia seeds after 8 weeks on H diet for a further 8 weeks. Compared with the H rats, chia seed-supplemented rats had improved insulin sensitivity and glucose tolerance, reduced visceral adiposity, decreased hepatic steatosis and reduced cardiac and hepatic inflammation and fibrosis without changes in plasma lipids or blood pressure. Chia seeds induced lipid redistribution with lipid trafficking away from the visceral fat and liver with an increased accumulation in the heart. The stearoyl-CoA desaturase-1 products were depleted in the heart, liver and the adipose tissue of chia seed-supplemented rats together with an increase in the substrate concentrations. The C18:1trans-7 was preferentially stored in the adipose tissue; the relatively inert C18:1n-9 was stored in sensitive organs such as liver and heart and C18:2n-6, the parent fatty acid of the n-6 pathway, was preferentially metabolized. Thus, chia seeds as a source of ALA induce lipid redistribution associated with cardioprotection and hepatoprotection. PMID:21429727

  2. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways.

    PubMed

    Zorzano, A; Muñoz, P; Camps, M; Mora, C; Testar, X; Palacín, M

    1996-01-01

    Insulin rapidly stimulates glucose transport in muscle fiber. This process controls the utilization of glucose in skeletal muscle, and it is deficient in various insulin-resistant states, such as non-insulin-dependent diabetes mellitus. The effect of insulin on muscle glucose transport is mainly due to the recruitment of GLUT4 glucose carriers to the cell surface of the muscle fiber. There is increasing evidence that the recruitment of GLUT4 carriers triggered by insulin affects selective domains of sarcolemma and transverse tubules. In contrast, GLUT1 is located mainly in sarcolemma and is absent in transverse tubules, and insulin does not alter its cellular distribution in muscle fiber. The differential distribution of GLUT1 and GLUT4 in the cell surface raises new questions regarding the precise endocytic and exocytic pathways that are functional in the muscle fiber. The current view of insulin-induced GLUT4 translocation is based mainly on studies performed in adipocytes. These studies have proposed the existence of intracellular compartments of GLUT4 that respond to insulin in a highly homogeneous manner. However, studies performed in skeletal muscle have identified insulin-sensitive as well as insulin-insensitive intracellular GLUT4-containing membranes. These data open a new perspective on the dynamics of intracellular GLUT4 compartments in insulin-sensitive cells. PMID:8529804

  3. Low-Dose Actinomycin-D Induces Redistribution of Wild-Type and Mutated Nucleophosmin Followed by Cell Death in Leukemic Cells.

    PubMed

    Brodská, Barbora; Holoubek, Aleš; Otevřelová, Petra; Kuželová, Kateřina

    2016-06-01

    Specific mutations involving C-terminal part of the nucleolar protein nucleophosmin (NPM) are associated with better outcome of acute myeloid leukemia (AML) therapy, possibly due to aberrant cytoplasmic NPM localization facilitating induction of anti-NPM immune response. Actinomycin D (actD) is known to induce nucleolar stress leading to redistribution of many nucleolar proteins, including NPM. We analyzed the distribution of both wild-type and mutated NPM (NPMmut) in human cell lines, before and after low-dose actD treatment, in living cells expressing exogenous fluorescently labeled proteins as well as using immunofluorescence staining of endogenous proteins in fixed cells. The wild-type NPM form is prevalently nucleolar in intact cells and relocalizes mainly to the nucleoplasm following actD addition. The mutated NPM form is found both in the nucleoli and in the cytoplasm of untreated cells. ActD treatment leads to a marked increase in NPMmut amount in the nucleoplasm while a mild decrease is observed in the cytoplasm. Cell death was induced by low-dose actD in all the studied leukemic cell lines with different p53 and NPM status. In cells expressing the tumor suppresor p53 (CML-T1, OCI-AML3), cell cycle arrest in G1/G0 phase was followed by p53-dependent apoptosis while in p53-null HL60 cells, transient G2/M-phase arrest was followed by cell necrosis. We conclude that although actD does not increase NPM concentration in the cytoplasm, it could improve the effect of standard chemotherapy in leukemias through more general mechanisms. PMID:26505272

  4. Education, Meritocracy and Redistribution

    ERIC Educational Resources Information Center

    Souto-Otero, Manuel

    2010-01-01

    This paper analyses the relationship between education, meritocracy and redistribution. It first questions the meritocratic ideal highlighting how it relates to normative expectations that do not hold fully neither in their logic nor in practice. It then complements the literature on persistent inequalities by focusing on the opportunities for…

  5. Theiler's murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin.

    PubMed

    Mutsvunguma, Lorraine Z; Moetlhoa, Boitumelo; Edkins, Adrienne L; Luke, Garry A; Blatch, Gregory L; Knox, Caroline

    2011-09-01

    Theiler's murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus. PMID:21445704

  6. Expression and redistribution of cellular Bad, Bax, and Bcl-X(L) protein is associated with VCD-induced ovotoxicity in rats.

    PubMed

    Hu, X; Christian, P; Sipes, I G; Hoyer, P B

    2001-11-01

    follicles in various stages of development. Relative to controls, within the population of small preantral follicles, staining intensity was less (P < 0.05) and presumably more diffuse, specifically in stage 1 primary follicles from VCD-treated animals (15 days). VCD caused none of these effects in large preantral follicles or liver (not targeted by VCD). These data provide evidence that the apoptosis induced by VCD in ovarian small preantral follicles of rats is associated with increased expression of Bad protein, redistribution of Bcl-x(L) protein and cytochrome c from the mitochondria to the cytosolic compartment, and an increase in the Bax/Bcl-x(L) ratio in the mitochondria. These observations are consistent with the involvement of Bcl-2 gene family members in VCD-induced acceleration of atresia. PMID:11673266

  7. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    SciTech Connect

    Bostanci, Zeynep; Alam, Samina; Soybel, David I.; Kelleher, Shannon L.

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  8. Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    NASA Astrophysics Data System (ADS)

    Belkacem, K.; Marques, J. P.; Goupil, M. J.; Mosser, B.; Sonoi, T.; Ouazzani, R. M.; Dupret, M. A.; Mathis, S.; Grosjean, M.

    2015-07-01

    The detection of mixed modes in subgiants and red giants by the CoRoT and Kepler space-borne missions allows us to investigate the internal structure of evolved low-mass stars, from the end of the main sequence to the central helium-burning phase. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 M⊙ at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.

  9. Hydraulic Redistribution: A Modeling Perspective

    NASA Astrophysics Data System (ADS)

    Daly, E.; Verma, P.; Loheide, S. P., III

    2014-12-01

    Roots play a key role in the soil water balance. They extract and transport water for transpiration, which usually represents the most important soil water loss in vegetated areas, and can redistribute soil water, thereby increasing transpiration rates and enhancing root nutrient uptake. We present here a two-dimensional model capable of describing two key aspects of root water uptake: root water compensation and hydraulic redistribution. Root water compensation is the ability of root systems to respond to the reduction of water uptake from areas of the soil with low soil water potential by increasing the water uptake from the roots in soil parts with higher water potential. Hydraulic redistribution is a passive transfer of water through the root system from areas of the soil with greater water potential to areas with lower water potential. Both mechanisms are driven by gradients of water potential in the soil and the roots. The inclusion of root water compensation and hydraulic redistribution in models can be achieved by describing root water uptake as a function of the difference in water potential between soil and root xylem. We use a model comprising the Richards equation for the water flow in variably saturated soils and the Darcy's equation for the water flow in the xylem. The two equations are coupled via a sink term, which is assumed to be proportional to the difference between soil and xylem water potentials. The model is applied in two case studies to describe vertical and horizontal hydraulic redistribution and the interaction between vegetation with different root depths. In the case of horizontal redistribution, the model is used to reproduce the fluxes of water across the root system of a tree subjected to uneven irrigation. This example can be extended to situations when only part of the root system has access to water, such as vegetation near creeks, trees at the edge of forests, and street trees in urban areas. The second case is inspired by recent

  10. Reperfusion-induced temporary appearance of therapeutic window in penumbra after 2 h of photothrombotic middle cerebral artery occlusion in rats.

    PubMed

    Yao, Hiroshi; Yoshii, Narihiko; Akira, Toshiaki; Nakahara, Tatsuo

    2009-03-01

    To explore the effects of reperfusion on evolution of focal ischemic injury, spontaneously hypertensive male rats were subjected to photothrombotic distal middle cerebral artery occlusion (MCAO) with or without YAG laser-induced reperfusion. The volume of fodrin breakdown zone, water content, and brain tissue levels of sodium (Na(+)) and potassium (K(+)) were measured in the ischemic core and penumbra. Reperfusion attenuated fodrin breakdown, and the volume containing fodrin breakdown product at 3 h after reperfusion (5 h after MCAO) (30+/-7 mm(3)) was significantly smaller than the 42+/-3 mm(3) of the permanent occlusion group. After 3 to 6 h of ischemia, Na(+) increased, and K(+) decreased in the ischemic core. Reperfusion after 2 h of MCA occlusion did not mitigate the ischemia-induced changes in brain tissue electrolytes and water content at 3 to 6 h of ischemia. Even in reperfusion after comparatively long periods of occlusion where brain infarction size, assessed 3 days after MCAO, was not significantly reduced by reperfusion, and the precipitating indicators of the ischemic core (Na(+), K(+), water content) did not improve, temporary improvement or a delay in progression of ischemic injury was discernible in the penumbra. These results indicate the possibility that treatment with reperfusion is permissive to the effects of neuroprotection. PMID:19088742

  11. Indomethacin induces increase in gastric epithelial tight junction permeability via redistribution of occludin and activation of p38 MAPK in MKN-28 Cells.

    PubMed

    Thakre-Nighot, Meghali; Blikslager, Anthony T

    2016-01-01

    Tight Junctions (TJ) create a paracellular barrier that is compromised when nonsteriodal anti-inflammatory drugs (NSAIDs) injure the gastric epithelium, leading to increased permeability. However, the mechanism of NSAID-induced gastric injury is unclear. Here, we examined the effect of indomethacin on barrier function and TJ in gastric MKN-28 cells. In concentration response studies, 500 µm indomethacin induced a significant decrease in transepithelial resistance (TER; 380 vs. 220 Ω·cm(2) for control and indomethacin-treated cells respectively, p < 0.05), and increased dextran permeability by 0.2 vs 1.2 g/l (p < 0.05). These changes in barrier function were completely ameliorated by the p38 MAPK inhibitor (SB-203580) but not by JNK inhibitor (SP-600125) or MEK/ERK inhibitor (PD-98059). SiRNA knock down of p38 MAPK prevented the loss of barrier function caused by indomethacin in MKN-28 cells. Western analyses of TJ proteins revealed that expression of occludin was reduced by indomethacin, whereas there was no change in other TJ proteins. The loss of occludin expression induced by indomethacin was prevented by inhibition of p38 MAPK but not JNK or ERK and also by siRNA of p38 MAPK. Immunofluorescence revealed disruption of occludin localization at the site of the tight junction in indomethacin-treated cells, and this was attenuated by inhibition of p38 MAPK. NSAID injury to murine gastric mucosa on Ussing chambers revealed that indomethacin caused a significant drop in TER and increased paracellular permeability. Pretreatment with the p38 MAPK inhibitor significantly attenuated the disruption of barrier function, but JNK and MEK/ERK inhibition had no effect. Western blot analysis on gastric mucosa reveled loss of TJ protein occludin by indomethacin, which was prevented by inhibition of p38 MAPK. This data suggests that indomethacin compromises the gastric epithelial barrier via p38 MAPK inducing occludin alterations in the TJs. PMID:27583191

  12. Fluorescence lifetime imaging and FRET-induced intracellular redistribution of Tat-conjugated quantum dot nanoparticles through interaction with a phthalocyanine photosensitiser.

    PubMed

    Yaghini, Elnaz; Giuntini, Francesca; Eggleston, Ian M; Suhling, Klaus; Seifalian, Alexander M; MacRobert, Alexander J

    2014-02-26

    The interaction of Tat-conjugated PEGylated CdSe/ZnS quantum dots (QD) with the amphiphilic disulfonated aluminium phthalocyanine photosensitiser is investigated in aqueous solution and in a human breast cancer cell line. In aqueous solution, the QDs and phthalocyanine form stable nanocomposites. Using steady-state and time-resolved fluorescence measurements combined with singlet oxygen detection, efficient Förster resonance energy transfer (FRET) is observed with the QDs acting as donors, and the phthalocyanine photosensitiser, which mediates production of singlet oxygen, as acceptors. In cells, the Tat-conjugated QDs localise in lysosomes and the QD fluorescence lifetimes are close to values observed in aqueous solution. Strong FRET-induced quenching of the QD lifetime is observed in cells incubated with the nanocomposites using fluorescence lifetime imaging microscopy (FLIM). Using excitation of the QDs at wavelengths where phthalocyanine absorption is negligible, FRET-induced release of QDs from endo/lysosomes is confirmed using confocal imaging and FLIM, which is attributed to photooxidative damage to the endo/lysosomal membranes mediated by the phthalocyanine acceptor. PMID:24031023

  13. Living high training low induces physiological cardiac hypertrophy accompanied by down-regulation and redistribution of the renin-angiotensin system

    PubMed Central

    Shi, Wei; Meszaros, J Gary; Zeng, Shao-ju; Sun, Ying-yu; Zuo, Ming-xue

    2013-01-01

    Aim: Living high training low” (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats. Methods: Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks. Hematological parameters, hemodynamic measurement, heart hypertrophy and plasma angiotensin II (Ang II) level of the rats were measured. The gene and protein expression of angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II receptor I (AT1) in heart tissue was assessed using RT-PCR and immunohistochemistry, respectively. Results: LLTL, LHS and LHTL significantly improved cardiac function, increased hemoglobin concentration and RBC. At the molecular level, LLTL, LHS and LHTL significantly decreased the expression of ACE, AGT and AT1 genes, but increased the expression of ACE and AT1 proteins in heart tissue. Moreover, ACE and AT1 protein expression was significantly increased in the endocardium, but unchanged in the epicardium. Conclusion: LHTL training protocol suppresses ACE, AGT and AT1 gene expression in heart tissue, but increases ACE and AT1 protein expression specifically in the endocardium, suggesting that the physiological heart hypertrophy induced by LHTL is regulated by region-specific expression of renin-angiotensin system components. PMID:23377552

  14. Adaptive lens using liquid crystal concentration redistribution

    NASA Astrophysics Data System (ADS)

    Ren, Hongwen; Lin, Yi-Hsin; Wu, Shin-Tson

    2006-05-01

    An adaptive lens using electrically induced liquid crystal (LC)/monomer concentration redistribution is demonstrated. In the absence of an electric field, the LC/monomer mixture is homogeneously distributed. Application of an inhomogeneous electric field causes the LC molecules to diffuse towards the high field region and the liquid monomer towards the low field region. On the other hand, the LC molecules tend to diffuse from high to low concentration direction in order to balance the concentration change. A gradient LC concentration is thus obtained. Using the gradient LC concentration, we demonstrate a tunable-focus lens. Compared with a conventional LC lens, our lens has advantages in small astigmatism and without light scattering, but its response time is slower.

  15. Redistributive effects in public health care financing.

    PubMed

    Honekamp, Ivonne; Possenriede, Daniel

    2008-11-01

    This article focuses on the redistributive effects of different measures to finance public health insurance. We analyse the implications of different financing options for public health insurance on the redistribution of income from good to bad health risks and from high-income to low-income individuals. The financing options considered are either income-related (namely income taxes, payroll taxes, and indirect taxes), health-related (co-insurance, deductibles, and no-claim), or neither (flat fee). We show that governments who treat access to health care as a basic right for everyone should consider redistributive effects when reforming health care financing. PMID:18347823

  16. Redistribution of synaptic efficacy between neocortical pyramidal neurons

    NASA Astrophysics Data System (ADS)

    Markram, Henry; Tsodyks, Misha

    1996-08-01

    EXPERiENCE-dependent potentiation and depression of synaptic strength has been proposed to subserve learning and memory by changing the gain of signals conveyed between neurons1,2. Here we examine synaptic plasticity between individual neocortical layer-5 pyramidal neurons. We show that an increase in the synaptic response, induced by pairing action-potential activity in pre- and postsynaptic neurons, was only observed when synaptic input occurred at low frequencies. This frequency-dependent increase in synaptic responses arises because of a redistribution of the available synaptic efficacy and not because of an increase in the efficacy. Redistribution of synaptic efficacy could represent a mechanism to change the content, rather than the gain, of signals conveyed between neurons.

  17. Wealth redistribution in conservative linear kinetic models

    NASA Astrophysics Data System (ADS)

    Toscani, G.

    2009-10-01

    We introduce and discuss kinetic models for wealth distribution which include both taxation and uniform redistribution. The evolution of the continuous density of wealth obeys a linear Boltzmann equation where the background density represents the action of an external subject on the taxation mechanism. The case in which the mean wealth is conserved is analyzed in full details, by recovering the analytical form of the steady states. These states are probability distributions of convergent random series of a special structure, called perpetuities. Among others, Gibbs distribution appears as steady state in case of total taxation and uniform redistribution.

  18. Resonance-line transfer with partial redistribution. VII Angle-dependent redistribution. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Milkey, R. W.; Shine, R. A.; Mihalas, D.

    1975-01-01

    A method is presented for treating radiative transfer in resonance lines, allowing for the full angle and frequency dependence of redistribution in the scattering process, as seen in the laboratory frame. The case of an equivalent-two-level-atom source function is considered; the problem to be treated is then linear in the radiation field. We apply this method to the Ca II lines in the solar atmosphere, using a redistribution function which takes into account a mixture of coherence in the atom's frame, with Doppler redistribution in the laboratory frame (for atoms which have not suffered an elastic collision), and of complete redistribution in the laboratory frame (for atoms that are collisionally perturbed during the emission process). Both the angle-averaged approximation and the full angle-dependent solution were obtained, and were compared to assess, differentially, the effects of angular redistribution upon the computed line profile and its center-to-limb behavior. For the Ca II line in a homogeneous solar chromosphere the angle-dependent effects are found to be negligible, indicating that one may use angle-averaged redistribution functions when studying partial redistribution effects in line profiles.

  19. Cognitive Ability and the Demand for Redistribution

    PubMed Central

    Mollerstrom, Johanna; Seim, David

    2014-01-01

    Empirical research suggests that the cognitively able are politically more influential than the less able, by being more likely to vote and to assume leadership positions. This study asks whether this pattern matters for public policy by investigating what role a person's cognitive ability plays in determining his preferences for redistribution of income among citizens in society. To answer this question, we use a unique Swedish data set that matches responses to a tailor-made questionnaire to administrative tax records and to military enlistment records for men, with the latter containing a measure of cognitive ability. On a scale of 0 to 100 percent redistribution, a one-standard-deviation increase in cognitive ability reduces the willingness to redistribute by 5 percentage points, or by the same amount as a $35,000 increase in mean annual income. We find support for two channels mediating this economically strong and statistically significant relation. First, higher ability is associated with higher income. Second, ability is positively correlated with the view that economic success is the result of effort, rather than luck. Both these factors are, in turn, related to lower demand for redistribution. PMID:25343713

  20. Mapping Redistribution Of Metal In Welds

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis

    1988-01-01

    Radioactive-tracer technique applied to map redistribution of metal caused by welding process. Surfaces of parts welded irradiated by particle-beam generators to make them slightly radioactive. Used to verify predictions of computer codes for dynamics of fluids in weld pools.

  1. Subsurface application enhances benefits of manure redistribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic (i.e., corn yield) and environmental (i.e., ammonia volatilization and surface nutrient losses) effects of different ...

  2. Contributions of In-Situ Stress Transient Redistribution to Blasting Excavation Damage Zone of Deep Tunnels

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Lu, Wen-bo; Chen, Ming; Hu, Ying-guo; Zhou, Chuang-bing; Wu, Xin-xia

    2015-03-01

    With the background of construction of the headrace tunnels with the deepest buried depth in China at present, by means of carefully acoustic velocity detection and analysis of Excavation Damage Zone (EDZ), the contributions to damage zones made by the effect of in situ stress transient redistribution are studied and compared with the extent of damage caused by the explosive load. Also, the numerical simulation was adopted to verify detecting the results. It turned out that the in situ stress transient redistribution during blasting has great influence on the development of EDZ of deep tunnels. The blasting excavation-induced damage zone of deep tunnels can be divided into the inner damage zone and the outer damage zone from the excavation surface into surrounding rocks. Although this damage zone dividing method is similar to the work of Martino and Chandler (2004), the consideration of developing a mechanism of the inner damage zone, especially the contribution of in situ stress transient redistribution, is totally different. The inner damage zone, which accounts for 29-57 % of the total damage zone, is mainly caused by explosive load and in situ stress transient adjustment, while the outer damage zone can be mostly attributed to the static redistribution of in situ stress. Field tests and numerical simulation indicate that the in situ stress transient redistribution effect during blasting contributes about 16-51 % to the inner damage zone in the 2# headrace tunnel of Jinping II Hydropower Station. For general cases, it can be concluded that the in situ stress transient redistribution is one of the main contributors of an excavation damage zone, and damage caused by in situ stress transient redistribution effect may exceed the damage caused by explosion load and become the main inducing factor for damage with the rise of in situ stress levels.

  3. Microscopic theory of superconductor-ferroelectric heterostructures: Interface charge redistribution

    NASA Astrophysics Data System (ADS)

    Pavlenko, N.; Schwabl, F.

    2003-03-01

    We present a theory of periodic ferroelectric-superconductor (FE-S) heterostructures containing ferroelectric layers sandwiched between superconducting planes. We analyze the electronic charge-carrier redistribution at the FE-S interface in the presence of the spontaneous polarization in the ferroelectric layer. On the other hand, we study the influence of the superconductor on the structural dynamics in the ferroelectric layer. The effect of FE-S contacts on the ferroelectrics is found to be crucial leading to a structural transformation from the state with the homogeneous-type polarization to the phase with a set of asymmetric stable polarization domains. FE-S interface phenomena induce a decrease of the temperature of the transition to the symmetric phase with two symmetric (negative and positive) polarization domains. Nevertheless, even above the ferroelectric critical temperature, we find in the ferroelectric layer a stable contact-induced enhanced spontaneous polarization. The domain structure in the symmetric phase appears as the response to the charge-carrier redistribution at the contact with the superconducting subsystem. An increase of the FE-S interface coupling results in a complex nonmonotonic behavior of the superconducting transition temperature and finally, for the strong-coupling regime, in a complete suppression of the superconductivity. The results are expected to be especially important for the analysis of high-temperature cuprate superconductor films grown on perovskite-type ferroelectrics.

  4. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    SciTech Connect

    Perez-Becker, Daniel; Showman, Adam P.

    2013-10-20

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ{sub wave}, plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ{sub wave}∼√(τ{sub rad}/Ω), where τ{sub rad} is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ{sub rad} ∼ τ{sub vert}, where τ{sub vert} is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ{sub rad} and the horizontal day

  5. 13 CFR 309.2 - Redistributions under part 307.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Redistributions under part 307... COMMERCE REDISTRIBUTIONS OF INVESTMENT ASSISTANCE § 309.2 Redistributions under part 307. (a) A Recipient of Investment Assistance under part 307 of this chapter may directly expend such...

  6. 13 CFR 309.2 - Redistributions under part 307.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Redistributions under part 307... COMMERCE REDISTRIBUTIONS OF INVESTMENT ASSISTANCE § 309.2 Redistributions under part 307. (a) A Recipient of Investment Assistance under part 307 of this chapter may directly expend such...

  7. NIF Target Capsule Wall And Hohlraum Transfer Gas Effects On Deuterium-Tritium Redistribution Rates

    SciTech Connect

    Giedt, W H; Sanchez, J J

    2005-06-27

    The effects of temperature and age on the times required for beta-heating-induced redistribution of a 50-50 mole percent mixture of deuterium and tritium (DT) in a spherical capsule are investigated analytically and numerically. The derivation of an analytical solution for the redistribution time in a one-dimensional binary diffusion model, which includes the capsule thermal resistance, is first described. This result shows that the redistribution time for a high conductivity capsule wall is approximately doubled after 8 days of {sup 3}He formation. In contrast, with a low thermal conductivity capsule wall (e.g., polyimide), the redistribution time would increase by less than 10%. The substantial effect of the capsule wall resistance suggested that the resistance to heat transfer from the capsule through the surrounding transfer gas to the hohlraum wall would also influence the redistribution process. This was investigated with a spherical model, which was based on accounting for energy transfer by diffusion with a conduction heat transfer approximation. This made it possible to solve for the continuous temperature distribution throughout the capsule and surrounding gas. As with the capsule the redistribution times depended on the relative values of the thermal resistances of the vapor, the capsule, and the transfer gas. With increasing thermal resistance of the vapor (increased concentration of {sup 3}He) redistributions times for hydrocarbon capsules were significantly less than predicted by the one-dimensional model, which included the capsule wall resistance. In particular for low {sup 3}He concentrations the time constant was approximately 10% less than the minimum one-dimensional value of 27 minutes. Further analytical and experimental investigation focused on defining the relations between the thermal resistances under which the one-dimensional model analysis applies is recommended.

  8. Redistributive effects of Swedish health care finance.

    PubMed

    Gerdtham, U G; Sundberg, G

    1998-01-01

    This paper investigates the redistributive effects of the Swedish health care financing system in 1980 and 1990 for four different financial sources: county council taxes, payroll taxes, direct payments and state grants. The redistributive effects are decomposed into vertical, horizontal and 'reranking' segments for each of the four financial sources. The data used are based on probability samples of the Swedish population, from the Level of Living Survey (LNU) from 1981 and 1991. The paper concludes that the Swedish health care financing system is weakly progressive, although direct payments are regressive. There is some horizontal inequity and 'reranking', which mainly comes from the county council taxes, since those tax rates vary for each county council. The implication is that, to some extent, people with equal incomes are treated unequally. PMID:10346051

  9. Carbon redistribution by erosion processes in an intensively disturbed catchment

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  10. Dynamics of quasi-spherical Z-pinch implosions with mass redistribution and displacement modification

    SciTech Connect

    Zhang Yang; Ding Ning; Sun Shunkai; Xue Chuang; Ning Cheng; Xiao Delong; Huang Jun; Li Zhenghong

    2012-12-15

    Implosions of (quasi-)spherical loads with mass redistribution and displacement modification are investigated numerically. Both methods can theoretically counterbalance the nonuniformity of magnetic pressure along the load surface and realize quasi-spherical Z-pinch implosions. Mass redistribution is feasible for spherical loads with large radius and weight, while the displacement modification is more suitable for light loads, such as those composed of wire arrays. Simulation results suggest that, for mass redistributed spherical loads, wall instabilities induced by polar mass flows will deform the imploding shell. For prolate spherical loads, in which the wall instability cannot develop, the kinetic energy distribution is disturbed at high latitude. These passive behaviors and their possible mitigation methods, such as reshaping the electrode, are investigated numerically in this paper.

  11. Dynamics of quasi-spherical Z-pinch implosions with mass redistribution and displacement modification

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Ding, Ning; Li, Zheng-Hong; Sun, Shun-Kai; Xue, Chuang; Ning, Cheng; Xiao, De-Long; Huang, Jun

    2012-12-01

    Implosions of (quasi-)spherical loads with mass redistribution and displacement modification are investigated numerically. Both methods can theoretically counterbalance the nonuniformity of magnetic pressure along the load surface and realize quasi-spherical Z-pinch implosions. Mass redistribution is feasible for spherical loads with large radius and weight, while the displacement modification is more suitable for light loads, such as those composed of wire arrays. Simulation results suggest that, for mass redistributed spherical loads, wall instabilities induced by polar mass flows will deform the imploding shell. For prolate spherical loads, in which the wall instability cannot develop, the kinetic energy distribution is disturbed at high latitude. These passive behaviors and their possible mitigation methods, such as reshaping the electrode, are investigated numerically in this paper.

  12. Hydraulic redistribution in three Amazonian trees.

    PubMed

    Oliveira, Rafael S; Dawson, Todd E; Burgess, Stephen S O; Nepstad, Daniel C

    2005-09-01

    About half of the Amazon rainforest is subject to seasonal droughts of 3 months or more. Despite this drought, several studies have shown that these forests, under a strongly seasonal climate, do not exhibit significant water stress during the dry season. In addition to deep soil water uptake, another contributing explanation for the absence of plant water stress during drought is the process of hydraulic redistribution; the nocturnal transfer of water by roots from moist to dry regions of the soil profile. Here, we present data on patterns of soil moisture and sap flow in roots of three dimorphic-rooted species in the Tapajós Forest, Amazônia, which demonstrate both upward (hydraulic lift) and downward hydraulic redistribution. We measured sap flow in lateral and tap roots of our three study species over a 2-year period using the heat ratio method, a sap-flow technique that allows bi-directional measurement of water flow. On certain nights during the dry season, reverse or acropetal flow (i.e.,in the direction of the soil) in the lateral roots and positive or basipetal sap flow (toward the plant) in the tap roots of Coussarea racemosa (caferana), Manilkara huberi (maçaranduba) and Protium robustum (breu) were observed, a pattern consistent with upward hydraulic redistribution (hydraulic lift). With the onset of heavy rains, this pattern reversed, with continuous night-time acropetal sap flow in the tap root and basipetal sap flow in lateral roots, indicating water movement from wet top soil to dry deeper soils (downward hydraulic redistribution). Both patterns were present in trees within a rainfall exclusion plot (Seca Floresta) and to a more limited extent in the control plot. Although hydraulic redistribution has traditionally been associated with arid or strongly seasonal environments, our findings now suggest that it is important in ameliorating water stress and improving rain infiltration in Amazonian rainforests. This has broad implications for

  13. A conceptual, distributed snow redistribution model

    NASA Astrophysics Data System (ADS)

    Frey, S.; Holzmann, H.

    2015-11-01

    When applying conceptual hydrological models using a temperature index approach for snowmelt to high alpine areas often accumulation of snow during several years can be observed. Some of the reasons why these "snow towers" do not exist in nature are vertical and lateral transport processes. While snow transport models have been developed using grid cell sizes of tens to hundreds of square metres and have been applied in several catchments, no model exists using coarser cell sizes of 1 km2, which is a common resolution for meso- and large-scale hydrologic modelling (hundreds to thousands of square kilometres). In this paper we present an approach that uses only gravity and snow density as a proxy for the age of the snow cover and land-use information to redistribute snow in alpine basins. The results are based on the hydrological modelling of the Austrian Inn Basin in Tyrol, Austria, more specifically the Ötztaler Ache catchment, but the findings hold for other tributaries of the river Inn. This transport model is implemented in the distributed rainfall-runoff model COSERO (Continuous Semi-distributed Runoff). The results of both model concepts with and without consideration of lateral snow redistribution are compared against observed discharge and snow-covered areas derived from MODIS satellite images. By means of the snow redistribution concept, snow accumulation over several years can be prevented and the snow depletion curve compared with MODIS (Moderate Resolution Imaging Spectroradiometer) data could be improved, too. In a 7-year period the standard model would lead to snow accumulation of approximately 2900 mm SWE (snow water equivalent) in high elevated regions whereas the updated version of the model does not show accumulation and does also predict discharge with more accuracy leading to a Kling-Gupta efficiency of 0.93 instead of 0.9. A further improvement can be shown in the comparison of MODIS snow cover data and the calculated depletion curve, where

  14. A modelling study of moisture redistribution by thin cirrus clouds

    NASA Astrophysics Data System (ADS)

    Dinh, T.; Fueglistaler, S.; Durran, D.; Ackerman, T.

    2014-05-01

    A high resolution 2-dimensional numerical model is used to study the moisture redistribution following homogeneous ice nucleation induced by Kelvin waves in the tropical tropopause layer (TTL). We compare results for dry/moist initial conditions, and three levels of complexity for the representation of cloud processes: full bin microphysics and radiative effects of the ice, ditto but without radiative effects, and instantaneous removal of moisture in excess of saturation upon nucleation. Cloud evolution and the profiles of moisture redistribution are found to be sensitive to initial conditions and cloud processes. Ice sedimentation leads to a downward flux of water. On the other hand, the cloud radiative heating induces upward advection of the cloudy air. This results in an upward flux of water vapour if the cloudy air is moister (or drier) than the environment, which is typically when the environment is subsaturated (or supersaturated). The numerical results show that only a small fraction (less than 25%) of the cloud experiences nucleation. Sedimentation and reevaporation are important, and hydrated layers in observation may be as good an indicator as dehydrated layers for the occurrence of thin cirrus clouds. The calculation with instantaneous removal of condensates misses the hydration by construction, but also underestimates dehydration due to lack of moisture removal from sedimenting particles below the nucleation level, and due to nucleation before reaching the minimum saturation mixing ratio. The sensitivity to initial conditions and cloud processes suggests that it is difficult to reach generic, quantitative conclusions regarding the role of thin cirrus clouds for the moisture distribution in the TTL and stratosphere.

  15. Landscape evolution by soil redistribution in a Mediterranean agricultural context

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Le Bissonnais, Yves

    2010-05-01

    Soils and landscapes are frequently subjected to rapid evolutions induced by climate changes and humans disturbances. Early, soil scientists had already sought to identify the dynamic interactions between soils and landscapes. Soil redistribution modelling is an appropriate analyse methodology widely utilized (Kirkby, 1985; Van Oost et al., 2000; Van Rompaey et al., 2001; Minasny and McBratney, 1999; Van Oost et al., 2005; Govers et al., 2006) to understand space time evolution in soil and landscape processes at short and medium term. The aims of this research is to develop a model able to simulate soil evolution as affected by soil redistribution processes (e.g. water-erosion processes and mechanical erosion) and to use pedological knowledge acquired from a field study coupled with the present research. The LandSoil model, here proposed, is an event based model, dimensioned for fine spatial [1 m] and medium [10 -100 years] temporal scales, taking into account a detailed representation of the agricultural landscape structure. It is composed of three modules for soil erosion/redistribution: rill erosion (Souchère et al., 2003); interrill erosion (Cerdan et al., 2002); and tillage erosion based on the mechanistic rules developed by Govers et al., 1994. After each rain and tillage event a new topography is evaluated as well as all the geometric landscape parameters. Specificities of the model are: i) long-term landscape analysis and topography balance after each rainfall; ii) evaluation of water erosion and soil mechanistic redistribution (tillage erosion); iii) taking in consideration of the landscape geometry, especially connectivity, as a significant information in describing the landscape and useful in modelling (Landscape structure management and landscape design); and iv) utilisation of various and different climate scenarios thanks to the event based model. Subsequently we apply this model to study the effect of different scenarios of land management and

  16. Using soil redistribution to understand soil organic carbon redistribution and budgets

    USGS Publications Warehouse

    Ritchie, J.C.; McCarty, G.W.; Venteris, E.R.; Kaspar, T.C.

    2005-01-01

    Patterns of soil organic carbon (SOC) vary across the landscape leading to uncertainties in SOC budgets, especially for agricultural areas where water, wind, and tillage erosion redistribute soil and SOC. This study determined SOC patterns related to soil redistribution in small agricultural fields. Soil redistribution patterns were determined using the fallout caesium-137 technique in agricultural fields in Maryland and Iowa, USA. In two Iowa fields, SOC ranged from 0.5 to 5% whereas in the Maryland field the SOC ranged from 0.4 to 2.9%. Soil organic carbon was statistically significantly correlated with soil 137Cs inventories and soil erosion/deposition rates. Sites of soil erosion in Iowa and Maryland had significantly lower average concentrations of SOC (2.4% and 1.3%, respectively) than sites of soil deposition (3.4% and 1.6%, respectively). These studies show the impact of soil redistribution patterns, within a field or catchment, and aid in understanding SOC patterns and budgets.

  17. Superfluorescence polarization: Signature of collisional redistribution

    NASA Astrophysics Data System (ADS)

    Kumarakrishnan, A.; Chudasama, S.; Han, X. L.

    2003-09-01

    We have studied effects of magnetic sublevel degeneracy on the polarization of superfluorescent pulses generated on the Ca 4s4p 1P1 3d4s 1D2 transition at 5.5 μm. These pulses were generated from a cell of length 50 cm by optically pumping calcium vapor on the 4s2 1S0 4s4p 1P1 transition in the presence of Ar gas. The axis of ellipticity of superfluorescence (SF) polarization is oriented parallel to the axis of the pump-laser polarization at large detunings, and undergoes an abrupt rotation through 90° for detunings close to resonance. The distribution of populations in the magnetic sublevels of the 1P1 state can be estimated using a simple model based on previously calculated cross sections for collisionally aided absorption in the presence of an intense (pump) field. For large detunings, these estimates are consistent with the polarized SF intensity measured in the experiment. A direct measurement of the populations of the 1P1 magnetic sublevels also supports the collisional redistribution predicted by the calculated cross sections. We therefore suggest that SF polarization can be a useful signature of collisional redistribution. However, the change in ellipticity is unexpected, and probable causes for this effect are discussed.

  18. Laser cooling by collisional redistribution of radiation.

    PubMed

    Vogl, Ulrich; Weitz, Martin

    2009-09-01

    The general idea that optical radiation may cool matter was put forward 80 years ago. Doppler cooling of dilute atomic gases is an extremely successful application of this concept. More recently, anti-Stokes cooling in multilevel systems has been explored, culminating in the optical refrigeration of solids. Collisional redistribution of radiation has been proposed as a different cooling mechanism for atomic two-level systems, although experimental investigations using moderate-density gases have not reached the cooling regime. Here we experimentally demonstrate laser cooling of an atomic gas based on collisional redistribution of radiation, using rubidium atoms in argon buffer gas at a pressure of 230 bar. The frequent collisions in the ultradense gas transiently shift a highly red-detuned laser beam (that is, one detuned to a much lower frequency) into resonance, whereas spontaneous decay occurs close to the unperturbed atomic resonance frequency. During each excitation cycle, kinetic energy of order k(B)T-that is, the thermal energy (k(B), Boltzmann's constant; T, temperature)-is extracted from the dense atomic sample. In a proof-of-principle experiment with a thermally non-isolated sample, we demonstrate relative cooling by 66 K. The cooled gas has a density more than ten orders of magnitude greater than the typical values used in Doppler-cooling experiments, and the cooling power reaches 87 mW. Future applications of the technique may include supercooling beyond the homogeneous nucleation temperature and optical chillers. PMID:19727195

  19. Precipitate Redistribution during Creep of Alloy 617

    SciTech Connect

    S. Schlegel; S. Hopkins; E. Young; M. Frary; J. Cole; T.Lillo

    2009-12-01

    Nickel-based superalloys are being considered for applications within advanced nuclear power generation systems due to their high temperature strength and corrosion resistance. Alloy 617, a candidate for use in heat exchangers, derives its strength from both solid solution strengthening and the precipitation of carbide particles. However, during creep, carbides that are supposed to retard grain boundary motion are found to dissolve and re-precipitate on boundaries in tension. To quantify the redistribution, we have used electron backscatter diffraction and energy dispersive spectroscopy to analyze the microstructure of 617 after creep testing at 900 and 1000°C. The data were analyzed with respect to location of the carbides (e.g., intergranular vs. intragranular), grain boundary character, and precipitate type (i.e., Cr-rich or Mo-rich). We find that grain boundary character is the most important factor in carbide distribution; some evidence of preferential distribution to boundaries in tension is also observed at higher applied stresses. Finally, the results suggest that the observed redistribution is due to the migration of carbides to the boundaries and not the migration of boundaries to the precipitates.

  20. The Sobolev approximation for line formation with partial frequency redistribution

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Rybicki, G. B.

    1992-01-01

    Attention is given to the formation of a spectral line in a uniformly expanding infinite medium in the Sobolev approximation, with emphasis on the various mechanisms for frequency redistribution. Numerical and analytic solutions of the transfer equation are presented of a number of redistribution functions and their approximations, including type I and type II partial redistribution, coherent scattering and complete redistribution, and the Fokker-Planck and uncorrelated approximation to the R sub II function. The solutions for the mean intensity are shown to depend very much on the type of redistribution mechanism, while for the frequency-weighted mean intensity, which enters the rate equations, this dependence is weak. It is inferred that use of Sobolev escape probabilities based on complete redistribution can be an adequate approximation for many calculations for which only the radiative excitation rates are needed.

  1. Statistical equilibrium in simple exchange games II. The redistribution game

    NASA Astrophysics Data System (ADS)

    Garibaldi, U.; Scalas, E.; Viarengo, P.

    2007-11-01

    We propose a simple stochastic exchange game mimicking taxation and redistribution. There are g agents and n coins; taxation is modeled by randomly extracting some coins; then, these coins are redistributed to agents following Polya's scheme. The individual wealth equilibrium distribution for the resulting Markov chain is the multivariate symmetric Polya distribution. In the continuum limit, the wealth distribution converges to a Gamma distribution, whose form factor is just the initial redistribution weight. The relationship between this taxation-and-redistribution scheme and other simple conservative stochastic exchange games (such as the BDY game) is discussed.

  2. Orexin-neuromodulated cerebellar circuit controls redistribution of arterial blood flows for defense behavior in rabbits

    PubMed Central

    Nisimaru, Naoko; Mittal, Chetan; Shirai, Yoshinori; Sooksawate, Thongchai; Anandaraj, Prabu; Hashikawa, Tsutomu; Nagao, Soichi; Arata, Akiko; Sakurai, Takeshi; Yamamoto, Miyuki; Ito, Masao

    2013-01-01

    We investigated a unique microzone of the cerebellum located in folium-p (fp) of rabbit flocculus. In fp, Purkinje cells were potently excited by stimulation of the hypothalamus or mesencephalic periaqueductal gray, which induced defense reactions. Using multiple neuroscience techniques, we determined that this excitation was mediated via beaded axons of orexinergic hypothalamic neurons passing collaterals through the mesencephalic periaqueductal gray. Axonal tracing studies using DiI and biotinylated dextran amine evidenced the projection of fp Purkinje cells to the ventrolateral corner of the ipsilateral parabrachial nucleus (PBN). Because, in defense reactions, arterial blood flow has been known to redistribute from visceral organs to active muscles, we hypothesized that, via PBN, fp adaptively controls arterial blood flow redistribution under orexin-mediated neuromodulation that could occur in defense behavior. This hypothesis was supported by our finding that climbing fiber signals to fp Purkinje cells were elicited by stimulation of the aortic nerve, a high arterial blood pressure, or a high potassium concentration in muscles, all implying errors in the control of arterial blood flow. We further examined the arterial blood flow redistribution elicited by electric foot shock stimuli in awake, behaving rabbits. We found that systemic administration of an orexin antagonist attenuated the redistribution and that lesioning of fp caused an imbalance in the redistribution between active muscles and visceral organs. Lesioning of fp also diminished foot shock-induced increases in the mean arterial blood pressure. These results collectively support the hypothesis that the fp microcomplex adaptively controls defense reactions under orexin-mediated neuromodulation. PMID:23912185

  3. Redistribution of volatiles during lunar metamorphism

    NASA Technical Reports Server (NTRS)

    Cirlin, E. H.; Housley, R. M.

    1980-01-01

    Thermal release profiles of Pb, Zn, and Cd in sample 66095 (highly shocked breccia with melt rock matrix) showed that these volatiles were mostly present on the surface of the grains. Zn in rusty grains from 66095 was also mostly surface Zn, probably from sphalerite in grain boundaries and cracks. Simulation experiments of volatile transfer showed that Fe, FeCl2, iron phosphide, and troilite (FeS) can be produced and transported during subsolidus reactions. These results suggest that volatiles, rust, schreibersite, and possible siderophiles which are observed in lunar highland samples might have been redistributed during disequilibrium thermal metamorphism in hot ejecta blankets, and were not necessarily introduced by volcanic activity or meteoritic addition.

  4. CancerNet redistribution via WWW.

    PubMed Central

    Quade, G.; Püschel, N.; Far, F.

    1996-01-01

    CancerNet from the National Cancer Institute contains nearly 500 ASCII-files, updated monthly, with up-to-date information about cancer and the "Golden Standard" in tumor therapy. Perl scripts are used to convert these files to HTML-documents. A complex algorithm, using regular expression matching and extensive exception handling, detects headlines, listings and other constructs of the original ASCII-text and converts them into their HTML-counterparts. A table of contents is also created during the process. The resulting files are indexed for full-text search via WAIS. Building the complete CancerNet WWW redistribution takes less than two hours with a minimum of manual work. For 26,000 requests of information from our service per month the average costs for the worldwide delivery of one document is about 19 cents. PMID:8947697

  5. Dissolution and redistribution of hydrogen in steel

    SciTech Connect

    Astaf`ev, A.A.

    1995-11-01

    The danger of flakes initiated by hydrogen dissolved in steel may arise in the production of forgings from alloyed steels. Hydrogen penetrates steel in melting, heat treatment, welding, galvanizing, and pickling and during operation in aggressive media, which reduces the ductility and increases the probability of brittle failure. It is of interest from the standpoint of practice and theory to investigate the possibility of evaluating the amount of hydrogen dissolved in steel and capable of diffusion and to analyze the redistribution and penetration of hydrogen into pores and collectors. In this case atomic hydrogen recombines and transforms into molecular hydrogen, which does not cause flakes or hydrogen embrittlement. This problem is considered in the present work.

  6. Redistribution of Carbon During Forest Blowdowns

    NASA Astrophysics Data System (ADS)

    Wohl, E. E.

    2013-12-01

    Numerous blowdowns in subalpine and montane forests of the Southern Rocky Mountains during the winter of 2011-12 present an opportunity to evaluate how this type of disturbance affects the distribution of organic carbon. Patch blowdowns covering 0.1 to 33 ha are an episodic event with an unknown recurrence interval. Blowdowns influence carbon partitioning in a forested ecosystem by transferring live to dead biomass and exposing soil on uprooted trees. Wood recruited to streams via blowdowns can cause channel-spanning jams that enhance overbank flows and channel avulsion in wider valley segments. This can lead to a multithread channel planform and increased floodplain storage of carbon, as well as altered stream metabolism and animal (insect and fish) production. This talk examines a 33-ha blowdown that occurred along Glacier Creek in Rocky Mountain National Park, Colorado during February 2012. Estimated carbon redistribution ranged as high as 308 Mg C/ha in high-severity patches to 106 Mg C/ha in low-severity patches. Volumes of carbon redistributed from living to dead biomass at high-severity sites are close to average total biomass in subalpine forests in the region. Blowdowns are likely to increase under a warming climate as part of an accelerated disturbance regime involving intense storms and wind, wildfire, and insect infestations. The consequences for carbon partitioning across the landscape, and for riverine ecosystems, depend partly on geomorphic setting, which creates path-dependence and hysteresis. In wider valley segments, downed trees (carbon transferred to dead biomass by blowdowns) may enhance retention of carbon in transport within the stream, facilitating both burial in sedimentary reservoirs and uptake by stream organisms.

  7. Redistribution Spurs Growth by Using a Portfolio Effect on Risky Human Capital

    PubMed Central

    Lorenz, Jan; Paetzel, Fabian; Schweitzer, Frank

    2013-01-01

    We demonstrate by mathematical analysis and systematic computer simulations that redistribution can lead to sustainable growth in a society. In accordance with economic models of risky human capital, we assume that dynamics of human capital is modeled as a multiplicative stochastic process which, in the long run, leads to the destruction of individual human capital. When agents are linked by fully redistributive taxation the situation might turn to individual growth in the long run. We consider that a government collects a proportion of income and reduces it by a fraction as costs for administration (efficiency losses). The remaining public good is equally redistributed to all agents. Sustainable growth is induced by redistribution despite the losses from the random growth process and despite administrative costs. Growth results from a portfolio effect. The findings are verified for three different tax schemes: proportional tax, taking proportionally more from the rich, and proportionally more from the poor. We discuss which of these tax schemes performs better with respect to maximize growth under a fixed rate of administrative costs, and the governmental income. This leads us to general conclusions about governmental decisions, the relation to public good games with free riding, and the function of taxation in a risk-taking society. PMID:23390505

  8. Redistribution on the thallium scan in myocardial sarcoidosis: concise communication

    SciTech Connect

    Makler, P.T.; Lavine, S.J.; Denenberg, B.S.; Bove, A.A.; Idell, S.

    1981-05-01

    Resting and redistribution thallium studies were performed in four young patients with sarcoidosis to evaluate the possibility of myocardial involvement. In each case the resting scan showed marked defects that resolved on the redistribution studies. In a different patient population, these results would have implied significant coronary artery disease.

  9. Redistributing Wealth to Families: The Advantages of the MYRIADE Model

    ERIC Educational Resources Information Center

    Legendre, Francois; Lorgnet, Jean-Paul; Thibault, Florence

    2005-01-01

    This study aims to shed light on the main characteristics of the French system for redistributing wealth to families through tax revenues and social transfers. For the purposes of this exercise, the authors used the MYRIADE microsimulation model, which covers most of the redistribution system, though it is limited to monetary flows such as family…

  10. Redistribution of radiation for the wings of Lyman-alpha

    NASA Technical Reports Server (NTRS)

    Yelnik, J.-B.; Burnett, K.; Cooper, J.; Ballagh, R. J.; Voslamber, D.

    1981-01-01

    Earlier work on redistribution of radiation by collisions for isolated lines is extended to overlapping lines, and an explicit expression for the frequency redistribution is given for Lyman-alpha. This expression is valid, even when the emitted photon is in the (non-impact) line wings. A simple physical explanation of the result is possible.

  11. Fluorescence imaging of lattice re-distribution on step-index direct laser written Nd:YAG waveguide lasers

    SciTech Connect

    Martínez de Mendívil, Jon; Pérez Delgado, Alberto; Lifante, Ginés; Jaque, Daniel; Ródenas, Airán; Benayas, Antonio; Aguiló, Magdalena; Diaz, Francesc; Kar, Ajoy K.

    2015-01-14

    The laser performance and crystalline micro-structural properties of near-infrared step-index channel waveguides fabricated inside Neodymium doped YAG laser ceramics by means of three-dimensional sub-picosecond pulse laser direct writing are reported. Fluorescence micro-mapping of the waveguide cross-sections reveals that an essential crystal lattice re-distribution has been induced after short pulse irradiation. Such lattice re-distribution is evidenced at the waveguide core corresponding to the laser written refractive index increased volume. The waveguides core surroundings also present diverse changes including slight lattice disorder and bi-axial strain fields. The step-index waveguide laser performance is compared with previous laser fabricated waveguides with a stress-optic guiding mechanism in absence of laser induced lattice re-distribution.

  12. Bis(monoacylglycero)phosphate accumulation in macrophages induces intracellular cholesterol redistribution, attenuates liver-X receptor/ATP-Binding cassette transporter A1/ATP-binding cassette transporter G1 pathway, and impairs cholesterol efflux

    PubMed Central

    Luquain-Costaz, Céline; Lefai, Etienne; Arnal-Levron, Maud; Markina, Daria; Sakaï, Shota; Euthine, Vanessa; Makino, Asami; Guichardant, Michel; Yamashita, Shizuya; Kobayashi, Toshihide; Lagarde, Michel; Moulin, Philippe; Delton-Vandenbroucke, Isabelle

    2013-01-01

    Objective Endosomal signature phospholipid bis(monoacylglycero)phosphate (BMP) has been involved in the regulation of cellular cholesterol homeostasis. Accumulation of BMP is a hallmark of lipid storage disorders and was recently reported as a noticeable feature of oxidized LDL-laden macrophages. This study was designed to delineate the consequences of macrophage BMP accumulation on intracellular cholesterol distribution, metabolism and efflux and to unravel the underlying molecular mechanisms. Methods and results We have developed an experimental design to specifically increase BMP content in RAW macrophages. Following BMP accumulation, cell cholesterol distribution was markedly altered despite no change in LDL uptake and hydrolysis, cholesterol esterification, or total cell cholesterol content. The expression of cholesterol regulated genes SREBP2 and HMGCoAR was decreased by 40%, indicative of an increase of endoplasmic reticulum associated-cholesterol. Cholesterol delivery to plasma membrane was reduced as evidenced by the 20% decrease of efflux by cyclodextrin. Functionally, BMP accumulation reduced cholesterol efflux to both apoA1 and HDL by 40%, correlated with a 40% decrease in mRNA contents of ABCA1 and ABCG1 transporters and LXR α and β. Foam cell formation induced by oxidized LDL exposure was exacerbated in BMP enriched cells. Conclusion The present work shows for the first time a strong functional link between BMP and cholesterol regulating genes involved in both intracellular metabolism and efflux. We propose that accumulation of cellular BMP might contribute to the deregulation of cholesterol homeostasis in atheromatous macrophages. PMID:23788762

  13. A field study of unstable preferential flow during soil water redistribution

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Wu, Laosheng; Harter, Thomas; Lu, Jianhang; Jury, William A.

    2003-04-01

    Reversal of the matric potential gradient during redistribution of soil water following infiltration has been hypothesized as a cause of preferential flow by inducing a fluid instability at the leading edge of the wetting front. In this paper, we present results of 17 field experiments carried out to quantify the effects of redistribution on preferential flow in nonstructured soils. The experiments were performed in three field soils (Superstition sand, Delhi sand, and Hanford sandy loam) under saturating and nonsaturating water application rates. Water flow patterns were monitored at various times during redistribution with photography using anionic dyes and by intensive core sampling of bromide added during infiltration. The soil surface was either tilled or undisturbed, exposed or covered with a plastic membrane, and the top 20-cm fine layer was either left in place or removed in various treatments. The infiltration water containing tracers was applied continuously and uniformly to the surface of a 2 × 1.2 m2 field plot using a moving spray system. After the soil received 8 to 20 cm of water, a trench was dug adjacent to the plot and vertical soil profiles were exposed at different times and positions to visualize the redistribution process. Some profiles were intensively sampled by soil coring along the trench face and analyzed for water content and bromide concentration to quantify the redistribution of water in the wetted zones. The observed two- and three-dimensional distribution of the water tracers clearly indicated the development of unstable flow during redistribution in two of the three soil types studied but not in the coarsest-textured Superstition sand. Symptoms of instability included irregularly shaped fingers that tended to become narrower toward their tips, isolated patches, and highly concentrated areas of the tracers indicating signs of converging and intermittent flow. The measured tortuosity of the wetting front was near 1.0 at the end of

  14. Performance validation of an irradiance redistribution guide

    NASA Astrophysics Data System (ADS)

    Lewandowski, Allan; Bingham, Carl; Shatz, Narkis E.; Bortz, John C.

    1997-10-01

    Science Applications International Corporation has used a unique nonimaging-optical global optimization computer code, NICOS, to design an innovative secondary concentrator for the National Renewable Energy Laboratory (NREL). NICOS allows for the optimal design of such devices to achieve a variety of irradiance distributions on a desired target. The case of interest to NREL called for a uniform irradiance of concentrated sunlight over a relatively large area and at a reasonable working distance from the exit of the device. Because the irradiance at the nominal focal point of NREL's High-Flux Solar Furnace (HFSF) was reshaped from a near- Gaussian distribution to a nearly uniform one, the designs generated have been called irradiance redistribution guides (IRG). A design featuring reentrant optics was selected for fabrication and testing. This IRG has been fabricated and tested at the HFSF to compare predicted and measured performance. The IRG's performance is close to the theoretical predictions. Much of the performance difference can be explained by discrepancies between the actual HFSF performance relative to that assumed in the NICOS predictions. This IRG will be useful for applications in which uniform solar concentration at moderate flux is required. In general, the design methodology and resulting devices can provide a new way to satisfy diverse flux tailoring needs.

  15. Modeling of constituent redistribution in U Pu Zr metallic fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hayes, S. L.; Hofman, G. L.; Yacout, A. M.

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  16. 47 CFR 73.9001 - Redistribution control of digital television broadcasts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... redistribution control descriptor described in ATSC A/65B: “ATSC Standard: Program and System Information...) provided they do not transmit the optional additional redistribution control information....

  17. Managing fleet capacity effectively under second-hand market redistribution.

    PubMed

    Quillérou, Emmanuelle; Roudaut, Nolwenn; Guyader, Olivier

    2013-09-01

    Fishing capacity management policies have been traditionally implemented at national level with national targets for capacity reduction. More recently, capacity management policies have increasingly targeted specific fisheries. French fisheries spatially vary along the French coastline and are associated to specific regions. Capacity management policies, however, ignore the capital mobility associated with second-hand vessel trade between regions. This is not an issue for national policies but could limit the effectiveness of regional capacity management policies. A gravity model and a random-effect Poisson regression model are used to analyze the determinants and spatial extent of the second-hand market in France. This study is based on panel data from the French Atlantic Ocean between 1992 and 2009. The trade flows between trading partners is found to increase with their sizes and to be spatially concentrated. Despite the low trade flows between regions, a net impact analysis shows that fishing capacity is redistributed by the second-hand market to regions on the Channel and Aquitaine from central regions. National capacity management policies (constructions/destructions) have induced a net decrease in regional fleet capacity with varying magnitude across regions. Unless there is a change of policy instruments or their scale of implementation, the operation of the second-hand market decreases the effectiveness of regional capacity management policies in regions on the Channel and Aquitaine. PMID:23288614

  18. Water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-04-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.

  19. Redistribution of intertidal sediment contaminants by microphytobenthos

    NASA Astrophysics Data System (ADS)

    Becker, Amani; Copplestone, David; Tyler, Andrew; Smith, Nick; Sneddon, Christopher

    2014-05-01

    Microphytobenthos (MPB) is a mixed community of microscopic algae inhabiting the top few millimetres of bottom sediment in the intertidal zone. It is a key component of the estuarine ecosystem, interacting with the sediment and fauna to influence sediment distribution and resuspension and forming the base of the estuarine food chain. Estuarine sediments, with which the MPB is closely associated, are a significant sink for contaminants from both fluvial and marine sources. Algae are known to have the capacity to take up contaminants, and the phytoplankton has been well studied in this respect, however there has been little research involving MPB. The extent to which contaminant uptake by MPB occurs and under what conditions is therefore very poorly understood. It seems probable that the paucity of research in this area is due to the complexity of the bioavailability of contaminants in the intertidal zone coupled with difficulties in separating MPB from the sediment. A series of experiments are proposed in which we will investigate (at a range of spatial scales) contaminant partitioning in the presence of MPB; the effect of changing temperatures on contaminant uptake and toxicity to MPB; effects of sediment resuspension on contaminant availability and uptake to MPB; and the uptake of contaminants from MPB to molluscs. A mesocosm (or experimental enclosure) is being constructed to replicate the natural system and enable manipulation of conditions of interest. This will attain greater realism than laboratory toxicity tests, with more statistical power than can be achieved through field studies. By gaining a better understanding of processes governing contaminant bioavailability and mechanisms for uptake by MPB it will be possible to relate these to projected climate change effects and ascertain potential consequences for contaminant redistribution.

  20. Longitudinal plaque redistribution during stent expansion.

    PubMed

    Maehara, A; Takagi, A; Okura, H; Hassan, A H; Bonneau, H N; Honda, Y; Yock, P G; Fitzgerald, P J

    2000-11-15

    The purpose of this study was to clarify the 3-dimensional behavior of plaque during coronary stent expansion. Serial intravascular ultrasound (IVUS) studies, preintervention, and poststenting were evaluated in 32 patients treated with a single-balloon expandable tubular stent. External elastic membrane (EEM), lumen, stent, and plaque + media cross-sectional area were measured at 1-mm intervals through the entire stent as well as proximal and distal reference segments 5 mm from the stent edge. Volumetric calculations were based on Simpson's rule. Overall, the plaque + media volume through the entire lesion did not change during stent expansion (218 +/- 51 vs 217 +/- 47 mm3, p = 0.69). However, EEM and lumen volume increased significantly (EEM volume, 391 +/- 84 vs 448 +/- 87 mm3 [p < 0.0001]; lumen volume, 173 +/- 52 vs 231 +/- 54 mm3 [p < 0.0001]). The change in lumen volume correlated strongly with the change in EEM volume (r = 0.85, p < 0.0001), but poorly with the change in plaque + media volume (r = 0.37, p = 0.03). Plaque + media volume decreased in the midstent zone (59 +/- 14 vs 53 +/- 11 mm3, p = 0.0005), and increased in the distal stent zone (40 +/- 11 vs 44 +/- 9 mm3, p = 0.003), but did not change in either the proximal stent zone or reference segments. The mechanism of stent expansion is a combination of vessel stretch and plaque redistribution, translating disease accumulation from the midstent zone to the distal stent zone. PMID:11074201

  1. VERTICAL REDISTRIBUTION OF A POLLUTANT TRACER DUE TO CUMULUS CONVECTION

    EPA Science Inventory

    Mathematical formalisms that incorporate the physical processes responsible for the vertical redistribution of a conservative pollutant tracer due to a convective cloud field are presented. Two modeling approaches are presented differing in the manner in which the cloud fields ar...

  2. Radial plutonium redistribution in mixed-oxide fuel. [LMFBR

    SciTech Connect

    Lawrence, L.A.; Schwinkendorf, K.N.; Karnesky, R.A.

    1981-10-01

    Alpha autoradiographs from all HEDL fuel pin metallography samples are evaluated and catalogued according to different plutonium distribution patterns. The data base is analyzed for effects of fabrication and operating parameters on redistribution.

  3. 45 CFR 98.64 - Reallotment and redistribution of funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DEVELOPMENT FUND Financial Management § 98.64 Reallotment and redistribution of funds. (a) According to the... will be based on the State's financial report to ACF for the Child Care and Development Fund...

  4. Spherulite Crystallization Induces Fe-Redox Redistribution in Silicic Melt

    SciTech Connect

    Castro, J.; Cottrell, E; Tuffen, H; Logan, A; Kelley, K

    2009-01-01

    Rhyolitic obsidians from Krafla volcano, Iceland, record the interaction between mobile hydrous species liberated during crystal growth and the reduction of ferric iron in the silicate melt. We performed synchrotron {mu}-FTIR and {mu}-XANES measurements along a transect extending from a spherulite into optically distinct colorless and brown glass zones. Measurements show that the colorless glass is enriched in OH groups and depleted in ferric iron, while the brown glass shows the opposite relationship. The color shift between brown and clear glass is sharp, suggesting that the colorless glass zone was produced by a redox front that originated from the spherulite margin and moved through surrounding melt during crystallization. We conclude that the most likely reducing agent is hydrogen, produced by magnetite crystallization within the spherulite. The Krafla obsidians dramatically capture redox disequilibrium on the micoscale and highlight the importance of hydrous fluid liberation and late-stage crystallization to the redox signature of glassy lavas.

  5. Redistribution of actin during assembly and reassembly of the contractile ring in grasshopper spermatocytes.

    PubMed

    Alsop, G Bradley; Chen, Wei; Foss, Margit; Tseng, Kuo-Fu; Zhang, Dahong

    2009-01-01

    Cytokinesis in animal cells requires the assembly of an actomyosin contractile ring to cleave the cell. The ring is highly dynamic; it assembles and disassembles during each cell cleavage, resulting in the recurrent redistribution of actin. To investigate this process in grasshopper spermatocytes, we mechanically manipulated the spindle to induce actin redistribution into ectopic contractile rings, around reassembled lateral spindles. To enhance visualization of actin, we folded the spindle at its equator to convert the remnants of the partially assembled ring into a concentrated source of actin. Filaments from the disintegrating ring aligned along reorganizing spindle microtubules, suggesting that their incorporation into the new ring was mediated by microtubules. We tracked incorporation by speckling actin filaments with Qdots and/or labeling them with Alexa 488-phalloidin. The pattern of movement implied that actin was transported along spindle microtubules, before entering the ring. By double-labeling dividing cells, we imaged actin filaments moving along microtubules near the contractile ring. Together, our findings indicate that in one mechanism of actin redistribution, actin filaments are transported along spindle microtubule tracks in a plus-end-directed fashion. After reaching the spindle midzone, the filaments could be transported laterally to the ring. Notably, actin filaments undergo a dramatic trajectory change as they enter the ring, implying the existence of a pulling force. Two other mechanisms of actin redistribution, cortical flow and de novo assembly, are also present in grasshopper, suggesting that actin converges at the nascent contractile ring from diffuse sources within the cytoplasm and cortex, mediated by spindle microtubules. PMID:19287500

  6. Medicare financing and redistribution in british columbia, 1992 and 2002.

    PubMed

    McGrail, Kimberlyn

    2007-05-01

    Equity in healthcare in British Columbia is defined as the provision of services based on need rather than ability to pay and a separation of contributions to financing from the use of services. Physician and hospital services in Canada are financed mainly through general tax revenues, and there is a perception that this financing is progressive. This paper uses Gini coefficients, concentration indexes and Kakwani indexes of progressivity to assess the progressivity of medicare financing in British Columbia in 1992 and 2002. It also measures the overall redistributive effect of medicare services, considering both contributions to financing and use of hospital and physician services. The conclusion is that medicare does redistribute across income groups, but this redistribution is the result solely of the positive correlation between health status and income; financing is nearly proportionate across income groups, but use is higher among lower-income groups. Informed public debate requires a better understanding of these concepts of equity. PMID:19305738

  7. Heat and salt redistribution within the Mediterranean Sea in the Med-CORDEX model ensemble

    NASA Astrophysics Data System (ADS)

    Llasses, J.; Jordà, G.; Gomis, D.; Adloff, F.; Macías, D.; Harzallah, A.; Arsouze, T.; Akthar, N.; Li, L.; Elizalde, A.; Sannino, G.

    2016-06-01

    Characterizing and understanding the basic functioning of the Mediterranean Sea in terms of heat and salt redistribution within the basin is a crucial issue to predict its evolution. Here we quantify and analyze the heat and salt transfers using a simple box model consisting of four layers in the vertical for each of the two (western and eastern) basins. Namely, we box-average 14 regional simulations of the Med-CORDEX ensemble plus a regional and a global reanalysis, computing for each of them the heat and salt exchanges between layers. First, we analyze in detail the mechanisms behind heat and salt redistribution at different time scales from the outputs of a single simulation (NEMOMED8). We show that in the western basin the transfer between layer 1 (0-150 m) and layer 2 (150-600 m) is upwards for most models both for heat and salt, while in the eastern basin both transfers are downwards. A feature common to both basins is that the transports are smaller in summer than in winter due to the enhanced stratification, which dampen the mixing between layers. From the comparison of the 16 simulations we observe that the spread between models is much larger than the ensemble average for the salt transfer and for the heat transfer between layer 1 and layer 2. At lower layers (below 600 m) there is a set of models showing a good agreement between them, while others are not correlated with any other. The mechanisms behind the ensemble spread are not straightforward. First, to have a coarse resolution prevents the model to correctly represent the heat and salt redistribution in the basin. Second, those models with a very different initial stratification also show a very different redistribution, especially at intermediate and deep layers. Finally, the assimilation of data seems to perturb the heat and salt redistribution. Besides this, the differences among regional models that share similar spatial resolution and initial conditions are induced by more subtle mechanisms

  8. Relationship between redistribution on exercise thallium-201 scintigraphy and repetitive ventricular premature beats in patients with recent myocardial infarction

    SciTech Connect

    Tsuji, H.; Iwasaka, T.; Sugiura, T.; Shimada, T.; Nakamori, H.; Kimura, Y.; Inada, M. )

    1991-06-01

    The relationship between myocardial ischemia detected by exercise thallium-201 scintigraphy and repetitive ventricular premature beats (VPBs) during ambulatory monitoring was evaluated in 57 patients with recent myocardial infarction. Multivariate analysis was performed to obtain the relatively important factor related to repetitive VPBs with the use of the following variables: age, redistribution, left ventricular ejection fraction, serum potassium and magnesium concentration, QRS score, left ventricular aneurysm, and the number of diseased vessels. Thirty-five patients had redistribution, but only three of them had repetitive VPBs during exercise testing. The average heart rate before 79% of 398 episodes of repetitive VPBs during ambulatory monitoring was in the range of 56 to 70/min. These data indicate that most of repetitive VPBs during ambulatory monitoring were not provoked by exercise-induced acute myocardial ischemia. However, redistribution was found to be an important factor associated with repetitive VPBs. The electrical abnormality relating to a substrate characterized by chronic reversible ischemia may explain the association between redistribution and repetitive VPBs.

  9. Redistribution of Emergency Department Patients After Disaster-Related Closures of a Public Versus Private Hospital in New York City.

    PubMed

    Lee, David C; Smith, Silas W; Carr, Brendan G; Goldfrank, Lewis R; Polsky, Daniel

    2015-06-01

    Sudden hospital closures displace patients from usual sources of care and force them to access facilities that lack their prior medical records. For patients with complex needs and for nearby hospitals already strained by high volume, disaster-related hospital closures induce a public health emergency. Our objective was to analyze responses of patients from public versus private emergency departments after closure of their usual hospital after Hurricane Sandy. Using a statewide database of emergency visits, we followed patients with an established pattern of accessing 1 of 2 hospitals that closed after Hurricane Sandy: Bellevue Hospital Center and NYU Langone Medical Center. We determined how these patients redistributed for emergency care after the storm. We found that proximity strongly predicted patient redistribution to nearby open hospitals. However, for patients from the closed public hospital, this redistribution was also influenced by hospital ownership, because patients redistributed to other public hospitals at rates higher than expected by proximity alone. This differential response to hospital closures demonstrates significant differences in how public and private patients respond to changes in health care access during disasters. Public health response must consider these differences to meet the needs of all patients affected by disasters and other public health emergencies. PMID:25777992

  10. Redistribution of particle and antiparticle entanglement in noninertial frames

    SciTech Connect

    Martin-Martinez, Eduardo; Fuentes, Ivette

    2011-05-15

    We analyze the entanglement tradeoff between particle and antiparticle modes of a Dirac field from the perspective of inertial and uniformly accelerated observers. Our results show that a redistribution of entanglement between particle and antiparticle modes plays a key role in the survival of femionic field entanglement in the infinite-acceleration limit.

  11. Anthropogenic radionuclides for estimating rates of soil redistribution by wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  12. Anthropogenic radioisotopes to estimate rates of soil redistribution by wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  13. Refugee Education and Justice Issues of Representation, Redistribution and Recognition

    ERIC Educational Resources Information Center

    Keddie, Amanda

    2012-01-01

    This paper examines justice issues of representation, redistribution and recognition within a specialised secondary school for immigrant and refugee students in Queensland, Australia. Fraser's three-dimensional model of justice--towards the ideal of "participatory parity"--is drawn on to analyse interview data gathered from a study that sought to…

  14. Redistribution, Recognition and Representation: Working against Pedagogies of Indifference

    ERIC Educational Resources Information Center

    Lingard, Bob; Keddie, Amanda

    2013-01-01

    This paper reports on an Australian government-commissioned research study that documented classroom pedagogies in 24 Queensland schools. The research created the model of "productive pedagogies", which conjoined what Nancy Fraser calls a politics of redistribution, recognition and representation. In this model pedagogies are…

  15. Redistribution of soil and soil organic carbon on agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of soil organic carbon (SOC) vary widely across the landscape leading to large uncertainties in the SOC budgets for agricultural systems especially for landscapes where water, tillage, and wind erosion redistributes soil and SOC across the landscape. It is often assumed that soil erosion r...

  16. Fast Ion Redistribution and Implications for the Hybrid Regime

    SciTech Connect

    Nazikian, R; Austin, M E; Budny, R V; Chu, M S; Heidbrink, W W; Makowski, M A; Petty, C C; Politzer, P A; Solomon, W M; Van Zeeland, M A

    2007-06-26

    Time dependent TRANSP analysis indicates that radial redistribution of fast ions is unlikely to affect the central current density in hybrid plasmas sufficient to raise q(0) above unity. The results suggest that some other mechanism other than fast ion transport must be involved in raising q(0) and preventing sawteeth in hybrid plasmas.

  17. One problem of equivalent redistribution of a mass

    NASA Astrophysics Data System (ADS)

    Glasko, Yu. V.

    2012-02-01

    A variant of the equivalent redistribution of a mass based on the superposition of conformal mappings including the Jacobi elliptic functions is considered. The algorithm that executes balayage in the context of the encapsulation of functions is developed and implemented in the Delphi environment.

  18. Population Redistribution and Migration of Asian Americans, 1970-1980.

    ERIC Educational Resources Information Center

    Kan, Stephen H.; Liu, William T.

    This paper uses 1980 Census data to assess the patterns of population redistribution and migration of Asian Americans. Analyzing migration flows, it argues that Asian Americans who immigrated to the United States before 1975 followed a national trend of regional population shift from the Northeast and the North Central to the West and South.…

  19. HYDRAULIC REDISTRIBUTION IN THE PACIFIC NORTHWEST: TWEAKING THE SYSTEM

    EPA Science Inventory

    Hydraulic redistribution (HR) has recently been documented in Pacific Northwest forests, but the controls governing this process and its importance to shallow-rooted species are poorly understood. Our objective in this study was to manipulate the soil-root system to tease apart ...

  20. Decentralisation and Interregional Redistribution in the Italian Education System

    ERIC Educational Resources Information Center

    Ferrari, Irene; Zanardi, Alberto

    2014-01-01

    The aim of this paper is to evaluate the potential impact of the reform designed to decentralise public education in Italy, currently under discussion, on interregional redistribution. The central government has always played a prominent financial and administrative role in the provision of compulsory education in Italy. This has had a strong…

  1. Intrahepatic Flow Redistribution in Patients Treated with Radioembolization

    SciTech Connect

    Spreafico, Carlo Morosi, Carlo; Maccauro, Marco; Romito, Raffaele; Lanocita, Rodolfo Civelli, Enrico M.; Sposito, Carlo Bhoori, Sherrie; Chiesa, Carlo; Frigerio, Laura F.; Lorenzoni, Alice; Cascella, Tommaso Marchianò, Alfonso; Mazzaferro, Vincenzo

    2015-04-15

    IntroductionIn planning Yttrium-90 ({sup 90}Y)-radioembolizations, strategy problems arise in tumours with multiple arterial supplies. We aim to demonstrate that tumours can be treated via one main feeding artery achieving flow redistribution by embolizing accessory vessels.MethodsOne hundred {sup 90}Y-radioembolizations were performed on 90 patients using glass microspheres. In 19 lesions/17 patients, accessory branches were found feeding a minor tumour portion and embolized. In all 17 patients, the assessment of the complete perfusion was obtained by angiography and single photon emission computerized tomography–computerized tomography (SPECT–CT). Dosimetry, toxicity, and tumor response rate of the patients treated after flow redistribution were compared with the 83 standard-treated patients. Seventeen lesions in 15 patients with flow redistribution were chosen as target lesions and evaluated according to mRECIST criteria.ResultsIn all patients, the complete tumor perfusion was assessed immediately before radioembolization by angiography in all patients and after the {sup 90}Y-infusion by SPECT–CT in 15 of 17 patients. In the 15 assessable patients, the response rate in their 17 lesions was 3 CR, 8 PR, and 6 SD. Dosimetric and toxicity data, as well tumour response rate, were comparable with the 83 patients with regular vasculature.ConclusionsAll embolization procedures were performed successfully with no complications, and the flow redistribution was obtained in all cases. Results in term of toxicity, median dose administered, and radiological response were comparable with standard radioembolizations. Our findings confirmed the intratumoral flow redistribution after embolizing the accessory arteries, which makes it possible to treat the tumour through its single main feeding artery.

  2. Limitations of visual assessment of redistribution in thallium images

    SciTech Connect

    DiCola, J.; Moore, M.; Shearer, D.; O'Reilly, G.; Most, A.S.; Gewirtz, H.

    1984-10-01

    Potential limitations of visual assessment of redistribution in thallium (TI) images were studied and results were compared with computer assessment of redistribution. A four-section phantom filled with TI was imaged (300K counts, 128 X 128 matrix) with appropriate background activity and scatter material. Activity in a ''defect'' section (DS) was varied from 20% to 100% of reference sections (RS). After interpolative background correction, pseudo ''initial'' and ''late'' image pairs (N . 35) were photographed on polaroid film and read by three ''blinded'' observers using an 0-2, 1/2 step, scale (0 . absent and 2 . normal activity). Scan defects were detected by all readers when DS activity was less than or equal to 59% of RS activity. No reader detected a defect when DS activity was greater than or equal to 67% of RS activity. All ''initial'' defects were detected by computer analysis. Visual assessment of ''initial'' DS:RS activity ratio did not correlate well with DS:RS activity ratio of the phantom. In contrast, computer assessment of ''initial'' DS:RS activity ratio correlated well with phantom DS:RS activity ratio (r . 0.96, p less than .0001). Although 22 of 27 scan pairs with partial (N . 26) or full (N . 1) redistribution were correctly identified as showing redistribution by at least two of three observers, the extent of redistribution was not estimated well by visual analysis. Thus, visual assessment of absolute change (''initial''-to-''late'') in DS:RS activity ratio showed considerable scatter in relations to actual changes in DS:RS activity ratio of the phantom.

  3. The effect of electron scattering redistribution on atomic line polarization

    NASA Astrophysics Data System (ADS)

    Supriya, H. D.; Nagendra, K. N.; Sampoorna, M.; Ravindra, B.

    2012-09-01

    The polarization of spectral lines is generated by the scattering of angularly anisotropic incident radiation field on the atoms in the stellar atmosphere. This atomic scattering polarization is modified by frequency non-coherent scattering of line photons on free electrons. With modern spectropolarimeters of high sensitivity, it is possible to detect such changes in the spectral line polarization caused by scattering on electrons. We present new and efficient numerical techniques to solve the problem of line radiative transfer with atomic and electron scattering frequency redistribution in planar media. The evaluation and use of angle-dependent partial frequency redistribution functions (both atomic and electron scattering type) in the transfer equation require a lot of computing effort. In this paper, we apply a decomposition technique to handle this numerically difficult problem. This recently developed technique is applied for the first time to the electron scattering partial redistribution. This decomposition technique allows us to devise fast iterative methods of solving the polarized line transfer equation. An approximate lambda iteration (ALI) method and a method based on Neumann series expansion of the polarized source vector are proposed. We show that these numerical methods can be used to obtain a solution of the problem, when both atomic and electron scattering partial frequency redistribution are considered together. This is in contrast with the classical numerical methods which require a great amount of computing time. We show the importance of electron scattering redistribution in the far wing line polarization, which has practical implications in the analysis of polarized stellar or solar spectra, where non-coherent electron scattering controls the line wing transfer.

  4. 48 CFR 245.608-70 - Contractor inventory redistribution system (CIRS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... redistribution system (CIRS). 245.608-70 Section 245.608-70 Federal Acquisition Regulations System DEFENSE..., Redistribution, and Disposal of Contractor Inventory 245.608-70 Contractor inventory redistribution system (CIRS). (a) Screen serviceable and usable contractor inventory through CIRS when it— (1) Is listed on SF...

  5. Implant activation and redistribution of dopants in GaN

    SciTech Connect

    Zolper, J.C.; Pearton, S.J.; Wilson, R.G.; Stall, R.A.

    1996-07-01

    GaN and related III-Nitride materials (IN, an) have recently been the focus of extensive research for photonic and electronic device applications. As this material system matures, ion implantation doping and isolation is expected to play an important role in advance device demonstrations. To this end, we report the demonstration of implanted p-type doping with Mg+P and Ca as well as n-type doping with Si in GaN. These implanted dopants require annealing 105 approximately1100 {degrees}C to achieve electrical activity, but demonstrate limited redistribution at this temperature. The redistribution of other potential dopants in GaN (such as Be, Zn, and Cd) will also be reported. Results for a GaN junction field effect transistor (JFET), the first GaN device to use implantation doping, will also be presented.

  6. Redistribution of resonance radiation. I - The effect of collisions.

    NASA Technical Reports Server (NTRS)

    Omont, A.; Smith, E. W.; Cooper, J.

    1972-01-01

    The techniques of modern line-broadening theory are used to investigate the scattering of polarized radiation in the rest frame of an atom undergoing collisions. The formulation explicitly includes both elastic and inelastic (quenching) collisions. When the lower state has zero width, a form for the redistribution function similar to that of Zanstra is obtained, but with the redistribution in the neighborhood of the resonance line being caused solely by elastic collisions. In the limit of no collisions, but with both levels of finite lifetime, the result of Weisskopf and Woolley is obtained. The effect of level-degeneracy is also explicitly included; in this case the results are a function of the polarization of the light and the different relaxation rates for the multipolar components of the atomic states.

  7. Octamer displacement and redistribution in transcription of single nucleosomes.

    PubMed Central

    O'Donohue, M F; Duband-Goulet, I; Hamiche, A; Prunell, A

    1994-01-01

    Single nucleosomes were assembled on a 357bp DNA fragment containing a 5S RNA gene from sea urchin and a promoter for SP6 RNA polymerase, and were fractionated as a function of their positions by gel electrophoresis. Transcribed nucleosome positions were detected by observing band disappearance in gels, which in turn provided evidence for the displacement of the histone octamer upon transcription. Differential band disappearance showed that nucleosomes closer to the promoter were harder to transcribe, and transcription was blocked when the nucleosome proximal boundary was at the start site. Nucleosomes located at discrete positions were also eluted from the gel bands and transcribed. In this case, new bands appeared as a consequence of octamer redistribution. Such redistribution occurred over all untranscribed positions, as well as over transcribed positions close enough to the promoter. Similar conclusions were derived from another previously investigated fragment containing a Xenopus 5S RNA gene. Images PMID:8152924

  8. Effect of topography on sulfate redistribution in Cumulonimbus cloud development.

    PubMed

    Vujović, Dragana; Vučković, Vladan; Curić, Mlađen

    2014-03-01

    An aqueous chemical module is created and included into a complex three-dimensional atmospheric cloud-resolving mesoscale model. In the chemical module, oxidation of S(IV) by ozone and hydrogen peroxide in cloud-water and rainwater, as important process of the sulfate production is included. To examine the impact of topography on the sulfate redistribution in a clean and a polluted environment, the complex topography of Serbia is included in the model. Numerical simulations of an isolated summer Cumulonimbus cloud shows that thunderstorms generate very strong vertical sulfate redistribution from the planetary boundary layer to the upper troposphere. This redistribution is sensitive to cloud dynamics, while cloud microphysics and precipitation determine wet removal of the chemical species. In simulations with realistic topography, the chemical species are transported over larger distances close to the surface, while in the upper atmosphere, there is no difference compared to the simulations without topography. The sensitivity tests of cloud chemistry to the physical processes are made. Omission of nucleation and impact scavenging of aerosols in the model simulations shows that 75.8 and 62.5 % of total sulfur mass deposited in the base experiment for the clean and the polluted environment, respectively, is the result of other processes. Exclusion of oxidation accounted for 19.2 and 37.7 % of total sulfur deposited for clean and polluted environment. Ignoring the ice phase almost not change mass of deposited sulfur: there is an increase of 2.9 and 1.5 % for clean and polluted atmosphere, respectively. Real topography conditions affect the sulfate redistribution in the sense of greater possibilities of transport. Numerical simulations without real topography give an artificial increase of deposited sulfur mass of about 25-30 %. PMID:24243093

  9. Resource redistribution in polydomous ant nest networks: local or global?

    PubMed Central

    Franks, Daniel W.; Robinson, Elva J.H.

    2014-01-01

    An important problem facing organisms in a heterogeneous environment is how to redistribute resources to where they are required. This is particularly complex in social insect societies as resources have to be moved both from the environment into the nest and between individuals within the nest. Polydomous ant colonies are split between multiple spatially separated, but socially connected, nests. Whether, and how, resources are redistributed between nests in polydomous colonies is unknown. We analyzed the nest networks of the facultatively polydomous wood ant Formica lugubris. Our results indicate that resource redistribution in polydomous F. lugubris colonies is organized at the local level between neighboring nests and not at the colony level. We found that internest trails connecting nests that differed more in their amount of foraging were stronger than trails between nests with more equal foraging activity. This indicates that resources are being exchanged directly from nests with a foraging excess to nests that require resources. In contrast, we found no significant relationships between nest properties, such as size and amount of foraging, and network measures such as centrality and connectedness. This indicates an absence of a colony-level resource exchange. This is a clear example of a complex behavior emerging as a result of local interactions between parts of a system. PMID:25214755

  10. Direct Measurement of Adsorbed Gas Redistribution in Metal–Organic Frameworks

    SciTech Connect

    Chen, Ying-Pin; Liu, Yangyang; Liu, Dahuan; Bosch, Mathieu; Zhou, Hong-Cai

    2015-03-04

    Knowledge about the interactions between gas molecules and adsorption sites is essential to customize metal-organic frameworks (MOFs) as adsorbents. The dynamic interactions occurring during adsorption/desorption working cycles with several states are especially complicated. Even so, the gas dynamics based upon experimental observations and the distribution of guest molecules under various conditions in MOFs have not been extensively studied yet. In this work, a direct time-resolved diffraction structure envelope (TRDSE) method using sequential measurements by in situ synchrotron powder X-ray diffraction has been developed to monitor several gas dynamic processes taking place in MOFs: infusion, desorption, and gas redistribution upon temperature change. The electron density maps indicate that gas molecules prefer to redistribute over heterogeneous types of sites rather than to exclusively occupy the primary binding sites. We found that the gas molecules are entropically driven from open metal sites to larger neighboring spaces during the gas infusion period, matching the localized-to-mobile mechanism. In addition, the partitioning ratio of molecules adsorbed at each site varies with different temperatures, as opposed to an invariant distribution mode. Equally important, the gas adsorption in MOFs is intensely influenced by the gas–gas interactions, which might induce more molecules to be accommodated in an orderly compact arrangement. This sequential TRDSE method is generally applicable to most crystalline adsorbents, yielding information on distribution ratios of adsorbates at each type of site.

  11. Intercellular Redistribution of cAMP Underlies Selective Suppression of Cancer Cell Growth by Connexin26

    PubMed Central

    Polusani, Srikanth R.; Mathis, Sandra A.; Zucker, Shoshanna N.; Nicholson, Bruce J.

    2013-01-01

    Connexins (Cx), which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s) still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations. PMID:24312655

  12. Polar thermospheric Joule heating, and redistribution of recombination energy in the upper mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Dube, M.

    1990-01-01

    Kellogg (1961), suggested that transport of atomic oxygen from the summer into the winter hemisphere and subsequent release of energy by three body recombination, O+O+N2 yields O2+N2+E, may contribute significantly to the so-called mesopause temperature anomaly. Earlier model calculations have shown that Kellogg's mechanism produces about a 10-percent increase in the temperature from summer to winter at 90 km. This process, however, is partly compensated by differential heating from absorption of UV radiation associated with dissociation of O2. In the auroral region of the thermosphere, there is a steady energy dissipation by Joule heating causing a redistribution and depletion of atomic oxygen due to wind-induced diffusion. With the removal of O, latent chemical energy normally released by three body recombination is also removed, and the result is that the temperature decreases by almost 2 percent near 90 km. Through dynamic feedback, this process reduces the depletion of atomic oxygen by about 25 percent and the temperature perturbation in the exosphere from 10 to 7 percent at polar latitudes. Under the influence of the internal dynamo interaction, the prevailing zonal circulation in the upper thermosphere changes direction when the redistribution of recombination energy is considered.

  13. Intercellular redistribution of cAMP underlies selective suppression of cancer cell growth by connexin26.

    PubMed

    Chandrasekhar, Anjana; Kalmykov, Edward A; Polusani, Srikanth R; Mathis, Sandra A; Zucker, Shoshanna N; Nicholson, Bruce J

    2013-01-01

    Connexins (Cx), which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s) still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations. PMID:24312655

  14. Internal hydraulic redistribution prevents the loss of root conductivity during drought.

    PubMed

    Prieto, Iván; Ryel, Ronald J

    2014-01-01

    Shrubs of the Great Basin desert in Utah are subjected to a prolonged summer drought with the potential consequence of reduced water transport capability of the xylem due to drought-induced cavitation. Hydraulic redistribution (HR) is the passive movement of water from deep to shallow soil through plant roots. Hydraulic redistribution can increase water availability in shallow soil and ameliorate drought stress, providing better soil and root water status, which could affect shallow root conductivity (Ks) and native root embolism. We tested this hypothesis in an Artemisia tridentata Nutt. mono-specific stand grown in a common garden in Utah. We enhanced HR artificially by applying a once a week deep-irrigation treatment increasing the water potential gradient between deep and shallow soil layers. Plants that were deep-watered had less negative water potentials and greater stomatal conductance and transpiration rates than non-watered control plants. After irrigation with labeled water (δD), xylem water in stems and shallow roots of watered shrubs was enriched with respect to control shrubs, a clear indication of deep water uptake and HR. Shallow root conductivity was threefold greater and shrubs experienced lower native embolism when deep-watered. We found clear evidence of water transfer between deep and shallow roots through internal HR that delayed depletion of shallow soil water content, maintained Ks and prevented root embolism. Overall, our results show a positive effect of HR on root water transport capacity in otherwise dry soil, with important implications for plant water status. PMID:24436338

  15. Tides and angular momentum redistribution inside low-mass stars hosting planets: a first dynamical model

    NASA Astrophysics Data System (ADS)

    Lanza, A. F.; Mathis, S.

    2016-07-01

    We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extraction of angular momentum induced by stellar winds and tidal torques are redistributed solely by an effective eddy-viscosity that depends on the radial coordinate, we can formulate the model in a completely analytic way. It allows us to compute simultaneously the evolution of the orbit of the companion and of the spin and the radial differential rotation of the star. An illustrative application to the case of an F-type main-sequence star hosting a hot Jupiter is presented. The general relevance of our model to test more sophisticated numerical dynamical models and to study the internal rotation profile of exoplanet hosts, submitted to the combined effects of tides and stellar winds, by means of asteroseismology are discussed.

  16. Improvement in bias current redistribution in superconducting strip ion detectors with parallel configuration

    NASA Astrophysics Data System (ADS)

    Nobuyuki, Zen; Go, Fujii; Shigetomo, Shiki; Masahiro, Ukibe; Masaki, Koike; Masataka, Ohkubo

    2015-09-01

    In time-of-flight mass spectrometry (TOF MS), superconducting strip ion detectors (SSIDs) in the parallel configuration are promising for ideal ion detection with a nanosecond-scale time response and a practical large sensitive area. In the parallel configuration, the bias current in one strip is diverted into other parallel strips after each detection event. Under high bias current conditions, the diverted bias current induces cascade switching of all parallel strips. Studies show that cascade switching degrades the ion count rate of SSIDs made from niobium and hence is disliked in TOF MS applications. To suppress the bias current redistribution, we connected resistors in a series with the individual parallel strips using aluminum-bonding wires. Their effect was studied by measuring the pulse height distributions. Project supported by a Grant-in-Aid for Scientific Research (A) and (C) from the Japan Society for the Promotion of Science (Grant Nos. 22246056 and 24619013).

  17. PROTOSTELLAR ACCRETION FLOWS DESTABILIZED BY MAGNETIC FLUX REDISTRIBUTION

    SciTech Connect

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun; Zhao Bo

    2012-09-20

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  18. Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Ruben; Li, Zhi-Yun; Shang, Hsien; Zhao, Bo

    2012-09-01

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  19. Vertical stress redistribution around a retreating longwall face end

    SciTech Connect

    Payne, D.A.; DeMarco, M.

    1995-11-01

    Large excavations, such as longwall panels, result in extensive vertical stress redistribution in the surrounding strata. The large abutment stresses developed may produce damage to pre-existing or planned excavations in the same seam or in seams above and below the workings. Knowledge of the magnitude and location of these stress is therefore important in the design of mine openings; pillar sizes for panel and pillar layouts, roof supports in longwall gateroads and workings over or above pre-existing or planned extracting in adjacent seams. In an attempt to reduce costs, the Cape Breton Development Corporation (CBDC), a Federal Crown Corporation responsible for operating two retreat longwall coal mines, examined the potential for either interpanel barrier pillar width reduction or entire pillar elimination by the adoption of dual life gateroads for the longwall panels. In order to assess the potential for reduced interpanel barrier widths or total elimination, an investigation of the redistribution of vertical stresses around longwall panels in the Sydney Coalfield was established. The study was conducted jointly by the Cape Breton Coal Research Laboratory (CBCRL), of CANMET (a division of Natural Resources Canada) and the Denver Research Center (DRC) of the United States Bureau of Mines. The program included monitoring of vertical stress changes around longwall panels and gateroad behavior in two seams. USBM-style hydraulic borehole pressure cells connected to chart recorders for continuous monitoring were deployed at four sites, two at Lingan Colliery and two at Phalen Colliery. This report describes the investigations conducted at Phalen Colliery. Contoured plots of stress redistribution around two sites are presented.

  20. Effect of Trigger Sensitivity on Redistribution of Ventilation During Pressure Support Ventilation Detected by Electrical Impedance Tomography

    PubMed Central

    Radke, Oliver C.; Schneider, Thomas; Vogel, Elisabeth; Koch, Thea

    2015-01-01

    Background: In supine position, pressure support ventilation causes a redistribution of ventilation towards the ventral regions of the lung. Theoretically, a less sensitive support trigger would cause the patient to breathe more actively, potentially attenuating the effect of positive pressure ventilation. Objectives: To quantify the effect of trigger setting, we assessed redistribution of ventilation during pressure support ventilation (PSV) using electrical impedance tomography (EIT). Patients and Methods: With approval from the local ethics committee, six orthopedic patients were enrolled. All patients had general anesthesia with a laryngeal mask airway and a standardized anesthetic regimen (sufentanil, propofol and sevoflurane). Pressure support trigger settings varied between 2 and 15 L/minute and compared to unassisted spontaneous breathing. From EIT data, the center of ventilation (COV), the fraction of the total ventilation per region of interest (ROI) and intratidal gas distribution were calculated. Results: At all trigger settings, pressure support ventilation caused a significant ventral shift of the center of ventilation compared with during spontaneous breathing, confirmed by the analysis by regions of interest. During spontaneous breathing, COV was not different from baseline values obtained before induction of anesthesia. During PSV, the intratidal regional gas distribution (ITV-analysis) revealed subtle changes during the early inspiratory phase not detected by the COV-analysis. Conclusions: Pressure support ventilation, but not spontaneous breathing, induces a significant redistribution of ventilation towards the ventral region. The sensitivity of the support trigger appears to influence the distribution of ventilation only during the early phase of inspiration. PMID:26478865

  1. Ozone production potential following convective redistribution of biomass burning emissions

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Simpson, Joanne

    1992-01-01

    The effects of deep convection on the potential for forming ozone in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud photochemical and dynamic simulations based on observations in the 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. It is seen that there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed hydrocarbons, NO(x), and CO compared to the example of no convection.

  2. A proposal to redistribute the cost of hospital charity care.

    PubMed

    Tuckman, H P; Chang, C F

    1991-01-01

    Policy analysts debate whether providers of hospital services should share the responsibility of financing care for those who cannot pay for it. Many nonprofit and public hospitals, meanwhile, find it necessary to fund some of the services they deliver. A proposal to redistribute the costs of charity care more equitably is offered, taking into account the benefits an institution receives and its ability to pay. Hospitals would be required to quantify the charity care they provide and to make this information publicly available; in reviewing the information, legislatures are encouraged to set priorities on how much unmet need each state and each hospital should finance. PMID:2034181

  3. Simulating the Dependence of Aspen on Redistributed Snow

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Winstral, A. H.

    2013-12-01

    In mountainous regions across the western USA, the distribution of aspen (Populus tremuloides) is often directly related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho provides a unique opportunity to study the relationship between aspen and redistributed snow. Within the RCEW, the total amount of precipitation has not changed in the past 50 years, but there are sharp declines in the percentage of the precipitation falling as snow. As shifts in the distribution of available moisture continue, future trends in aspen net primary productivity (NPP) remain uncertain. In order to assess the importance of snowdrift subsidies, NPP of three aspen stands was simulated at sites spanning elevational and precipitation gradients using the biogeochemical process model BIOME-BGC. At the aspen site experiencing the driest climate and lowest amount of precipitation from snow, approximately 400 mm of total precipitation was measured from November to March of 2008. However, peak measured snow water equivalent (SWE) held in drifts directly upslope of this stand was approximately 2100 mm, 5 times more moisture than the uniform winter precipitation layer initially assumed by BIOME-BGC. BIOME-BGC simulations in dry years forced by adjusted precipitation data resulted in NPP values approximately 30% higher than simulations assuming a uniform precipitation layer. Using BIOME-BGC and climate data from 1985-2011, the relationship between simulated NPP and measured basal area increments (BAI) improved after accounting for redistributed snow, indicating increased simulation representation. In addition to improved simulation capabilities, soil moisture data, diurnal branch water potential, and stomatal conductance observations at each site detail the use of soil moisture in the rooting zone and the onset

  4. Frequency redistribution function for the polarized two-term atom

    SciTech Connect

    Casini, R.; Landi Degl'Innocenti, M.; Manso Sainz, R.; Landolfi, M.

    2014-08-20

    We present a generalized frequency redistribution function for the polarized two-term atom in an arbitrary magnetic field. This result is derived within a new formulation of the quantum problem of coherent scattering of polarized radiation by atoms in the collisionless regime. The general theory, which is based on a diagrammatic treatment of the atom-photon interaction, is still a work in progress. However, the results anticipated here are relevant enough for the study of the magnetism of the solar chromosphere and of interest for astrophysics in general.

  5. ASH REDISTRIBUTION FOLLOWING A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN

    SciTech Connect

    J. Pelletier; S. deLong; M.L. Cline; C. Harrington; G. Keating

    2005-08-29

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially distributed, numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a GIS framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats the redistribution

  6. Jet-driven redistribution of metal in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.; Heinz, Sebastian; Reynolds, Christopher S.

    2016-04-01

    The ICM in galaxy clusters is metal enriched, typically to about 30% of solar metallicity, out to large radii. However, metals should form mostly in galaxies and remained bound to their progenitor systems. To enrich the ICM, effective mixing of gas needs to occur across large scales. We carry out numerical simulations of mixing driven by AGN jets in dynamical galaxy clusters. These jets lift gas out of the center of the cluster, redistributing metals and adding energy to the ICM. We compare our results to X-ray observations of metallicity in clusters.

  7. Jet-driven redistribution of metal in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Morsony, Brian; Heinz, Sebastian; Reynolds, Christopher; Ruszkowski, Mateusz; Brueggen, Marcus

    2015-08-01

    The ICM in galaxy clusters is metal enriched, typically to about 30% of solar metallicity, out to large radii. However, metals should form mostly in galaxies and remained bound to their progenitor systems. To enrich the ICM, effective mixing of gas needs to occur across large scales. We carry out numerical simulations of mixing driven by AGN jets in dynamical galaxy clusters. These jets lift gas out of the center of the cluster, redistributing metals and adding energy to the ICM. We compare our results to X-ray observations of metallicity in clusters.

  8. Ash Redistribution Following a Potential Volcanic Eruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.; Delong, S. B.; Cline, M. L.; Harrington, C. D.; Keating, G.

    2005-12-01

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially-distributed numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a spatially-distributed framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats

  9. Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Oppenheim, Jonathan; Strelchuk, Sergii

    2015-07-31

    We give two strengthenings of an inequality for the quantum conditional mutual information of a tripartite quantum state recently proved by Fawzi and Renner, connecting it with the ability to reconstruct the state from its bipartite reductions. Namely, we show that the conditional mutual information is an upper bound on the regularized relative entropy distance between the quantum state and its reconstructed version. It is also an upper bound for the measured relative entropy distance of the state to its reconstructed version. The main ingredient of the proof is the fact that the conditional mutual information is the optimal quantum communication rate in the task of state redistribution. PMID:26274402

  10. Redistribution of particulates in shuttle bay during launch

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1986-01-01

    The dislodgement, venting, and redeposition of particles on a surface in the shuttle bay by the vibroacoustic, gravitational, and aerodynamic forces present during shuttle ascent were investigated. The particles of different sizes which are displaced, vented, and redistributed were calculated. An estimate of the increased number of particles on certain surfaces and the decrease on others is indicated. The average sizes, velocities, and length of time for certain particles to leave the bay following initial shuttle doors opening and thermal tests were calculated based on indirect data obtained during several shuttle flights.

  11. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    SciTech Connect

    K.L. Wong; W.W. Heidbrink; E. Ruskov; C.C. Petty; C.M. Greenfield; R. Nazikian; R. Budny

    2004-11-12

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed.

  12. Soil organic carbon redistribution by water erosion--the role of CO2 emissions for the carbon budget.

    PubMed

    Wang, Xiang; Cammeraat, Erik L H; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m(-2) yr(-1)) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m(-2). Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  13. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    PubMed Central

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  14. Redistribution of reactive odd nitrogen in the lower arctic stratosphere

    NASA Technical Reports Server (NTRS)

    Huebler, G.; Fahey, D. W.; Kelly, K. K.; Montzka, D. D.; Carroll, M. A.; Tuck, A. F.; Heidt, L. E.; Pollock, W. H.; Gregory, G. L.; Vedder, J. F.

    1990-01-01

    In-situ measurements of total reactive odd nitrogen NO(y), were made from the NASA DC-8 aircraft in the lower arctic stratosphere during the 1989 Airborne Arctic Stratospheric Expedition. Throughout January and February, NO(y) mixing ratios were typically between 0.5 and 3 parts per billion by volume (ppbv) at altitudes between 10 and 12.5 km. During several flights late in the mission, events of unusually light NO(y) occurred with mixing ratios up to 12 ppbv at these altitudes. Simultaneous measurements of N2O, O3, and H2O during these events suggest that large changes in NO(y) are not expected. The elevated NO(y) values are interpreted as a vertical redistribution of NO(y) in the lower stratosphere resulting from gravitational sedimentation of aerosol particles containing HNO3. No evidence of the redistribution of H2O is noted, consistent with observations of denitrification without dehydration higher in the stratosphere.

  15. Redistribution of pulmonary blood flow during hypoxic exercise.

    PubMed

    Kuwahira, I; Moue, Y; Urano, T; Kamiya, U; Iwamoto, T; Ishii, M; Clancy, R L; Gonzalez, N C

    2001-08-01

    Pulmonary blood flow (PBF) distribution was studied at rest and during exercise in rats acclimatized to chronic hypoxia (barometric pressure [PB] 370 Torr for 3 weeks, A rats) and non-acclimatized (NA) littermates. Both A and NA rats exercised in hypoxia (inspired O2 pressure [PIO2] approximately 70 Torr) or in normoxia (PlO2 approximately 145 Torr). PBF distribution was determined using fluorescent-labeled microspheres injected into the right atrium. The lungs were cut into 28 samples to determine relative scatter of specific PBF ([sample fluorescence intensity/sample dry weight)/(total lung fluorescence intensity/total lung dry weight]). Exercise produced redistribution of PBF both in NA and A rats, and this effect was larger in hypoxia than in normoxia, with minimal redistribution occurring during normoxic exercise in NA rats. The pattern of distribution varies considerably among individual animals. As a result of distribution, the previous high flow areas would be overperfused during hypoxic exercise in some rats. The results support the concept that hypoxic pulmonary vasoconstriction is not uniform and suggest that the combination of hypoxia and exercise may lead to overperfusion and capillary leak in some individuals. PMID:11531029

  16. Redistribution function for resonance radiation in a hot dense plasma

    SciTech Connect

    Bulyshev, A.E.; Demura, A.V.; Lisitsa, V.S.

    1995-07-01

    The redistribution function for resonance radiation in the L{sup {alpha}} spectral line of hydrogenic ions in a dense hot plasma is calculated. The calculation is based on a self-consistent solution of the equations for the populations of the excited ionic sublevels and for the polarizations of the transitions considered. Nonlinear interference effects due to mixing of atomic states in both static and dynamic ionic fields are thereby taken into account. Molecular dynamics methods are used to account for the evolution of the multiparticle ionic field resulting from thermal motion of the ions. We calculate the L{sup {alpha}} line of the hydrogen-like argon ion in a plasma with electron temperature 1 keV and electron density N{sub e}=10{sup 22}-cm{sup {minus}3}. The rescattering function is compared with the approximation provided by complete frequency redistribution. The results demonstrate the limited usefulness of the latter approximation for a plasma consisting of multiply-charged ions. 23 refs., 4 figs.

  17. Systemic zinc redistribution and dyshomeostasis in cancer cachexia.

    PubMed

    Siren, Pontus M A; Siren, Matti J

    2010-09-01

    Cachexia affects up to two thirds of all cancer patients and is a significant cause of morbidity and mortality. It is a complex metabolic syndrome associated with the underlying illness and characterized by loss of skeletal muscle tissue with or without loss of fat mass. Cachexia's other prominent clinical symptoms include anorexia, systemic inflammation, pediatric growth failure, and hypogonadism. The relationship between the symptoms of cancer cachexia and the underlying illness is unclear, and there is an urgent need for a better understanding of the pathophysiology of this syndrome. Normal Zn metabolism is often disrupted in cancer patients, but the possible effects of systemic Zn dyshomeostasis in cachexia have not been investigated. We propose that the acute phase response can mediate Zn redistribution and accumulation in skeletal muscle tissue and contribute to the activation of the ubiquitin-proteasome pathway that regulates protein catabolism. This chronic redistribution deprives Zn from other tissues and organs and compromises critical physiological functions in the body. The cardinal symptoms of Zn deficiency are anorexia, systemic inflammation, growth failure in children, and hypogonadism. These symptoms also prominently characterize cancer cachexia suggesting that the role of systemic Zn dyshomeostasis in cachexia should be investigated. PMID:21475700

  18. Solar Atmospheric Magnetic Energy Coupling: Radiative Redistribution Efficiency

    NASA Astrophysics Data System (ADS)

    Orange, N. Brice; Gendre, Bruce; Morris, David C.; Chesny, David

    2016-07-01

    Essential to many outstanding solar and stellar physics problems is elucidating the dynamic magnetic to radiative energy coupling of their atmospheres. Using three years of Solar Dynamics Observatory's Atmospheric Imaging Assembly and Heliosemic Magnetic Imager data of gross atmospheric feature classes, an investigation of magnetic and radiative energy redistribution is detailed. Self-consistent radiative to temperature distributions, that include magnetic weighting, of each feature class is revealed via utilizing the upper limit of thermodynamic atmospheric conditions provided by Active Region Cores (ARCs). Distinctly interesting is that our radiative energy distributions, though indicative to a linearly coupling with temperature, highlight the manifestation of diffuse ``unorganized" emission at upper transition region -- lower coronal regimes. Results we emphasize as correlating remarkably with emerging evidence for similar dependencies of magnetic energy redistribution efficiency with temperature, i.e., linearly with an embedded diffuse emitting region. We present evidence that our magnetic and radiative energy coupling descriptions are consistent with established universal scaling laws for large solar atmospheric temperature gradients and descriptions to the unresolved emission, as well as their insight to a potential origin of large variability in their previous reports. Finally, our work casts new light on the utility of narrowband observations as ad hoc tools for detailing solar atmospheric thermodynamic profiles, thus, presenting significant provisions to the field of solar and stellar physics, i.e., nature of coronae heating.

  19. A Simple Method for Measuring Soil Redistribution on Hillslopes

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.

    2002-12-01

    Human activities and associated land-use changes often result in accelerated soil movement on hillslopes. The impacts of such soil movement can be dramatic both on- and off-site. Appropriate strategies for mitigation or control erosion and mass movements are especially critical for application in tropical countries, where steep slopes are increasingly converted from forest to agricultural use and are subject to intense precipitation. The immediacy of the need for erosion control and limited access to research institutions often results in a gap between extension and testing of erosion control strategies for these settings. To address this need, a transect datum technique was developed to assess rates of soil redistribution and loss on steep, deforested slopes with thin, calcareous soil in the Philippines. The method is simple, inexpensive and robust and does not require disturbing the soil surface, as do erosion pins. Application of the technique for three years to several land uses, including contour hedgerows, a contour-plowed field without hedgerows, slash/burn no-till, and pasture demonstrated the technique sensitive enough to measure fluctuations in soil height associated with changing bulk density, soil redistribution and loss and slumping of the terraces within the contour-hedgerow system.

  20. Automatic generation of efficient array redistribution routines for distributed memory multicomputers

    NASA Technical Reports Server (NTRS)

    Ramaswamy, Shankar; Banerjee, Prithviraj

    1994-01-01

    Appropriate data distribution has been found to be critical for obtaining good performance on Distributed Memory Multicomputers like the CM-5, Intel Paragon and IBM SP-1. It has also been found that some programs need to change their distributions during execution for better performance (redistribution). This work focuses on automatically generating efficient routines for redistribution. We present a new mathematical representation for regular distributions called PITFALLS and then discuss algorithms for redistribution based on this representation. One of the significant contributions of this work is being able to handle arbitrary source and target processor sets while performing redistribution. Another important contribution is the ability to handle an arbitrary number of dimensions for the array involved in the redistribution in a scalable manner. Our implementation of these techniques is based on an MPI-like communication library. The results presented show the low overheads for our redistribution algorithm as compared to naive runtime methods.

  1. The redistributive effect of health care finance in twelve OECD countries.

    PubMed

    van Doorslaer, E; Wagstaff, A; van der Burg, H; Christiansen, T; Citoni, G; Di Biase, R; Gerdtham, U G; Gerfin, M; Gross, L; Häkinnen, U; John, J; Johnson, P; Klavus, J; Lachaud, C; Lauritsen, J; Leu, R; Nolan, B; Pereira, J; Propper, C; Puffer, F; Rochaix, L; Schellhorn, M; Sundberg, G; Winkelhake, O

    1999-06-01

    The OECD countries finance their health care through a mixture of taxes, social insurance contributions, private insurance premiums and out-of-pocket payments. The various payment sources have very different implications for both vertical and horizontal equity and on redistributive effect which is a function of both. This paper presents results on the income redistribution consequences of the health care financing mixes adopted in twelve OECD countries by decomposing the overall income redistributive effect into a progressivity, horizontal inequity and reranking component. The general finding of this study is that the vertical effect is much more important than horizontal inequity and reranking in determining the overall redistributive effect but that their relative importance varies by source of payment. Public finance sources tend to have small positive redistributive effects and less differential treatment while private financing sources generally have (larger) negative redistributive effects which are to a substantial degree caused by differential treatment. PMID:10537897

  2. Redistribution and Destabilization of Forest Soil Carbon by Earthworm Invasion

    NASA Astrophysics Data System (ADS)

    Swanston, C. W.; Torn, M. S.; Allen, L.; Lilleskov, E. A.; Maggi, F.

    2008-12-01

    Soils of temperate forests in the northern Great Lakes region have developed in the absence of earthworms, which were largely eradicated during the last ice age. European earthworms, such as Lumbricus terrestris, are spreading and their effect on forest soil C has not been widely studied. We examined soils along a chronosequence of worm activity (wormosequence) ranging from no apparent activity (Low) to high activity over several decades (High). In the soil profile, including organic horizons, there was only a small loss (4%) of C with high worm activity. There was a 71% decrease in the Oe and no remaining Oa in the High site. Conversely, the mineral soil contained 25% more C in the High site, with most of that in the top 20 cm. We densimetrically separated the mineral soil into primarily organic free light fraction (FLF) and occluded light fraction (OLF), a mineral-associated intermediate fraction (IF), and a mineral-associated dense fraction (DF). We measured fraction mass, C, nitrogen, and 14C content. In comparison to Low sites, each depth of High worm soil had less FLF C and more IF C. With worms, more C was stored in aggregates in the upper soil but less in the lower soil. The presence of worms had a very large effect on the 14C content of soil organic matter, with shifts of > 60 per mil in several fractions presumably due to a combination of vertical redistribution and more rapid transfer into and out of some fractions. For example, from the Low to High sites OLF 14C increased 100 per mil at 0-10 cm depth, while DF 14C decreased 80 per mil at 20-50 cm. The effect of worms on C cycling can be explored using a multi-pool, multi-depth model that treats 14C as a conservative (i.e., stable) tracer. Our results suggest that worms play a major role in redistributing soil C in these forest soils by pathways that differ with depth: the upper soil loses FLF C and incorporates organic horizon C into OLF and IF, whereas in the lower depths FLF is lost and the previously

  3. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of

  4. Vapor Diffusion as a Mechanism for Moisture Redistribution in Unsaturated Flow Systems with Variable Salinity

    NASA Astrophysics Data System (ADS)

    Xu, T.; Pruess, K.

    2001-12-01

    Understanding movement of saline waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). Laboratory experiments presented by Selker and collaborators at AGU 2000 Fall Meeting have shown that vapor diffusion can be an important mechanism for redistributing moisture in unsaturated flow systems with salinity gradients. The effect arises from the dependence of vapor pressure on salinity. Vapor pressures of salt solutions generally decrease with salt concentration, which results in a vapor pressure gradient and induces vapor diffusion from low to high salt concentration regions. Vapor then condenses in the high concentration regions and increases the liquid water saturation there. We have performed numerical experiments to study this salinity-driven moisture redistribution. Systematic simulation studies use different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that significant effects occur rapidly (hours) over rather small spatial scales (mm to cm), requiring very fine space discretization. The rapid occurrence is consistent with laboratory experiments of Selker and collaborators that show that significant transport of water of pre-wetted sand into highly saline NaNO3 solution plumes takes place in a matter of hours. Heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline region. Effects of permeability on water flow are complicated by effects of capillary pressure and tortuosity. The salinity driven-fluid flow is more significant at higher temperature. This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 through Memorandum Purchase Order 248861-A-B2 between Pacific

  5. Soil redistribution model for undisturbed and cultivated sites based on Chernobyl-derived cesium-137 fallout.

    PubMed

    Hrachowitz, Markus; Maringer, Franz-Josef; Steineder, Christian; Gerzabek, Martin H

    2005-01-01

    Measurements of 137Cs fallout have been used in combination with a range of conversion models for the investigation of soil relocation mechanisms and sediment budgets in many countries for more than 20 yr. The objective of this paper is to develop a conversion model for quantifying soil redistribution, based on Chernobyl-derived 137Cs. The model is applicable on uncultivated as well as on cultivated sites, taking into account temporal changes in the 137Cs depth distribution pattern as well as tillage-induced 137Cs dilution effects. The main idea of the new model is the combination of a modified exponential model describing uncultivated soil with a Chapman distribution based model describing cultivated soil. The compound model subsequently allows a dynamic description of the Chernobyl derived 137Cs situation in the soil and its change, specifically migration and soil transport processes over the course of time. Using the suggested model at the sampling site in Pettenbach, in the Austrian province of Oberösterreich 137Cs depth distributions were simulated with a correlation coefficient of 0.97 compared with the measured 137Cs depth profile. The simulated rates of soil distribution at different positions at the sampling site were found to be between 27 and 60 Mg ha(-1) yr(-1). It was shown that the model can be used to describe the temporal changes of 137Cs depth distributions in cultivated as well as uncultivated soils. Additionally, the model allows to quantify soil redistribution in good correspondence with already existing models. PMID:15998852

  6. Redistribution of Gαs in Mouse Salivary Glands Following β-Adrenergic Stimulation

    PubMed Central

    Hand, Arthur R.; Elder, Kareen O.; Norris, Rachael P.

    2015-01-01

    Objective Signaling via β-adrenergic receptors activates heterotrimeric G-proteins, which dissociate into α and βγ subunits. In salivary glands, the α subunit of Gs stimulates adenylate cyclase, increasing cyclic AMP levels and promoting exocytosis. The goals of this study were to determine Gαs localization in salivary glands and whether it undergoes redistribution upon activation. Methods Mouse parotid and submandibular (SMG) glands were fixed with paraformaldehyde and prepared for immunofluorescence labeling with anti-Gαs. Results In unstimulated parotid and SMG acinar cells, Gαs was localized mainly to basolateral membranes. Some parotid acinar cells also exhibited cytoplasmic fluorescence. Isoproterenol (IPR) stimulation resulted in decreased membrane fluorescence and increased cytoplasmic fluorescence, which appeared relatively uniform by 30 min. Beginning about 2 hr after IPR, cytoplasmic fluorescence decreased and membrane fluorescence increased, approaching unstimulated levels in SMG acini by 4 hr. Some parotid acini exhibited cytoplasmic fluorescence up to 8 hr after IPR. The IPR-induced redistribution of Gαs was prevented (SMG) or reduced (parotid) by prior injection of propranolol. Striated duct cells of unstimulated mice exhibited general cytoplasmic fluorescence, which was unchanged after IPR. Conclusions Gαs is localized to basolateral membranes of unstimulated salivary acinar cells. Activation of Gαs causes its release from the cell membrane and movement into the cytoplasm. Reassociation of Gαs with the membrane begins about 2 hr after stimulation in the SMG, but complete reassociation takes several hours in the parotid gland. The presence of Gαs in striated duct cells suggests a role in signal transduction of secretion and/or electrolyte transport processes. PMID:25748393

  7. Horizontal flow and capillarity-driven redistribution in porous media.

    PubMed

    Doster, F; Hönig, O; Hilfer, R

    2012-07-01

    A recent macroscopic mixture theory for two-phase immiscible displacement in porous media has introduced percolating and nonpercolating phases. Quasi-analytic solutions are computed and compared to the traditional theory. The solutions illustrate physical insights and effects due to spatiotemporal changes of nonpercolating phases, and they highlight the differences from traditional theory. Two initial and boundary value problems are solved in one spatial dimension. In the first problem a fluid is displaced by another fluid in a horizontal homogeneous porous medium. The displacing fluid is injected with a flow rate that keeps the saturation constant at the injection point. In the second problem a horizontal homogeneous porous medium is considered which is divided into two subdomains with different but constant initial saturations. Capillary forces lead to a redistribution of the fluids. Errors in the literature are reported and corrected. PMID:23005535

  8. Landform Erosion and Volatile Redistribution on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey Morgan; Howard, Alan D.; McKinnon, William B.; Schenk, Paul M.; Wood, Stephen E.

    2009-01-01

    We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Our work directly addresses some of the most fundamental issues pertinent to deciphering icy Galilean satellite geologic histories by employing techniques currently at the forefront of terrestrial, martian, and icy satellite landscape evolution studies [e.g., 1-6], including modeling of surface and subsurface energy and volatile exchanges, and computer simulation of long-term landform evolution by a variety of processes. A quantitative understanding of the expression and rates of landform erosion, and of volatile redistribution on landforms, is especially essential in interpreting endogenic landforms that have, in many cases, been significantly modified by erosion [e.g., 7-9].

  9. Redistribution of Lignin Caused by Dilute Acid Pretreatment of Biomass

    SciTech Connect

    Johnson, D. K.; Donohoe, B. S.; Katahira, R.; Tucker, M. P.; Vinzant, T. B.; Himmel, M. E.

    2012-01-01

    Research conducted at NREL has shown that lignin undergoes a phase transition during thermochemical pretreatments conducted above its glass transition temperature. The lignin coalesces within the plant cell wall and appears as microscopic droplets on cell surfaces. It is clear that pretreatment causes significant changes in lignin distribution in pretreatments at all scales from small laboratory reactors to pilot scale reactors. A method for selectively extracting lignin droplets from the surfaces of pretreated cell walls has allowed us to characterize the chemical nature and molecular weight distribution of this fraction. The effect of lignin redistribution on the digestibility of pretreated solids has also been tested. It is clear that removal of the droplets increases the digestibility of pretreated corn stover. The improved digestibility could be due to decreased non-specific binding of enzymes to lignin in the droplets, or because the droplets no longer block access to cellulose.

  10. The global relaxation redistribution method for reduction of combustion kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Chiavazzo, Eliodoro; Boulouchos, Konstantinos; Karlin, Iliya V

    2014-07-28

    An algorithm based on the Relaxation Redistribution Method (RRM) is proposed for constructing the Slow Invariant Manifold (SIM) of a chosen dimension to cover a large fraction of the admissible composition space that includes the equilibrium and initial states. The manifold boundaries are determined with the help of the Rate Controlled Constrained Equilibrium method, which also provides the initial guess for the SIM. The latter is iteratively refined until convergence and the converged manifold is tabulated. A criterion based on the departure from invariance is proposed to find the region over which the reduced description is valid. The global realization of the RRM algorithm is applied to constant pressure auto-ignition and adiabatic premixed laminar flames of hydrogen-air mixtures. PMID:25084876

  11. The global relaxation redistribution method for reduction of combustion kinetics

    NASA Astrophysics Data System (ADS)

    Kooshkbaghi, Mahdi; Frouzakis, Christos E.; Chiavazzo, Eliodoro; Boulouchos, Konstantinos; Karlin, Iliya V.

    2014-07-01

    An algorithm based on the Relaxation Redistribution Method (RRM) is proposed for constructing the Slow Invariant Manifold (SIM) of a chosen dimension to cover a large fraction of the admissible composition space that includes the equilibrium and initial states. The manifold boundaries are determined with the help of the Rate Controlled Constrained Equilibrium method, which also provides the initial guess for the SIM. The latter is iteratively refined until convergence and the converged manifold is tabulated. A criterion based on the departure from invariance is proposed to find the region over which the reduced description is valid. The global realization of the RRM algorithm is applied to constant pressure auto-ignition and adiabatic premixed laminar flames of hydrogen-air mixtures.

  12. From microscopic taxation and redistribution models to macroscopic income distributions

    NASA Astrophysics Data System (ADS)

    Bertotti, Maria Letizia; Modanese, Giovanni

    2011-10-01

    We present here a general framework, expressed by a system of nonlinear differential equations, suitable for the modeling of taxation and redistribution in a closed society. This framework allows one to describe the evolution of income distribution over the population and to explain the emergence of collective features based on knowledge of the individual interactions. By making different choices of the framework parameters, we construct different models, whose long-time behavior is then investigated. Asymptotic stationary distributions are found, which enjoy similar properties as those observed in empirical distributions. In particular, they exhibit power law tails of Pareto type and their Lorenz curves and Gini indices are consistent with some real world ones.

  13. Spacecraft Spin Rate Change due to Propellant Redistribution Between Tanks

    NASA Astrophysics Data System (ADS)

    Choi, Kyu Hong

    1984-09-01

    A bubble trapped in the liquid manifold of INTELSAT IV F-7 spacecraft caused a mass imbalance between the System 1 propellant tanks and a wobble half angle of 0.38 degree to 0.48 degree. A maneuver in May 14, 1980 passed the bubble through the axial jet and allowed propellant to redistribute. A 0.2 rpm change in spin rate was observed with an exponential decay time constant of 6 minutes. In this paper, moment of inertia, tank geometry and hydrodynamics models are derived to match the observed spin rate data. The values of the total mass of the propellant considered were 16, 19 and 20 Kgs with corresponding mass imbalances of 14.3, 15 and 15.1 Kgs, respectively. The result shows excellent agreement with observed spin rate data but it was necessary to assume a greater mass of hydrazine in the tanks than propellant accounting indicated.

  14. Coming full circle: 70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signaling

    PubMed Central

    Montserrat, Emili

    2013-01-01

    Chronic lymphocytic leukemia (CLL) cells proliferate in pseudofollicles within the lymphatic tissues, where signals from the microenvironment and BCR signaling drive the expansion of the CLL clone. Mobilization of tissue-resident cells into the blood removes CLL cells from this nurturing milieu and sensitizes them to cytotoxic drugs. This concept recently gained momentum after the clinical activity of kinase inhibitors that target BCR signaling (spleen tyrosine kinase, Bruton tyrosine kinase, PI3Kδ inhibitors) was established. Besides antiproliferative activity, these drugs cause CLL cell redistribution with rapid lymph node shrinkage, along with a transient surge in lymphocytosis, before inducing objective remissions. Inactivation of critical CLL homing mechanism (chemokine receptors, adhesion molecules), thwarting tissue retention and recirculation into the tissues, appears to be the basis for this striking clinical activity. This effect of BCR-signaling inhibitors resembles redistribution of CLL cells after glucocorticoids, described as early as in the 1940s. As such, we are witnessing a renaissance of the concept of leukemia cell redistribution in modern CLL therapy. Here, we review the molecular basis of CLL cell trafficking, homing, and redistribution and similarities between old and new drugs affecting these processes. In addition, we outline how these discoveries are changing our understanding of CLL biology and therapy. PMID:23264597

  15. 45 CFR 270.9 - How will we redistribute funds if that becomes necessary?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false How will we redistribute funds if that becomes... SERVICES HIGH PERFORMANCE BONUS AWARDS § 270.9 How will we redistribute funds if that becomes necessary? (a) If we cannot distribute the funds as specified in § 270.8, we will reallocate any undistributed...

  16. Using Cesium-137 to study soil redistribution in Guam and Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding soil redistribution and sediment sources on the landscape are keys for the development of management strategies for reducing soil erosion and the delivery sediments to floodplains, streams and water bodies. Fallout Cs-137 has been used extensively to measure soil redistribution, to de...

  17. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  18. Development Planning and Population Growth and Redistribution in the Republic of Iraq.

    ERIC Educational Resources Information Center

    El Attar, M. E.; Salman, A. D.

    Utilizing the 1947, 1957, and l965 census data and the 1970 preliminary population count, the relationship between population growth and redistribution and development planning in Iraq was examined. Trends in rural-urban population growth, migration, and population redistribution were examined as they pertained to the socioeconomic development…

  19. 43 CFR 44.52 - May a State enact legislation to reallocate or redistribute PILT payments?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false May a State enact legislation to... After the Department Distributes Payments § 44.52 May a State enact legislation to reallocate or redistribute PILT payments? A State may enact legislation to reallocate or redistribute PILT payments. If...

  20. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  1. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  2. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  3. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  4. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna 1898

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have illuminated the process of hydraulic redistribution, defined as the movement of soil moisture via plant root systems, but the long-term ecohydrologic significance of this process is poorly understood. We investigated hydraulic redistribution (HR) by Prosopis velutina Woot. (velve...

  5. Local redistribution of blood under the effect of fixation stress against a background of hypokinesia

    NASA Technical Reports Server (NTRS)

    Kovalev, O. A.; Lysak, V. F.; Severovostokova, V. I.; Shermetevskaya, S. K.

    1980-01-01

    Fixation stress was used as a model of emotional disturbance. The effect of previous restrictions on mobility on the local redistribution of blood resulting from fixation stress was examined. Disturbances in carbohydrate which result from prolonged hypokinesia was studied. Radioactivity was used to determine the local redistribution of blood. Modified factor analysis was used to study the results of the experiment.

  6. Inequality and Redistribution Policy Issues: Principles and Swedish Experience; Comment on Lindbeck's Paper [and] Discussion Paper.

    ERIC Educational Resources Information Center

    Lindbeck, Assar

    Alternative methods of redistribution policy in mixed economies are compared in this paper. The paper deals with the objectives, methods, and problems in redistribution policy. The chief objective is to highlight principles and general problems, drawing heavily on the experiences of Sweden. This country is chosen as a case study since attempts to…

  7. Partial Redistribution in Multilevel Atoms. I. Method and Application to the Solar Hydrogen Line Formation

    NASA Astrophysics Data System (ADS)

    Hubeny, I.; Lites, B. W.

    1995-12-01

    We present a robust method for solution of multilevel non-LTE line transfer problems including the effects of partial frequency redistribution (PRD). This method allows the self-consistent solution for redistribution of scattered line photons simultaneously in multiple transitions of a model atom, including the effects of resonant Raman scattering ("cross-redistribution") among lines sharing common upper levels. The method is incorporated into the framework of the widely used non-LTE complete redistribution code MULTI. We have applied this method to the problem of transfer in hydrogen lines in a plane-parallel solar model atmosphere, including cross-redistribution between the Hα and Lβ, using general redistribution functions for the Lα and Lβ lines which are not restricted by the impact approximation. The convergence properties of this method are demonstrated to be comparable to that of the equivalent complete redistribution problem. In this solar model, PRD in the Lα line produces the dominant influence on the level populations. It changes considerably the populations of the excited states of hydrogen, as well as the proton number density, in the middle and upper chromosphere, owing to modification of the Lα wing radiation. The population of the hydrogen ground state undergoes only modest changes, however. The influence of cross-redistribution and PRD in Lβ has a much smaller influence on the level populations but a considerable influence on the wing intensity of the Lβ line.

  8. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 4 2011-01-01 2011-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  9. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 4 2014-01-01 2014-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  10. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 4 2013-01-01 2013-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  11. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  12. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 4 2012-01-01 2012-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  13. Numerical simulations of hydraulic redistribution across climates: The role of the root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Quijano, Juan C.; Kumar, Praveen

    2015-10-01

    Hydraulic redistribution, a process by which vegetation roots redistribute soil moisture, has been recognized as an important mechanism impacting several processes that regulate plant water uptake, energy and water partitioning, and biogeochemical cycling. We analyze how the magnitude of hydraulic redistribution varies across ecosystems that are exposed to different climates and seasonal patterns of incoming shortwave radiation and precipitation. Numerical simulation studies are performed over 10 Ameriflux sites, which show that hydraulic redistribution predictions are significantly influenced by the specified root hydraulic conductivities. We performed sensitivity analyses by considering expected ranges of root conductivities based on previous experimental studies, and found contrasting patterns in energy-limited and water-limited ecosystems. In energy-limited ecosystems, there is a threshold above which high root conductivities enhance hydraulic redistribution with no increase in transpiration, while in water-limited ecosystems increase in root conductivities was always associated with enhancements in both transpiration and hydraulic redistribution. Further we found differences in the magnitude and seasonality of hydraulic redistribution and transpiration across different climates, regulated by interplay between precipitation and transpiration. The annual hydraulic redistribution to transpiration flux ratio (HR/Tr) was significant in Mediterranean climates (HR/Tr ≈ 30%), and in the tropical humid climates (HR/Tr ≈ 15%). However, in the continental climates hydraulic redistribution occurs only during sporadic precipitation events throughout the summer resulting in lower annual magnitudes (HR/Tr < 5%). These results provide more insights for suitable implementation of numerical models to capture belowground processes in eco-hydrology, and enhance our understanding about the variability of hydraulic redistribution across different climates.

  14. Neutron imaging of root water uptake, transport and hydraulic redistribution

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2012-12-01

    Knowledge of plant water fluxes is critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolving root water transport dynamics has been a particularly daunting task. Our objectives were to demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within 1-3-week old Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Seedlings were propagated in a growth chamber adjacent to the HFIR CG1 Beam Line at Oak Ridge National Laboratory in cylindrical or plate-like aluminum chambers containing sand. Seedlings were maintained under fairly dry conditions, with water added only to replace daily evapotranspiration. Plants were placed into the high flux cold neutron beam line and injections of H2O or deuterium oxide (D2O) were tracked through the soil and root systems by collecting consecutive CCD radiographs through time. Water fluxes within the root systems were manipulated by cycling on a growth lamp that altered foliar demand for water and thus internal water potential driving forces. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. 2D pulse-chase irrigation experiments with H2O and D2O, which have different neutron cross sections and thus differences in resulting image contrast, successfully allowed observation of uptake and mass flow of water within the root system. After irrigation there was rapid root water uptake from the newly wetted soil, followed by progressive hydraulic redistribution of water through the root systems to roots terminating in dry soil. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients. Using 2D radiography, absolute fluxes of H2O or D2O through the system could not be easily determined since neutron attenuation through the sample was dependent on unknown and dynamic magnitudes of both D and H

  15. Does Aggregation Affect the Redistribution and Quality of Eroded SOC?

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Kuhn, Nikolaus

    2015-04-01

    A substantial amount of literature has discussed the impacts of soil erosion on global carbon cycling. However, numerous gaps in our knowledge remain unaddressed, for instance, the biogeochemical fate of displaced SOC during transport being one of them. The transport distance and the quality of eroded SOC are the two major factors that determine its fate. Previous laboratory-based research had demonstrated that the effects of aggregation can potentially shorten the transport distance of eroded SOC. The mineralization potential of SOC also differs in sediment fractions of different likely transport distances. It is therefore essential to examine the transport distance and quality of eroded SOC under field conditions with natural rainfall as the agent of erosion. Soil samples from a silty clay soil from Switzerland and a sandy soil from Denmark, were collected in the field this summer after natural rainfall events. The soil from Switzerland was sampled from a field of maize in St. Ursanne (47°20' N 7°09' E) on August 6th, 2014 after a natural rainfall event. A depositional fan consisting of aggregated sediment was formed outside the lower edge of the field. The sandy soil from Denmark was sampled from a farm in Foulum (56°30' N, 9°35' W) on September 4, 2014, after a series of natural rainfall events. Soil samples were collected at different topographic positions along the two slopes. All the soil samples from the two farms were fractionated by a settling tube. Bulk soil from Switzerland and Denmark was also dispersed by ultrasound. The SOC contents of all bulk soils and associated fractions were determined using a carbon analyzer Leco 612 at 1000°C. The quality of SOC in different settling fractions collected from various topographic positions were also determined by stable isotopes of C and N (13C and 15N). Our results show that 1) the aggregate specific SOC distribution evidently differs from the mineral particle specific SOC distribution, indicating that re-distribution

  16. Cooling fermions in optical lattices by faster entropy redistribution

    NASA Astrophysics Data System (ADS)

    Teles, Rafael P.; Yang, Tsung-Lin; Paiva, Thereza; Scalettar, Richard T.; Natu, Stefan S.; Hulet, Randall G.; Hazzard, Kaden R. A.

    2016-05-01

    Lower entropy for fermions in optical lattices would unlock new quantum phases, including antiferromagnetism and potentially superconductivity. We propose a method to cool these systems at temperatures where conventional methods fail: slowly turning on a tightly focused optical potential transports entropy from the Mott insulator to a metallic entropy reservoir formed along the beam. Our scheme places the entropy reservoir close to the targeted cooling region, which allows entropy redistribution to be effective at lower temperatures than in prior proposals. Furthermore we require only a straightforwardly-applied Gaussian potential. We compute the temperatures achieved with this scheme using an analytic T >> t approximation and, for low T, determinantal quantum Monte Carlo. We optimize the waist and depth of the focused beam, and we find that repulsive potentials cool better than attractive ones. We estimate that the time required for entropy transport under nearly adiabatic conditions at these low temperatures is compatible with the system lifetime. Finally, we explore further improvements to cooling enabled by sophisticated potential engineering, e.g. using a spatial light modulator. Work supported by CNPq.

  17. Interactive graphical tools for three-dimensional mesh redistribution

    SciTech Connect

    Dobbs, L.A.

    1996-03-01

    Three-dimensional meshes modeling nonlinear problems such as sheet metal forming, metal forging, heat transfer during welding, the propagation of microwaves through gases, and automobile crashes require highly refined meshes in local areas to accurately represent areas of high curvature, stress, and strain. These locally refined areas develop late in the simulation and/or move during the course of the simulation, thus making it difficult to predict their exact location. This thesis is a systematic study of new tools scientists can use with redistribution algorithms to enhance the solution results and reduce the time to build, solve, and analyze nonlinear finite element problems. Participatory design techniques including Contextual Inquiry and Design were used to study and analyze the process of solving such problems. This study and analysis led to the in-depth understanding of the types of interactions performed by FEM scientists. Based on this understanding, a prototype tool was designed to support these interactions. Scientists participated in evaluating the design as well as the implementation of the prototype tool. The study, analysis, prototype tool design, and the results of the evaluation of the prototype tool are described in this thesis.

  18. Climate velocity and the future global redistribution of marine biodiversity

    NASA Astrophysics Data System (ADS)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  19. Cascading failures in interconnected networks with dynamical redistribution of loads

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuang; Zhang, Peng; Yang, Hujiang

    2015-09-01

    Cascading failures of loads in isolated networks and coupled networks have been studied in the past few years. In most of the corresponding results, the topologies of the networks are destroyed. Here, we present an interconnected network model considering cascading failures based on the dynamic redistribution of flow in the networks. Compared with the results of single scale-free networks, we find that interconnected scale-free networks have higher vulnerability. Additionally, the network heterogeneity plays an important role in the robustness of interconnected networks under intentional attacks. Considering the effects of various coupling preferences, the results show that there are almost no differences. Finally, the application of our model to the Beijing interconnected traffic network, which consists of a subway network and a bus network, shows that the subway network suffers more damage under the attack. Moreover, the interconnected traffic network may be more exposed to damage after initial attacks on the bus network. These discussions are important for the design and optimization of interconnected networks.

  20. Polysilsesquioxanes through base-catalyzed redistribution of oligohydridosiloxanes

    SciTech Connect

    RAHIMIAN,KAMYAR; ASSINK,ROGER A.; LANG,DAVID P.; LOY,DOUGLAS A.

    2000-05-01

    Organopolysilsesquioxanes have recently gained much interest as materials for low-K dielectrics, ceramic precursors and photoresists. Typical sol-gel synthesis of polysilsesquioxanes involves the hydrolysis of organotricholorosilanes and/or organotrialkoxysilanes in the presence of acid or base catalysts and organic solvents. However, under sol-gel conditions most organotrialkoxysilanes do not afford silsesquioxane gels. This limits the range of organic functionalities that can be introduced into these hybrid organic-inorganic materials. An alternative route to polysilsesquioxanes is through oligohydridosiloxanes. Catalytic disproportionation, by titanium complexes, of linear or cyclic oligomers of methylhydridosiloxanes can lead to polymethylsilsesquioxanes. The authors have shown that disproportionation of oligomethylhydridosiloxanes can also be catalyzed by tetrabutylammonium hydroxide to yield polymethylsilsesquioxanes (scheme 1). This replaces the step-growth sol-gel polymerization process of organotrialkoxysilanes, which requires solvent, stoichiometric water and produces alcohol and water condensation by-products. Tetraalkylammonium hydroxides, as catalysts, are also attractive because they readily decompose by heating above 150 C; thus, they can be easily removed from the final materials. In this paper the authors report on both the catalytic and stoichiometric redistribution of organohydridosiloxanes to produce polysilsesquioxane foams and gels of the formula (RSiO{sub 1.5}){sub n} which otherwise cannot be obtained through traditional sol-gel means.

  1. Night-time transpiration can decrease hydraulic redistribution.

    PubMed

    Howard, Ava R; van Iersel, Marc W; Richards, James H; Donovan, Lisa A

    2009-08-01

    C(3) plants dominate many landscapes and are critically important for ecosystem water cycling. At night, plant water losses can include transpiration (E(night)) from the canopy and hydraulic redistribution (HR) from roots. We tested whether E(night) limits the magnitude of HR in a greenhouse study using Artemisia tridentata, Helianthus anomalus and Quercus laevis. Plants were grown with their roots split between two compartments. HR was initiated by briefly withholding all water, followed by watering only one rooting compartment. Under study conditions, all species showed substantial E(night) and HR (highest minus lowest soil water potential [Psi(s)] during a specified diel period). Suppressing E(night) by canopy bagging increased HR during the nightly bagging period (HR(N)) for A. tridentata and H. anomalus by 73 and 33% respectively, but did not affect HR(N) by Q. laevis. Total daily HR (HR(T)) was positively correlated with the Psi(s) gradient between the rooting compartments, which was correlated with light and/or atmospheric vapour pressure deficit (VPDa) the prior day. For A. tridentata, HR(T) was negatively correlated with night-time VPDa. Ecological implications of the impact of E(night) on HR may include decreased plant productivity during dry seasons, altered ecosystem water flux patterns and reduced nutrient cycling in drying soils. PMID:19422615

  2. Redistribution of boron in leaves reduces boron toxicity.

    PubMed

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots. PMID:20009556

  3. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  4. Lead Sequestration and Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth,A.; Bostick, B.; Kaste, J.; Friedland, A.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20-35%) and SOM ({approx}65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  5. Lead Sequestration And Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2009-05-27

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O{sub i} samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20--35%) and SOM ({approx}65--80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  6. Redistributive impact of the Atlanta mass transit system: a comment

    SciTech Connect

    Talley, W.K.; French, G.L.

    1981-01-01

    Dajani, Egan, and McElroy (DEM) in this joural (pp 49-60, July 1975) attempted to determine the redistributive impact (i.e., the net incidence of benefits and costs) of the new Atlanta transit system to be operated by the Metropolitan Atlanta Rapid Transit Authority (MARTA). Based upon a sample of eight origin zones, DEM conclude that there appears to be no relationship between net benefits from MARTA and income per family but a relationship between net benefits and proximity to the transit station. The purpose of this paper is to demonstrate the DEM made several methodological errors in measuring benefits and costs of MARTA and hence their conclusions are questionable. Furthermore, the DEM benefit-cost model will be presented in a graphical framework. Because of the many factors that enter into the determination of benefits and costs or urban transit, the possibility of not considering or being inconsistent in considering a relevant factor becomes highly probable. The graphical model presented in this paper was found to be extremely useful in understanding the DEM benefit-cost model and in discovering its errors. A similar model may also be found useful by future researchers in avoiding methodological errors in the measurement of benefits and costs of urban transit.

  7. NK Cell Subset Redistribution during the Course of Viral Infections

    PubMed Central

    Lugli, Enrico; Marcenaro, Emanuela; Mavilio, Domenico

    2014-01-01

    Natural killer (NK) cells are important effectors of innate immunity that play a critical role in the control of human viral infections. Indeed, given their capability to directly recognize virally infected cells without the need of specific antigen presentation, NK cells are on the first line of defense against these invading pathogens. By establishing cellular networks with a variety of cell types such as dendritic cells, NK cells can also amplify anti-viral adaptive immune responses. In turn, viruses evolved and developed several mechanisms to evade NK cell-mediated immune activity. It has been reported that certain viral diseases, including human immunodeficiency virus-1 as well as human cytomegalovirus infections, are associated with a pathologic redistribution of NK cell subsets in the peripheral blood. In particular, it has been observed the expansion of unconventional CD56neg NK cells, whose effector functions are significantly impaired as compared to that of conventional CD56pos NK cells. In this review, we address the impact of these two chronic viral infections on the functional and phenotypic perturbations of human NK cell compartment. PMID:25177322

  8. From the bedroom to the budget deficit: mate competition changes men's attitudes toward economic redistribution.

    PubMed

    White, Andrew Edward; Kenrick, Douglas T; Neel, Rebecca; Neuberg, Steven L

    2013-12-01

    How do economic recessions influence attitudes toward redistribution of wealth? From a traditional economic self-interest perspective, attitudes toward redistribution should be affected by one's financial standing. A functional evolutionary approach suggests another possible form of self-interest: That during periods of economic threat, attitudes toward redistribution should be influenced by one's mate-value-especially for men. Using both lab-based experiments and real-world data on voting behavior, we consistently find that economic threats lead low mate-value men to become more prosocial and supportive of redistribution policies, but that the same threats lead high mate-value men to do the opposite. Economic threats do not affect women's attitudes toward redistribution in the same way, and, across studies, financial standing is only weakly associated with attitudes toward redistribution. These findings suggest that during tough economic times, men's attitudes toward redistribution are influenced by something that has seemingly little to do with economic self-interest-their mating psychology. PMID:23895267

  9. Reverse redistribution of thallium-201 detected by SPECT imaging after dipyridamole in angina pectoris

    SciTech Connect

    Popma, J.J.; Smitherman, T.C.; Walker, B.S.; Simon, T.R.; Dehmer, G.J. )

    1990-05-15

    Reverse redistribution refers to a thallium-201 perfusion defect that develops or becomes more evident on delayed imaging compared with the initial image immediately after stress. To determine the diagnostic importance of reverse redistribution after intravenous dipyridamole, thallium-201 single photon emission computed tomography and quantitative coronary arteriography were performed in 90 men with angina pectoris. Of the 250 myocardial segments analyzed, reverse redistribution was present in 17 (7%). Minimal coronary cross-sectional area in proximal vessel segments was less than or equal to 2.0 mm2 more often in regions with transient perfusion abnormalities than in regions with reverse redistribution (66 vs 29%, p less than 0.05). Compared with regions exhibiting transient perfusion abnormalities, regions with reverse redistribution had larger proximal arterial diameters (1.9 +/- 1.1 vs 1.3 +/- 1.1 mm, p less than 0.001) and cross-sectional areas (3.9 +/- 3.1 vs 2.2 +/- 2.6 mm2, p less than 0.001). Coronary artery dimensions and relative stenosis severity did not differ between those regions with normal perfusion and those with reverse redistribution. Reverse redistribution detected by thallium-201 single photon emission computed tomographic imaging after dipyridamole is uncommon, appears to occur as frequently in normal subjects as in patients undergoing coronary arteriography and does not indicate the presence of severe coronary artery disease.

  10. Role of Hydraulic Redistribution in Enhancing Multi-Species Vegetation Interaction and Ecosystem Productivity

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D. T.

    2011-12-01

    The objective of our study is to understand the role of hydraulic redistribution (HR) in the interaction of above- and below-ground ecohydrologic dynamics using a modeling approach. Specifically we explore the role of HR in regulating the partitioning and tradeoffs of hydrologic fluxes between tall (Ponderosa Pine) and understory (Manzanita shrubs) vegetation and soil-evaporation. This is accomplished using a "shared resource model" where the soil serves as a common reservoir whose state is altered by the addition and withdrawal of moisture by vegetation roots in conjunction with its own moisture transport dynamics, and the non-linear dependence of vegetation uptake and release on the existing soil-moisture state. We explore how the presence of multiple species induces competitive tradeoffs in water utilization but mutualistic benefits in ecosystem productivity. Our study establishes that the tradeoff in water use occurs in a way that benefits both the tall and understory vegetation and facilitates increase in total ecosystem productivity. Further, the presence of the litter layer enhances ecosystem productivity. The study is performed for the Ameriflux study site at the Blodgett Forest in the Sierra Nevada Mountains in California. The Mediterranean climate of the region provides an ideal condition where the deep layer moisture, through hydraulic lift, supports the ecosystem productivity during the long dry summers and the wet winters replenish the soil-moisture through hydraulic descent.

  11. Comparison between sirolimus- and paclitaxel-eluting stent in T-cell subsets redistribution.

    PubMed

    Sardella, Gennaro; De Luca, Leonardo; Di Roma, Angelo; De Persio, Giovanni; Conti, Giulia; Paroli, Marino; Fedele, Francesco

    2006-02-15

    We sought to investigate the effects of 2 different coronary drug-eluting stents on the distribution of central or effector memory T cells circulating in the coronary sinus of patients with coronary artery disease who underwent percutaneous coronary revascularization. We randomly assigned 43 patients (mean age 65.4 +/- 4.3 years; 34 men) presenting with stable coronary disease and angiographically proved stenosis of the left anterior descending artery to treatment with sirolimus- or paclitaxel-eluting stents. Heparinized blood samples were obtained from the coronary sinus before and 20 minutes after stent implantation. Analysis of surface phenotype was performed by 4-color flow cytometry, and data are expressed as the percentage of positive cells. The percentages of CD8+ and CD4+ effector memory T cells, as defined by the CD3+CD45RO+CD27- phenotype, were significantly reduced in patients who received a sirolimus-eluting stent compared with the basal values. Conversely, the percentages of CD8+, but not CD4+, central memory T cells (CD3+CD45RO+CD27+) were increased in the same treatment group after the revascularization procedure. No changes in the percentages of memory T-cell populations in the paclitaxel-eluting stent group were observed. These findings show that sirolimus-eluting stents rapidly induced a redistribution of memory T lymphocytes, with a significant decrease of proinflammatory effector memory T cells circulating within the coronary sinus. PMID:16461044

  12. Measurements and modelling of fast-ion redistribution due to resonant MHD instabilities in MAST

    NASA Astrophysics Data System (ADS)

    Jones, O. M.; Cecconello, M.; McClements, K. G.; Klimek, I.; Akers, R. J.; Boeglin, W. U.; Keeling, D. L.; Meakins, A. J.; Perez, R. V.; Sharapov, S. E.; Turnyanskiy, M.; the MAST Team

    2015-12-01

    The results of a comprehensive investigation into the effects of toroidicity-induced Alfvén eigenmodes (TAE) and energetic particle modes on the NBI-generated fast-ion population in MAST plasmas are reported. Fast-ion redistribution due to frequency-chirping TAE in the range 50 kHz-100 kHz and frequency-chirping energetic particle modes known as fishbones in the range 20 kHz-50 kHz, is observed. TAE and fishbones are also observed to cause losses of fast ions from the plasma. The spatial and temporal evolution of the fast-ion distribution is determined using a fission chamber, a radially-scanning collimated neutron flux monitor, a fast-ion deuterium alpha spectrometer and a charged fusion product detector. Modelling using the global transport analysis code Transp, with ad hoc anomalous diffusion and fishbone loss models introduced, reproduces the coarsest features of the affected fast-ion distribution in the presence of energetic particle-driven modes. The spectrally and spatially resolved measurements show, however, that these models do not fully capture the effects of chirping modes on the fast-ion distribution.

  13. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    SciTech Connect

    Desmoulin, Jean-Charles; Petit, Yannick; Cardinal, Thierry; Canioni, Lionel; Dussauze, Marc; Lahaye, Michel; Gonzalez, Hernando Magallanes; Brasselet, Etienne

    2015-12-07

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to the formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.

  14. Effect of methotrexate on inflammatory cells redistribution in experimental adjuvant arthritis.

    PubMed

    Feketeová, Lucia; Jančová, Petra; Moravcová, Petra; Janegová, Andrea; Bauerová, Katarína; Poništ, Silvester; Mihalová, Danica; Janega, Pavol; Babál, Pavel

    2012-11-01

    The aim of this study was to evaluate the morphological changes in the spleen, the thymus and the knee joints of rats with experimental adjuvant arthritis induced by Mycobacterium butyricum in the incomplete Freund's adjuvant and the effect of treatment with methotrexate (MTX). Particular attention was aimed on the redistribution of granulocytes in the tissues during the inflammatory process. Clinical parameters, e.g., joint edema, body weight and of gamma glutamyl transferase (GGT) activity as an inflammatory marker, have also been determined. Induction of adjuvant arthritis caused a significant decrease in granulocyte number in the spleen and vice versa a significant increase in the knee joints, but without significant changes in the thymus. Treatment with methotrexate reversed this phenomenon by increasing the granulocyte number in the spleen and decreasing it in knee joints. MTX decreased the joint edema as well as the activity of GGT in the spleen, modified the size of the white pulp of the spleen and increased the cortex/medulla ratio in the thymus. The observed changes support the anti-inflammatory and immunomodulatory properties of MTX supporting its use as the first-line medication in patients with rheumatoid arthritis. PMID:22083611

  15. Time-Variable Gravity Signal Due to Extratropic Pacific Water Mass Redistribution

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, A. Y.; Cox, C. M.

    2002-01-01

    Cox and Chao [2002] reported the detection of a large anomaly in the form of a positive "jump" in the time series of Earth's lowest-degree gravity harmonic J2, or the dynamic oblateness, during 1998. This prompted us to examine the mass redistribution in the global oceans. We report here a seesaw of the sea-surface height (SSH) in the extratropic north + south Pacific basins -- the leading (nonseasonal) EOF/PC mode in SSH derived from the 10-year TOPEX/Poseidon altimetry data in the extratropic Pacific region. The mode underwent a step-like jump with time evolution that match remarkably well with the observed J2 anomaly. However, the magnitude is several times too small to explain the observed J2, even if assuming the SSH jump was all mass-induced (as opposed to any steric effect which causes no time-variable gravity signal). If one accepts the notion that this extratropic Pacific seesaw is part of the geophysical process that produced the observed 1998 J2 anomaly, then this finding suggests strong geophysical connection of the interannual-to-decadal variation of J2 with the Pacific Decadal Oscillation (PDO), as the time series of the above EOF/PC mode is actually a formally defined PDO Index series.

  16. Computational model of cerebral blood flow redistribution during cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.

    2016-04-01

    In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.

  17. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    NASA Astrophysics Data System (ADS)

    Desmoulin, Jean-Charles; Petit, Yannick; Canioni, Lionel; Dussauze, Marc; Lahaye, Michel; Gonzalez, Hernando Magallanes; Brasselet, Etienne; Cardinal, Thierry

    2015-12-01

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to the formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.

  18. Compensatory load redistribution in walking and trotting dogs with hind limb lameness.

    PubMed

    Fischer, S; Anders, A; Nolte, I; Schilling, N

    2013-09-01

    This study evaluated adaptations in vertical force and temporal gait parameters to hind limb lameness in walking and trotting dogs. Eight clinically normal adult Beagles were allowed to ambulate on an instrumented treadmill at their preferred speed while the ground reaction forces were recorded for all limbs before and after a moderate, reversible, hind limb lameness was induced. At both gaits, vertical force was decreased in the ipsilateral and increased in the contralateral hind limb. While peak force increased in the ipsilateral forelimb, no changes were observed for mean force and impulse when the dogs walked or trotted. In the contralateral forelimb, the peak force was unchanged, but the mean force significantly increased during walking and trotting; vertical impulse increased only during walking. Relative stance duration increased in the ipsilateral hind limb when the dogs trotted. In the contralateral fore and hind limbs, relative stance duration increased during walking and trotting, but decreased in the ipsilateral forelimb during walking. Analysis of load redistribution and temporal gait changes during hind limb lameness showed that compensatory mechanisms were similar regardless of gait. The centre of mass consistently shifted to the contralateral body side and cranio-caudally to the side opposite the affected limb. These biomechanical changes indicate substantial short- and long-term effects of hind limb lameness on the musculoskeletal system. PMID:23683534

  19. Internal Conversion and Vibrational Energy Redistribution in Chlorophyll A.

    PubMed

    Shenai, Prathamesh M; Fernandez-Alberti, Sebastian; Bricker, William P; Tretiak, Sergei; Zhao, Yang

    2016-01-14

    We have computationally investigated the role of intramolecular vibrational modes in determining nonradiative relaxation pathways of photoexcited electronic states in isolated chlorophyll A (ChlA) molecules. To simulate the excited state relaxation from the initially excited Soret state to the lowest excited state Qy, the approach of nonadiabatic excited state molecular dynamics has been adopted. The intramolecular vibrational energy relaxation and redistribution that accompany the electronic internal conversion process is followed by analyzing the excited state trajectories in terms of the ground state equilibrium normal modes. The time dependence of the normal mode velocities is determined by projecting instantaneous Cartesian velocities onto the normal mode vectors. Our analysis of the time evolution of the average mode energies uncovers that only a small subset of the medium-to-high frequency normal modes actively participate in the electronic relaxation processes. These active modes are characterized by the highest overlap with the nonadiabatic coupling vectors (NACRs) during the electronic transitions. Further statistical analysis of the nonadiabatic transitions reveals that the electronic and vibrational energy relaxation occurs via two distinct pathways with significantly different time scales on which the hopping from Soret to Qx occurs thereby dictating the overall dynamics. Furthermore, the NACRs corresponding to each of the transitions have been consistently found to be predominantly similar to a set of normal modes that vary depending upon the transition and the identified categories. Each pathway exhibits a differential time scale of energy transfer and also a differential set of predominant active modes. Our present analysis can be considered as a general approach allowing identification of a reduced subset of specific vibrational coordinates associated with nonradiative relaxation pathways. Therefore, it represents an adequate prior strategy that

  20. Novel approaches to understanding carbon redistribution at multiple scales

    NASA Astrophysics Data System (ADS)

    Dungait, Jennifer; Beniston, Joshua; Lal, Rattan; Horrocks, Claire; Collins, Adrian; Mariappen, Sankar; Quine, Timothy

    2014-05-01

    Established biogeochemical techniques are used to trace organic inputs typically derived directly or indirectly from plants into soils, sediments and water using lipid biomarkers. Recently, advances in bulk and compound specific stable 13C isotope analyses have provided novel ways of exploring the source and residence times of organic matter in soils using the natural abundance stable 13C isotope signature of C3 and C4 plant end member values. However, the application of biogeochemical source tracing technologies at the molecular level at field to catchment scales has been slow to develop because of perceived problems with dilution of molecular-scale signals. This paper describes the results of recent experiments in natural and agricultural environments in the UK (Collins et al., 2013; Dungait et al., 2013) and United States (Beniston et al., submitted) that have successfully applied new tracing techniques using stable 13C isotope and complementary approaches to explore the transport of sediment-bound organic carbon at a range of scales from the small plot (m2) to field (ha) and small catchment (10's ha). References Beniston et al (submitted) The effects of crop residue removal on soil erosion and macronutrient dynamics on soils under no till for 42 years. Biogeosciences Collins et al (2013) Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England. Science of the Total Environment 456-457, 181-195. Dungait et al (2013) Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry 60, 195-201. Puttock et al (2012) Stable carbon isotope analysis of fluvial sediment fluxes over two contrasting C4-C3 semi-arid vegetation transitions. Rapid Communications in Mass Spectrometry 26, 2386-2392.

  1. Thermally driven moisture redistribution in partially saturated porous media

    SciTech Connect

    Green, R.T.; Dodge, F.T.; Svedeman, S.J.; Manteufel, R.D.; Meyer, K.A.; Baca, R.G.; Rice, G.

    1995-12-01

    It is widely recognized that the decay heat produced by high-level radioactive waste (HLW) will likely have a significant impact on both the pre- and post-closure performance of the proposed repository at Yucca Mountain (YM), in southwest Nevada. The task of delineating which aspects of that impact are favorable to isolation performance and which are adverse is an extremely challenging technical undertaking because of such factors as the hydrothermal regimes involved, heterogeneity of the geologic media, and the time and space scales involved. This difficulty has motivated both the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) to undertake multi-year thermohydrology research programs to examine the effects of decay heat on pre- and post-closure performance of the repository. Both of these organizations are currently pursuing laboratory and field experiments, as well as numerical modeling studies, to advance the state of knowledge of the thermohydrologic phenomena relevant to the proposed geologic repository. The NRC-sponsored Thermohydrology Research Project, which was initiated in mid-1989 at the Center for Nuclear Waste Regulatory Analyses (CNWRA), began with the intent of addressing a broad spectrum of generic thermohydrologic questions. While some of these questions were answered in the conduct of the study, other new and challenging ones were encountered. Subsequent to that report, laboratory-scale experiments were designed to address four fundamental questions regarding thermohydrologic phenomena: what are the principal mechanisms controlling the redistribution of moisture; under what hydrothermal conditions and time frames do individual mechanisms predominate; what driving mechanism is associated with a particular hydrothermal regime; what is the temporal and spatial scale of each hydrothermal regime? This report presents the research results and findings obtained since issuance of the first progress report. 85 refs.

  2. Calorie increase and water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2015-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to increase calorie production and minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvement in calorie production as well as the associated change in water demand. We also consider what distribution of crops would maintain current calorie production while minimizing crop water demand. In doing all of this, our study provides a novel tool for improving crop calorie production without necessarily increasing resource demands.

  3. 47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... terrestrial broadcast content. 76.1909 Section 76.1909 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Redistribution control of unencrypted digital terrestrial broadcast content. (a) For the purposes of this section, the terms unencrypted digital terrestrial broadcast content, EIT, PMT, broadcast flag,...

  4. 47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terrestrial broadcast content. 76.1909 Section 76.1909 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Redistribution control of unencrypted digital terrestrial broadcast content. (a) For the purposes of this section, the terms unencrypted digital terrestrial broadcast content, EIT, PMT, broadcast flag,...

  5. Using 137 Cs measurements to investigate the influence of erosion and soil redistribution on soil properties.

    PubMed

    Du, P; Walling, D E

    2011-05-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide (137)Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using (137)Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). (137)Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha(-1) yr(-1) to a deposition rate of 19.2 t ha(-1) yr(-1). Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for

  6. Spatial variation in hydraulic redistribution by the desert shrub, Sarcobatus vermiculatus, at multiple scales

    NASA Astrophysics Data System (ADS)

    Richards, J. H.; Donovan, L. A.

    2012-12-01

    Passive water movement through roots from moist to dry soils, i.e. hydraulic redistribution, can be important for plant water status, vegetation water use, nutrient acquisition and cycling, and competition/facilitation among plant species. Although hydraulic redistribution is known from many species and habitats, little is known about how it varies at multiple spatial scales across species ranges. In the Mono Basin, California ecosystem we documented variation in hydraulic redistribution by the desert halophytic shrub, Sarcobatus vermiculatus, at three spatial scales: landscape, shrub-island versus interspace, and depth. Hydraulic redistribution varied among sites across the landscape. It was most prevalent at a low salinity site with deep groundwater (9.4 m), but of lower magnitude at more saline sites with shallower groundwater. At the low salinity site, infiltration from snowmelt, the predominant precipitation input, was confined to interspaces between shrub islands. Shrub-island soils remained very dry after snowmelt, even in a year with high total snow accumulation. Shrub-island soils, however, had substantial net increases in Ψsoil during week- to month-long periods in the early part of the growing season, concomitant with self-irrigated root growth into these dry soils, as documented with mini-rhizotrons. The source of this root-system-transported water was both moist interspace soils and moist deep soil layers. Wetting up of otherwise dry shrub-island soils is likely essential for nutrient mineralization and acquisition from trapped litter, making hydraulic redistribution an important driver of landscape-scale biogeochemical cycles in these saline basins. In addition, hydraulic redistribution buffered spatial variation in water availability among sites, depths, depth to groundwater, and for plants with different root distributions, such that plant Ψpredawn and Ψmidday differed little across the landscape. Multi-scale variation in hydraulic redistribution

  7. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization

    PubMed Central

    Guhr, Alexander; Borken, Werner; Spohn, Marie; Matzner, Egbert

    2015-01-01

    The desiccation of upper soil horizons is a common phenomenon, leading to a decrease in soil microbial activity and mineralization. Recent studies have shown that fungal communities and fungal-based food webs are less sensitive and better adapted to soil desiccation than bacterial-based food webs. One reason for a better fungal adaptation to soil desiccation may be hydraulic redistribution of water by mycelia networks. Here we show that a saprotrophic fungus (Agaricus bisporus) redistributes water from moist (–0.03 MPa) into dry (–9.5 MPa) soil at about 0.3 cm⋅min−1 in single hyphae, resulting in an increase in soil water potential after 72 h. The increase in soil moisture by hydraulic redistribution significantly enhanced carbon mineralization by 2,800% and enzymatic activity by 250–350% in the previously dry soil compartment within 168 h. Our results demonstrate that hydraulic redistribution can partly compensate water deficiency if water is available in other zones of the mycelia network. Hydraulic redistribution is likely one of the mechanisms behind higher drought resistance of soil fungi compared with bacteria. Moreover, hydraulic redistribution by saprotrophic fungi is an underrated pathway of water transport in soils and may lead to a transfer of water to zones of high fungal activity. PMID:26554004

  8. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization.

    PubMed

    Guhr, Alexander; Borken, Werner; Spohn, Marie; Matzner, Egbert

    2015-11-24

    The desiccation of upper soil horizons is a common phenomenon, leading to a decrease in soil microbial activity and mineralization. Recent studies have shown that fungal communities and fungal-based food webs are less sensitive and better adapted to soil desiccation than bacterial-based food webs. One reason for a better fungal adaptation to soil desiccation may be hydraulic redistribution of water by mycelia networks. Here we show that a saprotrophic fungus (Agaricus bisporus) redistributes water from moist (-0.03 MPa) into dry (-9.5 MPa) soil at about 0.3 cm ⋅ min(-1) in single hyphae, resulting in an increase in soil water potential after 72 h. The increase in soil moisture by hydraulic redistribution significantly enhanced carbon mineralization by 2,800% and enzymatic activity by 250-350% in the previously dry soil compartment within 168 h. Our results demonstrate that hydraulic redistribution can partly compensate water deficiency if water is available in other zones of the mycelia network. Hydraulic redistribution is likely one of the mechanisms behind higher drought resistance of soil fungi compared with bacteria. Moreover, hydraulic redistribution by saprotrophic fungi is an underrated pathway of water transport in soils and may lead to a transfer of water to zones of high fungal activity. PMID:26554004

  9. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends

    NASA Astrophysics Data System (ADS)

    Blanckaert, K.

    2010-09-01

    The bed topography and associated flow field are investigated in a laboratory configuration with parameters that are representative for sharp natural meander bends. Zones of inward mass transport are characterized by a quasi-linear transverse bed profile, whereas zones of outward mass transport, induced by pronounced curvature variations, are characterized by a quasi-horizontal shallow point bar at the inside of the bend, a deep pool at the outside, and an increase in overall cross-sectional area. These quasi-bilinear bed profiles can be attributed to the curvature-induced secondary flow that is confined to the pool. Topographic steering, mainly due to mass conservation, concentrates the major part of the discharge over the deepest zones of the bend. But the pattern of depth-averaged velocities, which is relevant with respect to the development of the bed topography, does not show maximum values over the deepest zones. A term-by-term analysis of the depth-averaged streamwise momentum equation reveals that the water surface gradient is the principal mechanism with respect to flow velocity redistribution, although inertia and secondary flow are also processes of dominant order of magnitude. A required condition for the occurrence of adverse pressure gradients and flow recirculation due to planform curvature variations is established. A different type of flow recirculation, due to a subtle feedback between the flow and the bed topography, occurs over the point bar. The neglect of the influence of vertical velocities impinging on the bed in models for sediment transport is identified as a major shortcoming in the modeling of the morphodynamics of meandering river channels.

  10. Demographic intermediation between development and population redistribution in Sudan.

    PubMed

    Farah, A A

    1983-12-01

    degrees and will depend on the pace of decline of each vital rate and the trend of migration. In conclusion, the regional patterns of population growth and redistribution are likely to be uneven in the foreseeable future, unless a genuine policy of regionalizing is effectively implemented. PMID:12312893

  11. Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells.

    PubMed Central

    Pörn-Ares, M Isabella; Saido, Takaomi C; Andersson, Tommy; Ares, Mikko P S

    2003-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to induce apoptosis in endothelial cells, and this is believed to contribute to the progression of atherosclerosis. In the present study we made the novel observation that oxLDL-induced death of HMEC-1 cells is accompanied by activation of calpain. The mu-calpain inhibitor PD 151746 decreased oxLDL-induced cytotoxicity, whereas the general caspase inhibitor BAF (t-butoxycarbonyl-Asp-methoxyfluoromethylketone) had no effect. Also, oxLDL provoked calpain-dependent proteolysis of cytoskeletal alpha-fodrin in the HMEC-1 cells. Our observation of an autoproteolytic cleavage of the 80 kDa subunit of mu-calpain provided further evidence for an oxLDL-induced stimulation of calpain activity. The Bcl-2 protein Bid was also cleaved during oxLDL-elicited cell death, and this was prevented by calpain inhibitors, but not by inhibitors of cathepsin B and caspases. Treating the HMEC-1 cells with oxLDL did not result in detectable activation of procaspase 3 or cleavage of PARP [poly(ADP-ribose) polymerase], but it did cause polyubiquitination of caspase 3, indicating inactivation and possible degradation of this protease. Despite the lack of caspase 3 activation, oxLDL treatment led to the formation of nucleosomal DNA fragments characteristic of apoptosis. These novel results show that oxLDL initiates a calpain-mediated death-signalling pathway in endothelial cells. PMID:12775216

  12. A Budyko framework for estimating how lateral redistribution affects large-scale evapotranspiration

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, Elham; Kirchner, James W.

    2016-04-01

    Most earth system models are based on grid-averaged soil columns that do not communicate with one another, and that average over considerable sub-grid heterogeneity in land surface properties, precipitation (P), and potential evapotranspiration (PET). These models typically ignore topographically driven lateral redistribution of water (either as groundwater or surface flows), both within and between model grid cells. Lateral redistribution may alter not only local evapotranspiration (ET) fluxes, but also regional average ET as seen from the atmosphere over heterogeneous landscapes. For example, if water is laterally transferred from a source location with high precipitation (but low PET) to a recipient location with low precipitation (but high PET), the resulting ET increase in the recipient location may more than offset the ET reduction in the source location. In this example the regional average ET flux, as viewed from the atmosphere, would be increased by lateral redistribution. The earth system modeling community has recognized the need to account for lateral redistribution of water and its effects on evapotranspiration rates, and our work represents a first attempt to quantify these effects. Our approach uses simple Budyko curves to estimate ET as a function of atmospheric forcing by P and PET. From these curves, we derive a simple criterion for determining whether lateral redistribution will increase or decrease regional average ET, as seen from the atmosphere. Using only estimates of P and PET in the source and recipient locations, we derive expressions for the maximum possible effect of redistribution on regional ET, and the amount of lateral redistribution required to achieve this effect. We likewise derive a dimensionless ratio that quantifies the change in ET per unit of lateral redistribution, again as a function of P and PET in the source and recipient locations. This approach yields a simple conceptual framework for determining whether, and how much

  13. Redistribution of heart failure as the cause of death: the Atherosclerosis Risk in Communities Study

    PubMed Central

    2014-01-01

    Background Heart failure is sometimes incorrectly listed as the underlying cause of death (UCD) on death certificates, thus compromising the accuracy and comparability of mortality statistics. Statistical redistribution of the UCD has been used to examine the effect of misclassification of the UCD attributed to heart failure, but sex- and race-specific redistribution of deaths on coronary heart disease (CHD) mortality in the United States has not been examined. Methods We used coarsened exact matching to infer the UCD of vital records with heart failure as the UCD from 1999 to 2010 for decedents 55 years old and older from states encompassing regions under surveillance by the Atherosclerosis Risk in Communities (ARIC) Study (Maryland, Minnesota, Mississippi, and North Carolina). Records with heart failure as the UCD were matched on decedent characteristics (five-year age groups, sex, race, education, year of death, and state) to records with heart failure listed among the multiple causes of death. Each heart failure death was then redistributed to plausible UCDs proportional to the frequency among matched records. Results After redistribution the proportion of deaths increased for CHD, chronic obstructive pulmonary disease, diabetes, hypertensive heart disease, and cardiomyopathy, P < 0.001. The percent increase in CHD mortality after redistribution was the highest in Mississippi (12%) and lowest in Maryland (1.6%), with variations by year, race, and sex. Redistribution proportions for CHD were similar to CHD death classification by a panel of expert reviewers in the ARIC study. Conclusions Redistribution of ill-defined UCD would improve the accuracy and comparability of mortality statistics used to allocate public health resources and monitor mortality trends. PMID:24716810

  14. Flow Redistribution Between Legs and Brain During STS 93 Re-Entry and Landing

    NASA Technical Reports Server (NTRS)

    Arbeille, P.; Meck, J.; Porcher, M.; Benavides, E.; Martin, D. S.; South, D. A.; Ribeiro, C.; Westover, A.

    2003-01-01

    The objective was to quantify bit by bit the arterial hemodynamic response to the successive acceleration induced fluid shifts during re-entry and landing. Method: The astronaut instrumented himself with a flat Doppler probe fixed on the skin, a blood pressure arm cuff, and 3 ECG electrodes. The ICMS (integrated cardiovascular monitoring system, 15x15x25 cu cm, battery powered) designed to monitor Blood pressure, ECG, cerebral and femoral flows was fixed below the astronaut sit in the middeck. Recordings started 5 minutes before de-orbiting (TIG) and stopped 5 min after wheels stop. Results. During re-entry blood pressure increased by 20% at TIG, and then by 25 to 30% during the highest Gz accelerations (approx 1 S g ) . The cerebral flow remained decreased by 10 to 15% below inflight value all during the Entry and landing phases. Conversely the femoral flow increased at TIG and entry ( + l0 to 20%), recovered at 0.lg, and then decreased in proportion with the Gz acceleration (-10% to -40% from 0.5g to 1.5g). The reduction in Femoral flow was associated with an opposite variation in lower limb vascular resistance. Consequently the cerebral flow/femoral flow ratio decreased at TIG and entry (-20%), and then increased according to the Gz acceleration level ( + l0 to +40% from 0.5 to 1.5g). Conclusion: During orthostatic tests (Stand LBNP tests) the cerebral to femoral flow ratio allowed to quantify the efficiency of the flow redistribution between these 2 areas and predicted orthostatic intolerance. In the present case the astronaut was found orthostatically tolerant at postflight tilt tests, but we suggest that during re-entry this parameter could predict the occurrence of syncope in severely disadapted astronauts.

  15. Redistribution of joint moments is associated with changed plantar pressure in diabetic polyneuropathy

    PubMed Central

    Savelberg, Hans HCM; Schaper, Nicolaas C; Willems, Paul JB; de Lange, Ton LH; Meijer, Kenneth

    2009-01-01

    Background Patients with diabetic polyneuropathy (DPN) are often confronted with ulceration of foot soles. Increased plantar pressure under the forefoot has been identified as a major risk factor for ulceration. This study sets out to test the hypothesis that changes in gait characteristics induced by DPN related muscle weakness are the origin of the elevated plantar pressures. Methods Three groups of subjects participated: people diagnosed with diabetes without polyneuropathy (DC), people diagnosed with diabetic polyneuropathy (DPN) and healthy, age-matched controls (HC). In all subjects isometric strength of plantar and dorsal flexors was assessed. Moreover, joint moments at ankle, knee and hip joints were determined while walking barefoot at a velocity of 1.4 m/s. Simultaneously plantar pressure patterns were measured. Results Compared to HC-subjects, DPN-participants walked with a significantly increased internal plantar flexor moment at the first half of the stance phase. Also in DPN-subjects the maximal braking and propelling force applied to the floor was decreased. Moreover, in DPN-subjects the ratio of forefoot-to-rear foot plantar pressures was increased. Body-mass normalized strength of dorsal flexors showed a trend to be reduced in people with diabetes, both DC and DPN, compared to HC-subjects. Plantar flexors tended to be less weak in DC compared to HC and in DPN relative to DC. Conclusion The results of this study suggest that adverse plantar pressure patterns are associated with redistribution of joint moments, and a consequent reduced capacity to control forward velocity at heel strike. PMID:19192272

  16. Spatial and Temporal Variability of Soil Redistribution in a Heterogeneous Shrub Dominated Landscape

    NASA Astrophysics Data System (ADS)

    Van Pelt, R. S.; Zobeck, T. M.

    2015-12-01

    Redistribution of soil by wind results when the erosive force of the wind impacts bare, susceptible soil surfaces. In semi-arid and arid environments, many grasslands with protected surfaces are being replaced by heterogeneous shrub communities with bare, susceptible soil surfaces between the individual shrubs. The development of nutrient islands and the increases of fugitive dust in these areas is indicative of increases of soil redistribution, but few quantitative measurements have been made to date. We fenced three 1 ha areas in an approximately 100 ha coppice dune area of southeast New Mexico dominated by shinnery oak, sand sage, and mesquite and installed a 4 X 4 grid of MWAC sampler masts spaced at 20 m from each other. Weather data were collected at an automated weather station in each of the fenced areas. We found the patterns of soil redistribution to be highly variable in space and time. Differences in vegetation patterns and wind fields were noted among the plots for the same discrete time period that could explain some of the spatial variability. We also noted seasonality of wind fields that accounted for the temporally variable spatial patterns of soil redistribution. We conclude that accurate measurement of soil redistribution patterns in a heterogeneous shrub community requires a very large number of samplers and a long period of study and we believe that net soil loss from an area is limited to fine dust emissions.

  17. Load-redistribution strategy based on time-varying load against cascading failure of complex network

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Xiong, Qing-Yu; Shi, Xin; Wang, Kai; Shi, Wei-Ren

    2015-07-01

    Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently. Project supported by the National Basic Research Program of China (Grant No. 2013CB328903), the Special Fund of 2011 Internet of Things Development of Ministry of Industry and Information Technology, China (Grant No. 2011BAJ03B13-2), the National Natural Science Foundation of China (Grant No. 61473050), and the Key Science and Technology Program of Chongqing, China (Grant No. cstc2012gg-yyjs40008).

  18. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment

    SciTech Connect

    Li, Zongbin; Zou, Naifu; Zhao, Xiang; Zuo, Liang E-mail: yudong.zhang@univ-lorraine.fr; Zhang, Yudong E-mail: yudong.zhang@univ-lorraine.fr; Esling, Claude; Gan, Weimin

    2014-07-14

    The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong 〈0 1 0〉{sub 7M} preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.

  19. Diffusive redistribution of water vapor in the solar nebula revisited

    NASA Technical Reports Server (NTRS)

    Sears, William D.

    1993-01-01

    Stevenson and Lunine presented a model for enhancing the abundance of solid material in the region of the solar nebula at the water condensation point. This was used to provide a means to produce a much more rapid formation of Jupiter than the standard solar nebula models. However, they underestimated the drag induced sun-ward radial drift of the planetesimals of interest. Reanalysis reveals that these particles would spread over the inner solar system and might influence the formation of the asteroids.

  20. The redistributional impact of Canada's Employment Insurance Program, 1992–2002.

    PubMed

    Finnie, Ross; Irvine, Ian

    2011-01-01

    For a decade or so starting in the early 1990s, Canada’s major income support programs underwent substantial reform. Meanwhile, the economy first lingered in a deep recession and then recovered with a period of strong growth. This paper focuses on how the distributional impact of Employment Insurance (EI) evolved during this period. We find that EI was strongly redistributive throughout the whole period with respect to the earnings of individuals, and somewhat less so for family income. But we also show that the distribution of benefits and contributions changed substantially over time, becoming less redistributive. Somewhat counter-intuitively, both the benefit and contribution sides of the program are shown to be redistributive, even though the contribution structure is regressive. These findings are relevant in the current context, as the economy struggles with a combination of high unemployment and fiscal pressures on government spending. PMID:22069812

  1. Using Food Redistribution To Reduce Packing In Children With Severe Food Refusal

    PubMed Central

    Piazza, Cathleen C.; Patel, Meeta R.; Layer, Stacy A.

    2005-01-01

    Positive- and negative-reinforcement-based procedures typically have targeted acceptance for children with severe food refusal; however, these procedures do not always result in successful swallowing. Once acceptance is achieved, some children expel the food repeatedly or pack (hold or pocket) it in their mouths for extended periods of time. This study evaluated the effects of using food redistribution with a bristled massaging toothbrush to reduce packing and increase consumption in 4 children with severe feeding disorders. Packing was reduced for all children. In addition, latency to clean mouth (the duration of time from acceptance to food no longer being present in the child's mouth in the absence of expulsion) for 2 children decreased when the food-redistribution procedure was used. Results are discussed in terms of the potential operant functions of the food-redistribution procedure. PMID:15898473

  2. Redistribution of carbon atoms in Pt substrate for high quality monolayer graphene synthesis

    NASA Astrophysics Data System (ADS)

    Yinying, Li; Xiaoming, Wu; Huaqiang, Wu; He, Qian

    2015-01-01

    The two-dimensional material graphene shows its extraordinary potential in many application fields. As the most effective method to synthesize large-area monolayer graphene, chemical vapor deposition has been well developed; however, it still faces the challenge of a high occurrence of multilayer graphene, which causes the small effective area of monolayer graphene. This phenomenon limits its applications in which only a big size of monolayer graphene is needed. In this paper, by introducing a redistribution stage after the decomposition of carbon source gas to redistribute the carbon atoms dissolved in Pt foils, the number of multilayer flakes on the monolayer graphene decreases. The mean area of monolayer graphene can be extended to about 16 000 μm2, which is eight times larger than that of the graphene grown without the redistribution stage. A Raman spectrograph is used to demonstrate the high quality of the monolayer graphene grown by the improved process.

  3. Redistributed orebodies of Poison Canyon, Sec. 18 and 19, T. 13 N. , R. 9 W. , McKinley County

    SciTech Connect

    Tessendorf, T.N.

    1980-01-01

    Since the early 1950's, the Poison Canyon mine has been considered a classic example of uranium geology. Owing to present economic condtions, a close examination of the redistributed mineralization is taking place. Because of the evolution of the structure and geomorphology of Poison Canyon, the primary mineralization went through further oxidation and reduction. Enriched solutions of uranium migrated downdip through permeable sands. These solutions were controlled by north-trending fracture patterns, with some vertical movement along major faults. The uranium collected in structural and lithological traps, forming amoeba-like orebodies with the higher grade mineralization located in the fractures. First-generation redistributed ore is primarily coffinite. Forming later is second-generation redistributed ore, which is mainly tyuyamunite. The latter formed from further oxidation and redistribution of the primary and first-generation mineralization, combined with an increasing nearness to surface. The authigenic minerals in the redistributed mineralization are found in carbon-deficient sands. The redistributed minerals are locally associated with pascoite, although this mineral is rare. The radiometric equilibrium of the primary minerals differs from that of the redistributed minerals. The uranium has been leached from the primary minerals making chemical values less than radiometric values. The redistributed minerals are chemically greater than radiometric, producing a favorable equilibrium. The percent extraction in the mill process is greater for the redistributed ore than for the primary ore. The paragenetic position of the different minerals has a direct bearing on these observations.

  4. Tracer redistribution by clouds in West Africa: Numerical modeling for dry and wet seasons

    SciTech Connect

    Renard, M.; Chaumerliac, N.; Cautenet, S.; Nickerson, E.C. |

    1994-06-01

    The vertical transport by clouds of an inert tracer and its redistribution by complex West African circulations are examined using a two-dimensional mesoscale meteorological model with explicit microphysics. The model reproduces the tropical distribution of clouds and precipitation along a meridional cross section over West Africa, corresponding to the position of the Intertropical Convergence Zone (ITCZ) during the dry and rainy seasons. The resulting redistribution of the inert tracer is therefore closely related to the northward migration of the ITCZ between January and July. The occurrence of biomass burning during the dry season is shown to be an important source of tracer enrichment at upper levels in the atmosphere.

  5. Notch sensitivity and stress redistribution in three ceramic-matrix composites

    SciTech Connect

    Mackin, T.J.; He, M.Y.; Evans, A.G.; Purcell, T.E.

    1995-07-01

    Fiber-reinforced ceramic-matrix composites (CMCs) depend upon inelastic mechanisms to diffuse stress concentrations associated with holes, notches, and cracks. These mechanisms consist of fiber debonding and pullout, multiple matrix cracking, and shear band formation. In order to understand these effects, experiments have bee conducted on several double-edge-notched CMCs that exhibit different stress redistribution mechanisms. Stresses have been measured an d mechanisms identified by using a combination of methods including X0-ray imaging, edge replication, and thermoelastic analysis. Multiple matrix cracking was found to be the most effective stress redistribution mechanism.

  6. Ill-defined causes of death in Brazil: a redistribution method based on the investigation of such causes

    PubMed Central

    França, Elisabeth; Teixeira, Renato; Ishitani, Lenice; Duncan, Bruce Bartholow; Cortez-Escalante, Juan José; de Morais, Otaliba Libânio; Szwarcwald, Célia Landman

    2014-01-01

    OBJECTIVE To propose a method of redistributing ill-defined causes of death (IDCD) based on the investigation of such causes. METHODS In 2010, an evaluation of the results of investigating the causes of death classified as IDCD in accordance with chapter 18 of the International Classification of Diseases (ICD-10) by the Mortality Information System was performed. The redistribution coefficients were calculated according to the proportional distribution of ill-defined causes reclassified after investigation in any chapter of the ICD-10, except for chapter 18, and used to redistribute the ill-defined causes not investigated and remaining by sex and age. The IDCD redistribution coefficient was compared with two usual methods of redistribution: a) Total redistribution coefficient, based on the proportional distribution of all the defined causes originally notified and b) Non-external redistribution coefficient, similar to the previous, but excluding external causes. RESULTS Of the 97,314 deaths by ill-defined causes reported in 2010, 30.3% were investigated, and 65.5% of those were reclassified as defined causes after the investigation. Endocrine diseases, mental disorders, and maternal causes had a higher representation among the reclassified ill-defined causes, contrary to infectious diseases, neoplasms, and genitourinary diseases, with higher proportions among the defined causes reported. External causes represented 9.3% of the ill-defined causes reclassified. The correction of mortality rates by the total redistribution coefficient and non-external redistribution coefficient increased the magnitude of the rates by a relatively similar factor for most causes, contrary to the IDCD redistribution coefficient that corrected the different causes of death with differentiated weights. CONCLUSIONS The proportional distribution of causes among the ill-defined causes reclassified after investigation was not similar to the original distribution of defined causes. Therefore

  7. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

    PubMed

    Liu, Jie; Jin, Xinchun; Liu, Ke J; Liu, Wenlan

    2012-02-29

    Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis. PMID:22378877

  8. Geomorphic Controls of Soil and Carbon Redistribution Across an Agricultural Landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of soil organic carbon (SOC) vary widely across the landscape leading to large uncertainties in the SOC budget especially for agricultural landscapes where water, tillage, and wind erosion redistributes soil and SOC. It is often assumed that soil erosion results in a loss of SOC from the a...

  9. Cesium 137-Its applications for understanding soil redistribution and deposition patterns on the landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the 1960s research began on the application of fallout radionuclides to determine sediment deposition and soil redistribution rates and patterns in agricultural and natural ecosystems. This research was based on the use of fallout 137Cesium (137Cs) from nuclear weapon tests deposited worldwide d...

  10. Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelianagro-ecosystems

    EPA Science Inventory

    Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulat...

  11. Subsurface drip irrigation emitter spacing effects on soil water redistribution, corn yield, and water productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emitter spacings of 0.3 to 0.6 m are commonly used for subsurface drip irrigation (SDI) of corn on the deep, silt loam soils of the United States Great Plains. Subsurface drip irrigation emitter spacings of 0.3, 0.6, 0.9 and 1.2 m were examined for the resulting differences in soil water redistribut...

  12. VEGETATION REDISTRIBUTION: A POSSIBLE BIOSPHERE SOURCE OF CO2 DURING CLIMATIC CHANGE

    EPA Science Inventory

    A new biogeographic model, MAPSS, predicts changes in vegetation leaf area index (LAI), site water balance and runoff, as well as changes in Biome boundaries. otential scenarios of equilibrium vegetation redistribution under 2 X CO2 climate from five different General Circulation...

  13. Observation of slow charge redistribution preceding excited-state proton transfer

    SciTech Connect

    Spry, D. B.; Fayer, M. D.

    2007-11-28

    The photoacid 8-hydroxy-N,N,N{sup '},N{sup '},N{sup '},N{sup '}-hexamethylpyrene-1,3,6-trisulfonamide (HPTA) and related compounds are used to investigate the steps involved in excited-state deprotonation in polar solvents using pump-probe spectroscopy and time correlated single photon counting fluorescence spectroscopy. The dynamics show a clear two-step process leading to excited-state proton transfer. The first step after electronic excitation is charge redistribution occurring on a tens of picoseconds time scale followed by proton transfer on a nanosecond time scale. The three states observed in the experiments (initial excited state, charge redistributed state, and proton transfer state) are recognized by distinct features in the time dependence of the pump-probe spectrum and fluorescence spectra. In the charge redistributed state, charge density has transferred from the hydroxyl oxygen to the pyrene ring, but the OH sigma bond is still intact. The experiments indicate that the charge redistribution step is controlled by a specific hydrogen bond donation from HPTA to the accepting base molecule. The second step is the full deprotonation of the photoacid. The full deprotonation is clearly marked by the growth of stimulated emission spectral band in the pump-probe spectrum that is identical to the fluorescence spectrum of the anion.

  14. 47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and if the broadcast flag is present: (1) Securely and robustly convey that information to the consumer product used to decrypt the distributor's signal information, and (2) Require that such consumer... 47 Telecommunication 4 2012-10-01 2012-10-01 false Redistribution control of unencrypted...

  15. 47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and if the broadcast flag is present: (1) Securely and robustly convey that information to the consumer product used to decrypt the distributor's signal information, and (2) Require that such consumer... 47 Telecommunication 4 2014-10-01 2014-10-01 false Redistribution control of unencrypted...

  16. HYDRAULIC REDISTRIBUTION OF SOIL WATER DURING SUMMER DROUGHT IN TWO CONTRASTING PACIFIC NORTHWEST CONIFEROUS FORESTS

    EPA Science Inventory

    The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow during droughted conditions in a dry ponderosa pine ecosystem and a moist Doug...

  17. 45 CFR 270.9 - How will we redistribute funds if that becomes necessary?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true How will we redistribute funds if that becomes necessary? 270.9 Section 270.9 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES HIGH PERFORMANCE BONUS AWARDS...

  18. 45 CFR 270.9 - How will we redistribute funds if that becomes necessary?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false How will we redistribute funds if that becomes necessary? 270.9 Section 270.9 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES HIGH PERFORMANCE BONUS AWARDS §...

  19. Educational Policy and the Drug Problem--A Redistributive Politics Issue

    ERIC Educational Resources Information Center

    Caliguri, Joseph P.

    1975-01-01

    The drug problem exists as a cluster of problems affecting broad interests or groups. The issues are redistributive in that everything relates to everything else. It seems apparent that a cluster of policies and programs need development as well as genuine citizen participation in the formulation of these policies. (Author)

  20. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  1. Water uptake and hydraulic redistribution across large woody root systems to 20 m depth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the occurrence of hydraulic redistribution (HR) in a semi-arid woodland in central Texas to improve our understanding of the ecohydrological consequences of HR for the dominant evergreen and deciduous tree species in this water-limited ecosystem. We measured sap flow in numerous stem...

  2. CONVERGING PATTERNS OF UPTAKE AND HYDRAULIC REDISTRIBUTION OF SOIL WATER IN CONTRASTING WOODY VEGETATION TYPES

    EPA Science Inventory

    We used concurrent measurements of soil water content and soil water potential (Ysoil) to assess the effects of Ysoil on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles in six sites characterized by different types and amounts of woo...

  3. HYDRAULIC REDISTRIBUTION IN A DOUGLAS-FIR FOREST: LESSONS FROM SYSTEM MANIPULATIONS

    EPA Science Inventory

    Hydraulic redistribution (HR) occurs in many ecosystems; however, key questions remain about its consequences at the ecosystem level. The objectives of the present study were to quantify seasonal variation in HR and its driving force, and to manipulate the soil-root system to e...

  4. New insights on using fallout radionuclides to estimate soil redistribution rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fallout radionuclides such as 137Cs have been widely accepted and used in the past 40 years to provide quantitative soil redistribution estimates at a point scale. Recently their usefulness has been questioned by a few researchers challenging the validity of the key assumption that the spatial ...

  5. HYDRAULIC REDISTRIBUTION OF SOIL WATER IN TWO OLD-GROWTH CONIFEROUS FORESTS: QUANTIFYING PATTERNS AND CONTROLS

    EPA Science Inventory

    Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict sea...

  6. Rainfall intensity switches ecohydrological runoff/runon redistribution patterns in dryland vegetation patches.

    PubMed

    Magliano, Patricio N; Breshears, David D; Fernández, Roberto J; Jobbágy, Esteban G

    2015-12-01

    Effectively managing net primary productivity in drylands for grazing and other uses depends on understanding how limited rainfall input is redistributed by runoff and runon among vegetation patches, particularly for patches that contrast between lesser and greater amounts of vegetation cover. Due in part to data limitations, ecohydrologists generally have focused on rainfall event size to characterize water redistribution processes. Here we use soil moisture data from a semiarid woodland to highlight how, when event size is controlled and runoff and interception are negligible at the stand scale, rainfall intensity drives the relationship between water redistribution and canopy and soil patch attributes. Horizontal water redistribution variability increased with rainfall intensity and differed between patches with contrasting vegetation cover. Sparsely vegetated patches gained relatively more water during lower intensity events, whereas densely vegetated ones gained relatively more water during higher intensity events. Consequently, range managers need to account for the distribution of rainfall event intensity, as well as event size, to assess the consequences of climate variability and change on net primary productivity. More generally, our results suggest that rainfall intensity needs to be considered in addition to event size to understand vegetation patch dynamics in drylands. PMID:26910941

  7. CONTAMINANT REDISTRIBUTION CAN CONFOUND INTERPRETATION OF OIL-SPILL BIOREMEDIATION STUDIES

    EPA Science Inventory

    The physical redistribution of oil between the inside and outside of experimental plots can affect the results of bioremediation field studies that are conducted on shorelines contaminated by real oil spills. Because untreated oil from the surrounding beach will enter the plot, ...

  8. Redistributive Taxation vs. Education Subsidies: Fostering Equality and Social Mobility in an Intergenerational Model

    ERIC Educational Resources Information Center

    Schneider, Andrea

    2010-01-01

    Redistributive taxation and education subsidies are common policies intended to foster education attendance of poor children. However, this paper shows that in an intergenerational framework, these policies can raise social mobility only for some investment situations but not in general. I also study the impact of both policies on the aggregate…

  9. Normalization of reverse redistribution of thallium-201 with procainamide pretreatment in Wolff-Parkinson-White syndrome

    SciTech Connect

    Nii, T.; Nakashima, Y.; Nomoto, J.; Hiroki, T.; Ohshima, F.; Arakawa, K. )

    1991-03-01

    Stress thallium-201 myocardial perfusion imaging was performed in a patient with Wolff-Parkinson-White syndrome. Reverse redistribution phenomenon was observed in the absence of coronary artery disease. This seems to be the first report of normalization of this phenomenon in association with reversion of accessory pathway to normal atrioventricular conduction after pretreatment with procainamide.

  10. Cesium-137-A tool for understanding soil redistribution across the landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1968 research began at the USDA ARS Sedimentation Laboratory on the application of fallout radionuclides to determine sediment deposition and soil redistribution rates and patterns in agricultural and natural ecosystems. This research was based on the use of fallout Cesium -137(Cs-137) from nucl...

  11. Using Fallout Cesium-137 to understand soil redistribution over agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While it is recognized that soil erosion is highly variable in space and time, studies of the redistribution of soil and soil organic carbon (SOC) within a field or watershed are limited. Our studies focus on the use of fallout Cesium-137 to understand pattern of soil and SOC movement on the landsca...

  12. Using fallout Cesium-137 to understand soil redistribution over agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While it is recognized that soil erosion is highly variable in space and time, studies of the redistribution of soil within a field or watershed are limited. Our studies focus on the use of fallout Cesium-137 to understand pattern of soil movement on the landscape. It is often assumed that eroding...

  13. An operator perturbation method for polarized line transfer. II. Resonance polarization with partial frequency redistribution effects

    NASA Astrophysics Data System (ADS)

    Paletou, Frederic; Faurobert-Scholl, Marianne

    1997-12-01

    The effects of partial frequency redistribution are implemented in the Polarized Accelerated Lambda Iteration (PALI) method of Faurobert-Scholl et al. (1997). The numerical scheme is an extension of the core-wing technique of Paletou & Auer (1995) originally developed for non-polarized line transfer problems. Using a new code, we validate theoretical results against those given by a Feautrier type code.

  14. Redistribution of Core-forming Melt During Shear Deformation of Partially Molten Peridotite

    NASA Technical Reports Server (NTRS)

    Hustoft, J. W.; Kohlstedt, D. L.

    2002-01-01

    To investigate the role of deformation on the distribution of core-forming melt in a partially molten peridotite, samples of olivine-basalt-iron sulfide were sheared to large strains. Dramatic redistribution of sulfide and silicate melts occur during deformation. Additional information is contained in the original extended abstract.

  15. HYDRAULIC REDISTRIBUTION OF SOIL WATER: ECOSYSTEM IMPLICATIONS FOR PACIFIC NORTHWEST FORESTS

    EPA Science Inventory

    The physical process of hydraulic redistribution (HR) is driven by competing soil, tree and atmospheric water potential gradients, and may delay severe water stress for roots and other biota associated with the upper soil profile. We monitored soil moisture characteristics across...

  16. HYDRAULIC REDISTRIBUTION IN A DOUGLAS-FIR FOREST: LESSONS FROM SYSTEM MANIPULATIONS

    EPA Science Inventory

    Hydraulic redistribution (HR) has been shown to slow drying of surface soils during drought in Pacific Northwest forests, but the controls governing this process and its importance to shallow-rooted species are poorly understood. Our objective in this study was to manipulate the...

  17. Evaluation of stress redistribution in CMCs using phase-shifting Moire interferometry and thermoelastic infrared imaging

    SciTech Connect

    Mackin, T.J.

    1995-12-31

    Stress redistribution is a key feature affecting the practical utility of composite materials. A non-linear material response, such as fiber debonding and sliding, results in stress redistributions in the vicinity of stress concentrators. The existence of stress redistribution in ceramic matrix composites has been demonstrated using thermoelastic techniques, the results of which will be compared to surface strain maps gathered using phase-shifting Moir{acute e} interferometry. The Moir{acute e} technique measures strain distributions, while thermoelastic imaging measures strain distributions. The combination of both techniques permits experimental assessment of changes in the constitutive response of the materials. Results of Moir6 and thermoelastic experiments will be presented for three composite systems: C/C, SiC/CAS, and SiC/SiC. In the case of the SiC/CAS composite, the stress redistribution results in a notch-insensitive material. The changes in the constitutive response is rationalized based upon changes in the micro-mechanical properties of the composites. Thus, careful processing control can be exploited to design materials with varying amounts of notch-sensitivity.

  18. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    EPA Science Inventory

    Nocturnal increases in water potential (ψ) and water content () in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the ...

  19. Auranofin-induced oxidative stress causes redistribution of the glutathione pool in Taenia crassiceps cysticerci.

    PubMed

    Martínez-González, J J; Guevara-Flores, A; Rendón, J L; del Arenal, I P

    2015-05-01

    Previously, we have studied the effect of the gold-compound auranofin (AF) on both thioredoxin-glutathione reductasa (TGR) activity and viability of Taenia crassiceps cysticerci. It was demonstrated that micromolar concentrations of AF were high enough to fully inhibit TGR and kill the parasites. In this work, the dynamics of changes in the glutathione pool of T. crassiceps cysticerci following the addition of AF, was analyzed. A dose-dependent decrease in the internal glutathione concentration, concomitant with an increase in ROS production was observed. These changes were simultaneous with the formation of glutathione-protein complexes and the export of glutathione disulfide (GSSG) to the culture medium. Incubation of cysticerci in the presence of both AF and N-acetyl cysteine (NAC) prevents all the above changes, maintaining cysticerci viability. By contrast, the presence of both AF and buthionine sulfoximine (BSO) resulted in a potentiation of the effects of the gold compound, jeopardizing cysticerci viability. These results suggest the lethal effect of AF on T. crassiceps cysticerci, observed at micromolar concentrations, can be explained as a consequence of major changes in the glutathione status, which results in a significant increase in the oxidative stress of the parasites. PMID:26024834

  20. Effective Stress and Permeability Redistributions Induced by Successive Roadway and Borehole Excavations

    NASA Astrophysics Data System (ADS)

    Hu, Shengyong; Zhou, Fubao; Liu, Yingke; Xia, Tongqiang

    2015-01-01

    Methane extraction from in-seam boreholes is the main approach for recovering methane in China. However, the methane concentration for this method is generally lower than 30 %, which incurs a risk of methane outbursts during pipeline transportation. To increase the methane concentration, we first conducted permeability experiments to investigate the relationships between the permeability and the effective stress at different stages in the complete effective stress-strain process. We then adopted FLAC3D software to calculate the stress distributions around roadways and boreholes after their consecutive excavations and thereby divided the coal mass around the roadway and borehole according to different effective stress stages to understand the gas flow characteristics. The results show that the coal mass along the radial direction of the roadway and borehole can be sequentially divided into four zones, including the full flow zone (FFZ), the transitive flow zone (TFZ), the flow-shielding zone (FSZ), and the in situ rock flow zone (IRFZ), which have been proven correct by field experiments. The methane in the IRFZ was difficult to extract because of the low permeability of coal mass in this zone. The permeability of the FSZ was lower than that of the IRFZ. The permeability along the interface between the FSZ and TFZ was nearly one time as low as that of the IRFZ, while the permeability of the FFZ was two orders of magnitude higher than that of the IRFZ. This four-zone division demonstrates the decaying mechanism of methane extraction concentration and flow in the in-seam borehole and can provide theoretical guidance for improvement of methane extraction.

  1. Cell killing, radiosensitization and cell cycle redistribution induced by chronic hypoxia

    SciTech Connect

    Spiro, I.J.; Rice, G.C.; Durand, R.E.; Stickler, R.; Ling, C.C.

    1984-08-01

    Some of the biological changes associated with extreme hypoxia at 37/sup 0/C (less than 10 ppM pO/sub 2/) were examined in Chinese hamster V79 cells. Specifically, extreme hypoxia caused an initial decrease in plating efficiency to 55% in 4 hr after the onset of hypoxia. Beyond this time, the decline in plating efficiency was more gradual reaching 35% of control at 20 hr. Flow microfluorimetry (FMF) studies, in which cells are sorted on the basis of DNA content and then assayed for viability, demonstrated that mid S phase cells were most sensitive to chronic hypoxia. Hypoxia also caused alterations in the cell cycle distribution of initially asynchronous cells, as determined by dual parameter FMF measurements of both cellular DNA content and incorporated BudR. Lastly, cells stored in chronic hypoxia displayed an enhanced radiosensitivity when compared to acutely hypoxic cells.

  2. Dynamics of the NK-cell subset redistribution induced by cytomegalovirus infection in preterm infants.

    PubMed

    Noyola, Daniel E; Alarcón, Ana; Noguera-Julian, Antoni; Muntasell, Aura; Muñoz-Almagro, Carmen; García, Jordi; Mur, Antonio; Fortuny, Claudia; López-Botet, Miguel

    2015-03-01

    Human cytomegalovirus (HCMV) infection promotes an expansion of NK-cells expressing the CD94/NKG2C receptor. We prospectively monitored the effects of HCMV on the NK-cell receptor (NKG2C, NKG2A, KIR, LILRB1) distribution in preterm infants. As compared to non-infected moderately preterm newborns (n=19, gestational age: 32-37 weeks), very preterm infants (n=5, gestational age: <32 weeks) suffering symptomatic postnatal HCMV infection displayed increased numbers of NKG2C+, KIR+ NK-cells, encompassed by a reduction of NKG2A+ NK-cells. A similar profile was observed in HCMV-negative newborns (n=4) with asymptomatic infection, during follow-up at ~4 and 10 months of age. Of note, viremia remained detectable in three symptomatic cases at ~10 months despite the persistent expansion of NKG2C+ NK-cells. Our study provides original insights on the dynamics of the imprint exerted by primary HCMV infection on the NK-cell compartment, revealing that the expansion of NKG2C+ NK-cells may be insufficient to control viral replication in very preterm infants. PMID:25636568

  3. Knowing One's Lot in Life versus Climbing the Social Ladder: The Formation of Redistributive Preferences in Urban China

    ERIC Educational Resources Information Center

    Smyth, Russell; Mishra, Vinod; Qian, Xiaolei

    2010-01-01

    This paper examines, how individual preferences for redistribution in general and redistribution to improve access to education, improve social protection for the poor, reduce income inequality and reduce unemployment depend on beliefs about what determines one's lot in life and self-assessed prospects for climbing the social ladder in urban…

  4. Rainfall redistribution in a tropical forest: Spatial and temporal patterns

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Zimmermann, Beate; Elsenbeer, Helmut

    2009-11-01

    The investigation of throughfall patterns has received considerable interest over the last decades. And yet, the geographical bias of pertinent previous studies and their methodologies and approaches to data analysis cast a doubt on the general validity of claims regarding spatial and temporal patterns of throughfall. We employed 220 collectors in a 1-ha plot of semideciduous tropical rain forest in Panama and sampled throughfall during a period of 14 months. Our analysis of spatial patterns is based on 60 data sets, whereas the temporal analysis comprises 91 events. Both data sets show skewed frequency distributions. When skewness arises from large outliers, the classical, nonrobust variogram estimator overestimates the sill variance and, in some cases, even induces spurious autocorrelation structures. In these situations, robust variogram estimation techniques offer a solution. Throughfall in our plot typically displayed no or only weak spatial autocorrelations. In contrast, temporal correlations were strong, that is, wet and dry locations persisted over consecutive wet seasons. Interestingly, seasonality and hence deciduousness had no influence on spatial and temporal patterns. We argue that if throughfall patterns are to have any explanatory power with respect to patterns of near-surface processes, data analytical artifacts must be ruled out lest spurious correlation be confounded with causality; furthermore, temporal stability over the domain of interest is essential.

  5. Mechanisms underlying the redistribution of particles among the lung's alveolar macrophages during alveolar phase clearance

    SciTech Connect

    Lehnert, B.E.; Oritz, J.B.; Steinkamp, J.A.; Tietjen, G.L.; Sebring, R.J. ); Oberdorster, G. )

    1991-01-01

    In order to obtain information about the particle redistribution phenomenon following the deposition of inhaled particles, as well as to obtain information about some of the mechanisms that may be operable in the redistribution of particles, lavaged lung free cell analyses and transmission electron microscopic (TEM) analyses of lung tissue and were performed using lungs from rats after they were subchronically exposed to aerosolized dioxide (TiO{sub 2}). TEM analyses indicated that the in situ autolysis of particle-containing Alveolar Macropages (AM) is one important mechanism involved in the redistribution of particles. Evidence was also obtained that indicated that the engulfment of one particle-containing phagocyte by another phagocyte also occurs. Another prominent mechanism of the particle redistribution phenomenon may be the in situ proliferation of particle-laden AM. We used the macrophage cell line J774A.1 as a surrogate for AM to investigate how different particulate loads in macrophages may affect their abilities to proliferate. These in vitro investigations indicated that the normal rate of proliferation of macrophages is essentially unaffected by the containment of relatively high particulate burdens. Overall, the results of our investigations suggest that in situ autolysis of particle-containing AM and the rephagocytosis of freed particles by other phagocytes, the phagocytosis of effete and disintegrating particle-containing phagocytes by other AM, and the in situ division of particle-containing AM are likely mechanisms that underlie the post-depositional redistribution of particles among the lung's AM during alveolar phase clearance. 19 refs., 8 figs., 2 tabs.

  6. Redistribution of Golgi Stacks and Other Organelles during Mitosis and Cytokinesis in Plant Cells1[w

    PubMed Central

    Nebenführ, Andreas; Frohlick, Jennifer A.; Staehelin, L. Andrew

    2000-01-01

    We have followed the redistribution of Golgi stacks during mitosis and cytokinesis in living tobacco BY-2 suspension culture cells by means of a green fluorescent protein-tagged soybean α-1,2 mannosidase, and correlated the findings to cytoskeletal rearrangements and to the redistribution of endoplasmic reticulum, mitochondria, and plastids. In preparation for cell division, when the general streaming of Golgi stacks stops, about one-third of the peripheral Golgi stacks redistributes to the perinuclear cytoplasm, the phragmosome, thereby reversing the ratio of interior to cortical Golgi from 2:3 to 3:2. During metaphase, approximately 20% of all Golgi stacks aggregate in the immediate vicinity of the mitotic spindle and a similar number becomes concentrated in an equatorial region under the plasma membrane. This latter localization, the “Golgi belt,” accurately predicts the future site of cell division, and thus forms a novel marker for this region after the disassembly of the preprophase band. During telophase and cytokinesis, many Golgi stacks redistribute around the phragmoplast where the cell plate is formed. At the end of cytokinesis, the daughter cells have very similar Golgi stack densities. The sites of preferential Golgi stack localization are specific for this organelle and largely exclude mitochondria and plastids, although some mitochondria can approach the phragmoplast. This segregation of organelles is first observed in metaphase and persists until completion of cytokinesis. Maintenance of the distinct localizations does not depend on intact actin filaments or microtubules, although the mitotic spindle appears to play a major role in organizing the organelle distribution patterns. The redistribution of Golgi stacks during mitosis and cytokinesis is consistent with the hypothesis that Golgi stacks are repositioned to ensure equal partitioning between daughter cells as well as rapid cell plate assembly. PMID:10982429

  7. Assessing soil redistribution in a complex karst catchment using fallout 137Cs and GIS

    NASA Astrophysics Data System (ADS)

    Navas, A.; López-Vicente, M.; Gaspar, L.; Machín, J.

    2013-08-01

    Caesium-137 derived from nuclear testing in the past century has been widely used as a sediment tracer of soil redistribution, providing information on medium term (40-50 years) erosion rates. To date, most studies have focused on individual fields of limited extent, but estimated rates and patterns of soil redistribution require upscaling to catchment level. An attempt to assess soil redistribution processes with strong geomorphic control on complex terrain, such as an internally drained karst catchment, is presented in this work. A comprehensive geomorphological survey of the Estanya Lake catchment (Spanish Pyrenees) enabled the main geomorphic elements to be identified with a grid resolution of 5 × 5 m, which was the basis for the terrain analyses. A detailed DEM was constructed and improved after field identification of the drainage system and point measures on gentle slopes with Total Topographic Station. A 100 × 100 m sampling grid was established to derive point data of 137Cs inventories across the catchment. Geostatistical interpolation of point samples of 137Cs inventories in soil was carried out to identify and assess the areas of sediment gain and loss by comparing with 137Cs reference inventories. Profile activity models were used to calibrate 137Cs data and to derive estimates of soil redistribution. GIS was used to provide spatially distributed erosion and deposition rates in the landscape for the whole catchment. The median values of soil erosion and deposition of 4.7 and 3.1 Mg ha- 1 year- 1, respectively, showed a large variability and reveal coupling between erosional and depositional forms in the catchment. The highest erosion and deposition rates were found in cultivated fields at the southern sector of the catchment. The spatial analysis of the results supports the importance of taking into account geomorphological features in karst catchments as relevant controlling factors in soil redistribution processes.

  8. THE EFFECTS OF IRRADIATION ON HOT JOVIAN ATMOSPHERES: HEAT REDISTRIBUTION AND ENERGY DISSIPATION

    SciTech Connect

    Perna, Rosalba; Heng, Kevin; Pont, Frederic

    2012-05-20

    Hot Jupiters, due to the proximity to their parent stars, are subjected to a strong irradiating flux that governs their radiative and dynamical properties. We compute a suite of three-dimensional circulation models with dual-band radiative transfer, exploring a relevant range of irradiation temperatures, both with and without temperature inversions. We find that, for irradiation temperatures T{sub irr} {approx}< 2000 K, heat redistribution is very efficient, producing comparable dayside and nightside fluxes. For T{sub irr} Almost-Equal-To 2200-2400 K, the redistribution starts to break down, resulting in a high day-night flux contrast. Our simulations indicate that the efficiency of redistribution is primarily governed by the ratio of advective to radiative timescales. Models with temperature inversions display a higher day-night contrast due to the deposition of starlight at higher altitudes, but we find this opacity-driven effect to be secondary compared to the effects of irradiation. The hotspot offset from the substellar point is large when insolation is weak and redistribution is efficient, and decreases as redistribution breaks down. The atmospheric flow can be potentially subjected to the Kelvin-Helmholtz instability (as indicated by the Richardson number) only in the uppermost layers, with a depth that penetrates down to pressures of a few millibars at most. Shocks penetrate deeper, down to several bars in the hottest model. Ohmic dissipation generally occurs down to deeper levels than shock dissipation (to tens of bars), but the penetration depth varies with the atmospheric opacity. The total dissipated Ohmic power increases steeply with the strength of the irradiating flux and the dissipation depth recedes into the atmosphere, favoring radius inflation in the most irradiated objects. A survey of the existing data, as well as the inferences made from them, reveals that our results are broadly consistent with the observational trends.

  9. Blood flow redistribution and ventilation-perfusion mismatch during embolic pulmonary arterial occlusion

    PubMed Central

    Burrowes, K. S.; Clark, A. R.; Tawhai, M. H.

    2011-01-01

    Acute pulmonary embolism causes redistribution of blood in the lung, which impairs ventilation/perfusion matching and gas exchange and can elevate pulmonary arterial pressure (PAP) by increasing pulmonary vascular resistance (PVR). An anatomically-based multi-scale model of the human pulmonary circulation was used to simulate pre- and post-occlusion flow, to study blood flow redistribution in the presence of an embolus, and to evaluate whether reduction in perfused vascular bed is sufficient to increase PAP to hypertensive levels, or whether other vasoconstrictive mechanisms are necessary. A model of oxygen transfer from air to blood was included to assess the impact of vascular occlusion on oxygen exchange. Emboli of 5, 7, and 10 mm radius were introduced to occlude increasing proportions of the vasculature. Blood flow redistribution was calculated after arterial occlusion, giving predictions of PAP, PVR, flow redistribution, and micro-circulatory flow dynamics. Because of the large flow reserve capacity (via both capillary recruitment and distension), approximately 55% of the vasculature was occluded before PAP reached clinically significant levels indicative of hypertension. In contrast, model predictions showed that even relatively low levels of occlusion could cause localized oxygen deficit. Flow preferentially redistributed to gravitationally non-dependent regions regardless of occlusion location, due to the greater potential for capillary recruitment in this region. Red blood cell transit times decreased below the minimum time for oxygen saturation (<0.25 s) and capillary pressures became high enough to initiate cell damage (which may result in edema) only after ~80% of the lung was occluded. PMID:22140626

  10. Usefulness of semiquantitative analysis of dipyridamole-thallium-201 redistribution for improving risk stratification before vascular surgery

    SciTech Connect

    Levinson, J.R.; Boucher, C.A.; Coley, C.M.; Guiney, T.E.; Strauss, H.W.; Eagle, K.A. )

    1990-08-15

    Preoperative dipyridamole-thallium-201 scanning is sensitive in identifying patients prone to ischemic cardiac complications after vascular surgery, but most patients with redistribution do not have an event after surgery. Therefore, its positive predictive value is limited. To determine which patients with thallium redistribution are at highest risk, dipyridamole-thallium-201 images were interpreted semiquantitatively. Sixty-two consecutive patients with redistribution on preoperative dipyridamole-thallium-201 planar imaging studies were identified. Each thallium scan was then analyzed independently by 2 observers for the number of myocardial segments out of 15, the number of thallium views out of 3 and the number of coronary artery territories with redistribution. Seventeen patients (27%) had postoperative ischemic events, including unstable angina pectoris, ischemic pulmonary edema, myocardial infarction and cardiac death. Thallium predictors of ischemic operative complications included thallium redistribution greater than or equal to 4 myocardial segments (p = 0.03), greater than or equal to 2 of the 3 planar views (p = 0.005) and greater than or equal to 2 coronary territories (p = 0.007). No patient with redistribution in only 1 view had an ischemic event (0 of 15). Thus, determining the extent of redistribution by dipyridamole-thallium-201 scanning improves risk stratification before vascular surgery. Patients with greater numbers of myocardial segments and greater numbers of coronary territories showing thallium-201 redistribution are at higher risk for ischemic cardiac complications. In contrast, when the extent of thallium redistribution is limited, there is a lower risk despite the presence of redistribution.

  11. Calpain plays a central role in 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in cerebellar granule neurons.

    PubMed

    Harbison, Richard A; Ryan, Kristen R; Wilkins, Heather M; Schroeder, Emily K; Loucks, F Alexandra; Bouchard, Ron J; Linseman, Daniel A

    2011-04-01

    1-Methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity has previously been attributed to either caspase-dependent apoptosis or caspase-independent cell death. In the current study, we found that MPP(+) induces a unique, non-apoptotic nuclear morphology coupled with a caspase-independent but calpain-dependent mechanism of cell death in primary cultures of rat cerebellar granule neurons (CGNs). Using a terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay in CGNs exposed to MPP(+), we observed that these neurons are essentially devoid of caspase-dependent DNA fragments indicative of apoptosis. Moreover, proteolysis of a well recognized caspase-3 substrate, poly (ADP ribose) polymerase (PARP), was not observed in CGNs exposed to MPP(+). In contrast, calpain-dependent proteolysis of fodrin and pro-caspases-9 and -3 occurred in this model coupled with inhibition of caspase-3/-7 activities. Notably, several key members of the Bcl-2 protein family appear to be prominent calpain targets in MPP(+)-treated CGNs. Bid and Bax were proteolyzed to truncated forms thought to have greater pro-death activity at mitochondria. Moreover, the pro-survival Bcl-2 protein was degraded to a form predicted to be inactive at mitochondria. Cyclin E was also cleaved by calpain to an active low MW fragment capable of facilitating cell cycle re-entry. Finally, MPP(+)-induced neurotoxicity in CGNs was significantly attenuated by a cocktail of calpain and caspase inhibitors in combination with the antioxidant glutathione. Collectively, these results demonstrate that caspases do not play a central role in CGN toxicity induced by exposure to MPP(+), whereas calpain cleavage of key protein targets, coupled with oxidative stress, plays a critical role in MPP(+)-induced neurotoxicity. Our findings underscore the complexity of MPP(+)-induced neurotoxicity and suggest that calpain may play a fundamental role in causing neuronal death downstream of mitochondrial oxidative stress

  12. Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind I: Historic use of 137Cs

    NASA Astrophysics Data System (ADS)

    Van Pelt, R. Scott

    2013-06-01

    Wind erosion is increasingly scrutinized as a causative factor in soil degradation and fugitive dust emissions. Although models have been developed to predict wind erosion and dust emissions, they are not accurate in all locations. The temporal and spatial variability of aeolian processes makes local estimates of long-term average erosion costly and time consuming. Atmospheric testing of nuclear weapons during the 1950s and 1960s resulted in anthropogenic radioisotopes that had not previously existed being injected into stratospheric global circulation and subsequently deposited on the Earth's surface. Many of these radioisotopes are strongly adsorbed to soil particles and their movement on the landscape is a powerful method for investigating soil redistribution by wind, water, and tillage. 137Cs is the most commonly used anthropogenic radioisotope used to assess soil redistribution rates. Models have been developed to equate differences of radioisotope inventories with rates of soil redistribution and these models have been employed globally to assess soil redistribution on agricultural and natural landscapes. The radioisotope method for assessing soil redistribution rates has many advantages, but also a few limitations. One of the major limitations occurs when local sources of radioisotope contamination, particularly 137Cs, mask the pulse from global fallout, making temporal estimates of redistribution difficult or impossible. In this paper, I explore the importance, history, and applications of the radioisotopic technique using 137Cs, particularly as it applies to soil redistribution by wind.

  13. Collective religiosity and the gender gap in attitudes towards economic redistribution in 86 countries, 1990-2008.

    PubMed

    Jaime-Castillo, Antonio M; Fernández, Juan J; Valiente, Celia; Mayrl, Damon

    2016-05-01

    What is the relationship between gender and the demand for redistribution? Because, on average, women face more economic deprivation than men, in many countries women favor redistribution more than men. However, this is not the case in a number of other countries, where women do not support redistribution more than men. To explain this cross-national paradox, we stress the role of collective religiosity. In many religions, theological principles both militate against public policies designed to redistribute income, and also promote traditionally gendered patterns of work and family involvement. Hence, we hypothesize that, in those countries where religion remains influential either through closer church-state ties or an intensely religious population, men and women should differ less in their attitudes towards redistribution. Drawing upon the World Values Survey, we estimate three-level regression models that test our religiosity-based approach and two alternative explanations in 86 countries and 175 country-years. The results are consistent with our hypothesis. Moreover, in further support of our theoretical approach, societal religiosity undermines pro-redistribution preferences more among women than men. Our findings suggest that collective religiosity matters more to the gender gap in redistributive attitudes than traditional political and labor force factors. PMID:26973029

  14. Opposing roles for caspase and calpain death proteases in L-glutamate-induced oxidative neurotoxicity

    SciTech Connect

    Elphick, Lucy M.; Hawat, Mohammad; Toms, Nick J.; Meinander, Annika; Mikhailov, Andrey; Eriksson, John E.; Kass, George E.N.

    2008-10-15

    Oxidative glutamate toxicity in HT22 murine hippocampal cells is a model for neuronal death by oxidative stress. We have investigated the role of proteases in HT22 cell oxidative glutamate toxicity. L-glutamate-induced toxicity was characterized by cell and nuclear shrinkage and chromatin condensation, yet occurred in the absence of either DNA fragmentation or mitochondrial cytochrome c release. Pretreatment with the selective caspase inhibitors either benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (pan-caspase), N-acetyl-Leu-Glu-His-Asp-aldehyde (caspase 9) or N-acetyl-Ile-Glu-Thr-Asp-aldehyde (caspase 8), significantly increased L-glutamate-induced cell death with a corresponding increase in observed nuclear shrinkage and chromatin condensation. This enhancement of glutamate toxicity correlated with an increase in L-glutamate-dependent production of reactive oxygen species (ROS) as a result of caspase inhibition. Pretreating the cells with N-acetyl-L-cysteine prevented ROS production, cell shrinkage and cell death from L-glutamate as well as that associated with the presence of the pan-caspase inhibitor. In contrast, the caspase-3/-7 inhibitor N-acetyl-Asp-Glu-Val-Asp aldehyde was without significant effect. However, pretreating the cells with the calpain inhibitor N-acetyl-Leu-Leu-Nle-CHO, but not the cathepsin B inhibitor CA-074, prevented cell death. The cytotoxic role of calpains was confirmed further by: 1) cytotoxic dependency on intracellular Ca{sup 2+} increase, 2) increased cleavage of the calpain substrate Suc-Leu-Leu-Val-Tyr-AMC and 3) immunoblot detection of the calpain-selective 145 kDa {alpha}-fodrin cleavage fragment. We conclude that oxidative L-glutamate toxicity in HT22 cells is mediated via calpain activation, whereas inhibition of caspases-8 and -9 may exacerbate L-glutamate-induced oxidative neuronal damage through increased oxidative stress.

  15. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    PubMed

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. PMID:26141293

  16. Opposition to redistributive employment policies for women: the role of policy experience and group interest.

    PubMed

    Garcia, Donna M; Desmarais, Serge; Branscombe, Nyla R; Gee, Stephanie S

    2005-12-01

    We examined whether group interest affected ideological beliefs and attitudes towards redistributive policies among men and women. We found that group interest influenced meritocratic and neo-sexist beliefs and support for gender-based affirmative action and comparable worth policies. Men and women differed in their ideological beliefs and support for the redistributive policies only when they had conscious experience with these policies. Those with policy experience expressed policy attitudes that corresponded with their gender group's interests, while those lacking such experience did not. We also noted group interest effects within each gender: men who had conscious experience with the policies expressed more opposition and greater neo-sexism and meritocratic beliefs than did men who were not consciously experienced with these policies. In contrast, consciously experienced women expressed more policy support than did their not consciously experienced counterparts. Overall, our findings indicate that group interest is an important determinant of policy attitudes and related ideological beliefs. PMID:16368021

  17. When nature pushes back: environmental impact and the spatial redistribution of socially vulnerable populations.

    PubMed

    Elliott, James R; Pais, Jeremy

    2010-01-01

    Objectives. This research investigates the spatial redistribution of socially vulnerable subpopulations during long-term recovery from natural disaster. We hypothesize that the local environmental impact of a disaster influences this redistribution process and that how it does so varies by the urban or rural context in which the disaster occurs.Methods. To test these hypotheses, we use a novel research design that combines the natural experiment offered by Hurricane Andrew with GIS technology and local census data.Results. Findings indicate that in a more urbanized disaster zone (Miami), long-term recovery displaces socially disadvantaged residents from harder-hit areas; yet, in a more rural disaster zone (southwestern Louisiana), long-term recovery concentrates socially disadvantaged residents within these harder-hit areas.Conclusion. These findings bridge classic and contemporary research on postdisaster recovery and open new terrain for thinking about how environmental and social forces intersect to transform regions in different settlement contexts. PMID:21125761

  18. An analytical model for solute redistribution during solidification of planar, columnar, or equiaxed morphology

    SciTech Connect

    Nastac, L.; Stefanescu, D.M. . Dept. of Metallurgical and Materials Engineering)

    1993-09-01

    Existing models for solute redistribution (microsegregation) during solidification were reviewed. There are no analytical models that take into account limited diffusion in both the liquid and the solid phases. A new analytical mathematical model for solute redistribution was developed. Diffusion in liquid and in solid was considered. This model does not require a prescribed movement of the interface. It can be used for one-dimensional (1-D) (plate), two-dimensional (cylinder), or three-dimensional (3-D) (sphere) calculations. Thus, it is possible to calculate microsegregation at the level of primary or secondary arm spacing for columnar dendrites or for equiaxed dendrites. The solution was compared with calculations based on existing models, as well as with some available experimental data for the segregation of base elements in as cast Al-4.9 wt pct Cu, INCONEL 718, 625, and plain carbon (0.13 wt pct C) steel.

  19. An analytical model for solute redistribution during solidification of planar, columnar, or equiaxed morphology

    NASA Astrophysics Data System (ADS)

    Nastac, L.; Stefanescu, D. M.

    1993-09-01

    Existing models for solute redistribution (microsegregation) during solidification were reviewed. There are no analytical models that take into account limited diffusion in both the liquid and the solid phases. A new analytical mathematical model for solute redistribution was developed. Diffusion in liquid and in solid was considered. This model does not require a prescribed movement of the interface. It can be used for one-dimensional (1-D) (plate), two-dimensional (cylinder), or three-dimensional (3-D) (sphere) calculations. Thus, it is possible to calculate microsegregation at the level of primary or secondary arm spacing for columnar dendrites or for equiaxed dendrites. The solution was compared with calculations based on existing models, as well as with some available experimental data for the segregation of base elements in as cast Al-4. 9 wt pct Cu, INCONEL 718, 625, and plain carbon (0. 13 wt pct C) steel.

  20. Popliteal Vein Blood Sampling and the Postmortem Redistribution of Diazepam, Methadone, and Morphine.

    PubMed

    Lemaire, Eric; Schmidt, Carl; Denooz, Raphael; Charlier, Corinne; Boxho, Philippe

    2016-07-01

    Postmortem redistribution (PMR) refers to the site- and time-related blood drug concentration variations after death. We compared central blood (cardiac and subclavian) with peripheral blood (femoral and popliteal) concentrations of diazepam, methadone, and morphine. To our knowledge, popliteal blood has never been compared with other sites. Intracardiac blood (ICB), subclavian blood (SB), femoral blood (FB), and popliteal blood (PB) were sampled in 30 cases. To assess PMR, mean concentrations and ratios were compared. Influence of postmortem interval on mean ratios was also assessed. Results show that popliteal mean concentrations were lower than those for other sites for all three drugs, even lower than femoral blood; mean ratios suggested that the popliteal site was less subject to PMR, and estimated postmortem interval did not influence ratios except for diazepam and methadone FB/PB. In conclusion, our study is the first to explore the popliteal site and suggests that popliteal blood is less prone to postmortem redistribution. PMID:27364283

  1. Direct observation of charge re-distribution in a MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Wu, Sheng Yun; Shih, Po-Hsun; Ji, Jhong-Yi; Chan, Ting-Shan; Yang, Chun Chuen

    2016-04-01

    To study the origin of negative thermal expansion effects near the superconducting transition temperature TC in MgB2, low-temperature high-energy synchrotron radiation x-ray diffraction was used to probe the charge redistribution near the boron atoms. Our results reveal that the in-plane hole-distribution of B- hops through the direct orbital overlap of Mg2+ along the c-axis at 50 K and is re-distributed out-of-plane. This study shows that the out-of-plane π-hole distribution plays a dominant role in the possible origin of superconductivity and negative thermal effects in MgB2.

  2. Long-term effects of soil redistribution by tillage on the landscapes transformation

    NASA Astrophysics Data System (ADS)

    De Alba, S.

    2012-04-01

    During the last decade, soil redistribution due to tillage practices has been identified as an intensive soil erosion process. All the empirical tillage translocation models available in the literature demonstrate high rates of soil translocation for the more commonly used tillage implements. The long-term effects of this intensive soil redistribution within agricultural fields has resulted in a drastic modification of the bio-physical dynamics of the soil as well as the total land-system. A better understanding of the implications of soil redistribution by tillage may require reinterpretation of current agricultural landscapes. This reveal the need for studies for identifying current landscape features produced by past repeated tillage practices, as well as for documenting the bio-physical implications (hydrology, water erosion, soil variability, soil quality, productivity…) derived of such landscape transformations. This communication presents several examples of field evidences observed in agricultural fields of Central Spain, Tuscany (Italy) and Central Minnesota (USA). The collection of field evidences are presented grouped according to the nature of the effects, into the following four classes: i) Landscape leveling and smoothing - Features of change of the soil surface level. Ii) Modification of morphology of slope profiles - Formation of banks at the lower field edges. - Landscape benching by the formation of slope profile breaks at borders between adjacent fields located at mid-slope positions. iii) Spatial variability of soil properties - Patterns of distribution of areas of degraded soils (truncated soils) and of soil accumulations. - Spatial variability of soil properties in the superficial soil horizons. - Variability of soil profiles morphology along the slope profiles. iv) Spatial variability of productivity - Relationships between relieve and spatial variability of soil properties and productivity. Key Words: soil redistribution, tillage erosion

  3. Implications of sediment redistribution on modeled sea-level changes over millennial timescales

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken

    2016-04-01

    Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.

  4. Redistributed water by saprotrophic fungi triggers carbon mineralization in dry soils

    NASA Astrophysics Data System (ADS)

    Guhr, Alexander; Borken, Werner; Matzner, Egbert

    2015-04-01

    Summer droughts are common in temperate forests and especially the upper soil horizons experience soil drought. Drought events can be accompanied by negative effects for forest ecosystems but many plants can reduce drought stress by hydraulic redistribution (HR). Similar processes were recently described for ectomycorrhizal networks but no information is available for mycelia networks of saprotrophic fungi. They strongly contribute to belowground nutrient cycling, C and N mineralization. We hypothesize that redistributed water by saprotrophic fungi triggers mineralization of organic matter in soils under drought conditions. The impact of HR by saprotrophic fungi on mineralization was determined using mesocosms comprising two chambers, separated by a 2 mm air gap to prevent bulk flow of water. After inoculation with fungal cultures and a growth phase, both chambers were desiccated. Subsequently, only chamber I was rewetted while chamber II was treated with 13C labelled plant material. CO2 samples were collected over 7 days after rewetting and analyzed for stable isotope ratio. In addition, enzymatic activity of chitinases and cellobiohydrolases in chamber II was determined after 7 days using the soil zymographie method with fluorogenic 4-Methylumbelliferyl-substrates. A negative control was provided by mesocosms in which hyphal connections between the chambers were severed before rewetting. Intact fungal connections between the chambers led to a strong increase in volumetric water content in chamber II after rewetting of chamber I and the CO2 had a higher enrichment in 13C than in the control mescosms with severed connections. Enrichment started 48 h after rewetting and continued for the rest of the experiment. This resulted in a more than two fold higher total carbon mineralization after 7 days in chamber II of mesocosms with intact hyphal connections. In addition, enzyme activities were also strongly increased compared to controls. In conclusion, mycelia networks

  5. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants

    PubMed Central

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes. PMID:26904051

  6. Energy and frequency dependence of the alpha particle redistribution produced by internal kink modes

    SciTech Connect

    Farengo, R.; Ferrari, H. E.; Garcia-Martinez, P. L.; Firpo, M.-C.; Ettoumi, W.; Lifschitz, A. F.

    2014-08-15

    The redistribution of alpha particles due to internal kink modes is studied. The exact particle trajectories in the total fields, equilibrium plus perturbation, are calculated. The equilibrium has circular cross section and the plasma parameters are similar to those expected in ITER. The alpha particles are initially distributed according to a slowing down distribution function and have energies between 18 keV and 3.5 MeV. The (1, 1), (2, 2), and (2, 1) modes are included and the effect of changing their amplitude and frequency is studied. When only the (1, 1) mode is included, the spreading of high energy (E≳1 MeV) alpha particles increases slowly with the energy and mode frequency. At lower energies, the redistribution is more sensitive to the mode frequency and particle energy. When a (2, 1) mode is added, the spreading increases significantly and particles can reach the edge of the plasma. Trapped particles are the most affected and the redistribution parameter can have maxima above 1 MeV, depending on the mode frequency. These results can have important implications for ash removal.

  7. The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch

    NASA Astrophysics Data System (ADS)

    Navarro, Alejandro Bañón; Teaca, Bogdan; Jenko, Frank

    2016-04-01

    For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each perpendicular direction is introduced as well, which shows that the redistribution of energy in the presence of zonal flows is highly anisotropic.

  8. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    SciTech Connect

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-08-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions.

  9. Evidence for diffusive redistribution of sup 210 Pb in lake sediments

    SciTech Connect

    Benoit, G.; Hemond, H.F. )

    1991-07-01

    {sup 210}Pb, {sup 210}Po, and ancillary geochemical parameters were measured in the sediments and pore waters of a lake with seasonally anoxic bottom waters. Substantial release of radionuclides to the water column has been documented at this site. Solid phase {sup 210}Pb profiles do not match the expected input history, suggesting that the radionuclide may be undergoing redistribution. High levels of the radionuclides were measured in pore waters, consistent with partition coefficients in the range from 10{sup 3} to 10{sup 4}. The high pore water activities, apparent redistribution pattern, and the documented release of {sup 210}Pb from these sediments to the water column, all point to the possible importance of pore water diffusion as a {sup 210}Pb transport mechanism. The distribution of {sup 210}Pb in these sediments was successfully modeled using a combination of sediment burial and pore water diffusion without the need to invoke particle reworking. Theoretical analysis supports the idea that in some cases large dating errors can result if diffusive redistribution of {sup 210}Pb is neglected.

  10. Aortic pressure reduction redistributes transmural blood flow in dog left ventricle

    SciTech Connect

    Smolich, J.J.; Weissberg, P.L.; Broughton, A.; Korner, P.I. )

    1988-02-01

    The authors studied the effect of graded aortic blood pressure reduction on left ventricular (LV) blood flow in anesthetized, autonomically blocked, open-chest dogs at constant heart rate and mean left atrial pressure. Aortic diastolic pressure (ADP) was lowered from rest to 90, 75, and 60 mmHg with an arteriovenous fistula. Global and regional LV blood flow was measured with radioactive microspheres. Mean LV blood flow fell stepwise from 145 ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} at rest to 116 ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} at ADP of 60 mmHg, whereas the endocardial-to-epicardial flow ratio decreased from 1.20 to 084. The transmural redistribution of LV blood flow was not accompanied by increases in LV oxygen extraction, depression of LV contractility, LV dilatation or LV electrical dysfunction and also occurred in the presence of considerable coronary vasodilator flow reserve. Electrical evidence of subendocardial ischemia appeared at ADP of 32 mmHg and an endocardial-to-epicardial flow ratio of 0.41 in a subgroup of animals. They conclude that the redistribution of LV flow during moderate aortic pressure reduction was an appropriate physiological adjustment to uneven transmural alterations in regional LV wall stress and that it preceded a more pronounced redistribution evident with myocardial ischemia.

  11. Modeling of a-particle redistribution by sawteeth in TFTR using FPPT code

    SciTech Connect

    Gorelenkov, N.N.; Budny, R.V.; Duong, H.H.

    1996-06-01

    Results from recent DT experiments on TFTR to measure the radial density profiles of fast confined well trapped {alpha}-particles using the Pellet Charge eXchange (PCX) diagnostic [PETROV M. P., et. al. Nucl. Fusion, 35 (1995) 1437] indicate that sawtooth oscillations produce a significant broadening of the trapped alpha radial density profiles. ` Conventional models consistent with measured sawtooth effects on passing particles do not provide satisfactory simulations of the trapped particle mixing measured by PCX diagnostic. We propose a different mechanism for fast particle mixing during the sawtooth crash to explain the trapped {alpha}-particle density profile broadening after the crash. The model is based on the fast particle orbit averaged toroidal drift in a perturbed helical electric field with an adjustable absolute value. Such a drift of the fast particles results in a change of their energy and a redistribution in phase space. The energy redistribution is shown to obey the diffusion equation, while the redistribution in toroidal momentum P{var_phi} (or in minor radius) is assumed stochastic with large diffusion coefficient and was taken flat. The distribution function in a pre- sawtooth plasma and its evolution in a post-sawtooth crash plasma is simulated using the Fokker-Planck Post-TRANSP (FPPT) processor code. It is shown that FPPT calculated {alpha}-particle distributions are consistent with TRANSP Monte-Carlo calculations. Comparison of FPPT results with Pellet Char eXchange (PCX) measurements shows good agreement for 9 both sawtooth free and sawtoothing plasmas.

  12. Polarized Line Formation with Lower-level Polarization and Partial Frequency Redistribution

    NASA Astrophysics Data System (ADS)

    Supriya, H. D.; Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O.; Ravindra, B.

    2016-09-01

    In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the problem of polarized line formation in magnetized media, which includes both the effects of PRD and the lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime, namely, the J a = 1, J b = 0 and J a = J b = 1, where J a and J b represent the total angular momentum quantum numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative transfer problem.

  13. Redistribution of pulmonary blood flow impacts thermodilution-based extravascular lung water measurements in a model of acute lung injury

    PubMed Central

    Easley, R. Blaine; Mulreany, Daniel G.; Lancaster, Christopher T.; Custer, Jason W.; Fernandez-Bustamante, Ana; Colantuoni, Elizabeth; Simon, Brett A.

    2009-01-01

    Background Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. We hypothesize that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema. Methods Anesthetized, mechanically ventilated canines were instrumented with PiCCO® (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage. Hemodynamic and respiratory physiologic data were recorded. After stabilized lung injury, endotoxin was administered to inactivate hypoxic pulmonary vasoconstriction. Computerized tomographic imaging was performed to quantify in vivo lung volume, total tissue (fluid) and air content, and regional distribution of blood flow. Results Lavage injury caused an increase in airway pressures and decreased arterial oxygen content with minimal hemodynamic effects. EVLW and shunt fraction increased after injury and then markedly following endotoxin administration. Computerized tomographic measurements quantified an endotoxin-induced increase in pulmonary blood flow to poorly aerated regions with no change in total lung tissue volume. Conclusions The abrupt increase in EVLW and shunt fraction after endotoxin administration is consistent with inactivation of hypoxic pulmonary vasoconstriction and increased perfusion to already flooded lung regions that were previously thermally silent. Computerized tomographic studies further demonstrate in vivo alterations in regional blood flow (but not lung water) and account for these alterations in shunt fraction and EVLW. PMID:19809280

  14. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. PMID:26990671

  15. Modelling soil redistribution in a hydrologically defined crop field with WATEM/SEDEM

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; López-Vicente, Manuel; Gaspar, Leticia; Machín, Javier; Navas, Ana

    2013-04-01

    Soil degradation and depletion of soil nutrients is a main effect of soil erosion. In arable land tillage practices produces erosion of fertile topsoil from upslope positions, the subsequent transport of soil and nutrients and their accumulation at depositional sites. The loss of topsoil by tillage and water erosion may affect to important soil properties such as nutrient levels, water holding capacity and soil stability thus reducing the productivity of agricultural systems. Erosion models that simulate soil redistribution rates allow obtaining the spatial distribution of soil loss and deposition, which is useful to identify the areas that might require the application of soil conservation practices. In this study the soil erosion and sediment delivery WATEM/SEDEM 2005 model was applied in a cultivated field of winter cereals (3846 m2) located in NE Spain (42° 01' 42" N, 0° 31' 30" E). The study area was selected as representative of the typical mountain rainfed Mediterranean agro-ecosystems. This area appears as a closed hydrological unit that conforms a defined drainage area, which was delimitated on the basis of a detailed digital elevation model (1 x 1 m of cell size) as well as detailed field observations before and after erosive rainfall events. The WATEM/SEDEM model is a useful tool, which has been widely used to assess soil redistribution by water and tillage processes at different spatial scales. Soil redistribution patterns were simulated and results of the WATEM/SEDEM model were used to map the spatially distributed rates of net soil loss and deposition. In order to perform the calibration procedure, quantified values of soil redistribution in the cultivated field were derived from Caesium-137 measurements. This fallout radionuclide provides information for the whole erosion and deposition processes at medium and long-term. The simulation results from each conversion module were compared with the soil redistribution pattern derived from Cs-137

  16. Mechanisms of the thermal and catalytic redistributions, oligomerizations, and polymerizations of linear diborazanes.

    PubMed

    Robertson, Alasdair P M; Leitao, Erin M; Jurca, Titel; Haddow, Mairi F; Helten, Holger; Lloyd-Jones, Guy C; Manners, Ian

    2013-08-28

    Linear diborazanes R3N-BH2-NR2-BH3 (R = alkyl or H) are often implicated as key intermediates in the dehydrocoupling/dehydrogenation of amine-boranes to form oligo- and polyaminoboranes. Here we report detailed studies of the reactivity of three related examples: Me3N-BH2-NMe2-BH3 (1), Me3N-BH2-NHMe-BH3 (2), and MeNH2-BH2-NHMe-BH3 (3). The mechanisms of the thermal and catalytic redistributions of 1 were investigated in depth using temporal-concentration studies, deuterium labeling, and DFT calculations. The results indicated that, although the products formed under both thermal and catalytic regimes are identical (Me3N·BH3 (8) and [Me2N-BH2]2 (9a)), the mechanisms of their formation differ significantly. The thermal pathway was found to involve the dissociation of the terminal amine to form [H2B(μ-H)(μ-NMe2)BH2] (5) and NMe3 as intermediates, with the former operating as a catalyst and accelerating the redistribution of 1. Intermediate 5 was then transformed to amine-borane 8 and the cyclic diborazane 9a by two different mechanisms. In contrast, under catalytic conditions (0.3-2 mol % IrH2POCOP (POCOP = κ(3)-1,3-(OPtBu2)2C6H3)), 8 was found to inhibit the redistribution of 1 by coordination to the Ir-center. Furthermore, the catalytic pathway involved direct formation of 8 and Me2N═BH2 (9b), which spontaneously dimerizes to give 9a, with the absence of 5 and BH3 as intermediates. The mechanisms elucidated for 1 are also likely to be applicable to other diborazanes, for example, 2 and 3, for which detailed mechanistic studies are impaired by complex post-redistribution chemistry. This includes both metal-free and metal-mediated oligomerization of MeNH═BH2 (10) to form oligoaminoborane [MeNH-BH2]x (11) or polyaminoborane [MeNH-BH2]n (16) following the initial redistribution reaction. PMID:23941398

  17. Simulating the Dependence of Sagebrush Steppe Vegetation on Redistributed Snow in a Semi-Arid Watershed.

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Strand, E. K.; Seyfried, M. S.

    2014-12-01

    In mountainous regions across the western USA, the composition of aspen (Populus tremuloides) and sagebrush steppe plant communities is often closely related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) and critical zone observatory (CZO) in southwest Idaho provides a unique opportunity to study the relationship between vegetation types and redistributed snow. Within the RCEW, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. As shifts in precipitation phase continue, future trends in vegetation composition and net primary productivity (NPP) of different plant functional types remains a critical question. We hypothesize that redistribution of snow may supplement drought sensitive species like aspen more so than drought tolerant species like mountain big sagebrush (Artemisia tridentata spp. vaseyana). To assess the importance of snowdrift subsidies on sagebrush steppe vegetation, NPP of aspen, shrub, and grass species was simulated at three sites using the biogeochemical process model BIOME-BGC. Each site is located directly downslope from snowdrifts providing soil moisture inputs to aspen stands and neighboring vegetation. Drifts vary in size with the largest containing up to four times the snow water equivalent (SWE) of a uniform precipitation layer. Precipitation inputs used by BIOME-BGC were modified to represent the redistribution of snow and simulations were run using daily climate data from 1985-2013. Simulated NPP of annual grasses at each site was not responsive to subsidies from drifting snow. However, at the driest site, aspen and shrub annual NPP was increased by as much as 44 and 30%, respectively, with the redistribution of

  18. Measurement of Retinal Blood Flow Rate in Diabetic Rats: Disparity Between Techniques Due to Redistribution of Flow

    PubMed Central

    Leskova, Wendy; Watts, Megan N.; Carter, Patsy R.; Eshaq, Randa S.; Harris, Norman R.

    2013-01-01

    Purpose. Reports of altered retinal blood flow in experimental models of type I diabetes have provided contrasting results, which leads to some confusion as to whether flow is increased or decreased. The purpose of our study was to evaluate early diabetes-induced changes in retinal blood flow in diabetic rats, using two distinctly different methods. Methods. Diabetes was induced by injection of streptozotocin (STZ), and retinal blood flow rate was measured under anesthesia by a microsphere infusion technique, or by an index of flow based on the mean circulation time between arterioles and venules. Measurements in STZ rats were compared to age-matched nondiabetic controls. In addition, the retinal distribution of fluorescently-labeled red blood cells (RBCs) was viewed by confocal microscopy in excised flat mounts. Results. Retinal blood flow rate was found to decrease by approximately 33% in the STZ rats compared to controls (P < 0.001) as assessed by the microsphere technique. However, in striking contrast, the mean circulation time through the retina was found to be almost 3× faster in the STZ rats (P < 0.01). This contradiction could be explained by flow redistribution through the superficial vessels of the diabetic retina, with this possibility supported by our observation of significantly fewer RBCs flowing through the deeper capillaries. Conclusions. We conclude that retinal blood flow rate is reduced significantly in the diabetic rat, with a substantial decrease of flow through the capillaries due to shunting of blood through the superficial layer, allowing rapid transit from arterioles to venules. PMID:23572104

  19. Site Redistribution, Partial Frozen-in Defect Chemistry, and Electrical Properties of Ba1-x(Zr,Pr)O3-δ.

    PubMed

    Antunes, Isabel; Mikhalev, Sergey; Mather, Glenn Christopher; Kharton, Vladislav Vadimovich; Figueiras, Fábio Gabriel; Alves, Adriana; Rodrigues, Joana; Correia, Maria Rosário; Frade, Jorge Ribeiro; Fagg, Duncan Paul

    2016-09-01

    Changes in nominal composition of the perovskite (ABO3) solid solution Ba1-x(Zr,Pr)O3-δ and adjusted firing conditions at very high temperatures were used to induce structural changes involving site redistribution and frozen-in point defects, as revealed by Raman and photoluminescence spectroscopies. Complementary magnetic measurements allowed quantification of the reduced content of Pr. Weak dependence of oxygen stoichiometry with temperature was obtained by coulometric titration at temperatures below 1000 °C, consistent with a somewhat complex partial frozen-in defect chemistry. Electrical conductivity measurements combined with transport number and Seebeck coefficient measurements showed prevailing electronic transport and also indicated trends expected for partial frozen-in conditions. Nominal Ba deficiency and controlled firing at very high temperatures allows adjustment of structure and partial frozen-in defect chemistry, opening the way to engineer relevant properties for high-temperature electrochemical applications. PMID:27509311

  20. Charge storage phenomenon derived from composition redistribution for single Hf0.8Si0.2Ox film after high-temperature treatment

    NASA Astrophysics Data System (ADS)

    Tang, Zhenjie; Li, Rong; Zhang, Xiwei; Hu, Dan

    2016-05-01

    Simple metal-Hf0.8Si0.2Ox-silicon capacitors have been fabricated. It is observed that the capacitor after high-temperature rapid thermal annealing treatment exhibits a significant charge storage phenomenon, with large hysteresis windows of 3.93 V in a ±8 V gate sweeping voltage range, faster operating speed and good data retention characteristics. The occurrence of charge memory should be attributed to the high-temperature treatment, which gives rise to the HfO2 crystallization and elemental composition redistribution in the Hf0.8Si0.2Ox film, forming a typical metal-oxide-high-κ-oxide-silicon memory structure. Therefore, the high-temperature treatment that induced the internal structure transformation is an appealing approach, and provides a guide for future charge-trap memory design.

  1. Projecting the Dependence of Sage-steppe Vegetation on Redistributed Snow in a Warming Climate.

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2015-12-01

    In mountainous regions, the redistribution of snow by wind can increase the effective precipitation available to vegetation. Moisture subsidies caused by drifting snow may be critical to plant productivity in semi-arid ecosystems. However, with increasing temperatures, the distribution of precipitation is becoming more uniform as rain replaces drifting snow. Understanding the ecohydrological interactions between sagebrush steppe vegetation communities and the heterogeneous distribution of soil moisture is essential for predicting and mitigating future losses in ecosystem diversity and productivity in regions characterized by snow dominated precipitation regimes. To address the dependence of vegetation productivity on redistributed snow, we simulated the net primary production (NPP) of aspen, sagebrush, and C3 grass plant functional types spanning a precipitation phase (rain:snow) gradient in the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO). The biogeochemical process model Biome-BGC was used to simulate NPP at three sites located directly below snowdrifts that provide melt water late into the spring. To assess climate change impacts on future plant productivity, mid-century (2046-2065) NPP was simulated using the average temperature increase from the Multivariate Adaptive Constructed Analogs (MACA) data set under the RCP 8.5 emission scenario. At the driest site, mid-century projections of decreased snow cover and increased growing season evaporative demand resulted in limiting soil moisture up to 30 and 40 days earlier for aspen and sage respectively. While spring green up for aspen occurred an average of 13 days earlier under climate change scenarios, NPP remained negative up to 40 days longer during the growing season. These results indicate that the loss of the soil moisture subsidy stemming from prolonged redistributed snow water resources can directly influence ecosystem productivity in the rain:snow transition zone.

  2. Postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in rabbits over 24 h.

    PubMed

    Maskell, Peter D; Albeishy, Mohammed; De Paoli, Giorgia; Wilson, Nathan E; Seetohul, L Nitin

    2016-03-01

    The interpretation of postmortem drug levels is complicated by changes in drug blood levels in the postmortem period, a phenomena known as postmortem drug redistribution. We investigated the postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in a rabbit model. Heroin (1 mg/kg) was injected into anesthetised rabbit; after 1 h, an auricular vein blood sample was taken and the rabbit was euthanised. Following death rabbits were placed in a supine position at room temperature and divided into three groups namely (1) immediate autopsy, (2) autopsy after 30 minutes and (3) autopsy 24 h after death. Various samples which included femoral blood, cardiac blood, lung, liver, kidney, vitreous humour, subcutaneous and abdominal fat, liver, bone marrow and skeletal muscle were taken. The samples were analysed with a validated LC-MS/MS method. It was observed that within minutes there was a significant increase in free morphine postmortem femoral blood concentration compared to the antemortem sample (0.01 ± 0.01 to 0.05 ± 0.02 mg/L).Various other changes in free morphine and metabolite concentrations were observed during the course of the experiment in various tissues. Principal component analysis was used to investigate possible correlations between free morphine in the various samples. Some correlations were observed but gave poor predictions (>20 % error) when back calculating. The results suggest that rabbits are a good model for further studies of postmortem redistribution but that further study and understanding of the phenomena is required before accurate predictions of the blood concentration at the time of death are possible. PMID:25863436

  3. Current (re-)Distribution inside an ITER Full-Size Conductor: a Qualitative Analysis

    NASA Astrophysics Data System (ADS)

    di Zenobio, A.; Muzzi, L.; Turtù, S.; Della Corte, A.; Verdini, L.

    2006-06-01

    The comprehension of the current re-distribution phenomenon inside multi-filamentary conductors is a crucial point for the design of ITER-relevant coils, as it is by now assessed that current non-uniformity among cable sub-stages may strongly deteriorate Cable-in-Conduit Conductors (CICC) performances. The only feasible way to get information about the current flowing inside CICC sub-stages is an indirect evaluation by self-field measurements in regions very close to conductor surface. A 7m full-size NbTi conductor (Bus-Bar III) has been used as short-circuit during the test of an ITER Toroidal Field Coil HTS current lead at FzK. Its relatively simple shape and the absence of any other magnetic field source (background coils, etc.), made BBIII one of the most desirable candidate for a reliable measurement of the current distribution under controlled conditions. This is why it has been ad hoc instrumented with different arrangements of Hall-probes (rings and arrays), as well as with transverse and longitudinal voltage taps. This paper gives a qualitative interpretation of the current (re-)distribution events inside the conductor as derived from the analysis of the Hall sensors and the voltage taps signals, during Tcs measurements and as a function of different dI/dt. It has been shown that Hall probes represent a very reliable tool to investigate this issue. In fact, re-distribution phenomena have been clearly observed during transition, and even far before reaching Tcs, when voltage transverse signals had not yet showed any appreciable onset.

  4. Carbon redistribution during interrill erosion in subtropical forests: Effects of leaf litter diversity and soil fauna

    NASA Astrophysics Data System (ADS)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

    2016-04-01

    Soil erosion is crucial for degradation of carbon (C) from their pools in the soil. If C of the eroded sediment and runoff are not only related to soil pools but also resulting additively from decomposition of litter cover, the system gets more complex. The role of these amounts for C cycling in a forest environment is not yet known properly and thus, the aim of this study was to investigate the role of leaf litter diversity, litter cover and soil fauna on C redistribution during interrill erosion. We established 96 runoff plots that were deployed with seven domestic leaf litter species resulting in none species (bare ground), 1-species, 2-species and 4-species mixtures. Every second runoff plot was equipped with a fauna extinction feature to investigate the role of soil meso- and macrofauna. Erosion processes were initiated using a rainfall simulator at two time steps (summer 2012 and autumn 2012) to investigate the role of leaf litter decomposition on C redistribution. C fluxes during 20 min rainfall simulation were 99.13 ± 94.98 g/m². C fluxes and C contents both were affected by soil fauna. C fluxes were higher with presence of soil fauna due to loosening and slackening of the soil surface rather than due to faster decomposition of leaves. In contrast, C contents were higher in the absence of soil fauna possibly resulting from a missing dilution effect in the top soil layer. Leaf litter diversity did not affect C fluxes, but indirectly affected C contents as it increased the soil fauna effect with higher leaf litter diversity due to superior food supply. Initial C contents in the soil mainly determined those of the eroded sediment. For future research, it will be essential to introduce a long-term decomposition experiment to get further insights into the processes of C redistribution.

  5. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.).

    PubMed

    Wang, Kairong; Song, Ningning; Zhao, Qiaoqiao; van der Zee, S E A T M

    2016-01-01

    Peanut (Arachis hypogaea L.) genotypes may differ greatly with regard to cadmium (Cd) accumulation, but the underlying mechanisms remain unclear. To determine the key factors that may contribute to Cd re-distribution and accumulation in peanut genotypes with different Cd accumulating patterns, a split-pot soil experiment was conducted with three common Chinese peanut cultivars (Fenghua-6, Huayu-20, and Huayu-23). The growth medium was separated into pod and root zones with varied Cd concentrations in each zone to determine the re-distribution of Cd after it is taken up via different routes. The peanut cultivars were divided into two groups based on Cd translocation efficiency as follows: (1) high internal Cd translocation efficiency cultivar (Fenghua-6) and (2) low internal Cd translocation efficiency cultivars (Huayu-20 and Huayu-23). Compared with Fenghua-6, low Cd translocation cultivars Huayu-20 and Huayu-23 showed higher biomass production, especially in stems and leaves, leading to dilution of metal concentrations. Results also showed that Cd concentration in roots increased significantly with increasing Cd concentrations in soils when Cd was applied in the root zone. However, there were no significant differences in the root Cd concentrations between different pod zone Cd treatments and the control, suggesting that root uptake, rather than pod uptake, is responsible for Cd accumulation in the roots of peanuts. Significant differences of Cd distribution were observed between pod and root zone Cd exposure treatments. The three peanut cultivars revealed higher kernel over total Cd fractions for pod than for root zone Cd exposure if only extra applied Cd was considered. This suggests that uptake through peg and pod shell might, at least partially, be responsible for the variation in Cd re-distribution and accumulation among peanut cultivars. Cd uptake by plants via two routes (i.e., via roots and via pegs and pods, respectively) and internal Cd translocation

  6. Income redistribution is not enough: income inequality, social welfare programs, and achieving equity in health

    PubMed Central

    Starfield, Barbara; Birn, Anne‐Emanuelle

    2007-01-01

    Income inequality is widely assumed to be a major contributor to poorer health at national and subnational levels. According to this assumption, the most appropriate policy strategy to improve equity in health is income redistribution. This paper considers reasons why tackling income inequality alone could be an inadequate approach to reducing differences in health across social classes and other population subgroups, and makes the case that universal social programs are critical to reducing inequities in health. A health system oriented around a strong primary care base is an example of such a strategy. PMID:18000124

  7. Redistribution by insurance market regulation: Analyzing a ban on gender-based retirement annuities

    PubMed Central

    Finkelstein, Amy; Poterba, James; Rothschild, Casey

    2009-01-01

    We illustrate how equilibrium screening models can be used to evaluate the economic consequences of insurance market regulation. We calibrate and solve a model of the United Kingdom’s compulsory annuity market and examine the impact of gender-based pricing restrictions. We find that the endogenous adjustment of annuity contract menus in response to such restrictions can undo up to half of the redistribution from men to women that would occur with exogenous Social Security-like annuity contracts. Our findings indicate the importance of endogenous contract responses and illustrate the feasibility of employing theoretical insurance market equilibrium models for quantitative policy analysis. PMID:20046907

  8. Quantification of trapped gas redistribution in dual-porosity media with continuous and discontinuous domains

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Sacha, Jan; Jelinkova, Vladimira; Cislerova, Milena; Vontobel, Peter

    2016-04-01

    Nonwetting phase (residual air) is trapped in the porous media at water contents close to the saturation. Trapped gas phase resides in pores in form of bubbles, blobs or cluster forming residual gas saturation. In homogeneous soil media trapped gas is relatively stable until it is released upon porous media drainage. If porous media remain saturated, trapped gas can slowly dissolve in response to changed air solubility of surrounding water. In heterogeneous media, relatively rapid change in the trapped gas distribution can be observed soon after the gas is initially trapped during infiltration. It has been recently shown that the mass transfer of gas is directed from regions of fine porosity to regions of coarse porosity. The mass transfer was quantified by means of neutron tomography for the case of dual porosity sample under steady state flow. However the underlying mechanism of the gas mass transfer is still not clear. Based on the robust experience of visualization of the flow within heterogeneous samples, it seems that due to the huge local (microscopic) pressure gradients between contrasting pore radii the portion of faster flowing water becomes attracted into small pores of high capillary pressure. The process depends on the initial distribution of entrapped air which has to be considered as random in dependence on the history and circumstances of wetting/drying. In this study, the redistribution of trapped gas was quantitatively studied by 3D neutron imaging on samples composed of fine porous ceramic and coarse sand. The redistribution of water was studied under no-flow and steady state flow conditions. Two different inner geometries of the samples were developed. In the first case the low permeability regions (ceramics) were disconnected, while in the second structure, the fine porosity material was continuous from the top to the bottom of the sample. Quantitative 3D neutron tomography imaging revealed similar redistribution process in both cases of

  9. Redistribution of components in the niobium-silicon system under high-temperature proton irradiation

    SciTech Connect

    Afonin, N. N.; Logacheva, V. A. Khoviv, A. M.

    2011-12-15

    The redistribution of components in the niobium-silicon system during magnetron-assisted sputtering of niobium, vacuum annealing, and high-temperature proton irradiation is studied. It is established that, during magnetron-assisted sputtering followed by vacuum annealing, silicon penetrates through the metal film to the outer boundary of the film. Under high-temperature proton irradiation, the suppression of the diffusion of niobium into silicon is observed. This effect is attributed to the high concentration of radiation vacancies in the region of the Nb/Si interphase boundary.

  10. Frequency Redistribution of Polarized Light in the Λ-Type Multi-Term Polarized Atom

    NASA Astrophysics Data System (ADS)

    Casini, R.; Manso Sainz, R.

    2016-06-01

    We study the effects of Rayleigh and Raman scattering on the formation of polarized spectral lines in a Λ-type multi-term atom. We fully take into account the partial redistribution of frequency and the presence of atomic polarization in the lower states of the atomic model. Problems that can be modeled with this formalism include, for example, the formation of the Ca ii H–K and IR triplet, the analogous system of Ba ii, and the Lyβ–Hα system of hydrogenic ions.

  11. Elliptic Relaxation of a Tensor Representation for the Redistribution Terms in a Reynolds Stress Turbulence Model

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Gatski, T. B.

    2002-01-01

    A formulation to include the effects of wall proximity in a second-moment closure model that utilizes a tensor representation for the redistribution terms in the Reynolds stress equations is presented. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. Direct numerical simulation data and Reynolds stress solutions using a full differential approach are compared for the case of fully developed channel flow.

  12. Justice in the Shadow of Self-Interest an Experiment on Redistributive Behavior

    NASA Astrophysics Data System (ADS)

    Czarnik, S.

    2006-11-01

    By means of laboratory experiment I examine the relation between fairness judgments made ``behind the veil of ignorance'' and actual behavior in a model situation of income inequality. As the evidence shows, when material self-interest is at stake vast majority of subjects tend to abandon the fairness norm. Rather small regard for efficiency is present in the data. Furthermore, as low income players go through a sequence of games against high earners and experience changes in income disparity, the history effect proves to override structural characteristics of the redistribution game.

  13. Analyzing and modeling methods for warpages of thin and large dies with redistribution layer

    NASA Astrophysics Data System (ADS)

    Dote, Aki; Kitada, Hideki; Mizushima, Yoriko; Nakamura, Tomoji; Sakuyama, Seiki

    2016-06-01

    Analyzing and modeling methods for warpages including cylindrical deformations are discussed in large-area dies with redistribution layers (RDLs) and thin 50-µm-thick Si substrates. The buckling behavior of warpage, a deformation transition from spherical to cylindrical, strongly depends on the lateral sizes of the dies and the RDL structures, and can be calculated using the analytical model of the nonlinear plate theory. The equivalent stress values are introduced to simplify RDL structures by applying the model to measured curvatures of homogeneous patterned samples. Area densities of Cu are a good index for evaluating die warpage even for inhomogeneous patterned RDLs.

  14. Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.; Lunine, Jonathan I.

    1988-01-01

    In the present, water-vapor diffusive redistribution and condensation model of solid material abundance enhancement in the solar nebula's Jupiter-formation region, the assumed turbulent nebula temperatures decrease inversely with radial distance from the center, and time-scales are set by turbulent viscosities. The length scale for condensation of diffusively-transported water vapor is about 0.4 AU, and the surface density of ice in the Jupiter-formation zone undergoes enhancement by a factor of as much as 75; this surface density enhancement is enough to precipitate the rapid accretion of planetesimals into a solid core.

  15. Macrofaunal reworking activities and hydrocarbon redistribution in an experimental sediment system

    NASA Astrophysics Data System (ADS)

    Caradec, S.; Grossi, V.; Hulth, S.; Stora, G.; Gilbert, F.

    2004-09-01

    The influence of macrofaunal reworking activities on the redistribution of particle associated hydrocarbon compounds (HC) was experimentally investigated. Two distinct hydrocarbon mixtures adsorbed on montmorillonite particles (< 4 μm diameter) were added to the surface and deeper (2.5 cm) sediment layers. For comparison, luminophores (100-160 μm diameter) were added in the two deposit layers. At the start of the experiment, four macrobenthic species (the bivalve Abra nitida, the polychaete Scalibregma inflatum, and the echinoderms Amphiura filiformis and Echinocardium cordatum) were added to the sediment surface. The macrofauna added rapidly transferred HC from the surface sediment down to ˜5 cm depth by both continuous (biodiffusion) and non-continuous (biotransport) transport. Hydrocarbon compounds initially added to the deeper sediment layer were only subject to biodiffusion-like transport. Apparent biodiffusion coefficients ( Db) quantified by using a 1-D model were between 0.5 and 8.4×10 -3 cm 2 d -1, and biotransport coefficients ( r) ranged from 2.0 to 27.6×10 -3 d -1. Thus, the four species studied did not have the same effect on particle redistribution and, consequently, on HC repartition in the sediments. E. cordatum was the most efficient reworker. The present study demonstrated the importance of particle size selectivity by benthic fauna, and verified that macrofaunal reworking activities may redeposit sediment from deeper sediment layers on the sediment surface. Both processes have obvious implications for rates and pathways during organic matter mineralisation in marine sediments.

  16. Postmortem distribution of guaifenesin concentrations reveals a lack of potential for redistribution.

    PubMed

    McIntyre, Iain M; Navarrete, Aylmer; Mena, Othon

    2014-12-01

    Therapeutic (or non-toxic) postmortem guaifenesin blood and liver concentrations have not been previously described. Peripheral blood guaifenesin concentrations were compared to central blood and liver concentrations in eight medical examiner cases. Specimens were initially screened for alcohol and simple volatiles, drugs of abuse, alkaline, and acid/neutral drugs. Guaifenesin, when detected by the acid/neutral drug screen, was subsequently confirmed and quantified by a high performance liquid chromatography procedure. Data suggest that postmortem guaifenesin peripheral blood concentrations may be considered non-toxic to at least 5.4mg/L with liver concentrations to at least 7.0mg/kg. Overall, guaifenesin concentrations ranged from 1.9 to 40mg/L in peripheral blood, 2.2-150mg/L in central blood, and 2.6-36mg/kg in liver. The median guaifenesin central blood to peripheral blood ratio was 1.1 (N=8). Similarly, liver to peripheral blood ratios showed a median value of 0.9L/kg (N=5). Given that a liver to peripheral blood ratio less than 5L/kg is consistent with little to no propensity for postmortem redistribution, these data suggest that guaifenesin is not prone to substantial postmortem redistribution. PMID:25447180

  17. The effectiveness of small changes for pressure redistribution; using the air mattress for small changes.

    PubMed

    Tsuchiya, Sayumi; Sato, Aya; Azuma, Eri; Urushidani, Hiroko; Osawa, Masako; Kadoya, Kanaho; Takamura, Mana; Nunomi, Makiko; Mitsuoka, Akimi; Nishizawa Yokono, Tomoe; Sugama, Junko

    2016-05-01

    Observing small changes (SCs) at specific sites is a new form of managing changes in position. We investigated SCs at specific sites considering interface pressure, contact area, body alignment and physical sensation in nine healthy female adults and evaluated SCs using the air mattress that was divided into six cells (A-F). Thirty-three SC combinations at one or several sites were evaluated. Pressure in the sacral region significantly decreased in 28 SC combinations compared with the supine position (p < 0.05), and the effect of pressure redistribution was greater when SCs were applied at several instead of a single site. The contact area at 17 of the 28 SC combinations significantly increased (p < 0.05). Among sites ranked based on interface pressure, body alignment and physical sensation, SCs at sites BCE, AE and BD were the most favorable. The common feature among these three combinations was that they involved tilting the buttock region and one other site. The findings suggested that SCs at the buttock region could reduce disruptions in alignment as well as the impact on physical sensation caused by the body sinking into the mattress and improve interface pressure redistribution via increased contact area with the mattress. PMID:26827265

  18. Redistribution of black carbon in aerosol particles undergoing liquid-liquid phase separation

    NASA Astrophysics Data System (ADS)

    Brunamonti, S.; Krieger, U. K.; Marcolli, C.; Peter, T.

    2015-04-01

    Atmospheric black carbon (BC) is a major anthropogenic greenhouse agent, yet substantial uncertainties obstruct understanding its radiative forcing. Particularly debated is the extent of the absorption enhancement by internally compared to externally mixed BC, which critically depends on the interior morphology of the BC-containing particles. Here we suggest that a currently unaccounted morphology, optically very different from the customary core-shell and volume-mixing assumptions, likely occurs in aerosol particles undergoing liquid-liquid phase separation (LLPS). Using Raman spectroscopy on micrometer-sized droplets, we show that LLPS of an organic/inorganic model system drives redistribution of BC into the outer (organic) phase of the host particle. This results in an inverted core-shell structure, in which a transparent aqueous core is surrounded by a BC-containing absorbing shell. Based on Mie theory calculations, we estimate that such a redistribution can increase the absorption efficiency of internally mixed BC aerosols by up to 25% compared to the core-shell approximation.

  19. Uncertainty related to input parameters of (137)Cs soil redistribution model for undisturbed fields.

    PubMed

    Iurian, Andra-Rada; Mabit, Lionel; Cosma, Constantin

    2014-10-01

    This study presents an alternative method to empirically establish the effective diffusion coefficient and the convective velocity of (137)Cs in undisturbed soils. This approach offers the possibility to improve the parameterisation and the accuracy of the (137)Cs Diffusion and Migration Model (DMM) used to assess soil erosion magnitudes. The impact of the different input parameters of this radiometric model on the derived-soil redistribution rates has been determined for a Romanian pastureland located in the northwest extremity of the Transylvanian Plain. By fitting the convection-diffusion equation to the available experimental data, the diffusion coefficient and convection velocity of (137)Cs in soil could be determined; 72% of the (137)Cs soil content could be attributed to the (137)Cs fallout originating from Chernobyl. The medium-term net erosion rate obtained with the calculated input parameters reached -6.6 t ha(-1) yr(-1). The model highlights great sensitivity to parameter estimations and the calculated erosion rates for undisturbed landscapes can be highly impacted if the input parameters are not accurately determined from the experimental data set. Upper and lower bounds should be established based on the determined uncertainty budget for the reliable estimates of the derived redistribution rates. PMID:24929506

  20. Role of rafting in the mechanical redistribution of sea ice thickness

    NASA Astrophysics Data System (ADS)

    Babko, O.; Rothrock, D. A.; Maykut, G. A.

    2002-08-01

    Ice draft data derived from upward looking sonar observations collected during a Scientific Ice Expeditions (SCICEX) submarine cruise in the Arctic Ocean have been used to test the ice thickness distribution theory of Thorndike et al. [1975]. Two separate ice draft surveys, 40 days apart, were made during the fall of 1996 in a circular Lagrangian region ~180 km across. Air temperature and deformation data from buoys in the region were used to force an ice thickness distribution model in an effort to reproduce the changes observed over the 40 day interval. Initial tests with an elementary ridging treatment were unsuccessful in predicting the observed change in the ice thickness distribution. The shape of the distribution suggested that both ridging and rafting of ice were involved in the redistribution process. Modifying the theory to include rafting along with ridging resulted in much improved agreement between the modeled and observed ice thickness distributions. This result, taken together with many other field observations, leads us to believe that rafting is an important component of the mechanical redistribution of ice thickness during the fall.

  1. Seasonal Redistribution of Water in the Surficial Martian Regolith: Results of the HEND Data Analysis

    NASA Technical Reports Server (NTRS)

    Kuzmin, R. O.; Zabalueva, E. V.; Mitrofanov, I. G.; Litvak, M. I.; Parshukov, A. V.; Grinkov, V. Yu.; Saunders, R. S.; Boynton, W.

    2005-01-01

    The global mapping of the neutrons emission from the Mars, conducted recently by HEND instrument (Mars Odyssey), has shown that the surface layer (1-2 m) on the high latitudes of the planet (up to 50 ) is very reached by water ice with abundance more 50% by mass [1,2,3 ]. It was also shown that water ice distribution in surficial layer of the northern and the southern sub-polar regions is notably different [4]. Until today the existing HEND data already covers the period more then one the Martian year. This let to study the seasonal effects of volatiles redistribution associated with processes of sublimation and condensation of the seasonal polar caps and water exchange between the surface regolith and atmosphere. The goal of our work was to analyze the dynamic of the globally mapped neutrons flux as key to understanding of the seasonal redistribution of the water ice in the surface layer. For this we analyzed the globally mapped flux of the neutrons with different energy and corresponding effective layer of their emission.

  2. Transforming general practice: the redistribution of medical work in primary care.

    PubMed

    Charles-Jones, Huw; Latimer, Joanna; May, Carl

    2003-01-01

    The paper focuses on the redistribution of medical work within primary health care teams. It reports the results of the analysis of interviews with general practitioners, practice nurses and managers, undertaken as part of an ethnographic study of primary care organisation and practice during a period of rapid organisational change. By examining the ways in which the respondents account for how work is being redefined and redistributed, we explore how current government policy and professional discourses combine to reconfigure both the identities of those who work in primary care and the nature of patienthood. In particular, we show how general practitioners are being reconfigured as medical specialists or consultants in ways that seem to depart radically from earlier claims that general practice is a distinctive field of social or biographical medicine. Within this new discourse medical work is distributed between doctors, nurses and unqualified staff in ways which make explicit the reduction of general practice work to sets of biomedical problems or tasks. At the same time, the devolution of much general practice work to less qualified and cheaper personnel is justified by drawing on a discourse of person-centred medicine. PMID:14498945

  3. On the importance of partial frequency redistribution in modeling the scattering polarization

    NASA Astrophysics Data System (ADS)

    Nagendra, K. N.

    2015-10-01

    It is well-known that partial frequency redistribution (PRD) is the basic physical mechanism to correctly describe radiative transfer in spectral lines. In the case of polarized line scattering, the PRD becomes particularly important to describe the line-wing polarization, instead of the well-known mechanism of complete redistribution (CRD). Historically, the two-level atom PRD scattering matrices for polarized line scattering were first derived in the 1970's, and later generalized to the case of arbitrary fields in 1997. The latter formulation of the PRD matrices have subsequently been used in the solution of the line transfer equation to successfully model the non-magnetic (resonance scattering) and the magnetic (Hanle scattering) polarization observations. In recent years, using the Kramers-Heisenberg approach, we formulated PRD matrices for various physical mechanisms like quantum interference involving fine- and hyperfine-structure states in a two-term atom. The effect of collisions is included in an approximate way. We have used these PRD matrices to model the observed linear polarization in several interesting lines of the Second Solar Spectrum. In this paper I present a few results which highlight the importance of PRD in the interpretation of the polarized Stokes profiles.

  4. Effect of exercise on redistribution and clearance of inhaled particles from hamster lungs

    SciTech Connect

    Sweeney, T.D.; Tryka, A.F.; Brain, J.D. )

    1990-03-01

    Does exercise alter the redistribution and clearance of particles from the lungs Sedentary hamsters and hamsters that were exercise trained by voluntary wheel running for the previous 5 wk were exposed to a 198Au-labeled aerosol for 25 min. Six trained and 6 sedentary animals were killed within 5 min after the exposure (day 0); the same number were killed 5 days later. The trained hamsters ran ad libitum during those 5 days. The lungs of all animals were excised, dried at total lung capacity, sliced into 1-mm-thick sections, and dissected into pieces that were counted for radioactivity and weighed. On day 0, trained hamsters had 80% more particles per milligram of lung than sedentary hamsters, although both were exposed under identical conditions of restraint. After five days, exercising hamsters cleared 38% of the particles present at day 0, whereas sedentary animals removed only 15%. Significant clearance was observed from the middle lung regions of sedentary hamsters and from all lung regions in exercising hamsters. We conclude that exercise can enhance the redistribution and clearance of particles from the lungs; the mechanisms responsible are as yet unclear.

  5. Prescription Drug Diversion: Predictors of Illicit Acquisition and Redistribution in Three U.S. Metropolitan Areas

    PubMed Central

    Harris, Shana; Nikulina, Valentina; Gelpí-Acosta, Camila; Morton, Cory; Newsome, Valerie; Gunn, Alana; Hoefinger, Heidi; Aikins, Ross; Smith, Vivian; Barry, Victoria; Downing, Martin J.

    2015-01-01

    Objective Prescription drug diversion, the transfer of prescription drugs from lawful to unlawful channels for distribution or use, is a problem in the United States. Despite the pervasiveness of diversion, there are gaps in the literature regarding characteristics of individuals who participate in the illicit trade of prescription drugs. This study examines a range of predictors (e.g., demographics, prescription insurance coverage, perceived risk associated with prescription drug diversion) of membership in three distinct diverter groups: individuals who illicitly acquire prescription drugs, those who redistribute them, and those who engage in both behaviors. Methods Data were drawn from a cross-sectional Internet study (N = 846) of prescription drug use and diversion patterns in New York City, South Florida, and Washington, D.C.. Participants were classified into diversion categories based on their self-reported involvement in the trade of prescription drugs. Group differences in background characteristics of diverter groups were assessed by Chi-Square tests and followed up with multivariate logistic regressions. Results While individuals in all diversion groups were more likely to be younger and have a licit prescription for any of the assessed drugs in the past year than those who did not divert, individuals who both acquire and redistribute are more likely to live in New York City, not have prescription insurance coverage, and perceive fewer legal risks of prescription drug diversion. Conclusion Findings suggest that predictive characteristics vary according to diverter group. PMID:26690813

  6. Role of erosional redistribution following wildfires in determining fate of pyrogenic carbon in the soil system

    NASA Astrophysics Data System (ADS)

    Asefaw Berhe, Asmeret; Abney, Rebecca; Hockaday, William; Fogel, Marilyn; Kuhn, Tim

    2016-04-01

    Fire, erosion, and soil carbon (C) dynamics overlap in space and time. Increased rates of erosion typically follow wildfires, and fire-altered or pyrogenic C (PyC, also referred to as black carbon) is redistributed vertically within soil profiles and laterally to lower landform positions along hillslopes, changing its C sequestration trajectory. However, we currently lack sufficient understanding on how and why the interaction of fire and erosional distribution of soil materials control persistence of bulk soil organic matter (SOM) and PyC in dynamic landscapes. In this talk, we present results from wildfires that occurred in the Sierra Nevada Mountains (USA) to demonstrate how the composition (based on stable isotope composition of 13C and 15N, and NMR analysis of OM composition) and magnitude of pyrogenic carbon redistributed by soil erosion varies considerably depending on fire severity and geomorphology of the landscape. Our findings also show that PyC is preferentially transported by erosion in high severity burn slopes, compared to areas affected by low and medium severity fires. Findings of this study are critical for better integration of biogeochemical and geomorphological approaches to derive improved representation of mechanisms that regulate SOM persistence in dynamic landscapes that routinely experience more than one perturbation.

  7. The Spatial Dynamics of Stratification: Metropolitan Context, Population Redistribution, and Black and Hispanic Homeownership

    PubMed Central

    FLIPPEN, CHENOA A.

    2010-01-01

    Racial and ethnic inequality in homeownership remains stubbornly wide, even net of differences across groups in household-level sociodemographic characteristics. This article investigates the role of contextual forces in structuring disparate access to homeownership among minorities. Specifically, I combine household- and metropolitan-level census data to assess the impact of metropolitan housing stock, minority composition, and residential segregation on black and Hispanic housing tenure. The measure of minority composition combines both the size and rate of growth of the coethnic population to assess the impact on homeownership inequality of recent trends in population redistribution, particularly the increase in black migration to the South and dramatic dispersal of Hispanics outside traditional areas of settlement. Results indicate remarkable similarity between blacks and Hispanics with respect to the spatial and contextual influences on homeownership. For both groups, homeownership is higher and inequality with whites is smaller in metropolitan areas with an established coethnic base and in areas in which their group is less residentially segregated. Implications of recent trends in population redistribution for the future of minority homeownership are discussed. PMID:21308561

  8. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    USGS Publications Warehouse

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  9. On local total strain redistribution using a simplified cyclic inelastic analysis based on an elastic solution

    NASA Technical Reports Server (NTRS)

    Hwang, S. Y.; Kaufman, A.

    1985-01-01

    Strain redistribution corrections were developed for a simplified inelastic analysis procedure to economically calculate material cyclic response at the critical location of a structure for life prediction purposes. The method was based on the assumption that the plastic region in the structure is local and the total strain history required for input can be defined from elastic finite element analyses. Cyclic stress-strain behavior was represented by a bilinear kinematic hardening model. The simplified procedure has been found to predict stress-strain response with reasonable accuracy for thermally cycled problems but needs improvement for mechanically load cycled problems. This study derived and incorporated Neuber type corrections in the simplified procedure to account for local total strain redistribution under cyclic mechanical loading. The corrected simplified method was exercised on a mechanically load cycled benchmark notched plate problem. Excellent agreement was found between the predicted material response and nonlinear finite element solutions for the problem. The simplified analysis computer program used 0.3 percent of the CPU time required for a nonlinear finite element analysis.

  10. IHF redistributes bound initiator protein, DnaA, on supercoiled oriC of Escherichia coli.

    PubMed

    Grimwade, J E; Ryan, V T; Leonard, A C

    2000-02-01

    In Escherichia coli, initiation of chromosome replication requires that DnaA binds to R boxes (9-mer repeats) in oriC, the unique chromosomal replication origin. At the time of initiation, integration host factor (IHF) also binds to a specific site in oriC. IHF stimulates open complex formation by DnaA on supercoiled oriC in cell-free replication systems, but it is unclear whether this stimulation involves specific changes in the oriC nucleoprotein complex. Using dimethylsulphate (DMS) footprinting on supercoiled oriC plasmids, we observed that IHF redistributed prebound DnaA, stimulating binding to sites R2, R3 and R5(M), as well as to three previously unidentified non-R sites with consensus sequence (A/T)G(G/C) (A/T)N(G/C)G(A/T)(A/T)(T/C)A. Redistribution was dependent on IHF binding to its cognate site and also required a functional R4 box. By reducing the DnaA level required to separate DNA strands and trigger initiation of DNA replication at each origin, IHF eliminates competition between strong and weak sites for free DnaA and enhances the precision of initiation synchrony during the cell cycle. PMID:10692160

  11. Fiscal decentralization in the Italian NHS: what happens to interregional redistribution?

    PubMed

    Ferrario, Caterina; Zanardi, Alberto

    2011-04-01

    This paper explores how pressures for an increased decentralization of taxing powers to sub-national governments may affect the degree of income redistribution across regional territories accomplished by the Italian NHS. In Italy, political responsibilities for health care are decentralized to regional governments, but the central government retains a critical role in ensuring all citizens uniform access to health services. To this end the central government runs an expenditure needs equalizing system to top up regional governments own resources. However, this system is currently put under question by strong political pressures calling for a weakening of central government involvement. Applying a well developed econometric approach we find that the NHS currently reduces interregional differences in per-capita income by about 7% of GDP. A reform of the NHS in terms of a reduction of expenditure standards produces a weakening of redistribution across jurisdictions, the size of which crucially depends on the financing arrangements of health care that will be actually adopted. We conclude that the decentralization of the NHS would give rise to relevant policy issues concerning in particular the different health care spending possibilities across regions and the impact on the interregional mobility of patients. PMID:20864204

  12. Radiative modeling of solar prominences, two-dimensional transfer plus partial frequency redistribution

    NASA Astrophysics Data System (ADS)

    Paletou, F.; Vial, Jean-Claude; Auer, L. H.

    1992-11-01

    The two dimensional (2D) PRD (Partial Redistribution) radiative transfer code of Auer and Paletou was used to compute the resonance lines of HI, MgII and CaII in quiescent prominences, which are modeled as isothermal freestanding slabs illuminated from the sides as well as from below. PRD and 2D effects are evidenced and compared to Complete Redistribution (CRD) computations for both 1D and 2D geometries. Important edge variations are found at the bottom and the top that should be observed with a spatial resolution of one arcsecond. As in 1D, PRD effects allow for greater penetration of the incident radiation into the layer. The 2D code computes both the radial emergent intensity and the amount of radiation backscattered into the chromosphere. It can accordingly, be used to estimate the visibility of filaments. It will be of special interest to build nonisothermal models and compare, for example the Ly alpha profiles with the SUMER/SOHO (Solar Ultraviolet Measurement of Emitted Radiation)/(Solar and Heliospheric Observatory) observations.

  13. Plant transpiration and groundwater dynamics in water-limited climates: Impacts of hydraulic redistribution

    NASA Astrophysics Data System (ADS)

    Luo, Xiangyu; Liang, Xu; Lin, Jeen-Shang

    2016-06-01

    The role of groundwater in sustaining plant transpiration constitutes an important but not well-understood aspect of the interactions between groundwater, vegetation, the land surface, and the atmosphere. The effect of the hydraulic redistribution (HR) process by plant roots on the interplay between plant transpiration and groundwater dynamics under water-limited climates is investigated by using the Variable Infiltration Capacity Plus (VIC+) land surface model. Numerical experiments, with or without explicitly considering HR, are conducted on soil columns over a range of groundwater table depths (GWTDs) under different vegetative land covers, soil types, and precipitation conditions. When HR is not included, this study obtains transpiration-GWTD relationships consistent with those from watershed studies that do not include HR. When HR is included, the transpiration-GWTD relationships are modified. The modification introduced by HR is manifested in the soil moisture of the root zone. The mechanism of HR is explained by detailing the roles of the hydraulically redistributed water, the upward diffusion of soil water, and the daytime root uptake. We have found that HR is particularly important in water-limited climates under which plants have high transpiration demand. At the beginning stage of a dry period, HR modulates the severe impacts that climate has on plant transpiration. Only after a prolonged dry period, impacts of HR are lessened when the groundwater table drops below the depth of water uptake by roots and are diminished when plant transpiration is decoupled from groundwater dynamics.

  14. Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    In higher plants, calcium redistribution is believed to be crucial for the root to respond to a change in the direction of the gravity vector. To test the effects of clinorotation and microgravity on calcium localization in higher plant roots, sweet clover (Melilotus alba L.) seedlings were germinated and grown for two days on a slow rotating clinostat or in microgravity on the US Space Shuttle flight STS-60. Subsequently, the tissue was treated with a fixative containing antimonate (a calcium precipitating agent) during clinorotation or in microgravity and processed for electron microscopy. In root columella cells of clinorotated plants, antimonate precipitates were localized adjacent to the cell wall in a unilateral manner. Columella cells exposed to microgravity were characterized by precipitates mostly located adjacent to the proximal and lateral cell wall. In all treatments some punctate precipitates were associated with vacuoles, amyloplasts, mitochondria, and euchromatin of the nucleus. A quantitative study revealed a decreased number of precipitates associated with the nucleus and the amyloplasts in columella cells exposed to microgravity as compared to ground controls. These data suggest that roots perceive a change in the gravitational field, as produced by clinorotation or space flights, and respond respectively differently by a redistribution of free calcium.

  15. On the heat redistribution of the hot transiting exoplanet WASP-18b

    NASA Astrophysics Data System (ADS)

    Iro, N.; Maxted, P. F. L.

    2013-11-01

    The energy deposition and redistribution in hot Jupiter atmospheres is not well understood currently, but is a major factor for their evolution and survival. We present a time dependent radiative transfer model for the atmosphere of WASP-18b which is a massive (10MJup) hot Jupiter (Teq ∼ 2400 K) exoplanet orbiting an F6V star with an orbital period of only 0.94 days. Our model includes a simplified parametrisation of the day-to-night energy redistribution by a modulation of the stellar heating mimicking a solid body rotation of the atmosphere. We present the cases with either no rotation at all with respect to the synchronously rotating reference frame or a fast differential rotation. The results of the model are compared to previous observations of secondary eclipses of Nymeyer et al. (Nymeyer, S. et al. [2011]. Astrophys. J. 742, 35) with the Spitzer Space Telescope. Their observed planetary flux suggests that the efficiency of heat distribution from the day-side to the night-side of the planet is extremely inefficient. Our results are consistent with the fact that such large day-side fluxes can be obtained only if there is no rotation of the atmosphere. Additionally, we infer light curves of the planet for a full orbit in the two Warm Spitzer bandpassses for the two cases of rotation and discuss the observational differences.

  16. m-STATE INTERFERENCE WITH PARTIAL FREQUENCY REDISTRIBUTION FOR POLARIZED LINE FORMATION IN ARBITRARY MAGNETIC FIELDS

    SciTech Connect

    Sampoorna, M.

    2011-04-20

    The present paper concerns the derivation of polarized partial frequency redistribution (PRD) matrices for scattering on a two-level atom in arbitrary magnetic fields. We generalize the classical theory of PRD that is applicable to a J = 0 {yields} 1 {yields} 0 scattering transition, to other types of atomic transitions with arbitrary quantum numbers. We take into account quantum interference between magnetic substates of a given upper J-state. The generalization proceeds in a phenomenological way, based on the direct analogy between the Kramers-Heisenberg scattering amplitude in quantum mechanics and the Jones scattering matrix in classical physics. The redistribution matrices derived from such a generalization of classical PRD theory are identical to those obtained from a summed perturbative quantum electrodynamic treatment of the atom-radiation interaction. Our semi-classical approach has the advantage that it is non-perturbative, more intuitive, and lends itself more easily to further generalization (like the inclusion of J-state interference in the PRD theory).

  17. Modeling aeolian transport in response to succession, disturbance and future climate: Dynamic long-term risk assessment for contaminant redistribution

    NASA Astrophysics Data System (ADS)

    Breshears, David D.; Kirchner, Thomas B.; Whicker, Jeffrey J.; Field, Jason P.; Allen, Craig D.

    2012-01-01

    Aeolian sediment transport is a fundamental process redistributing sediment, nutrients, and contaminants in dryland ecosystems. Over time frames of centuries or longer, horizontal sediment fluxes and associated rates of contaminant transport are likely to be influenced by succession, disturbances, and changes in climate, yet models of horizontal sediment transport that account for these fundamental factors are lacking, precluding in large part accurate assessment of human health risks associated with persistent soil-bound contaminants. We present a simple model based on empirical measurements of horizontal sediment transport (predominantly saltation) to predict potential contaminant transport rates for recently disturbed sites such as a landfill cover. Omnidirectional transport is estimated within vegetation that changes using a simple Markov model that simulates successional trajectory and considers three types of short-term disturbances (surface fire, crown fire, and drought-induced plant mortality) under current and projected climates. The model results highlight that movement of contaminated soil is sensitive to vegetation dynamics and increases substantially (e.g., > fivefold) when disturbance and/or future climate are considered. The time-dependent responses in horizontal sediment fluxes and associated contaminant fluxes were sensitive to variability in the timing of disturbance, with longer intervals between disturbance allowing woody plants to become dominant and crown fire and drought abruptly reducing woody plant cover. Our results, which have direct implications for contaminant transport and landfill management in the specific context of our assessment, also have general relevance because they highlight the need to more fully account for vegetation dynamics, disturbance, and changing climate in aeolian process studies.

  18. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  19. Lipoxin A4 redistributes myosin IIA and Cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes.

    PubMed

    Reville, Keira; Crean, John K; Vivers, Sharon; Dransfield, Ian; Godson, Catherine

    2006-02-01

    Lipoxins (LXs) are endogenously produced anti-inflammatory agents that modulate leukocyte trafficking and stimulate nonphlogistic macrophage phagocytosis of apoptotic neutrophils, thereby promoting the resolution of inflammation. Previous data suggest a role for altered protein phosphorylation and cytoskeletal rearrangement in LX-stimulated phagocytosis but the exact mechanisms remain unclear. In this study we examine the effects of LXA4 on the protein phosphorylation pattern of THP-1 cells differentiated into a macrophage-like phenotype. THP-1 cells stimulated with LXA4 (1 nM) exhibit dephosphorylation of a 220-kDa protein. Using mass spectrometry, this protein was identified as MYH9, a nonmuscle myosin H chain II isoform A, which is involved in cytoskeleton rearrangement. THP-1 cells treated with LXA4 adopt a polarized morphology with activated Cdc42 localized toward the leading edge and MYH9 localized at the cell posterior. Polarized distribution of Cdc42 is associated with Akt/PKB-mediated Cdc42 activation. Interestingly, the annexin-derived peptide Ac2-26, a recently described agonist for the LXA4 receptor, also stimulates macrophage phagocytosis, MYH9 dephosphorylation, and MYH9 redistribution. In addition, we demonstrate that LXA4 stimulates the phosphorylation of key polarity organization molecules: Akt, protein kinase Czeta, and glycogen synthase kinase-3beta. Inhibition of LXA4-induced Akt and protein kinase Czeta activity with specific inhibitors prevented LXA4-stimulated phagocytosis of both apoptotic polymorphonuclear neutrophils and lymphocytes, highlighting a potential use for LXA4 in the treatment of autoimmune diseases. Furthermore, phosphorylation and subsequent inactivation of glycogen synthase kinase-3beta resulted in an increase in phagocytosis similar to that of LXA4. These data highlight an integrated mechanism whereby LXA4 regulates phagocytosis through facilitative actin cytoskeleton rearrangement and cell polarization. PMID:16424219

  20. Modeling aeolian transport in response to succession, disturbance and future climate: Dynamic long-term risk assessment for contaminant redistribution

    USGS Publications Warehouse

    Breshears, D.D.; Kirchner, T.B.; Whicker, J.J.; Field, J.P.; Allen, C.D.

    2012-01-01

    Aeolian sediment transport is a fundamental process redistributing sediment, nutrients, and contaminants in dryland ecosystems. Over time frames of centuries or longer, horizontal sediment fluxes and associated rates of contaminant transport are likely to be influenced by succession, disturbances, and changes in climate, yet models of horizontal sediment transport that account for these fundamental factors are lacking, precluding in large part accurate assessment of human health risks associated with persistent soil-bound contaminants. We present a simple model based on empirical measurements of horizontal sediment transport (predominantly saltation) to predict potential contaminant transport rates for recently disturbed sites such as a landfill cover. Omnidirectional transport is estimated within vegetation that changes using a simple Markov model that simulates successional trajectory and considers three types of short-term disturbances (surface fire, crown fire, and drought-induced plant mortality) under current and projected climates. The model results highlight that movement of contaminated soil is sensitive to vegetation dynamics and increases substantially (e.g., > fivefold) when disturbance and/or future climate are considered. The time-dependent responses in horizontal sediment fluxes and associated contaminant fluxes were sensitive to variability in the timing of disturbance, with longer intervals between disturbance allowing woody plants to become dominant and crown fire and drought abruptly reducing woody plant cover. Our results, which have direct implications for contaminant transport and landfill management in the specific context of our assessment, also have general relevance because they highlight the need to more fully account for vegetation dynamics, disturbance, and changing climate in aeolian process studies. ?? 2011.

  1. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.

    PubMed

    Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J

    2015-08-01

    Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. PMID:25933590

  2. Resonance-line transfer with partial redistribution. VIII - Solution in the comoving frame for moving atmospheres. [stellar chromosphere model

    NASA Technical Reports Server (NTRS)

    Mihalas, D.; Shine, R. A.; Kunasz, P. B.; Hummer, D. G.

    1976-01-01

    The effects of partial frequency redistribution in the scattering process for lines formed in moving atmospheres are analyzed using a general method that allows the transfer equation to be solved in the comoving frame of the gas. The same chromospheric and atomic model studied by Cannon and Vardavas (1974) is employed in the calculations, but a depth scale with logarithmically spaced points is adopted. It is found that in both static and moving atmospheres, the profiles obtained with complete and partial frequency redistribution are virtually identical. The large differences in profiles obtained by Cannon and Vardavas when they used complete and partial redistribution are shown to be spurious (and physically unreal) effects resulting from angle averaging in the observer's frame instead of the comoving frame.

  3. The ancestral logic of politics: upper-body strength regulates men's assertion of self-interest over economic redistribution.

    PubMed

    Petersen, Michael Bang; Sznycer, Daniel; Sell, Aaron; Cosmides, Leda; Tooby, John

    2013-07-01

    Over human evolutionary history, upper-body strength has been a major component of fighting ability. Evolutionary models of animal conflict predict that actors with greater fighting ability will more actively attempt to acquire or defend resources than less formidable contestants will. Here, we applied these models to political decision making about redistribution of income and wealth among modern humans. In studies conducted in Argentina, Denmark, and the United States, men with greater upper-body strength more strongly endorsed the self-beneficial position: Among men of lower socioeconomic status (SES), strength predicted increased support for redistribution; among men of higher SES, strength predicted increased opposition to redistribution. Because personal upper-body strength is irrelevant to payoffs from economic policies in modern mass democracies, the continuing role of strength suggests that modern political decision making is shaped by an evolved psychology designed for small-scale groups. PMID:23670886

  4. Pressure-strain energy redistribution in compressible turbulence: return-to-isotropy versus kinetic-potential energy equipartition

    NASA Astrophysics Data System (ADS)

    Lee, Kurnchul; Venugopal, Vishnu; Girimaji, Sharath S.

    2016-08-01

    Return-to-isotropy and kinetic-potential energy equipartition are two fundamental pressure-moderated energy redistributive processes in anisotropic compressible turbulence. Pressure-strain correlation tensor redistributes energy among various Reynolds stress components and pressure-dilatation is responsible for energy reallocation between dilatational kinetic and potential energies. The competition and interplay between these pressure-based processes are investigated in this study. Direct numerical simulations (DNS) of low turbulent Mach number dilatational turbulence are performed employing the hybrid thermal Lattice Boltzman method (HTLBM). It is found that a tendency towards equipartition precedes proclivity for isotropization. An evolution towards equipartition has a collateral but critical effect on return-to-isotropy. The preferential transfer of energy from strong (rather than weak) Reynolds stress components to potential energy accelerates the isotropization of dilatational fluctuations. Understanding of these pressure-based redistributive processes is critical for developing insight into the character of compressible turbulence.

  5. An efficient and guaranteed stable numerical method for continuous modeling of infiltration and redistribution with a shallow dynamic water table

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Ogden, Fred L.; Steinke, Robert C.; Talbot, Cary A.

    2015-03-01

    We have developed a one-dimensional numerical method to simulate infiltration and redistribution in the presence of a shallow dynamic water table. This method builds upon the Green-Ampt infiltration with Redistribution (GAR) model and incorporates features from the Talbot-Ogden (T-O) infiltration and redistribution method in a discretized moisture content domain. The redistribution scheme is more physically meaningful than the capillary weighted redistribution scheme in the T-O method. Groundwater dynamics are considered in this new method instead of hydrostatic groundwater front. It is also computationally more efficient than the T-O method. Motion of water in the vadose zone due to infiltration, redistribution, and interactions with capillary groundwater are described by ordinary differential equations. Numerical solutions to these equations are computationally less expensive than solutions of the highly nonlinear Richards' (1931) partial differential equation. We present results from numerical tests on 11 soil types using multiple rain pulses with different boundary conditions, with and without a shallow water table and compare against the numerical solution of Richards' equation (RE). Results from the new method are in satisfactory agreement with RE solutions in term of ponding time, deponding time, infiltration rate, and cumulative infiltrated depth. The new method, which we call "GARTO" can be used as an alternative to the RE for 1-D coupled surface and groundwater models in general situations with homogeneous soils with dynamic water table. The GARTO method represents a significant advance in simulating groundwater surface water interactions because it very closely matches the RE solution while being computationally efficient, with guaranteed mass conservation, and no stability limitations that can affect RE solvers in the case of a near-surface water table.

  6. Nitrogen redistribution and its relationship with the expression of GmATG8c during seed filling in soybean.

    PubMed

    Islam, Md Matiul; Ishibashi, Yushi; Nakagawa, Andressa C S; Tomita, Yuki; Iwaya-Inoue, Mari; Arima, Susumu; Zheng, Shao-Hui

    2016-03-15

    It is well known that some nitrogen in the vegetative organs is redistributed to the seeds during seed filling in soybean (Glycine max [L.] Merrill). This redistribution is considered to affect the seed yield of soybean. However, it is still not clear when the nitrogen moves from the vegetative part to the seeds, and the relationship between nitrogen redistribution and leaf senescence has not been clarified. The soybean variety Fukuyutaka was grown in the experimental field of Saga University, Japan from 22 July to 31 October, 2014. After the first flower stage (R1), the plant samples were collected weekly and were separated into leaf, petiole, stem, podshell and seed. The nitrogen concentrations in each plant part were determined. Fresh leaf samples were provided for the determination of soluble protein and autophagy gene GmATG8c expression. The nitrogen that accumulated in the vegetative parts reached its highest level at 60days after sowing (DAS), then began to decrease at 73DAS (R6). This decrease is considered to be the consequence of nitrogen redistribution from the vegetative parts to the seeds. The movement of nitrogen from the vegetative parts to the seeds was estimated to occur at around 73DAS (R6). At this stage, leaf SPAD values, leaf nitrogen, and soluble protein concentrations began to decrease simultaneously, suggesting the onset of leaf senescence. Furthermore, the expression of the autophagy gene GmATG8c in the leaves increased dramatically from 73 to 85DAS, which is the duration of nitrogen redistribution. The results suggest that the nitrogen redistribution from the vegetative parts to the seeds could be one of the initiating factors of leaf senescence, and the autophagy gene GmATG8c was associated with this process. PMID:26871505

  7. Adipokines, hormones related to body composition, and insulin resistance in HIV fat redistribution syndrome

    PubMed Central

    2014-01-01

    Background Lipodystrophies are characterized by adipose tissue redistribution, insulin resistance (IR) and metabolic complications. Adipokines and hormones related to body composition may play an important role linking these alterations. Our aim was to evaluate adipocyte-derived hormones (adiponectin, leptin, resistin, TNF-α, PAI-1) and ghrelin plasma levels and their relationship with IR in HIV-infected patients according to the presence of lipodystrophy and fat redistribution. Methods Anthropometric and metabolic parameters, HOMA-IR, body composition by DXA and CT, and adipokines were evaluated in 217 HIV-infected patients on cART and 74 controls. Fat mass ratio defined lipodystrophy (L-FMR) was defined as the ratio of the percentage of the trunk fat mass to the percentage of the lower limb fat mass by DXA. Patient’s fat redistribution was classified into 4 different groups according the presence or absence of either clinical lipoatrophy or abdominal prominence: no lipodystrophy, isolated central fat accumulation (ICFA), isolated lipoatrophy and mixed forms (MXF). The associations between adipokines levels and anthropometric, metabolic and body composition were estimated by Spearman correlation. Results Leptin levels were lower in patients with FMR-L and isolated lipoatrophy, and higher in those with ICFA and MXF. Positive correlations were found between leptin and body fat (total, trunk, leg, arm fat evaluated by DXA, and total, visceral (VAT), subcutaneous adipose tissue (SAT), and VAT/SAT ratio evaluated by CT) regardless of FMR-L, and with HOMA-IR only in patients with FMR-L. Adiponectin correlated negatively with VAT, and its mean levels were lower in patients with ICFA and higher in those with no lipodystrophy. Resistin was not correlated with adipose tissue but positively correlated with HOMA-IR in FMR-L patients. PAI-1 levels were higher in MXF-patients and their levels were positively correlated with VAT in those with FMR-L. Ghrelin was higher in HIV

  8. Mass transfer and trace element redistribution during hydration of granulites in the Bergen Arcs, Norway.

    NASA Astrophysics Data System (ADS)

    Centrella, Stephen; Austrheim, Håkon; Putnis, Andrew

    2016-04-01

    The Bergen Arcs located on the Western coast of Norway are characterized by Precambrian granulite facies rocks partially hydrated at amphibolite and eclogite facies conditions. Over an area of ca. 1000 km², relict of granulite facies lenses make up only ca. 10% of the observed outcrops. At Hilland Radöy, granulite displays sharp hydration fronts across which the granulite facies assemblage composed of garnet (55%) and clinopyroxene (45%) is replaced by an amphibolite facies mineralogy defined by chlorite, epidote and amphibole. The major element bulk composition does not change significantly across the hydration front, apart from the volatile components (loss on ignition, LOI) that increases from 0.17 wt.% in the granulite to 2.43 wt.% in the amphibolite (Centrella et al., 2015). The replacements of garnet and clinopyroxene are pseudomorphic indicating a perfect preservation of the parent crystal shape. The textural evolution during the replacement is consistent with the coupled dissolution-precipitation mechanism where garnet is replaced by chlorite, epidote and pargasite and clinopyroxene by hornblende and quartz. Based on the observations of an isovolumetric replacement, the mass loss during hydration was estimated at 13%. This study is based on the trace element redistribution during the hydration using the same samples as Centrella et al. (2015). The local mass transfer during the replacement process determined from the major element is also confirmed by the trace element redistribution. The LILE, HFSE and REE losses and gains in replacing the garnet are approximately balanced by the opposite gains and losses associated with the replacement of clinopyroxene. Because the hydration involves reduction of rock density, the volume preservation (isovolumetric reaction), together with the mass balance calculations, requires a significant loss of the mass of the rock to the fluid phase: 13% based on the major element redistribution and around 20% based on the REE

  9. Modeling the impact of hydraulic redistribution on the carbon flux and storages using CLM4.5 at four AmeriFlux Sites

    NASA Astrophysics Data System (ADS)

    Fu, C.; Wang, G.; Cardon, Z. G.

    2015-12-01

    Effects of hydraulic redistribution (HR) on the hydrological cycle and ecosystem dynamics have been demonstrated in the field, but few modeling studies have compared HR's influences on the carbon cycle in different ecosystems and climate regions. The soil moisture changes associated with HR could influence plant carbon gain via two mechanisms: (1) improved plant water status supporting stomatal opening, and/or (2) enhanced nutrient availability to plants caused by enhanced soil microbial activity. In this study, using a modified version of the Community Land Model with Century-based soil carbon pool kinetics that includes the "Ryel et al. 2002" scheme for hydraulic redistribution (HR), the influence of HR on the carbon flux and storage is investigated at four Ameriflux sites where HR was detected from soil moisture measurements. The study sites include a Douglas-fir site (US-Wrc) in Washington State with a mediterranean climate, a savanna site (US-SRM) in Arizona with a semi-arid climate, an oak/pine forest site (US-SCf) in Southern California with a mediterranean climate, and an evergreen broadleaf forest site (BR-Sa1) with tropical monsoon climate. Simulations revealed that HR tended to enhance plant growth at all four sites, and incorporating HR into CLM4.5 reduces the temporal fluctuation of soil carbon storage at all four sites. Simulations with HR can capture the net carbon exchange between ecosystem and the atmosphere (NEE) at the US-Wrc, US-SRM, and BR-Sa1 sites over the annual cycle. Incorporation of HR into CLM4.5 clearly improved the weekly and sub-daily NEE simulation during dry periods at US-SCf and BR-Sa1 site. HR-induced increase in Net Primary Productivity (NPP) at the US-Wrc and US-SRM sites was driven approximately equally by the two distinct mechanisms we investigated: increased stomatal conductance and increased nutrient availability to plants.

  10. A Mathematical Model on Water Redistribution Mechanism of the Seismonastic Movement of Mimosa Pudica

    PubMed Central

    Kwan, K.W.; Ye, Z.W.; Chye, M.L.; Ngan, A.H.W.

    2013-01-01

    A theoretical model based on the water redistribution mechanism is proposed to predict the volumetric strain of motor cells in Mimosa pudica during the seismonastic movement. The model describes the water and ion movements following the opening of ion channels triggered by stimulation. The cellular strain is related to the angular velocity of the plant movement, and both their predictions are in good agreement with experimental data, thus validating the water redistribution mechanism. The results reveal that an increase in ion diffusivity across the cell membrane of <15-fold is sufficient to produce the observed seismonastic movement. PMID:23823246

  11. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution

    NASA Astrophysics Data System (ADS)

    Datta, Nilanjana; Hsieh, Min-Hsiu; Oppenheim, Jonathan

    2016-05-01

    State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.

  12. Study of x-ray radiant characteristics and thermal radiation redistribution in CH foam filling cylindrical cavities

    NASA Astrophysics Data System (ADS)

    Shang, Wanli; Zhu, Tuo; Song, Tianming; Zhang, Wenhai; Zhao, Yang; Xiong, Gang; Zhang, Jiyan; Yang, Jiamin

    2011-04-01

    Experiments are presented, which demonstrate the properties of x-ray radiation and redistribution of radiant thermal energy in high Z cylindrical cavities filled with low Z CH foam. Time integrated spectra records were obtained by a calibrated space-resolved transmission grating spectrometer. The x-ray radiation became weaker in intensity and was changed to a softer near-Planckian radiation light after a 1500 μm long transport in the foam filling cavity. The experimental redistribution of the radiant thermal energy was plotted and compared to the numerical results of a simplified model. Good agreements have been achieved.

  13. Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion

    NASA Astrophysics Data System (ADS)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Postnov, Dmitry E.; Tuchin, Valery V.

    2016-04-01

    We propose μPIV-based technique for quantitative assessment of blood flow redistribution in microcirculatory networks. Our approach is based on per-segment averaging of measured quantities so we can avoid most of problems that are typical for point-wise measurements. The key point of our technique is the digital processing algorithms of recorded data that include: capillary network axial line construction; interrogation regions centering; blood flow velocity local estimate using PIV approach; blood flow velocity calculation by means of averaging over entire vessel segment; the calculation of blood volume flow rate map. We illustrate the application of developed technique with in vivo measurements and blood flow velocity map reconstruction for chorioallantoic membrane (CAM) of chicken embryo, in which the local vascular occlusion was produced using continuous wave laser light irradiation..

  14. Intramolecular vibrational redistribution of CH 2I 2 dissolved in supercritical Xe

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Shimojima, A.; Kajimoto, O.

    2003-03-01

    Intramolecular vibrational energy redistribution (IVR) of CH 2I 2 in supercritical Xe has been studied. The first overtone of the C-H stretching mode was excited with a near infrared laser pulse and the transient UV absorption near 390 nm was monitored. Signals showed a rise and decay profile, which gave the IVR and VET (intermolecular vibrational energy transfer) rates, respectively. Solvent density dependence of each rate was obtained by tuning the pressure at a constant temperature. The IVR rate in supercritical Xe increased with increasing solvent density and asymptotically reached a limiting value. This result suggests that the IVR process of CH 2I 2 in condensed phase is a solvent-assisted process.

  15. Trivalent nickel. The quinone oximate family: synthesis and redox regulation of isomerism and ligand redistribution

    SciTech Connect

    Ray, D.; Chakravorty, A.

    1988-09-21

    The synthesis of the tris chelates Ni/sup III/(RQ)/sub 3/ by electrooxidation of Ni/sup II/(RQ)/sub 3/- (HRQ = quinone monoximes) is reported. These complexes have afforded a unique opportunity for voltammetric and spectroscopic examination of geometric isomerism and isomer preferences of the two oxidation states of nickel in a N/sub 2/O/sub 3/ environment. A redox-driven ligand redistribution reaction that furnishes Ni(RQ)/sub 3/ following electrooxidation of Ni/sup II/(RQ)/sub 3/(N,N) to Ni/sup III/(RQ)/sub 2/(N,N)/sup +/, where N,N represents amine coordination is reported. The effects of geometric structure, substituents, and ligands on the Ni(III)-Ni(II) reduction potential in Ni(RQ)/sub 3/ and Ni(RQ)/sub 2/(N,N)/sup +/ are noted. 29 references, 5 figures, 4 tables.

  16. Redistribution of microtubules and pericentriolar material during the development of polarity in mouse blastomeres

    PubMed Central

    1987-01-01

    The distribution of microtubules and microtubule organizing centers (MTOCs) during the development of cell polarity in eight-cell mouse blastomeres was studied by immunofluorescence and immunoelectron microscopy using monoclonal anti-tubulin antibodies and an anti- pericentriolar material (PCM) serum. In early eight-cell blastomeres microtubules were found mainly around the nucleus and in the cell cortex, whereas PCM foci were observed dispersed in the cytoplasm. During the eight-cell stage, microtubules disappeared from the area adjacent to the zone of intercellular contact and accumulated in the apical part of the cell while their number decreased in the basal domain. The PCM also relocalized to the apical domain of the cell, but this occurred after the redistribution of the microtubules by a mechanism that involved the microtubule network. The possible roles of both MTOCs and microtubules in establishing cell polarity are discussed. PMID:3571331

  17. Evaluating the redistributive impact of public health expenditure using an insurance value approach.

    PubMed

    Spadaro, Amedeo; Mangiavacchi, Lucia; Moral-Arce, Ignacio; Adiego-Estella, Marta; Blanco-Moreno, Angela

    2013-10-01

    This article analyses the redistributive impact of public health expenditure in Spain using an insurance value approach to compute individual and household's value of health services non-cash benefit. We model the intensity of use of different health care services using a count data framework on a nationally representative health care survey and then predict probabilities on the 2006 Spanish EU-SILC sample. This allows us to extend disposable income with the expected monetary value of public health services and to compare it with strictly cash income. Since non-cash income due to public health services is associated with health needs, we use needs-adjusted equivalence scales to perform distributional analysis and poverty/inequality comparisons. The results show that public health expenditure in Spain acts progressively on income distribution, and that health in-kind benefits, once considered as part of disposable income, can be extremely effective in reducing poverty and inequality. PMID:22948513

  18. The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2010-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  19. The Sheath Transport Observer for the Redistribution of Mass (STORM) Image

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2008-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  20. Magnetic two-photon scattering and two-photon emission - Cross sections and redistribution functions

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1991-01-01

    The magnetic two-photon scattering cross section is discussed within the framework of QED, and the corresponding scattering redistribution function for this process and its inverse, as well as the scattering source function are calculated explicitly. In a similar way, the magnetic two-photon emission process which follows the radiative excitation of Landau levels above ground is calculated. The two-photon scattering and two-photon emission are of the same order as the single-photon magnetic scattering. All three of these processes, and in optically thick cases also their inverses, are included in radiative transport calculations modeling accreting pulsars and gamma-ray bursters. These processes play a prominent role in determining the relative strength of the first two cyclotron harmonics, and their effects extend also to the higher harmonics.

  1. Hypergravity Leads to the Redistribution of Calcium Ions in Plant Cell

    NASA Astrophysics Data System (ADS)

    Nedukha, Olena M.

    2008-06-01

    The study of hypergravity influence on calcium ions distribution and on the relative amount of Ca2+ in cells of Nicotiana tabacum callus was carried out using the centrifuge. 15-day-old N. tabacum callus grown in a Murashige and Scoog agar medium was exposed to hypergravity at 6.5 g and 14 g for 15 and 60 min. The control samples and the centrifuged callus were loaded with Fluo-4 and then studied by the confocal laser-scanning microscopy. The visible redistribution of Ca2+ in the investigated cells and the appearance of calcium-microdomains in cytoplasm have been established under influence of hypergravity. Readaptation of Ca2+ distribution in the cells occurred in 2-4 h after hypergravity ending. It is suggested that influence of hypergravity lead to change of ionic transport of plasmalemma and endomembranes, and also to efflux of Ca2+ from apoplast.

  2. Neutron diffraction determination of the residual stress redistribution in cracked autofrettaged tubing

    SciTech Connect

    Bourke, M.A. ); McGillivray, H.J.; Webster, G.A. . Dept. of Mechanical Engineering); Webster, P.J. . Dept. of Civil Engineering)

    1991-01-01

    Neutron diffraction has been used to measure the residual stress distributions in uncracked and fatigue cracked rings taken from a high strength, low alloy steel autofrettage tube with a bore diameter of 60mm and a wall thickness of 32mm. Stresses were determined to a precision of {plus minus} 10MPa. Three crack sixes were examines. No appreciable stress redistribution was observed until the crack was grown into a region which originally contained tensile residual hoop stress. When this occurred an increase in residual hoop tension was observed ahead of the crick tip. Qualitative agreement was achieved between the measured hoop stress distribution and values predicted using a boundary element method. 9 refs., 12 figs.

  3. Redistribution of a grain-boundary glass phase during creep of silicon nitride ceramics

    SciTech Connect

    Jin, Q.; Ning, X.G.; Wilkinson, D.S.; Weatherly, G.C.

    1997-03-01

    The compressive creep behavior of a high-purity silicon nitride ceramic with and without the addition of Ba was studied at 1,400 C. Two distinct creep stages were observed during high-temperature deformation of both materials. Transmission electron microscopy (TEM) has been used to characterize the intergranular glass film thickness. Statistical analysis of a number of grain-boundary films indicates that the film thickness is confined to a narrow range in the as-sintered materials. However, the mean thickness is greater in the Ba-doped ceramic than in the undoped material. The standard deviation of the film thickness of a given material is considerably larger after creep than before. The authors conclude that the grain-boundary glass phase is redistributed during creep, suggesting that viscous flow of the glass phase is responsible for the first stage of the creep process.

  4. Intracellular redistribution of heme in rat liver under oxidative stress: the role of heme synthesis.

    PubMed

    Kaliman, Pavel A; Barannik, Tatyana; Strel'chenko, Ekaterina; Inshina, Natalya; Sokol, Oxana

    2005-01-01

    Heme distribution in subcellular fractions of rat liver was studied first hours under the action of several agents causing oxidative stress in vivo. Total and post-mitochondrial heme content in liver was found to depend on both the level of hemolysis products in blood and agent's capacity to modify heme and hemoproteins. The increase of activity of 5-aminolevulinate synthase (ALAS) and/or heme accumulation in mitochondria was accompanied by increase of tryptophan-2,3-dioxygenase (TDO) heme saturation. Membrane stabilisation by tocopherol or prevention of early ALAS induction by cycloheximide prevented both mitochondrial heme accumulation and increase of TDO heme saturation. Modification of heme fully prevented the alterations of total heme content even under severe hemolysis as well as the increase of TDO heme saturation if no increase of heme synthesis occurred. Thus heme synthesis can greatly contribute to heme intracellular redistribution under oxidative stress. PMID:15763493

  5. Ambient light cancellation in photoplethysmogram application using alternating sampling and charge redistribution technique.

    PubMed

    Kim, Jongpal; Lee, Takhyung; Kim, Jihoon; Ko, Hyoungho

    2015-01-01

    To overcome a large DC offset, ambient light interference, and optical path variation, a robust PPG readout chip is fabricated using 0.13-μm CMOS process. Against the large DC offset, a saturation detection and current feedback method can compensate a current of up to 30 μA. To be robust against optical path variation, an automatic emitting light compensation method is adopted. To remove the ambient light interference, we propose an alternating sampling and charge redistribution technique, in which no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26 μW and has a input referred current noise of 260 pArms. PMID:26737767

  6. Redistribution of fallout radionuclides in Enewetak Atoll lagoon sediments by callianassid bioturbation.

    PubMed

    McMurtry, G M; Schneider, R C; Colin, P L; Buddemeier, R W; Suchanek, T H

    The lagoon sediments of Enewetak Atoll in the Marshall Islands contain a large selection of fallout radionuclides as a result of 43 nuclear weapon tests conducted there between 1948 and 1958. Studies of the burial of fallout radionuclides have been conducted on the islands and in several of the large craters, but studies of their vertical distribution have been limited to about the upper 20 cm of the lagoon sediments. We have found elevated fallout radionuclide concentrations buried more deeply in the lagoon sediments and evidence of burrowing into the sediment by several species of callianassid ghost shrimp (Crustacea: Thalassinidea) which has displaced highly radioactive sediment. The burrowing activities of callianassids, which are ubiquitous on the lagoon floor, facilitate radionuclide redistribution and complicate the fallout radionuclide inventory of the lagoon. PMID:3974699

  7. State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas.

    PubMed

    Nawrocki, Wojciech J; Santabarbara, Stefano; Mosebach, Laura; Wollman, Francis-André; Rappaport, Fabrice

    2016-01-01

    Photosynthesis converts sunlight into biologically useful compounds, thus fuelling practically the entire biosphere. This process involves two photosystems acting in series powered by light harvesting complexes (LHCs) that dramatically increase the energy flux to the reaction centres. These complexes are the main targets of the regulatory processes that allow photosynthetic organisms to thrive across a broad range of light intensities. In microalgae, one mechanism for adjusting the flow of energy to the photosystems, state transitions, has a much larger amplitude than in terrestrial plants, whereas thermal dissipation of energy, the dominant regulatory mechanism in plants, only takes place after acclimation to high light. Here we show that, at variance with recent reports, microalgal state transitions do not dissipate light energy but redistribute it between the two photosystems, thereby allowing a well-balanced influx of excitation energy. PMID:27249564

  8. Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity

    PubMed Central

    Kuba, Hiroshi; Yamada, Rei; Ishiguro, Go; Adachi, Ryota

    2015-01-01

    Structural plasticity of the axon initial segment (AIS), the trigger zone of neurons, is a powerful means for regulating neuronal activity. Here, we show that AIS plasticity is not limited to structural changes; it also occurs as changes in ion-channel expression, which substantially augments the efficacy of regulation. In the avian cochlear nucleus, depriving afferent inputs by removing cochlea elongated the AIS, and simultaneously switched the dominant Kv channels at the AIS from Kv1.1 to Kv7.2. Due to the slow activation kinetics of Kv7.2, the redistribution of the Kv channels reduced the shunting conductance at the elongated AIS during the initiation of action potentials and effectively enhanced the excitability of the deprived neurons. The results indicate that the functional plasticity of the AIS works cooperatively with the structural plasticity and compensates for the loss of afferent inputs to maintain the homeostasis of auditory circuits after hearing loss by cochlea removal. PMID:26581625

  9. Effect of a central redistribution of fluid volume on response to lower-body negative pressure

    NASA Technical Reports Server (NTRS)

    Tomaselli, Clare M.; Frey, Mary A. B.; Kenney, Richard A.; Hoffler, G. Wyckliffe

    1990-01-01

    Cardiovascular responses to lower-body negative pressure (LBNP) were studied following 1 hour of 6-deg head-down tilt to determine whether a redistribution of blood volume toward the central circulation modifies the subsequent response to orthostatic stress. Responses of 12 men, ages 30-39 years, were evaluated by electrocardiography, impedance cardiography, sphygmomanometry, and measurement of calf circumference. During the LBNP that followed head-down tilt, as compared with control LBNP (no preceding head-down tilt) subjects, had smaller stroke volume and cardiac output, greater total peripheral resistance, and less calf enlargement. These differences reflect differences in the variables immediately preceding LBNP. Magnitudes of the responses from pre-LBNP to each pressure stage of the LBNP procedure did not differ between protocols. Mean and diastolic arterial pressures were slightly elevated after LBNP-control, but they fell slightly during LBNP post-tilt.

  10. Exploiting the flexibility of a family of models for taxation and redistribution

    NASA Astrophysics Data System (ADS)

    Bertotti, M. L.; Modanese, G.

    2012-08-01

    We discuss a family of models expressed by nonlinear differential equation systems describing closed market societies in the presence of taxation and redistribution. We focus in particular on three example models obtained in correspondence to different parameter choices. We analyse the influence of the various choices on the long time shape of the income distribution. Several simulations suggest that behavioral heterogeneity among the individuals plays a definite role in the formation of fat tails of the asymptotic stationary distributions. This is in agreement with results found with different approaches and techniques. We also show that an excellent fit for the computational outputs of our models is provided by the κ-generalized distribution introduced by Kaniadakis in [Physica A 296, 405 (2001)].

  11. Spatial distribution and redistribution of immigrants in the metropolitan United States, 1980 and 1990.

    PubMed

    Newbold, K B

    1999-07-01

    "Using data from the 1980 and 1990 5 percent [U.S.] Public Use Microdata Samples, I compare the settlement patterns and reasons for migration among foreign-born cohorts.... Although it is not possible to follow individuals over the two periods, aggregate changes in group location and migration patterns can be evaluated. Both period (differences associated with migration over time) and cohort (differences in migration behavior across arrival cohorts within a particular period) effects can be modeled. Of interest are the distribution, redistribution, and magnitude of change in the immigrant settlement system, along with why these adjustments occur for the 25 largest metropolitan areas in the United States. Results indicate that arrival cohorts of different vintages show contrasting responses to the determinants of settlement and migration behavior, although the overall distribution of the foreign-born population changed little over the two census periods." PMID:12349251

  12. Estimating Temporal Redistribution of Surface Melt Water into Upper Stratigraphy of the Juneau Icefield, Alaska

    NASA Astrophysics Data System (ADS)

    Wilner, J.; Smith, B.; Moore, T.; Campbell, S. W.; Slavin, B. V.; Hollander, J.; Wolf, J.

    2015-12-01

    The redistribution of winter accumulation from surface melt into firn or deeper layers (i.e. internal accumulation) remains a poorly understood component of glacier mass balance. Winter accumulation is usually quantified prior to summer melt, however the time window between accumulation and the onset of melt is minimal so this is not always possible. Studies which are initiated following the onset of summer melt either neglect sources of internal accumulation or attempt to estimate melt (and therefore winter accumulation uncertainty) through a variety of modeling methods. Here, we used ground-penetrating radar (GPR) repeat common midpoint (CMP) surveys with supporting common offset surveys, mass balance snow pits, and probing to estimate temporal changes in water content within the winter accumulation and firn layers of the southern Juneau Icefield, Alaska. In temperate glaciers, radio-wave velocity is primarily dependent on water content and snow or firn density. We assume density changes are temporally slow relative to water flow through the snow and firn pack, and therefore infer that changing radio-wave velocities measured by successive CMP surveys result from flux in surface melt through deeper layers. Preliminary CMP data yield radio-wave velocities of 0.15 to 0.2 m/ns in snowpack densities averaging 0.56 g cm-3, indicating partially to fully saturated snowpack (4-9% water content). Further spatial-temporal analysis of CMP surveys is being conducted. We recommend that repeat CMP surveys be conducted over a longer time frame to estimate stratigraphic water redistribution between the end of winter accumulation and maximum melt season. This information could be incorporated into surface energy balance models to further understanding of the influence of internal accumulation on glacier mass balance.

  13. A Functionalized Sphingolipid Analogue for Studying Redistribution during Activation in Living T Cells.

    PubMed

    Collenburg, Lena; Walter, Tim; Burgert, Anne; Müller, Nora; Seibel, Jürgen; Japtok, Lukasz; Kleuser, Burkhard; Sauer, Markus; Schneider-Schaulies, Sibylle

    2016-05-01

    Sphingolipids are major components of the plasma membrane. In particular, ceramide serves as an essential building hub for complex sphingolipids, but also as an organizer of membrane domains segregating receptors and signalosomes. Sphingomyelin breakdown as a result of sphingomyelinase activation after ligation of a variety of receptors is the predominant source of ceramides released at the plasma membrane. This especially applies to T lymphocytes where formation of ceramide-enriched membrane microdomains modulates TCR signaling. Because ceramide release and redistribution occur very rapidly in response to receptor ligation, novel tools to further study these processes in living T cells are urgently needed. To meet this demand, we synthesized nontoxic, azido-functionalized ceramides allowing for bio-orthogonal click-reactions to fluorescently label incorporated ceramides, and thus investigate formation of ceramide-enriched domains. Azido-functionalized C6-ceramides were incorporated into and localized within plasma membrane microdomains and proximal vesicles in T cells. They segregated into clusters after TCR, and especially CD28 ligation, indicating efficient sorting into plasma membrane domains associated with T cell activation; this was abolished upon sphingomyelinase inhibition. Importantly, T cell activation was not abrogated upon incorporation of the compound, which was efficiently excluded from the immune synapse center as has previously been seen in Ab-based studies using fixed cells. Therefore, the functionalized ceramides are novel, highly potent tools to study the subcellular redistribution of ceramides in the course of T cell activation. Moreover, they will certainly also be generally applicable to studies addressing rapid stimulation-mediated ceramide release in living cells. PMID:27036914

  14. Genome-wide hydroxymethylation tested using the HELP-GT assay shows redistribution in cancer

    PubMed Central

    Bhattacharyya, Sanchari; Yu, Yiting; Suzuki, Masako; Campbell, Nathaniel; Mazdo, Jozef; Vasanthakumar, Aparna; Bhagat, Tushar D.; Nischal, Sangeeta; Christopeit, Maximilian; Parekh, Samir; Steidl, Ulrich; Godley, Lucy; Maitra, Anirban; Greally, John M.; Verma, Amit

    2013-01-01

    5-hydroxymethylcytosine (5-hmC) is a recently discovered epigenetic modification that is altered in cancers. Genome-wide assays for 5-hmC determination are needed as many of the techniques for 5-methylcytosine (5-mC) determination, including methyl-sensitive restriction digestion and bisulfite sequencing cannot distinguish between 5-mC and 5-hmC. Glycosylation of 5-hmC residues by beta-glucosyl transferase (β-GT) can make CCGG residues insensitive to digestion by MspI. Restriction digestion by HpaII, MspI or MspI after β-GT conversion, followed by adapter ligation, massive parallel sequencing and custom bioinformatic analysis allowed us determine distribution of 5-mC and 5-hmC at single base pair resolution at MspI restriction sites. The resulting HpaII tiny fragment Enrichment by Ligation-mediated PCR with β-GT (HELP-GT) assay identified 5-hmC loci that were validated at global level by liquid chromatography-mass spectrometry (LC-MS) and the locus-specific level by quantitative reverse transcriptase polymerase chain reaction of 5-hmC pull-down DNA. Hydroxymethylation at both promoter and intragenic locations correlated positively with gene expression. Analysis of pancreatic cancer samples revealed striking redistribution of 5-hmC sites in cancer cells and demonstrated enrichment of this modification at many oncogenic promoters such as GATA6. The HELP-GT assay allowed global determination of 5-hmC and 5-mC from low amounts of DNA and with the use of modest sequencing resources. Redistribution of 5-hmC seen in cancer highlights the importance of determination of this modification in conjugation with conventional methylome analysis. PMID:23861445

  15. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark.

    PubMed

    ten Hoeve, Marieke; Hutchings, Nicholas J; Peters, Gregory M; Svanström, Magdalena; Jensen, Lars S; Bruun, Sander

    2014-01-01

    Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range of different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000 kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient redistribution before land application: (a) separation by mechanical screw press, (b) screw press separation with composting of the solid fraction, (c) separation by decanter centrifuge, and (d) decanter centrifuge separation with ammonia stripping of the liquid fraction. Emissions were determined based on a combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil carbon, nitrogen and phosphorus storage. In all separation scenarios, the liquid fraction was applied to land on the pig-producing (donor) farm and the solid fraction transported to a recipient farm and utilised for crop production. Separation, especially by centrifuge, was found to result in a lower environmental impact potential than application of untreated slurry to adjacent land. Composting and ammonia stripping either slightly increased or slightly decreased the environmental impact potential, depending on the impact category considered. The relative ranking of scenarios did not change after a sensitivity analysis in which coefficients for field emissions of nitrous oxide, ammonia and phosphorus were varied within the range cited in the literature. Therefore, the best

  16. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study

    SciTech Connect

    Braun, J.J.; Pagel, M.; Herbillon ); Rosin, C. )

    1993-09-01

    REE-Th geochemistry and mineralogy have been studied in a lateritic profile derived from a syenite at Akongo in SW Cameroon. REE and Th mass balance calculations for the host-rock minerals show that at least 70% of the LREEs and 50% of the HREEs are contained in allanite, apatite, titanite, and epidote and at least 50% of the Th is controlled by the same accessory materials which represent about 2 wt% of the unaltered syenite. These accessory phases are destroyed during the first stages of weathering causing most of the REEs and Th to be rapidly released into the soil. Comparison of the variation in the Zr, Ti, and Th content as a function of the apparent density of the different zones of the saprolite shows that Th is the least mobile element. The presence of secondary thorianite (ThO[sub 2]), the etched surface on zircon grains, and the presence of Ti in secondary cerianite support this geochemical interpretation. The concentration of thorium was, therefore, chosen as invariant relative to the concentration of the other elements, especially the REEs, in mass balance calculations. Most of the REEs are leached in the iron-rich upper horizons (loose nodular horizon, iron crust, and top of mottled clay horizon). Where the groundwater table moves (saprolite and bottom of the mottled clay horizon), the REEs are fractionated and redistributed. There is a juxtaposition of leached and accumulation zones with precipitation of LREE aluminous hydrated phosphates. This study supports the existence of two different cycles for the redistribution of elements in the soil: (1) as dissolved ions in the saprolite horizon, and (2) as individual particles in the upper part of the profile.

  17. The hydrostatic pressure indifference point underestimates orthostatic redistribution of blood in humans.

    PubMed

    Petersen, L G; Carlsen, J F; Nielsen, M B; Damgaard, M; Secher, N H

    2014-04-01

    The hydrostatic indifference point (HIP; where venous pressure is unaffected by posture) is located at the level of the diaphragm and is believed to indicate the orthostatic redistribution of blood, but it remains unknown whether HIP coincides with the indifference point for blood volume (VIP). During graded (± 20°) head-up (HUT) and head-down tilt (HDT) in 12 male volunteers, we determined HIP from central venous pressure and VIP from redistribution of both blood, using ultrasound imaging of the inferior caval vein (VIPui), and fluid volume, by regional electrical admittance (VIPadm). Furthermore, we evaluated whether inflation of medical antishock trousers (to 70 mmHg) affected HIP and VIP. Leaving cardiovascular variables unaffected by tilt, HIP was located 7 ± 4 cm (mean ± SD) below the 4th intercostal space (IC-4) during HUT and was similar (7 ± 3 cm) during HDT and higher (P < 0.0001) than both VIPui (HUT: 22 ± 16 cm; HDT: 13 ± 7 cm) and VIPadm (HUT: 29 ± 9 cm; HDT: 20 ± 9 cm below IC-4). During HUT antishock trousers elevated both HIP and VIPui [to 3 ± 5 cm (P = 0.028) and 17 ± 7 cm below IC-4 (P = 0.051), respectively], while VIPadm remained unaffected. By simultaneous recording of pressure and filling of the inferior caval vein as well as fluid distribution, we found HIP located corresponding to the diaphragm while VIP was placed low in the abdomen, and that medical antishock trousers elevated both HIP and VIP. The low indifference point for volume shows that the gravitational influence on distribution of blood is more profound than indicated by the indifference point for venous pressure. PMID:24481962

  18. Redistribution of trace elements from contaminated sediments of Lake Coeur d'Alene during oxygenation

    SciTech Connect

    La Force, M.J.; Fendorf, S.; Li, G.; Rosenzweig, R.F.

    1999-08-01

    Sediments of Coeur d'Alene Lake in northern Idaho are contaminated with heavy metals as a result of mining in the Coeur d'Alene River basin. Dredging and disposal operations have been suggested as a possible means of environmental remediation; thus, detailed knowledge is required as to how sediment oxygenation can result in the redistribution of trace elements. To simulate changing physicochemical soil conditions, stirred batch experiments were conducted using fresh sediment core material retrieved from the lake. Fifty grams of sediment were added to 750 mL of double deionized water and mixed while being oxygenated for 260 h. The following parameters were monitored as a function of time: pH and E{sub h}, contaminant trace-element release into the aqueous phase, and metal abundance within operationally defined fractions of the solid phase: magnesium chloride (exchangeable), sodium hypochlorite (organic), sodium acetate-acetic acid (carbonate), ammonium oxalate in the dark (non-crystalline), hydroxylamine hydrochloride (crystalline), and potassium perchlorate-hydrochloric-nitric acid (sulfidic) extractable sediment fractions. In all trials, levels of aqueous-phase Zn remained high throughout the simulations and were highly correlated with Mn. Oxygenation and disturbance resulted in a shift in trace element partitioning from the sodium hypochlorite (organic) and potassium perchlorate-hydrochloric-nitric acid extractable (sulfidic) fractions into the ammonium oxalate in the dark (non-crystalline) extractable fraction. Overall, these results indicate that oxygenation and agitation of anaerobic sediment results in Zn release into solution with concomitant redistribution of trace elements in the solid-phase.

  19. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    USGS Publications Warehouse

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  20. Mobilization and redistribution of lead over the course of calcium disodium ethylenediamine tetraacetate chelation therapy

    SciTech Connect

    Cory-Slechta, D.A.; Weiss, B.; Cox, C.

    1987-12-01

    After its successful application to the treatment of acute Pb poisoning, Ca disodium EDTA came into routine clinical use for diagnosis and treatment of subacute and chronic Pb poisoning. Despite widespread use, few definitive conclusions have emerged about the sources of Pb mobilized by Ca disodium EDTA. Furthermore, the possibility that mobilized Pb may be redistributed has been suggested. The current studies indicate that the standard therapeutic protocol for Ca disodium EDTA has little impact on critical organs such as brain and liver and moreover, that diagnostic Ca disodium EDTA chelation may even increase the concentration of Pb in these tissues. After a 3 to 4 month exposure to Pb acetate in drinking water, different groups of rats received daily i.p. injections of saline (control), 75 or 150 mg/kg of Ca disodium EDTA for either 1, 2, 3, 4 or 5 days and were then sacrificed 24 hr after the final injection. Tissue analyses indicated that Pb was mobilized from bone and kidney and redistributed initially to both brain and liver. Levels in both brain and liver declined with subsequent Ca disodium EDTA injections, but no net loss from either tissue occurred over the 5-day treatment period despite a decline in blood Pb levels and a marked enhancement of urinary Pb excretion. These findings stress the need for further investigation of Ca disodium EDTAs effects and for parallel evaluation of alternate chelating agents, and suggest that a re-evaluation of both the diagnostic and therapeutic roles of Ca disodium EDTA may be advisable.

  1. Nonlinear acoustic-gravity waves and dust particle redistribution in earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Izvekova, Yu. N.; Popel, S. I.; Chen, B. B.

    2015-11-01

    A continuously stratified model of nonadiabatic terrestrial atmosphere with taking into account the temperature profile is developed to study a possibility of instability development of acoustic-gravity (AG-) waves. It is shown that the existence of the regions in the atmosphere where the instability conditions are satisfied is due to the cooperation of thermal flow of solar radiation, infrared emission of the atmosphere, water vapor condensation, as well as thermal conductivity. Large-amplitude vortices in Earth's troposphere and ionosphere and their possible structure as well as redistribution of dust particles in the ionosphere as a result of vortical motions are discussed. The following possibilities for the dust particle redistribution are studied: capture and evolution of dust particles in AG-vortices, formation of dust vortices as a result of involving a great number of dust particles into vortex motions, and formation of vertical and horizontal dust flows (streamers and zonal flows). It is shown that excitation of AG-vortices at the ionospheric altitudes as a result of development of AG-wave instability leads to a substantial transportation of dust particles and their mixing. Layers of dust particles with a thickness of about a kilometer, forming at the altitudes less than 120 km, distribute within the region of the existence of AG-vortical structures. As a result, at altitudes of 110-120 km, dust vortices can appear, and transportation of particles up to altitudes of 130 km becomes possible. One of the ways of transportation of dust particles in the ionosphere is dust flows, which are generated by dust vortices as a result of development of parametric instability.

  2. Naturally-occurring forelimb lameness in the horse results in significant compensatory load redistribution during trotting.

    PubMed

    Maliye, Sylvia; Voute, Lance C; Marshall, John F

    2015-05-01

    This study aimed to quantify the compensatory response to naturally-occurring forelimb lameness on load redistribution. Data from lameness investigations using an inertial sensor based system to monitor the response to forelimb diagnostic anaesthesia were reviewed. Horses with primary forelimb lameness were grouped for analysis as (1) all horses combined (n= 28), (2) forelimb-only lameness (n= 8/28), (3) forelimb-contralateral hindlimb lameness (n= 14/28), (4) forelimb-ipsilateral hindlimb lameness (n= 6/28). The effect of diagnostic anaesthesia on measures of head and pelvic movement asymmetry was determined using the Wilcoxon signed rank test. Spearman's correlation analysis was performed between forelimb and hindlimb variables. Statistical significance was set at P< 0.05. Forelimb diagnostic anaesthesia resulted in a decrease in pelvic movement asymmetry among all horses and the forelimb-only and forelimb-contralateral hindlimb lameness groups. Pelvic movement asymmetry associated with the contralateral hindlimb decreased by a median of 38% (interquartile range [IQR] 10-65%), 43% (IQR 28-60%) and 28% (IQR 12-67%) in all horses, forelimb-only and forelimb-contralateral hindlimb groups respectively (P< 0.05). Maximum pelvic height difference (PDMax) significantly decreased in all horses combined and the forelimb-contralateral hindlimb lameness group by a median of 66% (IQR 24-100%) and 78% (IQR 27-100%, P< 0.01), respectively. Change in head movement asymmetry and vector sum was significantly positively correlated with PDMax in all horses combined and the forelimb-contralateral hindlimb group (P< 0.05). Forelimb lameness had a significant effect on hindlimb and pelvic movement in horses with clinical lameness resulting in compensatory load redistribution and decreased push-off from the contralateral hindlimb. PMID:25862395

  3. Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions.

    PubMed

    De Schrijver, An; Vesterdal, Lars; Hansen, Karin; De Frenne, Pieter; Augusto, Laurent; Achat, David Ludovick; Staelens, Jeroen; Baeten, Lander; De Keersmaeker, Luc; De Neve, Stefaan; Verheyen, Kris

    2012-05-01

    Fertilisation of agricultural land causes an accumulation of nutrients in the top soil layer, among which phosphorus (P) is particularly persistent. Changing land use from farmland to forest affects soil properties, but changes in P pools have rarely been studied despite their importance to forest ecosystem development. Here, we describe the redistributions of the P pools in a four-decadal chronosequence of post-agricultural common oak (Quercus robur L.) forests in Belgium and Denmark. The aim was to assess whether forest age causes a repartitioning of P throughout the various soil P pools (labile P, slowly cycling P and occluded P); in particular, we addressed the time-related alterations in the inorganic versus organic P fractions. In less than 40 years of oak forest development, significant redistributions have occurred between different P fractions. While both the labile and the slowly cycling inorganic P fractions significantly decreased with forest age, the organic fractions significantly increased. The labile P pool (inorganic + organic), which is considered to be the pool of P most likely to contribute to plant-available P, significantly decreased with forest age (from >20 to <10% of total P), except in the 0-5 cm of topsoil, where labile P remained persistently high. The shift from inorganic to organic P and the shifts between the different inorganic P fractions are driven by biological processes and also by physicochemical changes related to forest development. It is concluded that the organic labile P fraction, which is readily mineralisable, should be taken into account when studying the bioavailable P pool in forest ecosystems. PMID:22120703

  4. Ion heating and energy redistribution across supercritical perpendicular shocks: Application to planetary and interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Liu, Y. D.; Richardson, J. D.; Parks, G. K.

    2013-12-01

    We investigate how the ion dissipative process across supercritical perpendicular shocks depends on the shock front micro-structures. At a collisionless plasma shock, the dissipation and micro-structure of the shock font are dominated by wave-particle interactions. Comparison of the ion thermalization at different kinds of shocks, e.g., planetary and interplanetary shocks, can quantify how much interaction is occurring at the shock boundary. Investigation of this problem for diverse solar wind (SW) conditions will yield important information on the dependences of the ion thermalization and energy redistribution on plasma parameters. With the aid of a successful automatic separation method [Yang et al., 2009], the incident ions at the shock can be divided into two parts: reflected (R) ions and directly transmitted (DT) ions. Corresponding heating efficiency of each population of ions at the shock can be calculated respectively. Wilkinson & Schwartz [1990] have theorized that the amount of reflected ions at perpendicular shocks depends on plasma parameters. Based on the Rankine-Hugoniot (R-H) conservation laws, they found that the fraction reflected is strongly dependent on the magnitude of the ratio of specific heat capacities γ chosen in the R-H relations. The main goal of this work is to investigate how the plasma parameters, e.g. the particle velocity distribution, the plasma beta value, seed populations, etc. (from a particle dynamic point of view), control the amount of reflected ions by using one-dimensional (1-D) full-particle-cell simulations. The simulation results may help to explain the ion heating efficiency and energy redistribution at shocks observed by Cluster, Wind, Voyager, etc.

  5. Moesin Interacts with the Cytoplasmic Region of Intercellular Adhesion Molecule-3 and Is Redistributed to the Uropod of T Lymphocytes during Cell Polarization

    PubMed Central

    Serrador, Juan M.; Alonso-Lebrero, José L.; Pozo, Miguel A. del; Furthmayr, Heinz; Schwartz-Albiez, Reinhard; Calvo, Javier; Lozano, Francisco; Sánchez-Madrid, Francisco

    1997-01-01

    During activation, T lymphocytes become motile cells, switching from a spherical to a polarized shape. Chemokines and other chemotactic cytokines induce lymphocyte polarization with the formation of a uropod in the rear pole, where the adhesion receptors intercellular adhesion molecule-1 (ICAM-1), ICAM-3, and CD44 redistribute. We have investigated membrane–cytoskeleton interactions that play a key role in the redistribution of adhesion receptors to the uropod. Immunofluorescence analysis showed that the ERM proteins radixin and moesin localized to the uropod of human T lymphoblasts treated with the chemokine RANTES (regulated on activation, normal T cell expressed, and secreted), a polarization-inducing agent; radixin colocalized with arrays of myosin II at the neck of the uropods, whereas moesin decorated the most distal part of the uropod and colocalized with ICAM-1, ICAM-3, and CD44 molecules. Two other cytoskeletal proteins, β-actin and α-tubulin, clustered at the cell leading edge and uropod, respectively, of polarized lymphocytes. Biochemical analysis showed that moesin coimmunoprecipitates with ICAM-3 in T lymphoblasts stimulated with either RANTES or the polarization- inducing anti–ICAM-3 HP2/19 mAb, as well as in the constitutively polarized T cell line HSB-2. In addition, moesin is associated with CD44, but not with ICAM-1, in polarized T lymphocytes. A correlation between the degree of moesin–ICAM-3 interaction and cell polarization was found as determined by immunofluorescence and immunoprecipitation analysis done in parallel. The moesin–ICAM-3 interaction was specifically mediated by the cytoplasmic domain of ICAM-3 as revealed by precipitation of moesin with a GST fusion protein containing the ICAM-3 cytoplasmic tail from metabolically labeled Jurkat T cell lysates. The interaction of moesin with ICAM-3 was greatly diminished when RANTES-stimulated T lymphoblasts were pretreated with the myosin-disrupting drug butanedione monoxime, which

  6. 34 CFR 694.16 - What are the requirements for redistribution or return of scholarship funds not awarded to a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of scholarship funds not awarded to a project's eligible students? 694.16 Section 694.16 Education...) § 694.16 What are the requirements for redistribution or return of scholarship funds not awarded to a project's eligible students? The following requirements apply only to section 404E scholarship awards...

  7. 34 CFR 694.16 - What are the requirements for redistribution or return of scholarship funds not awarded to a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of scholarship funds not awarded to a project's eligible students? 694.16 Section 694.16 Education...) § 694.16 What are the requirements for redistribution or return of scholarship funds not awarded to a project's eligible students? The following requirements apply only to section 404E scholarship awards...

  8. 34 CFR 694.16 - What are the requirements for redistribution or return of scholarship funds not awarded to a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of scholarship funds not awarded to a project's eligible students? 694.16 Section 694.16 Education...) § 694.16 What are the requirements for redistribution or return of scholarship funds not awarded to a project's eligible students? The following requirements apply only to section 404E scholarship awards...

  9. 34 CFR 694.16 - What are the requirements for redistribution or return of scholarship funds not awarded to a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of scholarship funds not awarded to a project's eligible students? 694.16 Section 694.16 Education...) § 694.16 What are the requirements for redistribution or return of scholarship funds not awarded to a project's eligible students? The following requirements apply only to section 404E scholarship awards...

  10. NATIVE ROOT XYLEM EMBOLISM AND STOMATAL CLOSURE IN STANDS OF DOUGLAS-FIR AND PONDEROSA PINE: MITIGATION BY HYDRAULIC REDISTRIBUTION

    EPA Science Inventory

    Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-...

  11. 42 CFR 413.81 - Direct GME payments: Application of community support and redistribution of costs in determining...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Community support. If the community has undertaken to bear the costs of medical education through community... 42 Public Health 2 2012-10-01 2012-10-01 false Direct GME payments: Application of community... Direct GME payments: Application of community support and redistribution of costs in determining...

  12. 42 CFR 413.81 - Direct GME payments: Application of community support and redistribution of costs in determining...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Community support. If the community has undertaken to bear the costs of medical education through community... 42 Public Health 2 2013-10-01 2013-10-01 false Direct GME payments: Application of community... Direct GME payments: Application of community support and redistribution of costs in determining...

  13. 42 CFR 413.81 - Direct GME payments: Application of community support and redistribution of costs in determining...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Community support. If the community has undertaken to bear the costs of medical education through community... 42 Public Health 2 2014-10-01 2014-10-01 false Direct GME payments: Application of community... Direct GME payments: Application of community support and redistribution of costs in determining...

  14. 42 CFR 413.81 - Direct GME payments: Application of community support and redistribution of costs in determining...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Community support. If the community has undertaken to bear the costs of medical education through community... 42 Public Health 2 2010-10-01 2010-10-01 false Direct GME payments: Application of community... Direct GME payments: Application of community support and redistribution of costs in determining...

  15. 42 CFR 413.81 - Direct GME payments: Application of community support and redistribution of costs in determining...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Community support. If the community has undertaken to bear the costs of medical education through community... 42 Public Health 2 2011-10-01 2011-10-01 false Direct GME payments: Application of community... Direct GME payments: Application of community support and redistribution of costs in determining...

  16. Root controls on water redistribution and carbon uptake in the soil-plant system under current and future climate

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Marani, M.; Albertson, J. D.; Katul, G.

    2013-10-01

    Understanding photosynthesis and plant water management as a coupled process remains an open scientific problem. Current eco-hydrologic models characteristically describe plant photosynthetic and hydraulic processes through ad hoc empirical parameterizations with no explicit accounting for the main pathways over which carbon and water uptake interact. Here, a soil-plant-atmosphere continuum model is proposed that mechanistically couples photosynthesis and transpiration rates, including the main leaf physiological controls exerted by stomata. The proposed approach links the soil-to-leaf hydraulic transport to stomatal regulation, and closes the coupled photosynthesis-transpiration problem by maximizing leaf carbon gain subject to a water loss constraint. The approach is evaluated against field data from a grass site and is shown to reproduce the main features of soil moisture dynamics and hydraulic redistribution. In particular, it is shown that the differential soil drying produced by diurnal root water uptake drives a significant upward redistribution of moisture both through a conventional Darcian flow and through the root system, consistent with observations. In a numerical soil drying experiment, it is demonstrated that more than 50% of diurnal transpiration is supplied by nocturnal upward water redistribution, and some 12% is provided directly through root hydraulic redistribution. For a prescribed leaf area density, the model is then used to diagnose how elevated atmospheric CO2 concentration and increased air temperature jointly impact soil moisture, transpiration, photosynthesis, and whole-plant water use efficiency, along with compensatory mechanisms such as hydraulic lift using several canonical forms of root-density distribution.

  17. Theoretical formulation of Doppler redistribution in scattering polarization within the framework of the velocity-space density matrix formalism

    NASA Astrophysics Data System (ADS)

    Belluzzi, L.; Landi Degl'Innocenti, E.; Trujillo Bueno, J.

    2013-04-01

    Within the framework of the density matrix theory for the generation and transfer of polarized radiation, velocity density matrix correlations represent an important physical aspect that, however, is often neglected in practical applications when adopting the simplifying approximation of complete redistribution on velocity. In this paper, we present an application of the non-LTE problem for polarized radiation taking such correlations into account through the velocity-space density matrix formalism. We consider a two-level atom with infinitely sharp upper and lower levels, and we derive the corresponding statistical equilibrium equations, neglecting the contribution of velocity-changing collisions. Coupling such equations with the radiative transfer equations for polarized radiation, we derive a set of coupled equations for the velocity-dependent source function. This set of equations is then particularized to the case of a plane-parallel atmosphere. The equations presented in this paper provide a complete and solid description of the physics of pure Doppler redistribution, a phenomenon generally described within the framework of the redistribution matrix formalism. The redistribution matrix corresponding to this problem (generally referred to as RI) is derived starting from the statistical equilibrium equations for the velocity-space density matrix and from the radiative transfer equations for polarized radiation, thus showing the equivalence of the two approaches.

  18. Evaluation of a model framework to estimate soil and soil organic carbon redistribution by water and tillage using 137Cs in two U.S Midwest agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated lands in the U.S. Midwest have been affected by soil erosion causing environmental and agricultural problems, including the redistribution of soil organic carbon (SOC) in the landscape. However, the importance of SOC redistribution on soil productivity and crop yield is still uncertain. I...

  19. A comparative analysis of early child health and development services and outcomes in countries with different redistributive policies

    PubMed Central

    2013-01-01

    Background The social environment is a fundamental determinant of early child development and, in turn, early child development is a determinant of health, well-being, and learning skills across the life course. Redistributive policies aimed at reducing social inequalities, such as a welfare state and labour market policies, have shown a positive association with selected health indicators. In this study, we investigated the influence of redistributive policies specifically on the social environment of early child development in five countries with different political traditions. The objective of this analysis was to highlight similarities and differences in social and health services between the countries and their associations with other health outcomes that can inform better global early child development policies and improve early child health and development. Methods Four social determinants of early child development were selected to provide a cross-section of key time periods in a child’s life from prenatal to kindergarten. They included: 1) prenatal care, 2) maternal leave, 3) child health care, and 4) child care and early childhood education. We searched international databases and reports (e.g. Organization for Economic Cooperation and Development, World Bank, and UNICEF) to obtain information about early child development policies, services and outcomes. Results Although a comparative analysis cannot claim causation, our analysis suggests that redistributive policies aimed at reducing social inequalities are associated with a positive influence on the social determinants of early child development. Generous redistributive policies are associated with a higher maternal leave allowance and pay and more preventive child healthcare visits. A decreasing trend in infant mortality, low birth weight rate, and under five mortality rate were observed with an increase in redistributive policies. No clear influence of redistributive policies was observed on

  20. Extrapolating soil redistribution rates estimated from 137Cs to catchment scale in a complex agroforestry landscape using GIS

    NASA Astrophysics Data System (ADS)

    Gaspar, Leticia; López-Vicente, Manuel; Palazón, Leticia; Quijano, Laura; Navas, Ana

    2015-04-01

    The use of fallout radionuclides, particularly 137Cs, in soil erosion investigations has been successfully used over a range of different landscapes. This technique provides mean annual values of spatially distributed soil erosion and deposition rates for the last 40-50 years. However, upscaling the data provided by fallout radionuclides to catchment level is required to understand soil redistribution processes, to support catchment management strategies, and to assess the main soil erosion factors like vegetation cover or topography. In recent years, extrapolating field scale soil erosion rates estimated from 137Cs data to catchment scale has been addressed using geostatistical interpolation and Geographical Information Systems (GIS). This study aims to assess soil redistribution in an agroforestry catchment characterized by abrupt topography and an intricate mosaic of land uses using 137Cs data and GIS. A new methodological approach using GIS is presented as an alternative of interpolation tools to extrapolating soil redistribution rates in complex landscapes. This approach divides the catchment into Homogeneous Physiographic Units (HPUs) based on unique land use, hydrological network and slope value. A total of 54 HPUs presenting specific land use, strahler order and slope combinations, were identified within the study area (2.5 km2) located in the north of Spain. Using 58 soil erosion and deposition rates estimated from 137Cs data, we were able to characterize the predominant redistribution processes in 16 HPUs, which represent the 78% of the study area surface. Erosion processes predominated in 6 HPUs (23%) which correspond with cultivated units in which slope and strahler order is moderate or high, and with scrubland units with high slope. Deposition was predominant in 3 HPUs (6%), mainly in riparian areas, and to a lesser extent in forest and scrubland units with low slope and low and moderate strahler order. Redistribution processes, both erosion and

  1. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact.

    PubMed

    Collins, Brian E; Blixt, Ola; DeSieno, Alexis R; Bovin, Nicolai; Marth, Jamey D; Paulson, James C

    2004-04-20

    CD22, a negative regulator of B cell signaling, is a member of the siglec family that binds to alpha2-6-linked sialic acids on glycoproteins. Previous reports demonstrated that binding of multivalent sialoside probes to CD22 is blocked, or "masked," by endogenous (cis) ligands, unless they are first destroyed by sialidase treatment. These results suggest that cis ligands on B cells make CD22 functionally unavailable for binding to ligands in trans. Through immunofluorescence microscopy, however, we observed that CD22 on resting B cells redistributes to the site of contact with other B or T lymphocytes. Redistribution is mediated by interaction with trans ligands on the opposing cell because it does not occur with ligand-deficient lymphocytes from ST6GalI-null mice. Surprisingly, CD45, proposed as both a cis and trans ligand of CD22, was not required for redistribution to sites of cell contact, given that redistribution of CD22 was independent of CD45 and was observed with lymphocytes from CD45-deficient mice. Furthermore, CD45 is not required for CD22 masking as similar levels of masking were observed in the WT and null mice. Comparison of the widely used sialoside-polyacrylamide probe with a sialoside-streptavidin probe revealed that the latter bound a subset of B cells without sialidase treatment, suggesting that cis ligands differentially impacted the binding of these two probes in trans. The combined results suggest that equilibrium binding to cis ligands does not preclude binding of CD22 to ligands in trans, and allows for its redistribution to sites of contact between lymphocytes. PMID:15079087

  2. Reduced Deep Root Hydraulic Redistribution Due to Climate Change Impacts Carbon and Water Cycling in Southern US Pine Plantations

    NASA Astrophysics Data System (ADS)

    Domec, J.; Noormets, A.; King, J. S.; Sun, G.; McNulty, S.; Gavazzi, M. J.; Treasure, E.; Caldwell, P.

    2010-12-01

    It is well known that plants lose water from the canopy through transpiration, and also lose a portion of water drawn up at night from deep, moist soil layers through roots and deposited to shallow, dry soil layers. This process is termed hydraulic redistribution (HR). Deep root water uptake and HR have been a major discovery during the last 15 years, but little is known about the impact of future climatic and environmental conditions on deep root water uptake and its impact on water balance and carbon sequestration. We investigated the temporal variability of soil moisture dynamics in three AmeriFlux sites and used data from the Duke Free-Air CO2 Enrichment site to forecast future environmental impacts on HR and its impact on water cycling and carbon sequestration. Our results showed that HR played a critical role in delaying the drying of upper soil layers by replacing more than 25% of the water utilized during the day with water taken up by deep roots at night. Furthermore, HR mitigated the effects of soil drying in the understory and had important implications for net primary productivity and carbon sink potential of young plantations. A warming climate is associated with higher vapor pressure deficits, which will increase nighttime evapotranspiration and reduce HR because trees will act as a competitor with the upper soil for water. We predicted that increases in temperature, vapor pressure deficit and CO2 would reduce HR and limit shallow soil rewetting, thus decreasing net ecosystem productivity (NEP) especially in young and in shallow rooted forest plantations. Modeled carbon flux showed that in the absence of HR, gross ecosystem productivity (GEP) would be reduced by more than 30%, or 200 g C m-2 yr-1 and 750 g C m-2 yr-1 in a young and in a mid-rotation plantation, respectively. HR-induced decrease of GEP outweighed the decrease of ecosystem respiration, thus leading to a lower NEP. For these two types of managed forests, NEP would also be reduced by 100

  3. Polar gypsum on Mars : wind-driven exhumation from the North Polar Cap and redistribution in the Circumpolar Dune Field

    NASA Astrophysics Data System (ADS)

    Masse, M.; Bourgeois, O.; Le Mouélic, S.; Verpoorter, C.; Le Deit, L.; Mercier, E.; Bibring, J.

    2010-12-01

    The North Polar Cap of Mars is associated with different kinds of superficial sediments, including the Circumpolar Dune Field and sedimentary veneers scattered over the ice cap. In order to resolve the mineralogical composition of these sediments, we processed OMEGA and CRISM hyperspectral data with an original method based on spectral derivation (Huguenin and Jones, 1986). We find that gypsum is present in all areas where undefined hydrated minerals had been previously detected (Poulet et al., 2008; Horgan et al., 2009; Calvin et al., 2010), including the superficial sedimentary veneers found on the North Polar Cap and the whole Circumpolar Dune Field. Integrated morphological and structural analyses reveal that these gypsum crystals derive directly from the interior of the ice cap (Massé et al., 2010). The source of sedimentary veneers is the dust that was previously contained in the upper part of the ice cap, the ice-rich North Polar Layered Deposits (NPLD). This gypsum-bearing dust was exhumed, on south-facing slopes of spiral troughs and arcuate scarps, by ice ablation induced by katabatic winds. By the analysis of all associations of erosional scarps and dune fields over the North Polar Cap, we also demonstrate that the source of the polar dunes are sand-sized particles that were previously contained in the sediment-rich BU (Basal Unit), corresponding to the lower part of the ice cap. These particles were exhumed from the BU, by regressive ablation of the ice at marginal scarps that border the North Polar Cap, or by vertical ablation of the ice on Olympia Planum. From a reconstruction of wind flow lines over and around the ice cap, we infer that katabatic winds descending from the polar high and rotating around the North Polar Cap are responsible for the exhumation of this gypsum-bearing sand and for its redistribution in the Circumpolar Dune Field. The intensity of gypsum diagnostic spectral absorption bands decreases along wind flow lines in the

  4. Soil and Nitrogen redistribution in a small Mediterranean cereal field: modelling predictions and field measurements

    NASA Astrophysics Data System (ADS)

    López-Vicente, Manuel, , Dr.; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Palazón, M. Sc. Leticia; Navas, Ana, , Dr.

    2015-04-01

    Cultivation is one of the main factors triggering soil erosion and the loss of fertile soil accelerates and in some cases causes soil degradation and crop yield reduction. Patterns of erosion, delivery and deposition of soil particles appear to be closely linked to that of soil nutrients. In this study, we assess the rates of soil and nutrient (soil nitrogen) redistribution and budget in a rain-fed cereal experimental plot (0.65 ha; Ebro river basin, NE Spain) caused by water erosion. The study area has a mean slope of 7%, it is classed as a closed-hydrological unit due to the cutting-connectivity effect of the landscape linear elements (LLEs), it has only one outlet and runoff directly reach La Reina gully. Climate is continental Mediterranean with two humid periods (average annual rainfall depth of 556 mm). Rainfall events of high intensity happen in June, July, September and October, with average values of maximum rainfall intensity in 30 min higher than 4 mm h-1 and above 6 mm h-1 in October. Soils are classified as Haplic Calcisols with an average and maximum values of soil organic matter of 1.5% and 2.4% respectively, high carbonate contents (ca. 39%) and texture is silt loam. The field has been cultivated for more than 150 years and consequently the soil is thoroughly mixed in the plough layer (25-30 cm). The cereal field was last harvested in June 2007 and from that date onwards the field has remained fallow for research purposes. Before fallowing the field was managed with minimum tillage during 15 years. Vegetation clearance practices were implemented to prevent scrub growth and so the soil surface has remained almost bare since that date. A total of 222 topsoil (5 cm depth) samples were collected following a regular 5x5 metre grid. Soil nitrogen content (%) was determined by the dry combustion method using a Leco TruSpec carbon and nitrogen analyzer (LECO Corporation, St. Joseph, MI, USA). Soil nitrogen was detected by determining the NOx gas evolved

  5. Effects of rainfall characteristics on infiltration and redistribution patterns in revegetation-stabilized desert ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Ping; Cui, Yan; Pan, Yan-Xia; Li, Xin-Rong; Yu, Z.; Young, M. H.

    2008-08-01

    SummaryRainfall, the dominant source of water replenishment in the semi-arid sand dune area of north-western China, plays an important role in sustaining the desert ecosystem. An experiment to measure water balance associated with infiltration events was conducted on the re-vegetated sand dunes in the Tengger Desert, north-western China. The redistribution of infiltrated moisture in the course of percolation, root extraction, and evapotranspiration pathways was investigated for a period of 45 days during the growing season. Time domain reflectometry probes were inserted horizontally at 12 different depths below the ground surface in the Caragana korshinskii dwarf-shrub community to record volumetric soil moisture at hourly intervals. Rainfall events were sporadic with widely different intensities during the period of the experiment. The presence of vegetation markedly influenced the infiltration and redistribution patterns on the stabilized sand dunes. Infiltration rates varied greatly with individual rainfall quantity and antecedent soil moisture, with drier soil profile facilitating infiltration. The relationship between infiltration rate and rainfall intensity was linear, with infiltration rate at 80% the magnitude of rainfall intensity. Contrasts between the infiltration rate and cumulative infiltration varied with the feature of rainfall events of the vegetation-stabilized desert soil and the un-vegetated bare desert soil indicate that the measured precipitation alone is insufficient to explain the effective rainfall of the studied regions. At rainfall amount <8.2 mm, with rainfall intensity <0.5 mm h -1, no soil moisture was gained for the re-vegetated soil, while for the bare soil the comparable values were <6.4 mm, and <0.7 mm h -1, respectively. Root withdrawal of soil water and evapotranspiration (reaching 69-90% of precipitation) restricted the wetting front penetration for the vegetated soil. In contrast, the bare soil was prone to infiltration zone

  6. Streaming data at the IRIS DMC: collecting, consolidating and re-distribution

    NASA Astrophysics Data System (ADS)

    Trabant, Chad; Stromme, Sandy; Benson, Rick; Ahern, Tim

    2010-05-01

    The IRIS Data Management Center (DMC) began collecting near real-time streams in 2002, within a very short time real-time streams became the largest source of new data for the DMC. The DMC collects data in real-time primarily to streamline the archiving process and allow collection of data not available otherwise. Additionally, data is rapidly available for users and can be redistributed with minimal latency. Currently the DMC is collecting data from over 2.100 stations delivering more than 18.000 channels. At a rate of 33 gigabytes per day the DMC archives 12 terabytes of real-time data per year. Even though this rate of data flow is significant for seismic recordings the volume is not the most challenging aspect of our data collection effort. The real-time data system at the DMC collects data from approximately 100 network operators using 8 different streaming systems utilizing open (e.g. SeedLink, Earthworm, ISI) and proprietary (e.g. Antelope, Reftek, SCREAM!) protocols. The variety and number of connections result in a complex system. All collected data are converted to Mini-SEED if necessary and organized into a Buffer of Uniform Data (BUD). Quality control measurements are performed while data are in the BUD with the results publicly available through a web interface. After settling in the BUD for an average 18 hours data are transferred to the archive in a fully automated process. All open data in the BUD are publicly available using the open SeedLink protocol with minimal additional latency. The DMC's SeedLink service offers users a uniform interface and format for all DMC export data streams. Over 270 unique client connections download 65 gigabytes per day using this service. To handle the scale and dynamic nature of our SeedLink service the DMC has developed high performance server software dedicated to re-distribution of data streams. The DMC is making this software available to promote data exchange and increase availability. This software allows any

  7. Biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo

    NASA Astrophysics Data System (ADS)

    Ponette-González, Alexandra G.; Curran, Lisa M.; Pittman, Alice M.; Carlson, Kimberly M.; Steele, Bethel G.; Ratnasari, Dessy; Mujiman; Weathers, Kathleen C.

    2016-08-01

    Biomass burning plays a critical role not only in atmospheric emissions, but also in the deposition and redistribution of biologically important nutrients within tropical landscapes. We quantified the influence of fire on biogeochemical fluxes of nitrogen (N), phosphorus (P), and sulfur (S) in a 12 ha forested peatland in West Kalimantan, Indonesia. Total (inorganic + organic) N, {{{{NO}}}3}- –N, {{{{NH}}}4}+ –N, total P, {{{{PO}}}4}3- –P, and {{{{SO}}}4}2- –S fluxes were measured in throughfall and bulk rainfall weekly from July 2013 to September 2014. To identify fire events, we used concentrations of particulate matter (PM10) and MODIS Active Fire Product counts within 20 and 100 km radius buffers surrounding the site. Dominant sources of throughfall nutrient deposition were explored using cluster and back-trajectory analysis. Our findings show that this Bornean peatland receives some of the highest P (7.9 kg {{{{PO}}}4}3- –P ha‑1yr‑1) and S (42 kg {{{{SO}}}4}2- –S ha‑1yr‑1) deposition reported globally, and that N deposition (8.7 kg inorganic N ha‑1yr‑1) exceeds critical load limits suggested for tropical forests. Six major dry periods and associated fire events occurred during the study. Seventy-eight percent of fires within 20 km and 40% within 100 km of the site were detected within oil palm plantation leases (industrial agriculture) on peatlands. These fires had a disproportionate impact on below-canopy nutrient fluxes. Post-fire throughfall events contributed >30% of the total inorganic N ({{{{NO}}}3}- –N + {{{{NH}}}4}+ –N) and {{{{PO}}}4}3- –P flux to peatland soils during the study period. Our results indicate that biomass burning associated with agricultural peat fires is a major source of N, P, and S in throughfall and could rival industrial pollution as an input to these systems during major fire years. Given the sheer magnitude of fluxes reported here, fire-related redistribution of nutrients may have significant

  8. Interception loss and rainfall redistribution by three semi-arid growing shrubs in northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Návar, Jose; Bryan, Rorke

    1990-07-01

    Interception loss and rainfall redistribution were measured in individual shrubs of Diospyrus texana, Acacia farnesiana and Prosopis laevigata from a semi-arid vegetal community in northeastern Mexico in the summer of 1987. In this period 230 mm of precipitation were recorded from 17 storms. Net precipitation averaged 167.6 mm, of which throughfall formed 160.5 and stemflow 7.1 mm. Interception loss was 27.2% of the total gross precipitation. Significant differences in stemflow were noted both among species and within the species D. texana. Stemflow inputs averaged 321 and 115 ml min -1 for a 40 mm h -1 simulated storm for the species D. texana and A. farnesiana-P. laevigata, respectively. The theoretical areas and distances over which stemflow spread averaged 0.320 m 2 and 0.115 m 2 and 0.30 and 0.15 m, respectively. These areas were calculated to receive 3030 and 2650 mm as annual precipitation.

  9. Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls.

    PubMed

    Warren, Jeffrey M; Meinzer, Frederick C; Brooks, J Renée; Domec, Jean-Christophe; Coulombe, Rob

    2007-01-01

    Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict seasonal trajectories of HR. We investigated the spatial and temporal variability of HR across multiple years in two old-growth coniferous forest ecosystems with contrasting species and moisture regimes by measurement of soil water content (theta) and water potential (Psi) throughout the upper soil profile, root distribution and conductivity, and relevant climate variables. Large HR variability within sites (0-0.5 mm d(-1)) was attributed to spatial patterns of roots, soil moisture and depletion. HR accounted for 3-9% of estimated total site water depletion seasonally, peaking at 0.16 mm d(-1) (ponderosa pine; Pinus ponderosa) or 0.30 mm d(-1) (Douglas-fir; Pseudotsuga menziesii), then declining as modeled pathway conductance dropped with increasing root cavitation. While HR can vary tremendously within a site, among years and among ecosystems, this variability can be explained by natural variability in Psi gradients and seasonal courses of root conductivity. PMID:17286824

  10. Quantum dynamics simulations of energy redistribution in HO-SO 2

    NASA Astrophysics Data System (ADS)

    Reed, Stewart K.; Glowacki, David R.; Shalashilin, Dmitrii V.

    2010-05-01

    Quantum dynamics simulations of HO-SO 2 using the coupled coherent state methodology are described in detail. Motivated by the assumption of fast intramolecular vibrational energy redistribution (IVR) within the nascent collision complex in measurements of the association rate coefficients using the 'proxy' method, we examine IVR within HO-SO 2. Like our earlier classical dynamics calculations [D.R. Glowacki, S.K. Reed, M.J. Pilling, D.V. Shalashilin, E. Martínez-Núñez, Phys. Chem. Chem. Phys. 11 (2009) 963], the quantum dynamics results suggest that OH vibrational excitation is deactivated within HO-SO 2 prior to its dissociation, although the quantum IVR rates are greater than those in the classical simulations. The ubiquitous question of zero point energy in classical dynamics calculations is also considered. Reducing the quantity of zero point energy included in classical dynamics calculations decreases the HO-SO 2 dissociation rate and increases the deactivation of the OH stretch thereby producing vibrational energy distributions for the dissociated OH that more closely resemble those from the quantum dynamics calculations.

  11. Rock outcrops redistribute water to nearby soil patches in karst landscapes.

    PubMed

    Wang, Dian-Jie; Shen, You-Xin; Huang, Jin; Li, Yu-Hui

    2016-05-01

    The emergence of rock outcrops is very common in terrestrial ecosystems. However, few studies have paid attention to their hydrological role in the redistribution of precipitation, especially in karst ecosystems, in which a large proportion of the surface is occupied by carbonate outcrops. We collected and measured water received by outcrops and its subsequent export to the soil in a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem in Shilin, China. The results indicated that outcrops received a large amount of water and delivered nearly half of it to nearby soil patches by means of runoff. No significant difference was found in the ratio of water received to that exported to the soil by outcrops among the three ecosystems annually. When the outcrop area reaches 70 % of the ground surface, the amount of water received by soil patches from rock runoff will equal that received by precipitation, which means that the soil is exposed to twice as much precipitation. This quantity of water can increase water input to nearby soil patches and create water content heterogeneity among areas with differing rock emergence. PMID:26797951

  12. Surface Dust Redistribution on Mars as Observed by the Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Szwast, M. A.; Richardson, M. I.; Vasavada, A. R.

    2005-01-01

    The global redistribution of dust by the atmosphere is geologically and climatologically important. Dust deposition and removal at the surface represents ongoing sedimentary geology: a vestige of aeolian processes responsible for the concentration of vast dustsheets and potentially for ancient layered units at various locations on Mars. The varying amount of dust on the surface has also long been hypothesized as a factor in determining whether regional or global dust storms occur in a given year. Indeed, the atmosphere has a very short, sub-seasonal time-scale (or memory) and as such, any inter-annual variability in the climate system that is not simply ascribable to stochastic processes, must involve changing conditions on the surface. An excellent, multi-year dataset is provided by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Orbiter Camera Wide Angle imager (MOC-WA). This dataset allows investigation into the degree to which surface dust deposits on Mars really change: over decadal time scales, over the course of the annual cycle, and as a result of global and regional dust storms. The MGS mapping orbit data set extends over almost 3 Martian years at the time of writing. These data sets include one global dust storm and smaller regional storms (one in the first TES mapping year and two in the third).

  13. Selective Membrane Redistribution and Depletion of Gαq-Protein by Pasteurella multocida Toxin.

    PubMed

    Clemons, Nathan C; Luo, Shuhong; Ho, Mengfei; Wilson, Brenda A

    2016-01-01

    Pasteurella multocida toxin (PMT), the major virulence factor responsible for zoonotic atrophic rhinitis, is a protein deamidase that activates the alpha subunit of heterotrimeric G proteins. Initial activation of G alpha-q-coupled phospholipase C-beta-1 signaling by PMT is followed by uncoupling of G alpha-q-dependent signaling, causing downregulation of downstream calcium and mitogenic signaling pathways. Here, we show that PMT decreases endogenous and exogenously expressed G alpha-q protein content in host cell plasma membranes and in detergent resistant membrane (DRM) fractions. This membrane depletion of G alpha-q protein was dependent upon the catalytic activity of PMT. Results indicate that PMT-modified G alpha-q redistributes within the host cell membrane from the DRM fraction into the soluble membrane and cytosolic fractions. In contrast, PMT had no affect on G alpha-s or G beta protein levels, which are not substrate targets of PMT. PMT also had no affect on G alpha-11 levels, even though G alpha-11 can serve as a substrate for deamidation by PMT, suggesting that membrane depletion of PMT-modified G-alpha-q has specificity. PMID:27490568

  14. Linking Populus euphratica Hydraulic Redistribution to Diversity Assembly in the Arid Desert Zone of Xinjiang, China

    PubMed Central

    Yang, Xiao-Dong; Zhang, Xue-Ni; Lv, Guang-Hui; Ali, Arshad

    2014-01-01

    The hydraulic redistribution (HR) of deep-rooted plants significantly improves the survival of shallow-rooted shrubs and herbs in arid deserts, which subsequently maintain species diversity. This study was conducted in the Ebinur desert located in the western margin of the Gurbantonggut Desert. Isotope tracing, community investigation and comparison analysis were employed to validate the HR of Populus euphratica and to explore its effects on species richness and abundance. The results showed that, P. euphratica has HR. Shrubs and herbs that grew under the P. euphratica canopy (under community: UC) showed better growth than the ones growing outside (Outside community: OC), exhibiting significantly higher species richness and abundance in UC than OC (p<0.05) along the plant growing season. Species richness and abundance were significantly logarithmically correlated with the P. euphratica crown area in UC (R2 = 0.51 and 0.84, p<0.001). In conclusion, P. euphratica HR significantly ameliorates the water conditions of the shallow soil, which then influences the diversity assembly in arid desert communities. PMID:25275494

  15. Internest food sharing within wood ant colonies: resource redistribution behavior in a complex system

    PubMed Central

    Robinson, Elva J.H.

    2016-01-01

    Resource sharing is an important cooperative behavior in many animals. Sharing resources is particularly important in social insect societies, as division of labor often results in most individuals including, importantly, the reproductives, relying on other members of the colony to provide resources. Sharing resources between individuals is therefore fundamental to the success of social insects. Resource sharing is complicated if a colony inhabits several spatially separated nests, a nesting strategy common in many ant species. Resources must be shared not only between individuals in a single nest but also between nests. We investigated the behaviors facilitating resource redistribution between nests in a dispersed-nesting population of wood ant Formica lugubris. We marked ants, in the field, as they transported resources along the trails between nests of a colony, to investigate how the behavior of individual workers relates to colony-level resource exchange. We found that workers from a particular nest “forage” to other nests in the colony, treating them as food sources. Workers treating other nests as food sources means that simple, pre-existing foraging behaviors are used to move resources through a distributed system. It may be that this simple behavioral mechanism facilitates the evolution of this complex life-history strategy. PMID:27004016

  16. Modeling solute redistribution and microstructural development in fusion welds of multi-component alloys

    SciTech Connect

    Dupont, J.N.; Robino, C.V.; Newbury, B.D.

    1999-12-15

    Solute redistribution and microstructural evolution have been modeled for gas tungsten arc fusion welds in experimental Ni base superalloys. The multi-component alloys were modeled as a pseudo-ternary {gamma}-Nb-C system. The variation in fraction liquid and liquid composition during the primary L {r{underscore}arrow} {gamma} and eutectic type L {r{underscore}arrow} ({gamma} + NbC) stages of solidification were calculated for conditions of negligible Nb diffusion and infinitely rapid C diffusion in the solid phase. Input parameters were estimated by using the Thermo-Calc NiFe Alloy data base and compared to experimentally determined solidification parameters. The solidification model results provide useful information for qualitatively interpreting the influence of alloy composition on weld microstructure. The quantitative comparisons indicate that, for the alloy system evaluated, the thermodynamic database provides sufficiently accurate values for the distribution coefficients of Nb and C. The calculated position of the {gamma}-NbC two-fold saturation line produces inaccurate results when used as inputs for the model, indicating further refinement to the database is needed for quantitative estimates.

  17. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells

    SciTech Connect

    Badcock, T. J. Dawson, P.; Davies, M. J.; Kappers, M. J.; Massabuau, F. C.-P.; Oehler, F.; Oliver, R. A.; Humphreys, C. J.

    2014-03-21

    We have studied the carrier recombination dynamics in an InGaN/GaN multiple quantum well structure as a function of emission energy and excitation density between temperatures of 10 K and 100 K. Under relatively low levels of excitation, the photoluminescence (PL) intensity and decay time of emission on the high energy side of the luminescence spectrum decrease strongly between 10 K and 50 K. In contrast, for emission detected on the low energy side of the spectrum, the PL intensity and decay time increase over the same temperature range. These results are consistent with a thermally activated carrier redistribution process in which the (temperature dependent) average timescale for carrier transfer into or out of a localised state depends on the energy of the given state. Thus, the transfer time out of shallow, weakly localised states is considerably shorter than the arrival time into more deeply localised states. This picture is consistent with carriers hopping between localisation sites in an uncorrelated disorder potential where the density of localised states decreases with increasing localisation depth, e.g., a exponential or Gaussian distribution resulting from random alloy disorder. Under significantly higher levels of excitation, the increased occupation fraction of the localised states results in a greater average separation distance between unoccupied localised states, causing a suppression of the spectral and dynamic signatures of the hopping transfer of carriers.

  18. Competitive and mutualistic dependencies in multispecies vegetation dynamics enabled by hydraulic redistribution

    NASA Astrophysics Data System (ADS)

    Quijano, Juan C.; Kumar, Praveen; Drewry, Darren T.; Goldstein, Allen; Misson, Laurent

    2012-05-01

    The goal of this study is to understand the interaction between belowground and aboveground ecohydrologic dynamics as facilitated by hydraulic redistribution. We analyze the partitioning of moisture and energy between tall and understory vegetation, and soil evaporation. Both the competitive and facilitative dependencies are examined using a shared resource model where the soil serves as a common reservoir for the interaction between the different vegetation species. The moisture state of the reservoir is altered by the addition and withdrawal by vegetation roots in conjunction with soil-moisture transport. Vertical patterns of soil moisture state and uptake reflect the nonlinear interactions between vegetation species. The study is performed using data from the Blodgett Forest Ameriflux site in the Sierra Nevada Mountains of California. The Mediterranean climate of the region, with wet winters and long dry summers, offers an ideal environment for the study. The results indicate that deep layer uptake of water by the tall vegetation and its release in the shallow layers enhances the productivity of the understory vegetation during the summer. The presence of understory vegetation reduces direct soil-evaporative loss making more moisture available for vegetation which enhances the total ecosystem productivity. The litter layer is also found to play an important role in the partitioning of the water and energy fluxes by damping the radiation reaching the soil and thereby reducing water loss due to soil evaporation.

  19. Selective Membrane Redistribution and Depletion of Gαq-Protein by Pasteurella multocida Toxin

    PubMed Central

    Clemons, Nathan C.; Luo, Shuhong; Ho, Mengfei; Wilson, Brenda A.

    2016-01-01

    Pasteurella multocida toxin (PMT), the major virulence factor responsible for zoonotic atrophic rhinitis, is a protein deamidase that activates the alpha subunit of heterotrimeric G proteins. Initial activation of G alpha-q-coupled phospholipase C-beta-1 signaling by PMT is followed by uncoupling of G alpha-q-dependent signaling, causing downregulation of downstream calcium and mitogenic signaling pathways. Here, we show that PMT decreases endogenous and exogenously expressed G alpha-q protein content in host cell plasma membranes and in detergent resistant membrane (DRM) fractions. This membrane depletion of G alpha-q protein was dependent upon the catalytic activity of PMT. Results indicate that PMT-modified G alpha-q redistributes within the host cell membrane from the DRM fraction into the soluble membrane and cytosolic fractions. In contrast, PMT had no affect on G alpha-s or G beta protein levels, which are not substrate targets of PMT. PMT also had no affect on G alpha-11 levels, even though G alpha-11 can serve as a substrate for deamidation by PMT, suggesting that membrane depletion of PMT-modified G-alpha-q has specificity. PMID:27490568

  20. Redistribution of Ti and Al in deuterium charged TiAl

    NASA Technical Reports Server (NTRS)

    Legzdina, D.; Robertson, I. M.; Birnbaum, H. K.

    1992-01-01

    The redistribution of titanium and aluminum in a single-phase TiAl alloy that has been exposed to a high pressure of deuterium gas at high temperature is studied. The microstructure in the as-received, uncharged condition consisted of single-phase gamma TiAl grains and a random distribution of precipitates. Precipitates were distributed throughout the matrix and along the grain boundaries. The chemistry of the precipitates varied considerably; some were rich in Al, while other were mostly Ti with some Si and Al. The dislocation density in most grains was low, although in a few grains a high dislocation density was observed. FCC deuterides with a lattice parameter of 0.45 nm form in a Ti-52.1Al-2.1Ta (at. pct) alloy after exposure to 1.38 MPa of deuterium gas at 650 C for 213 hr. The structure and lattice parameter are consistent with the formation of Ti(l)D2. The deuterides that form in this alloy are enriched in Ti and deficient in Al and Ta compared to the deuteride-free matrix. Regions of the matrix contiguous with the deuterides have a correspondingly enhanced aluminum and tantalum concentration.

  1. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  2. Effect of a central redistribution of fluid volume on response to lower-body negative pressure.

    PubMed

    Tomaselli, C M; Frey, M A; Kenney, R A; Hoffler, G W

    1990-01-01

    We studied cardiovascular responses to lower-body negative pressure (LBNP) following 1 hour (h) of 6 degrees head-down tilt to determine whether a redistribution of blood volume toward the central circulation modifies the subsequent response to orthostatic stress. Responses of 12 men, ages 30-39 years, were evaluated by electrocardiography, impedance cardiography, sphygmomanometry, and measurement of calf circumference. During the LBNP that followed head-down tilt--as compared with control LBNP (no preceding head-down tilt)--subjects had smaller stroke volume and cardiac output, greater total peripheral resistance, and less calf enlargement. These differences reflect differences in the variables immediately preceding LBNP. Magnitudes of the responses from pre-LBNP to each pressure stage of the LBNP procedure did not differ between protocols. Mean and diastolic arterial pressures were slightly elevated after LBNP-control, but they fell slightly during LBNP post-tilt. These cardiovascular responses to simulated gravitational stress following head-down tilt may reflect the manner in which adaptation to microgravity affects subsequent responses to orthostatic stress on return to Earth. PMID:2302125

  3. Impact of spatial heterogeneity of meteorological forcing on soil moisture redistribution over complex terrain

    NASA Astrophysics Data System (ADS)

    Fernandez, S.; Simoni, S.; Parlange, M.

    2010-09-01

    An experiment was designed in order to capture the spatial heterogeneity of meteorological variables over a complex terrain. The study area is located in the suisse Alps, close to the Gd-St-Bernard pass, in the upper part of the Val de Ferret. The catchment has a total area of 20 km2 and the altitude ranges from 1777 m to 3206 m. Steep complex terrain, covered with snow from November to May and deep gullies are the main features of the study area. 15 meteorological stations equipped with soil sensors (moisture, suction and temperature) were deployed into a network spread over the study area to capture the heterogeneity of the meteorological forcing relevant to evapotranspiration processes and its impact on soil moisture distribution. A soil characterization was also carried out to complement the understanding of soil moisture redistribution processes. Results assess that soil water content heterogeneity is highly affected not only by spatial variability of soil characteristics and morphology but also of precipitation.

  4. Uranium Redistribution Due to Water Table Fluctuations in Sandy Wetland Mesocosms.

    PubMed

    Gilson, Emily R; Huang, Shan; Koster van Groos, Paul G; Scheckel, Kirk G; Qafoku, Odeta; Peacock, Aaron D; Kaplan, Daniel I; Jaffé, Peter R

    2015-10-20

    To understand better the fate and stability of immobilized uranium (U) in wetland sediments, and how intermittent dry periods affect U stability, we dosed saturated sandy wetland mesocosms planted with Scirpus acutus with low levels of uranyl acetate for 4 months before imposing a short drying and rewetting period. Concentrations of U in mesocosm effluent increased after drying and rewetting, but the cumulative amount of U released following the dry period constituted less than 1% of the total U immobilized in the soil during the 4 months prior. This low level of remobilization suggests, and XANES analyses confirm, that microbial reduction was not the primary means of U immobilization, as the U immobilized in mesocosms was primarily U(VI) rather than U(IV). Drying followed by rewetting caused a redistribution of U downward in the soil profile and to root surfaces. Although the U on roots before drying was primarily associated with minerals, the U that relocated to the roots during drying and rewetting was bound diffusely. Results show that short periods of drought conditions in a sandy wetland, which expose reduced sediments to air, may impact U distribution without causing large releases of soil-bound U to surface waters. PMID:26404564

  5. Diesel Exhaust Particle Exposure Causes Redistribution of Endothelial Tube VE-Cadherin

    PubMed Central

    Chao, Ming-Wei; Kozlosky, John; Po, Iris P.; Strickland, Pamela Ohman; Svoboda, Kathy K. H.; Cooper, Keith; Laumbach, Robert; Gordon, Marion K.

    2010-01-01

    Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al., 2008; Venkiteswaran et al., 2002; Villasante et al., 2007). Human umbilical vein endothelial cells (HUVECs) that were pre-formed into capillary-like tube networks in vitro were exposed to DEPs for 24 hr. After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. Since HUVEC tube networks are three-dimensional structures, whether particles entered the endothelial cells or tubular lumens was also examined. The data indicate that translocation of the particles does occur. The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions. PMID:20887764

  6. Analysis of Charge Redistribution During Self-discharge of Double-Layer Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hao, Chenglong; Wang, Xiaofeng; Yin, Yajiang; You, Zheng

    2016-04-01

    Self-discharge is an important factor that severely affects the performance of double-layer supercapacitors. This paper studies the self-discharge behavior of double-layer supercapacitors with experimental and modeling methods. The movement of ions, side-reactions, and instability of the double layer are taken into consideration. The influence of various factors, such as the initial voltage, charge duration, short-term history, and current, on the self-discharge is simulated, showing good agreement with experimental data. The simulation of the ion distribution also gives a detailed explanation of the mechanism of self-discharge and verifies the interpretation of the relaxation process proposed in a recent study. It further clarifies the key role of the charging/discharging current in influencing charge redistribution during self-discharge, which was neglected in previous studies. The results show that the relaxation period during which the supercapacitor loses energy very quickly is due to the unbalanced distribution of ions, and it could be avoided by further charging or by applying a small charging current.

  7. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O

    NASA Astrophysics Data System (ADS)

    Cowan, M. L.; Bruner, B. D.; Huse, N.; Dwyer, J. R.; Chugh, B.; Nibbering, E. T. J.; Elsaesser, T.; Miller, R. J. D.

    2005-03-01

    Many of the unusual properties of liquid water are attributed to its unique structure, comprised of a random and fluctuating three-dimensional network of hydrogen bonds that link the highly polar water molecules. One of the most direct probes of the dynamics of this network is the infrared spectrum of the OH stretching vibration, which reflects the distribution of hydrogen-bonded structures and the intermolecular forces controlling the structural dynamics of the liquid. Indeed, water dynamics has been studied in detail, most recently using multi-dimensional nonlinear infrared spectroscopy for acquiring structural and dynamical information on femtosecond timescales. But owing to technical difficulties, only OH stretching vibrations in D2O or OD vibrations in H2O could be monitored. Here we show that using a specially designed, ultrathin sample cell allows us to observe OH stretching vibrations in H2O. Under these fully resonant conditions, we observe hydrogen bond network dynamics more than one order of magnitude faster than seen in earlier studies that include an extremely fast sweep in the OH frequencies on a 50-fs timescale and an equally fast disappearance of the initial inhomogeneous distribution of sites. Our results highlight the efficiency of energy redistribution within the hydrogen-bonded network, and that liquid water essentially loses the memory of persistent correlations in its structure within 50fs.

  8. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities.

    PubMed

    Xu, Liying; Wu, Xi; Wang, Shaofeng; Yuan, Zidan; Xiao, Fan; Yang, Ming; Jia, Yongfeng

    2016-01-15

    Arsenic speciation and behavior in soil are strongly affected by redox conditions. This work investigated speciation transformation and redistribution of arsenic in soil under anaerobic conditions. The effect of microbial sulfidogenesis on these processes was examined by addition of sulfate to the incubation systems. As(III) was found to be the dominant arsenic species in solution during the process of anaerobic incubation. The change of dissolved As concentration with incubation time showed "M" shaped profiles, e.g. the curves displaying two peaks at approximately 24 h and 240 h for the system with added sulfate. Arsenic was released and reduced to As(III) in the early stage of the incubation, and then resequestered into the solid phase. After excess sulfide was generated, the resequestered arsenic was released again (probably due to the dissolution of arsenic sulfide by dissolved sulfide ions) via the formation of thioarsenite. At the end of the incubation process, most of the dissolved arsenic was removed again from solution. The findings may have important implications to the fate of arsenic in flooded sulfur-rich soils. PMID:26434533

  9. Astral microtubules physically redistribute cortical actin filaments to the incipient contractile ring.

    PubMed

    Tseng, Kuo-Fu; Foss, Margit; Zhang, Dahong

    2012-11-01

    Prior to cell cleavage, cytokinetic proteins are recruited into the nascent actomyosin contractile ring, paving the way for formation of a functional cleavage furrow. Interactions between spindle microtubules and the cell cortex may play a critical role in this recruitment, since microtubules have been shown to affect distribution and activation of cytokinetic proteins within the cortex. However, direct evidence for physical interaction between microtubules and the cortex has been lacking. Here, we probed the physical connection between astral microtubules and cortical actin filaments, by micromanipulating the fluorescently tagged cytoskeleton in living spermatocytes of the grasshopper Melanoplus femurrubrum. When microtubules were tugged with a microneedle, they in turn pulled on cortical actin filaments, interrupting the filaments' journey toward the equator. Further displacement of the actin dragged the cell membrane inward, demonstrating that the cortical actin network physically linked spindle microtubules to the cell membrane. Regional disruption of the connection by breaking spindle microtubules prevented actin accumulation in a segment of the ring, which locally inhibited furrowing. We propose a model in which dynamic astral microtubules physically redistribute cortical actin into the incipient contractile ring. PMID:23027710

  10. A Kennard-Stepanov relation study on redistributional laser cooling in dense gaseous ensembles

    NASA Astrophysics Data System (ADS)

    Christopoulos, Stavros; Saß, Anne; Moroshkin, Peter; Weller, Lars; Cota, Roberto; Gerwers, Benedikt; Knicker, Katharina; Weitz, Martin

    2015-03-01

    We report on experiments investigating laser cooling of atomic gases by collisional redistribution of radiation, a technique applicable to dense mixtures of alkali metals with noble gases. Thermal deflection spectroscopy is one of the methods used to measure the temperature change of the laser-cooled gas. In this work we describe experiments focusing on a different technique for precise determination of the local temperature achieved by the cooling within the gas cell. We investigate the Kennard-Stepanov relation, a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. To this end, absorption and emission spectra of rubidium atoms and dimers in dense argon buffer gas environment have been recorded. We demonstrate experimentally that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled for the collisionally broadened atomic and molecular transitions of the system, which allows for the extraction of the thermodynamic temperature.

  11. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.

    2016-05-01

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  12. Improved performances of AlN/polyimide hybrid film and its application in redistribution layer

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Ding, Guifu; Luo, Jiangbo; Lu, Wen; Zhao, Xiaolin; Cheng, Ping; Wang, Yanlei

    2016-08-01

    The AlN/polyimide (PI) hybrid film was studied as the dielectric layer in the redistribution layer (RDL) in this work. The incorporation of the AlN into the PI matrix was achieved by mechanical ball-milling process. The spin-coating process was used to fabricate the AlN/PI hybrid film, which is compatible with micro-electro-mechanical system (MEMS) technology for fabricating RDL. The AlN/PI hybrid film was characterized by Fourier transform infrared (FTIR) spectrum and thermogravimetric analysis (TGA). The effect of the AlN content on the thermal stability, thermal expansion coefficient, hardness and water adsorption of the AlN/PI hybrid film was studied. The results indicated that the addition of AlN nanoparticles improved the thermal stability and hardness, but decreased the thermal expansion coefficient and water absorption of the pure PI film. As an example of its typical application, the AlN/PI hybrid film with 8 wt.% AlN was patterned using micromachining technology and used as the dielectric layer in RDL successfully. [Figure not available: see fulltext.

  13. Coupled ion redistribution and electronic breakdown in low-alkali boroaluminosilicate glass

    SciTech Connect

    Choi, Doo Hyun; Randall, Clive Furman, Eugene Lanagan, Michael

    2015-08-28

    Dielectrics with high electrostatic energy storage must have exceptionally high dielectric breakdown strength at elevated temperatures. Another important consideration in designing a high performance dielectric is understanding the thickness and temperature dependence of breakdown strengths. Here, we develop a numerical model which assumes a coupled ionic redistribution and electronic breakdown is applied to predict the breakdown strength of low-alkali glass. The ionic charge transport of three likely charge carriers (Na{sup +}, H{sup +}/H{sub 3}O{sup +}, Ba{sup 2+}) was used to calculate the ionic depletion width in low-alkali boroaluminosilicate which can further be used for the breakdown modeling. This model predicts the breakdown strengths in the 10{sup 8}–10{sup 9 }V/m range and also accounts for the experimentally observed two distinct thickness dependent regions for breakdown. Moreover, the model successfully predicts the temperature dependent breakdown strength for low-alkali glass from room temperature up to 150 °C. This model showed that breakdown strengths were governed by minority charge carriers in the form of ionic transport (mostly sodium) in these glasses.

  14. Water and entrapped air redistribution in heterogeneous sand sample: Quantitative neutron imaging of the process

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sobotkova, Martina; Sacha, Jan; Vontobel, Peter; Hovind, Jan

    2015-02-01

    Saturated flow in soil with the occurrence of preferential flow often exhibits temporal changes of saturated hydraulic conductivity even during the time scale of a single infiltration event. These effects, observed in a number of experiments done mainly on heterogeneous soils, are often attributed to the changing distribution of water and air in the sample. We have measured the variation of the flow rates during the steady state stage of the constant head ponded infiltration experiment conducted on a packed sample composed of three different grades of sand. The experiment was monitored by quantitative neutron imaging, which provided information about the spatial distribution of water in the sample. Measurements were taken during (i) the initial stages of infiltration by neutron radiography and (ii) during the steady state flow by neutron tomography. A gradual decrease of the hydraulic conductivity has been observed during the first 4 h of the infiltration event. A series of neutron tomography images taken during the quasi-steady state stage showed the trapping of air bubbles in coarser sand. Furthermore, the water content in the coarse sand decreased even more while the water content in the embedded fine sand blocks gradually increased. The experimental results support the hypothesis that the effect of the gradual hydraulic conductivity decrease is caused by entrapped air redistribution and the build up of bubbles in preferential pathways. The trapped air thus restricts the preferential flow pathways and causes lower hydraulic conductivity.

  15. Thallium redistribution does not predict perioperative cardiac complications following vascular surgery

    SciTech Connect

    Kazmers, A.; Kispert, J.F.; Roitman, L.; Endean, E.D.; Hyde, G.L.; Ryo, U.Y. )

    1991-06-01

    Utility of preoperative stress thallium scintigraphy (STS) was determined in 59 patients, thought to be at increased risk, prior to major vascular surgery from July 1987 to February 1990. Forty-seven had oral dipyridamole and 12 underwent exercise STS. Thallium redistribution (TR) was present in 61% (n = 36); fixed defects were present in 59% (n = 35); and some combination of defects was present in 76% (n = 45). Perioperative cardiac complications (CC = congestive heart failure (n = 3), ventricular arrhythmia (n = 2), and MI (n = 1)) were present in 8.5% (6 CC in 5 patients). Incidence of CC was 8.3% (3/36) in those with TR, and 8.7% (2/23) without TR (relative risk = 0.95). Perioperative MI was present in 2.8% (1/36) with TR vs. 0% (0/23) without. Though mortality was 3.4%, no perioperative deaths were from cardiac disease. Utility of STS is not clearly established for prediction of perioperative cardiac risk after major vascular surgery.

  16. Theoretical investigation of intramolecular vibrational energy redistribution in highly excited HFCO

    NASA Astrophysics Data System (ADS)

    Pasin, Gauthier; Gatti, Fabien; Iung, Christophe; Meyer, Hans-Dieter

    2006-05-01

    The present paper is devoted to the simulations of the intramolecular vibrational energy redistribution (IVR) in HFCO initiated by an excitation of the out-of-plane bending vibration [nν6=2,4,6,…,18,20]. Using a full six-dimensional ab initio potential energy, the multiconfiguration time-dependent Hartree (MCTDH) method was exploited to propagate the corresponding six-dimensional wave packets. This study emphasizes the stability of highly excited states of the out-of-plane bending mode which exist even above the dissociation threshold. More strikingly, the structure of the IVR during the first step of the dynamics is very stable for initial excitations ranging from 2ν6 to 20ν6. This latter result is consistent with the analysis of the eigenstates obtained, up to 10ν6, with the aid of the Davidson algorithm in a foregoing paper [Iung and Ribeiro, J. Chem. Phys. 121, 174105 (2005)]. The present study can be considered as complementary to this previous investigation. This paper also shows how MCTDH can be used to predict the dynamical behavior of a strongly excited system and to determine the energies of the corresponding highly excited states.

  17. Nuclear envelope remodeling during mouse spermiogenesis: Postmeiotic expression and redistribution of germline lamin B3

    SciTech Connect

    Schuetz, Wolfgang; Alsheimer, Manfred; Oellinger, Rupert; Benavente, Ricardo . E-mail: benavente@biozentrum.uni-wuerzburg.de

    2005-07-15

    Lamins are members of a multigene family of structural nuclear envelope (NE) proteins. Differentiated mammalian somatic cells express lamins A, C, B1, and B2. The composition and organization of the nuclear lamina of mammalian spermatogenic cells differ significantly from that of somatic cells as they express lamin B1 as well as two short germ line-specific isoforms, namely lamins B3 and C2. Here we describe in detail the expression pattern and localization of lamin B3 during mouse spermatogenesis. By combining RT-PCR, immunoblotting, and immunofluorescence microscopy, we show that lamin B3 is selectively expressed during spermiogenesis (i.e., postmeiotic stages of spermatogenesis). In round spermatids, lamin B3 is distributed in the nuclear periphery and, notably, also in the nucleoplasm. In the course of spermiogenesis, lamin B3 becomes redistributed as it concentrates progressively to the posterior pole of spermatid nuclei. Our results show that during mammalian spermiogenesis the nuclear lamina is composed of B-type isoforms only, namely the ubiquitous lamin B1 and the germline-specific lamin B3. Lamin B3 is the first example of a mammalian lamin that is selectively expressed during postmeiotic stages of spermatogenesis.

  18. Decadal-scale soil redistribution along hillslopes in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Crouvi, O.; Polyakov, V. O.; Pelletier, J. D.; Rasmussen, C.

    2015-06-01

    This study estimates the relative magnitude of decadal-scale soil redistribution (i.e., soil loss or gain) by slope wash using 137Cs inventories measured in 46 soil profiles at four study sites in the Ft. Irwin area of the Mojave Desert of California, USA. The variability in 137Cs inventories on a <5 m scale suggests that even for the same topographic position, there is large variation in runoff generation and flow continuity. Smaller average 137Cs inventories that are suggestive of higher relative erosion rates are associated with more gently sloping sites that have a lower percentage of surficial rock-fragment and vegetation coverage. Individual 137Cs inventories from all four sites are positively correlated with the percentage of rock fragments in the upper soil profile. The increase in rock-fragment cover (i.e., soil armoring) with increasing slope gradient appears to negate any potential increase in transport effectiveness with increasing slope steepness. This armoring, together with the sandy-loam soil texture characteristic of steeper slopes, hinders runoff and slope-wash erosion. Our findings are supported by soil data that suggest that these patterns are persistent for longer timescales (i.e., centuries and millennia).

  19. Uranium redistribution due to water table fluctuations in sandy wetland mesocosms

    SciTech Connect

    Gilson, Emily R.; Huang, Shan; Koster van Groos, Paul G.; Scheckel, Kirk G.; Qafoku, Odeta; Peacock, Aaron D.; Kaplan, Daniel I.; Jaffe, Peter R.

    2015-10-20

    In order to better understand the fate and stability of immobilized uranium (U) in wetland sediments, and how intermittent dry periods affect U stability, we dosed saturated wetland mesocosms planted with Scirpus acutus with low levels of uranyl acetate for 4 months before imposing a short drying and rewetting period. Concentrations of U in mesocosm effluent increased after drying and rewetting, but the cumulative amount of U released following the dry period constituted less than 1% of the total U immobilized in the soil during the 4 months prior. This low level of remobilization suggests, and XAS analyses confirm, that microbial reduction was not the primary means of U immobilization, as the U immobilized in mesocosms was primarily U(VI) rather than U(IV). Drying followed by re-wetting caused a redistribution of U downward in the soil profile and on to root surfaces. While the U on roots before drying was primarily associated with minerals, the U that relocated to the roots during drying and rewetting was bound diffusely to root surfaces. Results show that short periods of drought conditions in a wetland, which expose reduced sediments to air, may impact U distribution, but these conditions may not cause large releases of soil-bound U from planted wetlands to surface waters.

  20. Redistribution of Ti and Al in deuterium charged TiAl

    SciTech Connect

    Legzdina, D.; Robertson, I.M.; Birnbaum, H.K. )

    1992-06-01

    The redistribution of titanium and aluminum in a single-phase TiAl alloy that has been exposed to a high pressure of deuterium gas at high temperature is studied. The microstructure in the as-received, uncharged condition consisted of single-phase gamma TiAl grains and a random distribution of precipitates. Precipitates were distributed throughout the matrix and along the grain boundaries. The chemistry of the precipitates varied considerably; some were rich in Al, while other were mostly Ti with some Si and Al. The dislocation density in most grains was low, although in a few grains a high dislocation density was observed. FCC deuterides with a lattice parameter of 0.45 nm form in a Ti-52.1Al-2.1Ta (at. pct) alloy after exposure to 1.38 MPa of deuterium gas at 650 C for 213 hr. The structure and lattice parameter are consistent with the formation of Ti(l)D2. The deuterides that form in this alloy are enriched in Ti and deficient in Al and Ta compared to the deuteride-free matrix. Regions of the matrix contiguous with the deuterides have a correspondingly enhanced aluminum and tantalum concentration. 10 refs.

  1. Postmortem carisoprodol and meprobamate concentrations in blood and liver: lack of significant redistribution.

    PubMed

    McIntyre, Iain M; Sherrard, James; Lucas, Jonathan

    2012-04-01

    Carisoprodol is a therapeutic and occasionally abused centrally acting muscle relaxant. We compare central blood and liver concentrations of carisoprodol and the metabolite meprobamate to concentrations in peripheral blood in 11 medical examiner cases. Specimens were initially screened for alcohol and simple volatiles by gas chromatography (GC)-flame ionization detection headspace analysis, enzyme-linked immunosorbent array for drugs of abuse, and therapeutic drugs by GC-mass spectrometry (MS). Carisoprodol, when detected by the therapeutic drug screen, was confirmed and quantified by a specific GC-MS procedure. The results suggest that when ingested with other medications, carisoprodol may be a contributing factor in death, even when present at therapeutic concentrations. Considering the cases studied, together with previously published therapeutic and fatal concentrations, blood carisoprodol concentrations greater than 15 mg/L and liver concentrations greater than 50 mg/kg may be considered excessive and potentially fatal. Carisoprodol central blood to peripheral blood ratios averaged 1.31 + 0.33 (mean ± standard deviation), and liver to peripheral blood, 2.83 ± 1.51. Meprobamate central blood to peripheral blood ratios averaged 0.92 ± 0.22, and liver to peripheral blood, 1.25 ± 0.69. The low liver to peripheral blood ratio (less than 5), taken together with the low central blood to peripheral blood ratio, is an indicator that both carisoprodol and meprobamate lack the potential to exhibit postmortem redistribution. PMID:22417833

  2. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone.

    PubMed

    Kechavarzi, C; Soga, K; Illangasekare, T H

    2005-02-01

    A quantitative two-dimensional laboratory experiment was conducted to investigate the immiscible flow of a light non-aqueous phase liquid (LNAPL) in the vadose zone. An image analysis technique was used to determine the two-dimensional saturation distribution of LNAPL, water and air during LNAPL infiltration and redistribution. Vertical water saturation variations were also continuously monitored with miniature resistivity probes. LNAPL and water pressures were measured using hydrophobic and hydrophilic tensiometers. This study is limited to homogeneous geological conditions, but the unique experimental methods developed will be used to examine more complex systems. The pressure measurements and the quantification of the saturation distribution of all the fluids in the entire flow domain under transient conditions provide quantitative data essential for testing the predictive capability of numerical models. The data are used to examine the adequacy of the constitutive pressure-saturation relations that are used in multiphase flow models. The results indicate that refinement of these commonly used hydraulic relations is needed for accurate model prediction. It is noted in particular that, in three-fluid phase systems, models should account for the existence of a residual NAPL saturation occurring after NAPL drainage. This is of notable importance because residual NAPL can act as a non negligible persistent source of contamination. PMID:15683881

  3. Evidence of redistribution of cerebral blood flow during treatment for an intracranial arteriovenous malformation

    SciTech Connect

    Batjer, H.H.; Purdy, P.D.; Giller, C.A.; Samson, D.S. )

    1989-10-01

    The presence of an intracranial arteriovenous malformation has a dramatic impact on local circulatory dynamics. Treatment of some arteriovenous malformations can result in disastrous hyperemic states caused by redistribution of previously shunted blood. This report describes serial hemodynamic measurements of both cerebral blood flow and flow velocity in 3 patients during treatment for arteriovenous malformations. Measurements of cerebral blood flow were made by computed tomographic scan employing the stable xenon inhalation technique; flow velocity, including autoregulatory characteristics, was measured by transcranial Doppler ultrasonogram. Substantial hyperemia developed in one patient (Case 1) after resection and in another (Case 3) after embolization. Embolization resulted in restoration of normal regional cerebral blood flow in a patient who demonstrated hypoperfusion before treatment (Case 2). In Patient 1, postoperative hyperemia was associated with persistently elevated flow velocities, and may have been accompanied by hemispheric neurological deficits. Sequential hemodynamic measurements may predict patients at risk of perioperative complications, and may become useful clinical guidelines for the extent and timing of embolization and for the timing of surgery after intracranial hemorrhage or preoperative embolization procedures.

  4. Modeling hydraulic redistribution and ecosystem response to droughts over the Amazon basin using Community Land Model 4.0 (CLM4)

    NASA Astrophysics Data System (ADS)

    Yan, Binyan; Dickinson, Robert E.

    2014-11-01

    Hydraulic redistribution is the process of soil water transport through the low-resistance pathway provided by plant roots. It has been observed in field studies and proposed to be one of the processes that enable the Amazon rainforest to resist periodical dry spells without experiencing water limitations. How and to what extent hydraulic redistribution may increase vegetation resistance to longer or more severe droughts than seasonal dryness have not been investigated yet, which is the focus of this study. The artificially prolonged drought produced by the rainfall exclusion experiment is used as an example of long drought, and the 2005 drought is used as a severe drought. The parameterization of hydraulic redistribution proposed by Ryel et al. (2002) was incorporated into the Community Land Model version 4 (CLM4). Three paired numerical experiments were conducted, one set using the default model (CTL) and the other using the model with considerations of hydraulic redistribution (HR). Results show that the vegetation response (including evapotranspiration, biomass, and leaf area index (LAI)) to dryness of all the three types is better captured with hydraulic redistribution incorporated. Plants are more resistant to dryness when hydraulic redistribution increases plant water availability and thus facilitates their growth. When a drought is long lasting, the vegetation response is delayed by hydraulic redistribution. Therefore, if a drought ends earlier than permanent damage is made, the magnitude of vegetation response will be lowered by this mechanism, i.e., the vegetation will be more resistant to dryness.

  5. FAST TRACK COMMUNICATION: Inhomogeneous charge redistribution in Xe clusters exposed to an intense extreme ultraviolet free electron laser

    NASA Astrophysics Data System (ADS)

    Iwayama, H.; Sugishima, A.; Nagaya, K.; Yao, M.; Fukuzawa, H.; Motomura, K.; Liu, X.-J.; Yamada, A.; Wang, C.; Ueda, K.; Saito, N.; Nagasono, M.; Tono, K.; Yabashi, M.; Ishikawa, T.; Ohashi, H.; Kimura, H.; Togashi, T.

    2010-08-01

    The emission of highly charged ions from Xe clusters exposed to intense extreme ultraviolet laser pulses (λ ~ 52 nm) from the free electron laser in Japan was investigated using ion momentum spectroscopy. With increasing average cluster size, we observed multiply charged ions Xez + up to z = 3. From kinetic energy distributions, we found that multiply charged ions were generated near the cluster surface. Our results suggest that charges are inhomogeneously redistributed in the cluster to lower the total energy stored in the clusters.

  6. Restructuring and redistribution of actinides in Am-MOX fuel during the first 24 h of irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kosuke; Miwa, Shuhei; Sekine, Shin-ichi; Yoshimochi, Hiroshi; Obayashi, Hiroshi; Koyama, Shin-ichi

    2013-09-01

    In order to confirm the effect of minor actinide additions on the irradiation behavior of MOX fuel pellets, 3 wt.% and 5 wt.% americium-containing MOX (Am-MOX) fuels were irradiated for 10 min at 43 kW/m and for 24 h at 45 kW/m in the experimental fast reactor Joyo. Two nominal values of the fuel pellet oxygen-to-metal ratio (O/M), 1.95 and 1.98, were used as a test parameter. Emphasis was placed on the behavior of restructuring and redistribution of actinides which directly affect the fuel performance and the fuel design for fast reactors. Microstructural evolutions in the fuels were observed by optical microscopy and the redistribution of constituent elements was determined by EPMA using false color X-ray mapping and quantitative point analyses. The ceramography results showed that structural changes occurred quickly in the initial stage of irradiation. Restructuring of the fuel from middle to upper axial positions developed and was almost completed after the 24-h irradiation. No sign of fuel melting was found in any of the specimens. The EPMA results revealed that Am as well as Pu migrated radially up the temperature gradient to the center of the fuel pellet. The increase in Am concentration on approaching the edge of the central void and its maximum value were higher than those of Pu after the 10-min irradiation and the difference was more pronounced after the 24-h irradiation. The increment of the Am and Pu concentrations due to redistribution increased with increasing central void size. In all of the specimens examined, the extent of redistribution of Am and Pu was higher in the fuel of O/M ratio of 1.98 than in that of 1.95.

  7. Linking spatial patterns of soil redistribution traced with 137Cs and soil nutrients in a Mediterranean mountain agroecosystem (NE Spain)

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon

  8. An Integrated Model of the Cardiovascular and Central Nervous Systems for Analysis of Microgravity Induced Fluid Redistribution

    NASA Technical Reports Server (NTRS)

    Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.

    2015-01-01

    A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.

  9. Merging a Terrain-Based Parameter with Drifting Snow Fluxes for Assessing Snow Redistribution in Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Heiser, Micha; Guyomarc'h, Gilbert; Nishimura, Kouichi

    2016-04-01

    Wind and the associated snow transport are dominating factors determining the snow distribution and accumulation in alpine areas. These factors result in a high spatial variability of snow heights that is difficult to evaluate and quantify. We merge a terrain-based parameter Sxm, which characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, with snow particle counter (SPC) data. SPC estimate the snow flux, the mass of drifting snow particles per time and area. From the SPCs' point measurements of horizontal snow flux, a quantity of transported snow is derived, which is distributed over the terrain in dependency of Sxm. Estimated changes in snow heights due to wind redistribution are compared with measured changes, obtained with terrestrial laser scanning (TLS). Data and results are from the Col du Lac Blanc research site in the French Alps. We use a high raster resolution of 1 m, which is required when assessing the snow-redistribution situation in highly structured terrain or in the starting zones of small and medium-sized avalanches. Results show that the model works in principle. It could reproduce patterns of snow redistribution and estimate changes in snow heights reasonably well, as shown by good regression quality (r² values of 0.60 to 0.76). The derivation of Sxm and the amount of transport have shown to be not generally applicable, however, but rather are formulations that must be calibrated when applied in studies with other terrain and weather characteristics.

  10. FSH regulates fat accumulation and redistribution in aging through the Gαi/Ca2+/CREB pathway

    PubMed Central

    Liu, Xin-Mei; Chan, Hsiao Chang; Ding, Guo-Lian; Cai, Jie; Song, Yang; Wang, Ting-Ting; Zhang, Dan; Chen, Hui; Yu, Mei Kuen; Wu, Yan-Ting; Qu, Fan; Liu, Ye; Lu, Yong-Chao; Adashi, Eli Y; Sheng, Jian-Zhong; Huang, He-Feng

    2015-01-01

    Increased fat mass and fat redistribution are commonly observed in aging populations worldwide. Although decreased circulating levels of sex hormones, androgens and oestrogens have been observed, the exact mechanism of fat accumulation and redistribution during aging remains obscure. In this study, the receptor of follicle-stimulating hormone (FSH), a gonadotropin that increases sharply and persistently with aging in both males and females, is functionally expressed in human and mouse fat tissues and adipocytes. Follicle-stimulating hormone was found to promote lipid biosynthesis and lipid droplet formation; FSH could also alter the secretion of leptin and adiponectin, but not hyperplasia, in vitro and in vivo. The effects of FSH are mediated by FSH receptors coupled to the Gαi protein; as a result, Ca2+ influx is stimulated, cAMP-response-element-binding protein is phosphorylated, and an array of genes involved in lipid biosynthesis is activated. The present findings depict the potential of FSH receptor-mediated lipodystrophy of adipose tissues in aging. Our results also reveal the mechanism of fat accumulation and redistribution during aging of males and females. PMID:25754247

  11. Large wood recruitment and redistribution in headwater streams in the southern Oregon Coast Range, U.S.A

    USGS Publications Warehouse

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Large wood recruitment and redistribution mechanisms were investigated in a 3.9 km2 basin with an old-growth Pseudotsuga menziesii (Mirb.) Franco and Tsuga heterophylla (Raf.) Sarg. forest, located in the southern Coast Range of Oregon. Stream size and topographic setting strongly influenced processes that delivered wood to the channel network. In small colluvial channels draining steep hillslopes, processes associated with slope instability dominated large wood recruitment. In the larger alluvial channel, windthrow was the dominant recruitment process from the local riparian area. Consequently, colluvial channels received wood from further upslope than the alluvial channel. Input and redistribution processes influenced piece location relative to the direction of flow and thus, affected the functional role of wood. Wood recruited directly from local hillslopes and riparian areas was typically positioned adjacent to the channel or spanned its full width, and trapped sediment and wood in transport. In contrast, wood that had been fluvially redistributed was commonly located in mid-channel positions and was associated with scouring of the streambed and banks. Debris flows were a unique mechanism for creating large accumulations of wood in small streams that lacked the capacity for abundant fluvial transport of wood, and for transporting wood that was longer than the bank-full width of the channel.

  12. Effects of Detergents on the Redistribution of Gangliosides and GPI-anchored Proteins in Brain Tissue Sections

    PubMed Central

    Heffer-Lauc, Marija; Viljetiæ, Barbara; Vajn, Katarina; Schnaar, Ronald L.; Lauc, Gordan

    2008-01-01

    SUMMARY Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins contain lipid tails that tether them to the outer side of the cell membrane. This mode of association with the cell membrane enables them to take part in the organization of lipid rafts, but it also permits gangliosides and GPI-anchored proteins to be actively released from one cell and inserted into the membrane of another cell. Recently, we reported that under conditions of lipid raft isolation, Triton X-100 causes significant redistribution of both gangliosides and GPI-anchored proteins. Aiming to find a less disruptive detergent, we evaluated the effects of CHAPS, Saponin, deoxycholic acid, Trappsol, Tween 20, Triton X-100, Brij 96V, Brij 98, and SDS on brain tissue sections. At room temperature, all detergents (1% concentration) extracted significant amounts of both gangliosides and Thy-1. At 4C, the extraction was weaker, but Triton X-100, CHAPS, and deoxycholic acid caused significant redistribution of GD1a and Thy-1 from gray matter into the white matter. Both redistribution and extraction were significantly augmented when sections were incubated with detergents in the presence of primary antibodies. Of the nine tested detergents, none is the ideal choice. However, Brij 96V appears to be able to sufficiently reveal myelin epitopes while causing the least amount of artifacts. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. PMID:17409378

  13. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    NASA Astrophysics Data System (ADS)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  14. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    SciTech Connect

    Lawrence, Paul; Schafer, Elizabeth A.; Rieder, Elizabeth

    2012-03-30

    Picornavirus infection can lead to disruption of nuclear pore traffic, shut-off of cell translation machinery, and cleavage of proteins involved in cellular signal transduction and the innate response to infection. Here, we demonstrated that the FMDV 3C{sup pro} induced the cleavage of nuclear RNA-binding protein Sam68 C-terminus containing the nuclear localization sequence (NLS). Consequently, it stimulated the redistribution of Sam68 to the cytoplasm. The siRNA knockdown of Sam68 resulted in a 1000-fold reduction in viral titers, which prompted us to study the effect of Sam68 on FMDV post-entry events. Interestingly, Sam68 interacts with the internal ribosomal entry site within the 5 Prime non-translated region of the FMDV genome, and Sam68 knockdown decreased FMDV IRES-driven activity in vitro suggesting that it could modulate translation of the viral genome. The results uncover a novel role for Sam68 in the context of picornaviruses and the proteolysis of a new cellular target of the FMDV 3C{sup pro}.

  15. Redistribution of Ionotropic Glutamate Receptors Detected by Laser Microdissection of the Rat Dentate Gyrus 48 h following LTP Induction In Vivo

    PubMed Central

    Kennard, Jeremy T. T.; Guévremont, Diane; Mason-Parker, Sara E.; Abraham, Wickliffe C.; Williams, Joanna M.

    2014-01-01

    The persistence and input specificity of long-term potentiation (LTP) make it attractive as a mechanism of information storage. In its initial phase, both in vivo and in vitro studies have shown that LTP is associated with increased membrane localization of AMPA receptor subunits, but the molecular basis of LTP maintenance over the long-term is still unclear. We have previously shown that expression of AMPA and NMDA receptor subunits is elevated in whole homogenates prepared from dentate gyrus 48 h after LTP induction in vivo. In the present study, we utilized laser microdissection (LMD) techniques to determine whether AMPA and NMDA receptor upregulation occurs specifically in the stimulated regions of the dentate gyrus dendritic arbor. Receptor proteins GluN1, GluA1 and GluA2, as well as postsynaptic density protein of 95 kDa and tubulin were detected by Western blot analysis in microdissected samples. Gradients of expression were observed for GluN1 and GluA2, decreasing from the inner to the outer zones of the molecular layer, and were independent of LTP. When induced at medial perforant path synapses, LTP was associated with an apparent specific redistribution of GluA1 and GluN1 to the middle molecular layer that contains these synapses. These data indicate that glutamate receptor proteins are delivered specifically to dendritic regions possessing LTP-expressing synapses, and that these changes are preserved for at least 48 h. PMID:24667777

  16. The transition from two-dimensional to three-dimensional waves in falling liquid films: Wave patterns and transverse redistribution of local flow rates

    NASA Astrophysics Data System (ADS)

    Kharlamov, S. M.; Guzanov, V. V.; Bobylev, A. V.; Alekseenko, S. V.; Markovich, D. M.

    2015-11-01

    This article presents the results of experimental investigations of the process of transition from two-dimensional (2D) to three-dimensional (3D) waves in liquid films falling down a vertical plate. The method of laser induced fluorescence was used to obtain instant shapes of three dimensional waves and to investigate the regularities of formation of 3D wave patterns arising due to transverse instability of 2D waves. The obtained results were compared to the results from the published literature on the modeling of 3D wave regimes of film flow. Although many details of 3D wave patterns correspond well, there are a few significant distinctions between our experiments and modeling. In particular, during 2D-3D wave transition, we observed a strong transverse redistribution of liquid leading to the formation of rivulets on the surface of isothermal liquid film, which is a phenomenon not described previously. Possible discrepancies between modeling and experiments, including applicability of boundary layer models and downstream periodic boundary conditions, are discussed. The authors hope that the results presented in the article are of interest not only for modeling of film flows but also for practical applications because at large distances from the film inlet due to 2D-3D wave transition the local flow rates can differ several times at the transverse distances of about 1 cm, which is an effect that cannot be neglected.

  17. The distribution and fluvial redistribution of soil organic carbon in semiarid rangelands

    NASA Astrophysics Data System (ADS)

    Cunliffe, Andrew; Puttock, Alan; Anderson, Karen; Brazier, Richard

    2014-05-01

    Compared to other terrestrial biomes, the carbon dynamics of drylands have attracted relatively little attention, perhaps due to their characteristically low primary productivity, low soil organic carbon (OC) contents and slow OC turnover rates. However, covering approximately 40% of the land surface, drylands represent a significant component of the global terrestrial carbon sink. Our study examines the distribution and fluvial redistribution of particulate-associated OC over a dynamic grass to shrub ecotone in semiarid central New Mexico, USA. Surface soil (0-0.05 m) samples from beneath different vegetation covers across the ecotone were collected and physically fractionated by density (>1 g ml) and particle size (one phi intervals from <0.0625 to >4 mm, with no deliberate dispersion of aggregates). There were significant (P<0.05) differences in OC concentration between different particle-size fractions, with peaks in the silt-clay (<0.0625 mm) fraction, and, unexpectedly, in the three coarse-medium sand (2-1, 1-0.5, and 0.5-0.25 mm) fractions. As soil erosion by runoff is particle size-selective, this suggests estimating erosional carbon fluxes as a function of total sediment flux may be overly simplistic. Given that many soil erosion models already explicitly consider the transport of several particle size classes, we believe that the results presented here justify the particle-size variant parameterisation of OC concentration, which we are currently working to implement. Importantly, both of the coarsest (>4 and 4-2 mm) fractions had OC concentrations comparable to the <2 mm average, attributed to the aggradation of finer primary particles which suggests that, in dryland soils at least, the current practice of ignoring the >2 mm fraction may underestimate the magnitude of the soil OC sink. In addition to topsoil characterisation, we monitored natural erosion events from four 300 m2 runoff plots over four monsoon seasons, capturing all eroded sediment which

  18. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    .12 Gy(-1) for protons), which suggests that the higher level of survival of gamma-irradiated cells could be attributed to the persistence of nonlethally irradiated thyrocytes and/or the capacity to repair damage more effectively than cells exposed to equal physical doses of protons. The final assessment in this study was radiation-induced cell cycle phase redistribution. Gamma rays and protons produced a similar dose-dependent redistribution toward a predominantly G(2)-phase population. From our cumulative results, it seems likely that a majority of the proton-irradiated cells would not continue to divide. In conclusion, these findings suggest that there are quantitative and qualitative differences in the biological effects of proton beams and gamma rays. These differences could be due to structured energy deposition from the tracks of primary protons and the associated high-LET secondary particles produced in the targets. The results suggest that a simple dose-equivalent approach to dosimetry may be inadequate to compare the biological responses of cells to photons and protons.

  19. Enduring legacy of a toxic fan via episodic redistribution of California gold mining debris.

    PubMed

    Singer, Michael Bliss; Aalto, Rolf; James, L Allan; Kilham, Nina E; Higson, John L; Ghoshal, Subhajit

    2013-11-12

    The interrelationships between hydrologically driven evolution of legacy landscapes downstream of major mining districts and the contamination of lowland ecosystems are poorly understood over centennial time scales. Here, we demonstrate within piedmont valleys of California's Sierra Nevada, through new and historical data supported by modeling, that anthropogenic fans produced by 19th century gold mining comprise an episodically persistent source of sediment-adsorbed Hg to lowlands. Within the enormous, iconic Yuba Fan, we highlight (i) an apparent shift in the relative processes of fan evolution from gradual vertical channel entrenchment to punctuated lateral erosion of fan terraces, thus enabling entrainment of large volumes of Hg-laden sediment during individual floods, and (ii) systematic intrafan redistribution and downstream progradation of fan sediment into the Central Valley, triggered by terrace erosion during increasingly long, 10-y flood events. Each major flood apparently erodes stored sediment and delivers to sensitive lowlands the equivalent of ~10-30% of the entire postmining Sierran Hg mass so far conveyed to the San Francisco Bay-Delta (SFBD). This process of protracted but episodic erosion of legacy sediment and associated Hg is likely to persist for >10(4) y. It creates, within an immense swath of river corridor well upstream of the SFBD, new contaminated floodplain surfaces primed for Hg methylation and augments/replenishes potential Hg sources to the SFBD. Anticipation, prediction, and management of toxic sediment delivery, and corresponding risks to lowland ecology and human society globally, depend on the morphodynamic stage of anthropogenic fan evolution, synergistically coupled to changing frequency of and duration extreme floods. PMID:24167273

  20. Time-Variable Gravity Signal due to Extratropic Pacific Water Mass Redistribution

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Boy, J. -P.; Cox, C. M.; Au, A. Y.

    2003-01-01

    Using the satellite-laser-ranging (SLR) data, Cox and Chao [2002] reported the detection of a large post-1998 anomaly (in the form of a positive jump) in the time series of Earth s lowest-degree gravity harmonic 52, or the dynamic oblateness. Among several groups now examining the mass redistribution in the global geophysical fluids in search of the cause(s), we report here a temporally coinciding anomalies found in the extratropic north + south Pacific basins. Clearly seen in the leading EOFPC mode for extratropic Pacific, these anomalies occurred in sea-surface height, sea-surface temperature, and temperature- and salinity-depth profiles. We based our analysis on two different data sources: TOPEX/Poseidon altimetry, and the ECCO ocean general circulation model output assimilating T/P data. The magnitude of these changes, when converted to equivalent J2 change, appears to be a few times too small to explain the observed J2 directly. These findings, and the fact that the anomalies occurred following the strong 1997-98 El Nino, suggest strong geophysical connection of the interannual-to-decadal variation of 52 with the Pacific Decadal Oscillation (PDO) and the ultimate global-change processes that cause PDO. More work is underway, and additional independent data sources are examined, paying close attention to the fact that the J2 anomaly has been reversing back to normal since 2001. These include: (1) cryospheric contributions (melting of glaciers and ice sheets); (2) land hydrological contributions; (3) polar sea influences ( e g , via deep flow); (4) fluid flow in Earth's core; (5) time-variable gravity signals from SLR in higher harmonic degree/order, including J3,J4, (2,1), and (2,2) coefficients, considering their lower signal-to-noise ratios; (6) Earth rotation data in terms of length-of-day and polar motion.