Science.gov

Sample records for induces fodrin redistribution

  1. Bombardment-induced segregation and redistribution

    SciTech Connect

    Lam, N.Q.; Wiedersich, H.

    1986-04-01

    During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilbrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed. 74 refs., 7 figs., 1 tab.

  2. Gelation and fodrin purification from rat brain extracts.

    PubMed

    Levilliers, N; Péron-Renner, M; Coffe, G; Pudles, J

    1986-06-01

    Extracts from rat brain tissue have been shown to give rise to a gel which exhibits the following features. It is mainly enriched in actin and in a high-molecular-weight protein with polypeptide chains of 235 and 240 kDa, which we identified as fodrin. Tubulin is also a major component of the gel but it appears to be trapped non-specifically during the gelation process. Gelation is pH-, ionic strength- and Ca2+-concentration-dependent, and is optimal under the conditions which promote the interaction between polymerized actin and fodrin. In a similar way to that described for the purification of rat brain actin (Levilliers, N., Péron-Renner, M., Coffe, G. and Pudles, J. (1984) Biochimie 66, 531-537), we used the gelation system as a selective means of recovering fodrin from the mixture of a low-ionic-strength extract from whole rat brain and a high-ionic-strength extract of the particulate fraction. From this gel, fodrin was purified with a good yield by a simple procedure involving gel dissociation in 0.5 M KCl and depolymerization in 0.7 M KI, Bio-Gel A-15m chromatography, followed by ammonium sulfate precipitation. PMID:3707993

  3. The prototypical 4.1R-10-kDa domain and the 4.1g-10-kDa paralog mediate fodrin-actin complex formation.

    PubMed

    Kontrogianni-Konstantopoulos, A; Frye, C S; Benz, E J; Huang, S C

    2001-06-01

    A complex family of 4.1R isoforms has been identified in non-erythroid tissues. In this study we characterized the exonic composition of brain 4.1R-10-kDa or spectrin/actin binding (SAB) domain and identified the minimal sequences required to stimulate fodrin/F-actin association. Adult rat brain expresses predominantly 4.1R mRNAs that carry an extended SAB, consisting of the alternative exons 14/15/16 and part of the constitutive exon 17. Exon 16 along with sequences carried by exon 17 is necessary and sufficient to induce formation of fodrin-actin-4.1R ternary complexes. The ability of the respective SAB domains of 4.1 homologs to sediment fodrin/actin was also investigated. 4.1G-SAB stimulates association of fodrin/actin, although with an approximately 2-fold reduced efficiency compared with 4.1R-10-kDa, whereas 4.1N and 4.1B do not. Sequencing of the corresponding domains revealed that 4.1G-SAB carries a cassette that shares significant homology with 4.1R exon 16, whereas the respective sequence is divergent in 4.1N and absent from brain 4.1B. An approximately 150-kDa 4.1R and an approximately 160-kDa 4.1G isoforms are present in PC12 lysates that occur in vivo in a supramolecular complex with fodrin and F-actin. Moreover, proteins 4.1R and 4.1G are distributed underneath the plasma membrane in PC12 cells. Collectively, these observations suggest that brain 4.1R and 4.1G may modulate the membrane mechanical properties of neuronal cells by promoting fodrin/actin association. PMID:11274145

  4. Estradiol induces functional inactivation of p53 by intracellular redistribution.

    PubMed

    Molinari, A M; Bontempo, P; Schiavone, E M; Tortora, V; Verdicchio, M A; Napolitano, M; Nola, E; Moncharmont, B; Medici, N; Nigro, V; Armetta, I; Abbondanza, C; Puca, G A

    2000-05-15

    Estrogen treatment of MCF-7 cells grown in serum-free medium induced a modification of the intracellular distribution of p53 protein. Western blot analysis and immunofluorescence staining showed that p53 was localized in the nucleus of untreated cell and that after 48 h of hormone treatment, it was mostly localized in the cytoplasm. This effect was blocked by the antiestrogen ICI182,780. Intracellular redistribution of p53 was correlated to a reduced expression of the WAF1/CIP1 gene product and to the presence of degradation fragments of p53 in the cytosol. Estradiol treatment prevented the growth inhibition induced by oligonucleotide transfection, simulating DNA damage. This observation indicated that the wild-type p53 gene product present in the MCF-7 cell could be inactivated by estradiol through nuclear exclusion to permit the cyclin-dependent phosphorylation events leading to the G1-S transition. In addition, the estradiol-induced inactivation of p53 could be involved in the tumorigenesis of estrogen-dependent neoplasm. PMID:10825127

  5. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.

    PubMed

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. PMID:27181354

  6. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    SciTech Connect

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-14

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO{sub 2} (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  7. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    NASA Astrophysics Data System (ADS)

    Josefsson, Gabriella; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel; Gamstedt, E. Kristofer

    2015-06-01

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  8. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    SciTech Connect

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  9. Au and Ti induced charge redistributions on monolayer WS2

    NASA Astrophysics Data System (ADS)

    Zhu, Hui-Li; Yang, Wei-Huang; Wu, Ya-Ping; Lin, Wei; Kang, Jun-Yong; Zhou, Chang-Jie

    2015-07-01

    By using the first-principles calculations, structural and electronic properties of Au and Ti adsorbed WS2 monolayers are studied systematically. For Au-adsorbed WS2, metallic interface states are induced in the middle of the band gap across the Fermi level. These interface states origin mainly from the Au-6s states. As to the Ti adsorbed WS2, some delocalized interface states appear and follow the bottom of conduction band. The Fermi level arises into the conduction band and leads to the n-type conducting behavior. The n-type interface states are found mainly come from the Ti-3d and W-5d states due to the strong Ti-S hybridization. The related partial charge densities between Ti and S atoms are much higher and increased by an order of magnitude as compared with that of Au-adsorbed WS2. Therefore, the electron transport across the Ti-adsorbed WS2 system is mainly by the resonant transport, which would further enhances the electronic transparency when monolayer WS2 contacts with metal Ti. These investigations are of significant importance in understanding the electronic properties of metal atom adsorption on monolayer WS2 and offer valuable references for the design and fabrication of 2D nanodevices. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321102, 11304257, and 61227009), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2011J05006, 2009J05149, and 2014J01026), the Foundation from Department of Education of Fujian Province, China (Grant No. JA09146), Huang Hui Zhen Foundation of Jimei University, China (Grant No. ZC2010014), and the Scientific Research Foundation of Jimei University, China (Grant Nos. ZQ2011008 and ZQ2009004).

  10. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building.

    PubMed

    Takeda, S; Yamazaki, H; Seog, D H; Kanai, Y; Terada, S; Hirokawa, N

    2000-03-20

    Kinesin superfamily proteins (KIFs) comprise several dozen molecular motor proteins. The KIF3 heterotrimer complex is one of the most abundantly and ubiquitously expressed KIFs in mammalian cells. To unveil the functions of KIF3, microinjection of function-blocking monovalent antibodies against KIF3 into cultured superior cervical ganglion (SCG) neurons was carried out. They significantly blocked fast axonal transport and brought about inhibition of neurite extension. A yeast two-hybrid binding assay revealed the association of fodrin with the KIF3 motor through KAP3. This was further confirmed by using vesicles collected from large bundles of axons (cauda equina), from which membranous vesicles could be prepared in pure preparations. Both immunoprecipitation and immunoelectron microscopy indicated the colocalization of fodrin and KIF3 on the same vesicles, the results reinforcing the evidence that the cargo of the KIF3 motor consists of fodrin-associating vesicles. In addition, pulse-labeling study implied partial comigration of both molecules as fast flow components. Taken together, the KIF3 motor is engaged in fast axonal transport that conveys membranous components important for neurite extension. PMID:10725338

  11. Potassium-induced charge redistribution on Si(111) surfaces studied by core-level photoemission spectroscopy

    SciTech Connect

    Ma, Y. ); Chen, C.T.; Meigs, G.; Sette, F. ); Illing, G. ); Shigakawa, H. )

    1992-03-15

    High-resolution core-level photoemission spectra of the K/Si(111)(7{times}7) surface system are presented. The Si 2{ital p} results show that potassium adsorption induces a Si 2{ital p} core level to shift to o/Ihighero/P binding energy, i.e., to the opposite direction than that expected from the Si-K electronegativity differences. This result is compared with that of the K/Si(111)({radical}3 {times} {radical}3 ){ital R}30{degree}-B system and is interpreted in terms of the K-induced charge redistribution between the Si-adatom--rest-atom pair.

  12. Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution.

    PubMed

    Imrich, Richard; Tibenska, Elena; Koska, Juraj; Ksinantova, Lucia; Kvetnansky, Richard; Bergendiova-Sedlackova, Katarina; Blazicek, Pavol; Vigas, Milan

    2004-06-01

    Stress response is considered an important factor in the modulation of immune function. Neuroendocrine hormones, including catecholamines, affect the process of immune cell redistribution, important for cell-mediated immunity. This longitudinal investigation was aimed at evaluating the effect of repeated stress-induced elevation of catecholamines on immune cell redistribution and expression of adhesive molecules. We assessed the responses of epinephrine (EPI), norepinephrine (NE), cortisol, changes in lymphocytes subpopulations, and percentages of CD11a+, CD11b+, and CD62L+ lymphocytes to a 20-min treadmill exercise of an intensity equal to 80% of the individual's Vo(2)max. The exercise was performed before and after 6 weeks of endurance training consisting of a 1-h run 4 times a week (ET) and after 5 days of bed rest (HDBR) in 10 healthy males. We did not observe any significant changes in the basal levels of EPI, NE, and cortisol in the plasma, nor in the immune parameters after ET and HDBR. The exercise test led to a significant (P <.001) elevation of EPI and NE levels after both ET and HDBR, a significant elevation (P <.01) of cortisol after HDBR, an increase in the absolute numbers of leukocytes, granulocytes, monocytes, CD3+, CD4+, CD8+, CD16+, CD19+ lymphocytes, percentage of CD11a+ and CD11b+ lymphocytes, and to a decrease of CD62L1 before, after ET, and after HDBR. We found comparable changes in all measured immune parameters after ET and HDBR. In conclusion, repeated stress-induced elevation of EPI and NE was not associated with an alteration in immune cell redistribution found in response to the single bout of exercise. PMID:15240377

  13. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems

    PubMed Central

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p’-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis. PMID:26601698

  14. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems.

    PubMed

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p'-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis. PMID:26601698

  15. Cytoskeletal architecture and immunocytochemical localization of fodrin in the terminal web of the ciliated epithelial cell.

    PubMed

    Kobayashi, N; Hirokawa, N

    1988-01-01

    In order to understand the cytoskeletal architecture at the terminal web of the ciliated cell, we examined chicken tracheal epithelium by quick-freeze deep-etch (QFDE) electron microscopy combined with immunocytochemistry of fodrin. At the terminal web, the cilia ended into the basal bodies and then to the rootlets. The rootlets were composed of several filaments and globular structures attached regularly to them. Decoration with myosin subfragment 1 (S1) revealed that some actin filaments ran parallel to the apical plasma membrane between the basal bodies, and other population traveled perpendicularly or obliquely, i.e., along the rootlets. Some actin filaments were connected to the surface of the basal bodies and the basal feet. Among the basal bodies and the rootlets there existed three kinds of fine crossbridges, which were not decorated with S1. In the deeper part of the terminal web, intermediate filaments were observed between the rootlets and were sometimes crosslinked with the rootlets. Immunocytochemistry combined with the QFDE method revealed that fodrin was a component of fine crossbridges associated with the basal bodies. We concluded that an extensive crosslinker system among the basal bodies and the rootlets along with networks of actin and intermediate filaments formed a structural basis for the effective beating of cilia. PMID:3208297

  16. Lactacystin requires reactive oxygen species and Bax redistribution to induce mitochondria-mediated cell death

    PubMed Central

    Perez-Alvarez, Sergio; Solesio, Maria E; Manzanares, Jorge; Jordán, Joaquín; Galindo, María F

    2009-01-01

    Background and purpose: The proteasome inhibitor model of Parkinson's disease (PD) appears to reproduce many of the important behavioural, imaging, pathological and biochemical features of the human disease. However, the mechanisms involved in the lactacystin-induced, mitochondria-mediated apoptotic pathway remain poorly defined. Experimental approach: We have used lactacystin as a specific inhibitor of the 20S proteasome in the dopaminergic neuroblastoma cell line SH-SY5Y. We over-expressed a green fluorescent protein (GFP)–Bax fusion protein in these cells to study localization of Bax. Free radical scavengers were used to assess the role of reactive oxygen species (ROS) in these pathways. Key results: Lactacystin triggered a concentration-dependent increase in cell death mediated by the mitochondrial apoptotic pathway, and induced a change in mitochondrial membrane permeability accompanied by cytochrome c release. The participation of Bax protein was more critical than the formation of the permeability transition pore in mitochondria. GFP–Bax over-expression demonstrated Bax redistribution from the cytosol to mitochondria after the addition of lactacystin. ROS, but not p38 mitogen-activated protein kinase, participated in lactacystin-induced mitochondrial Bax translocation. Lactacystin disrupted the intracellular redox state by increasing ROS production and depleting endogenous antioxidant systems such as glutathione (GSH). Pharmacological depletion of GSH, using l-buthionine sulphoxide, potentiated lactacystin-induced cell death. Lactacystin sensitized neuroblastoma cells to oxidative damage, induced by subtoxic concentrations of 6-hydroxydopamine. Conclusions and implications: The lactacystin-induced, mitochondrial-mediated apoptotic pathway involved interactions between ROS, GSH and Bax. Lactacystin could constitute a potential factor in the development of sporadic PD. PMID:19785649

  17. Field-Induced Point Defect Redistribution in Metal Oxides: Mesoscopic Length Scale Phenomena

    NASA Astrophysics Data System (ADS)

    Moballegh, Ali

    continuously monitored. To understand spatial variations in chemistry and possible changes in microstructure, we utilize a combination of cathodoluminescence spectroscopy (CL), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). After electrical degradation, correlating electrical characterization measurements with electron microscopy analyses provides insight into the redistribution of point defects as a function of electric field and time. Diode-like rectification behavior was observed in crystals subjected to an applied voltage in the low electric field regime (< 75V/cm). One-dimensional and homogenous defect redistribution along both and results in accumulation of point defects and the formation of highly reduced substoichiometric regions near the cathode, which leads to the Schottky barrier degradation. The CL spectroscopy shows that titanium interstitials dominate the point defect redistribution process in this region. The reversibility of the rectification behavior, examined for both crystallographic directions, shows that the process can be influenced by the anisotropy of rutile. At degradation fields on the order of 56 V/cm at 200°C, although the degradation of Schottky barrier is mostly reversible along , formation of extended structural defects is not recovered during the application of a reverse bias and results in an irreversible rectification behavior along direction. We also identify electric field regimes (> 175 V/cm) in which the concentrations of point defects become large enough to induce higher-dimensional defects such as dislocations and the formation of Magneli phases. We find that the condensation of point defects into Magneli phases at the electrodes depletes point defect concentration in the bulk, thus increasing the bulk resistivity. The Magneli phases formed near the cathode are found to be stable, and not reversible, at 200°C for the times and fields studied. The defect condensation processes have significant

  18. An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation.

    PubMed

    Souroullas, George P; Jeck, William R; Parker, Joel S; Simon, Jeremy M; Liu, Jie-Yu; Paulk, Joshiawa; Xiong, Jessie; Clark, Kelly S; Fedoriw, Yuri; Qi, Jun; Burd, Christin E; Bradner, James E; Sharpless, Norman E

    2016-06-01

    B cell lymphoma and melanoma harbor recurrent mutations in the gene encoding the EZH2 histone methyltransferase (EZH2), but the carcinogenic role of these mutations is unclear. Here we describe a mouse model in which the most common somatic Ezh2 gain-of-function mutation (EZH2(Y646F) in human; Ezh2(Y641F) in mouse) is conditionally expressed. Expression of Ezh2(Y641F) in mouse B cells or melanocytes caused high-penetrance lymphoma or melanoma, respectively. Overexpression of the anti-apoptotic protein Bcl2, but not the oncoprotein Myc, or loss of the tumor suppressor protein p53 (encoded by Trp53 in mice) further accelerated lymphoma progression. Expression of the mutant Braf but not the mutant Nras oncoprotein further accelerated melanoma progression. Although expression of Ezh2(Y641F) globally increased the abundance of trimethylated Lys27 of histone H3 (H3K27me3), it also caused a widespread redistribution of this repressive mark, including a loss of H3K27me3 that was associated with increased transcription at many loci. These results suggest that Ezh2(Y641F) induces lymphoma and melanoma through a vast reorganization of chromatin structure, inducing both repression and activation of polycomb-regulated loci. PMID:27135738

  19. Agonist-induced redistribution of calponin in contractile vascular smooth muscle cells.

    PubMed

    Parker, C A; Takahashi, K; Tao, T; Morgan, K G

    1994-11-01

    Calponin is a thin filament-associated protein that has been implicated in playing an auxiliary regulatory role in smooth muscle contraction. We have used immunofluorescence and digital imaging microscopy to determine the cellular distribution of calponin in single cells freshly isolated from the ferret portal vein. In resting cells calponin is distributed throughout the cytosol, associated with filamentous structures, and is excluded from the nuclear area of the cell. The ratio of surface cortex-associated calponin to cytosol-associated calponin (R) was found to be 0.639 +/- 0.021. Upon depolarization of the cell with physiological saline solution containing 96 mM K+, the distribution of calponin did not change from that of a resting cell (R = 0.678 +/- 0.025, P = 0.369). Upon stimulation with an agonist (10 microM phenylephrine) that is known to activate protein kinase C (PKC) in these cells, the cellular distribution of calponin changed from primarily cytosolic to primarily surface cortex associated (R = 1.24 +/- 0.085, P < 0.001). This agonist-induced redistribution of calponin was partially inhibited by the PKC inhibitor calphostin, overlapped in time with PKC translocation, and preceded contraction of these cells. These results suggest that the physiological function of calponin may be to mediate agonist-activated contraction via a PKC-dependent pathway. PMID:7526695

  20. Zinc asparaginate supplementation induces redistribution of toxic trace elements in rat tissues and organs

    PubMed Central

    Skalny, Andrey A.; Medvedeva, Yulia S.; Alchinova, Irina B.; Karganov, Mikhail Yu.; Ajsuvakova, Olga P.; Skalny, Anatoly V.; Nikonorov, Alexandr A.

    2015-01-01

    The primary objective of the current study was the investigation of the influence of zinc asparaginate supplementation for 7 and 14 days on toxic metal and metalloid content in rat organs and tissues. Rats obtained zinc asparaginate in doses of 5 and 15 mg/kg/day for 7 and 14 days. At the end of the experiment rat tissues and organs (liver, kidney, heart, m. gastrocnemius, serum, and hair) were collected for subsequent analysis. Estimation of Zn, Al, As, Li, Ni, Sn, Sr content in the harvested organs was performed using inductively coupled plasma mass spectrometry at NexION 300D. The obtained data showed that intragastric administration of zinc significantly increased liver, kidney and serum zinc concentrations. Seven-day zinc treatment significantly affected the toxic trace element content in the animals’ organs. Zinc supplementation significantly decreased particularly liver aluminium, nickel, and tin content, whereas lead tended to increase. Zinc-induced changes in kidney metal content were characterized by elevated lithium and decreased nickel concentration. Zinc-induced alteration of myocardical toxic element content was multidirectional. Muscle aluminium and lead concentration were reduced in response to zinc supplementation. At the same time, serum and hair toxic element concentrations remained relatively stable after 7-day zinc treatment. Zinc asparaginate treatment of 14 days significantly depressed liver and elevated kidney lithium content, whereas a significant zinc-associated decrease was detected in kidney strontium content. Zinc supplementation for 14 days resulted also in multidirectional changes in the content of heart toxic elements. At the same time, significant zinc-associated decrease in muscle lithium and nickel levels was observed. Fourteen-day zinc treatment resulted in significantly increased serum arsenic and tin concentrations, whereas hair trace element content remained relatively stable. Generally, the obtained data indicate a

  1. Zinc asparaginate supplementation induces redistribution of toxic trace elements in rat tissues and organs.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Yu; Ajsuvakova, Olga P; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The primary objective of the current study was the investigation of the influence of zinc asparaginate supplementation for 7 and 14 days on toxic metal and metalloid content in rat organs and tissues. Rats obtained zinc asparaginate in doses of 5 and 15 mg/kg/day for 7 and 14 days. At the end of the experiment rat tissues and organs (liver, kidney, heart, m. gastrocnemius, serum, and hair) were collected for subsequent analysis. Estimation of Zn, Al, As, Li, Ni, Sn, Sr content in the harvested organs was performed using inductively coupled plasma mass spectrometry at NexION 300D. The obtained data showed that intragastric administration of zinc significantly increased liver, kidney and serum zinc concentrations. Seven-day zinc treatment significantly affected the toxic trace element content in the animals' organs. Zinc supplementation significantly decreased particularly liver aluminium, nickel, and tin content, whereas lead tended to increase. Zinc-induced changes in kidney metal content were characterized by elevated lithium and decreased nickel concentration. Zinc-induced alteration of myocardical toxic element content was multidirectional. Muscle aluminium and lead concentration were reduced in response to zinc supplementation. At the same time, serum and hair toxic element concentrations remained relatively stable after 7-day zinc treatment. Zinc asparaginate treatment of 14 days significantly depressed liver and elevated kidney lithium content, whereas a significant zinc-associated decrease was detected in kidney strontium content. Zinc supplementation for 14 days resulted also in multidirectional changes in the content of heart toxic elements. At the same time, significant zinc-associated decrease in muscle lithium and nickel levels was observed. Fourteen-day zinc treatment resulted in significantly increased serum arsenic and tin concentrations, whereas hair trace element content remained relatively stable. Generally, the obtained data indicate a

  2. Location of a protein of the fodrin-spectrin-TW260/240 family in the mouse intestinal brush border.

    PubMed

    Hirokawa, N; Cheney, R E; Willard, M

    1983-03-01

    We have determined that a protein of the fodrin-spectrin-TW260/240 (FST) family is a component of the thin fibrils (approximately 5 nm wide, 100-200 nm long) that cross-link bundles of actin filaments to adjacent actin bundles and to the plasma membrane in the terminal web of the brush border of the intestinal epithelium. When isolated brush borders were incubated with anti-fodrin antibodies and prepared for electron microscopy by the quick-freeze, deep-etch technique, these approximately 5 nm fibrils were specifically decorated with the antibody. In addition, these cross-linking fibrils disappeared when the anti-fodrin-reactive proteins were extracted from the brush border. We conclude that FST is a component of a cross-linking system composed of approximately 5 nm fibrils that are morphologically distinct from the approximately 8 nm myosin-containing fibrils which were identified by anti-myosin decoration. In addition to linking actin bundles to adjacent actin bundles and to the plasma membrane, these FST fibrils may mediate actin-vesicle, actin-intermediate filament and vesicle-plasma membrane linkages. PMID:6831563

  3. Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications

    NASA Astrophysics Data System (ADS)

    Bosi, Ferdinando; Skogby, Henrik; Hålenius, Ulf

    2016-05-01

    Iron-bearing oxy-dravite was thermally treated in air and hydrogen atmosphere at 800 °C to study potential changes in Fe, Mg and Al ordering over the octahedrally coordinated Y and Z sites and to explore possible applications to intersite geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that heating Fe-bearing tourmalines results in disordering of Fe over Y and Z balanced by ordering of Mg at Y, whereas Al does not change appreciably. The Fe disorder depends on temperature, but less on redox conditions. The degree of Fe3+-Fe2+ reduction is limited despite strongly reducing conditions, indicating that the f O2 conditions do not exclusively control the Fe oxidation state at the present experimental conditions. Untreated and treated samples have similar short- and long-range crystal structures, which are explained by stable Al-extended clusters around the O1 and O3 sites. In contrast to the stable Al clusters that preclude any temperature-dependent Mg-Al order-disorder, there occurs Mg diffusion linked to temperature-dependent exchange with Fe. Ferric iron mainly resides around O2- at O1 rather than (OH)-, but its intersite disorder induced by thermal treatment indicates that Fe redistribution is the driving force for Mg-Fe exchange and that its diffusion rates are significant at these temperatures. With increasing temperature, Fe progressively disorders over Y and Z, whereas Mg orders at Y according to the order-disorder reaction: YFe + ZMg → ZFe + YMg. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks and imply that successful tourmaline geothermometers may be developed by thermal calibration of the Mg-Fe order-disorder reaction, whereas any thermometers based on Mg-Al disorder will be insensitive and involve large uncertainties.

  4. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation.

    PubMed

    Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S

    2016-04-01

    In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated

  5. Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa.

    PubMed

    Spinaci, Marcella; Volpe, Sara; Bernardini, Chiara; de Ambrogi, Marco; Tamanini, Carlo; Seren, Eraldo; Galeati, Giovanna

    2006-01-01

    Heat shock proteins, besides their protective function against stresses, have been recently indicated as key factors for sperm fertilizing ability. Since sexing sperm by high-speed flow-cytometry subjects them to different physical, mechanical, and chemical stresses, the present study was designed to verify, by immunofluorescence and Western blot, whether the sorting procedure induces any modification in the amount and cellular distribution of heat shock proteins 60, 70, and 90 (Hsp60, Hsp70, Hsp90). Immunolocalization and Western blot quantification of both Hsp60 and Hsp90 did not reveal differences between unsorted and sorted semen. On the contrary, a redistribution of Hsp70 immunoreactivity from the equatorial subsegment toward the equator of sperm cells was recorded after sorting; this relocation suggests capacitation-like changes of sperm membrane. This modification seems to be caused mainly by incubation with Hoechst 33342, while both passage of sperm through flow cytometer and laser beam represent only minor stimuli. A further Hsp70 redistribution seems to be due to the final steps of sperm sorting, charging, and deflection of drops, and to the dilution during collection. On the other hand, staining procedure and mechanical stress seem to be the factors most injurious to sperm viability. Moreover, Hsp70 relocation was deeply influenced by the storage method. In fact, storing sexed spermatozoa, after centrifugation, in a small volume in presence of seminal plasma induced a reversion of Hsp70 redistribution, while storage in the diluted catch fluid of collection tubes caused Hsp70 relocation in most sorted spermatozoa. PMID:16870948

  6. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    SciTech Connect

    S.S. Medley, R. Andre, R.E. Bell, D.S. Darrow, C.W. Domier, E.D. Fredrickson, N.N. Gorelenkov, S.M. Kaye, B.P. LeBlanc, K.C. Lee, F.M. Levinton, D. Liu, N.C. Luhmann, Jr., J.E. Menard, H. Park, D. Stutman, A.L. Roquemore, K. Tritz, H. Yuh and the NSTX Team

    2007-11-15

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ~ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvénic (f ~ 20 – 150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvénic modes only cause redistribution and the energetic ions remain confined.

  7. Theoretical investigation of intramolecular vibrational energy redistribution in HFCO and DFCO induced by an external field.

    PubMed

    Pasin, Gauthier; Iung, Christophe; Gatti, Fabien; Richter, Falk; Léonard, Céline; Meyer, Hans-Dieter

    2008-10-14

    The present paper is devoted to a full quantum mechanical study of the intramolecular vibrational energy redistribution in HFCO and DFCO. In contrast to our previous studies [Pasin et al., J. Chem. Phys. 124, 194304 (2006) and 126, 024302 (2007)], the dynamics is now performed in the presence of an external time-dependent field. This more closely reflects the experimental conditions. A six-dimensional dipole surface is computed. The multiconfiguration time-dependent Hartree method is exploited to propagate the corresponding six-dimensional wave packets. Special emphasis is placed on the excitation of the out-of-plane bending vibration and on the dissociation of the molecule. In the case of DFCO, we predict that it is possible to excite the out-of-plane bending mode of vibration and to drive the dissociation to DF+CO with only one laser pulse with a fixed frequency and without excitation of an electronic state. PMID:19045144

  8. Viscosity of Water under Electric Field: Anisotropy Induced by Redistribution of Hydrogen Bonds.

    PubMed

    Zong, Diyuan; Hu, Han; Duan, Yuanyuan; Sun, Ying

    2016-06-01

    The viscosity of water under an external electric field of 0.00-0.90 V/nm was studied using both molecular dynamics simulations and atomistic modeling accounting for intermolecular potentials. For all temperatures investigated, the water viscosity becomes anisotropic under an electric field: the viscosity component parallel to the field increases monotonically with the field strength, E, while the viscosity perpendicular to the field first decreases and then increases with E. This anisotropy is believed to be mainly caused by the redistribution of hydrogen bonds under the electric field. The preferred orientation of hydrogen bonds along the field direction leads to an increase of the energy barrier of a water molecule to its neighboring site, and hence increases the viscosity in that direction. However, the probability of hydrogen bonds perpendicular to the electric field decreases with E, together with the increase of the average number of hydrogen bonds per molecule, causing the perpendicular component of water viscosity to first decrease and then increase with the electric field. PMID:27163345

  9. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography

    PubMed Central

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M.

    2016-01-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal–plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials. PMID:26868040

  10. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography.

    PubMed

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M

    2016-01-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal-plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials. PMID:26868040

  11. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M.

    2016-02-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal-plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials.

  12. Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication

    PubMed Central

    Jheng, Jia-Rong; Wang, Shin-Chyang; Jheng, Chao-Rih; Horng, Jim-Tong

    2016-01-01

    GRP78/BiP is an endoplasmic reticulum (ER) chaperone protein with the important function of maintaining ER homeostasis, and the overexpression of GRP78/BiP alleviates ER stress. Our previous studies showed that infection with enterovirus 71 (EV71), a (+)RNA picornavirus, induced GRP78/BiP upregulation; however, ectopic GRP78/BiP overexpression in ER downregulates virus replication and viral particle formation. The fact that a virus infection increases GRP78/BiP expression, which is unfavorable for virus replication, is counterintuitive. In this study, we found that the GRP78/BiP protein level was elevated in the cytoplasm instead of in the ER in EV71-infected cells. Cells transfected with polyinosinic–polycytidylic acid, a synthetic analog of replicative double-stranded RNA (dsRNA), but not with viral proteins, also exhibited upregulation and elevation of GRP78/BiP in the cytosol. Our results further demonstrate that EV71 infections induce the dsRNA/protein kinase R-dependent cytosolic accumulation of GRP78/BiP. The overexpression of a GRP78/BiP mutant lacking a KDEL retention signal failed to inhibit both dithiothreitol-induced eIF2α phosphorylation and viral replication in the context of viral protein synthesis and viral titers. These data revealed that EV71 infection might cause upregulation and aberrant redistribution of GRP78/BiP to the cytosol, thereby facilitating virus replication. PMID:27004760

  13. Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication.

    PubMed

    Jheng, Jia-Rong; Wang, Shin-Chyang; Jheng, Chao-Rih; Horng, Jim-Tong

    2016-01-01

    GRP78/BiP is an endoplasmic reticulum (ER) chaperone protein with the important function of maintaining ER homeostasis, and the overexpression of GRP78/BiP alleviates ER stress. Our previous studies showed that infection with enterovirus 71 (EV71), a (+)RNA picornavirus, induced GRP78/BiP upregulation; however, ectopic GRP78/BiP overexpression in ER downregulates virus replication and viral particle formation. The fact that a virus infection increases GRP78/BiP expression, which is unfavorable for virus replication, is counterintuitive. In this study, we found that the GRP78/BiP protein level was elevated in the cytoplasm instead of in the ER in EV71-infected cells. Cells transfected with polyinosinic-polycytidylic acid, a synthetic analog of replicative double-stranded RNA (dsRNA), but not with viral proteins, also exhibited upregulation and elevation of GRP78/BiP in the cytosol. Our results further demonstrate that EV71 infections induce the dsRNA/protein kinase R-dependent cytosolic accumulation of GRP78/BiP. The overexpression of a GRP78/BiP mutant lacking a KDEL retention signal failed to inhibit both dithiothreitol-induced eIF2α phosphorylation and viral replication in the context of viral protein synthesis and viral titers. These data revealed that EV71 infection might cause upregulation and aberrant redistribution of GRP78/BiP to the cytosol, thereby facilitating virus replication. PMID:27004760

  14. Model for roughening and ripple instability due to ion-induced mass redistribution [Addendum to H. Hofsäss, Appl. Phys. A 114 (2014) 401, "Surface instability and pattern formation by ion-induced erosion and mass redistribution"

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans

    2015-05-01

    Carter and Vishnyakov introduced a model (CV model) to describe roughening and ripple instability due to ion-induced mass redistribution. This model is based on the assumption that the irradiated surface layer on a static solid substrate is described by a viscous incompressible thin film bound to the substrate by a "no slip" and "no transport" kinematic boundary condition, i.e. similar to a thin film of viscous paint. However, this boundary condition is incomplete for a layer under ion irradiation. The boundary condition must allow exchange of atoms between the substrate and the irradiated film, so that the thickness of the film is always determined by the size of the collision cascade, independent of the evolution of the surface height profile. In addition, the film thickness depends on the local ion incidence angle, which leads to a time dependence of the film thickness at a given position. The equation of motion of the surface and interface profiles for these boundary conditions is introduced, and a new curvature-dependent coefficient is found which is absent in the CV model. This curvature coefficient depends on the angular derivative of the layer thickness and the atomic drift velocity at the film surface induced by recoil events. Such a stabilizing curvature coefficient was introduced in Appl. Phys. A 114 (2014) 401 and is most pronounced at intermediate angles.

  15. Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films.

    PubMed

    Chen, Xinxin; Zhu, Xiaojian; Xiao, Wen; Liu, Gang; Feng, Yuan Ping; Ding, Jun; Li, Run-Wei

    2015-04-28

    Reversible nanoscale magnetization reversal controlled merely by electric fields is still challenging at the moment. In this report, first-principles calculation indicates that electric field-induced magnetization reversal can be achieved by the appearance of unidirectional magnetic anisotropy along the (110) direction in Fe-deficient cobalt ferrite (CoFe(2-x)O4, CFO), as a result of the migration and local redistribution of the Co(2+) ions adjacent to the B-site Fe vacancies. In good agreement with the theoretical model, we experimentally observed that in the CFO thin films the nanoscale magnetization can be reversibly and nonvolatilely reversed at room temperature via an electrical ion-manipulation approach, wherein the application of electric fields with appropriate polarity and amplitude can modulate the size of magnetic domains with different magnetizations up to 70%. With the low power consumption (subpicojoule) characteristics and the elimination of external magnetic field, the observed electric field-induced magnetization reversal can be used for the construction of energy-efficient spintronic devices, e.g., low-power electric-write and magnetic-read memories. PMID:25794422

  16. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of

  17. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    SciTech Connect

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  18. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release.

    PubMed

    Garant, K A; Shmulevitz, M; Pan, L; Daigle, R M; Ahn, D-G; Gujar, S A; Lee, P W K

    2016-02-11

    Reovirus is a naturally oncolytic virus that preferentially replicates in Ras-transformed cells and is currently undergoing clinical trials as a cancer therapeutic. Ras transformation promotes reovirus oncolysis by enhancing virion disassembly during entry, viral progeny production, and virus release through apoptosis; however, the mechanism behind the latter is not well understood. Here, we show that reovirus alters the intracellular location of oncogenic Ras to induce apoptosis of H-RasV12-transformed fibroblasts. Reovirus infection decreases Ras palmitoylation levels and causes accumulation of Ras in the Golgi through Golgi fragmentation. With the Golgi being the site of Ras palmitoylation, treatment of target cells with the palmitoylation inhibitor, 2-bromopalmitate (2BP), prompts a greater accumulation of H-RasV12 in the Golgi, and a dose-dependent increase in progeny virus release and subsequent spread. Conversely, tethering H-RasV12 to the plasma membrane (thereby preventing its movement to the Golgi) allows for efficient virus production, but results in basal levels of reovirus-induced cell death. Analysis of Ras downstream signaling reveals that cells expressing cycling H-RasV12 have elevated levels of phosphorylated JNK (c-Jun N-terminal kinase), and that Ras retained at the Golgi body by 2BP increases activation of the MEKK1/MKK4/JNK signaling pathway to promote cell death. Collectively, our data suggest that reovirus induces Golgi fragmentation of target cells, and the subsequent accumulation of oncogenic Ras in the Golgi body initiates apoptotic signaling events required for virus release and spread. PMID:25961930

  19. Photo-induced halide redistribution in organic–inorganic perovskite films

    DOE PAGESBeta

    deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulovic, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-24

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging themore » same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. In conclusion, our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.« less

  20. Photo-induced halide redistribution in organic-inorganic perovskite films

    NASA Astrophysics Data System (ADS)

    Dequilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced `brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.

  1. Photo-induced halide redistribution in organic–inorganic perovskite films

    PubMed Central

    deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-01-01

    Organic–inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced ‘brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance. PMID:27216703

  2. Photo-induced halide redistribution in organic-inorganic perovskite films.

    PubMed

    deQuilettes, Dane W; Zhang, Wei; Burlakov, Victor M; Graham, Daniel J; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J; Ginger, David S; Stranks, Samuel D

    2016-01-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance. PMID:27216703

  3. Glucose Transporter Type 4 Redistribution on the Membrane Induced by Insulin through Akt in Hydrocortisone Treatment in Rat Skeletal Muscles.

    PubMed

    Chen, Chien-Min; Chiu, Lian; Chen, Hung-Chi; Cheng, Chun-Yuan; Shyu, Woei-Cherng; Chou, Chii-Wen; Lu, Cheng-You; Lin, Chung-Tien

    2015-10-31

    Hydrocortisone is a growth hormone frequently used in the treatment of low back pain. Hydrocortisone treatment has an anti-inflammation effect, which also inactivates glucose transporter type 4 (GLUT4) by p38 mitogen-activated protein kinase (MAPK) inhibition. Translocation of GLUT4 regulates body glucose homeostasis and muscle repair and is induced by insulin. In this study, 56 SD rats were divided into seven groups, and were treated with insulin or hydrocortisone in sedentary or exercise training groups. The muscle proteins and biochemical blood parameters were analyzed after 7 days of treatments. The results showed that the serum glucose increased in hydrocortisone treatment accompanied by GLUT4 inactivation in both the sedentary and exercise training rats. In the exercise training groups, GLUT4 was redistributed on the plasma membrane on co-treatment with insulin and hydrocortisone through Akt phosphorylation. Insulin treatment exerted a compensatory feedback effect on the GLUT4 translocation on hydrocortisone co-treatment, which was the cause of GLUT4 inactivation. PMID:26387653

  4. Resource redistribution patterns induced by rapid vegetation shifts and their impacts on land degradation at the desert margins

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Huxman, T. E.; D'Odorico, P.; Collins, S. L.

    2008-12-01

    A common form of land degradation at the desert margins involves the rapid interconversion of vegetation between grasses and woody plants, with ecohydrological and biogeochemical consequences. Here we show, using a combination of field experiments and a spatially explicit model, that the process of degradation can be facilitated both by an increase in heterogeneity (shrub encroachment in to grasslands) and in homogeneity (exotic annual grass invasion into desert shrublands) of soil resources, depending on the plant functional type inducing the change in soil resource distribution. The changes in resource distribution affect patterns of plant productivity and degradation potential. The distribution of soil resources (nutrients and soil moisture), in turn, are controlled by the feedbacks between aeolian/hydrologic transport processes, vegetation and disturbance. Disturbances like fire and grazing greatly affect the rates and patterns of resource redistribution in these systems. Thus, the feedbacks among ecological-hydrological and geomorphic processes acting at patch scale affect the emerging vegetation patterns in these arid landscapes with impacts on regional climate and desertification.

  5. Higher certainty of the laser-induced damage threshold test with a redistributing data treatment

    SciTech Connect

    Jensen, Lars; Mrohs, Marius; Gyamfi, Mark; Mädebach, Heinrich; Ristau, Detlev

    2015-10-15

    As a consequence of its statistical nature, the measurement of the laser-induced damage threshold holds always risks to over- or underestimate the real threshold value. As one of the established measurement procedures, the results of S-on-1 (and 1-on-1) tests outlined in the corresponding ISO standard 21 254 depend on the amount of data points and their distribution over the fluence scale. With the limited space on a test sample as well as the requirements on test site separation and beam sizes, the amount of data from one test is restricted. This paper reports on a way to treat damage test data in order to reduce the statistical error and therefore measurement uncertainty. Three simple assumptions allow for the assignment of one data point to multiple data bins and therefore virtually increase the available data base.

  6. Higher certainty of the laser-induced damage threshold test with a redistributing data treatment

    NASA Astrophysics Data System (ADS)

    Jensen, Lars; Mrohs, Marius; Gyamfi, Mark; Mädebach, Heinrich; Ristau, Detlev

    2015-10-01

    As a consequence of its statistical nature, the measurement of the laser-induced damage threshold holds always risks to over- or underestimate the real threshold value. As one of the established measurement procedures, the results of S-on-1 (and 1-on-1) tests outlined in the corresponding ISO standard 21 254 depend on the amount of data points and their distribution over the fluence scale. With the limited space on a test sample as well as the requirements on test site separation and beam sizes, the amount of data from one test is restricted. This paper reports on a way to treat damage test data in order to reduce the statistical error and therefore measurement uncertainty. Three simple assumptions allow for the assignment of one data point to multiple data bins and therefore virtually increase the available data base.

  7. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine

    PubMed Central

    Voulalas, Pamela J.; Schetz, John; Undieh, Ashiwel S.

    2011-01-01

    We investigated the subcellular distribution of dopamine D1, D2 and D5 receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D1 receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D2 receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D5 receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D5 receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D1 receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D5 and D2 receptor subtypes were not significantly altered by cocaine treatment. These data imply that D5 receptors are predominantly cytoplasmic, D2 receptors are diffusely distributed within the cell, whereas D1 receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation. PMID:21236347

  8. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    NASA Astrophysics Data System (ADS)

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-02-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices.

  9. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution.

    PubMed

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction's electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  10. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    PubMed Central

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  11. Opioid-induced redistribution of 6TM and 7TM μ opioid receptors: A hypothesized mechanistic facilitator model of opioid-induced hyperalgesia.

    PubMed

    Wang, Wei; Wang, Yan; Zhang, Wei; Jin, Xiaoju; Liu, Yusheng; Xu, Shiqin; Lei, Liming; Shen, Xiaofeng; Guo, Xirong; Xia, Xiaoqiong; Wang, Fuzhou

    2016-08-01

    Opioids are still the most popular form of pain treatment, but many unavoidable side effects make opioids a big challenge in effective pain management. Opioid-induced hyperalgesia (OIH), a paradoxical phenomenon, portrays an increased sensitivity to harmful stimuli caused by opioid exposure. Changes in the neural modulation are considered a major contributor to the development of OIH. Activation of opioid receptors (ORs) and corresponding downstream molecules are the vital composition of functional performance of opioids. Increasing interests were proposed of the interaction between ORs and other neural transmitter systems such as glutamatergic, GABAergic and adrenergic ones to the genesis of OIH. G protein coupled μ-opioid receptor (MOR) was studied comprehensively on its role in the development of OIH. In addition to the relationship between MOR and other neurotransmitter receptors, a new intracellular MOR that has six transmembrane (6TM) domains was identified, and found to perform a pro-nociceptive task in contrast to the counterpart 7TM isoform. A mechanistic model of OIH in which both 6TM and 7TM MORs undergoing membrane redistribution upon opioid exposure is proposed which eventually facilitates the neurons more sensitive to nociceptive stimulation than that of the preceding opioid exposure. PMID:27116700

  12. Visualization of distinct patterns of subcellular redistribution of the thyrotropin-releasing hormone receptor-1 and gqalpha /G11alpha induced by agonist stimulation.

    PubMed Central

    Drmota, T; Novotny, J; Gould, G W; Svoboda, P; Milligan, G

    1999-01-01

    The rat thyrotropin-releasing hormone receptor-1 (TRHR-1) was modified by the addition of green fluorescent protein (GFP) and expressed stably in HEK293 cells. Extensive overlap of plasma membrane distribution of autofluorescent TRHR-1-GFP with that of the phosphoinositidase C-linked G-proteins Gqalpha/G11alpha, identified by indirect immunofluorescence, was monitored concurrently. Addition of thyrotropin-releasing hormone resulted in rapid separation of TRHR-1-GFP and Gqalpha/G11alpha signals as the receptor was internalized. This situation persisted for more than an hour. At longer time periods a fraction of the cellular Gqalpha/G11alpha was also internalized, although much of the Gqalpha/G11alpha immunoreactivity remained associated with the plasma membrane. Parallel experiments, in which the cellular distribution of TRHR-1-GFP and Gqalpha/G11alpha immunoreactivity were monitored in sucrose-gradient fractions following cell disruption, also demonstrated a rapid, agonist-induced movement of TRHR-1-GFP away from the plasma membrane to low-density vesicular fractions. At later time points, a fraction of the cellular Gqalpha/G11alpha immunoreactivity was also redistributed to overlapping, but non-identical, low-density-vesicle-containing fractions. Pretreatment of the cells with cytochalasin D or nocodazole prevented agonist-induced redistribution of G-protein but not TRHR-1-GFP, further indicating resolution of the mechanics of these two processes. The combination of a GFP-modified receptor and immunostaining of the G-proteins activated by that receptor allows, for the first time, concurrent analysis of the varying dynamics and bases of internalization and redistribution of two elements of the same signal-transduction cascade. PMID:10333499

  13. Negative capacitance induced by redistribution of oxygen vacancies in the fatigued BiFeO3-based thin film

    NASA Astrophysics Data System (ADS)

    Ke, Qingqing; Lou, Xiaojie; Yang, Haibo; Kumar, Amit; Zeng, Kaiyang; Wang, John

    2012-07-01

    The capacitance dispersion in La and Mg co-substituted BiFeO3 thin film has been studied at different stages of polarization switching. A negative capacitance (NC) behavior is observed in the sample that is fatigued above 109 switching cycles. The origin of the NC is investigated through analyzing relaxation processes and charge transport kinetics by admittance spectroscopy. An activation energy of ˜0.6 eV and a zero field mobility μ0=5.33±0.02×10-13m2/Vs are thus obtained. A physical mechanism is proposed to explain this behavior. It involves a redistribution of oxygen vacancies, which are trapped at the film/electrode interface during the fatigue process.

  14. STRESS-INDUCED REDISTRIBUTION OF IMMUNE CELLS - FROM BARRACKS TO BOULEVARDS TO BATTLEFIELDS: A TALE OF THREE HORMONES - CURT RICHTER AWARD WINNER

    PubMed Central

    Dhabhar, Firdaus S.; Malarkey, William B.; Neri, Eric; McEwen, Bruce S.

    2012-01-01

    Background The surveillance and effector functions of the immune system are critically dependent on the appropriate distribution of immune cells in the body. An acute or short-term stress response induces a rapid and significant redistribution of immune cells among different body compartments. Stress-induced leukocyte redistribution may be a fundamental survival response that directs leukocyte subpopulations to specific target organs during stress, and significantly enhances the speed, efficacy and regulation of an immune response. Immune responses are generally enhanced in compartments (e.g., skin) that are enriched with leukocytes, and suppressed in compartments that are depleted of leukocytes during/following stress. The experiments described here were designed to elucidate the: 1) Time-course, trajectory, and subpopulation-specificity of stress-induced mobilization and trafficking of blood leukocytes. 2) Individual and combined actions of the principal stress hormones, norepinephrine (NE), epinephrine (EPI), and corticosterone (CORT), in mediating mobilization or trafficking of specific leukocyte subpopulations. 3) Effects of stress/stress hormones on adhesion molecule, L-selectin (CD62L), expression by each subpopulation to assess its adhesion / functional / maturation status. Methods Male Sprague Dawley rats were stressed (short-term restraint, 2–120 min), or adrenalectomized and injected with vehicle (VEH), NE, EPI, CORT, or their combinations, and blood was collected for measurement of hormones and flow cytometric quantification of leukocyte subpopulations. Results Acute stress induced an early increase/mobilization of neutrophils, lymphocytes, helper T cells (Th), cytolytic T cells (CTL), and B cells into the blood, followed by a decrease/trafficking of all cell types out of the blood, except neutrophil numbers that continued to increase. CD62L expression was increased on neutrophils, decreased on Th, CTL, and natural killer (NK) cells, and showed a

  15. An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel β-structure and induces TDP-43 redistribution.

    PubMed

    Zhu, Li; Xu, Meng; Yang, Mengxue; Yang, Yanlian; Li, Yang; Deng, Jianwen; Ruan, Linhao; Liu, Jianghong; Du, Sidan; Liu, Xuehui; Feng, Wei; Fushimi, Kazuo; Bigio, Eileen H; Mesulam, Marsel; Wang, Chen; Wu, Jane Y

    2014-12-20

    TDP-43 proteinopathies are clinically and genetically heterogeneous diseases that had been considered distinct from classical amyloid diseases. Here, we provide evidence for the structural similarity between TDP-43 peptides and other amyloid proteins. Atomic force microscopy and electron microscopy examination of peptides spanning a previously defined amyloidogenic fragment revealed a minimal core region that forms amyloid fibrils similar to the TDP-43 fibrils detected in FTLD-TDP brain tissues. An ALS-mutant A315E amyloidogenic TDP-43 peptide is capable of cross-seeding other TDP-43 peptides and an amyloid-β peptide. Sequential Nuclear Overhauser Effects and double-quantum-filtered correlation spectroscopy in nuclear magnetic resonance (NMR) analyses of the A315E-mutant TDP-43 peptide indicate that it adopts an anti-parallel β conformation. When added to cell cultures, the amyloidogenic TDP-43 peptides induce TDP-43 redistribution from the nucleus to the cytoplasm. Neuronal cultures in compartmentalized microfluidic-chambers demonstrate that the TDP-43 peptides can be taken up by axons and induce axonotoxicity and neuronal death, thus recapitulating key neuropathological features of TDP-43 proteinopathies. Importantly, a single amino acid change in the amyloidogenic TDP-43 peptide that disrupts fibril formation also eliminates neurotoxicity, supporting that amyloidogenesis is critical for TDP-43 neurotoxicity. PMID:25113748

  16. Mitigation of Insulin Resistance by Mangiferin in a Rat Model of Fructose-Induced Metabolic Syndrome Is Associated with Modulation of CD36 Redistribution in the Skeletal Muscle.

    PubMed

    Zhou, Liang; Pan, Yongquan; Chonan, Ritsu; Batey, Robert; Rong, Xianglu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2016-01-01

    Mangiferin is one of the prominent active components responsible for the antidiabetic property of many traditional herbs, but its underlying mechanisms of action remain unclear. CD36 in skeletal muscle is known to contribute to the etiology of insulin resistance by facilitating fatty acid uptake. This study investigated the effect of mangiferin on insulin resistance. The results showed that treatment of Wistar-Kyoto rats with mangiferin (15 mg/kg, once daily, by oral gavage) for 7 weeks inhibited chronic liquid fructose consumption-induced increases in plasma insulin concentrations at the baseline and during oral glucose tolerance test (OGTT), and the homeostasis model assessment of insulin resistance index. It also suppressed the increases in fasted plasma nonesterified fatty acid (NEFA) concentration and the adipose tissue insulin resistance index. Mechanistically, mangiferin neither affected intakes of fructose and chow, and the increase in epididymal and perirenal fat, nor attenuated fructose-induced hypertension. In contrast, mangiferin attenuated fructose-induced acceleration of plasma NEFA clearance during OGTT, and tended to decrease excessive triglyceride accumulation in gastrocnemius. Immunofluorescence staining and subsequent rating of CD36-expressing fibers in gastrocnemius revealed that mangiferin restored fructose-stimulated sarcolemmal CD36 overexpression and decreased intracellular CD36 distribution. In addition, the effects of mangiferin on the parameters associated with insulin resistance and abnormal fatty acid metabolism were absent in the spontaneously hypertensive rats carrying numerous nonfunctional mutations in the CD36 gene. Thus, these results suggest that mangiferin treatment mitigates insulin resistance in a rat model of fructose-induced metabolic syndrome by modulating sarcolemmal and intracellular CD36 redistribution in the skeletal muscle. PMID:26498906

  17. EGCG in Green Tea Induces Aggregation of HMGB1 Protein through Large Conformational Changes with Polarized Charge Redistribution

    PubMed Central

    Meng, Xuan-Yu; Li, Baoyu; Liu, Shengtang; Kang, Hongsuk; Zhao, Lin; Zhou, Ruhong

    2016-01-01

    As a major effective component in green tea, (−)-epigallocatechin-3-gallate (EGCG)’s potential benefits to human health have been widely investigated. Recent experimental evidences indicate that EGCG can induce the aggregation of HMGB1 protein, a late mediator of inflammation, which subsequently stimulates the autophagic degradation and thus provides protection from lethal endotoxemia and sepsis. In this study, we use molecular dynamics (MD) simulations to explore the underlying molecular mechanism of this aggregation of HMGB1 facilitated by EGCG. Our simulation results reveal that EGCG firmly binds to HMGB1 near Cys106, which supports previous preliminary experimental evidence. A large HMGB1 conformational change is observed, where Box A and Box B, two homogenous domains of HMGB1, are repositioned and packed together by EGCG. This new HMGB1 conformation has large molecular polarity and distinctive electrostatic potential surface. We suggest that the highly polarized charge distribution leads to the aggregation of HMGB1, which differs from the previous hypothesis that two HMGB1 monomers are linked by the dimer of EGCG. Possible aggregating modes have also been investigated with potential of mean force (PMF) calculations. Finally, we conclude that the conformation induced by EGCG is more aggregation-prone with higher binding free energies as compared to those without EGCG. PMID:26899177

  18. Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers

    PubMed Central

    Schmidt, Søren Fisker; Larsen, Bjørk Ditlev; Loft, Anne; Nielsen, Ronni; Madsen, Jesper Grud Skat; Mandrup, Susanne

    2015-01-01

    The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type–specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby specifically repressing super-enhancer-associated cell identity genes. PMID:26113076

  19. Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers.

    PubMed

    Schmidt, Søren Fisker; Larsen, Bjørk Ditlev; Loft, Anne; Nielsen, Ronni; Madsen, Jesper Grud Skat; Mandrup, Susanne

    2015-09-01

    The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type-specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby specifically repressing super-enhancer-associated cell identity genes. PMID:26113076

  20. Redistribution of static stress, induced by the 2002-2003 Etna eruption, triggers seismic activity: a viscoelastic numerical model

    NASA Astrophysics Data System (ADS)

    Pulvirenti, Fabio; Aloisi, Marco

    2014-05-01

    The principal aim of this study is the investigation of the relationship between the push of the dike-forming magmatic intrusions and the faulting process in terms of earthquakes generation. A complete time-dependent 3D finite element model for the 2002-2003 eruption at Mount Etna is presented. The model, which takes into account the topography, medium heterogeneities and principal fault systems, is developed in a viscoelastic environment by a generalized Maxwell rheological description. To investigate where fault slips were encouraged or not and consequently how earthquakes may have been triggered, we look at the Coulomb stress changes induced by the magma uprising, during the co-intrusive and post-intrusive periods, focusing on the area of Pernicana Fault and S. Venerina Fault, which have been reactivated during the studied eruption. The temporal variation of the Coulomb stress changes allows to know the time of maximum stress transfer and then to infer the areas where there is an higher probability of earthquake occurrence. Results show positive stress changes for Pernicana Fault in accordance to the time, location and depth of the 27th October 2002 Pernicana earthquakes (Mmax = 3.8). Moreover, the amount of Coulomb stress changes on S. Venerina Fault, as induced by dike-forming intrusions, is not enough to trigger the 29th October Santa Venerina earthquakes (Mmax = 4.4), two days after the start of the eruption. The necessary Coulomb stress changes value to trigger the 29th S. Venerina Fault earthquakes is instead reached if we consider them as aftershocks of the 27th October Pernicana biggest earthquake. Acknowledgments This work was supported by MED-SUV Project.

  1. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats.

    PubMed

    Poudyal, Hemant; Panchal, Sunil K; Waanders, Jennifer; Ward, Leigh; Brown, Lindsay

    2012-02-01

    Chia seeds contain the essential fatty acid, α-linolenic acid (ALA). This study has assessed whether chia seeds attenuated the metabolic, cardiovascular and hepatic signs of a high-carbohydrate, high-fat (H) diet [carbohydrates, 52% (wt/wt); fat, 24% (wt/wt) with 25% (wt/vol) fructose in drinking water] in rats. Diets of the treatment groups were supplemented with 5% chia seeds after 8 weeks on H diet for a further 8 weeks. Compared with the H rats, chia seed-supplemented rats had improved insulin sensitivity and glucose tolerance, reduced visceral adiposity, decreased hepatic steatosis and reduced cardiac and hepatic inflammation and fibrosis without changes in plasma lipids or blood pressure. Chia seeds induced lipid redistribution with lipid trafficking away from the visceral fat and liver with an increased accumulation in the heart. The stearoyl-CoA desaturase-1 products were depleted in the heart, liver and the adipose tissue of chia seed-supplemented rats together with an increase in the substrate concentrations. The C18:1trans-7 was preferentially stored in the adipose tissue; the relatively inert C18:1n-9 was stored in sensitive organs such as liver and heart and C18:2n-6, the parent fatty acid of the n-6 pathway, was preferentially metabolized. Thus, chia seeds as a source of ALA induce lipid redistribution associated with cardioprotection and hepatoprotection. PMID:21429727

  2. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways.

    PubMed

    Zorzano, A; Muñoz, P; Camps, M; Mora, C; Testar, X; Palacín, M

    1996-01-01

    Insulin rapidly stimulates glucose transport in muscle fiber. This process controls the utilization of glucose in skeletal muscle, and it is deficient in various insulin-resistant states, such as non-insulin-dependent diabetes mellitus. The effect of insulin on muscle glucose transport is mainly due to the recruitment of GLUT4 glucose carriers to the cell surface of the muscle fiber. There is increasing evidence that the recruitment of GLUT4 carriers triggered by insulin affects selective domains of sarcolemma and transverse tubules. In contrast, GLUT1 is located mainly in sarcolemma and is absent in transverse tubules, and insulin does not alter its cellular distribution in muscle fiber. The differential distribution of GLUT1 and GLUT4 in the cell surface raises new questions regarding the precise endocytic and exocytic pathways that are functional in the muscle fiber. The current view of insulin-induced GLUT4 translocation is based mainly on studies performed in adipocytes. These studies have proposed the existence of intracellular compartments of GLUT4 that respond to insulin in a highly homogeneous manner. However, studies performed in skeletal muscle have identified insulin-sensitive as well as insulin-insensitive intracellular GLUT4-containing membranes. These data open a new perspective on the dynamics of intracellular GLUT4 compartments in insulin-sensitive cells. PMID:8529804

  3. Low-Dose Actinomycin-D Induces Redistribution of Wild-Type and Mutated Nucleophosmin Followed by Cell Death in Leukemic Cells.

    PubMed

    Brodská, Barbora; Holoubek, Aleš; Otevřelová, Petra; Kuželová, Kateřina

    2016-06-01

    Specific mutations involving C-terminal part of the nucleolar protein nucleophosmin (NPM) are associated with better outcome of acute myeloid leukemia (AML) therapy, possibly due to aberrant cytoplasmic NPM localization facilitating induction of anti-NPM immune response. Actinomycin D (actD) is known to induce nucleolar stress leading to redistribution of many nucleolar proteins, including NPM. We analyzed the distribution of both wild-type and mutated NPM (NPMmut) in human cell lines, before and after low-dose actD treatment, in living cells expressing exogenous fluorescently labeled proteins as well as using immunofluorescence staining of endogenous proteins in fixed cells. The wild-type NPM form is prevalently nucleolar in intact cells and relocalizes mainly to the nucleoplasm following actD addition. The mutated NPM form is found both in the nucleoli and in the cytoplasm of untreated cells. ActD treatment leads to a marked increase in NPMmut amount in the nucleoplasm while a mild decrease is observed in the cytoplasm. Cell death was induced by low-dose actD in all the studied leukemic cell lines with different p53 and NPM status. In cells expressing the tumor suppresor p53 (CML-T1, OCI-AML3), cell cycle arrest in G1/G0 phase was followed by p53-dependent apoptosis while in p53-null HL60 cells, transient G2/M-phase arrest was followed by cell necrosis. We conclude that although actD does not increase NPM concentration in the cytoplasm, it could improve the effect of standard chemotherapy in leukemias through more general mechanisms. PMID:26505272

  4. Education, Meritocracy and Redistribution

    ERIC Educational Resources Information Center

    Souto-Otero, Manuel

    2010-01-01

    This paper analyses the relationship between education, meritocracy and redistribution. It first questions the meritocratic ideal highlighting how it relates to normative expectations that do not hold fully neither in their logic nor in practice. It then complements the literature on persistent inequalities by focusing on the opportunities for…

  5. Theiler's murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin.

    PubMed

    Mutsvunguma, Lorraine Z; Moetlhoa, Boitumelo; Edkins, Adrienne L; Luke, Garry A; Blatch, Gregory L; Knox, Caroline

    2011-09-01

    Theiler's murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus. PMID:21445704

  6. Expression and redistribution of cellular Bad, Bax, and Bcl-X(L) protein is associated with VCD-induced ovotoxicity in rats.

    PubMed

    Hu, X; Christian, P; Sipes, I G; Hoyer, P B

    2001-11-01

    follicles in various stages of development. Relative to controls, within the population of small preantral follicles, staining intensity was less (P < 0.05) and presumably more diffuse, specifically in stage 1 primary follicles from VCD-treated animals (15 days). VCD caused none of these effects in large preantral follicles or liver (not targeted by VCD). These data provide evidence that the apoptosis induced by VCD in ovarian small preantral follicles of rats is associated with increased expression of Bad protein, redistribution of Bcl-x(L) protein and cytochrome c from the mitochondria to the cytosolic compartment, and an increase in the Bax/Bcl-x(L) ratio in the mitochondria. These observations are consistent with the involvement of Bcl-2 gene family members in VCD-induced acceleration of atresia. PMID:11673266

  7. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    SciTech Connect

    Bostanci, Zeynep; Alam, Samina; Soybel, David I.; Kelleher, Shannon L.

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  8. Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    NASA Astrophysics Data System (ADS)

    Belkacem, K.; Marques, J. P.; Goupil, M. J.; Mosser, B.; Sonoi, T.; Ouazzani, R. M.; Dupret, M. A.; Mathis, S.; Grosjean, M.

    2015-07-01

    The detection of mixed modes in subgiants and red giants by the CoRoT and Kepler space-borne missions allows us to investigate the internal structure of evolved low-mass stars, from the end of the main sequence to the central helium-burning phase. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 M⊙ at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.

  9. Hydraulic Redistribution: A Modeling Perspective

    NASA Astrophysics Data System (ADS)

    Daly, E.; Verma, P.; Loheide, S. P., III

    2014-12-01

    Roots play a key role in the soil water balance. They extract and transport water for transpiration, which usually represents the most important soil water loss in vegetated areas, and can redistribute soil water, thereby increasing transpiration rates and enhancing root nutrient uptake. We present here a two-dimensional model capable of describing two key aspects of root water uptake: root water compensation and hydraulic redistribution. Root water compensation is the ability of root systems to respond to the reduction of water uptake from areas of the soil with low soil water potential by increasing the water uptake from the roots in soil parts with higher water potential. Hydraulic redistribution is a passive transfer of water through the root system from areas of the soil with greater water potential to areas with lower water potential. Both mechanisms are driven by gradients of water potential in the soil and the roots. The inclusion of root water compensation and hydraulic redistribution in models can be achieved by describing root water uptake as a function of the difference in water potential between soil and root xylem. We use a model comprising the Richards equation for the water flow in variably saturated soils and the Darcy's equation for the water flow in the xylem. The two equations are coupled via a sink term, which is assumed to be proportional to the difference between soil and xylem water potentials. The model is applied in two case studies to describe vertical and horizontal hydraulic redistribution and the interaction between vegetation with different root depths. In the case of horizontal redistribution, the model is used to reproduce the fluxes of water across the root system of a tree subjected to uneven irrigation. This example can be extended to situations when only part of the root system has access to water, such as vegetation near creeks, trees at the edge of forests, and street trees in urban areas. The second case is inspired by recent

  10. Reperfusion-induced temporary appearance of therapeutic window in penumbra after 2 h of photothrombotic middle cerebral artery occlusion in rats.

    PubMed

    Yao, Hiroshi; Yoshii, Narihiko; Akira, Toshiaki; Nakahara, Tatsuo

    2009-03-01

    To explore the effects of reperfusion on evolution of focal ischemic injury, spontaneously hypertensive male rats were subjected to photothrombotic distal middle cerebral artery occlusion (MCAO) with or without YAG laser-induced reperfusion. The volume of fodrin breakdown zone, water content, and brain tissue levels of sodium (Na(+)) and potassium (K(+)) were measured in the ischemic core and penumbra. Reperfusion attenuated fodrin breakdown, and the volume containing fodrin breakdown product at 3 h after reperfusion (5 h after MCAO) (30+/-7 mm(3)) was significantly smaller than the 42+/-3 mm(3) of the permanent occlusion group. After 3 to 6 h of ischemia, Na(+) increased, and K(+) decreased in the ischemic core. Reperfusion after 2 h of MCA occlusion did not mitigate the ischemia-induced changes in brain tissue electrolytes and water content at 3 to 6 h of ischemia. Even in reperfusion after comparatively long periods of occlusion where brain infarction size, assessed 3 days after MCAO, was not significantly reduced by reperfusion, and the precipitating indicators of the ischemic core (Na(+), K(+), water content) did not improve, temporary improvement or a delay in progression of ischemic injury was discernible in the penumbra. These results indicate the possibility that treatment with reperfusion is permissive to the effects of neuroprotection. PMID:19088742

  11. Indomethacin induces increase in gastric epithelial tight junction permeability via redistribution of occludin and activation of p38 MAPK in MKN-28 Cells.

    PubMed

    Thakre-Nighot, Meghali; Blikslager, Anthony T

    2016-01-01

    Tight Junctions (TJ) create a paracellular barrier that is compromised when nonsteriodal anti-inflammatory drugs (NSAIDs) injure the gastric epithelium, leading to increased permeability. However, the mechanism of NSAID-induced gastric injury is unclear. Here, we examined the effect of indomethacin on barrier function and TJ in gastric MKN-28 cells. In concentration response studies, 500 µm indomethacin induced a significant decrease in transepithelial resistance (TER; 380 vs. 220 Ω·cm(2) for control and indomethacin-treated cells respectively, p < 0.05), and increased dextran permeability by 0.2 vs 1.2 g/l (p < 0.05). These changes in barrier function were completely ameliorated by the p38 MAPK inhibitor (SB-203580) but not by JNK inhibitor (SP-600125) or MEK/ERK inhibitor (PD-98059). SiRNA knock down of p38 MAPK prevented the loss of barrier function caused by indomethacin in MKN-28 cells. Western analyses of TJ proteins revealed that expression of occludin was reduced by indomethacin, whereas there was no change in other TJ proteins. The loss of occludin expression induced by indomethacin was prevented by inhibition of p38 MAPK but not JNK or ERK and also by siRNA of p38 MAPK. Immunofluorescence revealed disruption of occludin localization at the site of the tight junction in indomethacin-treated cells, and this was attenuated by inhibition of p38 MAPK. NSAID injury to murine gastric mucosa on Ussing chambers revealed that indomethacin caused a significant drop in TER and increased paracellular permeability. Pretreatment with the p38 MAPK inhibitor significantly attenuated the disruption of barrier function, but JNK and MEK/ERK inhibition had no effect. Western blot analysis on gastric mucosa reveled loss of TJ protein occludin by indomethacin, which was prevented by inhibition of p38 MAPK. This data suggests that indomethacin compromises the gastric epithelial barrier via p38 MAPK inducing occludin alterations in the TJs. PMID:27583191

  12. Fluorescence lifetime imaging and FRET-induced intracellular redistribution of Tat-conjugated quantum dot nanoparticles through interaction with a phthalocyanine photosensitiser.

    PubMed

    Yaghini, Elnaz; Giuntini, Francesca; Eggleston, Ian M; Suhling, Klaus; Seifalian, Alexander M; MacRobert, Alexander J

    2014-02-26

    The interaction of Tat-conjugated PEGylated CdSe/ZnS quantum dots (QD) with the amphiphilic disulfonated aluminium phthalocyanine photosensitiser is investigated in aqueous solution and in a human breast cancer cell line. In aqueous solution, the QDs and phthalocyanine form stable nanocomposites. Using steady-state and time-resolved fluorescence measurements combined with singlet oxygen detection, efficient Förster resonance energy transfer (FRET) is observed with the QDs acting as donors, and the phthalocyanine photosensitiser, which mediates production of singlet oxygen, as acceptors. In cells, the Tat-conjugated QDs localise in lysosomes and the QD fluorescence lifetimes are close to values observed in aqueous solution. Strong FRET-induced quenching of the QD lifetime is observed in cells incubated with the nanocomposites using fluorescence lifetime imaging microscopy (FLIM). Using excitation of the QDs at wavelengths where phthalocyanine absorption is negligible, FRET-induced release of QDs from endo/lysosomes is confirmed using confocal imaging and FLIM, which is attributed to photooxidative damage to the endo/lysosomal membranes mediated by the phthalocyanine acceptor. PMID:24031023

  13. Living high training low induces physiological cardiac hypertrophy accompanied by down-regulation and redistribution of the renin-angiotensin system

    PubMed Central

    Shi, Wei; Meszaros, J Gary; Zeng, Shao-ju; Sun, Ying-yu; Zuo, Ming-xue

    2013-01-01

    Aim: Living high training low” (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats. Methods: Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks. Hematological parameters, hemodynamic measurement, heart hypertrophy and plasma angiotensin II (Ang II) level of the rats were measured. The gene and protein expression of angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II receptor I (AT1) in heart tissue was assessed using RT-PCR and immunohistochemistry, respectively. Results: LLTL, LHS and LHTL significantly improved cardiac function, increased hemoglobin concentration and RBC. At the molecular level, LLTL, LHS and LHTL significantly decreased the expression of ACE, AGT and AT1 genes, but increased the expression of ACE and AT1 proteins in heart tissue. Moreover, ACE and AT1 protein expression was significantly increased in the endocardium, but unchanged in the epicardium. Conclusion: LHTL training protocol suppresses ACE, AGT and AT1 gene expression in heart tissue, but increases ACE and AT1 protein expression specifically in the endocardium, suggesting that the physiological heart hypertrophy induced by LHTL is regulated by region-specific expression of renin-angiotensin system components. PMID:23377552

  14. Adaptive lens using liquid crystal concentration redistribution

    NASA Astrophysics Data System (ADS)

    Ren, Hongwen; Lin, Yi-Hsin; Wu, Shin-Tson

    2006-05-01

    An adaptive lens using electrically induced liquid crystal (LC)/monomer concentration redistribution is demonstrated. In the absence of an electric field, the LC/monomer mixture is homogeneously distributed. Application of an inhomogeneous electric field causes the LC molecules to diffuse towards the high field region and the liquid monomer towards the low field region. On the other hand, the LC molecules tend to diffuse from high to low concentration direction in order to balance the concentration change. A gradient LC concentration is thus obtained. Using the gradient LC concentration, we demonstrate a tunable-focus lens. Compared with a conventional LC lens, our lens has advantages in small astigmatism and without light scattering, but its response time is slower.

  15. Redistributive effects in public health care financing.

    PubMed

    Honekamp, Ivonne; Possenriede, Daniel

    2008-11-01

    This article focuses on the redistributive effects of different measures to finance public health insurance. We analyse the implications of different financing options for public health insurance on the redistribution of income from good to bad health risks and from high-income to low-income individuals. The financing options considered are either income-related (namely income taxes, payroll taxes, and indirect taxes), health-related (co-insurance, deductibles, and no-claim), or neither (flat fee). We show that governments who treat access to health care as a basic right for everyone should consider redistributive effects when reforming health care financing. PMID:18347823

  16. Redistribution of synaptic efficacy between neocortical pyramidal neurons

    NASA Astrophysics Data System (ADS)

    Markram, Henry; Tsodyks, Misha

    1996-08-01

    EXPERiENCE-dependent potentiation and depression of synaptic strength has been proposed to subserve learning and memory by changing the gain of signals conveyed between neurons1,2. Here we examine synaptic plasticity between individual neocortical layer-5 pyramidal neurons. We show that an increase in the synaptic response, induced by pairing action-potential activity in pre- and postsynaptic neurons, was only observed when synaptic input occurred at low frequencies. This frequency-dependent increase in synaptic responses arises because of a redistribution of the available synaptic efficacy and not because of an increase in the efficacy. Redistribution of synaptic efficacy could represent a mechanism to change the content, rather than the gain, of signals conveyed between neurons.

  17. Wealth redistribution in conservative linear kinetic models

    NASA Astrophysics Data System (ADS)

    Toscani, G.

    2009-10-01

    We introduce and discuss kinetic models for wealth distribution which include both taxation and uniform redistribution. The evolution of the continuous density of wealth obeys a linear Boltzmann equation where the background density represents the action of an external subject on the taxation mechanism. The case in which the mean wealth is conserved is analyzed in full details, by recovering the analytical form of the steady states. These states are probability distributions of convergent random series of a special structure, called perpetuities. Among others, Gibbs distribution appears as steady state in case of total taxation and uniform redistribution.

  18. Resonance-line transfer with partial redistribution. VII Angle-dependent redistribution. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Milkey, R. W.; Shine, R. A.; Mihalas, D.

    1975-01-01

    A method is presented for treating radiative transfer in resonance lines, allowing for the full angle and frequency dependence of redistribution in the scattering process, as seen in the laboratory frame. The case of an equivalent-two-level-atom source function is considered; the problem to be treated is then linear in the radiation field. We apply this method to the Ca II lines in the solar atmosphere, using a redistribution function which takes into account a mixture of coherence in the atom's frame, with Doppler redistribution in the laboratory frame (for atoms which have not suffered an elastic collision), and of complete redistribution in the laboratory frame (for atoms that are collisionally perturbed during the emission process). Both the angle-averaged approximation and the full angle-dependent solution were obtained, and were compared to assess, differentially, the effects of angular redistribution upon the computed line profile and its center-to-limb behavior. For the Ca II line in a homogeneous solar chromosphere the angle-dependent effects are found to be negligible, indicating that one may use angle-averaged redistribution functions when studying partial redistribution effects in line profiles.

  19. Mapping Redistribution Of Metal In Welds

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis

    1988-01-01

    Radioactive-tracer technique applied to map redistribution of metal caused by welding process. Surfaces of parts welded irradiated by particle-beam generators to make them slightly radioactive. Used to verify predictions of computer codes for dynamics of fluids in weld pools.

  20. Cognitive Ability and the Demand for Redistribution

    PubMed Central

    Mollerstrom, Johanna; Seim, David

    2014-01-01

    Empirical research suggests that the cognitively able are politically more influential than the less able, by being more likely to vote and to assume leadership positions. This study asks whether this pattern matters for public policy by investigating what role a person's cognitive ability plays in determining his preferences for redistribution of income among citizens in society. To answer this question, we use a unique Swedish data set that matches responses to a tailor-made questionnaire to administrative tax records and to military enlistment records for men, with the latter containing a measure of cognitive ability. On a scale of 0 to 100 percent redistribution, a one-standard-deviation increase in cognitive ability reduces the willingness to redistribute by 5 percentage points, or by the same amount as a $35,000 increase in mean annual income. We find support for two channels mediating this economically strong and statistically significant relation. First, higher ability is associated with higher income. Second, ability is positively correlated with the view that economic success is the result of effort, rather than luck. Both these factors are, in turn, related to lower demand for redistribution. PMID:25343713

  1. Subsurface application enhances benefits of manure redistribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic (i.e., corn yield) and environmental (i.e., ammonia volatilization and surface nutrient losses) effects of different ...

  2. Contributions of In-Situ Stress Transient Redistribution to Blasting Excavation Damage Zone of Deep Tunnels

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Lu, Wen-bo; Chen, Ming; Hu, Ying-guo; Zhou, Chuang-bing; Wu, Xin-xia

    2015-03-01

    With the background of construction of the headrace tunnels with the deepest buried depth in China at present, by means of carefully acoustic velocity detection and analysis of Excavation Damage Zone (EDZ), the contributions to damage zones made by the effect of in situ stress transient redistribution are studied and compared with the extent of damage caused by the explosive load. Also, the numerical simulation was adopted to verify detecting the results. It turned out that the in situ stress transient redistribution during blasting has great influence on the development of EDZ of deep tunnels. The blasting excavation-induced damage zone of deep tunnels can be divided into the inner damage zone and the outer damage zone from the excavation surface into surrounding rocks. Although this damage zone dividing method is similar to the work of Martino and Chandler (2004), the consideration of developing a mechanism of the inner damage zone, especially the contribution of in situ stress transient redistribution, is totally different. The inner damage zone, which accounts for 29-57 % of the total damage zone, is mainly caused by explosive load and in situ stress transient adjustment, while the outer damage zone can be mostly attributed to the static redistribution of in situ stress. Field tests and numerical simulation indicate that the in situ stress transient redistribution effect during blasting contributes about 16-51 % to the inner damage zone in the 2# headrace tunnel of Jinping II Hydropower Station. For general cases, it can be concluded that the in situ stress transient redistribution is one of the main contributors of an excavation damage zone, and damage caused by in situ stress transient redistribution effect may exceed the damage caused by explosion load and become the main inducing factor for damage with the rise of in situ stress levels.

  3. Microscopic theory of superconductor-ferroelectric heterostructures: Interface charge redistribution

    NASA Astrophysics Data System (ADS)

    Pavlenko, N.; Schwabl, F.

    2003-03-01

    We present a theory of periodic ferroelectric-superconductor (FE-S) heterostructures containing ferroelectric layers sandwiched between superconducting planes. We analyze the electronic charge-carrier redistribution at the FE-S interface in the presence of the spontaneous polarization in the ferroelectric layer. On the other hand, we study the influence of the superconductor on the structural dynamics in the ferroelectric layer. The effect of FE-S contacts on the ferroelectrics is found to be crucial leading to a structural transformation from the state with the homogeneous-type polarization to the phase with a set of asymmetric stable polarization domains. FE-S interface phenomena induce a decrease of the temperature of the transition to the symmetric phase with two symmetric (negative and positive) polarization domains. Nevertheless, even above the ferroelectric critical temperature, we find in the ferroelectric layer a stable contact-induced enhanced spontaneous polarization. The domain structure in the symmetric phase appears as the response to the charge-carrier redistribution at the contact with the superconducting subsystem. An increase of the FE-S interface coupling results in a complex nonmonotonic behavior of the superconducting transition temperature and finally, for the strong-coupling regime, in a complete suppression of the superconductivity. The results are expected to be especially important for the analysis of high-temperature cuprate superconductor films grown on perovskite-type ferroelectrics.

  4. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    SciTech Connect

    Perez-Becker, Daniel; Showman, Adam P.

    2013-10-20

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ{sub wave}, plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ{sub wave}∼√(τ{sub rad}/Ω), where τ{sub rad} is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ{sub rad} ∼ τ{sub vert}, where τ{sub vert} is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ{sub rad} and the horizontal day

  5. 13 CFR 309.2 - Redistributions under part 307.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Redistributions under part 307... COMMERCE REDISTRIBUTIONS OF INVESTMENT ASSISTANCE § 309.2 Redistributions under part 307. (a) A Recipient of Investment Assistance under part 307 of this chapter may directly expend such...

  6. 13 CFR 309.2 - Redistributions under part 307.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Redistributions under part 307... COMMERCE REDISTRIBUTIONS OF INVESTMENT ASSISTANCE § 309.2 Redistributions under part 307. (a) A Recipient of Investment Assistance under part 307 of this chapter may directly expend such...

  7. NIF Target Capsule Wall And Hohlraum Transfer Gas Effects On Deuterium-Tritium Redistribution Rates

    SciTech Connect

    Giedt, W H; Sanchez, J J

    2005-06-27

    The effects of temperature and age on the times required for beta-heating-induced redistribution of a 50-50 mole percent mixture of deuterium and tritium (DT) in a spherical capsule are investigated analytically and numerically. The derivation of an analytical solution for the redistribution time in a one-dimensional binary diffusion model, which includes the capsule thermal resistance, is first described. This result shows that the redistribution time for a high conductivity capsule wall is approximately doubled after 8 days of {sup 3}He formation. In contrast, with a low thermal conductivity capsule wall (e.g., polyimide), the redistribution time would increase by less than 10%. The substantial effect of the capsule wall resistance suggested that the resistance to heat transfer from the capsule through the surrounding transfer gas to the hohlraum wall would also influence the redistribution process. This was investigated with a spherical model, which was based on accounting for energy transfer by diffusion with a conduction heat transfer approximation. This made it possible to solve for the continuous temperature distribution throughout the capsule and surrounding gas. As with the capsule the redistribution times depended on the relative values of the thermal resistances of the vapor, the capsule, and the transfer gas. With increasing thermal resistance of the vapor (increased concentration of {sup 3}He) redistributions times for hydrocarbon capsules were significantly less than predicted by the one-dimensional model, which included the capsule wall resistance. In particular for low {sup 3}He concentrations the time constant was approximately 10% less than the minimum one-dimensional value of 27 minutes. Further analytical and experimental investigation focused on defining the relations between the thermal resistances under which the one-dimensional model analysis applies is recommended.

  8. Redistributive effects of Swedish health care finance.

    PubMed

    Gerdtham, U G; Sundberg, G

    1998-01-01

    This paper investigates the redistributive effects of the Swedish health care financing system in 1980 and 1990 for four different financial sources: county council taxes, payroll taxes, direct payments and state grants. The redistributive effects are decomposed into vertical, horizontal and 'reranking' segments for each of the four financial sources. The data used are based on probability samples of the Swedish population, from the Level of Living Survey (LNU) from 1981 and 1991. The paper concludes that the Swedish health care financing system is weakly progressive, although direct payments are regressive. There is some horizontal inequity and 'reranking', which mainly comes from the county council taxes, since those tax rates vary for each county council. The implication is that, to some extent, people with equal incomes are treated unequally. PMID:10346051

  9. Carbon redistribution by erosion processes in an intensively disturbed catchment

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  10. Dynamics of quasi-spherical Z-pinch implosions with mass redistribution and displacement modification

    SciTech Connect

    Zhang Yang; Ding Ning; Sun Shunkai; Xue Chuang; Ning Cheng; Xiao Delong; Huang Jun; Li Zhenghong

    2012-12-15

    Implosions of (quasi-)spherical loads with mass redistribution and displacement modification are investigated numerically. Both methods can theoretically counterbalance the nonuniformity of magnetic pressure along the load surface and realize quasi-spherical Z-pinch implosions. Mass redistribution is feasible for spherical loads with large radius and weight, while the displacement modification is more suitable for light loads, such as those composed of wire arrays. Simulation results suggest that, for mass redistributed spherical loads, wall instabilities induced by polar mass flows will deform the imploding shell. For prolate spherical loads, in which the wall instability cannot develop, the kinetic energy distribution is disturbed at high latitude. These passive behaviors and their possible mitigation methods, such as reshaping the electrode, are investigated numerically in this paper.

  11. Dynamics of quasi-spherical Z-pinch implosions with mass redistribution and displacement modification

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Ding, Ning; Li, Zheng-Hong; Sun, Shun-Kai; Xue, Chuang; Ning, Cheng; Xiao, De-Long; Huang, Jun

    2012-12-01

    Implosions of (quasi-)spherical loads with mass redistribution and displacement modification are investigated numerically. Both methods can theoretically counterbalance the nonuniformity of magnetic pressure along the load surface and realize quasi-spherical Z-pinch implosions. Mass redistribution is feasible for spherical loads with large radius and weight, while the displacement modification is more suitable for light loads, such as those composed of wire arrays. Simulation results suggest that, for mass redistributed spherical loads, wall instabilities induced by polar mass flows will deform the imploding shell. For prolate spherical loads, in which the wall instability cannot develop, the kinetic energy distribution is disturbed at high latitude. These passive behaviors and their possible mitigation methods, such as reshaping the electrode, are investigated numerically in this paper.

  12. Hydraulic redistribution in three Amazonian trees.

    PubMed

    Oliveira, Rafael S; Dawson, Todd E; Burgess, Stephen S O; Nepstad, Daniel C

    2005-09-01

    About half of the Amazon rainforest is subject to seasonal droughts of 3 months or more. Despite this drought, several studies have shown that these forests, under a strongly seasonal climate, do not exhibit significant water stress during the dry season. In addition to deep soil water uptake, another contributing explanation for the absence of plant water stress during drought is the process of hydraulic redistribution; the nocturnal transfer of water by roots from moist to dry regions of the soil profile. Here, we present data on patterns of soil moisture and sap flow in roots of three dimorphic-rooted species in the Tapajós Forest, Amazônia, which demonstrate both upward (hydraulic lift) and downward hydraulic redistribution. We measured sap flow in lateral and tap roots of our three study species over a 2-year period using the heat ratio method, a sap-flow technique that allows bi-directional measurement of water flow. On certain nights during the dry season, reverse or acropetal flow (i.e.,in the direction of the soil) in the lateral roots and positive or basipetal sap flow (toward the plant) in the tap roots of Coussarea racemosa (caferana), Manilkara huberi (maçaranduba) and Protium robustum (breu) were observed, a pattern consistent with upward hydraulic redistribution (hydraulic lift). With the onset of heavy rains, this pattern reversed, with continuous night-time acropetal sap flow in the tap root and basipetal sap flow in lateral roots, indicating water movement from wet top soil to dry deeper soils (downward hydraulic redistribution). Both patterns were present in trees within a rainfall exclusion plot (Seca Floresta) and to a more limited extent in the control plot. Although hydraulic redistribution has traditionally been associated with arid or strongly seasonal environments, our findings now suggest that it is important in ameliorating water stress and improving rain infiltration in Amazonian rainforests. This has broad implications for

  13. A conceptual, distributed snow redistribution model

    NASA Astrophysics Data System (ADS)

    Frey, S.; Holzmann, H.

    2015-11-01

    When applying conceptual hydrological models using a temperature index approach for snowmelt to high alpine areas often accumulation of snow during several years can be observed. Some of the reasons why these "snow towers" do not exist in nature are vertical and lateral transport processes. While snow transport models have been developed using grid cell sizes of tens to hundreds of square metres and have been applied in several catchments, no model exists using coarser cell sizes of 1 km2, which is a common resolution for meso- and large-scale hydrologic modelling (hundreds to thousands of square kilometres). In this paper we present an approach that uses only gravity and snow density as a proxy for the age of the snow cover and land-use information to redistribute snow in alpine basins. The results are based on the hydrological modelling of the Austrian Inn Basin in Tyrol, Austria, more specifically the Ötztaler Ache catchment, but the findings hold for other tributaries of the river Inn. This transport model is implemented in the distributed rainfall-runoff model COSERO (Continuous Semi-distributed Runoff). The results of both model concepts with and without consideration of lateral snow redistribution are compared against observed discharge and snow-covered areas derived from MODIS satellite images. By means of the snow redistribution concept, snow accumulation over several years can be prevented and the snow depletion curve compared with MODIS (Moderate Resolution Imaging Spectroradiometer) data could be improved, too. In a 7-year period the standard model would lead to snow accumulation of approximately 2900 mm SWE (snow water equivalent) in high elevated regions whereas the updated version of the model does not show accumulation and does also predict discharge with more accuracy leading to a Kling-Gupta efficiency of 0.93 instead of 0.9. A further improvement can be shown in the comparison of MODIS snow cover data and the calculated depletion curve, where

  14. A modelling study of moisture redistribution by thin cirrus clouds

    NASA Astrophysics Data System (ADS)

    Dinh, T.; Fueglistaler, S.; Durran, D.; Ackerman, T.

    2014-05-01

    A high resolution 2-dimensional numerical model is used to study the moisture redistribution following homogeneous ice nucleation induced by Kelvin waves in the tropical tropopause layer (TTL). We compare results for dry/moist initial conditions, and three levels of complexity for the representation of cloud processes: full bin microphysics and radiative effects of the ice, ditto but without radiative effects, and instantaneous removal of moisture in excess of saturation upon nucleation. Cloud evolution and the profiles of moisture redistribution are found to be sensitive to initial conditions and cloud processes. Ice sedimentation leads to a downward flux of water. On the other hand, the cloud radiative heating induces upward advection of the cloudy air. This results in an upward flux of water vapour if the cloudy air is moister (or drier) than the environment, which is typically when the environment is subsaturated (or supersaturated). The numerical results show that only a small fraction (less than 25%) of the cloud experiences nucleation. Sedimentation and reevaporation are important, and hydrated layers in observation may be as good an indicator as dehydrated layers for the occurrence of thin cirrus clouds. The calculation with instantaneous removal of condensates misses the hydration by construction, but also underestimates dehydration due to lack of moisture removal from sedimenting particles below the nucleation level, and due to nucleation before reaching the minimum saturation mixing ratio. The sensitivity to initial conditions and cloud processes suggests that it is difficult to reach generic, quantitative conclusions regarding the role of thin cirrus clouds for the moisture distribution in the TTL and stratosphere.

  15. Landscape evolution by soil redistribution in a Mediterranean agricultural context

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Le Bissonnais, Yves

    2010-05-01

    Soils and landscapes are frequently subjected to rapid evolutions induced by climate changes and humans disturbances. Early, soil scientists had already sought to identify the dynamic interactions between soils and landscapes. Soil redistribution modelling is an appropriate analyse methodology widely utilized (Kirkby, 1985; Van Oost et al., 2000; Van Rompaey et al., 2001; Minasny and McBratney, 1999; Van Oost et al., 2005; Govers et al., 2006) to understand space time evolution in soil and landscape processes at short and medium term. The aims of this research is to develop a model able to simulate soil evolution as affected by soil redistribution processes (e.g. water-erosion processes and mechanical erosion) and to use pedological knowledge acquired from a field study coupled with the present research. The LandSoil model, here proposed, is an event based model, dimensioned for fine spatial [1 m] and medium [10 -100 years] temporal scales, taking into account a detailed representation of the agricultural landscape structure. It is composed of three modules for soil erosion/redistribution: rill erosion (Souchère et al., 2003); interrill erosion (Cerdan et al., 2002); and tillage erosion based on the mechanistic rules developed by Govers et al., 1994. After each rain and tillage event a new topography is evaluated as well as all the geometric landscape parameters. Specificities of the model are: i) long-term landscape analysis and topography balance after each rainfall; ii) evaluation of water erosion and soil mechanistic redistribution (tillage erosion); iii) taking in consideration of the landscape geometry, especially connectivity, as a significant information in describing the landscape and useful in modelling (Landscape structure management and landscape design); and iv) utilisation of various and different climate scenarios thanks to the event based model. Subsequently we apply this model to study the effect of different scenarios of land management and

  16. Using soil redistribution to understand soil organic carbon redistribution and budgets

    USGS Publications Warehouse

    Ritchie, J.C.; McCarty, G.W.; Venteris, E.R.; Kaspar, T.C.

    2005-01-01

    Patterns of soil organic carbon (SOC) vary across the landscape leading to uncertainties in SOC budgets, especially for agricultural areas where water, wind, and tillage erosion redistribute soil and SOC. This study determined SOC patterns related to soil redistribution in small agricultural fields. Soil redistribution patterns were determined using the fallout caesium-137 technique in agricultural fields in Maryland and Iowa, USA. In two Iowa fields, SOC ranged from 0.5 to 5% whereas in the Maryland field the SOC ranged from 0.4 to 2.9%. Soil organic carbon was statistically significantly correlated with soil 137Cs inventories and soil erosion/deposition rates. Sites of soil erosion in Iowa and Maryland had significantly lower average concentrations of SOC (2.4% and 1.3%, respectively) than sites of soil deposition (3.4% and 1.6%, respectively). These studies show the impact of soil redistribution patterns, within a field or catchment, and aid in understanding SOC patterns and budgets.

  17. Precipitate Redistribution during Creep of Alloy 617

    SciTech Connect

    S. Schlegel; S. Hopkins; E. Young; M. Frary; J. Cole; T.Lillo

    2009-12-01

    Nickel-based superalloys are being considered for applications within advanced nuclear power generation systems due to their high temperature strength and corrosion resistance. Alloy 617, a candidate for use in heat exchangers, derives its strength from both solid solution strengthening and the precipitation of carbide particles. However, during creep, carbides that are supposed to retard grain boundary motion are found to dissolve and re-precipitate on boundaries in tension. To quantify the redistribution, we have used electron backscatter diffraction and energy dispersive spectroscopy to analyze the microstructure of 617 after creep testing at 900 and 1000°C. The data were analyzed with respect to location of the carbides (e.g., intergranular vs. intragranular), grain boundary character, and precipitate type (i.e., Cr-rich or Mo-rich). We find that grain boundary character is the most important factor in carbide distribution; some evidence of preferential distribution to boundaries in tension is also observed at higher applied stresses. Finally, the results suggest that the observed redistribution is due to the migration of carbides to the boundaries and not the migration of boundaries to the precipitates.

  18. Laser cooling by collisional redistribution of radiation.

    PubMed

    Vogl, Ulrich; Weitz, Martin

    2009-09-01

    The general idea that optical radiation may cool matter was put forward 80 years ago. Doppler cooling of dilute atomic gases is an extremely successful application of this concept. More recently, anti-Stokes cooling in multilevel systems has been explored, culminating in the optical refrigeration of solids. Collisional redistribution of radiation has been proposed as a different cooling mechanism for atomic two-level systems, although experimental investigations using moderate-density gases have not reached the cooling regime. Here we experimentally demonstrate laser cooling of an atomic gas based on collisional redistribution of radiation, using rubidium atoms in argon buffer gas at a pressure of 230 bar. The frequent collisions in the ultradense gas transiently shift a highly red-detuned laser beam (that is, one detuned to a much lower frequency) into resonance, whereas spontaneous decay occurs close to the unperturbed atomic resonance frequency. During each excitation cycle, kinetic energy of order k(B)T-that is, the thermal energy (k(B), Boltzmann's constant; T, temperature)-is extracted from the dense atomic sample. In a proof-of-principle experiment with a thermally non-isolated sample, we demonstrate relative cooling by 66 K. The cooled gas has a density more than ten orders of magnitude greater than the typical values used in Doppler-cooling experiments, and the cooling power reaches 87 mW. Future applications of the technique may include supercooling beyond the homogeneous nucleation temperature and optical chillers. PMID:19727195

  19. Superfluorescence polarization: Signature of collisional redistribution

    NASA Astrophysics Data System (ADS)

    Kumarakrishnan, A.; Chudasama, S.; Han, X. L.

    2003-09-01

    We have studied effects of magnetic sublevel degeneracy on the polarization of superfluorescent pulses generated on the Ca 4s4p 1P1 3d4s 1D2 transition at 5.5 μm. These pulses were generated from a cell of length 50 cm by optically pumping calcium vapor on the 4s2 1S0 4s4p 1P1 transition in the presence of Ar gas. The axis of ellipticity of superfluorescence (SF) polarization is oriented parallel to the axis of the pump-laser polarization at large detunings, and undergoes an abrupt rotation through 90° for detunings close to resonance. The distribution of populations in the magnetic sublevels of the 1P1 state can be estimated using a simple model based on previously calculated cross sections for collisionally aided absorption in the presence of an intense (pump) field. For large detunings, these estimates are consistent with the polarized SF intensity measured in the experiment. A direct measurement of the populations of the 1P1 magnetic sublevels also supports the collisional redistribution predicted by the calculated cross sections. We therefore suggest that SF polarization can be a useful signature of collisional redistribution. However, the change in ellipticity is unexpected, and probable causes for this effect are discussed.

  20. The Sobolev approximation for line formation with partial frequency redistribution

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Rybicki, G. B.

    1992-01-01

    Attention is given to the formation of a spectral line in a uniformly expanding infinite medium in the Sobolev approximation, with emphasis on the various mechanisms for frequency redistribution. Numerical and analytic solutions of the transfer equation are presented of a number of redistribution functions and their approximations, including type I and type II partial redistribution, coherent scattering and complete redistribution, and the Fokker-Planck and uncorrelated approximation to the R sub II function. The solutions for the mean intensity are shown to depend very much on the type of redistribution mechanism, while for the frequency-weighted mean intensity, which enters the rate equations, this dependence is weak. It is inferred that use of Sobolev escape probabilities based on complete redistribution can be an adequate approximation for many calculations for which only the radiative excitation rates are needed.

  1. Statistical equilibrium in simple exchange games II. The redistribution game

    NASA Astrophysics Data System (ADS)

    Garibaldi, U.; Scalas, E.; Viarengo, P.

    2007-11-01

    We propose a simple stochastic exchange game mimicking taxation and redistribution. There are g agents and n coins; taxation is modeled by randomly extracting some coins; then, these coins are redistributed to agents following Polya's scheme. The individual wealth equilibrium distribution for the resulting Markov chain is the multivariate symmetric Polya distribution. In the continuum limit, the wealth distribution converges to a Gamma distribution, whose form factor is just the initial redistribution weight. The relationship between this taxation-and-redistribution scheme and other simple conservative stochastic exchange games (such as the BDY game) is discussed.

  2. Orexin-neuromodulated cerebellar circuit controls redistribution of arterial blood flows for defense behavior in rabbits

    PubMed Central

    Nisimaru, Naoko; Mittal, Chetan; Shirai, Yoshinori; Sooksawate, Thongchai; Anandaraj, Prabu; Hashikawa, Tsutomu; Nagao, Soichi; Arata, Akiko; Sakurai, Takeshi; Yamamoto, Miyuki; Ito, Masao

    2013-01-01

    We investigated a unique microzone of the cerebellum located in folium-p (fp) of rabbit flocculus. In fp, Purkinje cells were potently excited by stimulation of the hypothalamus or mesencephalic periaqueductal gray, which induced defense reactions. Using multiple neuroscience techniques, we determined that this excitation was mediated via beaded axons of orexinergic hypothalamic neurons passing collaterals through the mesencephalic periaqueductal gray. Axonal tracing studies using DiI and biotinylated dextran amine evidenced the projection of fp Purkinje cells to the ventrolateral corner of the ipsilateral parabrachial nucleus (PBN). Because, in defense reactions, arterial blood flow has been known to redistribute from visceral organs to active muscles, we hypothesized that, via PBN, fp adaptively controls arterial blood flow redistribution under orexin-mediated neuromodulation that could occur in defense behavior. This hypothesis was supported by our finding that climbing fiber signals to fp Purkinje cells were elicited by stimulation of the aortic nerve, a high arterial blood pressure, or a high potassium concentration in muscles, all implying errors in the control of arterial blood flow. We further examined the arterial blood flow redistribution elicited by electric foot shock stimuli in awake, behaving rabbits. We found that systemic administration of an orexin antagonist attenuated the redistribution and that lesioning of fp caused an imbalance in the redistribution between active muscles and visceral organs. Lesioning of fp also diminished foot shock-induced increases in the mean arterial blood pressure. These results collectively support the hypothesis that the fp microcomplex adaptively controls defense reactions under orexin-mediated neuromodulation. PMID:23912185

  3. CancerNet redistribution via WWW.

    PubMed Central

    Quade, G.; Püschel, N.; Far, F.

    1996-01-01

    CancerNet from the National Cancer Institute contains nearly 500 ASCII-files, updated monthly, with up-to-date information about cancer and the "Golden Standard" in tumor therapy. Perl scripts are used to convert these files to HTML-documents. A complex algorithm, using regular expression matching and extensive exception handling, detects headlines, listings and other constructs of the original ASCII-text and converts them into their HTML-counterparts. A table of contents is also created during the process. The resulting files are indexed for full-text search via WAIS. Building the complete CancerNet WWW redistribution takes less than two hours with a minimum of manual work. For 26,000 requests of information from our service per month the average costs for the worldwide delivery of one document is about 19 cents. PMID:8947697

  4. Redistribution of volatiles during lunar metamorphism

    NASA Technical Reports Server (NTRS)

    Cirlin, E. H.; Housley, R. M.

    1980-01-01

    Thermal release profiles of Pb, Zn, and Cd in sample 66095 (highly shocked breccia with melt rock matrix) showed that these volatiles were mostly present on the surface of the grains. Zn in rusty grains from 66095 was also mostly surface Zn, probably from sphalerite in grain boundaries and cracks. Simulation experiments of volatile transfer showed that Fe, FeCl2, iron phosphide, and troilite (FeS) can be produced and transported during subsolidus reactions. These results suggest that volatiles, rust, schreibersite, and possible siderophiles which are observed in lunar highland samples might have been redistributed during disequilibrium thermal metamorphism in hot ejecta blankets, and were not necessarily introduced by volcanic activity or meteoritic addition.

  5. Dissolution and redistribution of hydrogen in steel

    SciTech Connect

    Astaf`ev, A.A.

    1995-11-01

    The danger of flakes initiated by hydrogen dissolved in steel may arise in the production of forgings from alloyed steels. Hydrogen penetrates steel in melting, heat treatment, welding, galvanizing, and pickling and during operation in aggressive media, which reduces the ductility and increases the probability of brittle failure. It is of interest from the standpoint of practice and theory to investigate the possibility of evaluating the amount of hydrogen dissolved in steel and capable of diffusion and to analyze the redistribution and penetration of hydrogen into pores and collectors. In this case atomic hydrogen recombines and transforms into molecular hydrogen, which does not cause flakes or hydrogen embrittlement. This problem is considered in the present work.

  6. Redistribution of Carbon During Forest Blowdowns

    NASA Astrophysics Data System (ADS)

    Wohl, E. E.

    2013-12-01

    Numerous blowdowns in subalpine and montane forests of the Southern Rocky Mountains during the winter of 2011-12 present an opportunity to evaluate how this type of disturbance affects the distribution of organic carbon. Patch blowdowns covering 0.1 to 33 ha are an episodic event with an unknown recurrence interval. Blowdowns influence carbon partitioning in a forested ecosystem by transferring live to dead biomass and exposing soil on uprooted trees. Wood recruited to streams via blowdowns can cause channel-spanning jams that enhance overbank flows and channel avulsion in wider valley segments. This can lead to a multithread channel planform and increased floodplain storage of carbon, as well as altered stream metabolism and animal (insect and fish) production. This talk examines a 33-ha blowdown that occurred along Glacier Creek in Rocky Mountain National Park, Colorado during February 2012. Estimated carbon redistribution ranged as high as 308 Mg C/ha in high-severity patches to 106 Mg C/ha in low-severity patches. Volumes of carbon redistributed from living to dead biomass at high-severity sites are close to average total biomass in subalpine forests in the region. Blowdowns are likely to increase under a warming climate as part of an accelerated disturbance regime involving intense storms and wind, wildfire, and insect infestations. The consequences for carbon partitioning across the landscape, and for riverine ecosystems, depend partly on geomorphic setting, which creates path-dependence and hysteresis. In wider valley segments, downed trees (carbon transferred to dead biomass by blowdowns) may enhance retention of carbon in transport within the stream, facilitating both burial in sedimentary reservoirs and uptake by stream organisms.

  7. Redistribution Spurs Growth by Using a Portfolio Effect on Risky Human Capital

    PubMed Central

    Lorenz, Jan; Paetzel, Fabian; Schweitzer, Frank

    2013-01-01

    We demonstrate by mathematical analysis and systematic computer simulations that redistribution can lead to sustainable growth in a society. In accordance with economic models of risky human capital, we assume that dynamics of human capital is modeled as a multiplicative stochastic process which, in the long run, leads to the destruction of individual human capital. When agents are linked by fully redistributive taxation the situation might turn to individual growth in the long run. We consider that a government collects a proportion of income and reduces it by a fraction as costs for administration (efficiency losses). The remaining public good is equally redistributed to all agents. Sustainable growth is induced by redistribution despite the losses from the random growth process and despite administrative costs. Growth results from a portfolio effect. The findings are verified for three different tax schemes: proportional tax, taking proportionally more from the rich, and proportionally more from the poor. We discuss which of these tax schemes performs better with respect to maximize growth under a fixed rate of administrative costs, and the governmental income. This leads us to general conclusions about governmental decisions, the relation to public good games with free riding, and the function of taxation in a risk-taking society. PMID:23390505

  8. Redistributing Wealth to Families: The Advantages of the MYRIADE Model

    ERIC Educational Resources Information Center

    Legendre, Francois; Lorgnet, Jean-Paul; Thibault, Florence

    2005-01-01

    This study aims to shed light on the main characteristics of the French system for redistributing wealth to families through tax revenues and social transfers. For the purposes of this exercise, the authors used the MYRIADE microsimulation model, which covers most of the redistribution system, though it is limited to monetary flows such as family…

  9. Redistribution on the thallium scan in myocardial sarcoidosis: concise communication

    SciTech Connect

    Makler, P.T.; Lavine, S.J.; Denenberg, B.S.; Bove, A.A.; Idell, S.

    1981-05-01

    Resting and redistribution thallium studies were performed in four young patients with sarcoidosis to evaluate the possibility of myocardial involvement. In each case the resting scan showed marked defects that resolved on the redistribution studies. In a different patient population, these results would have implied significant coronary artery disease.

  10. Redistribution of radiation for the wings of Lyman-alpha

    NASA Technical Reports Server (NTRS)

    Yelnik, J.-B.; Burnett, K.; Cooper, J.; Ballagh, R. J.; Voslamber, D.

    1981-01-01

    Earlier work on redistribution of radiation by collisions for isolated lines is extended to overlapping lines, and an explicit expression for the frequency redistribution is given for Lyman-alpha. This expression is valid, even when the emitted photon is in the (non-impact) line wings. A simple physical explanation of the result is possible.

  11. Fluorescence imaging of lattice re-distribution on step-index direct laser written Nd:YAG waveguide lasers

    SciTech Connect

    Martínez de Mendívil, Jon; Pérez Delgado, Alberto; Lifante, Ginés; Jaque, Daniel; Ródenas, Airán; Benayas, Antonio; Aguiló, Magdalena; Diaz, Francesc; Kar, Ajoy K.

    2015-01-14

    The laser performance and crystalline micro-structural properties of near-infrared step-index channel waveguides fabricated inside Neodymium doped YAG laser ceramics by means of three-dimensional sub-picosecond pulse laser direct writing are reported. Fluorescence micro-mapping of the waveguide cross-sections reveals that an essential crystal lattice re-distribution has been induced after short pulse irradiation. Such lattice re-distribution is evidenced at the waveguide core corresponding to the laser written refractive index increased volume. The waveguides core surroundings also present diverse changes including slight lattice disorder and bi-axial strain fields. The step-index waveguide laser performance is compared with previous laser fabricated waveguides with a stress-optic guiding mechanism in absence of laser induced lattice re-distribution.

  12. Bis(monoacylglycero)phosphate accumulation in macrophages induces intracellular cholesterol redistribution, attenuates liver-X receptor/ATP-Binding cassette transporter A1/ATP-binding cassette transporter G1 pathway, and impairs cholesterol efflux

    PubMed Central

    Luquain-Costaz, Céline; Lefai, Etienne; Arnal-Levron, Maud; Markina, Daria; Sakaï, Shota; Euthine, Vanessa; Makino, Asami; Guichardant, Michel; Yamashita, Shizuya; Kobayashi, Toshihide; Lagarde, Michel; Moulin, Philippe; Delton-Vandenbroucke, Isabelle

    2013-01-01

    Objective Endosomal signature phospholipid bis(monoacylglycero)phosphate (BMP) has been involved in the regulation of cellular cholesterol homeostasis. Accumulation of BMP is a hallmark of lipid storage disorders and was recently reported as a noticeable feature of oxidized LDL-laden macrophages. This study was designed to delineate the consequences of macrophage BMP accumulation on intracellular cholesterol distribution, metabolism and efflux and to unravel the underlying molecular mechanisms. Methods and results We have developed an experimental design to specifically increase BMP content in RAW macrophages. Following BMP accumulation, cell cholesterol distribution was markedly altered despite no change in LDL uptake and hydrolysis, cholesterol esterification, or total cell cholesterol content. The expression of cholesterol regulated genes SREBP2 and HMGCoAR was decreased by 40%, indicative of an increase of endoplasmic reticulum associated-cholesterol. Cholesterol delivery to plasma membrane was reduced as evidenced by the 20% decrease of efflux by cyclodextrin. Functionally, BMP accumulation reduced cholesterol efflux to both apoA1 and HDL by 40%, correlated with a 40% decrease in mRNA contents of ABCA1 and ABCG1 transporters and LXR α and β. Foam cell formation induced by oxidized LDL exposure was exacerbated in BMP enriched cells. Conclusion The present work shows for the first time a strong functional link between BMP and cholesterol regulating genes involved in both intracellular metabolism and efflux. We propose that accumulation of cellular BMP might contribute to the deregulation of cholesterol homeostasis in atheromatous macrophages. PMID:23788762

  13. A field study of unstable preferential flow during soil water redistribution

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Wu, Laosheng; Harter, Thomas; Lu, Jianhang; Jury, William A.

    2003-04-01

    Reversal of the matric potential gradient during redistribution of soil water following infiltration has been hypothesized as a cause of preferential flow by inducing a fluid instability at the leading edge of the wetting front. In this paper, we present results of 17 field experiments carried out to quantify the effects of redistribution on preferential flow in nonstructured soils. The experiments were performed in three field soils (Superstition sand, Delhi sand, and Hanford sandy loam) under saturating and nonsaturating water application rates. Water flow patterns were monitored at various times during redistribution with photography using anionic dyes and by intensive core sampling of bromide added during infiltration. The soil surface was either tilled or undisturbed, exposed or covered with a plastic membrane, and the top 20-cm fine layer was either left in place or removed in various treatments. The infiltration water containing tracers was applied continuously and uniformly to the surface of a 2 × 1.2 m2 field plot using a moving spray system. After the soil received 8 to 20 cm of water, a trench was dug adjacent to the plot and vertical soil profiles were exposed at different times and positions to visualize the redistribution process. Some profiles were intensively sampled by soil coring along the trench face and analyzed for water content and bromide concentration to quantify the redistribution of water in the wetted zones. The observed two- and three-dimensional distribution of the water tracers clearly indicated the development of unstable flow during redistribution in two of the three soil types studied but not in the coarsest-textured Superstition sand. Symptoms of instability included irregularly shaped fingers that tended to become narrower toward their tips, isolated patches, and highly concentrated areas of the tracers indicating signs of converging and intermittent flow. The measured tortuosity of the wetting front was near 1.0 at the end of

  14. Performance validation of an irradiance redistribution guide

    NASA Astrophysics Data System (ADS)

    Lewandowski, Allan; Bingham, Carl; Shatz, Narkis E.; Bortz, John C.

    1997-10-01

    Science Applications International Corporation has used a unique nonimaging-optical global optimization computer code, NICOS, to design an innovative secondary concentrator for the National Renewable Energy Laboratory (NREL). NICOS allows for the optimal design of such devices to achieve a variety of irradiance distributions on a desired target. The case of interest to NREL called for a uniform irradiance of concentrated sunlight over a relatively large area and at a reasonable working distance from the exit of the device. Because the irradiance at the nominal focal point of NREL's High-Flux Solar Furnace (HFSF) was reshaped from a near- Gaussian distribution to a nearly uniform one, the designs generated have been called irradiance redistribution guides (IRG). A design featuring reentrant optics was selected for fabrication and testing. This IRG has been fabricated and tested at the HFSF to compare predicted and measured performance. The IRG's performance is close to the theoretical predictions. Much of the performance difference can be explained by discrepancies between the actual HFSF performance relative to that assumed in the NICOS predictions. This IRG will be useful for applications in which uniform solar concentration at moderate flux is required. In general, the design methodology and resulting devices can provide a new way to satisfy diverse flux tailoring needs.

  15. Modeling of constituent redistribution in U Pu Zr metallic fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hayes, S. L.; Hofman, G. L.; Yacout, A. M.

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  16. 47 CFR 73.9001 - Redistribution control of digital television broadcasts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... redistribution control descriptor described in ATSC A/65B: “ATSC Standard: Program and System Information...) provided they do not transmit the optional additional redistribution control information....

  17. Managing fleet capacity effectively under second-hand market redistribution.

    PubMed

    Quillérou, Emmanuelle; Roudaut, Nolwenn; Guyader, Olivier

    2013-09-01

    Fishing capacity management policies have been traditionally implemented at national level with national targets for capacity reduction. More recently, capacity management policies have increasingly targeted specific fisheries. French fisheries spatially vary along the French coastline and are associated to specific regions. Capacity management policies, however, ignore the capital mobility associated with second-hand vessel trade between regions. This is not an issue for national policies but could limit the effectiveness of regional capacity management policies. A gravity model and a random-effect Poisson regression model are used to analyze the determinants and spatial extent of the second-hand market in France. This study is based on panel data from the French Atlantic Ocean between 1992 and 2009. The trade flows between trading partners is found to increase with their sizes and to be spatially concentrated. Despite the low trade flows between regions, a net impact analysis shows that fishing capacity is redistributed by the second-hand market to regions on the Channel and Aquitaine from central regions. National capacity management policies (constructions/destructions) have induced a net decrease in regional fleet capacity with varying magnitude across regions. Unless there is a change of policy instruments or their scale of implementation, the operation of the second-hand market decreases the effectiveness of regional capacity management policies in regions on the Channel and Aquitaine. PMID:23288614

  18. Redistribution of intertidal sediment contaminants by microphytobenthos

    NASA Astrophysics Data System (ADS)

    Becker, Amani; Copplestone, David; Tyler, Andrew; Smith, Nick; Sneddon, Christopher

    2014-05-01

    Microphytobenthos (MPB) is a mixed community of microscopic algae inhabiting the top few millimetres of bottom sediment in the intertidal zone. It is a key component of the estuarine ecosystem, interacting with the sediment and fauna to influence sediment distribution and resuspension and forming the base of the estuarine food chain. Estuarine sediments, with which the MPB is closely associated, are a significant sink for contaminants from both fluvial and marine sources. Algae are known to have the capacity to take up contaminants, and the phytoplankton has been well studied in this respect, however there has been little research involving MPB. The extent to which contaminant uptake by MPB occurs and under what conditions is therefore very poorly understood. It seems probable that the paucity of research in this area is due to the complexity of the bioavailability of contaminants in the intertidal zone coupled with difficulties in separating MPB from the sediment. A series of experiments are proposed in which we will investigate (at a range of spatial scales) contaminant partitioning in the presence of MPB; the effect of changing temperatures on contaminant uptake and toxicity to MPB; effects of sediment resuspension on contaminant availability and uptake to MPB; and the uptake of contaminants from MPB to molluscs. A mesocosm (or experimental enclosure) is being constructed to replicate the natural system and enable manipulation of conditions of interest. This will attain greater realism than laboratory toxicity tests, with more statistical power than can be achieved through field studies. By gaining a better understanding of processes governing contaminant bioavailability and mechanisms for uptake by MPB it will be possible to relate these to projected climate change effects and ascertain potential consequences for contaminant redistribution.

  19. Water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-04-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.

  20. Longitudinal plaque redistribution during stent expansion.

    PubMed

    Maehara, A; Takagi, A; Okura, H; Hassan, A H; Bonneau, H N; Honda, Y; Yock, P G; Fitzgerald, P J

    2000-11-15

    The purpose of this study was to clarify the 3-dimensional behavior of plaque during coronary stent expansion. Serial intravascular ultrasound (IVUS) studies, preintervention, and poststenting were evaluated in 32 patients treated with a single-balloon expandable tubular stent. External elastic membrane (EEM), lumen, stent, and plaque + media cross-sectional area were measured at 1-mm intervals through the entire stent as well as proximal and distal reference segments 5 mm from the stent edge. Volumetric calculations were based on Simpson's rule. Overall, the plaque + media volume through the entire lesion did not change during stent expansion (218 +/- 51 vs 217 +/- 47 mm3, p = 0.69). However, EEM and lumen volume increased significantly (EEM volume, 391 +/- 84 vs 448 +/- 87 mm3 [p < 0.0001]; lumen volume, 173 +/- 52 vs 231 +/- 54 mm3 [p < 0.0001]). The change in lumen volume correlated strongly with the change in EEM volume (r = 0.85, p < 0.0001), but poorly with the change in plaque + media volume (r = 0.37, p = 0.03). Plaque + media volume decreased in the midstent zone (59 +/- 14 vs 53 +/- 11 mm3, p = 0.0005), and increased in the distal stent zone (40 +/- 11 vs 44 +/- 9 mm3, p = 0.003), but did not change in either the proximal stent zone or reference segments. The mechanism of stent expansion is a combination of vessel stretch and plaque redistribution, translating disease accumulation from the midstent zone to the distal stent zone. PMID:11074201

  1. 45 CFR 98.64 - Reallotment and redistribution of funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DEVELOPMENT FUND Financial Management § 98.64 Reallotment and redistribution of funds. (a) According to the... will be based on the State's financial report to ACF for the Child Care and Development Fund...

  2. VERTICAL REDISTRIBUTION OF A POLLUTANT TRACER DUE TO CUMULUS CONVECTION

    EPA Science Inventory

    Mathematical formalisms that incorporate the physical processes responsible for the vertical redistribution of a conservative pollutant tracer due to a convective cloud field are presented. Two modeling approaches are presented differing in the manner in which the cloud fields ar...

  3. Radial plutonium redistribution in mixed-oxide fuel. [LMFBR

    SciTech Connect

    Lawrence, L.A.; Schwinkendorf, K.N.; Karnesky, R.A.

    1981-10-01

    Alpha autoradiographs from all HEDL fuel pin metallography samples are evaluated and catalogued according to different plutonium distribution patterns. The data base is analyzed for effects of fabrication and operating parameters on redistribution.

  4. Spherulite Crystallization Induces Fe-Redox Redistribution in Silicic Melt

    SciTech Connect

    Castro, J.; Cottrell, E; Tuffen, H; Logan, A; Kelley, K

    2009-01-01

    Rhyolitic obsidians from Krafla volcano, Iceland, record the interaction between mobile hydrous species liberated during crystal growth and the reduction of ferric iron in the silicate melt. We performed synchrotron {mu}-FTIR and {mu}-XANES measurements along a transect extending from a spherulite into optically distinct colorless and brown glass zones. Measurements show that the colorless glass is enriched in OH groups and depleted in ferric iron, while the brown glass shows the opposite relationship. The color shift between brown and clear glass is sharp, suggesting that the colorless glass zone was produced by a redox front that originated from the spherulite margin and moved through surrounding melt during crystallization. We conclude that the most likely reducing agent is hydrogen, produced by magnetite crystallization within the spherulite. The Krafla obsidians dramatically capture redox disequilibrium on the micoscale and highlight the importance of hydrous fluid liberation and late-stage crystallization to the redox signature of glassy lavas.

  5. Redistribution of actin during assembly and reassembly of the contractile ring in grasshopper spermatocytes.

    PubMed

    Alsop, G Bradley; Chen, Wei; Foss, Margit; Tseng, Kuo-Fu; Zhang, Dahong

    2009-01-01

    Cytokinesis in animal cells requires the assembly of an actomyosin contractile ring to cleave the cell. The ring is highly dynamic; it assembles and disassembles during each cell cleavage, resulting in the recurrent redistribution of actin. To investigate this process in grasshopper spermatocytes, we mechanically manipulated the spindle to induce actin redistribution into ectopic contractile rings, around reassembled lateral spindles. To enhance visualization of actin, we folded the spindle at its equator to convert the remnants of the partially assembled ring into a concentrated source of actin. Filaments from the disintegrating ring aligned along reorganizing spindle microtubules, suggesting that their incorporation into the new ring was mediated by microtubules. We tracked incorporation by speckling actin filaments with Qdots and/or labeling them with Alexa 488-phalloidin. The pattern of movement implied that actin was transported along spindle microtubules, before entering the ring. By double-labeling dividing cells, we imaged actin filaments moving along microtubules near the contractile ring. Together, our findings indicate that in one mechanism of actin redistribution, actin filaments are transported along spindle microtubule tracks in a plus-end-directed fashion. After reaching the spindle midzone, the filaments could be transported laterally to the ring. Notably, actin filaments undergo a dramatic trajectory change as they enter the ring, implying the existence of a pulling force. Two other mechanisms of actin redistribution, cortical flow and de novo assembly, are also present in grasshopper, suggesting that actin converges at the nascent contractile ring from diffuse sources within the cytoplasm and cortex, mediated by spindle microtubules. PMID:19287500

  6. Medicare financing and redistribution in british columbia, 1992 and 2002.

    PubMed

    McGrail, Kimberlyn

    2007-05-01

    Equity in healthcare in British Columbia is defined as the provision of services based on need rather than ability to pay and a separation of contributions to financing from the use of services. Physician and hospital services in Canada are financed mainly through general tax revenues, and there is a perception that this financing is progressive. This paper uses Gini coefficients, concentration indexes and Kakwani indexes of progressivity to assess the progressivity of medicare financing in British Columbia in 1992 and 2002. It also measures the overall redistributive effect of medicare services, considering both contributions to financing and use of hospital and physician services. The conclusion is that medicare does redistribute across income groups, but this redistribution is the result solely of the positive correlation between health status and income; financing is nearly proportionate across income groups, but use is higher among lower-income groups. Informed public debate requires a better understanding of these concepts of equity. PMID:19305738

  7. Heat and salt redistribution within the Mediterranean Sea in the Med-CORDEX model ensemble

    NASA Astrophysics Data System (ADS)

    Llasses, J.; Jordà, G.; Gomis, D.; Adloff, F.; Macías, D.; Harzallah, A.; Arsouze, T.; Akthar, N.; Li, L.; Elizalde, A.; Sannino, G.

    2016-06-01

    Characterizing and understanding the basic functioning of the Mediterranean Sea in terms of heat and salt redistribution within the basin is a crucial issue to predict its evolution. Here we quantify and analyze the heat and salt transfers using a simple box model consisting of four layers in the vertical for each of the two (western and eastern) basins. Namely, we box-average 14 regional simulations of the Med-CORDEX ensemble plus a regional and a global reanalysis, computing for each of them the heat and salt exchanges between layers. First, we analyze in detail the mechanisms behind heat and salt redistribution at different time scales from the outputs of a single simulation (NEMOMED8). We show that in the western basin the transfer between layer 1 (0-150 m) and layer 2 (150-600 m) is upwards for most models both for heat and salt, while in the eastern basin both transfers are downwards. A feature common to both basins is that the transports are smaller in summer than in winter due to the enhanced stratification, which dampen the mixing between layers. From the comparison of the 16 simulations we observe that the spread between models is much larger than the ensemble average for the salt transfer and for the heat transfer between layer 1 and layer 2. At lower layers (below 600 m) there is a set of models showing a good agreement between them, while others are not correlated with any other. The mechanisms behind the ensemble spread are not straightforward. First, to have a coarse resolution prevents the model to correctly represent the heat and salt redistribution in the basin. Second, those models with a very different initial stratification also show a very different redistribution, especially at intermediate and deep layers. Finally, the assimilation of data seems to perturb the heat and salt redistribution. Besides this, the differences among regional models that share similar spatial resolution and initial conditions are induced by more subtle mechanisms

  8. Relationship between redistribution on exercise thallium-201 scintigraphy and repetitive ventricular premature beats in patients with recent myocardial infarction

    SciTech Connect

    Tsuji, H.; Iwasaka, T.; Sugiura, T.; Shimada, T.; Nakamori, H.; Kimura, Y.; Inada, M. )

    1991-06-01

    The relationship between myocardial ischemia detected by exercise thallium-201 scintigraphy and repetitive ventricular premature beats (VPBs) during ambulatory monitoring was evaluated in 57 patients with recent myocardial infarction. Multivariate analysis was performed to obtain the relatively important factor related to repetitive VPBs with the use of the following variables: age, redistribution, left ventricular ejection fraction, serum potassium and magnesium concentration, QRS score, left ventricular aneurysm, and the number of diseased vessels. Thirty-five patients had redistribution, but only three of them had repetitive VPBs during exercise testing. The average heart rate before 79% of 398 episodes of repetitive VPBs during ambulatory monitoring was in the range of 56 to 70/min. These data indicate that most of repetitive VPBs during ambulatory monitoring were not provoked by exercise-induced acute myocardial ischemia. However, redistribution was found to be an important factor associated with repetitive VPBs. The electrical abnormality relating to a substrate characterized by chronic reversible ischemia may explain the association between redistribution and repetitive VPBs.

  9. Redistribution of Emergency Department Patients After Disaster-Related Closures of a Public Versus Private Hospital in New York City.

    PubMed

    Lee, David C; Smith, Silas W; Carr, Brendan G; Goldfrank, Lewis R; Polsky, Daniel

    2015-06-01

    Sudden hospital closures displace patients from usual sources of care and force them to access facilities that lack their prior medical records. For patients with complex needs and for nearby hospitals already strained by high volume, disaster-related hospital closures induce a public health emergency. Our objective was to analyze responses of patients from public versus private emergency departments after closure of their usual hospital after Hurricane Sandy. Using a statewide database of emergency visits, we followed patients with an established pattern of accessing 1 of 2 hospitals that closed after Hurricane Sandy: Bellevue Hospital Center and NYU Langone Medical Center. We determined how these patients redistributed for emergency care after the storm. We found that proximity strongly predicted patient redistribution to nearby open hospitals. However, for patients from the closed public hospital, this redistribution was also influenced by hospital ownership, because patients redistributed to other public hospitals at rates higher than expected by proximity alone. This differential response to hospital closures demonstrates significant differences in how public and private patients respond to changes in health care access during disasters. Public health response must consider these differences to meet the needs of all patients affected by disasters and other public health emergencies. PMID:25777992

  10. Redistribution, Recognition and Representation: Working against Pedagogies of Indifference

    ERIC Educational Resources Information Center

    Lingard, Bob; Keddie, Amanda

    2013-01-01

    This paper reports on an Australian government-commissioned research study that documented classroom pedagogies in 24 Queensland schools. The research created the model of "productive pedagogies", which conjoined what Nancy Fraser calls a politics of redistribution, recognition and representation. In this model pedagogies are…

  11. Redistribution of soil and soil organic carbon on agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of soil organic carbon (SOC) vary widely across the landscape leading to large uncertainties in the SOC budgets for agricultural systems especially for landscapes where water, tillage, and wind erosion redistributes soil and SOC across the landscape. It is often assumed that soil erosion r...

  12. HYDRAULIC REDISTRIBUTION IN THE PACIFIC NORTHWEST: TWEAKING THE SYSTEM

    EPA Science Inventory

    Hydraulic redistribution (HR) has recently been documented in Pacific Northwest forests, but the controls governing this process and its importance to shallow-rooted species are poorly understood. Our objective in this study was to manipulate the soil-root system to tease apart ...

  13. Redistribution of particle and antiparticle entanglement in noninertial frames

    SciTech Connect

    Martin-Martinez, Eduardo; Fuentes, Ivette

    2011-05-15

    We analyze the entanglement tradeoff between particle and antiparticle modes of a Dirac field from the perspective of inertial and uniformly accelerated observers. Our results show that a redistribution of entanglement between particle and antiparticle modes plays a key role in the survival of femionic field entanglement in the infinite-acceleration limit.

  14. Anthropogenic radionuclides for estimating rates of soil redistribution by wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  15. Anthropogenic radioisotopes to estimate rates of soil redistribution by wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  16. Refugee Education and Justice Issues of Representation, Redistribution and Recognition

    ERIC Educational Resources Information Center

    Keddie, Amanda

    2012-01-01

    This paper examines justice issues of representation, redistribution and recognition within a specialised secondary school for immigrant and refugee students in Queensland, Australia. Fraser's three-dimensional model of justice--towards the ideal of "participatory parity"--is drawn on to analyse interview data gathered from a study that sought to…

  17. One problem of equivalent redistribution of a mass

    NASA Astrophysics Data System (ADS)

    Glasko, Yu. V.

    2012-02-01

    A variant of the equivalent redistribution of a mass based on the superposition of conformal mappings including the Jacobi elliptic functions is considered. The algorithm that executes balayage in the context of the encapsulation of functions is developed and implemented in the Delphi environment.

  18. Population Redistribution and Migration of Asian Americans, 1970-1980.

    ERIC Educational Resources Information Center

    Kan, Stephen H.; Liu, William T.

    This paper uses 1980 Census data to assess the patterns of population redistribution and migration of Asian Americans. Analyzing migration flows, it argues that Asian Americans who immigrated to the United States before 1975 followed a national trend of regional population shift from the Northeast and the North Central to the West and South.…

  19. Fast Ion Redistribution and Implications for the Hybrid Regime

    SciTech Connect

    Nazikian, R; Austin, M E; Budny, R V; Chu, M S; Heidbrink, W W; Makowski, M A; Petty, C C; Politzer, P A; Solomon, W M; Van Zeeland, M A

    2007-06-26

    Time dependent TRANSP analysis indicates that radial redistribution of fast ions is unlikely to affect the central current density in hybrid plasmas sufficient to raise q(0) above unity. The results suggest that some other mechanism other than fast ion transport must be involved in raising q(0) and preventing sawteeth in hybrid plasmas.

  20. Decentralisation and Interregional Redistribution in the Italian Education System

    ERIC Educational Resources Information Center

    Ferrari, Irene; Zanardi, Alberto

    2014-01-01

    The aim of this paper is to evaluate the potential impact of the reform designed to decentralise public education in Italy, currently under discussion, on interregional redistribution. The central government has always played a prominent financial and administrative role in the provision of compulsory education in Italy. This has had a strong…

  1. Limitations of visual assessment of redistribution in thallium images

    SciTech Connect

    DiCola, J.; Moore, M.; Shearer, D.; O'Reilly, G.; Most, A.S.; Gewirtz, H.

    1984-10-01

    Potential limitations of visual assessment of redistribution in thallium (TI) images were studied and results were compared with computer assessment of redistribution. A four-section phantom filled with TI was imaged (300K counts, 128 X 128 matrix) with appropriate background activity and scatter material. Activity in a ''defect'' section (DS) was varied from 20% to 100% of reference sections (RS). After interpolative background correction, pseudo ''initial'' and ''late'' image pairs (N . 35) were photographed on polaroid film and read by three ''blinded'' observers using an 0-2, 1/2 step, scale (0 . absent and 2 . normal activity). Scan defects were detected by all readers when DS activity was less than or equal to 59% of RS activity. No reader detected a defect when DS activity was greater than or equal to 67% of RS activity. All ''initial'' defects were detected by computer analysis. Visual assessment of ''initial'' DS:RS activity ratio did not correlate well with DS:RS activity ratio of the phantom. In contrast, computer assessment of ''initial'' DS:RS activity ratio correlated well with phantom DS:RS activity ratio (r . 0.96, p less than .0001). Although 22 of 27 scan pairs with partial (N . 26) or full (N . 1) redistribution were correctly identified as showing redistribution by at least two of three observers, the extent of redistribution was not estimated well by visual analysis. Thus, visual assessment of absolute change (''initial''-to-''late'') in DS:RS activity ratio showed considerable scatter in relations to actual changes in DS:RS activity ratio of the phantom.

  2. Intrahepatic Flow Redistribution in Patients Treated with Radioembolization

    SciTech Connect

    Spreafico, Carlo Morosi, Carlo; Maccauro, Marco; Romito, Raffaele; Lanocita, Rodolfo Civelli, Enrico M.; Sposito, Carlo Bhoori, Sherrie; Chiesa, Carlo; Frigerio, Laura F.; Lorenzoni, Alice; Cascella, Tommaso Marchianò, Alfonso; Mazzaferro, Vincenzo

    2015-04-15

    IntroductionIn planning Yttrium-90 ({sup 90}Y)-radioembolizations, strategy problems arise in tumours with multiple arterial supplies. We aim to demonstrate that tumours can be treated via one main feeding artery achieving flow redistribution by embolizing accessory vessels.MethodsOne hundred {sup 90}Y-radioembolizations were performed on 90 patients using glass microspheres. In 19 lesions/17 patients, accessory branches were found feeding a minor tumour portion and embolized. In all 17 patients, the assessment of the complete perfusion was obtained by angiography and single photon emission computerized tomography–computerized tomography (SPECT–CT). Dosimetry, toxicity, and tumor response rate of the patients treated after flow redistribution were compared with the 83 standard-treated patients. Seventeen lesions in 15 patients with flow redistribution were chosen as target lesions and evaluated according to mRECIST criteria.ResultsIn all patients, the complete tumor perfusion was assessed immediately before radioembolization by angiography in all patients and after the {sup 90}Y-infusion by SPECT–CT in 15 of 17 patients. In the 15 assessable patients, the response rate in their 17 lesions was 3 CR, 8 PR, and 6 SD. Dosimetric and toxicity data, as well tumour response rate, were comparable with the 83 patients with regular vasculature.ConclusionsAll embolization procedures were performed successfully with no complications, and the flow redistribution was obtained in all cases. Results in term of toxicity, median dose administered, and radiological response were comparable with standard radioembolizations. Our findings confirmed the intratumoral flow redistribution after embolizing the accessory arteries, which makes it possible to treat the tumour through its single main feeding artery.

  3. The effect of electron scattering redistribution on atomic line polarization

    NASA Astrophysics Data System (ADS)

    Supriya, H. D.; Nagendra, K. N.; Sampoorna, M.; Ravindra, B.

    2012-09-01

    The polarization of spectral lines is generated by the scattering of angularly anisotropic incident radiation field on the atoms in the stellar atmosphere. This atomic scattering polarization is modified by frequency non-coherent scattering of line photons on free electrons. With modern spectropolarimeters of high sensitivity, it is possible to detect such changes in the spectral line polarization caused by scattering on electrons. We present new and efficient numerical techniques to solve the problem of line radiative transfer with atomic and electron scattering frequency redistribution in planar media. The evaluation and use of angle-dependent partial frequency redistribution functions (both atomic and electron scattering type) in the transfer equation require a lot of computing effort. In this paper, we apply a decomposition technique to handle this numerically difficult problem. This recently developed technique is applied for the first time to the electron scattering partial redistribution. This decomposition technique allows us to devise fast iterative methods of solving the polarized line transfer equation. An approximate lambda iteration (ALI) method and a method based on Neumann series expansion of the polarized source vector are proposed. We show that these numerical methods can be used to obtain a solution of the problem, when both atomic and electron scattering partial frequency redistribution are considered together. This is in contrast with the classical numerical methods which require a great amount of computing time. We show the importance of electron scattering redistribution in the far wing line polarization, which has practical implications in the analysis of polarized stellar or solar spectra, where non-coherent electron scattering controls the line wing transfer.

  4. 48 CFR 245.608-70 - Contractor inventory redistribution system (CIRS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... redistribution system (CIRS). 245.608-70 Section 245.608-70 Federal Acquisition Regulations System DEFENSE..., Redistribution, and Disposal of Contractor Inventory 245.608-70 Contractor inventory redistribution system (CIRS). (a) Screen serviceable and usable contractor inventory through CIRS when it— (1) Is listed on SF...

  5. Redistribution of resonance radiation. I - The effect of collisions.

    NASA Technical Reports Server (NTRS)

    Omont, A.; Smith, E. W.; Cooper, J.

    1972-01-01

    The techniques of modern line-broadening theory are used to investigate the scattering of polarized radiation in the rest frame of an atom undergoing collisions. The formulation explicitly includes both elastic and inelastic (quenching) collisions. When the lower state has zero width, a form for the redistribution function similar to that of Zanstra is obtained, but with the redistribution in the neighborhood of the resonance line being caused solely by elastic collisions. In the limit of no collisions, but with both levels of finite lifetime, the result of Weisskopf and Woolley is obtained. The effect of level-degeneracy is also explicitly included; in this case the results are a function of the polarization of the light and the different relaxation rates for the multipolar components of the atomic states.

  6. Octamer displacement and redistribution in transcription of single nucleosomes.

    PubMed Central

    O'Donohue, M F; Duband-Goulet, I; Hamiche, A; Prunell, A

    1994-01-01

    Single nucleosomes were assembled on a 357bp DNA fragment containing a 5S RNA gene from sea urchin and a promoter for SP6 RNA polymerase, and were fractionated as a function of their positions by gel electrophoresis. Transcribed nucleosome positions were detected by observing band disappearance in gels, which in turn provided evidence for the displacement of the histone octamer upon transcription. Differential band disappearance showed that nucleosomes closer to the promoter were harder to transcribe, and transcription was blocked when the nucleosome proximal boundary was at the start site. Nucleosomes located at discrete positions were also eluted from the gel bands and transcribed. In this case, new bands appeared as a consequence of octamer redistribution. Such redistribution occurred over all untranscribed positions, as well as over transcribed positions close enough to the promoter. Similar conclusions were derived from another previously investigated fragment containing a Xenopus 5S RNA gene. Images PMID:8152924

  7. Implant activation and redistribution of dopants in GaN

    SciTech Connect

    Zolper, J.C.; Pearton, S.J.; Wilson, R.G.; Stall, R.A.

    1996-07-01

    GaN and related III-Nitride materials (IN, an) have recently been the focus of extensive research for photonic and electronic device applications. As this material system matures, ion implantation doping and isolation is expected to play an important role in advance device demonstrations. To this end, we report the demonstration of implanted p-type doping with Mg+P and Ca as well as n-type doping with Si in GaN. These implanted dopants require annealing 105 approximately1100 {degrees}C to achieve electrical activity, but demonstrate limited redistribution at this temperature. The redistribution of other potential dopants in GaN (such as Be, Zn, and Cd) will also be reported. Results for a GaN junction field effect transistor (JFET), the first GaN device to use implantation doping, will also be presented.

  8. Effect of topography on sulfate redistribution in Cumulonimbus cloud development.

    PubMed

    Vujović, Dragana; Vučković, Vladan; Curić, Mlađen

    2014-03-01

    An aqueous chemical module is created and included into a complex three-dimensional atmospheric cloud-resolving mesoscale model. In the chemical module, oxidation of S(IV) by ozone and hydrogen peroxide in cloud-water and rainwater, as important process of the sulfate production is included. To examine the impact of topography on the sulfate redistribution in a clean and a polluted environment, the complex topography of Serbia is included in the model. Numerical simulations of an isolated summer Cumulonimbus cloud shows that thunderstorms generate very strong vertical sulfate redistribution from the planetary boundary layer to the upper troposphere. This redistribution is sensitive to cloud dynamics, while cloud microphysics and precipitation determine wet removal of the chemical species. In simulations with realistic topography, the chemical species are transported over larger distances close to the surface, while in the upper atmosphere, there is no difference compared to the simulations without topography. The sensitivity tests of cloud chemistry to the physical processes are made. Omission of nucleation and impact scavenging of aerosols in the model simulations shows that 75.8 and 62.5 % of total sulfur mass deposited in the base experiment for the clean and the polluted environment, respectively, is the result of other processes. Exclusion of oxidation accounted for 19.2 and 37.7 % of total sulfur deposited for clean and polluted environment. Ignoring the ice phase almost not change mass of deposited sulfur: there is an increase of 2.9 and 1.5 % for clean and polluted atmosphere, respectively. Real topography conditions affect the sulfate redistribution in the sense of greater possibilities of transport. Numerical simulations without real topography give an artificial increase of deposited sulfur mass of about 25-30 %. PMID:24243093

  9. Resource redistribution in polydomous ant nest networks: local or global?

    PubMed Central

    Franks, Daniel W.; Robinson, Elva J.H.

    2014-01-01

    An important problem facing organisms in a heterogeneous environment is how to redistribute resources to where they are required. This is particularly complex in social insect societies as resources have to be moved both from the environment into the nest and between individuals within the nest. Polydomous ant colonies are split between multiple spatially separated, but socially connected, nests. Whether, and how, resources are redistributed between nests in polydomous colonies is unknown. We analyzed the nest networks of the facultatively polydomous wood ant Formica lugubris. Our results indicate that resource redistribution in polydomous F. lugubris colonies is organized at the local level between neighboring nests and not at the colony level. We found that internest trails connecting nests that differed more in their amount of foraging were stronger than trails between nests with more equal foraging activity. This indicates that resources are being exchanged directly from nests with a foraging excess to nests that require resources. In contrast, we found no significant relationships between nest properties, such as size and amount of foraging, and network measures such as centrality and connectedness. This indicates an absence of a colony-level resource exchange. This is a clear example of a complex behavior emerging as a result of local interactions between parts of a system. PMID:25214755

  10. Internal hydraulic redistribution prevents the loss of root conductivity during drought.

    PubMed

    Prieto, Iván; Ryel, Ronald J

    2014-01-01

    Shrubs of the Great Basin desert in Utah are subjected to a prolonged summer drought with the potential consequence of reduced water transport capability of the xylem due to drought-induced cavitation. Hydraulic redistribution (HR) is the passive movement of water from deep to shallow soil through plant roots. Hydraulic redistribution can increase water availability in shallow soil and ameliorate drought stress, providing better soil and root water status, which could affect shallow root conductivity (Ks) and native root embolism. We tested this hypothesis in an Artemisia tridentata Nutt. mono-specific stand grown in a common garden in Utah. We enhanced HR artificially by applying a once a week deep-irrigation treatment increasing the water potential gradient between deep and shallow soil layers. Plants that were deep-watered had less negative water potentials and greater stomatal conductance and transpiration rates than non-watered control plants. After irrigation with labeled water (δD), xylem water in stems and shallow roots of watered shrubs was enriched with respect to control shrubs, a clear indication of deep water uptake and HR. Shallow root conductivity was threefold greater and shrubs experienced lower native embolism when deep-watered. We found clear evidence of water transfer between deep and shallow roots through internal HR that delayed depletion of shallow soil water content, maintained Ks and prevented root embolism. Overall, our results show a positive effect of HR on root water transport capacity in otherwise dry soil, with important implications for plant water status. PMID:24436338

  11. Direct Measurement of Adsorbed Gas Redistribution in Metal–Organic Frameworks

    SciTech Connect

    Chen, Ying-Pin; Liu, Yangyang; Liu, Dahuan; Bosch, Mathieu; Zhou, Hong-Cai

    2015-03-04

    Knowledge about the interactions between gas molecules and adsorption sites is essential to customize metal-organic frameworks (MOFs) as adsorbents. The dynamic interactions occurring during adsorption/desorption working cycles with several states are especially complicated. Even so, the gas dynamics based upon experimental observations and the distribution of guest molecules under various conditions in MOFs have not been extensively studied yet. In this work, a direct time-resolved diffraction structure envelope (TRDSE) method using sequential measurements by in situ synchrotron powder X-ray diffraction has been developed to monitor several gas dynamic processes taking place in MOFs: infusion, desorption, and gas redistribution upon temperature change. The electron density maps indicate that gas molecules prefer to redistribute over heterogeneous types of sites rather than to exclusively occupy the primary binding sites. We found that the gas molecules are entropically driven from open metal sites to larger neighboring spaces during the gas infusion period, matching the localized-to-mobile mechanism. In addition, the partitioning ratio of molecules adsorbed at each site varies with different temperatures, as opposed to an invariant distribution mode. Equally important, the gas adsorption in MOFs is intensely influenced by the gas–gas interactions, which might induce more molecules to be accommodated in an orderly compact arrangement. This sequential TRDSE method is generally applicable to most crystalline adsorbents, yielding information on distribution ratios of adsorbates at each type of site.

  12. Intercellular redistribution of cAMP underlies selective suppression of cancer cell growth by connexin26.

    PubMed

    Chandrasekhar, Anjana; Kalmykov, Edward A; Polusani, Srikanth R; Mathis, Sandra A; Zucker, Shoshanna N; Nicholson, Bruce J

    2013-01-01

    Connexins (Cx), which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s) still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations. PMID:24312655

  13. Polar thermospheric Joule heating, and redistribution of recombination energy in the upper mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Dube, M.

    1990-01-01

    Kellogg (1961), suggested that transport of atomic oxygen from the summer into the winter hemisphere and subsequent release of energy by three body recombination, O+O+N2 yields O2+N2+E, may contribute significantly to the so-called mesopause temperature anomaly. Earlier model calculations have shown that Kellogg's mechanism produces about a 10-percent increase in the temperature from summer to winter at 90 km. This process, however, is partly compensated by differential heating from absorption of UV radiation associated with dissociation of O2. In the auroral region of the thermosphere, there is a steady energy dissipation by Joule heating causing a redistribution and depletion of atomic oxygen due to wind-induced diffusion. With the removal of O, latent chemical energy normally released by three body recombination is also removed, and the result is that the temperature decreases by almost 2 percent near 90 km. Through dynamic feedback, this process reduces the depletion of atomic oxygen by about 25 percent and the temperature perturbation in the exosphere from 10 to 7 percent at polar latitudes. Under the influence of the internal dynamo interaction, the prevailing zonal circulation in the upper thermosphere changes direction when the redistribution of recombination energy is considered.

  14. Intercellular Redistribution of cAMP Underlies Selective Suppression of Cancer Cell Growth by Connexin26

    PubMed Central

    Polusani, Srikanth R.; Mathis, Sandra A.; Zucker, Shoshanna N.; Nicholson, Bruce J.

    2013-01-01

    Connexins (Cx), which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s) still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations. PMID:24312655

  15. Tides and angular momentum redistribution inside low-mass stars hosting planets: a first dynamical model

    NASA Astrophysics Data System (ADS)

    Lanza, A. F.; Mathis, S.

    2016-07-01

    We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extraction of angular momentum induced by stellar winds and tidal torques are redistributed solely by an effective eddy-viscosity that depends on the radial coordinate, we can formulate the model in a completely analytic way. It allows us to compute simultaneously the evolution of the orbit of the companion and of the spin and the radial differential rotation of the star. An illustrative application to the case of an F-type main-sequence star hosting a hot Jupiter is presented. The general relevance of our model to test more sophisticated numerical dynamical models and to study the internal rotation profile of exoplanet hosts, submitted to the combined effects of tides and stellar winds, by means of asteroseismology are discussed.

  16. Improvement in bias current redistribution in superconducting strip ion detectors with parallel configuration

    NASA Astrophysics Data System (ADS)

    Nobuyuki, Zen; Go, Fujii; Shigetomo, Shiki; Masahiro, Ukibe; Masaki, Koike; Masataka, Ohkubo

    2015-09-01

    In time-of-flight mass spectrometry (TOF MS), superconducting strip ion detectors (SSIDs) in the parallel configuration are promising for ideal ion detection with a nanosecond-scale time response and a practical large sensitive area. In the parallel configuration, the bias current in one strip is diverted into other parallel strips after each detection event. Under high bias current conditions, the diverted bias current induces cascade switching of all parallel strips. Studies show that cascade switching degrades the ion count rate of SSIDs made from niobium and hence is disliked in TOF MS applications. To suppress the bias current redistribution, we connected resistors in a series with the individual parallel strips using aluminum-bonding wires. Their effect was studied by measuring the pulse height distributions. Project supported by a Grant-in-Aid for Scientific Research (A) and (C) from the Japan Society for the Promotion of Science (Grant Nos. 22246056 and 24619013).

  17. Effect of Trigger Sensitivity on Redistribution of Ventilation During Pressure Support Ventilation Detected by Electrical Impedance Tomography

    PubMed Central

    Radke, Oliver C.; Schneider, Thomas; Vogel, Elisabeth; Koch, Thea

    2015-01-01

    Background: In supine position, pressure support ventilation causes a redistribution of ventilation towards the ventral regions of the lung. Theoretically, a less sensitive support trigger would cause the patient to breathe more actively, potentially attenuating the effect of positive pressure ventilation. Objectives: To quantify the effect of trigger setting, we assessed redistribution of ventilation during pressure support ventilation (PSV) using electrical impedance tomography (EIT). Patients and Methods: With approval from the local ethics committee, six orthopedic patients were enrolled. All patients had general anesthesia with a laryngeal mask airway and a standardized anesthetic regimen (sufentanil, propofol and sevoflurane). Pressure support trigger settings varied between 2 and 15 L/minute and compared to unassisted spontaneous breathing. From EIT data, the center of ventilation (COV), the fraction of the total ventilation per region of interest (ROI) and intratidal gas distribution were calculated. Results: At all trigger settings, pressure support ventilation caused a significant ventral shift of the center of ventilation compared with during spontaneous breathing, confirmed by the analysis by regions of interest. During spontaneous breathing, COV was not different from baseline values obtained before induction of anesthesia. During PSV, the intratidal regional gas distribution (ITV-analysis) revealed subtle changes during the early inspiratory phase not detected by the COV-analysis. Conclusions: Pressure support ventilation, but not spontaneous breathing, induces a significant redistribution of ventilation towards the ventral region. The sensitivity of the support trigger appears to influence the distribution of ventilation only during the early phase of inspiration. PMID:26478865

  18. PROTOSTELLAR ACCRETION FLOWS DESTABILIZED BY MAGNETIC FLUX REDISTRIBUTION

    SciTech Connect

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun; Zhao Bo

    2012-09-20

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  19. Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Ruben; Li, Zhi-Yun; Shang, Hsien; Zhao, Bo

    2012-09-01

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  20. Vertical stress redistribution around a retreating longwall face end

    SciTech Connect

    Payne, D.A.; DeMarco, M.

    1995-11-01

    Large excavations, such as longwall panels, result in extensive vertical stress redistribution in the surrounding strata. The large abutment stresses developed may produce damage to pre-existing or planned excavations in the same seam or in seams above and below the workings. Knowledge of the magnitude and location of these stress is therefore important in the design of mine openings; pillar sizes for panel and pillar layouts, roof supports in longwall gateroads and workings over or above pre-existing or planned extracting in adjacent seams. In an attempt to reduce costs, the Cape Breton Development Corporation (CBDC), a Federal Crown Corporation responsible for operating two retreat longwall coal mines, examined the potential for either interpanel barrier pillar width reduction or entire pillar elimination by the adoption of dual life gateroads for the longwall panels. In order to assess the potential for reduced interpanel barrier widths or total elimination, an investigation of the redistribution of vertical stresses around longwall panels in the Sydney Coalfield was established. The study was conducted jointly by the Cape Breton Coal Research Laboratory (CBCRL), of CANMET (a division of Natural Resources Canada) and the Denver Research Center (DRC) of the United States Bureau of Mines. The program included monitoring of vertical stress changes around longwall panels and gateroad behavior in two seams. USBM-style hydraulic borehole pressure cells connected to chart recorders for continuous monitoring were deployed at four sites, two at Lingan Colliery and two at Phalen Colliery. This report describes the investigations conducted at Phalen Colliery. Contoured plots of stress redistribution around two sites are presented.

  1. Jet-driven redistribution of metal in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.; Heinz, Sebastian; Reynolds, Christopher S.

    2016-04-01

    The ICM in galaxy clusters is metal enriched, typically to about 30% of solar metallicity, out to large radii. However, metals should form mostly in galaxies and remained bound to their progenitor systems. To enrich the ICM, effective mixing of gas needs to occur across large scales. We carry out numerical simulations of mixing driven by AGN jets in dynamical galaxy clusters. These jets lift gas out of the center of the cluster, redistributing metals and adding energy to the ICM. We compare our results to X-ray observations of metallicity in clusters.

  2. Jet-driven redistribution of metal in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Morsony, Brian; Heinz, Sebastian; Reynolds, Christopher; Ruszkowski, Mateusz; Brueggen, Marcus

    2015-08-01

    The ICM in galaxy clusters is metal enriched, typically to about 30% of solar metallicity, out to large radii. However, metals should form mostly in galaxies and remained bound to their progenitor systems. To enrich the ICM, effective mixing of gas needs to occur across large scales. We carry out numerical simulations of mixing driven by AGN jets in dynamical galaxy clusters. These jets lift gas out of the center of the cluster, redistributing metals and adding energy to the ICM. We compare our results to X-ray observations of metallicity in clusters.

  3. Ash Redistribution Following a Potential Volcanic Eruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.; Delong, S. B.; Cline, M. L.; Harrington, C. D.; Keating, G.

    2005-12-01

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially-distributed numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a spatially-distributed framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats

  4. Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Oppenheim, Jonathan; Strelchuk, Sergii

    2015-07-31

    We give two strengthenings of an inequality for the quantum conditional mutual information of a tripartite quantum state recently proved by Fawzi and Renner, connecting it with the ability to reconstruct the state from its bipartite reductions. Namely, we show that the conditional mutual information is an upper bound on the regularized relative entropy distance between the quantum state and its reconstructed version. It is also an upper bound for the measured relative entropy distance of the state to its reconstructed version. The main ingredient of the proof is the fact that the conditional mutual information is the optimal quantum communication rate in the task of state redistribution. PMID:26274402

  5. Redistribution of particulates in shuttle bay during launch

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1986-01-01

    The dislodgement, venting, and redeposition of particles on a surface in the shuttle bay by the vibroacoustic, gravitational, and aerodynamic forces present during shuttle ascent were investigated. The particles of different sizes which are displaced, vented, and redistributed were calculated. An estimate of the increased number of particles on certain surfaces and the decrease on others is indicated. The average sizes, velocities, and length of time for certain particles to leave the bay following initial shuttle doors opening and thermal tests were calculated based on indirect data obtained during several shuttle flights.

  6. Ozone production potential following convective redistribution of biomass burning emissions

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Simpson, Joanne

    1992-01-01

    The effects of deep convection on the potential for forming ozone in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud photochemical and dynamic simulations based on observations in the 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. It is seen that there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed hydrocarbons, NO(x), and CO compared to the example of no convection.

  7. A proposal to redistribute the cost of hospital charity care.

    PubMed

    Tuckman, H P; Chang, C F

    1991-01-01

    Policy analysts debate whether providers of hospital services should share the responsibility of financing care for those who cannot pay for it. Many nonprofit and public hospitals, meanwhile, find it necessary to fund some of the services they deliver. A proposal to redistribute the costs of charity care more equitably is offered, taking into account the benefits an institution receives and its ability to pay. Hospitals would be required to quantify the charity care they provide and to make this information publicly available; in reviewing the information, legislatures are encouraged to set priorities on how much unmet need each state and each hospital should finance. PMID:2034181

  8. Simulating the Dependence of Aspen on Redistributed Snow

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Winstral, A. H.

    2013-12-01

    In mountainous regions across the western USA, the distribution of aspen (Populus tremuloides) is often directly related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho provides a unique opportunity to study the relationship between aspen and redistributed snow. Within the RCEW, the total amount of precipitation has not changed in the past 50 years, but there are sharp declines in the percentage of the precipitation falling as snow. As shifts in the distribution of available moisture continue, future trends in aspen net primary productivity (NPP) remain uncertain. In order to assess the importance of snowdrift subsidies, NPP of three aspen stands was simulated at sites spanning elevational and precipitation gradients using the biogeochemical process model BIOME-BGC. At the aspen site experiencing the driest climate and lowest amount of precipitation from snow, approximately 400 mm of total precipitation was measured from November to March of 2008. However, peak measured snow water equivalent (SWE) held in drifts directly upslope of this stand was approximately 2100 mm, 5 times more moisture than the uniform winter precipitation layer initially assumed by BIOME-BGC. BIOME-BGC simulations in dry years forced by adjusted precipitation data resulted in NPP values approximately 30% higher than simulations assuming a uniform precipitation layer. Using BIOME-BGC and climate data from 1985-2011, the relationship between simulated NPP and measured basal area increments (BAI) improved after accounting for redistributed snow, indicating increased simulation representation. In addition to improved simulation capabilities, soil moisture data, diurnal branch water potential, and stomatal conductance observations at each site detail the use of soil moisture in the rooting zone and the onset

  9. Frequency redistribution function for the polarized two-term atom

    SciTech Connect

    Casini, R.; Landi Degl'Innocenti, M.; Manso Sainz, R.; Landolfi, M.

    2014-08-20

    We present a generalized frequency redistribution function for the polarized two-term atom in an arbitrary magnetic field. This result is derived within a new formulation of the quantum problem of coherent scattering of polarized radiation by atoms in the collisionless regime. The general theory, which is based on a diagrammatic treatment of the atom-photon interaction, is still a work in progress. However, the results anticipated here are relevant enough for the study of the magnetism of the solar chromosphere and of interest for astrophysics in general.

  10. ASH REDISTRIBUTION FOLLOWING A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN

    SciTech Connect

    J. Pelletier; S. deLong; M.L. Cline; C. Harrington; G. Keating

    2005-08-29

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially distributed, numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a GIS framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats the redistribution

  11. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    SciTech Connect

    K.L. Wong; W.W. Heidbrink; E. Ruskov; C.C. Petty; C.M. Greenfield; R. Nazikian; R. Budny

    2004-11-12

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed.

  12. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    PubMed Central

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  13. Soil organic carbon redistribution by water erosion--the role of CO2 emissions for the carbon budget.

    PubMed

    Wang, Xiang; Cammeraat, Erik L H; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m(-2) yr(-1)) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m(-2). Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  14. Solar Atmospheric Magnetic Energy Coupling: Radiative Redistribution Efficiency

    NASA Astrophysics Data System (ADS)

    Orange, N. Brice; Gendre, Bruce; Morris, David C.; Chesny, David

    2016-07-01

    Essential to many outstanding solar and stellar physics problems is elucidating the dynamic magnetic to radiative energy coupling of their atmospheres. Using three years of Solar Dynamics Observatory's Atmospheric Imaging Assembly and Heliosemic Magnetic Imager data of gross atmospheric feature classes, an investigation of magnetic and radiative energy redistribution is detailed. Self-consistent radiative to temperature distributions, that include magnetic weighting, of each feature class is revealed via utilizing the upper limit of thermodynamic atmospheric conditions provided by Active Region Cores (ARCs). Distinctly interesting is that our radiative energy distributions, though indicative to a linearly coupling with temperature, highlight the manifestation of diffuse ``unorganized" emission at upper transition region -- lower coronal regimes. Results we emphasize as correlating remarkably with emerging evidence for similar dependencies of magnetic energy redistribution efficiency with temperature, i.e., linearly with an embedded diffuse emitting region. We present evidence that our magnetic and radiative energy coupling descriptions are consistent with established universal scaling laws for large solar atmospheric temperature gradients and descriptions to the unresolved emission, as well as their insight to a potential origin of large variability in their previous reports. Finally, our work casts new light on the utility of narrowband observations as ad hoc tools for detailing solar atmospheric thermodynamic profiles, thus, presenting significant provisions to the field of solar and stellar physics, i.e., nature of coronae heating.

  15. Redistribution of reactive odd nitrogen in the lower arctic stratosphere

    NASA Technical Reports Server (NTRS)

    Huebler, G.; Fahey, D. W.; Kelly, K. K.; Montzka, D. D.; Carroll, M. A.; Tuck, A. F.; Heidt, L. E.; Pollock, W. H.; Gregory, G. L.; Vedder, J. F.

    1990-01-01

    In-situ measurements of total reactive odd nitrogen NO(y), were made from the NASA DC-8 aircraft in the lower arctic stratosphere during the 1989 Airborne Arctic Stratospheric Expedition. Throughout January and February, NO(y) mixing ratios were typically between 0.5 and 3 parts per billion by volume (ppbv) at altitudes between 10 and 12.5 km. During several flights late in the mission, events of unusually light NO(y) occurred with mixing ratios up to 12 ppbv at these altitudes. Simultaneous measurements of N2O, O3, and H2O during these events suggest that large changes in NO(y) are not expected. The elevated NO(y) values are interpreted as a vertical redistribution of NO(y) in the lower stratosphere resulting from gravitational sedimentation of aerosol particles containing HNO3. No evidence of the redistribution of H2O is noted, consistent with observations of denitrification without dehydration higher in the stratosphere.

  16. A Simple Method for Measuring Soil Redistribution on Hillslopes

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.

    2002-12-01

    Human activities and associated land-use changes often result in accelerated soil movement on hillslopes. The impacts of such soil movement can be dramatic both on- and off-site. Appropriate strategies for mitigation or control erosion and mass movements are especially critical for application in tropical countries, where steep slopes are increasingly converted from forest to agricultural use and are subject to intense precipitation. The immediacy of the need for erosion control and limited access to research institutions often results in a gap between extension and testing of erosion control strategies for these settings. To address this need, a transect datum technique was developed to assess rates of soil redistribution and loss on steep, deforested slopes with thin, calcareous soil in the Philippines. The method is simple, inexpensive and robust and does not require disturbing the soil surface, as do erosion pins. Application of the technique for three years to several land uses, including contour hedgerows, a contour-plowed field without hedgerows, slash/burn no-till, and pasture demonstrated the technique sensitive enough to measure fluctuations in soil height associated with changing bulk density, soil redistribution and loss and slumping of the terraces within the contour-hedgerow system.

  17. Systemic zinc redistribution and dyshomeostasis in cancer cachexia.

    PubMed

    Siren, Pontus M A; Siren, Matti J

    2010-09-01

    Cachexia affects up to two thirds of all cancer patients and is a significant cause of morbidity and mortality. It is a complex metabolic syndrome associated with the underlying illness and characterized by loss of skeletal muscle tissue with or without loss of fat mass. Cachexia's other prominent clinical symptoms include anorexia, systemic inflammation, pediatric growth failure, and hypogonadism. The relationship between the symptoms of cancer cachexia and the underlying illness is unclear, and there is an urgent need for a better understanding of the pathophysiology of this syndrome. Normal Zn metabolism is often disrupted in cancer patients, but the possible effects of systemic Zn dyshomeostasis in cachexia have not been investigated. We propose that the acute phase response can mediate Zn redistribution and accumulation in skeletal muscle tissue and contribute to the activation of the ubiquitin-proteasome pathway that regulates protein catabolism. This chronic redistribution deprives Zn from other tissues and organs and compromises critical physiological functions in the body. The cardinal symptoms of Zn deficiency are anorexia, systemic inflammation, growth failure in children, and hypogonadism. These symptoms also prominently characterize cancer cachexia suggesting that the role of systemic Zn dyshomeostasis in cachexia should be investigated. PMID:21475700

  18. Redistribution function for resonance radiation in a hot dense plasma

    SciTech Connect

    Bulyshev, A.E.; Demura, A.V.; Lisitsa, V.S.

    1995-07-01

    The redistribution function for resonance radiation in the L{sup {alpha}} spectral line of hydrogenic ions in a dense hot plasma is calculated. The calculation is based on a self-consistent solution of the equations for the populations of the excited ionic sublevels and for the polarizations of the transitions considered. Nonlinear interference effects due to mixing of atomic states in both static and dynamic ionic fields are thereby taken into account. Molecular dynamics methods are used to account for the evolution of the multiparticle ionic field resulting from thermal motion of the ions. We calculate the L{sup {alpha}} line of the hydrogen-like argon ion in a plasma with electron temperature 1 keV and electron density N{sub e}=10{sup 22}-cm{sup {minus}3}. The rescattering function is compared with the approximation provided by complete frequency redistribution. The results demonstrate the limited usefulness of the latter approximation for a plasma consisting of multiply-charged ions. 23 refs., 4 figs.

  19. Redistribution of pulmonary blood flow during hypoxic exercise.

    PubMed

    Kuwahira, I; Moue, Y; Urano, T; Kamiya, U; Iwamoto, T; Ishii, M; Clancy, R L; Gonzalez, N C

    2001-08-01

    Pulmonary blood flow (PBF) distribution was studied at rest and during exercise in rats acclimatized to chronic hypoxia (barometric pressure [PB] 370 Torr for 3 weeks, A rats) and non-acclimatized (NA) littermates. Both A and NA rats exercised in hypoxia (inspired O2 pressure [PIO2] approximately 70 Torr) or in normoxia (PlO2 approximately 145 Torr). PBF distribution was determined using fluorescent-labeled microspheres injected into the right atrium. The lungs were cut into 28 samples to determine relative scatter of specific PBF ([sample fluorescence intensity/sample dry weight)/(total lung fluorescence intensity/total lung dry weight]). Exercise produced redistribution of PBF both in NA and A rats, and this effect was larger in hypoxia than in normoxia, with minimal redistribution occurring during normoxic exercise in NA rats. The pattern of distribution varies considerably among individual animals. As a result of distribution, the previous high flow areas would be overperfused during hypoxic exercise in some rats. The results support the concept that hypoxic pulmonary vasoconstriction is not uniform and suggest that the combination of hypoxia and exercise may lead to overperfusion and capillary leak in some individuals. PMID:11531029

  20. Automatic generation of efficient array redistribution routines for distributed memory multicomputers

    NASA Technical Reports Server (NTRS)

    Ramaswamy, Shankar; Banerjee, Prithviraj

    1994-01-01

    Appropriate data distribution has been found to be critical for obtaining good performance on Distributed Memory Multicomputers like the CM-5, Intel Paragon and IBM SP-1. It has also been found that some programs need to change their distributions during execution for better performance (redistribution). This work focuses on automatically generating efficient routines for redistribution. We present a new mathematical representation for regular distributions called PITFALLS and then discuss algorithms for redistribution based on this representation. One of the significant contributions of this work is being able to handle arbitrary source and target processor sets while performing redistribution. Another important contribution is the ability to handle an arbitrary number of dimensions for the array involved in the redistribution in a scalable manner. Our implementation of these techniques is based on an MPI-like communication library. The results presented show the low overheads for our redistribution algorithm as compared to naive runtime methods.

  1. The redistributive effect of health care finance in twelve OECD countries.

    PubMed

    van Doorslaer, E; Wagstaff, A; van der Burg, H; Christiansen, T; Citoni, G; Di Biase, R; Gerdtham, U G; Gerfin, M; Gross, L; Häkinnen, U; John, J; Johnson, P; Klavus, J; Lachaud, C; Lauritsen, J; Leu, R; Nolan, B; Pereira, J; Propper, C; Puffer, F; Rochaix, L; Schellhorn, M; Sundberg, G; Winkelhake, O

    1999-06-01

    The OECD countries finance their health care through a mixture of taxes, social insurance contributions, private insurance premiums and out-of-pocket payments. The various payment sources have very different implications for both vertical and horizontal equity and on redistributive effect which is a function of both. This paper presents results on the income redistribution consequences of the health care financing mixes adopted in twelve OECD countries by decomposing the overall income redistributive effect into a progressivity, horizontal inequity and reranking component. The general finding of this study is that the vertical effect is much more important than horizontal inequity and reranking in determining the overall redistributive effect but that their relative importance varies by source of payment. Public finance sources tend to have small positive redistributive effects and less differential treatment while private financing sources generally have (larger) negative redistributive effects which are to a substantial degree caused by differential treatment. PMID:10537897

  2. Redistribution and Destabilization of Forest Soil Carbon by Earthworm Invasion

    NASA Astrophysics Data System (ADS)

    Swanston, C. W.; Torn, M. S.; Allen, L.; Lilleskov, E. A.; Maggi, F.

    2008-12-01

    Soils of temperate forests in the northern Great Lakes region have developed in the absence of earthworms, which were largely eradicated during the last ice age. European earthworms, such as Lumbricus terrestris, are spreading and their effect on forest soil C has not been widely studied. We examined soils along a chronosequence of worm activity (wormosequence) ranging from no apparent activity (Low) to high activity over several decades (High). In the soil profile, including organic horizons, there was only a small loss (4%) of C with high worm activity. There was a 71% decrease in the Oe and no remaining Oa in the High site. Conversely, the mineral soil contained 25% more C in the High site, with most of that in the top 20 cm. We densimetrically separated the mineral soil into primarily organic free light fraction (FLF) and occluded light fraction (OLF), a mineral-associated intermediate fraction (IF), and a mineral-associated dense fraction (DF). We measured fraction mass, C, nitrogen, and 14C content. In comparison to Low sites, each depth of High worm soil had less FLF C and more IF C. With worms, more C was stored in aggregates in the upper soil but less in the lower soil. The presence of worms had a very large effect on the 14C content of soil organic matter, with shifts of > 60 per mil in several fractions presumably due to a combination of vertical redistribution and more rapid transfer into and out of some fractions. For example, from the Low to High sites OLF 14C increased 100 per mil at 0-10 cm depth, while DF 14C decreased 80 per mil at 20-50 cm. The effect of worms on C cycling can be explored using a multi-pool, multi-depth model that treats 14C as a conservative (i.e., stable) tracer. Our results suggest that worms play a major role in redistributing soil C in these forest soils by pathways that differ with depth: the upper soil loses FLF C and incorporates organic horizon C into OLF and IF, whereas in the lower depths FLF is lost and the previously

  3. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of

  4. Vapor Diffusion as a Mechanism for Moisture Redistribution in Unsaturated Flow Systems with Variable Salinity

    NASA Astrophysics Data System (ADS)

    Xu, T.; Pruess, K.

    2001-12-01

    Understanding movement of saline waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). Laboratory experiments presented by Selker and collaborators at AGU 2000 Fall Meeting have shown that vapor diffusion can be an important mechanism for redistributing moisture in unsaturated flow systems with salinity gradients. The effect arises from the dependence of vapor pressure on salinity. Vapor pressures of salt solutions generally decrease with salt concentration, which results in a vapor pressure gradient and induces vapor diffusion from low to high salt concentration regions. Vapor then condenses in the high concentration regions and increases the liquid water saturation there. We have performed numerical experiments to study this salinity-driven moisture redistribution. Systematic simulation studies use different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that significant effects occur rapidly (hours) over rather small spatial scales (mm to cm), requiring very fine space discretization. The rapid occurrence is consistent with laboratory experiments of Selker and collaborators that show that significant transport of water of pre-wetted sand into highly saline NaNO3 solution plumes takes place in a matter of hours. Heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline region. Effects of permeability on water flow are complicated by effects of capillary pressure and tortuosity. The salinity driven-fluid flow is more significant at higher temperature. This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 through Memorandum Purchase Order 248861-A-B2 between Pacific

  5. Soil redistribution model for undisturbed and cultivated sites based on Chernobyl-derived cesium-137 fallout.

    PubMed

    Hrachowitz, Markus; Maringer, Franz-Josef; Steineder, Christian; Gerzabek, Martin H

    2005-01-01

    Measurements of 137Cs fallout have been used in combination with a range of conversion models for the investigation of soil relocation mechanisms and sediment budgets in many countries for more than 20 yr. The objective of this paper is to develop a conversion model for quantifying soil redistribution, based on Chernobyl-derived 137Cs. The model is applicable on uncultivated as well as on cultivated sites, taking into account temporal changes in the 137Cs depth distribution pattern as well as tillage-induced 137Cs dilution effects. The main idea of the new model is the combination of a modified exponential model describing uncultivated soil with a Chapman distribution based model describing cultivated soil. The compound model subsequently allows a dynamic description of the Chernobyl derived 137Cs situation in the soil and its change, specifically migration and soil transport processes over the course of time. Using the suggested model at the sampling site in Pettenbach, in the Austrian province of Oberösterreich 137Cs depth distributions were simulated with a correlation coefficient of 0.97 compared with the measured 137Cs depth profile. The simulated rates of soil distribution at different positions at the sampling site were found to be between 27 and 60 Mg ha(-1) yr(-1). It was shown that the model can be used to describe the temporal changes of 137Cs depth distributions in cultivated as well as uncultivated soils. Additionally, the model allows to quantify soil redistribution in good correspondence with already existing models. PMID:15998852

  6. Redistribution of Gαs in Mouse Salivary Glands Following β-Adrenergic Stimulation

    PubMed Central

    Hand, Arthur R.; Elder, Kareen O.; Norris, Rachael P.

    2015-01-01

    Objective Signaling via β-adrenergic receptors activates heterotrimeric G-proteins, which dissociate into α and βγ subunits. In salivary glands, the α subunit of Gs stimulates adenylate cyclase, increasing cyclic AMP levels and promoting exocytosis. The goals of this study were to determine Gαs localization in salivary glands and whether it undergoes redistribution upon activation. Methods Mouse parotid and submandibular (SMG) glands were fixed with paraformaldehyde and prepared for immunofluorescence labeling with anti-Gαs. Results In unstimulated parotid and SMG acinar cells, Gαs was localized mainly to basolateral membranes. Some parotid acinar cells also exhibited cytoplasmic fluorescence. Isoproterenol (IPR) stimulation resulted in decreased membrane fluorescence and increased cytoplasmic fluorescence, which appeared relatively uniform by 30 min. Beginning about 2 hr after IPR, cytoplasmic fluorescence decreased and membrane fluorescence increased, approaching unstimulated levels in SMG acini by 4 hr. Some parotid acini exhibited cytoplasmic fluorescence up to 8 hr after IPR. The IPR-induced redistribution of Gαs was prevented (SMG) or reduced (parotid) by prior injection of propranolol. Striated duct cells of unstimulated mice exhibited general cytoplasmic fluorescence, which was unchanged after IPR. Conclusions Gαs is localized to basolateral membranes of unstimulated salivary acinar cells. Activation of Gαs causes its release from the cell membrane and movement into the cytoplasm. Reassociation of Gαs with the membrane begins about 2 hr after stimulation in the SMG, but complete reassociation takes several hours in the parotid gland. The presence of Gαs in striated duct cells suggests a role in signal transduction of secretion and/or electrolyte transport processes. PMID:25748393

  7. The global relaxation redistribution method for reduction of combustion kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Chiavazzo, Eliodoro; Boulouchos, Konstantinos; Karlin, Iliya V

    2014-07-28

    An algorithm based on the Relaxation Redistribution Method (RRM) is proposed for constructing the Slow Invariant Manifold (SIM) of a chosen dimension to cover a large fraction of the admissible composition space that includes the equilibrium and initial states. The manifold boundaries are determined with the help of the Rate Controlled Constrained Equilibrium method, which also provides the initial guess for the SIM. The latter is iteratively refined until convergence and the converged manifold is tabulated. A criterion based on the departure from invariance is proposed to find the region over which the reduced description is valid. The global realization of the RRM algorithm is applied to constant pressure auto-ignition and adiabatic premixed laminar flames of hydrogen-air mixtures. PMID:25084876

  8. The global relaxation redistribution method for reduction of combustion kinetics

    NASA Astrophysics Data System (ADS)

    Kooshkbaghi, Mahdi; Frouzakis, Christos E.; Chiavazzo, Eliodoro; Boulouchos, Konstantinos; Karlin, Iliya V.

    2014-07-01

    An algorithm based on the Relaxation Redistribution Method (RRM) is proposed for constructing the Slow Invariant Manifold (SIM) of a chosen dimension to cover a large fraction of the admissible composition space that includes the equilibrium and initial states. The manifold boundaries are determined with the help of the Rate Controlled Constrained Equilibrium method, which also provides the initial guess for the SIM. The latter is iteratively refined until convergence and the converged manifold is tabulated. A criterion based on the departure from invariance is proposed to find the region over which the reduced description is valid. The global realization of the RRM algorithm is applied to constant pressure auto-ignition and adiabatic premixed laminar flames of hydrogen-air mixtures.

  9. From microscopic taxation and redistribution models to macroscopic income distributions

    NASA Astrophysics Data System (ADS)

    Bertotti, Maria Letizia; Modanese, Giovanni

    2011-10-01

    We present here a general framework, expressed by a system of nonlinear differential equations, suitable for the modeling of taxation and redistribution in a closed society. This framework allows one to describe the evolution of income distribution over the population and to explain the emergence of collective features based on knowledge of the individual interactions. By making different choices of the framework parameters, we construct different models, whose long-time behavior is then investigated. Asymptotic stationary distributions are found, which enjoy similar properties as those observed in empirical distributions. In particular, they exhibit power law tails of Pareto type and their Lorenz curves and Gini indices are consistent with some real world ones.

  10. Spacecraft Spin Rate Change due to Propellant Redistribution Between Tanks

    NASA Astrophysics Data System (ADS)

    Choi, Kyu Hong

    1984-09-01

    A bubble trapped in the liquid manifold of INTELSAT IV F-7 spacecraft caused a mass imbalance between the System 1 propellant tanks and a wobble half angle of 0.38 degree to 0.48 degree. A maneuver in May 14, 1980 passed the bubble through the axial jet and allowed propellant to redistribute. A 0.2 rpm change in spin rate was observed with an exponential decay time constant of 6 minutes. In this paper, moment of inertia, tank geometry and hydrodynamics models are derived to match the observed spin rate data. The values of the total mass of the propellant considered were 16, 19 and 20 Kgs with corresponding mass imbalances of 14.3, 15 and 15.1 Kgs, respectively. The result shows excellent agreement with observed spin rate data but it was necessary to assume a greater mass of hydrazine in the tanks than propellant accounting indicated.

  11. Horizontal flow and capillarity-driven redistribution in porous media.

    PubMed

    Doster, F; Hönig, O; Hilfer, R

    2012-07-01

    A recent macroscopic mixture theory for two-phase immiscible displacement in porous media has introduced percolating and nonpercolating phases. Quasi-analytic solutions are computed and compared to the traditional theory. The solutions illustrate physical insights and effects due to spatiotemporal changes of nonpercolating phases, and they highlight the differences from traditional theory. Two initial and boundary value problems are solved in one spatial dimension. In the first problem a fluid is displaced by another fluid in a horizontal homogeneous porous medium. The displacing fluid is injected with a flow rate that keeps the saturation constant at the injection point. In the second problem a horizontal homogeneous porous medium is considered which is divided into two subdomains with different but constant initial saturations. Capillary forces lead to a redistribution of the fluids. Errors in the literature are reported and corrected. PMID:23005535

  12. Landform Erosion and Volatile Redistribution on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey Morgan; Howard, Alan D.; McKinnon, William B.; Schenk, Paul M.; Wood, Stephen E.

    2009-01-01

    We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Our work directly addresses some of the most fundamental issues pertinent to deciphering icy Galilean satellite geologic histories by employing techniques currently at the forefront of terrestrial, martian, and icy satellite landscape evolution studies [e.g., 1-6], including modeling of surface and subsurface energy and volatile exchanges, and computer simulation of long-term landform evolution by a variety of processes. A quantitative understanding of the expression and rates of landform erosion, and of volatile redistribution on landforms, is especially essential in interpreting endogenic landforms that have, in many cases, been significantly modified by erosion [e.g., 7-9].

  13. Redistribution of Lignin Caused by Dilute Acid Pretreatment of Biomass

    SciTech Connect

    Johnson, D. K.; Donohoe, B. S.; Katahira, R.; Tucker, M. P.; Vinzant, T. B.; Himmel, M. E.

    2012-01-01

    Research conducted at NREL has shown that lignin undergoes a phase transition during thermochemical pretreatments conducted above its glass transition temperature. The lignin coalesces within the plant cell wall and appears as microscopic droplets on cell surfaces. It is clear that pretreatment causes significant changes in lignin distribution in pretreatments at all scales from small laboratory reactors to pilot scale reactors. A method for selectively extracting lignin droplets from the surfaces of pretreated cell walls has allowed us to characterize the chemical nature and molecular weight distribution of this fraction. The effect of lignin redistribution on the digestibility of pretreated solids has also been tested. It is clear that removal of the droplets increases the digestibility of pretreated corn stover. The improved digestibility could be due to decreased non-specific binding of enzymes to lignin in the droplets, or because the droplets no longer block access to cellulose.

  14. Coming full circle: 70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signaling

    PubMed Central

    Montserrat, Emili

    2013-01-01

    Chronic lymphocytic leukemia (CLL) cells proliferate in pseudofollicles within the lymphatic tissues, where signals from the microenvironment and BCR signaling drive the expansion of the CLL clone. Mobilization of tissue-resident cells into the blood removes CLL cells from this nurturing milieu and sensitizes them to cytotoxic drugs. This concept recently gained momentum after the clinical activity of kinase inhibitors that target BCR signaling (spleen tyrosine kinase, Bruton tyrosine kinase, PI3Kδ inhibitors) was established. Besides antiproliferative activity, these drugs cause CLL cell redistribution with rapid lymph node shrinkage, along with a transient surge in lymphocytosis, before inducing objective remissions. Inactivation of critical CLL homing mechanism (chemokine receptors, adhesion molecules), thwarting tissue retention and recirculation into the tissues, appears to be the basis for this striking clinical activity. This effect of BCR-signaling inhibitors resembles redistribution of CLL cells after glucocorticoids, described as early as in the 1940s. As such, we are witnessing a renaissance of the concept of leukemia cell redistribution in modern CLL therapy. Here, we review the molecular basis of CLL cell trafficking, homing, and redistribution and similarities between old and new drugs affecting these processes. In addition, we outline how these discoveries are changing our understanding of CLL biology and therapy. PMID:23264597

  15. Inequality and Redistribution Policy Issues: Principles and Swedish Experience; Comment on Lindbeck's Paper [and] Discussion Paper.

    ERIC Educational Resources Information Center

    Lindbeck, Assar

    Alternative methods of redistribution policy in mixed economies are compared in this paper. The paper deals with the objectives, methods, and problems in redistribution policy. The chief objective is to highlight principles and general problems, drawing heavily on the experiences of Sweden. This country is chosen as a case study since attempts to…

  16. 43 CFR 44.52 - May a State enact legislation to reallocate or redistribute PILT payments?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false May a State enact legislation to... After the Department Distributes Payments § 44.52 May a State enact legislation to reallocate or redistribute PILT payments? A State may enact legislation to reallocate or redistribute PILT payments. If...

  17. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  18. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  19. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  20. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  1. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna 1898

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have illuminated the process of hydraulic redistribution, defined as the movement of soil moisture via plant root systems, but the long-term ecohydrologic significance of this process is poorly understood. We investigated hydraulic redistribution (HR) by Prosopis velutina Woot. (velve...

  2. Local redistribution of blood under the effect of fixation stress against a background of hypokinesia

    NASA Technical Reports Server (NTRS)

    Kovalev, O. A.; Lysak, V. F.; Severovostokova, V. I.; Shermetevskaya, S. K.

    1980-01-01

    Fixation stress was used as a model of emotional disturbance. The effect of previous restrictions on mobility on the local redistribution of blood resulting from fixation stress was examined. Disturbances in carbohydrate which result from prolonged hypokinesia was studied. Radioactivity was used to determine the local redistribution of blood. Modified factor analysis was used to study the results of the experiment.

  3. 45 CFR 270.9 - How will we redistribute funds if that becomes necessary?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false How will we redistribute funds if that becomes... SERVICES HIGH PERFORMANCE BONUS AWARDS § 270.9 How will we redistribute funds if that becomes necessary? (a) If we cannot distribute the funds as specified in § 270.8, we will reallocate any undistributed...

  4. Using Cesium-137 to study soil redistribution in Guam and Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding soil redistribution and sediment sources on the landscape are keys for the development of management strategies for reducing soil erosion and the delivery sediments to floodplains, streams and water bodies. Fallout Cs-137 has been used extensively to measure soil redistribution, to de...

  5. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  6. Development Planning and Population Growth and Redistribution in the Republic of Iraq.

    ERIC Educational Resources Information Center

    El Attar, M. E.; Salman, A. D.

    Utilizing the 1947, 1957, and l965 census data and the 1970 preliminary population count, the relationship between population growth and redistribution and development planning in Iraq was examined. Trends in rural-urban population growth, migration, and population redistribution were examined as they pertained to the socioeconomic development…

  7. Partial Redistribution in Multilevel Atoms. I. Method and Application to the Solar Hydrogen Line Formation

    NASA Astrophysics Data System (ADS)

    Hubeny, I.; Lites, B. W.

    1995-12-01

    We present a robust method for solution of multilevel non-LTE line transfer problems including the effects of partial frequency redistribution (PRD). This method allows the self-consistent solution for redistribution of scattered line photons simultaneously in multiple transitions of a model atom, including the effects of resonant Raman scattering ("cross-redistribution") among lines sharing common upper levels. The method is incorporated into the framework of the widely used non-LTE complete redistribution code MULTI. We have applied this method to the problem of transfer in hydrogen lines in a plane-parallel solar model atmosphere, including cross-redistribution between the Hα and Lβ, using general redistribution functions for the Lα and Lβ lines which are not restricted by the impact approximation. The convergence properties of this method are demonstrated to be comparable to that of the equivalent complete redistribution problem. In this solar model, PRD in the Lα line produces the dominant influence on the level populations. It changes considerably the populations of the excited states of hydrogen, as well as the proton number density, in the middle and upper chromosphere, owing to modification of the Lα wing radiation. The population of the hydrogen ground state undergoes only modest changes, however. The influence of cross-redistribution and PRD in Lβ has a much smaller influence on the level populations but a considerable influence on the wing intensity of the Lβ line.

  8. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 4 2011-01-01 2011-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  9. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 4 2014-01-01 2014-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  10. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 4 2013-01-01 2013-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  11. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  12. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 4 2012-01-01 2012-01-01 false Recovery and redistribution of caseload and... FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS.... FNS will not unilaterally recover caseload that would result in the recovery of more than 50...

  13. Numerical simulations of hydraulic redistribution across climates: The role of the root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Quijano, Juan C.; Kumar, Praveen

    2015-10-01

    Hydraulic redistribution, a process by which vegetation roots redistribute soil moisture, has been recognized as an important mechanism impacting several processes that regulate plant water uptake, energy and water partitioning, and biogeochemical cycling. We analyze how the magnitude of hydraulic redistribution varies across ecosystems that are exposed to different climates and seasonal patterns of incoming shortwave radiation and precipitation. Numerical simulation studies are performed over 10 Ameriflux sites, which show that hydraulic redistribution predictions are significantly influenced by the specified root hydraulic conductivities. We performed sensitivity analyses by considering expected ranges of root conductivities based on previous experimental studies, and found contrasting patterns in energy-limited and water-limited ecosystems. In energy-limited ecosystems, there is a threshold above which high root conductivities enhance hydraulic redistribution with no increase in transpiration, while in water-limited ecosystems increase in root conductivities was always associated with enhancements in both transpiration and hydraulic redistribution. Further we found differences in the magnitude and seasonality of hydraulic redistribution and transpiration across different climates, regulated by interplay between precipitation and transpiration. The annual hydraulic redistribution to transpiration flux ratio (HR/Tr) was significant in Mediterranean climates (HR/Tr ≈ 30%), and in the tropical humid climates (HR/Tr ≈ 15%). However, in the continental climates hydraulic redistribution occurs only during sporadic precipitation events throughout the summer resulting in lower annual magnitudes (HR/Tr < 5%). These results provide more insights for suitable implementation of numerical models to capture belowground processes in eco-hydrology, and enhance our understanding about the variability of hydraulic redistribution across different climates.

  14. Neutron imaging of root water uptake, transport and hydraulic redistribution

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2012-12-01

    Knowledge of plant water fluxes is critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolving root water transport dynamics has been a particularly daunting task. Our objectives were to demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within 1-3-week old Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Seedlings were propagated in a growth chamber adjacent to the HFIR CG1 Beam Line at Oak Ridge National Laboratory in cylindrical or plate-like aluminum chambers containing sand. Seedlings were maintained under fairly dry conditions, with water added only to replace daily evapotranspiration. Plants were placed into the high flux cold neutron beam line and injections of H2O or deuterium oxide (D2O) were tracked through the soil and root systems by collecting consecutive CCD radiographs through time. Water fluxes within the root systems were manipulated by cycling on a growth lamp that altered foliar demand for water and thus internal water potential driving forces. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. 2D pulse-chase irrigation experiments with H2O and D2O, which have different neutron cross sections and thus differences in resulting image contrast, successfully allowed observation of uptake and mass flow of water within the root system. After irrigation there was rapid root water uptake from the newly wetted soil, followed by progressive hydraulic redistribution of water through the root systems to roots terminating in dry soil. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients. Using 2D radiography, absolute fluxes of H2O or D2O through the system could not be easily determined since neutron attenuation through the sample was dependent on unknown and dynamic magnitudes of both D and H

  15. Does Aggregation Affect the Redistribution and Quality of Eroded SOC?

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Kuhn, Nikolaus

    2015-04-01

    A substantial amount of literature has discussed the impacts of soil erosion on global carbon cycling. However, numerous gaps in our knowledge remain unaddressed, for instance, the biogeochemical fate of displaced SOC during transport being one of them. The transport distance and the quality of eroded SOC are the two major factors that determine its fate. Previous laboratory-based research had demonstrated that the effects of aggregation can potentially shorten the transport distance of eroded SOC. The mineralization potential of SOC also differs in sediment fractions of different likely transport distances. It is therefore essential to examine the transport distance and quality of eroded SOC under field conditions with natural rainfall as the agent of erosion. Soil samples from a silty clay soil from Switzerland and a sandy soil from Denmark, were collected in the field this summer after natural rainfall events. The soil from Switzerland was sampled from a field of maize in St. Ursanne (47°20' N 7°09' E) on August 6th, 2014 after a natural rainfall event. A depositional fan consisting of aggregated sediment was formed outside the lower edge of the field. The sandy soil from Denmark was sampled from a farm in Foulum (56°30' N, 9°35' W) on September 4, 2014, after a series of natural rainfall events. Soil samples were collected at different topographic positions along the two slopes. All the soil samples from the two farms were fractionated by a settling tube. Bulk soil from Switzerland and Denmark was also dispersed by ultrasound. The SOC contents of all bulk soils and associated fractions were determined using a carbon analyzer Leco 612 at 1000°C. The quality of SOC in different settling fractions collected from various topographic positions were also determined by stable isotopes of C and N (13C and 15N). Our results show that 1) the aggregate specific SOC distribution evidently differs from the mineral particle specific SOC distribution, indicating that re-distribution

  16. Climate velocity and the future global redistribution of marine biodiversity

    NASA Astrophysics Data System (ADS)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  17. Cooling fermions in optical lattices by faster entropy redistribution

    NASA Astrophysics Data System (ADS)

    Teles, Rafael P.; Yang, Tsung-Lin; Paiva, Thereza; Scalettar, Richard T.; Natu, Stefan S.; Hulet, Randall G.; Hazzard, Kaden R. A.

    2016-05-01

    Lower entropy for fermions in optical lattices would unlock new quantum phases, including antiferromagnetism and potentially superconductivity. We propose a method to cool these systems at temperatures where conventional methods fail: slowly turning on a tightly focused optical potential transports entropy from the Mott insulator to a metallic entropy reservoir formed along the beam. Our scheme places the entropy reservoir close to the targeted cooling region, which allows entropy redistribution to be effective at lower temperatures than in prior proposals. Furthermore we require only a straightforwardly-applied Gaussian potential. We compute the temperatures achieved with this scheme using an analytic T >> t approximation and, for low T, determinantal quantum Monte Carlo. We optimize the waist and depth of the focused beam, and we find that repulsive potentials cool better than attractive ones. We estimate that the time required for entropy transport under nearly adiabatic conditions at these low temperatures is compatible with the system lifetime. Finally, we explore further improvements to cooling enabled by sophisticated potential engineering, e.g. using a spatial light modulator. Work supported by CNPq.

  18. Interactive graphical tools for three-dimensional mesh redistribution

    SciTech Connect

    Dobbs, L.A.

    1996-03-01

    Three-dimensional meshes modeling nonlinear problems such as sheet metal forming, metal forging, heat transfer during welding, the propagation of microwaves through gases, and automobile crashes require highly refined meshes in local areas to accurately represent areas of high curvature, stress, and strain. These locally refined areas develop late in the simulation and/or move during the course of the simulation, thus making it difficult to predict their exact location. This thesis is a systematic study of new tools scientists can use with redistribution algorithms to enhance the solution results and reduce the time to build, solve, and analyze nonlinear finite element problems. Participatory design techniques including Contextual Inquiry and Design were used to study and analyze the process of solving such problems. This study and analysis led to the in-depth understanding of the types of interactions performed by FEM scientists. Based on this understanding, a prototype tool was designed to support these interactions. Scientists participated in evaluating the design as well as the implementation of the prototype tool. The study, analysis, prototype tool design, and the results of the evaluation of the prototype tool are described in this thesis.

  19. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  20. Lead Sequestration and Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth,A.; Bostick, B.; Kaste, J.; Friedland, A.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20-35%) and SOM ({approx}65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  1. Lead Sequestration And Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2009-05-27

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O{sub i} samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20--35%) and SOM ({approx}65--80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  2. NK Cell Subset Redistribution during the Course of Viral Infections

    PubMed Central

    Lugli, Enrico; Marcenaro, Emanuela; Mavilio, Domenico

    2014-01-01

    Natural killer (NK) cells are important effectors of innate immunity that play a critical role in the control of human viral infections. Indeed, given their capability to directly recognize virally infected cells without the need of specific antigen presentation, NK cells are on the first line of defense against these invading pathogens. By establishing cellular networks with a variety of cell types such as dendritic cells, NK cells can also amplify anti-viral adaptive immune responses. In turn, viruses evolved and developed several mechanisms to evade NK cell-mediated immune activity. It has been reported that certain viral diseases, including human immunodeficiency virus-1 as well as human cytomegalovirus infections, are associated with a pathologic redistribution of NK cell subsets in the peripheral blood. In particular, it has been observed the expansion of unconventional CD56neg NK cells, whose effector functions are significantly impaired as compared to that of conventional CD56pos NK cells. In this review, we address the impact of these two chronic viral infections on the functional and phenotypic perturbations of human NK cell compartment. PMID:25177322

  3. Night-time transpiration can decrease hydraulic redistribution.

    PubMed

    Howard, Ava R; van Iersel, Marc W; Richards, James H; Donovan, Lisa A

    2009-08-01

    C(3) plants dominate many landscapes and are critically important for ecosystem water cycling. At night, plant water losses can include transpiration (E(night)) from the canopy and hydraulic redistribution (HR) from roots. We tested whether E(night) limits the magnitude of HR in a greenhouse study using Artemisia tridentata, Helianthus anomalus and Quercus laevis. Plants were grown with their roots split between two compartments. HR was initiated by briefly withholding all water, followed by watering only one rooting compartment. Under study conditions, all species showed substantial E(night) and HR (highest minus lowest soil water potential [Psi(s)] during a specified diel period). Suppressing E(night) by canopy bagging increased HR during the nightly bagging period (HR(N)) for A. tridentata and H. anomalus by 73 and 33% respectively, but did not affect HR(N) by Q. laevis. Total daily HR (HR(T)) was positively correlated with the Psi(s) gradient between the rooting compartments, which was correlated with light and/or atmospheric vapour pressure deficit (VPDa) the prior day. For A. tridentata, HR(T) was negatively correlated with night-time VPDa. Ecological implications of the impact of E(night) on HR may include decreased plant productivity during dry seasons, altered ecosystem water flux patterns and reduced nutrient cycling in drying soils. PMID:19422615

  4. Redistribution of boron in leaves reduces boron toxicity.

    PubMed

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots. PMID:20009556

  5. Redistributive impact of the Atlanta mass transit system: a comment

    SciTech Connect

    Talley, W.K.; French, G.L.

    1981-01-01

    Dajani, Egan, and McElroy (DEM) in this joural (pp 49-60, July 1975) attempted to determine the redistributive impact (i.e., the net incidence of benefits and costs) of the new Atlanta transit system to be operated by the Metropolitan Atlanta Rapid Transit Authority (MARTA). Based upon a sample of eight origin zones, DEM conclude that there appears to be no relationship between net benefits from MARTA and income per family but a relationship between net benefits and proximity to the transit station. The purpose of this paper is to demonstrate the DEM made several methodological errors in measuring benefits and costs of MARTA and hence their conclusions are questionable. Furthermore, the DEM benefit-cost model will be presented in a graphical framework. Because of the many factors that enter into the determination of benefits and costs or urban transit, the possibility of not considering or being inconsistent in considering a relevant factor becomes highly probable. The graphical model presented in this paper was found to be extremely useful in understanding the DEM benefit-cost model and in discovering its errors. A similar model may also be found useful by future researchers in avoiding methodological errors in the measurement of benefits and costs of urban transit.

  6. Cascading failures in interconnected networks with dynamical redistribution of loads

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuang; Zhang, Peng; Yang, Hujiang

    2015-09-01

    Cascading failures of loads in isolated networks and coupled networks have been studied in the past few years. In most of the corresponding results, the topologies of the networks are destroyed. Here, we present an interconnected network model considering cascading failures based on the dynamic redistribution of flow in the networks. Compared with the results of single scale-free networks, we find that interconnected scale-free networks have higher vulnerability. Additionally, the network heterogeneity plays an important role in the robustness of interconnected networks under intentional attacks. Considering the effects of various coupling preferences, the results show that there are almost no differences. Finally, the application of our model to the Beijing interconnected traffic network, which consists of a subway network and a bus network, shows that the subway network suffers more damage under the attack. Moreover, the interconnected traffic network may be more exposed to damage after initial attacks on the bus network. These discussions are important for the design and optimization of interconnected networks.

  7. Polysilsesquioxanes through base-catalyzed redistribution of oligohydridosiloxanes

    SciTech Connect

    RAHIMIAN,KAMYAR; ASSINK,ROGER A.; LANG,DAVID P.; LOY,DOUGLAS A.

    2000-05-01

    Organopolysilsesquioxanes have recently gained much interest as materials for low-K dielectrics, ceramic precursors and photoresists. Typical sol-gel synthesis of polysilsesquioxanes involves the hydrolysis of organotricholorosilanes and/or organotrialkoxysilanes in the presence of acid or base catalysts and organic solvents. However, under sol-gel conditions most organotrialkoxysilanes do not afford silsesquioxane gels. This limits the range of organic functionalities that can be introduced into these hybrid organic-inorganic materials. An alternative route to polysilsesquioxanes is through oligohydridosiloxanes. Catalytic disproportionation, by titanium complexes, of linear or cyclic oligomers of methylhydridosiloxanes can lead to polymethylsilsesquioxanes. The authors have shown that disproportionation of oligomethylhydridosiloxanes can also be catalyzed by tetrabutylammonium hydroxide to yield polymethylsilsesquioxanes (scheme 1). This replaces the step-growth sol-gel polymerization process of organotrialkoxysilanes, which requires solvent, stoichiometric water and produces alcohol and water condensation by-products. Tetraalkylammonium hydroxides, as catalysts, are also attractive because they readily decompose by heating above 150 C; thus, they can be easily removed from the final materials. In this paper the authors report on both the catalytic and stoichiometric redistribution of organohydridosiloxanes to produce polysilsesquioxane foams and gels of the formula (RSiO{sub 1.5}){sub n} which otherwise cannot be obtained through traditional sol-gel means.

  8. From the bedroom to the budget deficit: mate competition changes men's attitudes toward economic redistribution.

    PubMed

    White, Andrew Edward; Kenrick, Douglas T; Neel, Rebecca; Neuberg, Steven L

    2013-12-01

    How do economic recessions influence attitudes toward redistribution of wealth? From a traditional economic self-interest perspective, attitudes toward redistribution should be affected by one's financial standing. A functional evolutionary approach suggests another possible form of self-interest: That during periods of economic threat, attitudes toward redistribution should be influenced by one's mate-value-especially for men. Using both lab-based experiments and real-world data on voting behavior, we consistently find that economic threats lead low mate-value men to become more prosocial and supportive of redistribution policies, but that the same threats lead high mate-value men to do the opposite. Economic threats do not affect women's attitudes toward redistribution in the same way, and, across studies, financial standing is only weakly associated with attitudes toward redistribution. These findings suggest that during tough economic times, men's attitudes toward redistribution are influenced by something that has seemingly little to do with economic self-interest-their mating psychology. PMID:23895267

  9. Reverse redistribution of thallium-201 detected by SPECT imaging after dipyridamole in angina pectoris

    SciTech Connect

    Popma, J.J.; Smitherman, T.C.; Walker, B.S.; Simon, T.R.; Dehmer, G.J. )

    1990-05-15

    Reverse redistribution refers to a thallium-201 perfusion defect that develops or becomes more evident on delayed imaging compared with the initial image immediately after stress. To determine the diagnostic importance of reverse redistribution after intravenous dipyridamole, thallium-201 single photon emission computed tomography and quantitative coronary arteriography were performed in 90 men with angina pectoris. Of the 250 myocardial segments analyzed, reverse redistribution was present in 17 (7%). Minimal coronary cross-sectional area in proximal vessel segments was less than or equal to 2.0 mm2 more often in regions with transient perfusion abnormalities than in regions with reverse redistribution (66 vs 29%, p less than 0.05). Compared with regions exhibiting transient perfusion abnormalities, regions with reverse redistribution had larger proximal arterial diameters (1.9 +/- 1.1 vs 1.3 +/- 1.1 mm, p less than 0.001) and cross-sectional areas (3.9 +/- 3.1 vs 2.2 +/- 2.6 mm2, p less than 0.001). Coronary artery dimensions and relative stenosis severity did not differ between those regions with normal perfusion and those with reverse redistribution. Reverse redistribution detected by thallium-201 single photon emission computed tomographic imaging after dipyridamole is uncommon, appears to occur as frequently in normal subjects as in patients undergoing coronary arteriography and does not indicate the presence of severe coronary artery disease.

  10. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    SciTech Connect

    Desmoulin, Jean-Charles; Petit, Yannick; Cardinal, Thierry; Canioni, Lionel; Dussauze, Marc; Lahaye, Michel; Gonzalez, Hernando Magallanes; Brasselet, Etienne

    2015-12-07

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to the formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.

  11. Effect of methotrexate on inflammatory cells redistribution in experimental adjuvant arthritis.

    PubMed

    Feketeová, Lucia; Jančová, Petra; Moravcová, Petra; Janegová, Andrea; Bauerová, Katarína; Poništ, Silvester; Mihalová, Danica; Janega, Pavol; Babál, Pavel

    2012-11-01

    The aim of this study was to evaluate the morphological changes in the spleen, the thymus and the knee joints of rats with experimental adjuvant arthritis induced by Mycobacterium butyricum in the incomplete Freund's adjuvant and the effect of treatment with methotrexate (MTX). Particular attention was aimed on the redistribution of granulocytes in the tissues during the inflammatory process. Clinical parameters, e.g., joint edema, body weight and of gamma glutamyl transferase (GGT) activity as an inflammatory marker, have also been determined. Induction of adjuvant arthritis caused a significant decrease in granulocyte number in the spleen and vice versa a significant increase in the knee joints, but without significant changes in the thymus. Treatment with methotrexate reversed this phenomenon by increasing the granulocyte number in the spleen and decreasing it in knee joints. MTX decreased the joint edema as well as the activity of GGT in the spleen, modified the size of the white pulp of the spleen and increased the cortex/medulla ratio in the thymus. The observed changes support the anti-inflammatory and immunomodulatory properties of MTX supporting its use as the first-line medication in patients with rheumatoid arthritis. PMID:22083611

  12. Time-Variable Gravity Signal Due to Extratropic Pacific Water Mass Redistribution

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, A. Y.; Cox, C. M.

    2002-01-01

    Cox and Chao [2002] reported the detection of a large anomaly in the form of a positive "jump" in the time series of Earth's lowest-degree gravity harmonic J2, or the dynamic oblateness, during 1998. This prompted us to examine the mass redistribution in the global oceans. We report here a seesaw of the sea-surface height (SSH) in the extratropic north + south Pacific basins -- the leading (nonseasonal) EOF/PC mode in SSH derived from the 10-year TOPEX/Poseidon altimetry data in the extratropic Pacific region. The mode underwent a step-like jump with time evolution that match remarkably well with the observed J2 anomaly. However, the magnitude is several times too small to explain the observed J2, even if assuming the SSH jump was all mass-induced (as opposed to any steric effect which causes no time-variable gravity signal). If one accepts the notion that this extratropic Pacific seesaw is part of the geophysical process that produced the observed 1998 J2 anomaly, then this finding suggests strong geophysical connection of the interannual-to-decadal variation of J2 with the Pacific Decadal Oscillation (PDO), as the time series of the above EOF/PC mode is actually a formally defined PDO Index series.

  13. Computational model of cerebral blood flow redistribution during cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.

    2016-04-01

    In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.

  14. Compensatory load redistribution in walking and trotting dogs with hind limb lameness.

    PubMed

    Fischer, S; Anders, A; Nolte, I; Schilling, N

    2013-09-01

    This study evaluated adaptations in vertical force and temporal gait parameters to hind limb lameness in walking and trotting dogs. Eight clinically normal adult Beagles were allowed to ambulate on an instrumented treadmill at their preferred speed while the ground reaction forces were recorded for all limbs before and after a moderate, reversible, hind limb lameness was induced. At both gaits, vertical force was decreased in the ipsilateral and increased in the contralateral hind limb. While peak force increased in the ipsilateral forelimb, no changes were observed for mean force and impulse when the dogs walked or trotted. In the contralateral forelimb, the peak force was unchanged, but the mean force significantly increased during walking and trotting; vertical impulse increased only during walking. Relative stance duration increased in the ipsilateral hind limb when the dogs trotted. In the contralateral fore and hind limbs, relative stance duration increased during walking and trotting, but decreased in the ipsilateral forelimb during walking. Analysis of load redistribution and temporal gait changes during hind limb lameness showed that compensatory mechanisms were similar regardless of gait. The centre of mass consistently shifted to the contralateral body side and cranio-caudally to the side opposite the affected limb. These biomechanical changes indicate substantial short- and long-term effects of hind limb lameness on the musculoskeletal system. PMID:23683534

  15. Role of Hydraulic Redistribution in Enhancing Multi-Species Vegetation Interaction and Ecosystem Productivity

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D. T.

    2011-12-01

    The objective of our study is to understand the role of hydraulic redistribution (HR) in the interaction of above- and below-ground ecohydrologic dynamics using a modeling approach. Specifically we explore the role of HR in regulating the partitioning and tradeoffs of hydrologic fluxes between tall (Ponderosa Pine) and understory (Manzanita shrubs) vegetation and soil-evaporation. This is accomplished using a "shared resource model" where the soil serves as a common reservoir whose state is altered by the addition and withdrawal of moisture by vegetation roots in conjunction with its own moisture transport dynamics, and the non-linear dependence of vegetation uptake and release on the existing soil-moisture state. We explore how the presence of multiple species induces competitive tradeoffs in water utilization but mutualistic benefits in ecosystem productivity. Our study establishes that the tradeoff in water use occurs in a way that benefits both the tall and understory vegetation and facilitates increase in total ecosystem productivity. Further, the presence of the litter layer enhances ecosystem productivity. The study is performed for the Ameriflux study site at the Blodgett Forest in the Sierra Nevada Mountains in California. The Mediterranean climate of the region provides an ideal condition where the deep layer moisture, through hydraulic lift, supports the ecosystem productivity during the long dry summers and the wet winters replenish the soil-moisture through hydraulic descent.

  16. Comparison between sirolimus- and paclitaxel-eluting stent in T-cell subsets redistribution.

    PubMed

    Sardella, Gennaro; De Luca, Leonardo; Di Roma, Angelo; De Persio, Giovanni; Conti, Giulia; Paroli, Marino; Fedele, Francesco

    2006-02-15

    We sought to investigate the effects of 2 different coronary drug-eluting stents on the distribution of central or effector memory T cells circulating in the coronary sinus of patients with coronary artery disease who underwent percutaneous coronary revascularization. We randomly assigned 43 patients (mean age 65.4 +/- 4.3 years; 34 men) presenting with stable coronary disease and angiographically proved stenosis of the left anterior descending artery to treatment with sirolimus- or paclitaxel-eluting stents. Heparinized blood samples were obtained from the coronary sinus before and 20 minutes after stent implantation. Analysis of surface phenotype was performed by 4-color flow cytometry, and data are expressed as the percentage of positive cells. The percentages of CD8+ and CD4+ effector memory T cells, as defined by the CD3+CD45RO+CD27- phenotype, were significantly reduced in patients who received a sirolimus-eluting stent compared with the basal values. Conversely, the percentages of CD8+, but not CD4+, central memory T cells (CD3+CD45RO+CD27+) were increased in the same treatment group after the revascularization procedure. No changes in the percentages of memory T-cell populations in the paclitaxel-eluting stent group were observed. These findings show that sirolimus-eluting stents rapidly induced a redistribution of memory T lymphocytes, with a significant decrease of proinflammatory effector memory T cells circulating within the coronary sinus. PMID:16461044

  17. Measurements and modelling of fast-ion redistribution due to resonant MHD instabilities in MAST

    NASA Astrophysics Data System (ADS)

    Jones, O. M.; Cecconello, M.; McClements, K. G.; Klimek, I.; Akers, R. J.; Boeglin, W. U.; Keeling, D. L.; Meakins, A. J.; Perez, R. V.; Sharapov, S. E.; Turnyanskiy, M.; the MAST Team

    2015-12-01

    The results of a comprehensive investigation into the effects of toroidicity-induced Alfvén eigenmodes (TAE) and energetic particle modes on the NBI-generated fast-ion population in MAST plasmas are reported. Fast-ion redistribution due to frequency-chirping TAE in the range 50 kHz-100 kHz and frequency-chirping energetic particle modes known as fishbones in the range 20 kHz-50 kHz, is observed. TAE and fishbones are also observed to cause losses of fast ions from the plasma. The spatial and temporal evolution of the fast-ion distribution is determined using a fission chamber, a radially-scanning collimated neutron flux monitor, a fast-ion deuterium alpha spectrometer and a charged fusion product detector. Modelling using the global transport analysis code Transp, with ad hoc anomalous diffusion and fishbone loss models introduced, reproduces the coarsest features of the affected fast-ion distribution in the presence of energetic particle-driven modes. The spectrally and spatially resolved measurements show, however, that these models do not fully capture the effects of chirping modes on the fast-ion distribution.

  18. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    NASA Astrophysics Data System (ADS)

    Desmoulin, Jean-Charles; Petit, Yannick; Canioni, Lionel; Dussauze, Marc; Lahaye, Michel; Gonzalez, Hernando Magallanes; Brasselet, Etienne; Cardinal, Thierry

    2015-12-01

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to the formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.

  19. Internal Conversion and Vibrational Energy Redistribution in Chlorophyll A.

    PubMed

    Shenai, Prathamesh M; Fernandez-Alberti, Sebastian; Bricker, William P; Tretiak, Sergei; Zhao, Yang

    2016-01-14

    We have computationally investigated the role of intramolecular vibrational modes in determining nonradiative relaxation pathways of photoexcited electronic states in isolated chlorophyll A (ChlA) molecules. To simulate the excited state relaxation from the initially excited Soret state to the lowest excited state Qy, the approach of nonadiabatic excited state molecular dynamics has been adopted. The intramolecular vibrational energy relaxation and redistribution that accompany the electronic internal conversion process is followed by analyzing the excited state trajectories in terms of the ground state equilibrium normal modes. The time dependence of the normal mode velocities is determined by projecting instantaneous Cartesian velocities onto the normal mode vectors. Our analysis of the time evolution of the average mode energies uncovers that only a small subset of the medium-to-high frequency normal modes actively participate in the electronic relaxation processes. These active modes are characterized by the highest overlap with the nonadiabatic coupling vectors (NACRs) during the electronic transitions. Further statistical analysis of the nonadiabatic transitions reveals that the electronic and vibrational energy relaxation occurs via two distinct pathways with significantly different time scales on which the hopping from Soret to Qx occurs thereby dictating the overall dynamics. Furthermore, the NACRs corresponding to each of the transitions have been consistently found to be predominantly similar to a set of normal modes that vary depending upon the transition and the identified categories. Each pathway exhibits a differential time scale of energy transfer and also a differential set of predominant active modes. Our present analysis can be considered as a general approach allowing identification of a reduced subset of specific vibrational coordinates associated with nonradiative relaxation pathways. Therefore, it represents an adequate prior strategy that

  20. Novel approaches to understanding carbon redistribution at multiple scales

    NASA Astrophysics Data System (ADS)

    Dungait, Jennifer; Beniston, Joshua; Lal, Rattan; Horrocks, Claire; Collins, Adrian; Mariappen, Sankar; Quine, Timothy

    2014-05-01

    Established biogeochemical techniques are used to trace organic inputs typically derived directly or indirectly from plants into soils, sediments and water using lipid biomarkers. Recently, advances in bulk and compound specific stable 13C isotope analyses have provided novel ways of exploring the source and residence times of organic matter in soils using the natural abundance stable 13C isotope signature of C3 and C4 plant end member values. However, the application of biogeochemical source tracing technologies at the molecular level at field to catchment scales has been slow to develop because of perceived problems with dilution of molecular-scale signals. This paper describes the results of recent experiments in natural and agricultural environments in the UK (Collins et al., 2013; Dungait et al., 2013) and United States (Beniston et al., submitted) that have successfully applied new tracing techniques using stable 13C isotope and complementary approaches to explore the transport of sediment-bound organic carbon at a range of scales from the small plot (m2) to field (ha) and small catchment (10's ha). References Beniston et al (submitted) The effects of crop residue removal on soil erosion and macronutrient dynamics on soils under no till for 42 years. Biogeosciences Collins et al (2013) Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England. Science of the Total Environment 456-457, 181-195. Dungait et al (2013) Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry 60, 195-201. Puttock et al (2012) Stable carbon isotope analysis of fluvial sediment fluxes over two contrasting C4-C3 semi-arid vegetation transitions. Rapid Communications in Mass Spectrometry 26, 2386-2392.

  1. Calorie increase and water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2015-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to increase calorie production and minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvement in calorie production as well as the associated change in water demand. We also consider what distribution of crops would maintain current calorie production while minimizing crop water demand. In doing all of this, our study provides a novel tool for improving crop calorie production without necessarily increasing resource demands.

  2. Thermally driven moisture redistribution in partially saturated porous media

    SciTech Connect

    Green, R.T.; Dodge, F.T.; Svedeman, S.J.; Manteufel, R.D.; Meyer, K.A.; Baca, R.G.; Rice, G.

    1995-12-01

    It is widely recognized that the decay heat produced by high-level radioactive waste (HLW) will likely have a significant impact on both the pre- and post-closure performance of the proposed repository at Yucca Mountain (YM), in southwest Nevada. The task of delineating which aspects of that impact are favorable to isolation performance and which are adverse is an extremely challenging technical undertaking because of such factors as the hydrothermal regimes involved, heterogeneity of the geologic media, and the time and space scales involved. This difficulty has motivated both the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) to undertake multi-year thermohydrology research programs to examine the effects of decay heat on pre- and post-closure performance of the repository. Both of these organizations are currently pursuing laboratory and field experiments, as well as numerical modeling studies, to advance the state of knowledge of the thermohydrologic phenomena relevant to the proposed geologic repository. The NRC-sponsored Thermohydrology Research Project, which was initiated in mid-1989 at the Center for Nuclear Waste Regulatory Analyses (CNWRA), began with the intent of addressing a broad spectrum of generic thermohydrologic questions. While some of these questions were answered in the conduct of the study, other new and challenging ones were encountered. Subsequent to that report, laboratory-scale experiments were designed to address four fundamental questions regarding thermohydrologic phenomena: what are the principal mechanisms controlling the redistribution of moisture; under what hydrothermal conditions and time frames do individual mechanisms predominate; what driving mechanism is associated with a particular hydrothermal regime; what is the temporal and spatial scale of each hydrothermal regime? This report presents the research results and findings obtained since issuance of the first progress report. 85 refs.

  3. 47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... terrestrial broadcast content. 76.1909 Section 76.1909 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Redistribution control of unencrypted digital terrestrial broadcast content. (a) For the purposes of this section, the terms unencrypted digital terrestrial broadcast content, EIT, PMT, broadcast flag,...

  4. 47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terrestrial broadcast content. 76.1909 Section 76.1909 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Redistribution control of unencrypted digital terrestrial broadcast content. (a) For the purposes of this section, the terms unencrypted digital terrestrial broadcast content, EIT, PMT, broadcast flag,...

  5. Using 137 Cs measurements to investigate the influence of erosion and soil redistribution on soil properties.

    PubMed

    Du, P; Walling, D E

    2011-05-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide (137)Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using (137)Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). (137)Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha(-1) yr(-1) to a deposition rate of 19.2 t ha(-1) yr(-1). Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for

  6. Spatial variation in hydraulic redistribution by the desert shrub, Sarcobatus vermiculatus, at multiple scales

    NASA Astrophysics Data System (ADS)

    Richards, J. H.; Donovan, L. A.

    2012-12-01

    Passive water movement through roots from moist to dry soils, i.e. hydraulic redistribution, can be important for plant water status, vegetation water use, nutrient acquisition and cycling, and competition/facilitation among plant species. Although hydraulic redistribution is known from many species and habitats, little is known about how it varies at multiple spatial scales across species ranges. In the Mono Basin, California ecosystem we documented variation in hydraulic redistribution by the desert halophytic shrub, Sarcobatus vermiculatus, at three spatial scales: landscape, shrub-island versus interspace, and depth. Hydraulic redistribution varied among sites across the landscape. It was most prevalent at a low salinity site with deep groundwater (9.4 m), but of lower magnitude at more saline sites with shallower groundwater. At the low salinity site, infiltration from snowmelt, the predominant precipitation input, was confined to interspaces between shrub islands. Shrub-island soils remained very dry after snowmelt, even in a year with high total snow accumulation. Shrub-island soils, however, had substantial net increases in Ψsoil during week- to month-long periods in the early part of the growing season, concomitant with self-irrigated root growth into these dry soils, as documented with mini-rhizotrons. The source of this root-system-transported water was both moist interspace soils and moist deep soil layers. Wetting up of otherwise dry shrub-island soils is likely essential for nutrient mineralization and acquisition from trapped litter, making hydraulic redistribution an important driver of landscape-scale biogeochemical cycles in these saline basins. In addition, hydraulic redistribution buffered spatial variation in water availability among sites, depths, depth to groundwater, and for plants with different root distributions, such that plant Ψpredawn and Ψmidday differed little across the landscape. Multi-scale variation in hydraulic redistribution

  7. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization.

    PubMed

    Guhr, Alexander; Borken, Werner; Spohn, Marie; Matzner, Egbert

    2015-11-24

    The desiccation of upper soil horizons is a common phenomenon, leading to a decrease in soil microbial activity and mineralization. Recent studies have shown that fungal communities and fungal-based food webs are less sensitive and better adapted to soil desiccation than bacterial-based food webs. One reason for a better fungal adaptation to soil desiccation may be hydraulic redistribution of water by mycelia networks. Here we show that a saprotrophic fungus (Agaricus bisporus) redistributes water from moist (-0.03 MPa) into dry (-9.5 MPa) soil at about 0.3 cm ⋅ min(-1) in single hyphae, resulting in an increase in soil water potential after 72 h. The increase in soil moisture by hydraulic redistribution significantly enhanced carbon mineralization by 2,800% and enzymatic activity by 250-350% in the previously dry soil compartment within 168 h. Our results demonstrate that hydraulic redistribution can partly compensate water deficiency if water is available in other zones of the mycelia network. Hydraulic redistribution is likely one of the mechanisms behind higher drought resistance of soil fungi compared with bacteria. Moreover, hydraulic redistribution by saprotrophic fungi is an underrated pathway of water transport in soils and may lead to a transfer of water to zones of high fungal activity. PMID:26554004

  8. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization

    PubMed Central

    Guhr, Alexander; Borken, Werner; Spohn, Marie; Matzner, Egbert

    2015-01-01

    The desiccation of upper soil horizons is a common phenomenon, leading to a decrease in soil microbial activity and mineralization. Recent studies have shown that fungal communities and fungal-based food webs are less sensitive and better adapted to soil desiccation than bacterial-based food webs. One reason for a better fungal adaptation to soil desiccation may be hydraulic redistribution of water by mycelia networks. Here we show that a saprotrophic fungus (Agaricus bisporus) redistributes water from moist (–0.03 MPa) into dry (–9.5 MPa) soil at about 0.3 cm⋅min−1 in single hyphae, resulting in an increase in soil water potential after 72 h. The increase in soil moisture by hydraulic redistribution significantly enhanced carbon mineralization by 2,800% and enzymatic activity by 250–350% in the previously dry soil compartment within 168 h. Our results demonstrate that hydraulic redistribution can partly compensate water deficiency if water is available in other zones of the mycelia network. Hydraulic redistribution is likely one of the mechanisms behind higher drought resistance of soil fungi compared with bacteria. Moreover, hydraulic redistribution by saprotrophic fungi is an underrated pathway of water transport in soils and may lead to a transfer of water to zones of high fungal activity. PMID:26554004

  9. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends

    NASA Astrophysics Data System (ADS)

    Blanckaert, K.

    2010-09-01

    The bed topography and associated flow field are investigated in a laboratory configuration with parameters that are representative for sharp natural meander bends. Zones of inward mass transport are characterized by a quasi-linear transverse bed profile, whereas zones of outward mass transport, induced by pronounced curvature variations, are characterized by a quasi-horizontal shallow point bar at the inside of the bend, a deep pool at the outside, and an increase in overall cross-sectional area. These quasi-bilinear bed profiles can be attributed to the curvature-induced secondary flow that is confined to the pool. Topographic steering, mainly due to mass conservation, concentrates the major part of the discharge over the deepest zones of the bend. But the pattern of depth-averaged velocities, which is relevant with respect to the development of the bed topography, does not show maximum values over the deepest zones. A term-by-term analysis of the depth-averaged streamwise momentum equation reveals that the water surface gradient is the principal mechanism with respect to flow velocity redistribution, although inertia and secondary flow are also processes of dominant order of magnitude. A required condition for the occurrence of adverse pressure gradients and flow recirculation due to planform curvature variations is established. A different type of flow recirculation, due to a subtle feedback between the flow and the bed topography, occurs over the point bar. The neglect of the influence of vertical velocities impinging on the bed in models for sediment transport is identified as a major shortcoming in the modeling of the morphodynamics of meandering river channels.

  10. Demographic intermediation between development and population redistribution in Sudan.

    PubMed

    Farah, A A

    1983-12-01

    degrees and will depend on the pace of decline of each vital rate and the trend of migration. In conclusion, the regional patterns of population growth and redistribution are likely to be uneven in the foreseeable future, unless a genuine policy of regionalizing is effectively implemented. PMID:12312893