Science.gov

Sample records for induces potent immune

  1. Genetic immunization in the lung induces potent local and systemic immune responses.

    PubMed

    Song, Kaimei; Bolton, Diane L; Wei, Chih-Jen; Wilson, Robert L; Camp, Jeremy V; Bao, Saran; Mattapallil, Joseph J; Herzenberg, Leonore A; Herzenberg, Leonard A; Andrews, Charla A; Sadoff, Jerald C; Goudsmit, Jaap; Pau, Maria Grazia; Seder, Robert A; Kozlowski, Pamela A; Nabel, Gary J; Roederer, Mario; Rao, Srinivas S

    2010-12-21

    Successful vaccination against respiratory infections requires elicitation of high levels of potent and durable humoral and cellular responses in the lower airways. To accomplish this goal, we used a fine aerosol that targets the entire lung surface through normal respiration to deliver replication-incompetent recombinant adenoviral vectors expressing gene products from several infectious pathogens. We show that this regimen induced remarkably high and stable lung T-cell responses in nonhuman primates and that it also generated systemic and respiratory tract humoral responses of both IgA and IgG isotypes. Moreover, strong immunogenicity was achieved even in animals with preexisting antiadenoviral immunity, overcoming a critical hurdle to the use of these vectors in humans, who commonly are immune to adenoviruses. The immunogenicity profile elicited with this regimen, which is distinct from either intramuscular or intranasal delivery, has highly desirable properties for protection against respiratory pathogens. We show that it can be used repeatedly to generate mucosal humoral, CD4, and CD8 T-cell responses and as such may be applicable to other mucosally transmitted pathogens such as HIV. Indeed, in a lethal challenge model, we show that aerosolized recombinant adenoviral immunization completely protects ferrets against H5N1 highly pathogenic avian influenza virus. Thus, genetic immunization in the lung offers a powerful platform approach to generating protective immune responses against respiratory pathogens. PMID:21135247

  2. Lentiviral vector encoding ubiquitinated hepatitis B core antigen induces potent cellular immune responses and therapeutic immunity in HBV transgenic mice.

    PubMed

    Dai, Shenglan; Zhuo, Meng; Song, Linlin; Chen, Xiaohua; Yu, Yongsheng; Zang, Guoqing; Tang, Zhenghao

    2016-07-01

    Predominant T helper cell type 1 (Th1) immune responses accompanied by boosted HBV-specific cytotoxic T lymphocyte (CTL) activity are essential for the clearance of hepatitis B virus (HBV) in chronic hepatitis B (CHB) patients. Ubiquitin (Ub) serves as a signal for the target protein to be recognized and degraded through the ubiquitin-proteasome system (UPS). Ubiquitinated hepatitis B core antigen (Ub-HBcAg) has been proved to be efficiently degraded into the peptides, which can be presented by major histocompatibility complex (MHC) class I resulting in stimulating cell-mediated responses. In the present study, lentiviral vectors encoding Ub-HBcAg (LV-Ub-HBcAg) were designed and constructed as a therapeutic vaccine for immunotherapy. HBcAg-specific cellular immune responses and anti-viral effects induced by LV-Ub-HBcAg were evaluated in HBV transgenic mice. We demonstrated that immunization with LV-Ub-HBcAg promoted the secretion of cytokines interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), generated remarkably high percentages of IFN-γ-secreting CD8(+) T cells and CD4(+) T cells, and enhanced HBcAg-specific CTL activity in HBV transgenic mice. More importantly, vaccination with LV-Ub-HBcAg could efficiently decreased the levels of serum hepatitis B surface antigen (HBsAg), HBV DNA and the expression of HBsAg and HBcAg in liver tissues of HBV transgenic mice. In addition, LV-Ub-HBcAg could upregulate the expression of T cell-specific T-box transcription factor (T-bet) and downregulate the expression of GATA-binding protein 3 (GATA-3) in spleen T lymphocytes. The therapeutic vaccine LV-Ub-HBcAg could break immune tolerance, and induce potent HBcAg specific cellular immune responses and therapeutic effects in HBV transgenic mice. PMID:26874581

  3. Immunization with adenovirus LIGHT-engineered dendritic cells induces potent T cell responses and therapeutic immunity in HBV transgenic mice.

    PubMed

    Jiang, Wenzheng; Chen, Ran; Kong, Xiaobo; Long, Fengying; Shi, Yaru

    2014-07-31

    LIGHT, a TNF superfamily member (TNFSF14), is a type II transmembrane protein expressed on activated T cells and immature dendritic cells (DCs). However, the expression of LIGHT on mature DCs is down-regulated. Recent studies demonstrated that LIGHT provides potent costimulatory activity for T cells, enhancing proliferation and the production of Th1 cytokines independently of the B7-CD28 pathway. Here, we evaluated the effectiveness of peptide-pulsed DC-mediated antiviral immunity in HBV transgenic mice and the immunoadjuvant effect of LIGHT. The bone marrow-derived DCs were modified in vitro with an adenovirus (Ad) vector expressing mouse LIGHT (Ad-LIGHT), the expression of costimulatory molecules was up-regulated and the secretion of cytokines IL-12 and IFN-γ increased. LIGHT-modified DCs enhanced allostimulation for T cells in mixed lymphocyte reaction (MLR). HBV peptide-pulsed DCs elicited HBV specific CD8+ T cell response and reduced the level of HBsAg and HBV DNA in sera of HBV transgenic mice. Importantly, LIGHT-modified DCs could induce stronger antiviral immunity. These results support the concept that genetic modification of DCs with a recombinant LIGHT adenovirus vector may be a useful strategy for antiviral immunotherapy. PMID:24951859

  4. Characterization of Nonpathogenic, Live, Viral Vaccine Vectors Inducing Potent Cellular Immune Responses

    PubMed Central

    Publicover, Jean; Ramsburg, Elizabeth; Rose, John K.

    2004-01-01

    Experimental vaccines based on recombinant vesicular stomatitis viruses (VSV) expressing foreign viral proteins are protective in several animal disease models. Although these attenuated viruses are nonpathogenic in nonhuman primates when given by nasal, oral, or intramuscular routes, they are pathogenic in mice when given intranasally, and further vector attenuation may be required before human trials with VSV-based vectors can begin. Mutations truncating the VSV glycoprotein (G) cytoplasmic domain from 29 to 9 or 1 amino acid (designated CT9 or CT1, respectively) were shown previously to attenuate VSV growth in cell culture and pathogenesis in mice. Here we show that VSV recombinants carrying either the CT1 or CT9 deletion and expressing the human immunodeficiency virus (HIV) Env protein are nonpathogenic in mice, even when given by the intranasal route. We then carried out a detailed analysis of the CD8+ T-cell responses, including in vivo cytotoxic T-cell activity, induced by these vectors. When given by either the intranasal or intraperitoneal route, the VSV-CT9 vector expressing HIV Env elicited primary and memory CD8+ T-cell responses to Env equivalent to those elicited by recombinant wild-type VSV expressing Env. The VSV-CT1 vector also induced potent CD8+ T-cell responses after intraperitoneal vaccination, but was less effective when given by the intranasal route. The VSV-CT1 vector was also substantially less effective than the VSV-CT9 or wild-type vector at inducing antibody to Env. The VSV-CT9 vector appears ideal because of its lack of pathogenesis, propagation to high titers in vitro, and stimulation of strong cellular and humoral immune responses. PMID:15308726

  5. Immunization with antigenic peptides complexed with β-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs.

    PubMed

    Mochizuki, Shinichi; Morishita, Hiromi; Kobiyama, Kouji; Aoshi, Taiki; Ishii, Ken J; Sakurai, Kazuo

    2015-12-28

    The induction of antigen-specific immune responses requires immunization with not only antigens, but also adjuvants. CpG oligonucleotides (CpG-ODNs) are well-known ligands for Toll-like receptor 9 and a potent adjuvant that induces both Th1-type humoral and cellular immune responses including cytotoxic T-lymphocyte responses. We previously demonstrated that β-glucan schizophyllan (SPG) can form complexes with CpG-ODNs with attached dA40 (CpG-dA/SPG), which can accumulate in macrophages in the draining inguinal lymph nodes and induce strong immune responses by co-administration of antigenic proteins, namely ovalbumin (OVA). Immunization with antigenic peptides, OVA257-264, did not induce these antigen-specific immune responses even in combination with CpG-dA/SPG, indicating that peptides require a carrier to antigen presenting cells. In this study, we prepared conjugates comprising OVA257-264 and dA40, and made complexes with SPG. Immunization with OVA257-264-dA/SPG induced peptide-specific immune responses in combination with CpG-dA regardless of complexation with SPG both in vitro and in vivo. When splenocytes from immunized mice were incubated with E.G7-OVA tumor model cells presenting OVA peptides, the number of cells drastically decreased after 24h. Furthermore, mice pre-immunized with OVA257-264-dA/SPG and CpG-ODNs exhibited a long delay in tumor growth after tumor inoculation. Therefore, these peptide-dA/SPG and CpG-dA/SPG complexes could be used as a potent vaccine for the treatment of cancers and infectious diseases. PMID:26562685

  6. Intranasal Immunization with DOTAP Cationic Liposomes Combined with DC-Cholesterol Induces Potent Antigen-Specific Mucosal and Systemic Immune Responses in Mice

    PubMed Central

    Iwase, Naoko; Takahashi, Saeko; Yamakita, Yuki; Iwata, Tomoko; Muto, Shoko; Sato, Emi; Takayama, Noriko; Honjo, Emi; Kiyono, Hiroshi; Kunisawa, Jun; Aramaki, Yukihiko

    2015-01-01

    Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL–4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases. PMID:26440657

  7. A Newly Emerged Swine-Origin Influenza A(H3N2) Variant Dampens Host Antiviral Immunity but Induces Potent Inflammasome Activation.

    PubMed

    Cao, Weiping; Mishina, Margarita; Ranjan, Priya; De La Cruz, Juan A; Kim, Jin Hyang; Garten, Rebecca; Kumar, Amrita; García-Sastre, Adolfo; Katz, Jacqueline M; Gangappa, Shivaprakash; Sambhara, Suryaprakash

    2015-12-15

    We compared the innate immune response to a newly emerged swine-origin influenza A(H3N2) variant containing the M gene from 2009 pandemic influenza A(H1N1), termed "A(H3N2)vpM," to the immune responses to the 2010 swine-origin influenza A(H3N2) variant and seasonal influenza A(H3N2). Our results demonstrated that A(H3N2)vpM-induced myeloid dendritic cells secreted significantly lower levels of type I interferon (IFN) but produced significantly higher levels of proinflammatory cytokines and induced potent inflammasome activation. The reduction in antiviral immunity with increased inflammatory responses upon A(H3N2)vpM infection suggest that these viruses have the potential for increased disease severity in susceptible hosts. PMID:26068782

  8. A plant-expressed conjugate vaccine breaks CD4+ tolerance and induces potent immunity against metastatic Her2+ breast cancer

    PubMed Central

    Chotprakaikiat, Warayut; Allen, Alex; Bui-Minh, Duc; Harden, Elena; Jobsri, Jantipa; Cavallo, Federica; Gleba, Yuri; Stevenson, Freda K.; Ottensmeier, Christian; Klimyuk, Victor; Savelyeva, Natalia

    2016-01-01

    ABSTRACT Passive antibody therapy for cancer is an effective but costly treatment modality. Induction of therapeutically potent anticancer antibodies by active vaccination is an attractive alternative but has proven challenging in cancer due to tolerogenic pressure in patients. Here, we used the clinically relevant cancer target Her2, known to be susceptible to targeting by antibody therapy, to demonstrate how potent antibody can be induced by vaccination. A novel 44kD Her2 protein fragment was generated and found to be highly effective at inducing anti-Her2 antibody including trastuzumab-like reactivities. In the tolerant and spontaneous BALB-neuT mouse model of metastatic breast cancer this Her2-targeting vaccine was only effective if the fragment was conjugated to a foreign immunogenic carrier; Fragment C of tetanus toxin. Only the conjugate vaccine induced high affinity anti-Her2 antibody of multiple isotypes and suppressed tumor development. The magnitude of CD4+ T-cell help and breadth of cytokines secreted by the CD4+ T helper (Th) cells induced to the foreign antigen was critical. We used a highly efficient plant-based bio-manufacturing process for protein antigens, magnICON, for vaccine expression, to underpin feasibility of future clinical testing. Hence, our novel Her2-targeting conjugate vaccine combines preclinical efficacy with clinical deliverability, thus setting the scene for therapeutic testing. PMID:27471642

  9. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation.

    PubMed

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient's own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  10. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  11. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    PubMed Central

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  12. Generation and screening of a large collection of novel simian Adenovirus allows the identification of vaccine vectors inducing potent cellular immunity in humans

    PubMed Central

    Colloca, Stefano; Folgori, Antonella; Ammendola, Virginia; Capone, Stefania; Cirillo, Agostino; Siani, Loredana; Naddeo, Mariarosaria; Grazioli, Fabiana; Esposito, Maria Luisa; Ambrosio, Maria; Sparacino, Angela; Bartiromo, Marta; Meola, Annalisa; Smith, Kira; Kurioka, Ayako; O’Hara, Geraldine A.; Ewer, Katie J.; Hill, Adrian V. S.; Traboni, Cinzia; Barnes, Eleanor; Klenerman, Paul; Cortese, Riccardo; Nicosia, Alfredo

    2013-01-01

    Replication defective Adenovirus vectors based on the human serotype 5 (Ad5) have been shown to induce protective immune responses against diverse pathogens and cancer in animal models and to elicit robust and sustained cellular immunity in humans. However, most humans have anti-Ad5 neutralising antibodies that can impair the immunological potency of such vaccines. Here we show that most other human Adenoviruses from rare serotypes are far less potent as vaccine vectors than Ad5 in mice and non-human primates, casting doubt on their potential efficacy in humans. To identify novel vaccine carriers suitable for vaccine delivery in humans we isolated and sequenced over a thousand Adenovirus strains from chimpanzees (ChAd). Replication-defective vectors were generated from different ChAd serotypes and were screened for neutralization by human sera and for ability to grow in human cell lines already approved for clinical studies. Most importantly, we devised a screening strategy to rank the ChAd vectors by immunological potency in mice which predicts their immunogenicity in non-human primates and humans. The vectors studied varied by up to a thousand-fold in potency for CD8 T cell induction in mice. Two of the most potent ChAd vectors were selected for clinical studies as carriers for Malaria and Hepatitis C virus (HCV) genetic vaccines. These ChAd vectors were found to be safe and immunologically potent in Phase I clinical trials thereby validating our screening approach. The ChAd vectors that we have developed represent a large collection of non cross-reactive, potent vectors that can be exploited for diverse vaccine strategies. PMID:22218691

  13. Modification of sPD1 with CRT induces potent anti-tumor immune responses in vitro and in vivo.

    PubMed

    Wang, Gongze; Li, Zhiying; Tian, Huiqun; Wu, Wei; Liu, Chaoqi

    2015-12-01

    As a key factor for tumor occurrence and development, tumor cells escape immune surveillance and inhibit the body immune killer effect through negative signaling pathways. In this research, we designed and expressed the fusion protein CRT-sPD1 to block PD1/PDL1 negative signal pathway, indirectly bind CRT to the tumor cell surface and to increase the cell immunogenicity activity. Results from western blotting, flow cytometry (FCM) and ELISA showed that the cell lines that stably express CRT, PD1 and CRT-sPD1 protein were obtained and the transfected cellular supernatant contained PD1 and CRT-sPD1 could bind to PDL1 on the surface of EL4 cells. Vitro experiments indicated the secreted mCRT-sPD1 protein could bind to PDL1 and enhance lymphocyte proliferation and CTL activity. We also found that fusion protein CRT-sPD1 could activate and induce the immune system to kill the tumor cells, specifically inhibit the tumor growth and prolong the survival period in mouse tumor model. And all these suggested that CRT-sPD1 could be used as drug development and utilization of cancer immunotherapy. PMID:26653551

  14. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    PubMed

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. PMID:27269061

  15. Whole recombinant Hansenula polymorpha expressing hepatitis B virus surface antigen (yeast-HBsAg) induces potent HBsAg-specific Th1 and Th2 immune responses.

    PubMed

    Bian, Guanglin; Cheng, Yuming; Wang, Zekun; Hu, Yunwen; Zhang, Xiaonan; Wu, Min; Chen, Zhiao; Shi, Bisheng; Sun, Shuhui; Shen, Yan; Chen, Er Jia; Yao, Xin; Wen, Yumei; Yuan, Zhenghong

    2009-12-10

    Recent studies have suggested that yeast cell wall components possess adjuvant activities. In the present study, heat-killed whole recombinant Hansenula polymorpha yeast expressing hepatitis B surface antigen (yeast-HBsAg) was generated, and the immune responses elicited by yeast-HBsAg were investigated in mice. The studies showed that yeast-HBsAg as well as yeast greatly promotes the accumulation of immune cells in mouse spleen and contributes to the maturation of dendritic cells (DCs). Yeast-HBsAg not only induces significantly higher antibody responses (including IgG, IgG1 and IgG2a), but also increases the IgG2a/IgG1 ratio, while alum combined with HBsAg (HBsAg+alum) only enhances antibody responses, but not the IgG2a/IgG1 ratio compared to HBsAg alone. Analysis of HBsAg-specific cytokines revealed that yeast-HBsAg is associated with production of both IFN-gamma and IL-4, but neither IFN-gamma nor IL-4 was detected in the HBsAg+alum-immunized group. Moreover, yeast-HBsAg induces potent HBsAg-specific lymphocyte proliferation and Cytotoxic T lymphocyte (CTL) responses. In conclusion, yeast-HBsAg enhances both HBsAg-specific Th1 and Th2 immune responses, while alum only enhances Th2 immune responses, suggesting that yeast-HBsAg may be an ideal candidate for an effective vaccine for the control of chronic hepatitis B virus (HBV) infection. PMID:19789093

  16. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs

    PubMed Central

    2014-01-01

    -γ production and cytolytic activity of spleen cells from treated mice. More importantly, combined treatment of anti-PD-1/GITR mAb and chemotherapeutic drugs (cisplatin or paclitaxel) further increased the antitumor efficacy with 80% of mice obtaining tumor-free long-term survival in murine ID8 ovarian cancer and 4 T1 breast cancer models. Conclusions Combined anti-PD-1/GITR mAb treatment induces a potent antitumor immunity, which can be further promoted by chemotherapeutic drugs. A combined strategy of anti-PD-1/GITR mAb plus cisplatin or paclitaxel should be considered translation into clinic. PMID:24502656

  17. Protective Killed Leptospira borgpetersenii Vaccine Induces Potent Th1 Immunity Comprising Responses by CD4 and γδ T Lymphocytes

    PubMed Central

    Naiman, Brian M.; Alt, David; Bolin, Carole A.; Zuerner, Richard; Baldwin, Cynthia L.

    2001-01-01

    Leptospira borgpetersenii serovar hardjo is the most common cause of bovine leptospirosis and also causes zoonotic infections of humans. A protective killed vaccine against serovar hardjo was shown to induce strong antigen-specific proliferative responses by peripheral blood mononuclear cells (PBMC) from vaccinated cattle by 2 months after the first dose of vaccine. This response was absent from nonvaccinated control cattle. The mean response peaked by 2 months after completion of the two-dose vaccination regimen, and substantial proliferation was measured in in vitro cultures throughout the 7 months of the study period. Variations in magnitude of the response occurred among the vaccinated animals, but by 7 months postvaccination there was a substantial antigen-specific response with PBMC from all vaccinated animals. Up to one-third of the PBMC from vaccinated animals produced gamma interferon (IFN-γ) after 7 days in culture with antigen, as ascertained by flow cytometric analysis, and significant levels of IFN-γ were measured in culture supernatants by enzyme-linked immunosorbent assay. Two-color immunofluorescence revealed that one-third of the IFN-γ-producing cells were γδ T cells, with the remaining cells being CD4+ T cells. The significance of this study is the very potent Th1-type immune response induced and sustained following vaccination with a killed bacterial vaccine adjuvanted with aluminum hydroxide and the involvement of γδ T cells in the response. Moreover, induction of this Th1-type cellular immune response is associated with the protection afforded by the bovine leptospiral vaccine against L. borgpetersenii serovar hardjo. PMID:11705932

  18. Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses.

    PubMed

    Harrop, Richard; Drury, Noel; Shingler, William; Chikoti, Priscilla; Redchenko, Irina; Carroll, Miles W; Kingsman, Susan M; Naylor, Stuart; Griffiths, Richard; Steven, Neil; Hawkins, Robert E

    2008-07-01

    Modified vaccinia Ankara (MVA) encoding the tumor antigen 5T4 (TroVax) has been evaluated in an open label phase II study in metastatic colorectal cancer patients. The primary objective was to assess the safety and immunogenicity of TroVax injected before, during and after treatment with 5-fluorouracil, leukovorin and irinotecan. TroVax was administered to 19 patients with metastatic colorectal cancer. Twelve patients had blood samples taken following each of the six injections and were considered to be evaluable for assessment of immunological responses. Both antibody and cellular responses specific for the tumor antigen 5T4 and the viral vector MVA were monitored throughout the study. Administration of TroVax alongside chemotherapy was safe and well tolerated with no SAEs attributed to the vaccine and no enhancement of chemo-related toxicity. Of the 12 patients who were evaluable for assessment of immune responses, ten mounted 5T4-specific antibody responses with titers ranging from 10 to > 5,000. IFNgamma ELISPOT responses specific for 5T4 were detected in 11 patients with frequencies exceeding one in 1,000 PBMCs in five patients. Eight patients presented with elevated circulating CEA concentrations, six of whom showed decreases in excess of 50% during chemotherapy and four had CEA levels which remained stable for > 1 month following completion of chemotherapy. Of the 19 intention to treat (ITT) patients, one had a CR, six had PRs and five had SD. Potent 5T4-specific cellular and/or humoral immune responses were induced in all 12 evaluable patients and were detectable in most patients during the period in which chemotherapy was administered. These data demonstrate that TroVax can be layered on top of chemotherapy regimens without any evidence of enhanced toxicity or reduced immunological or therapeutic efficacy. PMID:18060404

  19. Synthetic Consensus HIV-1 DNA Induces Potent Cellular Immune Responses and Synthesis of Granzyme B, Perforin in HIV Infected Individuals

    PubMed Central

    Morrow, Matthew P; Tebas, Pablo; Yan, Jian; Ramirez, Lorenzo; Slager, Anna; Kraynyak, Kim; Diehl, Malissa; Shah, Divya; Khan, Amir; Lee, Jessica; Boyer, Jean; Kim, J Joseph; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2015-01-01

    This study evaluated the safety and immunogenicity of PENNVAX-B in 12 HIV infected individuals. PENNVAX-B is a combination of three optimized synthetic plasmids encoding for multiclade HIV Gag and Pol and a consensus CladeB Env delivered by electroporation. HIV infected individuals whose virus was effectively suppressed using highly active antiretroviral therapy (HAART) received PENNVAX-B DNA followed by electroporation with CELLECTRA-5P at study weeks 0, 4, 8, and 16. Local administration site and systemic reactions to PENNVAX-B were recorded after each treatment along with any adverse events. Pain of the treatment procedure was assessed using a Visual Analog Scale. Whole PBMCs were isolated for use in IFN ELISpot and Flow Cytometric assays. PENNVAX-B was generally safe and well tolerated. Overall, the four dose regimen was not associated with any serious adverse events or severe local or systemic reactions. A rise in antigen-specific SFU was detected in the INFγ ELISpot assay in all 12 participants. T cells from 8/12 participants loaded with both granzyme B and perforin in response to HIV antigen, an immune finding characteristic of long-term nonprogressors (LTNPs) and elite controllers (ECs). Thus administration of PENNVAX-B may prove useful adjunctive therapy to ART for treatment and control of HIV infection. PMID:25531694

  20. Synthetic consensus HIV-1 DNA induces potent cellular immune responses and synthesis of granzyme B, perforin in HIV infected individuals.

    PubMed

    Morrow, Matthew P; Tebas, Pablo; Yan, Jian; Ramirez, Lorenzo; Slager, Anna; Kraynyak, Kim; Diehl, Malissa; Shah, Divya; Khan, Amir; Lee, Jessica; Boyer, Jean; Kim, J Joseph; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2015-03-01

    This study evaluated the safety and immunogenicity of PENNVAX-B in 12 HIV infected individuals. PENNVAX-B is a combination of three optimized synthetic plasmids encoding for multiclade HIV Gag and Pol and a consensus CladeB Env delivered by electroporation. HIV infected individuals whose virus was effectively suppressed using highly active antiretroviral therapy (HAART) received PENNVAX-B DNA followed by electroporation with CELLECTRA-5P at study weeks 0, 4, 8, and 16. Local administration site and systemic reactions to PENNVAX-B were recorded after each treatment along with any adverse events. Pain of the treatment procedure was assessed using a Visual Analog Scale. Whole PBMCs were isolated for use in IFN ELISpot and Flow Cytometric assays. PENNVAX-B was generally safe and well tolerated. Overall, the four dose regimen was not associated with any serious adverse events or severe local or systemic reactions. A rise in antigen-specific SFU was detected in the INFγ ELISpot assay in all 12 participants. T cells from 8/12 participants loaded with both granzyme B and perforin in response to HIV antigen, an immune finding characteristic of long-term nonprogressors (LTNPs) and elite controllers (ECs). Thus administration of PENNVAX-B may prove useful adjunctive therapy to ART for treatment and control of HIV infection. PMID:25531694

  1. Vaccinia viruses with a serpin gene deletion and expressing IFN-γ induce potent immune responses without detectable replication in vivo

    PubMed Central

    Legrand, Fatema A.; Verardi, Paulo H.; Chan, Kenneth S.; Peng, Yue; Jones, Leslie A.; Yilma, Tilahun D.

    2005-01-01

    In a continuing effort to develop safe and efficacious vaccine and immunotherapeutic vectors, we constructed recombinant vaccinia virus (rVV) vaccines lacking either the B13R (SPI-2) or the B22R (SPI-1) immune-modulating gene and coexpressing IFN-γ. B13R and B22R are nonessential VV immune-modulating genes that have antiapoptotic and antiinflammatory properties with sequence homology to serine protease inhibitors (serpins). IFN-γ is a cytokine with potent immunoregulatory, antineoplastic, and antiviral properties. We observed that these rVVs with a deletion in a serpin gene and expressing IFN-γ replicated to high titers in tissue culture yet were avirulent in both immunocompromised and immunocompetent mice with no detectable viral replication in these animals. A single immunization elicited potent humoral, T helper, and cytotoxic T cell immune responses in mice despite the absence of any detectable virus replication in vivo. IFN-γ coexpression and the inactivation of one or more VV immune-modulating genes provide an optimized method for increasing the safety while maintaining the efficacy of rVV vaccines. This strategy provides a method for developing highly safe and efficacious vaccines for smallpox and other diseases and immunotherapeutic vectors. PMID:15705716

  2. Targeting the Genital Tract Mucosa with a Lipopeptide/Recombinant Adenovirus Prime/Boost Vaccine Induces Potent and Long-Lasting CD8+ T Cell Immunity Against Herpes: Importance of Myeloid Differentiation Factor 881

    PubMed Central

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir

    2012-01-01

    Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p < 0.005), following intravaginal HSV-2 challenge. Polyfunctional CD8+ T cells, producing IFN-γ, TNF-α and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8+ T cell response was significantly compromised in the absence of the adaptor myeloid differentiation factor 88 (MyD88) (p = 0.0001). Taken together, these findings indicate that targeting the VM with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8+ T cell protective immunity against sexually transmitted herpes infection and disease. PMID:23018456

  3. Diversity Against Adversity: How Adaptive Immune System Evolves Potent Antibodies

    NASA Astrophysics Data System (ADS)

    Heo, Muyoung; Zeldovich, Konstantin B.; Shakhnovich, Eugene I.

    2011-07-01

    Adaptive immunity is an amazing mechanism, whereby new protein functions—affinity of antibodies (Immunoglobulins) to new antigens—evolve through mutation and selection in a matter of a few days. Despite numerous experimental studies, the fundamental physical principles underlying immune response are still poorly understood. In considerable departure from past approaches, here, we propose a microscopic multiscale model of adaptive immune response, which consists of three essential players: The host cells, viruses, and B-cells in Germinal Centers (GC). Each moiety carries a genome, which encodes proteins whose stability and interactions are determined from their sequences using laws of Statistical Mechanics, providing an exact relationship between genomic sequences and strength of interactions between pathogens and antibodies and antibodies and host proteins (autoimmunity). We find that evolution of potent antibodies (the process known as Affinity Maturation (AM)) is a delicate balancing act, which has to reconcile the conflicting requirements of protein stability, lack of autoimmunity, and high affinity of antibodies to incoming antigens. This becomes possible only when antibody producing B cells elevate their mutation rates (process known as Somatic Hypermutation (SHM)) to fall into a certain range—not too low to find potency increasing mutations but not too high to destroy stable Immunoglobulins and/or already achieved affinity. Potent antibodies develop through clonal expansion of initial B cells expressing marginally potent antibodies followed by their subsequent affinity maturation through mutation and selection. As a result, in each GC the population of mature potent Immunoglobulins is monoclonal being ancestors of a single cell from initial (germline) pool. We developed a simple analytical theory, which provides further rationale to our findings. The model and theory reveal the molecular factors that determine the efficiency of affinity maturation

  4. The highly attenuated vaccinia virus strain modified virus Ankara induces apoptosis in melanoma cells and allows bystander dendritic cells to generate a potent anti-tumoral immunity

    PubMed Central

    Greiner, S; Humrich, J Y; Thuman, P; Sauter, B; Schuler, G; Jenne, L

    2006-01-01

    Vaccinia virus (VV) has been tested as oncolytic virus against malignant melanoma in clinical trials for more than 40 years. Until now, mainly strains comparable to viral strains used for smallpox vaccination have been probed for anti-tumoral therapy. We have shown recently that the wild-type strain Western Reserve (WR) can interfere with crucial functions of monocyte-derived dendritic cells (DCs). Our aim was to examine whether viral immune evasion mechanisms might be responsible for the ineffectiveness of WR-based vaccination strategies and whether the highly attenuated strain modified virus Ankara (MVA) differs from WR with respect to its possible immunostimulatory capacity after intratumoral injection. Using in vitro experiments, we compared the effect of both strains on melanoma cells and on local bystander DCs. We found that both VV-strains infected melanoma cells efficiently and caused disintegration of the actin cytoskeleton, as shown by fluorescence microscopy. In addition, both VV-strains caused apoptotic cell death in melanoma cells after infection. In contrast to MVA, WR underwent a complete viral replication cycle in melanoma cells. Bystander DCs were consecutively infected by newly generated WR virions and lost their capacity to induce allogeneic T cell proliferation. DCs in contact with MVA-infected melanoma cells retained their capacity to induce T cell proliferation. Immature DCs were capable of phagocytosing MVA-infected melanoma cells. Priming of autologous CD8+ T cells by DCs that had phagocytosed MVA-infected, MelanA positive melanoma cells resulted in the induction of T cell clones specifically reactive against the model antigen MelanA as shown by enzyme-linked immunospot (ELISPOT) analysis. We conclude that the clinical trials with oncolytic wild-type VV failed probably because of suppression of bystander DCs and consecutive suppression of T cell-mediated anti-melanoma immunity. The attenuated VV-strain MVA facilitates the generation of

  5. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections. PMID:26821205

  6. LV305, a dendritic cell-targeting integration-deficient ZVexTM-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response

    PubMed Central

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1. PMID:27626061

  7. LV305, a dendritic cell-targeting integration-deficient ZVex(TM)-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response.

    PubMed

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; Ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1. PMID:27626061

  8. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade

    PubMed Central

    Xue, Wei; Metheringham, Rachael L.; Brentville, Victoria A.; Gunn, Barbara; Symonds, Peter; Yagita, Hideo; Ramage, Judith M.; Durrant, Lindy G.

    2016-01-01

    ABSTRACT Checkpoint blockade has demonstrated promising antitumor responses in approximately 10–40% of patients. However, the majority of patients do not make a productive immune response to their tumors and do not respond to checkpoint blockade. These patients may benefit from an effective vaccine that stimulates high-avidity T cell responses in combination with checkpoint blockade. We have previously shown that incorporating TRP-2 and gp100 epitopes into the CDR regions of a human IgG1 DNA (ImmunoBody®: IB) results in significant tumor regression both in animal models and patients. This vaccination strategy is superior to others as it targets antigen to antigen-presenting cells and stimulates high-avidity T cell responses. To broaden the application of this vaccination strategy, 16 NY-ESO-1 epitopes, covering over 80% of HLA phenotypes, were incorporated into the IB (SCIB2). They produced higher frequency and avidity T cell responses than peptide vaccination. These T cells were of sufficient avidity to kill NY-ESO-1-expressing tumor cells, and in vivo controlled the growth of established B16-NY-ESO-1 tumors, resulting in long-term survival (35%). When SCIB2 was given in combination with Treg depletion, CTLA-4 blockade or PD-1 blockade, long-term survival from established tumors was significantly enhanced to 56, 67 and 100%, respectively. Translating these responses into the clinic by using a combination of SCIB2 vaccination and checkpoint blockade can only further improve clinical responses. PMID:27471648

  9. The potent anti-inflammatory agent escin does not increase corticosterone secretion and immune cell apoptosis in mice.

    PubMed

    Zhang, Leiming; Wang, Hongsheng; Fan, Huaying; Wang, Tian; Jiang, Na; Yu, Pengfei; Fu, Fenghua

    2011-09-01

    Escin exerts potent glucocorticoid-like anti-inflammatory effects. The aim of this study was to investigate whether the anti-inflammatory effect of escin is through the up-regulation of glucocorticoids and if escin induces pathological changes in immune organs. Mice were administrated with escin intravenously for 7 days before observing the relevant parameters. The results showed that escin exhibits a potent anti-inflammatory effect, but does not increase corticosterone secretion in mice, and does not increase immune cell apoptosis in the spleen and thymus of mice. These findings suggest that the anti-inflammatory effect of escin is not dependent on the release of corticosterone. PMID:21596110

  10. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells.

    PubMed

    Zhao, Yinghua; Chu, Xiao; Chen, Jintong; Wang, Ying; Gao, Sujun; Jiang, Yuxue; Zhu, Xiaoqing; Tan, Guangyun; Zhao, Wenjie; Yi, Huanfa; Xu, Honglin; Ma, Xingzhe; Lu, Yong; Yi, Qing; Wang, Siqing

    2016-01-01

    Dectin-1 signalling in dendritic cells (DCs) has an important role in triggering protective antifungal Th17 responses. However, whether dectin-1 directs DCs to prime antitumour Th9 cells remains unclear. Here, we show that DCs activated by dectin-1 agonists potently promote naive CD4(+) T cells to differentiate into Th9 cells. Abrogation of dectin-1 in DCs completely abolishes their Th9-polarizing capability in response to dectin-1 agonist curdlan. Notably, dectin-1 stimulation of DCs upregulates TNFSF15 and OX40L, which are essential for dectin-1-activated DC-induced Th9 cell priming. Mechanistically, dectin-1 activates Syk, Raf1 and NF-κB signalling pathways, resulting in increased p50 and RelB nuclear translocation and TNFSF15 and OX40L expression. Furthermore, immunization of tumour-bearing mice with dectin-1-activated DCs induces potent antitumour response that depends on Th9 cells and IL-9 induced by dectin-1-activated DCs in vivo. Our results identify dectin-1-activated DCs as a powerful inducer of Th9 cells and antitumour immunity and may have important clinical implications. PMID:27492902

  11. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells

    PubMed Central

    Zhao, Yinghua; Chu, Xiao; Chen, Jintong; Wang, Ying; Gao, Sujun; Jiang, Yuxue; Zhu, Xiaoqing; Tan, Guangyun; Zhao, Wenjie; Yi, Huanfa; Xu, Honglin; Ma, Xingzhe; Lu, Yong; Yi, Qing; Wang, Siqing

    2016-01-01

    Dectin-1 signalling in dendritic cells (DCs) has an important role in triggering protective antifungal Th17 responses. However, whether dectin-1 directs DCs to prime antitumour Th9 cells remains unclear. Here, we show that DCs activated by dectin-1 agonists potently promote naive CD4+ T cells to differentiate into Th9 cells. Abrogation of dectin-1 in DCs completely abolishes their Th9-polarizing capability in response to dectin-1 agonist curdlan. Notably, dectin-1 stimulation of DCs upregulates TNFSF15 and OX40L, which are essential for dectin-1-activated DC-induced Th9 cell priming. Mechanistically, dectin-1 activates Syk, Raf1 and NF-κB signalling pathways, resulting in increased p50 and RelB nuclear translocation and TNFSF15 and OX40L expression. Furthermore, immunization of tumour-bearing mice with dectin-1-activated DCs induces potent antitumour response that depends on Th9 cells and IL-9 induced by dectin-1-activated DCs in vivo. Our results identify dectin-1-activated DCs as a powerful inducer of Th9 cells and antitumour immunity and may have important clinical implications. PMID:27492902

  12. Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity

    PubMed Central

    Shin, Thomas H.; Obeng-Adjei, Nyamekye; Morrow, Matthew P.; Walters, Jewell N.; Khan, Amir S.; Sardesai, Niranjan Y.; Weiner, David B.

    2014-01-01

    High levels of human Telomerase Reverse Transcriptase (hTERT) are detected in over 85% of human cancers. Immunological analysis supports hTERT is a widely applicable target recognized by T cells and can be potentially studied as a broad cancer immune therapeutic, or a unique line of defense against tumor recurrence. There remains an urgent need to develop more potent hTERT vaccines. Here, a synthetic highly optimized full-length hTERT DNA vaccine (phTERT) was designed and the induced immunity was examined in mice and non-human primates. When delivered by electroporation, phTERT elicited strong, broad hTERT-specific CD8 responses including induction of T-cells expressing CD107a, IFN-γ and TNF-α in mice. The ability of phTERT to overcome tolerance was evaluated in a NHP model, whose TERT is 96% homologous to that of hTERT. Immunized monkeys exhibited robust (average 1834 SFU/106 PBMCs), diverse (multiple immunodominant epitopes) IFN-γ responses and antigen-specific perforin release (average 332 SFU/106 PBMCs), suggesting phTERT breaks tolerance and induces potent cytotoxic responses in this human relevant model. Moreover, in an HPV16-associated tumor model, vaccination of phTERT slows tumor growth and improves survival rate in both prophylactic and therapeutic studies. Lastly, in vivo cytotoxicity assay confirmed that phTERT-induced CD8 T cells exhibited specific CTL activity, capable of eliminating hTERT-pulsed target cells. These findings support that this synthetic EP-delivered DNA phTERT may have a role as a broad therapeutic cancer vaccine candidate. PMID:24777680

  13. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis

    PubMed Central

    Hirschhorn-Cymerman, Daniel; Rizzuto, Gabrielle A.; Merghoub, Taha; Cohen, Adam D.; Avogadri, Francesca; Lesokhin, Alexander M.; Weinberg, Andrew D.; Wolchok, Jedd D.

    2009-01-01

    Expansion and recruitment of CD4+ Foxp3+ regulatory T (T reg) cells are mechanisms used by growing tumors to evade immune elimination. In addition to expansion of effector T cells, successful therapeutic interventions may require reduction of T reg cells within the tumor microenvironment. We report that the combined use of the alkylating agent cyclophosphamide (CTX) and an agonist antibody targeting the co-stimulatory receptor OX40 (OX86) provides potent antitumor immunity capable of regressing established, poorly immunogenic B16 melanoma tumors. CTX administration resulted in tumor antigen release, which after OX86 treatment significantly enhanced the antitumor T cell response. We demonstrated that T reg cells are an important cellular target of the combination therapy. Paradoxically, the combination therapy led to an expansion of T reg cells in the periphery. In the tumor, however, the combination therapy induced a profound T reg cell depletion that was accompanied by an influx of effector CD8+ T cells leading to a favorable T effector/T reg cell ratio. Closer examination revealed that diminished intratumoral T reg cell levels resulted from hyperactivation and T reg cell–specific apoptosis. Thus, we propose that CTX and OX40 engagement represents a novel and rational chemoimmunotherapy. PMID:19414558

  14. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge

    PubMed Central

    Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B

    2015-01-01

    Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4+ T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins. PMID:26158319

  15. CIS is a potent checkpoint in NK cell-mediated tumor immunity.

    PubMed

    Delconte, Rebecca B; Kolesnik, Tatiana B; Dagley, Laura F; Rautela, Jai; Shi, Wei; Putz, Eva M; Stannard, Kimberley; Zhang, Jian-Guo; Teh, Charis; Firth, Matt; Ushiki, Takashi; Andoniou, Christopher E; Degli-Esposti, Mariapia A; Sharp, Phillip P; Sanvitale, Caroline E; Infusini, Giuseppe; Liau, Nicholas P D; Linossi, Edmond M; Burns, Christopher J; Carotta, Sebastian; Gray, Daniel H D; Seillet, Cyril; Hutchinson, Dana S; Belz, Gabrielle T; Webb, Andrew I; Alexander, Warren S; Li, Shawn S; Bullock, Alex N; Babon, Jeffery J; Smyth, Mark J; Nicholson, Sandra E; Huntington, Nicholas D

    2016-07-01

    The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function. PMID:27213690

  16. Potent Innate Immune Response to Pathogenic Leptospira in Human Whole Blood

    PubMed Central

    Hartskeerl, Rudy A.; van Gorp, Eric C. M.; Schuller, Simone; Monahan, Avril M.; Nally, Jarlath E.; van der Poll, Tom; van 't Veer, Cornelis

    2011-01-01

    Background Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. Methodology/Principal Findings We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. Conclusions/Significance Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response. PMID:21483834

  17. STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia.

    PubMed

    Curran, Emily; Chen, Xiufen; Corrales, Leticia; Kline, Douglas E; Dubensky, Thomas W; Duttagupta, Priyanka; Kortylewski, Marcin; Kline, Justin

    2016-06-14

    Type I interferon (IFN), essential for spontaneous T cell priming against solid tumors, is generated through recognition of tumor DNA by STING. Interestingly, we observe that type I IFN is not elicited in animals with disseminated acute myeloid leukemia (AML). Further, survival of leukemia-bearing animals is not diminished in the absence of type I IFN signaling, suggesting that STING may not be triggered by AML. However, the STING agonist, DMXAA, induces expression of IFN-β and other inflammatory cytokines, promotes dendritic cell (DC) maturation, and results in the striking expansion of leukemia-specific T cells. Systemic DMXAA administration significantly extends survival in two AML models. The therapeutic effect of DMXAA is only partially dependent on host type I IFN signaling, suggesting that other cytokines are important. A synthetic cyclic dinucleotide that also activates human STING provided a similar anti-leukemic effect. These data demonstrate that STING is a promising immunotherapeutic target in AML. PMID:27264175

  18. Neutralizing antibodies to HIV-1 induced by immunization

    PubMed Central

    McCoy, Laura E.

    2013-01-01

    Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine. PMID:23401570

  19. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy.

    PubMed

    Duncan, Brynn B; Highfill, Steven L; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H; Jones, Barry; Mackall, Crystal L; Bachovchin, William W; Fry, Terry J

    2013-10-01

    Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11bLy6-CLy6-G) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT. PMID:23994886

  20. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy

    PubMed Central

    Duncan, Brynn B.; Highfill, Steven L.; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H.; Jones, Barry; Mackall, Crystal L.; Bachovchin, William W.; Fry, Terry J.

    2013-01-01

    Current multimodality therapy consisting of surgery, chemotherapy and radiation will fail in approximately 40% of patients with pediatric sarcomas and results in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (Dipeptidyl peptidase IV activity and/or structural homologues) enzymes can mediate tumor regression via immune-mediated mechanisms. Here we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma (RMS) cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b+) cells, particularly myeloid dendritic cells (DCs), to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11b+Ly6-ChiLy6-Glo) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1-/-) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared to either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies particularly as an adjuvant to tumor vaccines and ACT. PMID:23994886

  1. A novel naturally occurring tandem promoter in modified vaccinia virus ankara drives very early gene expression and potent immune responses.

    PubMed

    Wennier, Sonia T; Brinkmann, Kay; Steinhäußer, Charlotte; Mayländer, Nicole; Mnich, Claudia; Wielert, Ursula; Dirmeier, Ulrike; Hausmann, Jürgen; Chaplin, Paul; Steigerwald, Robin

    2013-01-01

    Modified vaccinia virus Ankara (MVA) has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines. PMID:23951355

  2. A Novel Naturally Occurring Tandem Promoter in Modified Vaccinia Virus Ankara Drives Very Early Gene Expression and Potent Immune Responses

    PubMed Central

    Wennier, Sonia T.; Brinkmann, Kay; Steinhäußer, Charlotte; Mayländer, Nicole; Mnich, Claudia; Wielert, Ursula; Dirmeier, Ulrike; Hausmann, Jürgen; Chaplin, Paul; Steigerwald, Robin

    2013-01-01

    Modified vaccinia virus Ankara (MVA) has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines. PMID:23951355

  3. Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity.

    PubMed

    Hallez, S; Detremmerie, O; Giannouli, C; Thielemans, K; Gajewski, T F; Burny, A; Leo, O

    1999-05-01

    The development of a vaccine that would be capable of preventing or curing the (pre)cancerous lesions induced by genital oncogenic human papillomaviruses (HPVs) is the focus of much research. Many studies are presently evaluating vaccines based on the viral E6 and E7 oncoproteins, both of which are continually expressed by tumor cells. The success of a cancer vaccine relies, in large part, on the induction of a tumor-specific Th1-type immunity. In this study, we have evaluated the ability of B7-related and/or interleukin-12 (IL-12)-expressing, non-immunogenic murine HPV16-transformed BMK-16/myc cells, to achieve this goal. BMK-16/myc cells engineered to express surface B7-1 or B7-2 molecules remain tumorigenic in syngeneic BALB/c mice, suggesting that expression of these molecules alone is not sufficient to induce tumor regression. In contrast, mice injected with tumor cells engineered to secrete IL-12 remained tumor-free, demonstrating that IL-12 expression is sufficient to induce tumor rejection. IL-12-secreting BMK-16/myc cells were further shown to induce potent and specific long-term tumor resistance, even after irradiation. B7-1 was found to slightly but systematically improve anti-tumor immunity elicited by IL-12-secreting BMK-16/myc cells. Injection of irradiated B7-1/IL-12+ BMK-16/myc cells generates long-lasting, Th1-type, BMK-16/myc-directed immunity in tumor-resistant mice. These mice display a memory-type, E7-specific, cell-mediated immune response, which is potentially significant for clinical applications. PMID:10209958

  4. Rosiglitazone-induced immune thrombocytopenia.

    PubMed

    Liu, Xiaojing; Huang, Tao; Sahud, Mervyn A

    2006-05-01

    Rosiglitazone is one of the members in the thiazolidinedione (TZD) class of anti-diabetic agents that have proven efficacy in the treatment of patients with type 2 diabetes. We studied serum from a patient who developed acute, severe thrombocytopenia after exposure to rosiglitazone maleate (Avandia) and proposed the mechanisms for rosiglitazone-induced thrombocytopenia. Tested by flow cytometry, the patient's serum was positive for rosiglitazone-induced antibody with the binding ratio of 5.93 (mean fluorescence intensity, MFI) in the presence of the patient's serum and rosiglitazone in a final concentration of 0.53 mmol/l. The antibody was found to bind both glycoprotein (GP) IIb-IIIa complex and GP Ib/IX complex by MAIPA assay using five different monoclonal antibodies (mAbs) against GP complexes Ib/IX, GPIIb/IIIa or GPIa/IIa. Immunoprecipitation studies showed that both GPIIb/IIIa and GP Ib/IX complex were precipitated by antibody in the presence, but not in the absence of rosiglitazone. These findings provide evidence that immune thrombocytopenia can be caused by sensitivity to the antidiabetic agent rosiglitazone maleate. This report documents the first case of rosiglitazone-induced immune thrombocytopenia. PMID:16702039

  5. Memory T Cell-Derived interferon-γ Instructs Potent Innate Cell Activation For Protective Immunity

    PubMed Central

    Soudja, Saidi M’Homa; Chandrabos, Ceena; Yakob, Ernest; Veenstra, Mike; Palliser, Deborah; Lauvau, Grégoire

    2014-01-01

    SUMMARY Cells of the innate immune system are essential for host defenses against primary microbial pathogen infections, yet their involvement in effective memory responses of vaccinated individuals has been poorly investigated. Here we show that memory T cells instruct innate cells to become potent effector cells in a systemic and a mucosal model of infection. Memory T cells controlled phagocyte, dendritic cell and NK or NK T cell mobilization and induction of a strong program of differentiation, which included their expression of effector cytokines and microbicidal pathways, all of which were delayed in non-vaccinated hosts. Disruption of IFN-γ-signaling in Ly6C+ monocytes, dendritic cells and macrophages impaired these processes and the control of pathogen growth. These results reveal how memory T cells, through rapid secretion of IFN-γ, orchestrate extensive modifications of host innate immune responses that are essential for effective protection of vaccinated hosts. PMID:24931122

  6. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization

    PubMed Central

    McCoy, Laura E.; Quigley, Anna Forsman; Strokappe, Nika M.; Bulmer-Thomas, Bianca; Seaman, Michael S.; Mortier, Daniella; Rutten, Lucy; Chander, Nikita; Edwards, Carolyn J.; Ketteler, Robin; Davis, David; Verrips, Theo

    2012-01-01

    Llamas (Lama glama) naturally produce heavy chain–only antibodies (Abs) in addition to conventional Abs. The variable regions (VHH) in these heavy chain–only Abs demonstrate comparable affinity and specificity for antigens to conventional immunoglobulins despite their much smaller size. To date, immunizations in humans and animal models have yielded only Abs with limited ability to neutralize HIV-1. In this study, a VHH phagemid library generated from a llama that was multiply immunized with recombinant trimeric HIV-1 envelope proteins (Envs) was screened directly for HIV-1 neutralization. One VHH, L8CJ3 (J3), neutralized 96 of 100 tested HIV-1 strains, encompassing subtypes A, B, C, D, BC, AE, AG, AC, ACD, CD, and G. J3 also potently neutralized chimeric simian-HIV strains with HIV subtypes B and C Env. The sequence of J3 is highly divergent from previous anti–HIV-1 VHH and its own germline sequence. J3 achieves broad and potent neutralization of HIV-1 via interaction with the CD4-binding site of HIV-1 Env. This study may represent a new benchmark for immunogens to be included in B cell–based vaccines and supports the development of VHH as anti–HIV-1 microbicides. PMID:22641382

  7. Alarmin IL-33 acts as an immunoadjuvant for enhancing antigen-specific cell-mediated immunity resulting in potent anti-tumor immunity

    PubMed Central

    Villarreal, Daniel O.; Wise, Megan C.; Walters, Jewell N.; Reuschel, Emma; Choi, Min Joung; Obeng-Adjei, Nyamekye; Yan, Jian; Morrow, Matthew P.; Weiner, David B.

    2014-01-01

    Interleukin 33 (IL-33) has emerged as a cytokine that can exhibit pleiotropic properties. Here we examine IL-33 for its immunoadjuvant effects in an HPV-associated cancer immune therapy model in which cell-mediated immunity is critical for protection. It is known that two biologically active forms of IL-33 exist: full-length IL-33 and mature IL-33. The potential ability of both isoforms to act as vaccine adjuvants to influence the CD4 Th1 and CD8 T cell immune responses has not been well defined. We show that both isoforms of IL-33 are capable of enhancing potent antigen (Ag)-specific effector and memory T cell immunity in vivo in a DNA vaccine setting. We also show that while both forms of IL-33 drove robust IFN-γ responses, neither form drove high secretion of IL-4 or any elevation of IgE levels. Moreover, both isoforms augmented vaccine-induced Ag-specific polyfunctional CD4+ and CD8+ T cell responses, with a large proportion of CD8+ T cells undergoing cytolytic plurifunctional degranulation. Therapeutic studies indicated that established TC-1-bearing mice undergo rapid and complete regression after therapeutic vaccination with both IL-33 adjuvant isoforms used in conjunction with an HPV DNA vaccine. Furthermore, using the P14 transgenic mouse model, we show that IL-33 can significantly expand the magnitude of Ag-specific CD8+ T cell responses and elicit bonafide effector-memory CD8+ T cells. Overall, the data suggests the potential use of these two IL-33 isoforms as immunoadjuvant candidates in future vaccination against other pathogens and in the context of anti-tumor immune-based therapy. PMID:24448242

  8. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle

    PubMed Central

    2013-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV. PMID:23826638

  9. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  10. Nucleic acid-containing amyloid fibrils potently induce type I interferon and stimulate systemic autoimmunity

    PubMed Central

    Di Domizio, Jeremy; Dorta-Estremera, Stephanie; Gagea, Mihai; Ganguly, Dipyaman; Meller, Stephan; Li, Ping; Zhao, Bihong; Tan, Filemon K.; Bi, Liqi; Gilliet, Michel; Cao, Wei

    2012-01-01

    The immunopathophysiologic development of systemic autoimmunity involves numerous factors through complex mechanisms that are not fully understood. In systemic lupus erythematosus, type I IFN (IFN-I) produced by plasmacytoid dendritic cells (pDCs) critically promotes the autoimmunity through its pleiotropic effects on immune cells. However, the host-derived factors that enable abnormal IFN-I production and initial immune tolerance breakdown are largely unknown. Previously, we found that amyloid precursor proteins form amyloid fibrils in the presence of nucleic acids. Here we report that nucleic acid-containing amyloid fibrils can potently activate pDCs and enable IFN-I production in response to self-DNA, self-RNA, and dead cell debris. pDCs can take up DNA-containing amyloid fibrils, which are retained in the early endosomes to activate TLR9, leading to high IFNα/β production. In mice treated with DNA-containing amyloid fibrils, a rapid IFN response correlated with pDC infiltration and activation. Immunization of nonautoimmune mice with DNA-containing amyloid fibrils induced antinuclear serology against a panel of self-antigens. The mice exhibited positive proteinuria and deposited antibodies in their kidneys. Intriguingly, pDC depletion obstructed IFN-I response and selectively abolished autoantibody generation. Our study reveals an innate immune function of nucleic acid-containing amyloid fibrils and provides a potential link between compromised protein homeostasis and autoimmunity via a pDC-IFN axis. PMID:22904191

  11. Immune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens.

    PubMed Central

    Mowat, A M; Maloy, K J; Donachie, A M

    1993-01-01

    Orally active synthetic vaccines containing purified antigens would have many benefits for immunizing against systemic and mucosal diseases. However, several factors have limited the development of such vaccines, including the poor immunogenicity of purified proteins and their usual ability to induce tolerance when given orally. Here, we show that incorporation of ovalbumin (OVA) into immune-stimulating complexes (ISCOMS) containing saponin prevents the induction of oral tolerance in mice. In parallel, the spleen and mesenteric lymph node of mice fed OVA ISCOMS are primed for class I major histocompatibility complex (MHC)-restricted cytotoxic T-cell activity which recognizes physiologically processed epitopes on OVA. Oral immunization with OVA ISCOMS also stimulates high secretory IgA antibody responses in the intestine itself, as well as serum IgG antibodies. None of these active immune responses are detectable in mice fed OVA alone. Despite the potent priming of mucosal priming by OVA ISCOMS, re-exposure to antigen does not induce the intestinal immunopathology found in other systems after the breakdown of oral tolerance. Thus, ISCOMS have several unique properties as vectors for oral immunization and could provide a basis for future mucosal vaccines. PMID:7508416

  12. Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo

    PubMed Central

    Beans, Elizabeth J.; Fournogerakis, Dennis; Gauntlett, Carolyn; Heumann, Lars V.; Kramer, Rainer; Marsden, Matthew D.; Murray, Danielle; Zack, Jerome A.; Wender, Paul A.

    2013-01-01

    Highly active antiretroviral therapy (HAART) decreases plasma viremia below the limits of detection in the majority of HIV-infected individuals, thus serving to slow disease progression. However, HAART targets only actively replicating virus and is unable to eliminate latently infected, resting CD4+ T cells. Such infected cells are potentially capable of reinitiating virus replication upon cessation of HAART, thus leading to viral rebound. Agents that would eliminate these reservoirs, when used in combination with HAART, could thus provide a strategy for the eradication of HIV. Prostratin is a preclinical candidate that induces HIV expression from latently infected CD4+ T cells, potentially leading to their elimination through a virus-induced cytopathic effect or host anti-HIV immunity. Here, we report the synthesis of a series of designed prostratin analogs and report in vitro and ex vivo studies of their activity relevant to induction of HIV expression. Members of this series are up to 100-fold more potent than the preclinical lead (prostratin) in binding to cell-free PKC, and in inducing HIV expression in a latently infected cell line and prostratin-like modulation of cell surface receptor expression in primary cells from HIV-negative donors. Significantly, selected members were also tested for HIV induction in resting CD4+ T cells isolated from infected individuals receiving HAART and were found to exhibit potent induction activity. These more potent agents and by extension related tunable analogs now accessible through the studies described herein should facilitate research and preclinical advancement of this strategy for HIV/AIDS eradication. PMID:23812750

  13. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice. PMID:9682967

  14. Harnessing DNA-induced immune responses for improving cancer vaccines

    PubMed Central

    Herrada, Andrés A.; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A.; Lladser, Alvaro

    2012-01-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful “danger signals” by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance. PMID:23111166

  15. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    NASA Astrophysics Data System (ADS)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  16. Combining somatic mutations present in different in vivo affinity-matured antibodies isolated from immunized Lama glama yields ultra-potent antibody therapeutics.

    PubMed

    Klarenbeek, Alex; Blanchetot, Christophe; Schragel, Georg; Sadi, Ava S; Ongenae, Nico; Hemrika, Wieger; Wijdenes, John; Spinelli, Silvia; Desmyter, Aline; Cambillau, Christian; Hultberg, Anna; Kretz-Rommel, Anke; Dreier, Torsten; De Haard, Hans J W; Roovers, Rob C

    2016-04-01

    Highly potent human antibodies are required to therapeutically neutralize cytokines such as interleukin-6 (IL-6) that is involved in many inflammatory diseases and malignancies. Although a number of mutagenesis approaches exist to perform antibody affinity maturation, these may cause antibody instability and production issues. Thus, a robust and easy antibody affinity maturation strategy to increase antibody potency remains highly desirable. By immunizing llama, cloning the 'immune' antibody repertoire and using phage display, we selected a diverse set of IL-6 antagonistic Fabs. Heavy chain shuffling was performed on the Fab with lowest off-rate, resulting in a panel of variants with even lower off-rate. Structural analysis of the Fab:IL-6 complex suggests that the increased affinity was partly due to a serine to tyrosine switch in HCDR2. This translated into neutralizing capacity in an in vivo model of IL-6 induced SAA production. Finally, a novel Fab library was designed, encoding all variations found in the natural repertoire of VH genes identified after heavy chain shuffling. High stringency selections resulted in identification of a Fab with 250-fold increased potency when re-formatted into IgG1. Compared with a heavily engineered anti-IL-6 monoclonal antibody currently in clinical development, this IgG was at least equally potent, showing the engineering process to have had led to a highly potent anti-IL-6 antibody. PMID:26945588

  17. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses.

    PubMed

    Bagley, Kenneth; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael; Schwartz, Jennifer; Fouts, Timothy

    2015-01-01

    DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action. PMID:26042527

  18. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses

    PubMed Central

    Bagley, Kenneth; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael; Schwartz, Jennifer; Fouts, Timothy

    2015-01-01

    DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action. PMID:26042527

  19. A potent multivalent vaccine for modulation of immune system in atherosclerosis: an in silico approach

    PubMed Central

    2016-01-01

    Purpose Atherosclerosis is classically defined as an immune-mediated disease characterized by accumulation of low-density lipoprotein cholesterol over intima in medium sized and large arteries. Recent studies have demonstrated that both innate and adaptive immune responses are involved in atherosclerosis. In addition, experimental and human models have recognized many autoantigens in pathophysiology of this disease. Oxidized low-density lipoproteins, β2 glycoprotein I (β-2-GPI), and heat shock protein 60 (HSP60) are the best studied of them which can represent promising approach to design worthwhile vaccines for modulation of atherosclerosis. Materials and Methods In silico approaches are the best tools for design and evaluation of the vaccines before initiating the experimental study. In this study, we identified immunogenic epitopes of HSP60, ApoB-100, and β-2-GPI as major antigens to construct a chimeric protein through bioinformatics tools. Additionally, we have evaluated physico-chemical properties, structures, stability, MHC binding properties, humoral and cellular immune responses, and allergenicity of this chimeric protein by means of bioinformatics tools and servers. Results Validation results indicated that 89.1% residues locate in favorite or additional allowed region of Ramachandran plot. Also, based on Ramachandran plot analysis this protein could be classified as a stable fusion protein. In addition, the epitopes in the chimeric protein had strong potential to induce both the B-cell and T-cell mediated immune responses. Conclusion Our results supported that this chimeric vaccine could be effectively utilized as a multivalent vaccine for prevention and modulation of atherosclerosis. PMID:26866024

  20. Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses

    PubMed Central

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel F.; Shiku, Hiroshi; Mineno, Junichi; Okamoto, Sachiko; Old, Lloyd J.; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2015-01-01

    Tumor antigen-specific CD4+ T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4+ T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4+ helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4+ T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8+ T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8+ T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients. PMID:26447332

  1. CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice.

    PubMed

    McCluskie, M J; Davis, H L

    1998-11-01

    Mucosal immunity is difficult to induce with subunit vaccines unless such vaccines are administered with a mucosal adjuvant such as cholera toxin (CT); however, CT is toxic in humans. Synthetic oligodeoxynucleotides containing immunostimulatory CpG motifs (CpG) are potent adjuvants for the induction of Th1-like systemic immune responses against parenterally delivered proteins. Here, we show in mice that intranasal delivery of hepatitis B surface Ag, which alone has no effect, elicits good immune responses when given with CpG oligodeoxynucleotides and/or CT. Overall, CpG is superior to CT for the induction of humoral and cell-mediated systemic immunity as well as mucosal immune responses (IgA) at local (lung) and distant (feces) sites. Furthermore, CpG and CT act synergistically, giving stronger responses than those observed with 10 times more of either adjuvant alone. Ab isotypes were predominantly IgG1 (Th2-like) with CT, mixed IgG1/IgG2a (Th0) with CpG, and predominantly IgG2a (Th1-like) with CpG and CT together. PMID:9794366

  2. CXCL11-Armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy

    PubMed Central

    Liu, Zuqiang; Ravindranathan, Roshni; Li, Jun; Kalinski, Pawel; Guo, Z. Sheng; Bartlett, David L.

    2016-01-01

    ABSTRACT We have armed a tumor-selective oncolytic vaccinia virus (vvDD) with the chemokine (CK) CXCL11, in order to enhance its ability to attract CXCR3+ antitumor CTLs and possibly NK cells to the tumor microenvironment (TME) and improve its therapeutic efficacy. As expected, vvDD-CXCL11 attracted high numbers of tumor-specific T cells to the TME in a murine AB12 mesothelioma model. Intratumoral virus-directed CXCL11 expression enhanced local numbers of CD8+ CTLs and levels of granzyme B, while reducing expression of several suppressive molecules, TGF-β, COX2, and CCL22 in the TME. Unexpectedly, we observed that vvDD-CXCL11, but not parental vvDD, induced a systemic increase in tumor-specific IFNγ-producing CD8+ T cells in the spleen and other lymph organs, indicating the induction of systemic antitumor immunity. This effect was associated with enhanced therapeutic efficacy and a survival benefit in tumor-bearing mice treated with vvDD-CXCL11, mediated by CD8+ T cells and IFNγ, but not CD4+ T cells. These results demonstrate that intratumoral expression of CXCL11, in addition to promoting local trafficking of T cells and to a lesser extent NK cells, has a novel function as a factor eliciting systemic immunity to cancer-associated antigens. Our data provide a rationale for expressing CXCL11 to enhance the therapeutic efficacy of oncolytic viruses (OVs) and cancer vaccines. PMID:27141352

  3. Tumor-induced immune dysfunction.

    PubMed

    Kiessling, R; Wasserman, K; Horiguchi, S; Kono, K; Sjöberg, J; Pisa, P; Petersson, M

    1999-10-01

    Immune system-based approaches for the treatment of malignant disease over the past decades have often focused on cytolytic effector cells such as cytotoxic T lymphocytes (CTL), and natural killer (NK) cells. It has also been demonstrated that tumor-bearing mice can be cured using a wide variety of approaches, some of which involve cytokine-mediated enhancement of CTL and NK cell activity. However, the apparent success in mice stands in contrast to the current situation in the clinic, wherein only a minority of patients have thus far benefited from CTL- or NK cell-based antitumor approaches. The underlying causes of tumor-associated immune suppression of CTL and NK cell activity are discussed, and features of interest shared with HIV infection, leprosy, and rheumatoid arthritis are also be mentioned. Remarkable and very recent observations have shed more light upon the causes of dysfunctional alterations in CTL and NK cells often associated with these diseases, that in turn have suggested new immunotherapeutic approaches for cancer and infectious disease. PMID:10501847

  4. Injury-induced immune responses in Hydra.

    PubMed

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. PMID:25086685

  5. Oxazolone-Induced Contact Hypersensitivity Reduces Lymphatic Drainage but Enhances the Induction of Adaptive Immunity

    PubMed Central

    Aebischer, David; Willrodt, Ann-Helen; Halin, Cornelia

    2014-01-01

    Contact hypersensitivity (CHS) induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC) migration to draining lymph nodes (dLNs). On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA) was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH) response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40) and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function. PMID:24911791

  6. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    SciTech Connect

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.

  7. The requirement for potent adjuvants to enhance the immunogenicity and protective efficacy of protein vaccines can be overcome by prior immunization with a recombinant adenovirus

    PubMed Central

    de Cassan, Simone C.; Forbes, Emily K.; Douglas, Alexander D.; Milicic, Anita; Singh, Bijender; Gupta, Puneet; Chauhan, Virander S.; Chitnis, Chetan E.; Gilbert, Sarah C.; Hill, Adrian V. S.; Draper, Simon J.

    2011-01-01

    A central goal in vaccinology is the induction of high and sustained antibody responses. Protein-in-adjuvant formulations are commonly used to achieve such responses. However, their clinical development can be limited by the reactogenicity of some of the most potent pre-clinical adjuvants and the cost and complexity of licensing new adjuvants for human use. Also, few adjuvants induce strong cellular immunity which is important for protection against many diseases, such as malaria. We compared classical adjuvants such as alum to new pre-clinical adjuvants and adjuvants in clinical development such as Abisco®100, CoVaccine HT™, Montanide®ISA720 and SE-GLA, for their ability to induce high and sustained antibody responses and T cell responses. These adjuvants induced a broad range of antibody responses when used in a three-shot protein-in-adjuvant regime using the model antigen ovalbumin and leading blood-stage malaria vaccine candidate antigens. Surprisingly, this range of antibody immunogenicity was greatly reduced when a protein-in-adjuvant vaccine was used to boost antibody responses primed by a human adenovirus serotype 5 (AdHu5) vaccine recombinant for the same antigen. This AdHu5-protein regime also induced a more cytophilic antibody response and demonstrated improved efficacy of merozoite surface protein-1 (MSP-1) protein vaccines against a Plasmodium yoelii blood-stage challenge. This indicates that the differential immunogenicity of protein vaccine adjuvants may be largely overcome by prior immunization with recombinant adenovirus, especially for adjuvants that are traditionally considered poorly immunogenic in the context of subunit vaccination, and may circumvent the need for more potent chemical adjuvants. PMID:21813775

  8. A novel TLR2 agonist from Bordetella pertussis is a potent adjuvant that promotes protective immunity with an acellular pertussis vaccine.

    PubMed

    Dunne, A; Mielke, L A; Allen, A C; Sutton, C E; Higgs, R; Cunningham, C C; Higgins, S C; Mills, K H G

    2015-05-01

    Bordetella pertussis causes whooping cough, a severe and often lethal respiratory infection in infants. A recent resurgence of pertussis has been linked with waning or suboptimal immunity induced with acellular pertussis vaccines (Pa) that were introduced to most developed countries in the 1990s because of safety concerns around the use of whole-cell pertussis vaccines (Pw). Pa are composed of individual B. pertussis antigens absorbed to alum and promote strong antibody, T helper type 2 (Th2) and Th17 responses, but are less effective at inducing cellular immunity mediated by Th1 cells. In contrast, Pw, which include endogenous Toll-like receptor (TLR) agonists, induce Th1 as well as Th17 responses. Here we report the identification and characterization of novel TLR2-activating lipoproteins from B. pertussis. These proteins contain a characteristic N-terminal signal peptide that is unique to Gram-negative bacteria and we demonstrate that one of these lipoproteins, BP1569, activates murine dendritic cells and macrophages and human mononuclear cells via TLR2. Furthermore, we demonstrated that a corresponding synthetic lipopeptide LP1569 has potent immunostimulatory and adjuvant properties, capable of enhancing Th1, Th17, and IgG2a antibody responses induced in mice with an experimental Pa that conferred superior protection against B. pertussis infection than an equivalent vaccine formulated with alum. PMID:25315966

  9. Effective Equine Immunization Protocol for Production of Potent Poly-specific Antisera against Calloselasma rhodostoma, Cryptelytrops albolabris and Daboia siamensis

    PubMed Central

    Sapsutthipas, Sompong; Leong, Poh Kuan; Akesowan, Surasak; Pratanaphon, Ronachai; Tan, Nget Hong; Ratanabanangkoon, Kavi

    2015-01-01

    Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma “Malayan pit viper” (CR), and Daboia siamensis “Russell’s viper” (DS). Four horses were immunized with a mixture of the 3 viper venoms using the ‘low dose, low volume multi-site’ immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies. PMID:25774998

  10. Effective equine immunization protocol for production of potent poly-specific antisera against Calloselasma rhodostoma, Cryptelytrops albolabris and Daboia siamensis.

    PubMed

    Sapsutthipas, Sompong; Leong, Poh Kuan; Akesowan, Surasak; Pratanaphon, Ronachai; Tan, Nget Hong; Ratanabanangkoon, Kavi

    2015-03-01

    Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma "Malayan pit viper" (CR), and Daboia siamensis "Russell's viper" (DS). Four horses were immunized with a mixture of the 3 viper venoms using the 'low dose, low volume multi-site' immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies. PMID:25774998

  11. Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses.

    PubMed

    Dashti, Amir; Ebrahimi, Marzieh; Hadjati, Jamshid; Memarnejadian, Arash; Moazzeni, Seyed Mohammad

    2016-04-28

    Cancer stem cells (CSCs) are demonstrated to be usually less sensitive to conventional methods of cancer therapies, resulting in tumor relapse. It is well-known that an ideal treatment would be able to selectively target and kill CSCs, so as to avoid the tumor reversion. The aim of our present study was to evaluate the effectiveness of a dendritic cell (DC) based vaccine against CSCs in a mouse model of malignant melanoma. C57BL/6 mouse bone marrow derived DCs pulsed with a murine melanoma cell line (B16F10) or CSC lysates were used as a vaccine. Immunization of mice with CSC lysate-pulsed DCs was able to induce a significant prophylactic effect by a higher increase in lifespan and obvious depression of tumor growth in tumor bearing mice. The mice vaccinated with DCs loaded with CSC-lysate were revealed to produce specific cytotoxic responses to CSCs. The proliferation assay and cytokine (IFN-γ and IL-4) secretion of mice vaccinated with CSC lysate-pulsed DCs also showed more favorable results, when compared to those receiving B16F10 lysate-pulsed DCs. These findings suggest a potential strategy to improve the efficacy of DC-based immunotherapy of cancers. PMID:26803056

  12. Poly(lactide-co-glycolide) microspheres: a potent oral delivery system to elicit systemic immune response against inactivated rabies virus.

    PubMed

    Ramya, R; Verma, P C; Chaturvedi, V K; Gupta, P K; Pandey, K D; Madhanmohan, M; Kannaki, T R; Sridevi, R; Anukumar, B

    2009-03-26

    Rabies is an endemic, fatal zoonotic disease in the developing countries. Oral vaccination strategies are suitable for rabies control in developing countries. Studies were performed to investigate the suitability of poly(lactide-co-glycolide) (PLG) microspheres as an oral delivery system for beta-propiolactone inactivated concentrated rabies virus (CRV). Immune responses induced by encapsulated (PLG+CRV) and un-encapsulated inactivated rabies virus after oral and intraperitoneal route administrations were compared. The anti-rabies virus IgG antibody titer, virus neutralizing antibody (VNA) titers obtained by mouse neutralization test (MNT) and IgG2a and IgG1 titers of mice group immunized orally with PLG+CRV showed significantly (p<0.001) higher response than the group immunized orally with un-encapsulated CRV. There was no significant difference (p>0.05) between groups inoculated by intraperitoneal route. The stimulation index (SI) obtained by lymphoproliferation assay of PLG+CRV oral group also showed significantly (p<0.001) higher response than the group immunized orally with un-encapsulated CRV, suggesting that oral immunization activates Th1-mediated cellular immunity. Immunized mice of all experimental groups were challenged intracerebrally with a lethal dose of virulent rabies virus Challenge Virus Standard (CVS). The survival rates of mice immunized orally with PLG+CRV and CRV alone were 75% and 50%, respectively, whereas intraperitoneally immunized groups showed 100% protection. The overall results of humoral, cellular immune response and survival rates of mice immunized orally with PLG+CRV were significantly (p<0.001) higher than those of mice immunized orally with CRV alone. These data suggest that the PLG encapsulated inactivated rabies virus can be used for oral immunization against rabies. PMID:19356617

  13. Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis.

    PubMed

    Ji, Ping; Hu, Zhi-Dong; Kang, Han; Yuan, Qin; Ma, Hui; Wen, Han-Li; Wu, Juan; Li, Zhong-Ming; Lowrie, Douglas B; Fan, Xiao-Yong

    2016-02-01

    The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate. PMID:26111521

  14. Neuro-immune interactions in chemical-induced airway hyperreactivity.

    PubMed

    Devos, Fien C; Boonen, Brett; Alpizar, Yeranddy A; Maes, Tania; Hox, Valérie; Seys, Sven; Pollaris, Lore; Liston, Adrian; Nemery, Benoit; Talavera, Karel; Hoet, Peter H M; Vanoirbeek, Jeroen A J

    2016-08-01

    Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR. PMID:27126687

  15. Stress induced neuroendocrine-immune plasticity

    PubMed Central

    Liezmann, Christiane; Stock, Daniel; Peters, Eva M. J.

    2012-01-01

    Research over the past decade has revealed close interaction between the nervous and immune systems in regulation of peripheral inflammation linking psychosocial stress with chronic somatic disease and aging. Moreover emerging data suggests that chronic inflammations lead to a pro-inflammatory status underlying premature aging called inflammaging. In this context, the spleen can be seen as a switch board monitoring peripherally derived neuroendocrine-immune mediators in the blood and keeping up a close communication with the central stress response via its mainly sympathetic innervation. The effect aims at balanced and well-timed stress axis activation and immune adaptation in acute peripheral inflammatory events. Constant adjustment to the needs generated by environmental and endogenous challenges is provided by neuroendocrine-immune plasticity. However, maladaptive plasticity induced e.g., by chronic stress-axis activation and excessive non-neuronal derived neuroendocrine mediators may be at the heart of the observed stress sensitivity promote inflammaging under chronic inflammatory conditions. We here review the role of neurotransmitters, neuropeptides and neurotrophins as stress mediators modulating the immune response in the spleen and their potential role in inflammaging. PMID:23467333

  16. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice.

    PubMed

    Wegmann, Frank; Moghaddam, Amin E; Schiffner, Torben; Gartlan, Kate H; Powell, Timothy J; Russell, Rebecca A; Baart, Matthijs; Carrow, Emily W; Sattentau, Quentin J

    2015-09-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  17. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    PubMed Central

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  18. Potent monoclonal antibodies against Clostridium difficile toxin A elicited by DNA immunization.

    PubMed

    Zhang, Chunhua; Jin, Ke; Xiao, Yanling; Cheng, Ying; Huang, Zuhu; Wang, Shixia; Lu, Shan

    2013-10-01

    Recent studies have demonstrated that DNA immunization is effective in eliciting antigen-specific antibody responses against a wide range of infectious disease targets. The polyclonal antibodies elicited by DNA vaccination exhibit high sensitivity to conformational epitopes and high avidity. However, there have been limited reports in literature on the production of monoclonal antibodies (mAb) by DNA immunization. Here, by using Clostridium difficile (C. diff) toxin A as a model antigen, we demonstrated that DNA immunization was effective in producing a panel of mAb that are protective against toxin A challenge and can also be used as sensitive reagents to detect toxin A from various testing samples. The immunoglobulin (Ig) gene usage for such mAb was also investigated. Further studies should be conducted to fully establish DNA immunization as a unique platform to produce mAb in various hosts. PMID:23851482

  19. Potent monoclonal antibodies against Clostridium difficile toxin A elicited by DNA immunization

    PubMed Central

    Zhang, Chunhua; Jin, Ke; Xiao, Yanling; Cheng, Ying; Huang, Zuhu; Wang, Shixia; Lu, Shan

    2013-01-01

    Recent studies have demonstrated that DNA immunization is effective in eliciting antigen-specific antibody responses against a wide range of infectious disease targets. The polyclonal antibodies elicited by DNA vaccination exhibit high sensitivity to conformational epitopes and high avidity. However, there have been limited reports in literature on the production of monoclonal antibodies (mAb) by DNA immunization. Here, by using Clostridium difficile (C. diff) toxin A as a model antigen, we demonstrated that DNA immunization was effective in producing a panel of mAb that are protective against toxin A challenge and can also be used as sensitive reagents to detect toxin A from various testing samples. The immunoglobulin (Ig) gene usage for such mAb was also investigated. Further studies should be conducted to fully establish DNA immunization as a unique platform to produce mAb in various hosts. PMID:23851482

  20. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity

    PubMed Central

    Bartkowiak, Todd; Curran, Michael A.

    2015-01-01

    Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor itself, but the immune system combating the cancerous lesion. Of the many approaches currently under study to boost anti-tumor immune responses; modulation of immune co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint blockade; however, tumor infiltrating lymphocytes express a diverse array of additional stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immunity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor lymphocytes. While functional studies of 4-1BB have focused on its prominent role in augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression on both T cells and antigen presenting cells, coupled with its capacity to promote survival, expansion, and enhanced effector function of activated T cells, has made it an alluring target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high grade liver inflammation which has slowed their clinical development. In this review, we discuss how the underlying immunobiology of 4-1BB activation suggests the potential for therapeutically synergistic combination strategies in which immune adverse events can be minimized. PMID:26106583

  1. Identification and molecular characterization of peroxiredoxin 6 from Japanese eel (Anguilla japonica) revealing its potent antioxidant properties and putative immune relevancy.

    PubMed

    Priyathilaka, Thanthrige Thiunuwan; Kim, Yucheol; Udayantha, H M V; Lee, Seongdo; Herath, H M L P B; Lakmal, H H Chaminda; Elvitigala, Don Anushka Sandaruwan; Umasuthan, Navaneethaiyer; Godahewa, G I; Kang, Seong Il; Jeong, Hyung Bok; Kim, Shin Kwon; Kim, Dae Jung; Lim, Bong Soo

    2016-04-01

    Peroxiredoxins (Prdx) are thiol specific antioxidant enzymes that play a pivotal role in cellular oxidative stress by reducing toxic peroxide compounds into nontoxic products. In this study, we identified and characterized a peroxiredoxin 6 counterpart from Japanese eel (Anguilla japonica) (AjPrdx6) at molecular, transcriptional and protein level. The identified full-length coding sequence of AjPrdx6 (669 bp) coded for a polypeptide of 223 aa residues (24.9 kDa). Deduced protein of AjPrdx6 showed analogy to characteristic structural features of 1-cysteine peroxiredoxin sub-family. According to the topology of the generated phylogenetic reconstruction AjPrdx6 showed closest evolutionary relationship with Salmo salar. As detected by Quantitative real time PCR (qPCR), AjPrdx6 mRNA was constitutively expressed in all the tissues examined. Upon the immune challenges with Edwardsiella tarda, lipopolysaccharides and polyinosinic:polycytidylic acid, expression of AjPrdx6 mRNA transcripts were significantly induced. The general functional properties of Prdx6 were confirmed using purified recombinant AjPrdx6 protein by deciphering its potent protective effects on cultured vero cells (kidney epithelial cell from an African green monkey) against H2O2-induced oxidative stress and protection against oxidative DNA damage elicited by mixed function oxidative (MFO) system. Altogether, our findings suggest that AjPrdx6 is a potent antioxidant protein in Japanese eels and its putative immune relevancy in pathogen stress mounted by live-bacteria or pathogen associated molecular patterns (PAMPs). PMID:26911410

  2. Antitumor Immunity Induced after α Irradiation123

    PubMed Central

    Gorin, Jean-Baptiste; Ménager, Jérémie; Gouard, Sébastien; Maurel, Catherine; Guilloux, Yannick; Faivre-Chauvet, Alain; Morgenstern, Alfred; Bruchertseifer, Frank; Chérel, Michel; Davodeau, François; Gaschet, Joëlle

    2014-01-01

    Radioimmunotherapy (RIT) is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue), and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 (213Bi) irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that 213Bi-treated MC-38 cells release “danger signals” and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells. PMID:24862758

  3. New Approach for Producing and Purifying IL-15 Heterodimers That Have Potent Immune Effect | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer Cytokines are proteins that play a crucial role in the human immune system by delivering messages that trigger the activation of immune cells to fight off attacks from viruses or other invaders. Cristina Bergamaschi, Ph.D., NCI Center for Cancer Research, has been studying the mechanism of expression and function of a cytokine known as interleukin-15 (IL-15) for the last five years, in collaboration with Elena Chertova, Ph.D., and other researchers in the Retroviral Protein Chemistry Core (RPCC) of the AIDS and Cancer Virus Program (ACVP), Frederick National Laboratory for Cancer Research.

  4. Swine Interferon-Inducible Transmembrane Proteins Potently Inhibit Influenza A Virus Replication

    PubMed Central

    Lanz, Caroline; Yángüez, Emilio; Andenmatten, Dario

    2014-01-01

    Human interferon-inducible transmembrane proteins (IFITMs) were identified as restriction factors of influenza A virus (IAV). Given the important role of pigs in the zoonotic cycle of IAV, we cloned swine IFITMs (swIFITMs) and found two IFITM1-like proteins, one homologue of IFITM2, and a homologue of IFITM3. We show that swIFITM2 and swIFITM3 localize to endosomes and display potent antiviral activities. Knockdown of swIFITMs strongly reduced virus inhibition by interferon, establishing the swIFITMs as potent restriction factors in porcine cells. PMID:25320322

  5. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance

    PubMed Central

    Blazanovic, Kristina; Zhao, Hongliang; Choi, Yoonjoo; Li, Wen; Salvat, Regina S; Osipovitch, Daniel C; Fields, Jennifer; Moise, Leonard; Berwin, Brent L; Fiering, Steven N; Bailey-Kellogg, Chris; Griswold, Karl E

    2015-01-01

    Staphylococcus aureus infections exert a tremendous burden on the health-care system, and the threat of drug-resistant strains continues to grow. The bacteriolytic enzyme lysostaphin is a potent antistaphylococcal agent with proven efficacy against both drug-sensitive and drug-resistant strains; however, the enzyme’s own bacterial origins cause undesirable immunogenicity and pose a barrier to clinical translation. Here, we deimmunized lysostaphin using a computationally guided process that optimizes sets of mutations to delete immunogenic T cell epitopes without disrupting protein function. In vitro analyses showed the methods to be both efficient and effective, producing seven different deimmunized designs exhibiting high function and reduced immunogenic potential. Two deimmunized candidates elicited greatly suppressed proliferative responses in splenocytes from humanized mice, while at the same time the variants maintained wild-type efficacy in a staphylococcal pneumonia model. Overall, the deimmunized enzymes represent promising leads in the battle against S. aureus. PMID:26151066

  6. Induction of Potent Humoral and Cell-Mediated Immune Responses by Attenuated Vaccinia Virus Vectors with Deleted Serpin Genes

    PubMed Central

    Legrand, Fatema A.; Verardi, Paulo H.; Jones, Leslie A.; Chan, Kenneth S.; Peng, Yue; Yilma, Tilahun D.

    2004-01-01

    Vaccinia virus (VV) has been effectively utilized as a live vaccine against smallpox as well as a vector for vaccine development and immunotherapy. Increasingly there is a need for a new generation of highly attenuated and efficacious VV vaccines, especially in light of the AIDS pandemic and the threat of global bioterrorism. We therefore developed recombinant VV (rVV) vaccines that are significantly attenuated and yet elicit potent humoral and cell-mediated immune responses. B13R (SPI-2) and B22R (SPI-1) are two VV immunomodulating genes with sequence homology to serine protease inhibitors (serpins) that possess antiapoptotic and anti-inflammatory properties. We constructed and characterized rVVs that have the B13R or B22R gene insertionally inactivated (vΔB13R and vΔB22R) and coexpress the vesicular stomatitis virus glycoprotein (v50ΔB13R and v50ΔB22R). Virulence studies with immunocompromised BALB/cBy nude mice indicated that B13R or B22R gene deletion decreases viral replication and significantly extends time of survival. Viral pathogenesis studies in immunocompetent CB6F1 mice further demonstrated that B13R or B22R gene inactivation diminishes VV virulence, as measured by decreased levels of weight loss and limited viral spread. Finally, rVVs with B13R and B22R deleted elicited potent humoral, T-helper, and cytotoxic T-cell immune responses, revealing that the observed attenuation did not reduce immunogenicity. Therefore, inactivation of immunomodulating genes such as B13R or B22R represents a general method for enhancing the safety of rVV vaccines while maintaining a high level of immunogenicity. Such rVVs could serve as effective vectors for vaccine development and immunotherapy. PMID:14990697

  7. Drug-induced immune hemolytic anemia

    MedlinePlus

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... In some cases, a drug can cause the immune system to mistake your own red blood cells for foreign substances. The body responds by making ...

  8. Bacterial Riboswitches and Ribozymes Potently Activate the Human Innate Immune Sensor PKR.

    PubMed

    Hull, Chelsea M; Anmangandla, Ananya; Bevilacqua, Philip C

    2016-04-15

    The innate immune system provides the first line of defense against pathogens through the recognition of nonspecific patterns in RNA to protect the cell in a generalized way. The human RNA-activated protein kinase, PKR, is a dsRNA binding protein and an essential sensor in the innate immune response, which recognizes viral and bacterial pathogens through their RNAs. Upon activation via RNA-dependent autophosphorylation, PKR phosphorylates the eukaryotic initiation factor eIF2α, leading to termination of translation. PKR has a well-characterized role in recognizing viral RNA, where it binds long stretches of double-stranded RNA nonsequence specifically to promote activation; however, the mechanism by which bacterial RNA activates PKR and the mode by which self RNA avoids activating PKR are unknown. We characterized activation of PKR by three functional bacterial RNAs with pseudoknots and extensive tertiary structure: the cyclic di-GMP riboswitch, the glmS riboswitch-ribozyme, and the twister ribozyme, two of which are ligand-activated. These RNAs were found to activate PKR with comparable potency to long dsRNA. Enzymatic structure mapping in the absence and presence of PKR reveals a clear PKR footprint and provides a structural basis for how these bacterial RNAs activate PKR. In the case of the cyclic di-GMP riboswitch and the glmS riboswitch-ribozyme, PKR appears to dimerize on the peripheral double-stranded regions of the native RNA tertiary structure. Overall, these results provide new insights into how PKR acts as an innate immune signaling protein for the presence of bacteria and suggest a reason for the apparent absence of protein-free riboswitches and ribozymes in the human genome. PMID:27011290

  9. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation.

    PubMed

    McCaskill, Jana L; Marsh, Glenn A; Monaghan, Paul; Wang, Lin-Fa; Doran, Timothy; McMillan, Nigel A J

    2013-01-01

    Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus that causes fatal disease in a wide range of species, including humans. HeV was first described in Australia in 1994, and has continued to re-emerge with increasing frequency. HeV is of significant concern to human health due to its high mortality rate, increasing emergence, absence of vaccines and limited post exposure therapies. Here we investigate the use of RNA interference (RNAi) based therapeutics targeting HeV in conjunction with the TLR3 agonist Poly I:C and show that they are potent inhibitors of HeV infection in vitro. We found that short interfering RNAs (siRNAs) targeting the abundantly expressed N, P and M genes of HeV caused over 95% reduction of HeV virus titre, protein and mRNA. Furthermore, we found that the combination of HeV targeting siRNA and Poly I:C had an additive effect in suppressing HeV infection. Our results demonstrate for the first time that RNAi and type I interferon stimulation are effective inhibitors of HeV replication in vitro and may provide an effective therapy for this highly lethal, zoonotic pathogen. PMID:23691205

  10. Drug-induced immune neutropenia/agranulocytosis.

    PubMed

    Curtis, Brian R

    2014-01-01

    Neutrophils are the most abundant white blood cell in blood and play a critical role in preventing infections as part of the innate immune system. Reduction in neutrophils below an absolute count of 500 cells/pL is termed severe neutropenia or agranulocytosis. Drug-induced immune neutropenia (DIIN) occurs when drug-dependent antibodies form against neutrophil membrane glycoproteins and cause neutrophil destruction. Affected patients have fever, chills, and infections; severe infections left untreated can result in death. Treatment with granulocyte colony-stimulating factor can hasten neutrophil recovery. Cumulative data show that severe neutropenia or agranulocytosis associated with exposure to nonchemotherapy drugs ranges from approximately 1.6 to 15.4 cases per million population per year. Drugs most often associated with neutropenia or agranulocytosis include dipyrone, diclofenac, ticlopidine, calcium dobesilate, spironolactone, antithyroid drugs (e.g., propylthiouracil), carbamazepine, sulfamethoxazole- trimethoprim, [3-lactam antibiotics, clozapine, levamisole, and vancomycin. Assays used for detection of neutrophil drug-dependent antibodies (DDAbs) include flow cytometry, monoclonal antibody immobilization of granulocyte antigens, enzyme-linked immunosorbent assay, immunoblotting, granulocyte agglutination, and granulocytotoxicity. However, testing for neutrophil DDAbs is rarely performed owing to its complexity and lack of availability. Mechanisms proposed for DIIN have not been rigorously studied, but those that have been studied include drug- or hapten-induced antibody formation and autoantibody production against drug metabolite or protein adducts covalently attached to neutrophil membrane proteins. This review will address acute, severe neutropenia caused by neutrophil-reactive antibodies induced by nonchemotherapy drugs-DIIN PMID:25247619

  11. Antiplatelet antibodies in oxaliplatin-induced immune thrombocytopenia

    PubMed Central

    McNamara, Michael J; Curtis, Brian R; McCrae, Keith R

    2014-01-01

    Lesson Drug-induced immune thrombocytopenia may be potentially fatal; here we report the development of severe thrombocytopenia with strong oxaliplatin-dependent antiplatelet antibodies. PMID:25057402

  12. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  13. Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses.

    PubMed

    Bagarazzi, Mark L; Yan, Jian; Morrow, Matthew P; Shen, Xuefei; Parker, R Lamar; Lee, Jessica C; Giffear, Mary; Pankhong, Panyupa; Khan, Amir S; Broderick, Kate E; Knott, Christine; Lin, Feng; Boyer, Jean D; Draghia-Akli, Ruxandra; White, C Jo; Kim, J Joseph; Weiner, David B; Sardesai, Niranjan Y

    2012-10-10

    Despite the development of highly effective prophylactic vaccines against human papillomavirus (HPV) serotypes 16 and 18, prevention of cervical dysplasia and cancer in women infected with high-risk HPV serotypes remains an unmet medical need. We report encouraging phase 1 safety, tolerability, and immunogenicity results for a therapeutic HPV16/18 candidate vaccine, VGX-3100, delivered by in vivo electroporation (EP). Eighteen women previously treated for cervical intraepithelial neoplasia grade 2 or 3 (CIN2/3) received a three-dose (intramuscular) regimen of highly engineered plasmid DNA encoding HPV16 and HPV18 E6/E7 antigens followed by EP in a dose escalation study (0.3, 1, and 3 mg per plasmid). Immunization was well tolerated with reports of mild injection site reactions and no study-related serious or grade 3 and 4 adverse events. No dose-limiting toxicity was noted, and pain was assessed by visual analog scale, with average scores decreasing from 6.2/10 to 1.4 within 10 min. Average peak interferon-γ enzyme-linked immunospot magnitudes were highest in the 3 mg cohort in comparison to the 0.3 and 1 mg cohorts, suggesting a trend toward a dose effect. Flow cytometric analysis revealed the induction of HPV-specific CD8(+) T cells that efficiently loaded granzyme B and perforin and exhibited full cytolytic functionality in all cohorts. These data indicate that VGX-3100 is capable of driving robust immune responses to antigens from high-risk HPV serotypes and could contribute to elimination of HPV-infected cells and subsequent regression of the dysplastic process. PMID:23052295

  14. Induced hyperlipaemia and immune challenge in locusts.

    PubMed

    Mullen, Lisa M; Lightfoot, Mary E; Goldsworthy, Graham J

    2004-05-01

    Injections of immunogens, such as beta-1,3-glucan or lipopolysaccharide (LPS), bring about a marked hyperlipaemia with associated changes in lipophorins and apolipophorin-III in the haemolymph of Locusta migratoria. These changes are similar to those observed after injection of adipokinetic hormone (AKH). The possibility that endogenous AKH is released as part of the response to these immunogens is investigated using passive immunisation against AKH-I, and measurement of AKH-I titre in the haemolymph after injection of immunogens. The data presented show that, despite the similarity of the changes brought about by the presence of immunogens in the haemolymph to those brought about by AKH, there is no release of endogenous AKH after injection of laminarin or LPS. A direct effect of the immunogens on release of neutral lipids by the fat body cannot be demonstrated in vitro, and the mechanism by which hyperlipaemia is induced during immune challenge remains uncertain. PMID:15121454

  15. U1 RNA Induces Innate Immunity Signaling

    PubMed Central

    Hoffman, Robert W.; Gazitt, Tal; Foecking, Mark F.; Ortmann, Robert A.; Misfeldt, Michael; Jorgenson, Rebecca; Young, Steven L.; Greidinger, Eric L.

    2006-01-01

    Objective The U1–70-kd RNP is a prominent target of autoimmunity in connective tissue diseases. In this study, we explored whether its endogenous ligand, U1 RNA, mediates a proimmune signal and may be immunogenic. Methods We assayed the proliferation of control and MyD88-knockout splenocytes in response to in vitro–synthesized U1 RNA, and measured interleukin-6 (IL-6) and IL-8 secretion induced by U1 RNA in a human cell line competent for signaling through Toll-like receptor 3 (TLR-3) and TLR-5. Results Treatment with U1 RNA or with poly(I-C), a known agonist of TLR-3, induced approximately twice as much control splenocyte proliferation as did treatment with RNase-digested U1 RNA. Proliferation in response to either poly(I-C) or U1 RNA by MyD88-knockout splenocytes was similarly attenuated. Similar to poly(I-C), U1 RNA induced significant secretion of both IL-6 and IL-8 from a TLR-3–expressing human cell line; in contrast, the TLR-5 agonist flagellin induced predominantly IL-8 secretion. Pretreatment of U1 RNA with RNase abolished IL-6 and IL-8 secretion. Conclusion U1 RNA is capable of inducing manifestations consistent with TLR-3 activation. The ability of U1 RNA (which has a substantial double-stranded secondary structure) to activate TLR-3 may contribute to the immunogenicity of the U1–70-kd autoantigen. Stimulation of innate immunity by native RNA molecules with a double-stranded secondary structure may help explain the high prevalence of autoimmunity to RNA binding proteins. PMID:15457457

  16. Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice.

    PubMed

    Hammerschmidt, Swantje I; Friedrichsen, Michaela; Boelter, Jasmin; Lyszkiewicz, Marcin; Kremmer, Elisabeth; Pabst, Oliver; Förster, Reinhold

    2011-08-01

    Diarrheal diseases represent a major health burden in developing countries. Parenteral immunization typically does not induce efficient protection against enteropathogens because it does not stimulate migration of immune cells to the gut. Retinoic acid (RA) is critical for gut immunity, inducing upregulation of gut-homing receptors on activated T cells. In this study, we have demonstrated that RA can redirect immune responses elicited by s.c. vaccination of mice from skin-draining inguinal LNs (ingLNs) to the gut. When present during priming, RA induced robust upregulation of gut-homing receptors in ingLNs, imprinting gut-homing capacity on T cells. Concurrently, RA triggered the generation of gut-tropic IgA+ plasma cells in ingLNs and raised the levels of antigen-specific IgA in the intestinal lumen and blood. RA applied s.c. in vivo induced autonomous RA production in ingLN DCs, further driving efficient induction of gut-homing molecules on effector cells. Importantly, RA-supplemented s.c. immunization elicited a potent immune response in the small intestine that protected mice from cholera toxin–induced diarrhea and diminished bacterial loads in Peyer patches after oral infection with Salmonella. Thus, the use of RA as a gut-homing navigator represents a powerful tool to induce protective immunity in the intestine after s.c. immunization, offering what we believe to be a novel approach for vaccination against enteropathogens. PMID:21737878

  17. Distinct Pathways of Humoral and Cellular Immunity Induced with the Mucosal Administration of a Nanoemulsion Adjuvant

    PubMed Central

    Makidon, Paul E.; Janczak, Katarzyna W.; Blanco, Luz P.; Swanson, Benjamin; Smith, Douglas M.; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F.; Baker, James R.

    2014-01-01

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1– and Th-17–balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell–mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses. PMID:24532579

  18. Drug-induced immune hemolytic anemia

    MedlinePlus

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... Drugs that can cause this type of hemolytic anemia include: Cephalosporins (a class of antibiotics), most common ...

  19. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG

    PubMed Central

    Villarreal, Daniel O; Walters, Jewell; Laddy, Dominick J; Yan, Jian; Weiner, David B

    2014-01-01

    Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens. PMID:25424922

  20. Interleukin-15-Induced CD56+ Myeloid Dendritic Cells Combine Potent Tumor Antigen Presentation with Direct Tumoricidal Potential

    PubMed Central

    Anguille, Sébastien; Lion, Eva; Tel, Jurjen; de Vries, I. Jolanda M; Couderé, Karen; Fromm, Phillip D.; Van Tendeloo, Viggo F.

    2012-01-01

    Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols. PMID:23284789

  1. Elimination of IL-10 inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent anti-tumor activity

    PubMed Central

    Cecil, Denise L.; Holt, Gregory E.; Park, Kyong Hwa; Gad, Ekram; Rastetter, Lauren; Childs, Jennifer; Higgins, Doreen; Disis, Mary L.

    2014-01-01

    Immunization against self-tumor antigens can induce T-regulatory cells which inhibit proliferation of Type I CD4+ T-helper (Th1) and CD8+ cytotoxic T-cells. Type I T-cells are required for potent anti-tumor immunity. We questioned whether immunosuppressive epitopes could be identified and deleted from a cancer vaccine targeting IGFBP-2 and enhance vaccine efficacy. Screening breast cancer patient lymphocytes with IFN-γ and IL-10 ELISPOT, we found epitopes in the N-terminus of IGFBP-2 that elicited predominantly Th1 while the C-terminus stimulated Th2 and mixed Th1/Th2 responses. Epitope-specific Th2 demonstrated a higher functional avidity for antigen than epitopes which induced IFN-γ (p=0.014). We immunized TgMMTV-neu mice with DNA constructs encoding IGFBP-2 N-and C-termini. T-cell lines expanded from the C-terminus vaccinated animals secreted significantly more Type II cytokines than those vaccinated with the N-terminus and could not control tumor growth when infused into tumor-bearing animals. In contrast, N-terminus epitope-specific T-cells secreted Th1 cytokines and significantly inhibited tumor growth, as compared with naïve T-cells, when adoptively transferred (p=0.005). To determine whether removal of Th2 inducing epitopes had any effect on the vaccinated anti-tumor response, we immunized mice with the N-terminus, C-terminus and a mix of equivalent concentrations of both vaccines. The N-terminus vaccine significantly inhibited tumor growth (p<0.001) as compared to the C-terminus vaccine which had no anti-tumor effect. Mixing the C-terminus with the N-terminus vaccine abrogated the anti-tumor response of the N-terminus vaccine alone. The clinical efficacy of cancer vaccines targeting self-tumor antigens may be greatly improved by identification and removal of immunosuppressive epitopes. PMID:24778415

  2. Human Anti-CD40 Antibody and Poly IC:LC Adjuvant Combination Induces Potent T Cell Responses in the Lung of Non-Human Primates1

    PubMed Central

    Thompson, Elizabeth A; Liang, Frank; Lindgren, Gustaf; Sandgren, Kerrie J; Quinn, Kylie M; Darrah, Patricia A; Koup, Richard A; Seder, Robert A; Kedl, Ross M; Loré, Karin

    2015-01-01

    Non-live vaccine platforms that induce potent cellular immune responses in mucosal tissue would have broad application for vaccines against infectious diseases and tumors. Induction of cellular immunity could be optimized by targeted activation of multiple innate and co-stimulatory signaling pathways, such as CD40 or toll-like receptors (TLRs). In this study, we evaluated immune activation and elicitation of T cell responses in non-human primates (NHPs) after immunization with peptide antigens adjuvanted with an agonistic αCD40Ab, with or without the TLR3 ligand poly IC:LC. We found that intravenous administration of the αCD40Ab induced rapid and transient innate activation characterized by IL-12 production and upregulated co-stimulatory and lymph node homing molecules on dendritic cells. Using fluorescently-labeled Abs for in vivo tracking, the αCD40Ab bound to all leucocytes, except T cells, and disseminated to multiple organs. CD4+ and CD8+ T cell responses were significantly enhanced when the αCD40Ab was co-administered with poly IC:LC compared to either adjuvant given alone and were almost exclusively compartmentalized to the lung. Notably, antigen-specific T cells in the bronchoalveolar lavage were sustained at ~5–10%. These data indicate that systemic administration of αCD40Ab may be particularly advantageous for vaccines and/or therapies requiring T cell immunity in the lung. PMID:26123354

  3. Human Anti-CD40 Antibody and Poly IC:LC Adjuvant Combination Induces Potent T Cell Responses in the Lung of Nonhuman Primates.

    PubMed

    Thompson, Elizabeth A; Liang, Frank; Lindgren, Gustaf; Sandgren, Kerrie J; Quinn, Kylie M; Darrah, Patricia A; Koup, Richard A; Seder, Robert A; Kedl, Ross M; Loré, Karin

    2015-08-01

    Nonlive vaccine platforms that induce potent cellular immune responses in mucosal tissue would have broad application for vaccines against infectious diseases and tumors. Induction of cellular immunity could be optimized by targeted activation of multiple innate and costimulatory signaling pathways, such as CD40 or TLRs. In this study, we evaluated immune activation and elicitation of T cell responses in nonhuman primates after immunization with peptide Ags adjuvanted with an agonistic anti-CD40Ab, with or without the TLR3 ligand poly IC:LC. We found that i.v. administration of the anti-CD40Ab induced rapid and transient innate activation characterized by IL-12 production and upregulated costimulatory and lymph node homing molecules on dendritic cells. Using fluorescently labeled Abs for in vivo tracking, we found that the anti-CD40Ab bound to all leukocytes, except T cells, and disseminated to multiple organs. CD4(+) and CD8(+) T cell responses were significantly enhanced when the anti-CD40Ab was coadministered with poly IC:LC compared with either adjuvant given alone and were almost exclusively compartmentalized to the lung. Notably, Ag-specific T cells in the bronchoalveolar lavage were sustained at ∼5-10%. These data indicate that systemic administration of anti-CD40Ab may be particularly advantageous for vaccines and/or therapies that require T cell immunity in the lung. PMID:26123354

  4. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut.

    PubMed

    Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R; Scott, June R; Amara, Rama Rao

    2015-11-15

    The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV. PMID:26482408

  5. A case of oxaliplatin-induced immune-mediated thrombocytopenia

    PubMed Central

    Suh, Seong Eun; Jang, Moon Ju; Chong, So Young; Aster, Richard H.; Curtis, Brian R.

    2014-01-01

    Oxaliplatin is a platinum compound used in patients with gastrointestinal malignancies. It is known to evoke a drug-induced immune-mediated thrombocytopenia, which has not been reported in Korea. We describe a 53-year-old man who developed oxaliplatin-induced immune-mediated thrombocytopenia during chemotherapy for colon cancer. Oxaliplatin-dependent IgG platelet antibodies were detected in his serum on flow cytometry. He was treated with immunoglobulin and corticosteroids without any complications. Physicians should consider oxaliplatin-induced immune-mediated thrombocytopenia, when a sudden, isolated thrombocytopenia develops during chemotherapy with oxaliplatin. PMID:24724069

  6. Mucosal and systemic immune responses induced by a single time vaccination strategy in mice.

    PubMed

    González Aznar, Elizabeth; Romeu, Belkis; Lastre, Miriam; Zayas, Caridad; Cuello, Maribel; Cabrera, Osmir; Valdez, Yolanda; Fariñas, Mildrey; Pérez, Oliver

    2015-08-01

    Vaccination is considered by the World Health Organization as the most cost-effective strategy for controlling infectious diseases. In spite of great successes with vaccines, many infectious diseases are still leading killers, because of the inadequate coverage of many vaccines. Several factors have been responsible: number of doses, high vaccine reactogenicity, vaccine costs, vaccination policy, among others. Contradictorily, few vaccines are of single dose and even less of mucosal administration. However, more common infections occur via mucosa, where secretory immunoglobulin A plays an essential role. As an alternative, we proposed a novel protocol of vaccination called Single Time Vaccination Strategy (SinTimVaS) by immunizing 2 priming doses at the same time: one by mucosal route and the other by parenteral route. Here, the mucosal and systemic responses induced by Finlay adjuvants (AF Proteoliposome 1 and AF Cochleate 1) implementing SinTimVaS in BALB/c mice were evaluated. One intranasal dose of AF Cochleate 1 and an intramuscular dose of AF Proteoliposome 1 adsorbed onto aluminum hydroxide, with bovine serum albumin or tetanus toxoid as model antigens, administrated at the same time, induced potent specific mucosal and systemic immune responses. Also, we demonstrated that SinTimVaS using other mucosal routes like oral and sublingual, in combination with the subcutaneous route elicits immune responses. SinTimVaS, as a new immunization strategy, could increase vaccination coverage and reduce time-cost vaccines campaigns, adding the benefits of immune response in mucosa. PMID:26140382

  7. Murine Dendritic Cells Pulsed with Whole Tumor Lysates Mediate Potent Antitumor Immune Responses in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Fields, R. C.; Shimizu, K.; Mule, J. J.

    1998-08-01

    The highly efficient nature of dendritic cells (DC) as antigen-presenting cells raises the possibility of uncovering in tumor-bearing hosts very low levels of T cell reactivity to poorly immunogenic tumors that are virtually undetectable by other means. Here, we demonstrate the in vitro and in vivo capacities of murine bone marrow-derived, cytokine-driven DC to elicit potent and specific anti-tumor responses when pulsed with whole tumor lysates. Stimulation of naive spleen-derived T cells by tumor lysate-pulsed DC generated tumor-specific proliferative cytokine release and cytolytic reactivities in vitro. In addition, in two separate strains of mice with histologically distinct tumors, s.c. injections of DC pulsed with whole tumor lysates effectively primed these animals to reject subsequent lethal challenges with viable parental tumor cells and, important to note, also mediated significant reductions in the number of metastases established in the lungs. Tumor rejection depended on host-derived CD8+ T cells and, to a lesser extent, CD4+ T cells. Spleens from mice that had rejected their tumors contained specific precursor cytotoxic T lymphocytes. The use of whole tumor lysates as a source of tumor-associated antigen(s) for pulsing of DC circumvents several limitations encountered with other methods as well as provides certain distinct advantages, which are discussed. These data serve as rationale for our recent initiation of a phase I clinical trial of immunization with autologous tumor lysate-pulsed DC in adult and pediatric cancer patients.

  8. Systemic immunogenicity of para-Phenylenediamine and Diphenylcyclopropenone: two potent contact allergy-inducing haptens.

    PubMed

    Svalgaard, Jesper Dyrendom; Særmark, Carina; Dall, Morten; Buschard, Karsten; Johansen, Jeanne D; Engkilde, Kåre

    2014-01-01

    p-Phenylenediamine (PPD) and Diphenylcyclopropenone (DPCP) are two potent haptens. Both haptens are known to cause delayed-type hypersensitivity, involving a cytokine response and local infiltration of T-cell subpopulations, resulting in contact dermatitis. We investigated the systemic immune effects of PPD and DPCP, two relatively unexplored skin allergens. The dorsal sides of the ears of BALB/c mice were exposed to PPD or DPCP (0.1% w/v or 0.01% w/v), or vehicle alone. Mice were treated once daily for 3 days (induction period) and subsequently twice per week for 8 weeks. Local and systemic immune responses in the auricular and pancreatic lymph nodes, spleen, liver, serum, and ears were analyzed with cytokine profiling MSD, flow cytometry, and qPCR. Ear swelling increased significantly in mice treated with 1% PPD, 0.01% DPCP or 0.1% DPCP, compared with vehicle treatment, indicating that the mice were sensitized and that there was a local inflammation. Auricular lymph nodes, pancreatic lymph nodes, spleen, and liver showed changes in regulatory T-cell, B-cell, and NKT-cell frequencies, and increased activation of CD8(+) T cells and B cells. Intracellular cytokine profiling revealed an increase in the IFN-γ- and IL-4-positive NKT cells present in the liver following treatment with both haptens. Moreover, we saw a tendency toward a systemic increase in IL-17A. We observed systemic immunological effects of PPD and DPCP. Furthermore, concentrations too low to increase ear thickness and cause clinical symptoms may still prime the immune system. These systemic immunological effects may potentially predispose individuals to certain diseases. PMID:24385090

  9. A novel dendritic cell-targeted lentiviral vector, encoding Ag85A-ESAT6 fusion gene of Mycobacterium tuberculosis, could elicit potent cell-mediated immune responses in mice.

    PubMed

    Shakouri, Mehdi; Moazzeni, Seyed Mohammad; Ghanei, Mostafa; Arashkia, Arash; Etemadzadeh, Mohammad Hossein; Azadmanesh, Kayhan

    2016-07-01

    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), leading to high mortality worldwide. It is well-established that cellular immunity plays a critical role to control Mtb infection. Dendritic Cells (DCs) are potent antigen presenting cells, which play an important role to prime cell-mediated immune responses. In vivo targeting of DCs has been shown to induce both strong cellular immunity and protection against tumor challenges. The aim of the present study was not only to assess the immunizing potential of a novel DC-targeted recombinant lentivirus expressing fusion antigen Ag85A-ESAT6 of Mtb, but also to compare it with a recombinant lentivirus with broad cellular tropism expressing the same antigen in mice. The findings demonstrated that our novel recombinant DC-targeted lentivector was able to successfully transduce and express the fusion antigen Ag85A-E6 in vitro and in vivo. Moreover, a single footpad injection of targeted lentivectors could elicit strong T-helper 1 (Th1) immunity against the above mentioned antigen, as indicated by the specific high-level production of IFN-γ and IL-2 using spleen lymphocytes and lymphoproliferative responses. Despite of these promising results, more attempts are required to elucidate the protective and therapeutic efficacy of this approach in future. PMID:27267270

  10. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    NASA Astrophysics Data System (ADS)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  11. Allogeneic IgG combined with dendritic cell stimuli induces anti-tumor T cell immunity

    PubMed Central

    Carmi, Yaron; Spitzer, Matthew H.; Linde, Ian L.; Burt, Bryan M; Prestwood, Tyler R.; Perlman, Nikola; Davidson, Matthew G.; Kenkel, Justin A.; Segal, Ehud; Pusapati, Ganesh V.; Bhattacharya, Nupur; Engleman, Edgar G.

    2015-01-01

    While cancers grow in their hosts and evade host immunity through immunoediting and immunosuppression1–5, tumors are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumors are reliably rejected by host T cells, even when the tumor and host share the same major histocompatibility complex (MHC) alleles, the most potent determinants of transplant rejection6–10. How such tumor-eradicating immunity is initiated remains unknown, though elucidating this process could provide a roadmap for inducing similar responses against naturally arising tumors. We found that allogeneic tumor rejection is initiated by naturally occurring tumor-binding IgG antibodies, which enable dendritic cells (DC) to internalize tumor antigens and subsequently activate tumor-reactive T cells. We exploited this mechanism to successfully treat autologous and autochthonous tumors. Either systemic administration of DC loaded with allogeneic IgG (alloIgG)-coated tumor cells or intratumoral injection of alloIgG in combination with DC stimuli induced potent T cell mediated anti-tumor immune responses, resulting in tumor eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumors and metastases, as well as the injected primary tumors. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumor antigens after culture with alloIgG-loaded DC, recapitulating our findings in mice. These results reveal that tumor-binding alloIgG can induce powerful anti-tumor immunity that can be exploited for cancer immunotherapy. PMID:25924063

  12. Ultraviolet-induced alloantigen-specific immunosuppression in transplant immunity

    PubMed Central

    Hori, Tomohide; Kuribayashi, Kagemasa; Saito, Kanako; Wang, Linan; Torii, Mie; Uemoto, Shinji; Iida, Taku; Yagi, Shintaro; Kato, Takuma

    2015-01-01

    After the first observation of the immunosuppressive effects of ultraviolet (UV) irradiation was reported in 1974, therapeutic modification of immune responses by UV irradiation began to be investigated in the context immunization. UV-induced immunosuppression is via the action of regulatory T cells (Tregs). Antigen-specific Tregs were induced by high-dose UV-B irradiation before antigen immunization in many studies, as it was considered that functional alteration and/or modulation of antigen-presenting cells by UV irradiation was required for the induction of antigen-specific immunosuppression. However, it is also reported that UV irradiation after immunization induces antigen-specific Tregs. UV-induced Tregs are also dominantly transferable, with interleukin-10 being important for UV-induced immunosuppression. Currently, various possible mechanisms involving Treg phenotype and cytokine profile have been suggested. UV irradiation accompanied by alloantigen immunization induces alloantigen-specific transferable Tregs, which have potential therapeutic applications in the transplantation field. Here we review the current status of UV-induced antigen-specific immunosuppression on the 40th anniversary of its discovery. PMID:25815267

  13. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Li, Yuhuan; Jiao, Jun; Hu, Hong-Ming

    2011-10-01

    Therapeutic cancer vaccination is an attractive strategy because it induces T cells of the immune system to recognize and kill tumour cells in cancer patients. However, it remains difficult to generate large numbers of T cells that can recognize the antigens on cancer cells using conventional vaccine carrier systems. Here we show that α-Al2O3 nanoparticles can act as an antigen carrier to reduce the amount of antigen required to activate T cells in vitro and in vivo. We found that α-Al2O3 nanoparticles delivered antigens to autophagosomes in dendritic cells, which then presented the antigens to T cells through autophagy. Immunization of mice with α-Al2O3 nanoparticles that are conjugated to either a model tumour antigen or autophagosomes derived from tumour cells resulted in tumour regression. These results suggest that α-Al2O3 nanoparticles may be a promising adjuvant in the development of therapeutic cancer vaccines.

  14. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors.

    PubMed

    Schölch, Sebastian; Rauber, Conrad; Tietz, Alexandra; Rahbari, Nuh N; Bork, Ulrich; Schmidt, Thomas; Kahlert, Christoph; Haberkorn, Uwe; Tomai, Mark A; Lipson, Kenneth E; Carretero, Rafael; Weitz, Jürgen; Koch, Moritz; Huber, Peter E

    2015-03-10

    In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy. PMID:25609199

  15. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors

    PubMed Central

    Tietz, Alexandra; Rahbari, Nuh N.; Bork, Ulrich; Schmidt, Thomas; Kahlert, Christoph; Haberkorn, Uwe; Tomai, Mark A.; Lipson, Kenneth E.; Carretero, Rafael; Weitz, Jürgen; Koch, Moritz; Huber, Peter E.

    2015-01-01

    In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy. PMID:25609199

  16. Immune Escape Mechanisms are Plasmodium's Secret Weapons Foiling the Success of Potent and Persistently Efficacious Malaria Vaccines.

    PubMed

    Farooq, Fouzia; Bergmann-Leitner, Elke S

    2015-12-01

    Despite decades of active research, an efficacious vaccine mediating long-term protection is still not available. This review highlights various mechanisms and the different facets by which the parasites outsmart the immune system. An understanding of how the parasites escape immune recognition and interfere with the induction of a protective immune response that provides sterilizing immunity will be crucial to vaccine design. PMID:26342537

  17. Active immunization by a dengue virus-induced cytokine.

    PubMed Central

    Chaturvedi, U C; Mukerjee, R; Dhawan, R

    1994-01-01

    Dengue type 2 virus (DV)-induced cytotoxic factor (CF) is capable of reproducing various pathological lesions in mice that are seen in human dengue. The present study was undertaken to investigate the protective effect of active immunization of mice with CF. Mice were immunized with 5 microgram of CF and prevention of CF-induced increase in capillary permeability and damage to the blood-brain barrier were studied at weekly intervals, up to 48 weeks, by challenging with 3 microgram of CF. Maximum protection against increase in capillary permeability and damage to the blood-brain barrier was observed in week 4 after immunization. A breakthrough in the protection occurred with higher doses of CF in a dose-dependent manner. Challenge with a lethal intracerebral (i.c.) dose of DV showed significantly prolonged mean survival time and delayed onset of symptoms of sickness in the immunized mice compared with the normal mice, but the titre of the virus in the brain was similar in the two groups. On i.p. challenge with the virus the protection against damage to the blood-brain barrier was 86 +/- 7% at week 4 and 17 +/- 4% at week 26 after immunization. Sera obtained from the immunized mice showed the presence of CF-specific antibodies by ELISA, Western blot, and by neutralization of the cytotoxic activity of CF in vitro. The present study describes successful prevention of a cytokine-induced pathology by specific active immunization. PMID:8187327

  18. Immune markers and correlates of protection for vaccine induced immune responses.

    PubMed

    Thakur, Aneesh; Pedersen, Lasse E; Jungersen, Gregers

    2012-07-13

    Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For T(H)1 type responses, antigen-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination, through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine induced immune response against chronic infections and how successful they have been in defining the protective immunity in human and veterinary medicine. PMID:22658928

  19. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania.

    PubMed

    Collin, Nicolas; Gomes, Regis; Teixeira, Clarissa; Cheng, Lily; Laughinghouse, Andre; Ward, Jerrold M; Elnaiem, Dia-Eldin; Fischer, Laurent; Valenzuela, Jesus G; Kamhawi, Shaden

    2009-05-01

    Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-gamma at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG(2) antibody levels and significant IFN-gamma production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-gamma and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response. PMID:19461875

  20. Antigens from Rhipicephalus sanguineus ticks elicit potent cell-mediated immune responses in resistant but not in susceptible animals.

    PubMed

    Ferreira, Beatriz R; Szabó, Matias J P; Cavassani, Karen A; Bechara, Gervásio H; Silva, João S

    2003-07-10

    In the present study we compared the immunological reactions between Rhipicephalus sanguineus tick-infested susceptible (dogs and mice) and tick-resistant hosts (guinea pigs), elucidating some of the components of efficient protective responses against ticks. We found that T-cells from guinea pigs infested with adult ticks proliferate vigorously in the presence of concanavalin A (ConA), whereas ConA-induced cell proliferation of tick-infested mice and dogs was significantly decreased at 43.1 and 94.0%, respectively, compared to non-infested controls. Moreover, cells from mice and dogs submitted to one or three successive infestations did not exhibit a T-cell proliferative response to tick antigens, whilst cells from thrice tick-infested guinea pigs, when cultured with either a tick extract or tick saliva, displayed a significant increase in cell proliferation. Also, we evaluated the response of tick-infested mice to a cutaneous hypersensitivity test induced by a tick extract. Tick-infested mice developed a significant immediate reaction, whereby a 29.9% increase in the footpad thickness was observed. No delayed-type hypersensitivity (DTH) reaction was detected. Finally, the differential cell count at the tick attachment site in repeatedly infested mice exhibited a 6.6- and 4.1-fold increase in the percentage of eosinophils and neutrophils, respectively, compared to non-infested animals, while a decrease of 77.0-40.9 in the percentage of mononuclear cells was observed. The results of the cutaneous hypersensitivity test and the cellular counts at the tick feeding site for mice support the view that tick-infested mice develop an immune response to R. sanguineus ticks very similar to dogs, the natural host of this species of tick, but very different from guinea pigs (resistant host), which develop a DTH reaction in addition to a basophil and mononuclear cell infiltration at the tick-attachment site. In conclusion, saliva introduced during tick infestations reduces the

  1. New-to-nature sophorose analog: a potent inducer for gene expression in Trichoderma reesei.

    PubMed

    Huang, Tom Tao; Wages, John M

    2016-04-01

    Controlled hydrolysis of lactonic sophorolipids from Starmerella bombicola yields a previously undescribed sophorose analog that potently induces cellulase in Trichoderma reesei Rut-C30. Acid treatment of natural sophorolipids results in a mixture of monoacetylated, deacetylated, and diacetylated sophorolipids in acidic and lactonic forms. Isolation of the active components of the mixture, followed by structure determination by MS and NMR, reveals a new chemical entity, in which the lactone ring has been opened at the C-1' rather than at the C-4″ position of the sophorose moiety. This sophorose ester is resistant to degradation by the host and is at least 28 times more powerful an inducer than sophorose in shake-flask culture. Even at low concentrations (0.05 mM), the chemically modified sophorolipid effectively induces cellulase. With further improvements, this highly enabling technology can potentially reduce the cost of enzymes produced in T. reesei and can facilitate the rapid deployment of enzyme plants to support the nascent cellulosic biofuels and biochemicals industries. PMID:26920480

  2. Knockdown of Burton's tyrosine kinase confers potent protection against sepsis-induced acute lung injury.

    PubMed

    Zhou, Panyu; Ma, Bing; Xu, Shuogui; Zhang, Shijie; Tang, Hongtai; Zhu, Shihui; Xiao, Shichu; Ben, Daofeng; Xia, Zhaofan

    2014-11-01

    Sepsis is a common and critical complication in surgical patients that often leads to multiple organ failure syndrome (MOFS), including acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite intensive supportive care and treatment modalities, the mortality of these patients remains high. In this study, we investigated the role of Burton's tyrosine kinase (BTK), a member of the Btk/Tec family of cytoplasmic tyrosine kinases, in the pathogenesis of sepsis, and evaluated the protective effect of in vivo Btk RNA interference in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. After intratracheal injection of Btk siRNA, the mice were then subjected to CLP to induce sepsis. The results demonstrated that this approach conferred potent protection against sepsis-induced ALI, as evidenced by a significant reduction in pathological scores, epithelial cell apoptosis, pulmonary edema, vascular permeability, and the expression of inflammatory cytokines and neutrophil infiltration in the lung tissues of septic mice. In addition, RNA interference of Btk significantly suppressed p-38 and iNOS signaling pathways in transduced alveolar macrophages in vitro. These results identify a novel role for BTK in lethal sepsis and provide a potential new therapeutic approach to sepsis and ALI. PMID:24906236

  3. Characterization of Potent SMAC Mimetics that Sensitize Cancer Cells to TNF Family-Induced Apoptosis.

    PubMed

    Welsh, Kate; Milutinovic, Snezana; Ardecky, Robert J; Gonzalez-Lopez, Marcos; Ganji, Santhi Reddy; Teriete, Peter; Finlay, Darren; Riedl, Stefan; Matsuzawa, Shu-Ichi; Pinilla, Clemencia; Houghten, Richard; Vuori, Kristiina; Reed, John C; Cosford, Nicholas D P

    2016-01-01

    Members of the Inhibitor of APoptosis (IAP) protein family suppress apoptosis within tumor cells, particularly in the context of immune cell-mediated killing by the tumor necrosis factor (TNF) superfamily cytokines. Most IAPs are opposed endogenously by the second mitochondrial activator of caspases (SMAC), which binds to selected baculovirus IAP repeat (BIR) domains of IAPs to displace interacting proteins. The development of SMAC mimetics as novel anticancer drugs has gained impetus, with several agents now in human clinical trials. To further understand the cellular mechanisms of SMAC mimetics, we focused on IAP family members cIAP1 and cIAP2, which are recruited to TNF receptor complexes where they support cell survival through NF-κB activation while suppressing apoptosis by preventing caspase activation. We established fluorescence polarization (FP) assays for the BIR2 and BIR3 domains of human cIAP1 and cIAP2 using fluorochrome-conjugated SMAC peptides as ligands. A library of SMAC mimetics was profiled using the FP assays to provide a unique structure activity relationship (SAR) analysis compared to previous assessments of binding to XIAP. Potent compounds displayed mean inhibitory binding constants (Ki) of 9 to 27 nM against the BIR3 domains of cIAP1 and cIAP2, respectively. Selected compounds were then characterized using cytotoxicity assays in which a cytokine-resistant human tumor cell line was sensitized to either TNF or lymphotoxin-α (LT-α). Cytotoxicity correlated closely with cIAP1 and cIAP2 BIR3 binding activity with the most potent compounds able to reduce cell viability by 50%. Further testing demonstrated that active compounds also inhibit RIP1 binding to BIR3 of cIAP1 and cIAP2 in vitro and reduce steady-state cIAP1 protein levels in cells. Altogether, these data inform the SAR for our SMAC mimetics with respect to cIAP1 and cIAP2, suggesting that these IAP family members play an important role in tumor cell resistance to cytotoxicity

  4. The route of immunization with adenoviral vaccine influences the recruitment of cytotoxic T lymphocytes in the lung that provide potent protection from influenza A virus.

    PubMed

    Suda, Tatsuya; Kawano, Masaaki; Nogi, Yasuhisa; Ohno, Naohito; Akatsuka, Toshitaka; Matsui, Masanori

    2011-09-01

    Virus-specific cytotoxic T lymphocytes (CTLs) in the lung are considered to confer protection from respiratory viruses. Several groups demonstrated that the route of priming was likely to have an implication for the trafficking of antigen-specific CTLs. Therefore, we investigated whether the route of immunization with adenoviral vaccine influenced the recruitment of virus-specific CTLs in the lung that should provide potent protection from influenza A virus. Mice were immunized with recombinant adenovirus expressing the matrix (M1) protein of influenza A virus via various immunization routes involving intraperitoneal, intranasal, intramuscular, or intravenous administration as well as subcutaneous administration in the hind hock. We found that the immunization route dramatically impacted the recruitment of M1-specific IFN-γ(+) CD8(+) T cells both in the lung and the spleen. Surprisingly, hock immunization was most effective for the accumulation in the lung of IFN-γ-producing CD8(+) T cells that possessed M1-specific cytolytic activity. Further, antigen-driven IFN-γ(+) CD8(+) T cells in the lung, but not in the spleen, were likely to be correlated with the resistance to challenge with influenza A virus. These results may improve our ability to design vaccines that target virus-specific CTL responses to respiratory viruses such as influenza A virus. PMID:21722671

  5. CRISPR-Induced Distributed Immunity in Microbial Populations

    PubMed Central

    Young, Mark J.; Weitz, Joshua S.; Whitaker, Rachel J.

    2014-01-01

    In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities. PMID:25000306

  6. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway

    PubMed Central

    Wan, Gang; Xie, Weidong; Liu, Zhenyan; Xu, Wei; Lao, Yuanzhi; Huang, Nunu; Cui, Kai; Liao, Meijian; He, Jie; Jiang, Yuyang; Yang, Burton B; Xu, Hongxi; Xu, Naihan; Zhang, Yaou

    2014-01-01

    Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3′ untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway. PMID:24262949

  7. Induced immunity against hepatitis B virus.

    PubMed

    Said, Zeinab Nabil Ahmed; Abdelwahab, Kouka Saadeldin

    2015-06-28

    Prevention of hepatitis B virus (HBV) infection with its consequent development of HBV chronic liver disease and hepatocellular carcinoma is a global mandatory goal. Fortunately, safe and effective HBV vaccines are currently available. Universal hepatitis B surface antigen HBV vaccination coverage is almost done. Growing knowledge based upon monitoring and surveillance of HBV vaccination programs has accumulated and the policy of booster vaccination has been evaluated. This review article provides an overview of the natural history of HBV infection, immune responses and the future of HBV infection. It also summarizes the updated sources, types and uses of HBV vaccines, whether in the preclinical phase or in the post-field vaccination. PMID:26140085

  8. Induced immunity against hepatitis B virus

    PubMed Central

    Said, Zeinab Nabil Ahmed; Abdelwahab, Kouka Saadeldin

    2015-01-01

    Prevention of hepatitis B virus (HBV) infection with its consequent development of HBV chronic liver disease and hepatocellular carcinoma is a global mandatory goal. Fortunately, safe and effective HBV vaccines are currently available. Universal hepatitis B surface antigen HBV vaccination coverage is almost done. Growing knowledge based upon monitoring and surveillance of HBV vaccination programs has accumulated and the policy of booster vaccination has been evaluated. This review article provides an overview of the natural history of HBV infection, immune responses and the future of HBV infection. It also summarizes the updated sources, types and uses of HBV vaccines, whether in the preclinical phase or in the post-field vaccination. PMID:26140085

  9. Fenugreek potent activity against nitrate-induced diabetes in young and adult male rats.

    PubMed

    El-Wakf, Azza M; Hassan, Hanaa A; Mahmoud, Ashraf Z; Habza, Marwa N

    2015-05-01

    Nitrate has described as an endocrine disruptor that promotes onset of diabetes. This study was undertaken to evaluate diabetic effect of high nitrate intake in young and adult male rats and its amelioration by fenugreek administration. The study revealed significant increase in serum glucose and blood glycosylated hemoglobin (HbA1c%), while serum insulin and liver glycogen were decreased among nitrate exposed animals, in particular the young group. A significant reduction in the body weight gain and serum thyroid hormones (T4 & T3) was also recorded. Further reduction in serum levels of urea and creatinine, as well as total protein in serum, liver and pancreas was demonstrated, with elevation in their levels in the urine of all nitrate exposed groups. Meanwhile, the activity of serum transaminases (ALT and AST) was increased, with decline in their activity in the liver tissue. In addition, an elevation in serum total bilirubin, tissues (liver and pancreas) nitric oxide and lipid profile, as well as liver activity of glucose-6-phosphatase was recorded. Fenugreek administration to nitrate exposed rats was found to be effective in alleviating hyperglycemia and other biochemical changes characterizing nitrate-induced diabetes. So, fenugreek can be considered to possess potent activity against onset of nitrate induced-diabetes. PMID:24615531

  10. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network

    PubMed Central

    Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan

    2015-01-01

    Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088

  11. [Immune-regulating effect of phenibut under lipopolysaccharide-induced immune stress conditions].

    PubMed

    Samotrueva, M A; Tiurenkov, I N; Teplyĭ, D L; Kuleshevskaia, N R; Khlebtsova, E V

    2010-05-01

    The immunoregulating effect of phenibut has been demonstrated on the model of immune stress caused by the injection of lipopolysaccharide from Pseudomonas aeruginosa. The degree of expression of the specific (in a delayed-type hypersensitivity reaction and passive hemagglutination) and nonspecific (phagocytic activity of neutrophils) links of immunomodulation was studied. The formation of lipopolysaccharide (LPS) induced immune stress is characterized by the increase of the indicated parameters of immunity. It is found that phenibut (under intraabdominal injection of 25 mg/kg within 5 days) removes the manifestations of hyperreactivity of the cellular link of immunity, and also restores the amount of phagocytic cells, which is evidence of the immunomodulating properties of the drug under conditions of hyperimmunization. PMID:20597368

  12. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets

    PubMed Central

    2014-01-01

    Background Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Results Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. Conclusions In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI. PMID:24903770

  13. Subclinical Chlamydial Infection of the Female Mouse Genital Tract Generates a Potent Protective Immune Response: Implications for Development of Live Attenuated Chlamydial Vaccine Strains

    PubMed Central

    Su, Hua; Messer, Ronald; Whitmire, William; Hughes, Scott; Caldwell, Harlan D.

    2000-01-01

    Chlamydia trachomatis is a major cause of sexually transmitted disease (STD) for which a vaccine is needed. CD4+ T-helper type 1 (Th1) cell-mediated immunity is an important component of protective immunity against murine chlamydial genital infection. Conventional vaccine approaches have not proven effective in eliciting chlamydial-specific CD4 Th1 immunity at the genital mucosa. Thus, it is possible that the development of a highly efficacious vaccine against genital infection will depend on the generation of a live attenuated C. trachomatis vaccine. Attenuated strains of C. trachomatis do not exist, so their potential utility as vaccines cannot be tested in animal models of infection. We have developed a surrogate model to study the effect of chlamydial attenuation on infection and immunity of the female genital tract by treating mice with a subchlamydiacidal concentration of oxytetracycline following vaginal infection. Compared to untreated control mice, antibiotic-treated mice shed significantly fewer infectious organisms (3 log10) from the cervico-vagina, produced a minimal inflammatory response in urogenital tissue, and did not experience infection-related sequelae. Antibiotic-treated mice generated levels of chlamydia-specific antibody and cell-mediated immunity equivalent to those of control mice. Importantly, antibiotic-treated mice were found to be as immune as control untreated mice when rechallenged vaginally. These findings demonstrate that subclinical chlamydial infection of the murine female genital tract is sufficient to stimulate a potent protective immune response. They also present indirect evidence supporting the possible use of live attenuated chlamydial organisms in the development of vaccines against chlamydial STDs. PMID:10603387

  14. Induction of Potent and Long-Lived Antibody and Cellular Immune Responses in the Genitorectal Mucosa Could be the Critical Determinant of HIV Vaccine Efficacy

    PubMed Central

    Chanzu, Nadia; Ondondo, Beatrice

    2014-01-01

    The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focused mainly on systemic immune responses, and as such, studies defining correlates of protection in the genitorectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capacity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this study, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers, and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies that elicit potent antibody and cellular immune responses within the genitorectal mucosa or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites of HIV entry. PMID

  15. Nanomaterial Induced Immune Responses and Cytotoxicity.

    PubMed

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines. PMID:27398432

  16. Protective antitumor immunity induced by tumor cell lysates conjugated with diphtheria toxin and adjuvant epitope in mouse breast tumor models

    PubMed Central

    Wang, Ze-Yu; Xing, Yun; Liu, Bin; Lu, Lei; Huang, Xiao; Ge, Chi-Yu; Yao, Wen-Jun; Xu, Mao-Lei; Gao, Zhen-Qiu; Cao, Rong-Yue; Wu, Jie; Li, Tai-Ming

    2012-01-01

    Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer. Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL). In this study, diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde, and the constructed cancer cell vaccine was named DT-TCL-M2. Subcutaneous injection of DT-TCL-M2 in mice effectively elicited tumor-specific polyclonal immune responses, including humoral and cellular immune responses. High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses. The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells. Moreover, the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model. DT-TCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model. These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo. Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection. PMID:22464650

  17. WSSV-induced crayfish Dscam shows durable immune behavior.

    PubMed

    Ng, Tze Hann; Hung, Hsin-Yi; Chiang, Yi-An; Lin, Jia-Hung; Chen, Yi-Ning; Chuang, Ya-Chu; Wang, Han-Ching

    2014-09-01

    One of the major gaps in our understanding of arthropod specific immune priming concerns the mechanism[s] by which the observed long-term (>2 weeks) protective effects might be mediated. Hypervariable Dscam (Down syndrome cell adhesion molecule) might support arthropod innate immunity with specificity for more extended periods. We show here that, in the relatively long-lived arthropod Cherax quadricarinatus, CqDscam does not behave like a typical, immediately-acting, short-lived innate immune factor: CqDscam was not induced within hours after challenge with a lethal virus, but instead was only up-regulated after 2-5 days. This initial response faded within ∼ 2 weeks, but another maximum was reached ∼ 1 month later. At around 2 months after the initial challenge, the virus-induced CqDscam bound to the virus virion and acted to neutralize the virus However, although CqDscam helped crayfish to survive during persistent infection, it nevertheless failed to provide any enhanced protection against a subsequent WSSV challenge. Thus, CqDscam is capable of supporting extended anti-virus immune memory in arthropods. Also, during a persistent virus infection, the balance of "immune firepower" in crayfish appears to be altered such that the general immune factors become depleted while CqDscam becomes relatively predominant. PMID:24973514

  18. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.

    PubMed

    Mason, R Preston; Jacob, Robert F

    2015-02-01

    Lipid oxidation leads to endothelial dysfunction, inflammation, and foam cell formation during atherogenesis. Glucose also contributes to lipid oxidation and promotes pathologic changes in membrane structural organization, including the development of cholesterol crystalline domains. In this study, we tested the comparative effects of eicosapentaenoic acid (EPA), an omega-3 fatty acid indicated for the treatment of very high triglyceride (TG) levels, and other TG-lowering agents (fenofibrate, niacin, and gemfibrozil) on lipid oxidation in human low-density lipoprotein (LDL) as well as membrane lipid vesicles prepared in the presence of glucose (200 mg/dL). We also examined the antioxidant effects of EPA in combination with atorvastatin o-hydroxy (active) metabolite (ATM). Glucose-induced changes in membrane structural organization were measured using small angle x-ray scattering approaches and correlated with changes in lipid hydroperoxide (LOOH) levels. EPA was found to inhibit LDL oxidation in a dose-dependent manner (1.0-10.0 µM) and was distinguished from the other TG-lowering agents, which had no significant effect as compared to vehicle treatment alone. Similar effects were observed in membrane lipid vesicles exposed to hyperglycemic conditions. The antioxidant activity of EPA, as observed in glucose-treated vesicles, was significantly enhanced in combination with ATM. Glucose treatment produced highly-ordered, membrane-restricted, cholesterol crystalline domains, which correlated with increased LOOH levels. Of the agents tested in this study, only EPA inhibited glucose-induced cholesterol domain formation. These data demonstrate that EPA, at pharmacologic levels, inhibits hyperglycemia-induced changes in membrane lipid structural organization through a potent antioxidant mechanism associated with its distinct, physicochemical interactions with the membrane bilayer. PMID:25449996

  19. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1.

    PubMed

    Vacchelli, Erika; Ma, Yuting; Baracco, Elisa E; Sistigu, Antonella; Enot, David P; Pietrocola, Federico; Yang, Heng; Adjemian, Sandy; Chaba, Kariman; Semeraro, Michaela; Signore, Michele; De Ninno, Adele; Lucarini, Valeria; Peschiaroli, Francesca; Businaro, Luca; Gerardino, Annamaria; Manic, Gwenola; Ulas, Thomas; Günther, Patrick; Schultze, Joachim L; Kepp, Oliver; Stoll, Gautier; Lefebvre, Céline; Mulot, Claire; Castoldi, Francesca; Rusakiewicz, Sylvie; Ladoire, Sylvain; Apetoh, Lionel; Bravo-San Pedro, José Manuel; Lucattelli, Monica; Delarasse, Cécile; Boige, Valérie; Ducreux, Michel; Delaloge, Suzette; Borg, Christophe; André, Fabrice; Schiavoni, Giovanna; Vitale, Ilio; Laurent-Puig, Pierre; Mattei, Fabrizio; Zitvogel, Laurence; Kroemer, Guido

    2015-11-20

    Antitumor immunity driven by intratumoral dendritic cells contributes to the efficacy of anthracycline-based chemotherapy in cancer. We identified a loss-of-function allele of the gene coding for formyl peptide receptor 1 (FPR1) that was associated with poor metastasis-free and overall survival in breast and colorectal cancer patients receiving adjuvant chemotherapy. The therapeutic effects of anthracyclines were abrogated in tumor-bearing Fpr1(-/-) mice due to impaired antitumor immunity. Fpr1-deficient dendritic cells failed to approach dying cancer cells and, as a result, could not elicit antitumor T cell immunity. Experiments performed in a microfluidic device confirmed that FPR1 and its ligand, annexin-1, promoted stable interactions between dying cancer cells and human or murine leukocytes. Altogether, these results highlight the importance of FPR1 in chemotherapy-induced anticancer immune responses. PMID:26516201

  20. Effective antibody therapy induces host protective antitumor immunity that is augmented by TLR4 agonist treatment

    PubMed Central

    Wang, Shangzi; Astsaturov, Igor A.; Bingham, Catherine A.; McCarthy, Kenneth M.; von Mehren, Margaret; Xu, Wei; Alpaugh, R. Katherine; Tang, Yong; Littlefield, Bruce A.; Hawkins, Lynn D.; Ishizaka, Sally T.; Weiner, Louis M.

    2012-01-01

    Toll-like receptors are potent activators of the innate immune system and generate signals leading to the initiation of the adaptive immune response that can be utilized for therapeutic purposes. We tested the hypothesis that combined treatment with a toll-like receptor agonist and an anti-tumor monoclonal antibody is effective and induces host-protective anti-tumor immunity. C57BL/6 human mutated HER2 (hmHER2) transgenic mice that constitutively express kinase-deficient human HER2 under control of the CMV promoter were established. These mice demonstrate immunological tolerance to D5-HER2, a syngeneic human HER2-expressing melanoma cell line. This human HER2 tolerant model offers the potential to serve as a preclinical model to test both antibody therapy and the immunization potential of human HER2 targeted therapeutics. Here we show that E6020, a toll like receptor-4 (TLR4) agonist effectively boosted the antitumor efficacy of the monoclonal antibody trastuzumab in immunodeficient C57BL/6 SCID mice as well as in C57BL/6 hmHER2 transgenic mice. E6020 and trastuzumab co-treatment resulted in significantly greater inhibition of tumor growth than was observed with either agent individually. Furthermore, mice treated with the combination of trastuzumab and the TLR4 agonist were protected against re-challenge with human HER2 transfected tumor cells in hmHER2 transgenic mouse strains. These findings suggest that combined treatment with trastuzumab and a TLR4 agonist not only promotes direct anti-tumor effects but also induces a host-protective human HER2-directed adaptive immune response indicative of a memory response. These data provide an immunological rationale for testing TLR4 agonists in combination with antibody therapy in patients with cancer. PMID:21842208

  1. Intranasal Immunization with Nontypeable Haemophilus influenzae Outer Membrane Vesicles Induces Cross-Protective Immunity in Mice

    PubMed Central

    Roier, Sandro; Leitner, Deborah R.; Iwashkiw, Jeremy; Schild-Prüfert, Kristina; Feldman, Mario F.; Krohne, Georg; Reidl, Joachim; Schild, Stefan

    2012-01-01

    Abstract Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections. PMID:22880074

  2. Ad35 and Ad26 Vaccine Vectors Induce Potent and Cross-Reactive Antibody and T-Cell Responses to Multiple Filovirus Species

    PubMed Central

    Zahn, Roland; Gillisen, Gert; Roos, Anna; Koning, Marina; van der Helm, Esmeralda; Spek, Dirk; Weijtens, Mo; Grazia Pau, Maria; Radošević, Katarina; Weverling, Gerrit Jan; Custers, Jerome; Vellinga, Jort; Schuitemaker, Hanneke; Goudsmit, Jaap; Rodríguez, Ariane

    2012-01-01

    Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years. PMID:23236343

  3. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    SciTech Connect

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetal bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.

  4. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer

    PubMed Central

    2014-01-01

    Background Polyoxypeptin A was isolated from a culture broth of Streptomyces sp. MK498-98 F14, which has a potent apoptosis-inducing activity towards human pancreatic carcinoma AsPC-1 cells. Structurally, polyoxypeptin A is composed of a C15 acyl side chain and a nineteen-membered cyclodepsipeptide core that consists of six unusual nonproteinogenic amino acid residues (N-hydroxyvaline, 3-hydroxy-3-methylproline, 5-hydroxypiperazic acid, N-hydroxyalanine, piperazic acid, and 3-hydroxyleucine) at high oxidation states. Results A gene cluster containing 37 open reading frames (ORFs) has been sequenced and analyzed for the biosynthesis of polyoxypeptin A. We constructed 12 specific gene inactivation mutants, most of which abolished the production of polyoxypeptin A and only ΔplyM mutant accumulated a dehydroxylated analogue polyoxypeptin B. Based on bioinformatics analysis and genetic data, we proposed the biosynthetic pathway of polyoxypeptin A and biosynthetic models of six unusual amino acid building blocks and a PKS extender unit. Conclusions The identified gene cluster and proposed pathway for the biosynthesis of polyoxypeptin A will pave a way to understand the biosynthetic mechanism of the azinothricin family natural products and provide opportunities to apply combinatorial biosynthesis strategy to create more useful compounds. PMID:24506891

  5. Extracellular amastigotes of Trypanosoma cruzi are potent inducers of phagocytosis in mammalian cells

    PubMed Central

    Fernandes, Maria Cecilia; Flannery, Andrew R; Andrews, Norma; Mortara, Renato A

    2013-01-01

    The protozoan parasite Trypanosoma cruzi, the aetiological agent of Chagas' disease, has two infective life cycle stages, trypomastigotes and amastigotes. While trypomastigotes actively enter mammalian cells, highly infective extracellular amastigotes (type I T. cruzi) rely on actin-mediated uptake, which is generally inefficient in non-professional phagocytes. We found that extracellular amastigotes (EAs) of T. cruzi G strain (type I), but not Y strain (type II), were taken up 100-fold more efficiently than inert particles. Mammalian cell lines showed levels of parasite uptake comparable to macrophages, and extensive actin recruitment and polymerization was observed at the site of entry. EA uptake was not dependent on parasite-secreted molecules and required the same molecular machinery utilized by professional phagocytes during large particle phagocytosis. Transcriptional silencing of synaptotagmin VII and CD63 significantly inhibited EA internalization, demonstrating that delivery of supplemental lysosomal membrane to form the phagosome is involved in parasite uptake. Importantly, time-lapse live imaging using fluorescent reporters revealed phagosome-associated modulation of phosphoinositide metabolism during EA uptake that closely resembles what occurs during phagocytosis by macrophages. Collectively, our results demonstrate that T. cruzi EAs are potent inducers of phagocytosis in non-professional phagocytes, a process that may facilitate parasite persistence in infected hosts. PMID:23241026

  6. Potent degradation of neuronal miRNAs induced by highly complementary targets

    PubMed Central

    de la Mata, Manuel; Gaidatzis, Dimos; Vitanescu, Mirela; Stadler, Michael B; Wentzel, Corinna; Scheiffele, Peter; Filipowicz, Witold; Großhans, Helge

    2015-01-01

    MicroRNAs (miRNAs) regulate target mRNAs by silencing them. Reciprocally, however, target mRNAs can also modulate miRNA stability. Here, we uncover a remarkable efficacy of target RNA-directed miRNA degradation (TDMD) in rodent primary neurons. Coincident with degradation, and while still bound to Argonaute, targeted miRNAs are 3′ terminally tailed and trimmed. Absolute quantification of both miRNAs and their decay-inducing targets suggests that neuronal TDMD is multiple turnover and does not involve co-degradation of the target but rather competes with miRNA-mediated decay of the target. Moreover, mRNA silencing, but not TDMD, relies on cooperativity among multiple target sites to reach high efficacy. This knowledge can be harnessed for effective depletion of abundant miRNAs. Our findings bring insight into a potent miRNA degradation pathway in primary neurons, whose TDMD activity greatly surpasses that of non-neuronal cells and established cell lines. Thus, TDMD may be particularly relevant for miRNA regulation in the nervous system. PMID:25724380

  7. DEVELOPMENT OF MOLECULAR BIOMARKERS TO MEASURE ENVIRONMENTALLY INDUCED IMMUNE RESPONSES

    EPA Science Inventory

    This study will generate a panel of sensitive molecular biomarkers to measure environmentally induced changes in systemic and local immune responses within small biological samples. Once tested and characterized, these reagents can be immediately incorporated as a part of the...

  8. High-content screening in zebrafish embryos identifies butafenacil as a potent inducer of anemia.

    PubMed

    Leet, Jessica K; Lindberg, Casey D; Bassett, Luke A; Isales, Gregory M; Yozzo, Krystle L; Raftery, Tara D; Volz, David C

    2014-01-01

    Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05-50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO)--an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors--flumioxazin--resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis-driven and mechanism

  9. High-Content Screening in Zebrafish Embryos Identifies Butafenacil as a Potent Inducer of Anemia

    PubMed Central

    Leet, Jessica K.; Lindberg, Casey D.; Bassett, Luke A.; Isales, Gregory M.; Yozzo, Krystle L.; Raftery, Tara D.; Volz, David C.

    2014-01-01

    Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis

  10. Specific humoral and cellular immunity induced by Trypanosoma cruzi DNA immunization in a canine model

    PubMed Central

    2013-01-01

    Chagas disease has a high incidence in Mexico and other Latin American countries. Because one of the most important known methods of prevention is vector control, which has been effective only in certain areas of South America, the development of a vaccine to protect people at risk has been proposed. In this study, we assessed the cellular and humoral immune response generated following immunization with pBCSP and pBCSSP4 plasmids containing the genes encoding a trans-sialidase protein (present in all three forms of T. cruzi) and an amastigote specific glycoprotein, respectively, in a canine model. Thirty-five beagle dogs were divided randomly into 5 groups (n = 7) and were immunized twice intramuscularly with 500 μg of pBCSSP4, pBCSP, pBk-CMV (empty plasmid) or saline solution. Fifteen days after the last immunization the 4 groups were infected intraperitoneally with 500 000 metacyclic trypomastigotes. The fifth group was unimmunized/infected. The parasitaemia in the immunized/infected dogs was for a shorter period (14 vs. 29 days) and the parasite load was lower. The concentration of IgG1 (0.612 ± 0.019 O.D.) and IgG2 (1.167 ± 0.097 O.D.) subclasses was measured (absorbance) 15 days after the last immunization with both recombinant plasmids, the majority of which were IgG2. The treatment of parasites using the serum from dogs immunized with pBCSP and pBCSSP4 plasmids produced 54% (± 11.8) and 68% (± 21.4) complement-mediated lysis, respectively. At 12 h post immunization, an increase in cytokines was not observed; however, vaccination with pBCSSP4 significantly increased the levels of IFN-γ and IL-10 at 9 months post-infection. The recombinant plasmid immunization stimulated the spleen cell proliferation showing a positive stimulatory index above 2.0. In conclusion, immunization using both genes effectively induces a humoral and cellular immune response. PMID:23497041

  11. Specific humoral and cellular immunity induced by Trypanosoma cruzi DNA immunization in a canine model.

    PubMed

    Arce-Fonseca, Minerva; Ballinas-Verdugo, Martha A; Zenteno, Emma R Abreu; Suárez-Flores, Davinia; Carrillo-Sánchez, Silvia C; Alejandre-Aguilar, Ricardo; Rosales-Encina, José Luis; Reyes, Pedro A; Rodríguez-Morales, Olivia

    2013-01-01

    Chagas disease has a high incidence in Mexico and other Latin American countries. Because one of the most important known methods of prevention is vector control, which has been effective only in certain areas of South America, the development of a vaccine to protect people at risk has been proposed. In this study, we assessed the cellular and humoral immune response generated following immunization with pBCSP and pBCSSP4 plasmids containing the genes encoding a trans-sialidase protein (present in all three forms of T. cruzi) and an amastigote specific glycoprotein, respectively, in a canine model. Thirty-five beagle dogs were divided randomly into 5 groups (n=7) and were immunized twice intramuscularly with 500 μg of pBCSSP4, pBCSP, pBk-CMV (empty plasmid) or saline solution. Fifteen days after the last immunization the 4 groups were infected intraperitoneally with 500,000 metacyclic trypomastigotes. The fifth group was unimmunized/infected. The parasitaemia in the immunized/infected dogs was for a shorter period (14 vs. 29 days) and the parasite load was lower. The concentration of IgG1 (0.612±0.019 O.D.) and IgG2 (1.167±0.097 O.D.) subclasses was measured (absorbance) 15 days after the last immunization with both recombinant plasmids, the majority of which were IgG2. The treatment of parasites using the serum from dogs immunized with pBCSP and pBCSSP4 plasmids produced 54% (±11.8) and 68% (±21.4) complement-mediated lysis, respectively. At 12 h post immunization, an increase in cytokines was not observed; however, vaccination with pBCSSP4 significantly increased the levels of IFN-γ and IL-10 at 9 months post-infection. The recombinant plasmid immunization stimulated the spleen cell proliferation showing a positive stimulatory index above 2.0. In conclusion, immunization using both genes effectively induces a humoral and cellular immune response. PMID:23497041

  12. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers

    PubMed Central

    Martin-Gayo, Enrique; Buzon, Maria Jose; Ouyang, Zhengyu; Hickman, Taylor; Cronin, Jacqueline; Pimenova, Dina; Walker, Bruce D.; Lichterfeld, Mathias; Yu, Xu G.

    2015-01-01

    The majority of HIV-1 elite controllers (EC) restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC) can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes. PMID:26067651

  13. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  14. CD226 as a genetic adjuvant to enhance immune efficacy induced by Ag85A DNA vaccination.

    PubMed

    Li, Yan; Yang, Fangli; Zhu, Junfeng; Sang, Lixuan; Han, Xue; Wang, Danan; Shan, Fengping; Li, Shengjun; Sun, Xun; Lu, Changlong

    2015-03-01

    Antigen-85A (Ag85A) is one of the major proteins secreted by Mycobacterium tuberculosis. Many studies on animal models have shown that vaccination with the recombinant Ag85A-DNA or Ag85A protein induces powerful immune response. However, these vaccines cannot generate sufficient protective immunity in the systemic compartment. CD226, a member of the immunoglobulin superfamily, is expressed in the majority of NK cells, T cells, monocytes, and platelets, and can be served as a co-stimulator that contributes to multiple innate and adaptive responses. However, there has been no study where either CD226 protein or DNA has been used as an adjuvant for vaccine development. The aim of this study was to develop a novel Ag85A DNA vaccine with CD226 as the genetic adjuvant to increase the immune efficacy induced by Ag85A. Oral vaccination with pcDNA3.1-Ag85A-CD226 DNA induced potent immune responses in mice. CD226 was an effective genetic adjuvant that improved the immune efficacy induced by Ag85A and enhanced the activity of cytotoxic T lymphocytes (CTL) and NK cells in mice. Th1 dominant cytokines (i.e. IL-2, IFN-γ and TNF-α), cellular immunity (i.e. CD4(+)IFN-γ(+)T cells and CD8(+)IFN-γ(+)T cells in splenocytes) and MLNs were also significantly elevated by pcDNA3.1-Ag85A-CD226 DNA vaccination. Our results suggest that CD226 is an effective adjuvant to enhance the immune efficacy induced by Ag85A. Our findings provide a new strategy for the development of a DNA vaccine co-expressing Ag85A and CD226. PMID:25582686

  15. Investigating the Role for IL-21 in Rabies Virus Vaccine-induced Immunity

    PubMed Central

    Dorfmeier, Corin L.; Tzvetkov, Evgeni P.; Gatt, Anthony; McGettigan, James P.

    2013-01-01

    Over two-thirds of the world's population lives in regions where rabies is endemic, resulting in over 15 million people receiving multi-dose post-exposure prophylaxis (PEP) and over 55,000 deaths per year globally. A major goal in rabies virus (RABV) research is to develop a single-dose PEP that would simplify vaccination protocols, reduce costs associated with RABV prevention, and save lives. Protection against RABV infections requires virus neutralizing antibodies; however, factors influencing the development of protective RABV-specific B cell responses remain to be elucidated. Here we used a mouse model of IL-21 receptor-deficiency (IL-21R−/−) to characterize the role for IL-21 in RABV vaccine-induced immunity. IL-21R−/− mice immunized with a low dose of a live recombinant RABV-based vaccine (rRABV) produced only low levels of primary or secondary anti-RABV antibody response while wild-type mice developed potent anti-RABV antibodies. Furthermore, IL-21R−/− mice immunized with low-dose rRABV were only minimally protected against pathogenic RABV challenge, while all wild-type mice survived challenge, indicating that IL-21R signaling is required for antibody production in response to low-dose RABV-based vaccination. IL-21R−/− mice immunized with a higher dose of vaccine produced suboptimal anti-RABV primary antibody responses, but showed potent secondary antibodies and protection similar to wild-type mice upon challenge with pathogenic RABV, indicating that IL-21 is dispensable for secondary antibody responses to live RABV-based vaccines when a primary response develops. Furthermore, we show that IL-21 is dispensable for the generation of Tfh cells and memory B cells in the draining lymph nodes of immunized mice but is required for the detection of optimal GC B cells or plasma cells in the lymph node or bone marrow, respectively, in a vaccine dose-dependent manner. Collectively, our preliminary data show that IL-21 is critical for the development of

  16. Investigating the role for IL-21 in rabies virus vaccine-induced immunity.

    PubMed

    Dorfmeier, Corin L; Tzvetkov, Evgeni P; Gatt, Anthony; McGettigan, James P

    2013-01-01

    Over two-thirds of the world's population lives in regions where rabies is endemic, resulting in over 15 million people receiving multi-dose post-exposure prophylaxis (PEP) and over 55,000 deaths per year globally. A major goal in rabies virus (RABV) research is to develop a single-dose PEP that would simplify vaccination protocols, reduce costs associated with RABV prevention, and save lives. Protection against RABV infections requires virus neutralizing antibodies; however, factors influencing the development of protective RABV-specific B cell responses remain to be elucidated. Here we used a mouse model of IL-21 receptor-deficiency (IL-21R-/-) to characterize the role for IL-21 in RABV vaccine-induced immunity. IL-21R-/- mice immunized with a low dose of a live recombinant RABV-based vaccine (rRABV) produced only low levels of primary or secondary anti-RABV antibody response while wild-type mice developed potent anti-RABV antibodies. Furthermore, IL-21R-/- mice immunized with low-dose rRABV were only minimally protected against pathogenic RABV challenge, while all wild-type mice survived challenge, indicating that IL-21R signaling is required for antibody production in response to low-dose RABV-based vaccination. IL-21R-/- mice immunized with a higher dose of vaccine produced suboptimal anti-RABV primary antibody responses, but showed potent secondary antibodies and protection similar to wild-type mice upon challenge with pathogenic RABV, indicating that IL-21 is dispensable for secondary antibody responses to live RABV-based vaccines when a primary response develops. Furthermore, we show that IL-21 is dispensable for the generation of Tfh cells and memory B cells in the draining lymph nodes of immunized mice but is required for the detection of optimal GC B cells or plasma cells in the lymph node or bone marrow, respectively, in a vaccine dose-dependent manner. Collectively, our preliminary data show that IL-21 is critical for the development of optimal vaccine-induced

  17. A Drosophila immune response against Ras-induced overgrowth

    PubMed Central

    Hauling, Thomas; Krautz, Robert; Markus, Robert; Volkenhoff, Anne; Kucerova, Lucie; Theopold, Ulrich

    2014-01-01

    ABSTRACT Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12), both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria), which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity. PMID:24659248

  18. The Imidazoquinoline Toll-Like Receptor-7/8 Agonist Hybrid-2 Potently Induces Cytokine Production by Human Newborn and Adult Leukocytes

    PubMed Central

    Ganapathi, Lakshmi; Van Haren, Simon; Dowling, David J.; Bergelson, Ilana; Shukla, Nikunj M.; Malladi, Subbalakshmi S.; Balakrishna, Rajalakshmi; Tanji, Hiromi; Ohto, Umeharu; Shimizu, Toshiyuki; David, Sunil A.; Levy, Ofer

    2015-01-01

    Background Newborns and young infants are at higher risk for infections than adults, and manifest suboptimal vaccine responses, motivating a search for novel immunomodulators and/or vaccine adjuvants effective in early life. In contrast to most TLR agonists (TLRA), TLR8 agonists such as imidazoquinolines (IMQs) induce adult-level Th1-polarizing cytokine production from human neonatal cord blood monocytes and are candidate early life adjuvants. We assessed whether TLR8-activating IMQ congeners may differ in potency and efficacy in inducing neonatal cytokine production in vitro, comparing the novel TLR7/8-activating IMQ analogues Hybrid-2, Meta-amine, and Para-amine to the benchmark IMQ resiquimod (R848). Methods TLRA-induced NF-κB activation was measured in TLR-transfected HEK cells. Cytokine production in human newborn cord and adult peripheral blood and in monocyte-derived dendritic cell cultures were measured by ELISA and multiplex assays. X-ray crystallography characterized the interaction of human TLR8 with Hybrid-2. Results Hybrid-2 selectively activated both TLR7 and 8 and was more potent than R848 in inducing adult-like levels of TNF-α, and IL-1β. Consistent with its relatively high in vitro activity, crystallographic studies suggest that absence in Hybrid-2 of an ether oxygen of the C2-ethoxymethyl substituent, which can engage in unfavorable electrostatic and/or dipolar interactions with the carbonyl oxygen of Gly572 in human TLR8, may confer greater efficacy and potency compared to R848. Conclusions Hybrid-2 is a selective and potent TLR7/8 agonist that is a candidate adjuvant for early life immunization. PMID:26274907

  19. Potent Paracrine Effects of human induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells Attenuate Doxorubicin-induced Cardiomyopathy

    PubMed Central

    Zhang, Yuelin; Liang, Xiaoting; Liao, Songyan; Wang, Weixin; Wang, Junwen; Li, Xiang; Ding, Yue; Liang, Yingmin; Gao, Fei; Yang, Mo; Fu, Qingling; Xu, Aimin; Chai, Yuet-Hung; He, Jia; Tse, Hung-Fat; Lian, Qizhou

    2015-01-01

    Transplantation of bone marrow mesenchymal stem cells (BM-MSCs) can protect cardiomyocytes against anthracycline-induced cardiomyopathy (AIC) through paracrine effects. Nonetheless the paracrine effects of human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) on AIC are poorly understood. In vitro studies reveal that doxorubicin (Dox)-induced reactive oxidative stress (ROS) generation and cell apoptosis in neonatal rat cardiomyocytes (NRCMs) are significantly reduced when treated with conditioned medium harvested from BM-MSCs (BM-MSCs-CdM) or iPSC-MSCs (iPSC-MSCs-CdM). Compared with BM-MSCs-CdM, NRCMs treated with iPSC-MSCs-CdM exhibit significantly less ROS and cell apoptosis in a dose-dependent manner. Transplantation of BM-MSCs-CdM or iPSC-MSCs-CdM into mice with AIC remarkably attenuated left ventricular (LV) dysfunction and dilatation. Compared with BM-MSCs-CdM, iPSC-MSCs-CdM treatment showed better alleviation of heart failure, less cardiomyocyte apoptosis and fibrosis. Analysis of common and distinct cytokines revealed that macrophage migration inhibitory factor (MIF) and growth differentiation factor-15 (GDF-15) were uniquely overpresented in iPSC-MSC-CdM. Immunodepletion of MIF and GDF-15 in iPSC-MSCs-CdM dramatically decreased cardioprotection. Injection of GDF-15/MIF cytokines could partially reverse Dox-induced heart dysfunction. We suggest that the potent paracrine effects of iPSC-MSCs provide novel “cell-free” therapeutic cardioprotection against AIC, and that MIF and GDF-15 in iPSC-MSCs-CdM are critical for these enhanced cardioprotective effects. PMID:26057572

  20. Adenosine signaling and the energetic costs of induced immunity.

    PubMed

    Lazzaro, Brian P

    2015-04-01

    Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected. PMID:25915419

  1. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    PubMed

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. PMID:27130629

  2. Drug-Induced Glomerular Disease: Immune-Mediated Injury

    PubMed Central

    Markowitz, Glen S.; Radhakrishnan, Jai

    2015-01-01

    Drug-induced autoimmune disease was initially described decades ago, with reports of vasculitis and a lupus-like syndrome in patients taking hydralazine, procainamide, and sulfadiazine. Over the years, multiple other agents have been linked to immune-mediated glomerular disease, often with associated autoantibody formation. Certain clinical and laboratory features may distinguish these entities from their idiopathic counterparts, and making this distinction is important in the diagnosis and management of these patients. Here, drug-induced, ANCA-associated vasculitis, drug-induced lupus, and drug-associated membranous nephropathy are reviewed. PMID:26092827

  3. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    NASA Astrophysics Data System (ADS)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  4. Suxiao Jiuxin Pill Induces Potent Relaxation and Inhibition on Contraction in Human Artery and the Mechanism

    PubMed Central

    Bai, Xiao-Yan; Zhang, Ping; Yang, Qin; Liu, Xiao-Cheng; Wang, Jun; Tong, Yong-Ling; Xiong, Song-Jin; Liu, Li-Hua; Wang, Lei; He, Guo-Wei

    2014-01-01

    Suxiao Jiuxin Pill, a compound Chinese traditional medicine with main components of tetramethylpyrazine and borneol, is widely used for antiangina treatment in China but its pharmacological effect on human blood vessels is unknown. We investigated the effect and possible mechanism of SJP in the human internal mammary artery (IMA, n = 78) taken from patients undergoing coronary surgery. SJP caused full relaxation in KCl- (99.4 ± 10.5%, n = 6) and U46619- (99.9 ± 5.6%, n = 6) contracted IMA. Pretreatment of IMA with plasma concentrations of SJP (1 mg/mL), calculated from the plasma concentration of its major component borneol, significantly depressed the maximal contraction to KCl (from 35.8 ± 6.0 mN to 12.6 ± 5.6 mN, P = 0.03) and U46619 (from 19.4 ± 2.9 mN to 5.7 ± 2.4 mN, P = 0.007) while SJP at 10 mg/mL abolished the subsequent contraction. Endothelium denudation and inhibition of eNOS significantly altered the SJP-induced relaxation without changes of eNOS expression. We conclude that SJP has a potent inhibitory effect on the vasoconstriction mediated by a variety of vasoconstrictors in human arteries. The vasorelaxation involves both endothelium-dependent and -independent mechanisms. Thus, the effect of SJP on human arteries demonstrated in this study may prove to be particularly important in vasorelaxing therapy in cardiovascular disease. PMID:24808920

  5. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells.

    PubMed

    Koido, Shigeo; Ito, Masaki; Sagawa, Yukiko; Okamoto, Masato; Hayashi, Kazumi; Nagasaki, Eijiro; Kan, Shin; Komita, Hideo; Kamata, Yuko; Homma, Sadamu

    2014-05-01

    Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells. PMID:24627093

  6. Radiation-induced effects and the immune system in cancer

    PubMed Central

    Kaur, Punit; Asea, Alexzander

    2012-01-01

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT. PMID:23251903

  7. Immune-mediated drug-induced liver disease.

    PubMed

    Liu, Zhang-Xu; Kaplowitz, Neil

    2002-08-01

    Drug-induced immune-mediated hepatic injury is an adverse immune response against the liver that results in a disease with hepatitic, cholestatic, or mixed clinical features. Drugs such as halothane, tienilic acid, dihydralazine, and anticonvulsants trigger a hepatitic reaction, and drugs such as chlorpromazine, erythromycins, amoxicillin-calvulanic acid, sulfonamides and sulindac trigger a cholestatic or mixed reaction. Unstable metabolites derived from the metabolism of the drug may bind to cellular proteins or macromolecules, leading to a direct toxic effect on hepatocytes. Protein adducts formed in the metabolism of the drug may be recognized by the immune system as neoantigens. Immunocyte activation may then generate autoantibodies and cell-mediated immune responses, which in turn damage the hepatocytes. Cytochromes 450 are the major oxidative catalysts in drug metabolism, and they can form a neoantigen by covalently binding with the drug metabolite that they produce. Autoantibodies that develop are selectively directed against the particular cytochrome isoenzyme that metabolized the parent drug. The hapten hypothesis proposes that the drug metabolite can act as a hapten and can modify the self of the individual by covalently binding to proteins. The danger hypothesis proposes that the immune system only responds to a foreign antigen if the antigen is associated with a danger signal, such as cell stress or cell death. Most clinically overt adverse hepatic events associated with drugs are unpredictable, and they have intermediate (1 to 8 weeks) or long latency (up to 12 months) periods characteristic of hypersensitivity reactions. Immune-mediated drug-induced liver disease nearly always disappears or becomes quiescent when the drug is removed. Methyldopa, minocycline, and nitrofurantoin can produce a chronic hepatitis resembling AIH if the drug is continued. PMID:12362579

  8. Boletus edulis ribonucleic acid - a potent apoptosis inducer in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Guichard Alves, Helena; Marques, Guilhermina; Nunes, Fernando Milheiro; Rzeski, Wojciech

    2016-07-13

    Despite the large popularity of the Boletus edulis mushroom, little is known about its influence on human health and the possibilities of its therapeutic use. Nevertheless, several reports revealed the usefulness of biopolymers isolated from it in cancer treatment. Our previous studies have shown that B. edulis water soluble biopolymers are not toxic against normal colon epithelial cells (CCD841 CoTr) and at the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells (LS180) which was accompanied with cell cycle arrest in the G0/G1 phase. The purpose of the present study was to verify the proapoptotic properties of a selected fraction from B. edulis - BE3, as well as determine its chemical nature. The BE3 fraction was extracted with hot water and purified by anion-exchange chromatography. Further chemical examinations revealed that BE3 consists mainly of ribonucleic acid (59.1%). The ability of BE3 to induce programmed cell death was examined in human colon cancer cell lines LS180 and HT-29 by measuring caspase activation, DNA fragmentation and expression of BAX, BCL2, TP53 and CDKN1A genes. The sensitivity of colon cancer cells with silenced BAX, TP53 and CDKN1A expression to BE3 treatment was also evaluated. We have demonstrated for the first time that the BE3 fraction is a potent apoptosis inducer in human colon cancer cells. The revealed mechanism of apoptosis triggering was dependent on the presence of functional p53 and consequently was a little different in investigated cell lines. Our results indicated that BE3 stimulated proapoptotic genes BAX (LS180, HT-29), TP53 (LS180) and CDKN1A (HT-29) while at the same time silenced the expression of the key prosurvival gene BCL2 (LS180, HT-29). The obtained results indicate the high therapeutic potential of the BE3 fraction against colon cancer, yet it is necessary to further confirm fraction efficacy and safety in animal and clinical studies. PMID:27302173

  9. The Role of Probiotics and Prebiotics in Inducing Gut Immunity

    PubMed Central

    Vieira, Angélica T.; Teixeira, Mauro M.; Martins, Flaviano S.

    2013-01-01

    The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host. PMID:24376446

  10. The role of probiotics and prebiotics in inducing gut immunity.

    PubMed

    Vieira, Angélica T; Teixeira, Mauro M; Martins, Flaviano S

    2013-01-01

    The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host. PMID:24376446

  11. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  12. Flagella-induced immunity against experimental cholera in adult rabbits.

    PubMed Central

    Yancey, R J; Willis, D L; Berry, L J

    1979-01-01

    The adult rabbit ligated ileal loop model was used to evaluate the prophylactic potential of a crude flagellar (CF) vaccine produced from the classical. Inaba strain CA401. A greater than 1,000-fold increase in the challenge inoculum was required to induce an intestinal fluid response in actively immunized adult rabbits equivalent to that produced in unimmunized animals. Similar protection was afforded against challenge with classical and El Tor biotypes of both Inaba and Ogawa serotypes. Highly virulent 35S-labeled vibrios were inhibited in their ability to associated with the intestinal mucosa of CF-immunized rabbits. The protection conferred by CF immunization was found to be superior to that of a commercial bivalent vaccine and also to that of glutaraldehyde-treated cholera toxoid. The critical immunogenic component of CF appears to be a flagella-derived protein. The immunogenicity of CF was destroyed by heat treatment, and absorption of CF-immune serum with aflagellated mutant vibrios did not diminish its ability to confer a high level of passive protection. The intestinal protection of CF-immunized rabbits was completely reversed by the introduction of both goat anti-rabbit immunoglobulins A and G, but by neither alone. PMID:478635

  13. Is immunity a mechanism contributing to statin-induced diabetes?

    PubMed Central

    Henriksbo, Brandyn D; Schertzer, Jonathan D

    2015-01-01

    Statins lower cholesterol and are commonly prescribed for prevention and treatment of cardiovascular disease risk. Statins have pleotropic actions beyond cholesterol lowering, including decreased protein prenylation, which can alter immune function. The general anti-inflammatory effect of statins may be a key pleiotropic effect that improves cardiovascular disease risk. However, a series of findings have shown that statins increase the pro-inflammatory cytokine, IL-1β, via decreased protein prenylation in immune cells. IL-1β can be regulated by the NLRP3 inflammasome containing caspase-1. Statins have been associated with an increased risk of new onset diabetes. Inflammation can promote ineffective insulin action (insulin resistance), which often precedes diabetes. This review highlights the links between statins, insulin resistance and immunity via the NLRP3 inflammasome. We propose that statin-induced changes in immunity should be investigated as a mechanism underlying increased risk of diabetes. It is possible that statin-related insulin resistance occurs through a separate pathway from various mechanisms that confer cardiovascular benefits. Therefore, understanding the potential mechanisms that segregate statin-induced cardiovascular effects from those that cause dysglycemia may lead to improvements in this drugs class. PMID:26451278

  14. Salmonella enterica induces and subverts the plant immune system

    PubMed Central

    García, Ana V.; Hirt, Heribert

    2014-01-01

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. PMID:24772109

  15. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition

    PubMed Central

    Mimura, Naoya; Hideshima, Teru; Shimomura, Toshiyasu; Suzuki, Rikio; Ohguchi, Hiroto; Rizq, Ola; Kikuchi, Shohei; Yoshida, Yasuhiro; Cottini, Francesca; Jakubikova, Jana; Cirstea, Diana; Gorgun, Gullu; Minami, Jiro; Tai, Yu-Tzu; Richardson, Paul G.; Utsugi, Teruhiro; Iwama, Atsushi; Anderson, Kenneth C.

    2014-01-01

    The PI3K/Akt pathway plays a crucial role in the pathogenesis of multiple myeloma (MM) in the bone marrow (BM) milieu. However, efficacy of selective and potent Akt inhibition has not yet been fully elucidated. In this study, we therefore examined the biologic impact of selective and potent Akt inhibition by a novel allosteric inhibitor TAS-117. TAS-117 induced significant growth inhibition, associated with downregulation of phosphorylated Akt (p-Akt), selectively in MM cell lines with high baseline p-Akt. Cytotoxicity of TAS-117 was also observed in patients MM cells, but not in normal peripheral blood mononuclear cells. Importantly, TAS-117 induced significant cytotoxicity in MM cells even in the presence of BM stromal cells, associated with inhibition of IL-6 secretion. Oral administration of TAS-117 significantly inhibited human MM cell growth in murine xenograft models. TAS-117 triggered apoptosis and autophagy, as well as induction of endoplasmic reticulum (ER) stress response with minimal expression of CHOP, a fatal ER-stress marker. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity, associated with increased CHOP and PARP cleavage and blockade of bortezomib-induced p-Akt, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. Carfilzomib-induced cytotoxicity was similarly enhanced by TAS-117. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity in vivo, associated with prolonged host survival. Our results show that selective and potent Akt inhibition by TAS-117 triggers anti-MM activities in vitro and in vivo, as well as enhances cytotoxicity of proteasome inhibition, providing the preclinical framework for clinical evaluation of selective Akt inhibitors, alone and in combination with proteasome inhibitors in MM. PMID:24934808

  16. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition.

    PubMed

    Mimura, Naoya; Hideshima, Teru; Shimomura, Toshiyasu; Suzuki, Rikio; Ohguchi, Hiroto; Rizq, Ola; Kikuchi, Shohei; Yoshida, Yasuhiro; Cottini, Francesca; Jakubikova, Jana; Cirstea, Diana; Gorgun, Gullu; Minami, Jiro; Tai, Yu-Tzu; Richardson, Paul G; Utsugi, Teruhiro; Iwama, Atsushi; Anderson, Kenneth C

    2014-08-15

    The PI3K/Akt pathway plays a crucial role in the pathogenesis of multiple myeloma (MM) in the bone marrow (BM) milieu. However, efficacy of selective and potent Akt inhibition has not yet been fully elucidated. In this study, we, therefore, examined the biologic impact of selective and potent Akt inhibition by a novel allosteric inhibitor TAS-117. TAS-117 induced significant growth inhibition, associated with downregulation of phosphorylated Akt (p-Akt), selectively in MM cell lines with high baseline p-Akt. Cytotoxicity of TAS-117 was also observed in patient MM cells, but not in normal peripheral blood mononuclear cells. Importantly, TAS-117 induced significant cytotoxicity in MM cells even in the presence of BM stromal cells, associated with inhibition of IL6 secretion. Oral administration of TAS-117 significantly inhibited human MM cell growth in murine xenograft models. TAS-117 triggered apoptosis and autophagy, as well as induction of endoplasmic reticulum (ER) stress response with minimal expression of C/EBP homologous protein (CHOP), a fatal ER stress marker. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity, associated with increased CHOP and PARP cleavage and blockade of bortezomib-induced p-Akt, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. Carfilzomib-induced cytotoxicity was similarly enhanced by TAS-117. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity in vivo, associated with prolonged host survival. Our results show that selective and potent Akt inhibition by TAS-117 triggers anti-MM activities in vitro and in vivo, as well as enhances cytotoxicity of proteasome inhibition, providing the preclinical framework for clinical evaluation of selective Akt inhibitors, alone and in combination with proteasome inhibitors in MM. PMID:24934808

  17. Requirements for innate immune pathways in environmentally induced autoimmunity.

    PubMed

    Pollard, Kenneth Michael; Kono, Dwight H

    2013-01-01

    There is substantial evidence that environmental triggers in combination with genetic and stochastic factors play an important role in spontaneous autoimmune disease. Although the specific environmental agents and how they promote autoimmunity remain largely unknown, in part because of diverse etiologies, environmentally induced autoimmune models can provide insights into potential mechanisms. Studies of idiopathic and environmentally induced systemic autoimmunity show that they are mediated by common adaptive immune response genes. By contrast, although the innate immune system is indispensable for autoimmunity, there are clear differences in the molecular and cellular innate components that mediate specific systemic autoimmune diseases, suggesting distinct autoimmune-promoting pathways. Some of these differences may be related to the bifurcation of toll-like receptor signaling that distinguishes interferon regulatory factor 7-mediated type I interferon production from nuclear factor-κB-driven proinflammatory cytokine expression. Accordingly, idiopathic and pristane-induced systemic autoimmunity require both type I interferon and proinflammatory cytokines whereas the less aggressive mercury-induced autoimmunity, although dependent on nucleic acid-binding toll-like receptors, does not require type I interferon but needs proinflammatory cytokines. Scavenger receptors and the inflammasome may contribute to silica-induced autoimmunity. Greater understanding of the innate mechanisms responsible for idiopathic and environmentally induced autoimmunity should yield new information into the processes that instigate and drive systemic autoimmunity. PMID:23557436

  18. Antitumor immunity induced by hybrid murine tumor cells: requirements for optimal immunization

    SciTech Connect

    McCune, C.S.; O'Donnell, R.W.; Horan, P.K.; Budd, H.S.; Spennacchio, J.L.; Chuang, C.; Henshaw, E.C.

    1982-09-01

    Hybrid tumor cells have been evaluated for their ability to induce specific antitumor immunity in inbred female C3H/He mice challenged with the syngeneic BA tumor. Hybrid cells were produced by fusion of BA cells with a BALB/c renal adenocarcinoma, which is hypoxanthine phosphoribosyl transferase-deficient and grows well in culture. Corynebacterium parvum was evaluated as an adjuvant for BA and hybrid cells. The BA tumor was shown to be poorly immunogenic, and four weekly injections of BA cells alone or C. parvum alone did not confer significant immunity. When BA cells and C. parvum were mixed, survival time was prolonged and most mice remained tumor-free. Hybrid cell lines derived from the BA tumor were produced in culture in unlimited quantities and were successfully used as immunogens. The addition of C. parvum to hybrids gave a significant incremental increase in survival when compared to the survival resulting from immunization by hybrids without adjuvant. When hybrids without adjuvant were used, several weekly injections were required for effective immunization. Irradiated and unirradiated hybrids were compared, and it was found that irradiation did not diminish hybrid immunogenicity. The potential problems and advantages of this concept of therapy are discussed.

  19. Radiation exposure induces inflammasome pathway activation in immune cells.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Ishikawa, Shizu; Lederer, Madeline R; Wanke-Jellinek, Lorenz; Lederer, James A

    2015-02-01

    Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation. PMID:25539818

  20. A Bacterial Flagellin, Vibrio vulnificus FlaB, Has a Strong Mucosal Adjuvant Activity To Induce Protective Immunity

    PubMed Central

    Lee, Shee Eun; Kim, Soo Young; Jeong, Byung Chul; Kim, Young Ran; Bae, Soo Jang; Ahn, Ouk Seon; Lee, Je-Jung; Song, Ho-Chun; Kim, Jung Mogg; Choy, Hyon E.; Chung, Sun Sik; Kweon, Mi-Na; Rhee, Joon Haeng

    2006-01-01

    Flagellin, the structural component of flagellar filament in various locomotive bacteria, is the ligand for Toll-like receptor 5 (TLR5) of host cells. TLR stimulation by various pathogen-associated molecular patterns leads to activation of innate and subsequent adaptive immune responses. Therefore, TLR ligands are considered attractive adjuvant candidates in vaccine development. In this study, we show the highly potent mucosal adjuvant activity of a Vibrio vulnificus major flagellin (FlaB). Using an intranasal immunization mouse model, we observed that coadministration of the flagellin with tetanus toxoid (TT) induced significantly enhanced TT-specific immunoglobulin A (IgA) responses in both mucosal and systemic compartments and IgG responses in the systemic compartment. The mice immunized with TT plus FlaB were completely protected from systemic challenge with a 200× minimum lethal dose of tetanus toxin. Radiolabeled FlaB administered into the nasal cavity readily reached the cervical lymph nodes and systemic circulation. FlaB bound directly to human TLR5 expressed on cultured epithelial cells and consequently induced NF-κB and interleukin-8 activation. Intranasally administered FlaB colocalized with CD11c as patches in putative dendritic cells and caused an increase in the number of TLR5-expressing cells in cervical lymph nodes. These results indicate that flagellin would serve as an efficacious mucosal adjuvant inducing protective immune responses through TLR5 activation. PMID:16369026

  1. Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumour immune responses

    PubMed Central

    Ishida, T; Chada, S; Stipanov, M; Nadaf, S; Ciernik, F I; Gabrilovich, D I; Carbone, D P

    1999-01-01

    In this study we have tested the concept of using wild-type p53 gene for immunotherapy of cancer. Dendritic cells (DC) were transduced with a human wild-type p53 containing recombinant adenovirus (Ad-p53). About a half of DC transduced with this virus expressed p53 protein by FACS analysis 48 h after infection. Mice immunized twice with Ad-p53 DC developed substantial cytotoxic T lymphocyte (CTL) responses against tumour cells expressing wild-type and different mutant human and murine p53 genes. Very low CTL responses were observed against target cells infected with control adenovirus (Ad-c). Immunization with Ad-p53 provided complete tumour protection in 85% of mice challenged with tumour cells expressing human mutant p53 and in 72.7% of mice challenged with tumour cells with murine mutant p53. Treatment with Ad-p53-transduced DC significantly slowed the growth of established tumours. Thus, DC transduced with wild-type p53 may be a promising new tool for the immunotherapy of cancer. PMID:10444254

  2. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation.

    PubMed

    Honda, Hiroe; Nagai, Yoshinori; Matsunaga, Takayuki; Okamoto, Naoki; Watanabe, Yasuharu; Tsuneyama, Koichi; Hayashi, Hiroaki; Fujii, Isao; Ikutani, Masashi; Hirai, Yoshikatsu; Muraguchi, Atsushi; Takatsu, Kiyoshi

    2014-12-01

    Inflammasome activation initiates the development of many inflammatory diseases, including obesity and type 2 diabetes. Therefore, agents that target discrete activation steps could represent very important drugs. We reported previously that ILG, a chalcone from Glycyrrhiza uralensis, inhibits LPS-induced NF-κB activation. Here, we show that ILG potently inhibits the activation of NLRP3 inflammasome, and the effect is independent of its inhibitory potency on TLR4. The inhibitory effect of ILG was stronger than that of parthenolide, a known inhibitor of the NLRP3 inflammasome. GL, a triterpenoid from G. uralensis, had similar inhibitory effects on NLRP3 activity, but high concentrations of GL were required. In contrast, activation of the AIM2 inflammasome was inhibited by GL but not by ILG. Moreover, GL inhibited NLRP3- and AIM2-activated ASC oligomerization, whereas ILG inhibited NLRP3-activated ASC oligomerization. Low concentrations of ILG were highly effective in IAPP-induced IL-1β production compared with the sulfonylurea drug glyburide. In vivo analyses revealed that ILG potently attenuated HFD-induced obesity, hypercholesterolemia, and insulin resistance. Furthermore, ILG treatment improved HFD-induced macrovesicular steatosis in the liver. Finally, ILG markedly inhibited diet-induced adipose tissue inflammation and IL-1β and caspase-1 production in white adipose tissue in ex vivo culture. These results suggest that ILG is a potential drug target for treatment of NLRP3 inflammasome-associated inflammatory diseases. PMID:25210146

  3. Hepatotoxicants induce cytokine imbalance in response to innate immune system.

    PubMed

    Goto, Shima; Deguchi, Jiro; Nishio, Naoki; Nomura, Naruaki; Funabashi, Hitoshi

    2015-06-01

    In recent years, attention has been paid to innate immune systems as mechanisms to initiate or promote drug-induced liver injury (DILI). Kupffer cells are hepatic resident macrophages and might be involved in the pathogenesis of DILI by release of pro- and anti-inflammatory mediators such as cytokines, chemokines, reactive oxygen species, and/or nitric oxides. The purpose of this study was to investigate alterations in mediator levels induced by hepatotoxic compounds in isolated Kupffer cells and discuss the relation between balance of each cytokine or chemokine and potential of innate immune-mediated DILI. Primary cultured rat Kupffer cells were treated with hepatotoxic (acetaminophen, troglitazone, trovafloxacin) or non-hepatotoxic (pioglitazone, levofloxacin) compounds with or without lipopolysaccharide (LPS). After 24 hr treatment, cell supernatants were collected and various levels of mediators released by Kupffer cells were examined. Although hepatotoxicants had no effect on the LPS-induced tumor necrosis factor-alpha (TNF-α) secretion, they enhanced the release of pro-inflammatory cytokine interleukin-1 beta (IL-1β) and suppressed the anti-inflammatory cytokines interleukin-6 (IL-6) and interleukin-10 (IL-10) induced by LPS. These cytokine shifts were not associated with switching the phenotypes of M1 and M2 macrophages in Kupffer cells. In conclusion, the present study suggested that the levels of some specific cytokines are affected by DILI-related drugs with LPS stimulation, and imbalance between pro- and anti-inflammatory cytokines, induced by the up-regulation of IL-1β and the down-regulation of IL-6 or IL-10, plays a key role in innate immune-mediated DILI. PMID:25972199

  4. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin.

    PubMed

    Chernokhaeva, L L; Rogova, Yu V; Vorovitch, M F; Romanova, L Iu; Kozlovskaya, L I; Maikova, G B; Kholodilov, I S; Karganova, G G

    2016-04-29

    Tick-borne encephalitis (TBE) circulates widely in the territory of Eurasia with up to 10,000 cases registered annually. The TBE virus (TBEV) includes three main subtypes: European, Siberian and Far-Eastern, and two new Asiatic variants, phylogenetically distant from the others. The inactivated antigen of European or Far-Eastern strains is used in commercial TBE vaccines. A set of 14 TBEV strains, isolated in 1937-2008, with different passage histories, representing all subtypes and variants, was used in this work. The chosen set covers almost all the TBE area. Sera of mice, immunized with the TBE vaccine Moscow, prepared from the TBEV strain Sofjin, were studied in a plaque neutralization test against the set of TBEV strains. The vaccine induced antibodies at a protective titer against all TBEV strains and Omsk hemorrhagic fever virus (OHFV) with Е protein amino acid distances of 0.008-0.069, but not against Powassan virus. We showed that after a course of two immunizations, factors such as the period between vaccinations (1-4 weeks), the challenging virus dose (30-1000 LD50) and terms of challenge (1-4 weeks after the last immunization) did not significantly affect the assessment of protective efficacy of the vaccine in vivo. The protective effect of the TBE vaccine Moscow against the set of TBEV strains and the OHFV was demonstrated in in vivo experiments. TBE vaccine Moscow did not protect mice against 10 LD50 of the Powassan virus. We showed that this range of Е protein amino acid distances between the vaccine strain and challenging virus do not have a decisive impact on the TBE vaccine protective effect in vitro and in vivo. Moreover, the TBE vaccine Moscow induces an immune response protective against a wide range of TBEV variants. PMID:27013433

  5. Prostaglandin E2 is a potent regulator of interleukin-12- and interleukin-18-induced natural killer cell interferon-γ synthesis

    PubMed Central

    Walker, William; Rotondo, Dino

    2004-01-01

    Synthesis of interferon (IFN)-γ by natural killer (NK) cells is an important pro-inflammatory event with interleukin (IL)-12 and IL-18 playing major inductive roles. However, other temporal events are likely to regulate such processes and as prostaglandin E2 (PGE2) is ubiquitous during inflammation this study tested the hypothesis that PGE2 was capable of directly modulating cytokine-induced NK cell IFN-γ synthesis in the absence of other immune cells. Using homogenous NK cell lines to establish direct effects, PGE2 (0·1–1 µm) was found to suppress NK cell IFN-γ synthesis and antagonized the potent synergistic IFN-γ-inducing effects of IL-12 and IL-18. The actions of PGE2 were mimicked by synthetic PGE2 analogues including misoprostol and butaprost. The selective EP2 receptor agonist butaprost, but not the EP1/EP3 agonist sulprostone, suppressed IFN-γ synthesis and exclusively competed with PGE2 for receptor binding on NK cells. Further analysis showed that PGE2 did not modulate IL-12 receptor mRNA expression and the effects of PGE2 could be mimicked by the phosphodiesterase inhibitor 3-iosobutyl-1-methylxanthine. The absence of demonstrable receptor modulation coupled with the observed suppression of IFN-γ synthesis by both EP2 receptor-selective agonists and IBMX suggest that PGE2 acts directly on NK cells via EP2 receptors with its downstream effects on cAMP metabolism. This conclusion is further supported by findings that PGE2 and its analogues consistently elevated levels of cAMP in NK cells. The ability of PGE2 to antagonize the potent inductive signal provided by the combination of IL-12 and IL-18 supports the concept that PGE2 may play an important role in limiting innate inflammatory processes in vivo through direct suppression of NK cell IFN-γ synthesis. PMID:15009430

  6. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules.

    PubMed

    Gannavaram, Sreenivas; Bhattacharya, Parna; Ismail, Nevien; Kaul, Amit; Singh, Rakesh; Nakhasi, Hira L

    2016-01-01

    No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4(+) and CD8(+) T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on

  7. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules

    PubMed Central

    Gannavaram, Sreenivas; Bhattacharya, Parna; Ismail, Nevien; Kaul, Amit; Singh, Rakesh; Nakhasi, Hira L.

    2016-01-01

    No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the

  8. Heterologous Prime-Boost Oral Immunization with GK-1 Peptide from Taenia crassiceps Cysticerci Induces Protective Immunity▿

    PubMed Central

    Fragoso, Gladis; Esquivel-Guadarrama, Fernando; Santana, M. Angélica; Bobes, Raul J.; Hernández, Beatriz; Cervantes, Jacquelynne; Segura, René; Goldbaum, Fernando A.; Sciutto, Edda; Rosas, Gabriela

    2011-01-01

    Oral immunization is a goal in vaccine development, particularly for pathogens that enter the host through the mucosal system. This study was designed to explore the immunogenic properties of the Taenia crassiceps protective peptide GK-1 administered orally. Mice were orally immunized with the synthetic GK-1 peptide in its linear form with or without the Brucella lumazine synthase (BLS) protein adjuvant or as a chimera recombinantly bound to BLS (BLS-GK-1). Mice were boosted twice with GK-1 only at 15-day intervals. A significant rate of protection of 64.7% was achieved in GK-1-immunized mice, and that rate significantly increased to 91.8 and 96% when mice were primed with GK-1 coadministered with BLS as an adjuvant and BLS as a carrier, respectively. Specific antibodies and T cell activation and proliferation accompanied the protection induced, revealing the potent immunogenicity of GK-1. Through immunohistochemical studies, GK-1 was detected in T and B cell zones of the Peyer's patches (PP) and mesenteric lymph nodes. In the latter, abundant proliferating cells were detected by 5′-bromo-2′-deoxyuridine incorporation. No proliferation was detected in PP. Altogether, these results portray the potent immunogenic properties of GK-1 administered orally and reinforce the usefulness of BLS as an adjuvant and adequate vaccine delivery system for oral vaccines. PMID:21593234

  9. Immune response to stem cells and strategies to induce tolerance.

    PubMed

    Batten, Puspa; Rosenthal, Nadia A; Yacoub, Magdi H

    2007-08-29

    Although recent progress in cardiovascular tissue engineering has generated great expectations for the exploitation of stem cells to restore cardiac form and function, the prospects of a common mass-produced cell resource for clinically viable engineered tissues and organs remain problematic. The refinement of stem cell culture protocols to increase induction of the cardiomyocyte phenotype and the assembly of transplantable vascularized tissue are areas of intense current research, but the problem of immune rejection of heterologous cell type poses perhaps the most significant hurdle to overcome. This article focuses on the potential advantages and problems encountered with various stem cell sources for reconstruction of the damaged or failing myocardium or heart valves and also discusses the need for integrating advances in developmental and stem cell biology, immunology and tissue engineering to achieve the full potential of cardiac tissue engineering. The ultimate goal is to produce 'off-the-shelf' cells and tissues capable of inducing specific immune tolerance. PMID:17584730

  10. Immunity-Based Evolutionary Interpretation of Diet-Induced Thermogenesis.

    PubMed

    Liao, Wan-Hui; Henneberg, Maciej; Langhans, Wolfgang

    2016-06-14

    Diet-induced thermogenesis (DIT) has often been argued to be a physiological defense against obesity, but no empirical proof of its effectiveness in limiting human body weight gain is available. We here propose an immune explanation of DIT-i.e., that it results from the coevolution of host and gut microbiota (especially Firmicutes) that ferment ingested food and proliferate, causing periodic, vagally mediated increases in thermogenesis aimed at curtailing their expansion. Because of this evolutionary adaptive significance related to the immune system, DIT is not effective as an "adaptation" to maintain a certain body mass. Were DIT an effective adaptation to prevent obesity, the current obesity epidemic might not have occurred. PMID:27304499

  11. The role of cytokines in immune changes induced by spaceflight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Miller, E. S.

    1993-01-01

    It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.

  12. Trypanosoma cruzi Adjuvants Potentiate T Cell-Mediated Immunity Induced by a NY-ESO-1 Based Antitumor Vaccine

    PubMed Central

    Junqueira, Caroline; Guerrero, Ana Tereza; Galvão-Filho, Bruno; Andrade, Warrison A.; Salgado, Ana Paula C.; Cunha, Thiago M.; Ropert, Catherine; Campos, Marco Antônio; Penido, Marcus L. O.; Mendonça-Previato, Lúcia; Previato, José Oswaldo; Ritter, Gerd; Cunha, Fernando Q.; Gazzinelli, Ricardo T.

    2012-01-01

    Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4+ T and CD8+ T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4+ T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8+ T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4+ T and CD8+ T cell responses elicited by a specific immunological adjuvant. PMID:22567144

  13. Orchestration of host-pathogen interaction: relevance of iron in generation of potent anti-M. tuberculosis immunity.

    PubMed

    Rai, Ambak K; Sharma, Shivesh; Punj, Vasu

    2014-01-01

    Pathogenesis of tuberculosis is marked with infection of macrophages followed by expansion of M. tuberculosis. Every step of this host-pathogen interaction is determined by the battle between the pathogen and host immune factors. It starts with phagocytosis of bacilli by mononuclear cells including alveolar macrophages and Dendritic Cells (DCs), both of which are Antigen Presenting Cells (APCs). Phagocytosed M. tuberculosis is subject to degradation by various means inside the phagolysosome. This very specific anti-M. tuberculosis mechanism within the phagocytes is well orchestrated. Upon activation, macrophages exhibit elevated levels of various intermediates via the oxidative burst, which effectively kills the pathogen and inhibits its dissemination. Generation of these intermediates and then their neutralization is intricately linked with the balance of divalent and trivalent iron metals in and outside of the cell. This review will bring the insight of host-M. tuberculosis interaction and its effectiveness in containment of the disease. Furthermore, the physiological balance of iron, its pathogen driven perturbance as well as its effect on the disease will also be discussed. PMID:25429656

  14. Diffuse traumatic brain injury induces prolonged immune dysregulation and potentiates hyperalgesia following a peripheral immune challenge

    PubMed Central

    Rowe, Rachel K; Ellis, Gavin I; Harrison, Jordan L; Bachstetter, Adam D; Corder, Gregory F; Van Eldik, Linda J; Taylor, Bradley K; Marti, Francesc

    2016-01-01

    Background Nociceptive and neuropathic pain occurs as part of the disease process after traumatic brain injury (TBI) in humans. Central and peripheral inflammation, a major secondary injury process initiated by the traumatic brain injury event, has been implicated in the potentiation of peripheral nociceptive pain. We hypothesized that the inflammatory response to diffuse traumatic brain injury potentiates persistent pain through prolonged immune dysregulation. Results To test this, adult, male C57BL/6 mice were subjected to midline fluid percussion brain injury or to sham procedure. One cohort of mice was analyzed for inflammation-related cytokine levels in cortical biopsies and serum along an acute time course. In a second cohort, peripheral inflammation was induced seven days after surgery/injury with an intraplantar injection of carrageenan. This was followed by measurement of mechanical hyperalgesia, glial fibrillary acidic protein and Iba1 immunohistochemical analysis of neuroinflammation in the brain, and flow cytometric analysis of T-cell differentiation in mucosal lymph. Traumatic brain injury increased interleukin-6 and chemokine ligand 1 levels in the cortex and serum that peaked within 1–9 h and then resolved. Intraplantar carrageenan produced mechanical hyperalgesia that was potentiated by traumatic brain injury. Further, mucosal T cells from brain-injured mice showed a distinct deficiency in the ability to differentiate into inflammation-suppressing regulatory T cells (Tregs). Conclusions We conclude that traumatic brain injury increased the inflammatory pain associated with cutaneous inflammation by contributing to systemic immune dysregulation. Regulatory T cells are immune suppressors and failure of T cells to differentiate into regulatory T cells leads to unregulated cytokine production which may contribute to the potentiation of peripheral pain through the excitation of peripheral sensory neurons. In addition, regulatory T cells are

  15. Induction of potent local cellular immunity with low dose X4 SHIV{sub SF33A} vaginal exposure

    SciTech Connect

    Tasca, Silvana; Tsai, Lily; Trunova, Nataliya; Gettie, Agegnehu; Saifuddin, Mohammed; Bohm, Rudolf; Chakrabarti, Lisa; Cheng-Mayer, Cecilia

    2007-10-10

    Intravaginal inoculation of rhesus macaques with varying doses of the CXCR4 (X4)-tropic SHIV{sub SF33A} isolate revealed a threshold inoculum for establishment of systemic virus infection and a dose dependency in overall viral burden and CD4+ T cell depletion. While exposure to inoculum size of 1000 or greater 50% tissue infectious dose (TCID{sub 50}) resulted in high viremia and precipitous CD4+ T cell loss, occult infection was observed in seven of eight macaques exposed to 500 TCID{sub 50} of the same virus. The latter was characterized by intermittent detection of low level virus with no evidence of seroconversion or CD4+ T cell decline, but with signs of an ongoing antiviral T cell immune response. Upon vaginal re-challenge with the same limiting dose 11-12 weeks after the first, classic pathogenic X4 SHIV{sub SF33A} infection was established in four of the seven previously exposed seronegative macaques, implying enhanced susceptibility to systemic infection with prior exposure. Pre-existing peripheral SIV gag-specific CD4+ T cells were more readily demonstrable in macaques that became systemically infected following re-exposure than those that were not. In contrast, early presence of circulating polyfunctional cytokine secreting CD8+ T cells or strong virus-specific proliferative responses in draining lymph nodes and in the gut associated lymphoid tissue (GALT) following the first exposure was associated with protection from systemic re-infection. These studies identify the gut and lymphoid tissues proximal to the genital tract as sites of robust CD8 T lymphocyte responses that contribute to containment of virus spread following vaginal transmission.

  16. [Auto-immune hypoglycemic syndrome induced by pyritinol].

    PubMed

    Faguer de Moustier, B; Burgard, M; Boitard, C; Desplanque, N; Fanjoux, J; Tchobroutsky, G

    1988-01-01

    The auto-immune hypoglycemic syndrome is characterized by the association of hypoglycemia (clinical and/or biological) and anti-insulin antibodies in patients who have never received exogenous insulin. Initially this syndrome was most often described in Japanese patients some of whom were treated with drugs containing a sulfydril group. We now recall the case of a female caucasian patient treated with Pyritinol for rhumatoid polyarthritis and who presented severe spontaneous hypoglycemia linked with the presence of anti-insulin antibodies in her serum. The level of her antibodies decreased abruptly on suspension of the drug. The recent and more developed characterization techniques of the different forms of circulating insulin and of their antibodies may help to differenciate an auto-immune hypoglycemia from hypoglycemia due to the secret auto-administration of bovine and porcine insuline, and permit us to suggest that an abnormality in the structure of the molecule of insulin might be a cause of this syndrome. However, the exact mechanism of hypoglycemia linked with the presence of anti-insulin auto-antibodies is not yet clear as is the predisposition of a drug with a sulfydril group to induce such an auto-immune phenomenon. PMID:3066650

  17. Targeted approaches to induce immune tolerance for Pompe disease therapy.

    PubMed

    Doerfler, Phillip A; Nayak, Sushrusha; Corti, Manuela; Morel, Laurence; Herzog, Roland W; Byrne, Barry J

    2016-01-01

    Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease. PMID:26858964

  18. Targeted approaches to induce immune tolerance for Pompe disease therapy

    PubMed Central

    Doerfler, Phillip A; Nayak, Sushrusha; Corti, Manuela; Morel, Laurence; Herzog, Roland W; Byrne, Barry J

    2016-01-01

    Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease. PMID:26858964

  19. Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells*

    PubMed Central

    Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren

    2014-01-01

    Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773

  20. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    PubMed

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. PMID:26520214

  1. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages

    PubMed Central

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto

    2016-01-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5. Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. PMID:27183578

  2. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    PubMed

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. PMID:27183578

  3. Potent and Broadly Reactive HIV-2 Neutralizing Antibodies Elicited by a Vaccinia Virus Vector Prime-C2V3C3 Polypeptide Boost Immunization Strategy▿ †

    PubMed Central

    Marcelino, José Maria; Borrego, Pedro; Rocha, Cheila; Barroso, Helena; Quintas, Alexandre; Novo, Carlos; Taveira, Nuno

    2010-01-01

    Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism. PMID:20844029

  4. Potent and broadly reactive HIV-2 neutralizing antibodies elicited by a vaccinia virus vector prime-C2V3C3 polypeptide boost immunization strategy.

    PubMed

    Marcelino, José Maria; Borrego, Pedro; Rocha, Cheila; Barroso, Helena; Quintas, Alexandre; Novo, Carlos; Taveira, Nuno

    2010-12-01

    Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism. PMID:20844029

  5. DS-03SONIC HEDGEHOG ANTAGONISTS POTENTLY INDUCE APOPTOSIS IN THE CEREBELLAR EXTERNAL GRANULE LAYER: IMPLICATIONS FOR MEDULLOBLASTOMA TREATMENT

    PubMed Central

    Noguchi, Kevin; Cabrera, Omar; Swiney, Brant; Smith, Julie; Farber, Nuri

    2014-01-01

    There is a great interest in Hedgehog signaling both for its role in cerebellar development and medulloblastoma (MB) treatment. The cerebellum maintains its own proliferative layer called the external granule layer (EGL) that produces over 90% of its neurons. During development, the established dogma views Hedgehog signaling as a robust mitogenic stimulator of EGL proliferation. However, in other regions of the body, Hedgehog stimulation acts as a survival signal by potently inducing NPC apoptosis when signaling is lost. In this manner, the sonic hedgehog ligand's concentration gradient determines NPC survival or death thereby morphologically sculpting the developing nervous system. Therefore, we tested whether Hedgehog signaling also acts as a survival signal in the EGL by administering several Hedgehog antagonists (vismodegib, cyclopamine, and jervine). Remarkably, we found all Hedgehog antagonists (HAs) potently induced EGL apoptosis within a few hours of administration. This suggests a large portion of the HAs' anti-proliferative effects are due to the apoptotic loss of a large number of EGL NPCs. This research may also have important implications for MB formation and treatment. There is convincing evidence that EGL neural progenitor cells (NPCs) can be the tumor initiating cells for MBs (the most common malignant brain tumor in children). Therefore, we examined if HAs can also produce apoptosis in Patched mice which exhibit constitutive Hedgehog stimulation and are prone to MB formation. We found HA administration also potently increased apoptosis in both EGL NPCs and preneoplasms. This may have important implications for the treatment of MBs with HAs. For example, apoptosis involves signaling mechanisms distinct from proliferation that may need to be disabled for malignant transformation. In addition, the requirement for Hedgehog signaling may prevent metastasis by killing tumor cells as they spread to regions where such signaling is absent.

  6. Immunological aspects of the immune response induced by mosquito allergens.

    PubMed

    Cantillo, José Fernando; Fernández-Caldas, Enrique; Puerta, Leonardo

    2014-01-01

    Allergies caused by mosquito bites may produce local or systemic reactions. The inhalation of mosquito allergens may also cause asthma and/or allergic rhinoconjunctivitis in sensitized individuals. The mechanisms implicated in the development of these immune responses involve IgE antibodies, different subtypes of IgG and proinflammatory cytokines as well as basophils, eosinophils and mast cells. Several allergenic components have been identified in the saliva and bodies of mosquitoes and some of these are present in different mosquito species. The most common species implicated in allergic reactions belong to the genera Aedes, Culex and Anopheles. Several Aedes aegypti allergens have been cloned and sequenced. The recombinant molecules show IgE reactivity similar to that of the native allergens, making them good candidates for the diagnosis of mosquito allergies. Allergen-specific immunotherapy with mosquito extracts induces a protective response characterized by a decreased production of IgE antibodies, increased IgG levels, a reduction in the severity of cutaneous and respiratory symptoms and the need for medication. The aims of this review are to summarize the progress made in the characterization of mosquito allergens and discuss the types of immune responses induced by mosquito bites and the inhalation of mosquito allergens in atopic individuals. PMID:25661054

  7. Role of Baicalin in Anti-Influenza Virus A as a Potent Inducer of IFN-Gamma

    PubMed Central

    Chu, Ming; Xu, Lan; Zhang, Ming-bo; Chu, Zheng-yun; Wang, Yue-dan

    2015-01-01

    Baicalin (BA) is a flavonoid compound purified from Scutellaria baicalensis Georgi and has been shown to possess a potent inhibitory activity against viruses. However, the role of BA in anti-influenza virus has not been extensively studied, and the immunological mechanism of BA in antiviral activity remains unknown. Here, we observed that BA could protect mice from infection by influenza virus A/PR/8/34 (H1N1), associated with increasing IFN-γ production, but presented no effects in IFN-γ or IFN-γ receptor deficient mice. Further study indicated that BA could inhibit A/PR/8/34 replication through IFN-γ in human PBMC. Moreover, BA can directly induce IFN-γ production in human CD4+ and CD8+ T cells and NK cells, and activate JAK/STAT-1 signaling pathway. Collectively, BA exhibited anti-influenza virus A (H1N1) activity in vitro and in vivo as a potent inducer of IFN-γ in major IFN-γ producing cells. PMID:26783516

  8. Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice.

    PubMed

    Kaur, Gurpreet; Jabbar, Zoobi; Athar, Mohammad; Alam, M Sarwar

    2006-07-01

    Most pomegranate (Punica granatum Linn., Punicaceae) fruit parts are known to possess enormous antioxidant activity. The present study evaluated antioxidant and hepatoprotective activity of pomegranate flowers. Alcoholic (ethanolic) extract of flowers was prepared and used in the present study. The extract was found to contain a large amount of polyphenols and exhibit enormous reducing ability, both indicative of potent antioxidant ability. The extract showed 81.6% antioxidant activity in DPPH model system. The ability of extract to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) was tested and it was found to significantly scavenge superoxide (O(2)(.-)) (by up to 53.3%), hydrogen peroxide (H(2)O(2)) (by up to 30%), hydroxyl radicals (()OH) (by up to 37%) and nitric oxide (NO) (by up to 74.5%). The extract also inhibited (.)OH induced oxidation of lipids and proteins in vitro. These results indicated pomegranate flower extract to exert a significant antioxidant activity in vitro. The efficacy of extract was tested in vivo and it was found to exhibit a potent protective activity in acute oxidative tissue injury animal model: ferric nitrilotriacetate (Fe-NTA) induced hepatotoxicity in mice. Intraperitoneal administration of 9 mg/kg body wt. Fe-NTA to mice induced oxidative stress and liver injury. Pretreatment with pomegranate flower extract at a dose regimen of 50-150 mg/kg body wt. for a week significantly and dose dependently protected against Fe-NTA induced oxidative stress as well as hepatic injury. The extract afforded up to 60% protection against hepatic lipid peroxidation and preserved glutathione (GSH) levels and activities of antioxidant enzymes viz., catalase (CAT), glutathione peroxidase (GPX) glutathione reductase (GR) and glutathione-S-transferase (GST) by up to 36%, 28.5%, 28.7%, 40.2% and 42.5% respectively. A protection against Fe-NTA induced liver injury was apparent as inhibition in the modulation of liver markers viz

  9. Ring-truncated deguelin derivatives as potent Hypoxia Inducible Factor-1α (HIF-1α) inhibitors.

    PubMed

    Kim, Ho Shin; Hong, Mannkyu; Lee, Su-Chan; Lee, Ho-Young; Suh, Young-Ger; Oh, Dong-Chan; Seo, Ji Hae; Choi, Hoon; Kim, Jun Yong; Kim, Kyu-Won; Kim, Jeong Hun; Kim, Joohwan; Kim, Young-Myeong; Park, So-Jung; Park, Hyun-Ju; Lee, Jeewoo

    2015-11-01

    A series of fluorophenyl and pyridine analogues of 1 and 2 were synthesized as ring-truncated deguelin surrogates and evaluated for their HIF-1α inhibition. Their structure-activity relationship was systematically investigated based on the variation of the linker B-region moiety. Among the inhibitors, compound 25 exhibited potent HIF-1α inhibition in a dose-dependent manner and significant antitumor activity in H1299 with less toxicity than deguelin. It also inhibited in vitro hypoxia-mediated angiogenic processes in HRMECs. The docking study indicates that 25 occupied the C-terminal ATP-binding pocket of HSP90 in a similar mode as 1, which implies that the anticancer and antiangiogenic activities of 25 are derived from HIF-1α destabilization by binding to the C-terminal ATP-binding site of hHSP90. PMID:26457742

  10. G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses

    PubMed Central

    2013-01-01

    Background Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo. Methods We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice. Results We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation. Conclusions Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF. PMID:24279871

  11. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells.

    PubMed

    Li, Zhen; Jiang, Ke; Zhu, Xiaofang; Lin, Guibin; Song, Fei; Zhao, Yongfu; Piao, Yongjun; Liu, Jiwei; Cheng, Wei; Bi, Xiaolin; Gong, Peng; Song, Zhiqi; Meng, Songshu

    2016-01-28

    Encorafenib (LGX818) is a new-generation BRAF inhibitor that is under evaluation in clinical trials. However, the underlying mechanism remains to be elucidated. Here we show that LGX818 potently decreased ERK phosphorylation and inhibited proliferation in BRAFV600E melanoma cell lines. Moreover, LGX818 downregulated CyclinD1 in a glycogen synthase kinase 3β-independent manner and induced cell cycle arrest in the G1 phase, Surprisingly, LGX818 triggered cellular senescence in BRAFV600E melanoma cells, as evidenced by increased β-galactosidase staining, while no appreciable induction of apoptosis was detected, as determined by Annexin V and propidium iodide staining and immunoblot analysis of caspase-3 processing and poly (ADP-ribose) polymerase cleavage. Increased p27KIP1 expression and retinoblastoma protein activation were detected during LGX818-induced senescence. Additionally, inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 1B by AZ191 reversed LGX818-induced CyclinD1 turnover and senescence. Interestingly, autophagy is triggered through inhibition of the mTOR/70S6K pathway during LGX818-induced senescence. Moreover, autophagy inhibition by pharmacological and genetic regulation attenuates LGX818-induced senescence. Notably, combining LGX818 with autophagy modulators has anti-proliferative effect in LGX818-resistant BRAF mutant melanoma cells. Altogether, we uncovered a mechanism by which LGX818 exerts its anti-tumor activity in BRAFV600E melanoma cells. PMID:26586345

  12. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  13. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  14. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  15. Chronic hepatitis C viral infection subverts vaccine‐induced T‐cell immunity in humans

    PubMed Central

    Kelly, Christabel; Swadling, Leo; Capone, Stefania; Brown, Anthony; Richardson, Rachel; Halliday, John; von Delft, Annette; Oo, Ye; Mutimer, David; Kurioka, Ayako; Hartnell, Felicity; Collier, Jane; Ammendola, Virginia; Sorbo, Mariarosaria Del; Grazioli, Fabiana; Esposito, Maria Luisa; Marco, Stefania Di; Siani, Loredana; Traboni, Cinzia; Hill, Adrian V.S.; Colloca, Stefano; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul

    2016-01-01

    Adenoviral vectors encoding hepatitis C virus (HCV) nonstructural (NS) proteins induce multispecific, high‐magnitude, durable CD4+ and CD8+ T‐cell responses in healthy volunteers. We assessed the capacity of these vaccines to induce functional HCV‐specific immune responses and determine T‐cell cross‐reactivity to endogenous virus in patients with chronic HCV infection. HCV genotype 1‐infected patients were vaccinated using heterologous adenoviral vectors (ChAd3‐NSmut and Ad6‐NSmut) encoding HCV NS proteins in a dose escalation, prime‐boost regimen, with and without concomitant pegylated interferon‐α/ribavirin therapy. Analysis of immune responses ex vivo used human leukocyte antigen class I pentamers, intracellular cytokine staining, and fine mapping in interferon‐γ enzyme‐linked immunospot assays. Cross‐reactivity of T cells with population and endogenous viral variants was determined following viral sequence analysis. Compared to healthy volunteers, the magnitude of HCV‐specific T‐cell responses following vaccination was markedly reduced. CD8+ HCV‐specific T‐cell responses were detected in 15/24 patients at the highest dose, whereas CD4+ T‐cell responses were rarely detectable. Analysis of the host circulating viral sequence showed that T‐cell responses were rarely elicited when there was sequence homology between vaccine immunogen and endogenous virus. In contrast, T cells were induced in the context of genetic mismatch between vaccine immunogen and endogenous virus; however, these commonly failed to recognize circulating epitope variants and had a distinct partially functional phenotype. Vaccination was well tolerated but had no significant effect on HCV viral load. Conclusion: Vaccination with potent HCV adenoviral vectored vaccines fails to restore T‐cell immunity except where there is genetic mismatch between vaccine immunogen and endogenous virus; this highlights the major challenge of overcoming T‐cell exhaustion

  16. Antitumor immune responses induced by photodynamic immunotherapy in rats

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Robinson, Karen E.; Adams, Robert L.; Singhal, Anil K.; Nordquist, Robert E.

    1998-05-01

    A new laser immunotherapy was used to treat metastatic mammary rat tumors. This new modality consists of three components: a near-infrared diode laser, a photosensitizer, and an immunoadjuvant. The sensitizer-adjuvant solution was injected directly to the tumor, followed by a non-invasive laser application. The new method resulted in total eradication of the treated primary tumors and eradication of untreated metastases at remote sites. Observed was the long-term survival of treated tumor-bearing rats: up to 120 days after tumor inoculation, a 300% increase in survival length compared with untreated control tumor-bearing rats. In addition, the successfully treated rats were refractory to tumor rechallenge with 10 times of the original tumor dose. Fluorescein and peroxidase immunochemical assays were also performed using sera from cured rats as the primary antibody. Strong antibody binding to both live and preserved tumor cells was observed. Western blot analysis, using the cured rat serum as primary antibody also showed distinctive protein binding, suggesting the induction of tumor-specific humoral immune response. These results indicated that an immune response was induced by the treatment of laser, photosensitizer and immunoadjuvant.

  17. Leukemogenesis induced by wild-type and STI571-resistant BCR/ABL is potently suppressed by C/EBPα

    PubMed Central

    Ferrari-Amorotti, Giovanna; Keeshan, Karen; Zattoni, Michela; Guerzoni, Clara; Iotti, Giorgio; Cattelani, Sara; Donato, Nick J.; Calabretta, Bruno

    2006-01-01

    Chronic phase–to–blast crisis transition in chronic myelogenous leukemia (CML) is associated with differentiation arrest and down-regulation of C/EBPα, a transcription factor essential for granulocyte differentiation. Patients with CML in blast crisis (CML-BC) became rapidly resistant to therapy with the breakpoint cluster region–Abelson murine leukemia (BCR/ABL) kinase inhibitor imatinib (STI571) because of mutations in the kinase domain that interfere with drug binding. We show here that the restoration of C/EBPα activity in STI571-sensitive or -resistant 32D-BCR/ABL cells induced granulocyte differentiation, inhibited proliferation in vitro and in mice, and suppressed leukemogenesis. Moreover, activation of C/EBPα eradicated leukemia in 4 of 10 and in 6 of 7 mice injected with STI571-sensitive or -resistant 32D-BCR/ABL cells, respectively. Differentiation induction and proliferation inhibition were required for optimal suppression of leukemogenesis, as indicated by the effects of p42 C/EBPα, which were more potent than those of K298E C/EBPα, a mutant defective in DNA binding and transcription activation that failed to induce granulocyte differentiation. Activation of C/EBPα in blast cells from 4 patients with CML-BC, including one resistant to STI571 and BMS-354825 and carrying the T315I Abl kinase domain mutation, also induced granulocyte differentiation. Thus, these data indicate that C/EBPα has potent antileukemia effects even in cells resistant to ATP-binding competitive tyrosine kinase inhibitors, and they portend the development of anti-leukemia therapies that rely on C/EBPα activation. PMID:16670262

  18. Steric-electronic effects in malarial peptides inducing sterile immunity

    SciTech Connect

    Moreno-Vranich, Armando; Patarroyo, Manuel E.

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Is it evident that the residues position are relevant regarding of {phi} angular value. Black-Right-Pointing-Pointer The geometry considered for detailing the alterations undergone by HABPs. Black-Right-Pointing-Pointer The inter planar interactions ruled by clashes between the atoms making them up. -- Abstract: Conserved Plasmodium falciparum high activity binding peptides' (HABPs) most relevant proteins involved in malaria parasite invasion are immunologically silent; critical binding residues must therefore be specifically replaced to render them highly immunogenic and protection-inducing. Such changes have a tremendous impact on these peptides' steric-electronic effects, such as modifications to peptide length peptide bonds and electronic orbitals' disposition, to allow a better fit into immune system MHCII molecules and better interaction with the TCR which might account for the final immunological outcome.

  19. Human placenta-derived adherent cells induce tolerogenic immune responses.

    PubMed

    Liu, Wei; Morschauser, Andrew; Zhang, Xin; Lu, Xiaohua; Gleason, Joseph; He, Shuyang; Chen, Hong-Jung; Jankovic, Vladimir; Ye, Qian; Labazzo, Kristen; Herzberg, Uri; Albert, Vivian R; Abbot, Stewart E; Liang, Bitao; Hariri, Robert

    2014-05-01

    Human placenta-derived adherent cells (PDAC cells) are a culture expanded, undifferentiated mesenchymal-like population derived from full-term placental tissue, with immunomodulatory and anti-inflammatory properties. PDA-001 (cenplacel-L), an intravenous formulation of PDAC cells, is in clinical development for the treatment of autoimmune and inflammatory diseases. To elucidate the mechanisms underlying the immunoregulatory properties of PDAC cells, we investigated their effects on immune cell populations, including T cells and dendritic cells (DC) in vitro and in vivo. PDAC cells suppressed T-cell proliferation in an OT-II T-cell adoptive transfer model, reduced the severity of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis and ameliorated inflammation in a delayed type hypersensitivity response model. In vitro, PDAC cells suppressed T-cell proliferation and inhibited Th1 and Th17 differentiation. Analysis of tissues derived from PDAC cell-treated animals revealed diminished CD86 expression on splenic DC, suggesting that they can also modulate DC populations. Furthermore, PDAC cells modulate the differentiation and maturation of mouse bone marrow-derived DC. Similarly, human DC differentiated from CD14(+) monocytes in the presence of PDAC cells acquired a tolerogenic phenotype. These tolerogenic DC failed to induce allogeneic T-cell proliferation and differentiation toward Th1, but skewed T-cell differentiation toward Th2. Inhibition of cyclo-oxygenase-2 activity resulted in a significant, but not complete, abrogation of PDAC cells' effects on DC phenotype and function, implying a role for prostaglandin E2 in PDAC-mediated immunomodulation. This study identifies modulation of DC differentiation toward immune tolerance as a key mechanism underlying the immunomodulatory activities of PDAC cells. PMID:25505962

  20. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    PubMed Central

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  1. Beta-amyrin from Ardisia elliptica Thunb. is more potent than aspirin in inhibiting collagen-induced platelet aggregation.

    PubMed

    Ching, Jianhong; Chua, Tung-Kian; Chin, Lee-Cheng; Lau, Aik-Jiang; Pang, Yun-Keng; Jaya, Johannes Murti; Tan, Chay-Hoon; Koh, Hwee-Ling

    2010-03-01

    Ardisia elliptica Thunberg (Myrsinaceae) is a medicinal plant traditionally used for alleviating chest pains, treatment of fever, diarrhoea, liver poisoning and parturition complications. The objectives of the study were to investigate the effect of A. elliptica on collagen induced platelet aggregation and to isolate and purify potential antiplatelet components. Fresh A. elliptica leaves were extracted using methanol (70% v/v) by Soxhlet extraction and the extract was analysed for its inhibition of collagen-induced platelet aggregation. Inhibition of platelet aggregation was assessed by incubating the extracts with rabbit blood and collagen in a whole blood aggregometer and measuring the impedance. The leaf extract was found to inhibit platelet aggregation with an IC50 value of 167 microg/ml. Using bioassay guided fractionation, beta-amyrin was isolated and purified. The IC50 value of beta-amyrin was found to be 4.5 microg/ml (10.5 microM) while that of aspirin was found to be 11 microg/ml (62.7 microM), indicating that beta-amyrin was six times as active as aspirin in inhibiting platelet aggregation. This paper is the first report that beta-amyrin isolated from A. elliptica is more potent than aspirin in inhibiting collagen-induced platelet aggregation. In conclusion, A. elliptica leaves were found to inhibit collagen-induced platelet aggregation and one of the bioactive components responsible for the observed effect was determined to be beta-amyrin. PMID:21046981

  2. Therapeutic efficacy of oral immunization with a non-genetically modified Lactococcus lactis-based vaccine CUE-GEM induces local immunity against Helicobacter pylori infection.

    PubMed

    Liu, Wei; Tan, Zhoulin; Xue, Jinfeng; Luo, Wenjin; Song, Hui; Lv, Xiaobo; Zheng, Tianjing; Xi, Tao; Xing, Yingying

    2016-07-01

    The gastric bacterial pathogen Helicobacter pylori persistently colonizes the gastric mucosa of humans and plays a critical role in the development of gastritis, peptic ulceration and gastric adenocarcinoma. Consequently, the eradication of H. pylori might contribute to the prevention of H. pylori-associated gastric diseases. In this study, a multi-epitope vaccine CTB-UE (CUE) was displayed on the surface of non-genetically modified Lactococcus lactis particles (GEM) to enhance immunogenicity. This particulate vaccine CUE-GEM induced serum and mucosal specific antibody responses against native H. pylori urease and provided potent protection to eliminate H. pylori colonization and relieve gastritis in an H. pylori-infected BALB/c mouse model. The immuno-protective mechanisms are highly associated with CD4(+) Th cell-mediated and humoral immunity, especially local immunity. There might be two main aspects of this association. One aspect is related to the suppression of urease activity by promotion of the production of specific mucosal neutralizing antibody. The other aspect is correlated with alleviating gastritis by regulating the gastric pro-inflammatory cytokine profile, especially IFN-γ and IL-17. These results demonstrated that conjugating antigen vaccines with GEM particles could lead to promising oral therapeutic vaccine formulations against H. pylori infection. PMID:26846746

  3. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells

    PubMed Central

    Beck, Daniela; Niessner, Heike; Smalley, Keiran S.M.; Flaherty, Keith; Paraiso, Kim H.T.; Busch, Christian; Sinnberg, Tobias; Vasseur, Sophie; Iovanna, Juan Lucio; Drießen, Stefan; Stork, Björn; Wesselborg, Sebastian; Schaller, Martin; Biedermann, Tilo; Bauer, Jürgen; Lasithiotakis, Konstantinos; Weide, Benjamin; Eberle, Jürgen; Schittek, Birgit; Schadendorf, Dirk; Garbe, Claus; Kulms, Dagmar; Meier, Friedegund

    2013-01-01

    The V600E mutation in the kinase BRAF is frequently detected in melanomas and results in constitutive activation of BRAF, which then promotes cell proliferation by the mitogen-activated protein kinase (MAPK) signaling pathway. Although the BRAFV600E kinase inhibitor vemurafenib has remarkable antitumor activity in patients with BRAFV600E-mutated melanoma, its effects are limited by the onset of drug resistance. We found that exposure of melanoma cell lines with the BRAFV600E mutation to vemurafenib decreased the abundance of anti-apoptotic proteins and induced intrinsic mitochondrial apoptosis. Vemurafenib-treated melanoma cells showed increased cytosolic concentration of calcium, a potential trigger for endoplasmic reticulum (ER) stress, which can lead to apoptosis. Consistent with an ER stress-induced response, vemurafenib decreased the abundance of the ER chaperone protein GRP78, increased the abundance of the spliced isoform of the transcription factor X-box protein 1 (XBP1) (which transcriptionally activates genes involved in ER stress responses), increased the phosphorylation of the translation initiation factor eIF2α (which would be expected to inhibit protein synthesis), and induced the expression of ER stress-related genes. Knockdown of the ER stress response protein ATF4 significantly reduced vemurafenib-induced apoptosis. Moreover, the ER stress inducer thapsigargin prevented invasive growth of tumors formed from vemurafenib-sensitive melanoma cells in vivo. In melanoma cells with low sensitivity or resistance to vemurafenib, combination treatment with thapsigargin augmented or induced apoptosis. Thus, thapsigargin or other inducers of ER stress may be useful in combination therapies to overcome vemurafenib resistance. PMID:23362240

  4. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Morita, Akinori; Ninomiya, Yasuharu; Maruyama, Kouichi; Fujita, Kazuko; Hosoi, Yoshio; Nenoi, Mitsuru

    2013-01-01

    Previous in vitro and in vivo studies have shown that sodium orthovanadate (vanadate), an inorganic vanadium compound, could effectively suppress radiation-induced p53-mediated apoptosis via both transcription-dependent and transcription-independent pathways. As a potent radiation protector administered at a dose of 20 mg/kg body weight (20 mg/kg) prior to total body irradiation (TBI) by intra-peritoneal (ip) injection, it completely protected mice from hematopoietic syndrome and partially from gastrointestinal syndrome. In the present study, radiation mitigation effects from vanadate were investigated by ip injection of vanadate after TBI in mice. Results showed that a single administration of vanadate at a dose of 20 mg/kg markedly improved the 30-day survival rate and the peripheral blood hemogram, relieved bone marrow aplasia and decreased occurrence of the bone marrow micronucleated erythrocytes in the surviving animals. The dose reduction factor was 1.2 when a single dose of 20 mg/kg was administered 15 min after TBI in mice using the 30-day survival test as the endpoint. Results also showed that either doubling the vanadate dose (40 mg/kg) in a single administration or continuing the vanadate treatment (after a single administration at 20 mg/kg) from the following day at a dose of 5 mg/kg per day for 4 consecutive days further significantly improved the efficacy for rescuing bone marrow failure in the 30-day survival test. Taken together, these findings indicate that vanadate would be a potent mitigator suppressing the acute lethality (hematopoietic syndrome) and minimizing the detrimental effects (anhematopoiesis and delayed genotoxic effects) induced by TBI in mice. PMID:23349341

  5. Among-lake reciprocal transplants induce convergent expression of immune genes in threespine stickleback.

    PubMed

    Stutz, William E; Schmerer, Matthew; Coates, Jessica L; Bolnick, Daniel I

    2015-09-01

    Geographic variation in parasite communities can drive evolutionary divergence in host immune genes. However, biotic and abiotic environmental variation can also induce plastic differences in immune function among populations. At present, there is little information concerning the relative magnitudes of heritable vs. induced immune divergence in natural populations. We examined immune gene expression profiles of threespine stickleback (Gasterosteus aculeatus) from six lakes on Vancouver Island, British Columbia. Parasite community composition differs between lake types (large or small, containing limnetic- or benthic-like stickleback) and between watersheds. We observed corresponding differences in immune gene expression profiles among wild-caught stickleback, using a set of seven immune genes representing distinct branches of the immune system. To evaluate the role of environmental effects on this differentiation, we experimentally transplanted wild-caught fish into cages in their native lake, or into a nearby foreign lake. Transplanted individuals' immune gene expression converged on patterns typical of their destination lake, deviating from their native expression profile. Transplant individuals' source population had a much smaller effect, suggesting relatively weak genetic underpinning of population differences in immunity, as viewed through gene expression. This strong environmental regulation of immune gene expression provides a counterpoint to the large emerging literature documenting microevolution and genetic diversification of immune function. Our findings illustrate the value of studying immunity in natural environmental settings where the immune system has evolved and actively functions. PMID:26118468

  6. Prohibitin (PHB) acts as a potent survival factor against ceramide induced apoptosis in rat granulosa cells*

    PubMed Central

    Chowdhury, Indrajit; Branch, Alicia; Olatinwo, Moshood; Thomas, Kelwyn; Matthews, Roland; Thompson, Winston E.

    2011-01-01

    Aim Ceramide is a key factor in inducing germ cell apoptosis by translocating from cumulus cells into the adjacent oocyte and lipid rafts through gap junctions. Therefore studies designed to elucidate the mechanistic pathways in ceramide induced granulosa cell (GC) apoptosis and follicular atresia may potentially lead to the development of novel lipid-based therapeutic strategies that will prevent infertility and premature menopause associated with chemo and/or radiation therapy in female cancer patients. Our previous studies have shown that Prohibitin (PHB) is intimately involved in GCs differentiation, atresia, and luteolysis. Main methods In the present study, we have examined the functional effects of loss-/gain-of-function of PHB using adenoviral technology in delaying apoptosis induced by the physiological ligand ceramide in rat GCs. Key findings Under these experimental conditions, exogenous ceramide C-8 (50μM) augmented the expression of mitochondrial PHB and subsequently cause the physical destruction of GC by the release of mitochondrial cytochrome c and activation of caspase-3. In further studies, silencing of PHB expression by adenoviral small interfering RNA (shRNA) sensitized GCs to ceramide C8-induce apoptosis. In contrast, adenovirus (Ad) directed overexpression of PHB in GCs resulted in increased PHB content in mitochondria and delayed the onset of ceramide induced apoptosis in the infected GCs. Significance Taken together, these results provide novel evidences that a critical level of PHB expression within the mitochondria plays a key intra-molecular role in GC fate by mediating the inhibition of apoptosis and may therefore, contribute significantly to ceramide induced follicular atresia. PMID:21763324

  7. Unveiling Unexpected Immune Activities Induced by Your Pneumococcal Vaccine

    PubMed Central

    Hurwitz, Julia L.

    2016-01-01

    ABSTRACT In modern-day vaccine design, a good pneumococcal capsular polysaccharide vaccine is measured by its ability to induce opsonic antibodies. These antibodies label bacteria for phagocytosis by neutrophils and thereby overcome the capsule’s barrier function. Doyle and Pirofski have raised a serious challenge to the current paradigm by describing anti-capsular antibodies that are highly protective but nonopsonic [C.R. Doyle and L. Pirofski, mBio 7(1):e02260-15, 2016, doi:10.1128/mBio.02260-15]. In fact, some functions are not related to neutrophils or phagocytosis at all. An increased awareness of these activities is critical not only for accurate comparisons of vaccine candidates but also for improvements in vaccination outcomes in settings of neutropenia. When vaccine developers select a single gatekeeper assay (e.g., an opsonophagocytic assay for bacteria or a neutralization assay for viruses), promising vaccine candidates may be missed. Doyle and Pirofski stress that multiple functions, not just one, should be investigated to enhance discovery of antibody mechanisms and to best assess vaccine-induced correlates of immune protection. PMID:26908576

  8. A cardiac myosin-specific autoimmune response is induced by immunization with Trypanosoma cruzi proteins.

    PubMed

    Leon, Juan S; Daniels, Melvin D; Toriello, Krista M; Wang, Kegiang; Engman, David M

    2004-06-01

    Trypanosoma cruzi is the protozoan parasite that causes Chagas' heart disease, a potentially fatal cardiomyopathy prevalent in Central and South America. Infection with T. cruzi induces cardiac myosin autoimmunity in susceptible humans and mice, and this autoimmunity has been suggested to contribute to cardiac inflammation. To address how T. cruzi induces cardiac myosin autoimmunity, we investigated whether immunity to T. cruzi antigens could induce cardiac myosin-specific autoimmunity in the absence of live parasites. We immunized A/J mice with a T. cruzi Brazil-derived protein extract emulsified in complete Freund's adjuvant and found that these mice developed cardiac myosin-specific delayed-type hypersensitivity (DTH) and autoantibodies in the absence of detectable cardiac damage. The induction of autoimmunity was specific since immunization with extracts of the related protozoan parasite Leishmania amazonensis did not induce myosin autoimmunity. The immunogenetic makeup of the host was important for this response, since C57BL/6 mice did not develop cardiac myosin DTH upon immunization with T. cruzi extract. Perhaps more interesting, mice immunized with cardiac myosin developed T. cruzi-specific DTH and antibodies. This DTH was also antigen specific, since immunization with skeletal myosin and myoglobin did not induce T. cruzi-specific immunity. These results suggest that immunization with cardiac myosin or T. cruzi antigen can induce specific, bidirectionally cross-reactive immune responses in the absence of detectable cardiac damage. PMID:15155647

  9. Design, synthesis and SARs of novel salicylanilides as potent inhibitors of RANKL-induced osteoclastogenesis and bone resorption.

    PubMed

    Chen, Chun-Liang; Lee, Chia-Chung; Liu, Fei-Lan; Chen, Tsung-Chih; Ahmed Ali, Ahmed Atef; Chang, Deh-Ming; Huang, Hsu-Shan

    2016-07-19

    Inhibiting osteoclastogenesis is a promising therapeutic target for treating osteoclast-related diseases. Herein, we synthesized a series of modified salicylanilides and their corresponding 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione and 10-phenyldibenzo[b,f][1,4]oxazepin-11(10H)-one derivatives, and investigated the effects of such compounds on RANKL-induced osteoclast formation. Among them, a salicylanilide derivative (A04) and its 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivative (B04) markedly suppressed RANKL-induced osteoclast differentiation and showed no significant cytotoxic effects at doses higher than that required to inhibit osteoclast formation. Both compounds reduced osteoclast formation and bone resorptive activity of osteoclasts in a dose-dependent manner. Further, the anti-osteoclastogenic effects of A04 and B04 may operate through reducing the RANKL-induced nuclear translocation of NFATc1. Accordingly, we present the potent anti-osteoclastogenic compounds A04 and B04 as promising candidates for further optimization as anti-resorptive agents. PMID:27089213

  10. Differences in immune responses against Leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery.

    PubMed

    Mendonça, Sergio C F

    2016-01-01

    The leishmaniases are a group of diseases caused by different species of the protozoan genus Leishmania and transmitted by sand fly vectors. They are a major public health problem in almost all continents. There is no effective control of leishmaniasis and its geographical distribution is expanding in many countries. Great effort has been made by many scientists to develop a vaccine against leishmaniasis, but, so far, there is still no effective vaccine against the disease. The only way to generate protective immunity against leishmaniasis in humans is leishmanization, consisting of the inoculation of live virulent Leishmania as a means to acquire long-lasting immunity against subsequent infections. At present, all that we know about human immune responses to Leishmania induced by immunization with killed parasite antigens came from studies with first generation candidate vaccines (killed promastigote extracts). In the few occasions that the T cell-mediated immune responses to Leishmania induced by infection and immunization with killed parasite antigens were compared, important differences were found both in humans and in animals. This review discusses these differences and their relevance to the development of a vaccine against leishmaniasis, the major problems involved in this task, the recent prospects for the selection of candidate antigens and the use of attenuated Leishmania as live vaccines. PMID:27600664

  11. Modified Vaccinia Virus Ankara Encoding Influenza Virus Hemagglutinin Induces Heterosubtypic Immunity in Macaques

    PubMed Central

    Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.

    2014-01-01

    ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging

  12. Immune mechanisms in acetaminophen-induced acute liver failure.

    PubMed

    Krenkel, Oliver; Mossanen, Jana C; Tacke, Frank

    2014-12-01

    An overdose of acetaminophen (N-acetyl-p-aminophenol, APAP), also termed paracetamol, can cause severe liver damage, ultimately leading to acute liver failure (ALF) with the need of liver transplantation. APAP is rapidly taken up from the intestine and metabolized in hepatocytes. A small fraction of the metabolized APAP forms cytotoxic mitochondrial protein adducts, leading to hepatocyte necrosis. The course of disease is not only critically influenced by dose of APAP and the initial hepatocyte damage, but also by the inflammatory response following acetaminophen-induced liver injury (AILI). As revealed by mouse models of AILI and corresponding translational studies in ALF patients, necrotic hepatocytes release danger-associated-molecular patterns (DAMPs), which are recognized by resident hepatic macrophages, Kupffer cell (KC), and neutrophils, leading to the activation of these cells. Activated hepatic macrophages release various proinflammatory cytokines, such as TNF-α or IL-1β, as well as chemokines (e.g., CCL2) thereby further enhancing inflammation and increasing the influx of immune cells, like bone-marrow derived monocytes and neutrophils. Monocytes are mainly recruited via their receptor CCR2 and aggravate inflammation. Infiltrating monocytes, however, can mature into monocyte-derived macrophages (MoMF), which are, in cooperation with neutrophils, also involved in the resolution of inflammation. Besides macrophages and neutrophils, distinct lymphocyte populations, especially γδ T cells, are also linked to the inflammatory response following an APAP overdose. Natural killer (NK), natural killer T (NKT) and T cells possibly further perpetuate inflammation in AILI. Understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression is essential to identify novel therapeutic targets for human disease. PMID:25568858

  13. Enveloped Virus-Like Particle Expression of Human Cytomegalovirus Glycoprotein B Antigen Induces Antibodies with Potent and Broad Neutralizing Activity

    PubMed Central

    Kirchmeier, Marc; Fluckiger, Anne-Catherine; Soare, Catalina; Bozic, Jasminka; Ontsouka, Barthelemy; Ahmed, Tanvir; Diress, Abebaw; Pereira, Lenore; Schödel, Florian; Plotkin, Stanley; Dalba, Charlotte; Klatzmann, David

    2014-01-01

    A prophylactic vaccine to prevent the congenital transmission of human cytomegalovirus (HCMV) in newborns and to reduce life-threatening disease in immunosuppressed recipients of HCMV-infected solid organ transplants is highly desirable. Neutralizing antibodies against HCMV confer significant protection against infection, and glycoprotein B (gB) is a major target of such neutralizing antibodies. However, one shortcoming of past HCMV vaccines may have been their failure to induce high-titer persistent neutralizing antibody responses that prevent the infection of epithelial cells. We used enveloped virus-like particles (eVLPs), in which particles were produced in cells after the expression of murine leukemia virus (MLV) viral matrix protein Gag, to express either full-length CMV gB (gB eVLPs) or the full extracellular domain of CMV gB fused with the transmembrane and cytoplasmic domains from vesicular stomatitis virus (VSV)-G protein (gB-G eVLPs). gB-G-expressing eVLPs induced potent neutralizing antibodies in mice with a much greater propensity toward epithelial cell-neutralizing activity than that induced with soluble recombinant gB protein. An analysis of gB antibody binding titers and T-helper cell responses demonstrated that high neutralizing antibody titers were not simply due to enhanced immunogenicity of the gB-G eVLPs. The cells transiently transfected with gB-G but not gB plasmid formed syncytia, consistent with a prefusion gB conformation like those of infected cells and viral particles. Two of the five gB-G eVLP-induced monoclonal antibodies we examined in detail had neutralizing activities, one of which possessed particularly potent epithelial cell-neutralizing activity. These data differentiate gB-G eVLPs from gB antigens used in the past and support their use in a CMV vaccine candidate with improved neutralizing activity against epithelial cell infection. PMID:24334684

  14. Enveloped virus-like particle expression of human cytomegalovirus glycoprotein B antigen induces antibodies with potent and broad neutralizing activity.

    PubMed

    Kirchmeier, Marc; Fluckiger, Anne-Catherine; Soare, Catalina; Bozic, Jasminka; Ontsouka, Barthelemy; Ahmed, Tanvir; Diress, Abebaw; Pereira, Lenore; Schödel, Florian; Plotkin, Stanley; Dalba, Charlotte; Klatzmann, David; Anderson, David E

    2014-02-01

    A prophylactic vaccine to prevent the congenital transmission of human cytomegalovirus (HCMV) in newborns and to reduce life-threatening disease in immunosuppressed recipients of HCMV-infected solid organ transplants is highly desirable. Neutralizing antibodies against HCMV confer significant protection against infection, and glycoprotein B (gB) is a major target of such neutralizing antibodies. However, one shortcoming of past HCMV vaccines may have been their failure to induce high-titer persistent neutralizing antibody responses that prevent the infection of epithelial cells. We used enveloped virus-like particles (eVLPs), in which particles were produced in cells after the expression of murine leukemia virus (MLV) viral matrix protein Gag, to express either full-length CMV gB (gB eVLPs) or the full extracellular domain of CMV gB fused with the transmembrane and cytoplasmic domains from vesicular stomatitis virus (VSV)-G protein (gB-G eVLPs). gB-G-expressing eVLPs induced potent neutralizing antibodies in mice with a much greater propensity toward epithelial cell-neutralizing activity than that induced with soluble recombinant gB protein. An analysis of gB antibody binding titers and T-helper cell responses demonstrated that high neutralizing antibody titers were not simply due to enhanced immunogenicity of the gB-G eVLPs. The cells transiently transfected with gB-G but not gB plasmid formed syncytia, consistent with a prefusion gB conformation like those of infected cells and viral particles. Two of the five gB-G eVLP-induced monoclonal antibodies we examined in detail had neutralizing activities, one of which possessed particularly potent epithelial cell-neutralizing activity. These data differentiate gB-G eVLPs from gB antigens used in the past and support their use in a CMV vaccine candidate with improved neutralizing activity against epithelial cell infection. PMID:24334684

  15. Laminin 411 acts as a potent inducer of umbilical cord mesenchymal stem cell differentiation into insulin-producing cells

    PubMed Central

    2014-01-01

    T1DM rats. Conclusions Our results demonstrate that laminin 411 acts as a potent differentiation inducer of IPCs from UC-MSCs via the Pdx1 and Ngn3 signaling pathways. Moreover, transfusion of laminin 411 induced-IPCs more efficiently improves symptoms and survival of T1DM rats. These novel finding highlights a potential clinical application of laminin 411 induced-IPCs in the treatment of T1DM, which calls for further studies. PMID:24885418

  16. Recombinant varicella vaccines induce neutralizing antibodies and cellular immune responses to SIV and reduce viral loads in immunized rhesus macaques

    PubMed Central

    Traina-Dorge, V.; Pahar, B.; Marx, P.; Kissinger, P.; Montefiori, D.; Ou, Y.; Gray, W.L.

    2010-01-01

    The development of an effective AIDS vaccine remains one of the highest priorities in HIV research. The live, attenuated varicella-zoster virus (VZV) Oka vaccine, safe and effective for prevention of chickenpox and zoster, also has potential as a recombinant vaccine against other pathogens, including human immunodeficiency virus (HIV). The simian varicella model, utilizing simian varicella virus (SVV), offers an approach to evaluate recombinant varicella vaccine candidates. Recombinant SVV (rSVV) vaccine viruses expressing simian immunodeficiency virus (SIV) env and gag antigens were constructed. The hypothesis tested was that a live, attenuated rSVV-SIV vaccine will induce immune responses against SIV in the rhesus macaques and provide protection against SIV challenge. The results demonstrated that rSVV-SIV vaccination induced low levels of neutralizing antibodies and cellular immune responses to SIV in immunized rhesus macaques and significantly reduced viral loads following intravenous challenge with pathogenic SIVmac251-CX-1. PMID:20654666

  17. Effect of helminth-induced immunity on infections with microbial pathogens

    PubMed Central

    2016-01-01

    Helminth infections are ubiquitous worldwide and can trigger potent immune responses that differ from and potentially antagonize host protective responses to microbial pathogens. In this Review we focus on the three main killers in infectious disease—AIDS, tuberculosis and malaria—and critically assesses whether helminths adversely influence host control of these diseases. We also discuss emerging concepts for how M2 macrophages and helminth-modulated dendritic cells can potentially influence the protective immune response to concurrent infections. Finally, we present evidence advocating for more efforts to determine how and to what extent helminths interfere with the successful control of specific concurrent coinfections. PMID:24145791

  18. An injectable, low-toxicity phospholipid-based phase separation gel that induces strong and persistent immune responses in mice.

    PubMed

    Han, Lu; Xue, Jiao; Wang, Luyao; Peng, Ke; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2016-10-01

    Sustained antigen delivery using incomplete Freund's adjuvant (IFA) can induce strong, long-term immune response, but it can also cause severe side effects. Here we describe an injectable, phospholipid-based phase separation gel (PPSG) that readily transforms in situ into a drug depot. PPSG loaded with the model antigen ovalbumin (OVA) supported sustained OVA release in mice that lasted nearly one month. Immunizing mice with a single injection of PPSG/OVA elicited a strong and persistent increase in titers of OVA-specific IgG, IgG1 and IgG2a. Co-administering CpG-ODN further increased antibody titers. Such co-administration recruited dendritic cells to injection sites and activated dendritic cells in the draining lymph nodes. Moreover, immunization with PPSG/OVA/CpG resulted in potent memory antibody responses and high frequency of memory T cells. Remarkably, PPSG/OVA/CpG was associated with much lower toxicity at injection sites than IFA/OVA/CpG, and it showed no systemic toxicity such as to lymph nodes or spleen. These findings illustrate the potential of injectable PPSG for sustained, minimally toxic delivery of antigens and adjuvants. PMID:27522253

  19. Modulation of peanut-induced allergic immune responses by oral lactic acid bacteria-based vaccines in mice.

    PubMed

    Ren, Chengcheng; Zhang, Qiuxiang; Wang, Gang; Ai, Chunqing; Hu, Mengsha; Liu, Xiaoming; Tian, Fengwei; Zhao, Jianxin; Chen, Yongquan; Wang, Miao; Zhang, Hao; Chen, Wei

    2014-01-01

    Peanut allergy (PNA) has becoming a non-negligible health concern worldwide. Thus far, allergen-specific immunotherapy aimed at inducing mucosal tolerance has widely been regarded as a major management strategy for PNA. The safety profiles and the intrinsic probiotic properties of lactic acid bacteria (LAB) render them attractive delivery vehicles for mucosal vaccines. In the present study, we exploited genetically modified Lactococcus lactis to produce peanut allergen Ara h 2 via different protein-targeting systems and their immunomodulatory potency for allergic immune responses in mice were investigated. By comparison with the strain expressing the cytoplasmic form of Ara h 2 (LL1), the strains expressing the secreted and anchored forms of Ara h 2 (LL2 and LL3) were more potent in redirecting a Th2-polarized to a non-allergic Th1 immune responses. Induction of SIgA and regulatory T cells were also observed at the local levels by orally administration of recombinant L. lactis. Our results indicate that allergen-producing L. lactis strains modulated allergic immune responses and may be developed as promising mucosal vaccines for managing allergic diseases. PMID:24770368

  20. Potent hepatoprotective effect in CCl4-induced hepatic injury in mice of phloroacetophenone from Myrcia multiflora

    PubMed Central

    Ferreira, Eduardo Antonio; Gris, Eliana Fortes; Felipe, Karina Bettega; Correia, João Francisco Gomes; Cargnin-Ferreira, Eduardo; Wilhelm Filho, Danilo; Pedrosa, Rozangela Curi

    2010-01-01

    Background This study investigated the hepatoprotective effect and antioxidant properties of phloroacetophenone (2′,4′,6′-trihydroxyacetophenone – THA), an acetophenone derived from the plant Myrcia multiflora. Material & Method The free radical scavenging activity in vitro and induction of oxidative hepatic damage by carbon tetrachloride (CCl4) (0.5 ml/kg, i.p.) were tested in male Swiss mice (25±5 g). Results This compound exhibited in vitro antioxidant effects on FeCl2–ascorbate-induced lipid peroxidation (LPO) in mouse liver homogenate, scavenging hydroxyl and superoxide radicals, and 2,2-diphenyl-1-picrylhydrazyl. The in vivo assays showed that THA significantly (p<0.01) prevented the increases of hepatic LPO as measured by the levels of thiobarbituric acid-reactive substances, mitochondrial swelling. It also protected hepatocytes against protein carbonylation and oxidative DNA damage. Consistent with these observations, THA pre-treatment normalized the activities of antioxidant enzymes, such as catalase, glutathione peroxidase, and superoxide dismutase, and increased the levels of reduced glutathione (GSH) in CCl4-treated mice. In addition, THA treatment significantly prevented the elevation of serum enzymatic activities of alanine amino transferase, aspartate amino transferase, and lactate dehydrogenase, as well as histological alterations induced by CCl4. Silymarin (SIL) (24 mg/kg), a known hepatoprotective drug used for comparison, led to a significant decrease (p<0.01) in activities of theses enzymes in way very similar to that observed in pre-treatment with THA. Conclusion These results suggest that the protective effects are due to reduction of oxidative damage induced by CCl4 resulting from the antioxidant properties of THA. PMID:21483585

  1. Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection.

    PubMed

    Alhamdi, Yasir; Neill, Daniel R; Abrams, Simon T; Malak, Hesham A; Yahya, Reham; Barrett-Jolley, Richard; Wang, Guozheng; Kadioglu, Aras; Toh, Cheng-Hock

    2015-05-01

    Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac

  2. Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges

    PubMed Central

    Khattar, Sunil K.; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C.; Montefiori, David C.

    2015-01-01

    ABSTRACT Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. PMID:26199332

  3. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration.

    PubMed

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S; Echeverri Ruiz, Nancy P; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A; Lambris, John D; Del Rio-Tsonis, Katia

    2013-01-01

    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  4. A lysophosphatidic acid analogue is revealed as a potent inhibitor of phosphatidylcholine synthesis, inducing apoptosis.

    PubMed Central

    Gueguen, Geneviéve; Granci, Virginie; Rogalle, Pierre; Briand-Mésange, Fabienne; Wilson, Michéle; Klaébé, Alain; Tercé, François; Chap, Hugues; Salles, Jean-Pierre; Simon, Marie-Françoise; Gaits, Frédérique

    2002-01-01

    A previous study demonstrated that cross-desensitization experiments performed with the lysophosphatidic acid (LPA) analogues (R)- and (S)-N-palmitoyl-norleucinol 1-phosphate (PNPAs) inhibited LPA-induced platelet aggregation without any stereospecificity. Here we report opposite biological effects of the two enantiomers on mitogenesis of IMR-90 fibroblasts in relation to their respective metabolism. (R)PNPA was proliferative, while (S)PNPA induced apoptosis by specifically inhibiting phosphatidylcholine biosynthesis at the last step of the CDP-choline pathway controlled by cholinephosphotransferase. This effect was not direct but required dephosphorylation of PNPAs by ecto-lipid phosphate phosphatase before cellular uptake of the generated N-palmitoyl-norleucinols (PNOHs). Inhibition of cholinephosphotransferase by the derivative (S)PNOH was confirmed by an in vitro assay. (S)PNPA proapoptotic effects led us to clarify the mechanism linking cholinephosphotransferase inhibition to apoptosis. Three proapoptotic responses were observed: the activation of caspase-3, the production of ceramides from newly synthesized pools (as demonstrated by the inhibitor Fumonisin B1) and finally the activation of stress-activated protein kinase, p38 and c-Jun N-terminal kinases 1/2, as a result of ceramide increase. Thus our data demonstrate that synthetic analogues of LPA might display stereospecific effects leading to apoptosis independently of classical LPA-activated pathways. PMID:12197836

  5. Immunoglobulin A1 Protease, an Exoenzyme of Pathogenic Neisseriae, Is a Potent Inducer of Proinflammatory Cytokines

    PubMed Central

    Lorenzen, Dirk R.; Düx, Frank; Wölk, Uwe; Tsirpouchtsidis, Anastasios; Haas, Gaby; Meyer, Thomas F.

    1999-01-01

    A characteristic of human pathogenic Neisseriae is the production and secretion of an immunoglobulin (Ig)A1-specific serine protease (IgA1 protease) that cleaves preferentially human IgA1 and other target proteins. Here we show a novel function for native IgA1 protease, i.e., the induction of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 from peripheral blood mononuclear cells. The capacity of IgA1 protease to elicit such cytokine responses in monocytes was enhanced in the presence of T lymphocytes. IgA1 protease did not induce the regulatory cytokine IL-10, which was, however, found in response to lipopolysaccharide and phytohemagglutinin. The immunomodulatory effects caused by IgA1 protease require a native form of the enzyme, and denaturation abolished cytokine induction. However, the proteolytic activity is not required for the cytokine induction by IgA1 protease. Our results indicate that IgA1 protease exhibits important immunostimulatory properties and may contribute substantially to the pathogenesis of neisserial infections by inducing large amounts of TNF-α and other proinflammatory cytokines. In particular, IgA1 protease may represent a key virulence determinant of bacterial meningitis. PMID:10523603

  6. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor.

    PubMed

    Jin, Hua; Pi, Jiang; Yang, Fen; Wu, Chaomin; Cheng, Xueli; Bai, Haihua; Huang, Dan; Jiang, Jinhuan; Cai, Jiye; Chen, Zheng W

    2016-08-01

    Angiogenesis provides necessary nutrients and oxygen for tumor growth and metastasis; thus, every stage of angiogenesis process is the potential target for cancer therapies. Ursolic acid (UA) is reported to decrease tumor burden through anti-angiogenesis pathway, but its poor water solubility greatly limits its efficiency and clinical application. Here, a simple method for preparing UA-loaded chitosan nanoparticles (CH-UA-NPs) with anti-angiogenesis and anti-tumor activity was demonstrated. In vitro, CH-UA-NPs could significantly inhibit the proliferation, migration, and tube formation of human umbilical vascular endothelial cells (HUVECs). After uptake by HUVECs, CH-UA-NPs were mainly localized in lysosomes and mitochondria, but not nuclei. CH-UA-NPs induced the destruction of lysosome membrane integrity, collapse of mitochondrial membrane potential, and reorganization of cell cytoskeleton. All these changes led to the apoptosis or necrosis in HUVECs. In vivo, CH-UA-NPs could inhibit the angiogenesis in chicken chorioallantoic membrane (CAM) model and H22 xenograft model. Notably, comparing with free UA, such synthesized CH-UA-NPs could save about tenfold of UA doses, implying that this could significantly decrease the side effects induced by high doses of UA in biological organism. Our data showed that CH-UA-NPs and this nanoparticle-based drug delivery system could be as a potential drug candidate for anti-angiogenesis treatment. PMID:26883344

  7. Pleomorphic forms of Borrelia burgdorferi induce distinct immune responses.

    PubMed

    Meriläinen, Leena; Brander, Heini; Herranen, Anni; Schwarzbach, Armin; Gilbert, Leona

    2016-01-01

    Borrelia burgdorferi is the causative agent of tick-borne Lyme disease. As a response to environmental stress B. burgdorferi can change its morphology to a round body form. The role of B. burgdorferi pleomorphic forms in Lyme disease pathogenesis has long been debated and unclear. Here, we demonstrated that round bodies were processed differently in differentiated macrophages, consequently inducing distinct immune responses compared to spirochetes in vitro. Colocalization analysis indicated that the F-actin participates in internalization of both forms. However, round bodies end up less in macrophage lysosomes than spirochetes suggesting that there are differences in processing of these forms in phagocytic cells. Furthermore, round bodies stimulated distinct cytokine and chemokine production in these cells. We confirmed that spirochetes and round bodies present different protein profiles and antigenicity. In a Western blot analysis Lyme disease patients had more intense responses to round bodies when compared to spirochetes. These results suggest that round bodies have a role in Lyme disease pathogenesis. PMID:27139815

  8. Humoral immunity induced by mucosal and/or systemic SIV-specific vaccine platforms suggest novel combinatorial approaches for enhancing responses

    PubMed Central

    Vargas-Inchaustegui, Diego A.; Tuero, Iskra; Mohanram, Venkatramanan; Musich, Thomas; Pegu, Poonam; Valentin, Antonio; Sui, Yongjun; Rosati, Margherita; Bear, Jenifer; Venzon, David J.; Kulkarni, Viraj; Alicea, Candido; Pilkington, Guy R.; Liyanage, Namal P.M.; Demberg, Thorsten; Gordon, Shari N.; Wang, Yichuan; Hogg, Alison E.; Frey, Blake; Patterson, L. Jean; DiPasquale, Janet; Montefiori, David C.; Sardesai, Niranjan Y.; Reed, Steven G.; Berzofsky, Jay A.; Franchini, Genoveffa; Felber, Barbara K.; Pavlakis, George N.; Robert-Guroff, Marjorie

    2014-01-01

    Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies. PMID:24907411

  9. Humoral immunity induced by mucosal and/or systemic SIV-specific vaccine platforms suggests novel combinatorial approaches for enhancing responses.

    PubMed

    Vargas-Inchaustegui, Diego A; Tuero, Iskra; Mohanram, Venkatramanan; Musich, Thomas; Pegu, Poonam; Valentin, Antonio; Sui, Yongjun; Rosati, Margherita; Bear, Jenifer; Venzon, David J; Kulkarni, Viraj; Alicea, Candido; Pilkington, Guy R; Liyanage, Namal P M; Demberg, Thorsten; Gordon, Shari N; Wang, Yichuan; Hogg, Alison E; Frey, Blake; Patterson, L Jean; DiPasquale, Janet; Montefiori, David C; Sardesai, Niranjan Y; Reed, Steven G; Berzofsky, Jay A; Franchini, Genoveffa; Felber, Barbara K; Pavlakis, George N; Robert-Guroff, Marjorie

    2014-08-01

    Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies. PMID:24907411

  10. Th1-biased immune responses induced by DNA-based immunizations are mediated via action on professional antigen-presenting cells to up-regulate IL-12 production

    PubMed Central

    Asakura, Y; Liu, L -J; Shono, N; Hinkula, J; Kjerrström, A; Aoki, I; Okuda, K; Wahren, B; Fukushima, J

    2000-01-01

    The efficacy of DNA-based immunization in conferring protective immunity against certain microbial pathogens including human immunodeficiency virus type 1 (HIV-1) has been described. The potential advantage of DNA-based immunization over the traditional vaccines largely results from its capacity to efficiently induce Th1-biased immune responses against an encoded antigen. We describe how Th1-biased immune responses are induced by DNA-based immunization, using a DNA vaccine construct encoding HIV-1 gp160 cDNA and an eukaryotic expression plasmid carrying murine IFN-γ cDNA. Transfection of an eukaryotic expression plasmid carrying immunostimulatory sequences (ISS) as well as a gene of interest (DNA vaccine) into professional antigen presenting cells (APC) induced transactivation of IL-12 mRNA, which resulted in antigen-specific Th1-biased immune responses against the encoded antigen. Th1-biased immune responses induced by DNA-based immunization were substantially upregulated by a codelivery of an ectopic IFN-γ expression system, and this augmentation was mediated via action on professional antigen presenting cells to upregulate IL-12 production. Taken together, it appears likely that Th1-biased immune responses induced by DNA-based immunization are mediated via action on professional antigen-presenting cells to produce IL-12. Interestingly, the model provided strikingly resembles that previously described in infection with Listeria monocytogenes, an intracellular Gram-positive bacterium that induces strong Th1-biased immune responses. The result suggests that DNA-based immunization mimics certain aspects of natural infection with microbial organisms like attenuated vaccines, which in turn provides a rationale to the question of why DNA-based immunization so efficiently induces protective immunity against these microbial pathogens. PMID:10606974

  11. Locally administered T cells from mice immunized with lipopolysaccharide (LPS) accelerate LPS-induced bone resorption.

    PubMed

    Ozaki, Yukio; Ukai, Takashi; Yamaguchi, Masayuki; Yokoyama, Miho; Haro, Esperanza R Ayón; Yoshimoto, Mayumi; Kaneko, Takashi; Yoshinaga, Miho; Nakamura, Hirotaka; Shiraishi, Chiaki; Hara, Yoshitaka

    2009-06-01

    T cells play important roles in bone destruction and osteoclastogenesis and are found in chronic destructive bone lesions. Lipopolysaccharide (LPS) is one of several pathological factors involved in inflammatory bone destruction. We previously described the importance of T cells in the inflammatory bone resorption that occurs after repeated LPS administration. However, whether local or systemic T cells are important for inflammatory bone resorption and whether immunization of host animals influences bone resorption remain unclear. The present study examines the effects of local extant T cells from LPS-immunized mice on LPS-induced bone resorption. T cells from LPS-immunized or non-immunized mice were injected together with LPS into the gingival tissues of mice with severe combined immunodeficiency disease that lack both T and B cells. We histomorphometrically evaluated bone resorption at sites of T cell injections and examined the influence of T cells from LPS-immunized mice on osteoclastogenesis in vitro. We found that locally administered T cells from LPS-immunized but not non-immunized mice accelerated LPS-induced bone resorption in vivo. Moreover, T cells from LPS-immunized mice increased osteoclastogenesis in vitro induced by receptor activator of NF-kappa B ligand and LPS and anti-tumor necrosis factor (TNF)-alpha antibody inhibited this increase. These results demonstrated that local extant T cells accelerate inflammatory bone resorption. Furthermore, T cells from LPS-immunized mice appear to elevate LPS-induced bone resorption using TNF-alpha. PMID:19437611

  12. Long-Term Immunity to Lethal Acute or Chronic Type II Toxoplasma gondii Infection Is Effectively Induced in Genetically Susceptible C57BL/6 Mice by Immunization with an Attenuated Type I Vaccine Strain▿

    PubMed Central

    Gigley, Jason P.; Fox, Barbara A.; Bzik, David J.

    2009-01-01

    C57BL/6 (B6) mice are genetically highly susceptible to chronic type II Toxoplasma gondii infections that invariably cause lethal toxoplasmic encephalitis. We examined the ability of an attenuated type I vaccine strain to elicit long-term immunity to lethal acute or chronic type II infections in susceptible B6 mice. Mice immunized with the type I cps1-1 vaccine strain were not susceptible to a lethal (100-cyst) challenge with the type II strain ME49. Immunized mice challenged with 10 ME49 cysts exhibited significant reductions in brain cyst and parasite burdens compared to naive mice, regardless of the route of challenge infection. Remarkably, cps1-1 strain-immunized B6 mice chronically infected with ME49 survived for at least 12 months without succumbing to the chronic infection. Potent immunity to type II challenge infections persisted for at least 10 months after vaccination. While the cps1-1 strain-elicited immunity did not prevent the establishment of a chronic infection or clear established brain cysts, cps1-1 strain-elicited CD8+ immune T cells significantly inhibited recrudescence of brain cysts during chronic ME49 infection. In addition, we show that uracil starvation of the cps1-1 strain induces early markers of bradyzoite differentiation. Collectively, these results suggest that more effective immune control of chronic type II infection in the genetically susceptible B6 background is established by vaccination with the nonreplicating type I uracil auxotroph cps1-1 strain. PMID:19797073

  13. Long-term immunity to lethal acute or chronic type II Toxoplasma gondii infection is effectively induced in genetically susceptible C57BL/6 mice by immunization with an attenuated type I vaccine strain.

    PubMed

    Gigley, Jason P; Fox, Barbara A; Bzik, David J

    2009-12-01

    C57BL/6 (B6) mice are genetically highly susceptible to chronic type II Toxoplasma gondii infections that invariably cause lethal toxoplasmic encephalitis. We examined the ability of an attenuated type I vaccine strain to elicit long-term immunity to lethal acute or chronic type II infections in susceptible B6 mice. Mice immunized with the type I cps1-1 vaccine strain were not susceptible to a lethal (100-cyst) challenge with the type II strain ME49. Immunized mice challenged with 10 ME49 cysts exhibited significant reductions in brain cyst and parasite burdens compared to naive mice, regardless of the route of challenge infection. Remarkably, cps1-1 strain-immunized B6 mice chronically infected with ME49 survived for at least 12 months without succumbing to the chronic infection. Potent immunity to type II challenge infections persisted for at least 10 months after vaccination. While the cps1-1 strain-elicited immunity did not prevent the establishment of a chronic infection or clear established brain cysts, cps1-1 strain-elicited CD8(+) immune T cells significantly inhibited recrudescence of brain cysts during chronic ME49 infection. In addition, we show that uracil starvation of the cps1-1 strain induces early markers of bradyzoite differentiation. Collectively, these results suggest that more effective immune control of chronic type II infection in the genetically susceptible B6 background is established by vaccination with the nonreplicating type I uracil auxotroph cps1-1 strain. PMID:19797073

  14. Recombinant lentivector as a genetic immunization vehicle for antitumor immunity

    PubMed Central

    He, Yukai; Munn, David; Falo, Louis D

    2011-01-01

    Summary Encouraged by remarkable successes in preventing infectious diseases and by the well established potential of immune system for controlling tumor growth, active therapeutic immunization approaches hold great promise for treating malignant tumors. In recent years, engineered recombinant viral vectors have been carefully examined as genetic immunization vehicles and have been demonstrated to induce potent T cell mediated immune responses that can control tumor growth. Very recent efforts suggest that lentivectors possess important advantages over other candidate recombinant viral vectors for genetic immunization. Here we review the development of recombinant lentivectors and the characteristics of T cell immune responses elicited by lentivector immunization, including the mechanism of T cell priming with a focus on the role of skin dendritic cells (DC) and potential applications for tumor immunotherapy. PMID:18377355

  15. Dysbindin is a potent inducer of RhoA–SRF-mediated cardiomyocyte hypertrophy

    PubMed Central

    Rangrez, Ashraf Yusuf; Bernt, Alexander; Poyanmehr, Reza; Harazin, Violetta; Boomgaarden, Inka; Kuhn, Christian; Rohrbeck, Astrid

    2013-01-01

    Dysbindin is an established schizophrenia susceptibility gene thoroughly studied in the context of the brain. We have previously shown through a yeast two-hybrid screen that it is also a cardiac binding partner of the intercalated disc protein Myozap. Because Dysbindin is highly expressed in the heart, we aimed here at deciphering its cardiac function. Using a serum response factor (SRF) response element reporter-driven luciferase assay, we identified a robust activation of SRF signaling by Dysbindin overexpression that was associated with significant up-regulation of SRF gene targets, such as Acta1 and Actc1. Concurrently, we identified RhoA as a novel binding partner of Dysbindin. Further phenotypic and mechanistic characterization revealed that Dysbindin induced cardiac hypertrophy via RhoA–SRF and MEK1–ERK1 signaling pathways. In conclusion, we show a novel cardiac role of Dysbindin in the activation of RhoA–SRF and MEK1–ERK1 signaling pathways and in the induction of cardiac hypertrophy. Future in vivo studies should examine the significance of Dysbindin in cardiomyopathy. PMID:24385487

  16. Thiolates chemically induce redox activation of BTZ043 and related potent nitroaromatic anti-tuberculosis agents.

    PubMed

    Tiwari, Rohit; Moraski, Garrett C; Krchňák, Viktor; Miller, Patricia A; Colon-Martinez, Mariangelli; Herrero, Eliza; Oliver, Allen G; Miller, Marvin J

    2013-03-01

    The development of multidrug resistant (MDR) and extensively drug resistant (XDR) forms of tuberculosis (TB) has stimulated research efforts globally to expand the new drug pipeline. Nitroaromatic compounds, including 1,3-benzothiazin-4-ones (BTZs) and related agents, are a promising new class for the treatment of TB. Research has shown that the nitroso intermediates of BTZs that are generated in vivo cause suicide inhibition of decaprenylphosphoryl-β-D-ribose 2' oxidase (DprE1), which is responsible for cell wall arabinogalactan biosynthesis. We have designed and synthesized novel anti-TB agents inspired from BTZs and other nitroaromatic compounds. Computational studies indicated that the unsubstituted aromatic carbons of BTZ043 and related nitroaromatic compounds are the most electron-deficient and might be prone to nucleophilic attack. Our chemical studies on BTZ043 and the additional nitroaromatic compounds synthesized by us and others confirmed the postulated reactivity. The results indicate that nucleophiles such as thiolates, cyanide, and hydride induce nonenzymatic reduction of the nitro groups present in these compounds to the corresponding nitroso intermediates by addition at the unsubstituted electron-deficient aromatic carbon present in these compounds. Furthermore, we demonstrate here that these compounds are good candidates for the classical von Richter reaction. These chemical studies offer an alternate hypothesis for the mechanism of action of nitroaromatic anti-TB agents, in that the cysteine thiol(ate) or a hydride source at the active site of DprE1 may trigger the reduction of the nitro groups in a manner similar to the von Richter reaction to the nitroso intermediates, to initiate the inhibition of DprE1. PMID:23402278

  17. LXXLL Peptide Converts Transportan 10 to a Potent Inducer of Apoptosis in Breast Cancer Cells

    PubMed Central

    Tints, Kairit; Prink, Madis; Neuman, Toomas; Palm, Kaia

    2014-01-01

    Degenerate expression of transcription coregulator proteins is observed in most human cancers. Therefore, in targeted anti-cancer therapy development, intervention at the level of cancer-specific transcription is of high interest. The steroid receptor coactivator-1 (SRC-1) is highly expressed in breast, endometrial, and prostate cancer. It is present in various transcription complexes, including those containing nuclear hormone receptors. We examined the effects of a peptide that contains the LXXLL-motif of the human SRC-1 nuclear receptor box 1 linked to the cell-penetrating transportan 10 (TP10), hereafter referred to as TP10-SRC1LXXLL, on proliferation and estrogen-mediated transcription of breast cancer cells in vitro. Our data show that TP10-SRC1LXXLL induced dose-dependent cell death of breast cancer cells, and that this effect was not affected by estrogen receptor (ER) status. Surprisingly TP10-SRC1LXXLL severely reduced the viability and proliferation of hormone-unresponsive breast cancer MDA-MB-231 cells. In addition, the regulation of the endogenous ERα direct target gene pS2 was not affected by TP10-SRC1LXXLL in estrogen-stimulated MCF-7 cells. Dermal fibroblasts were similarly affected by treatment with higher concentrations of TP10-SRC1LXXLL and this effect was significantly delayed. These results suggest that the TP10-SRC1LXXLL peptide may be an effective drug candidate in the treatment of cancers with minimal therapeutic options, for example ER-negative tumors. PMID:24705462

  18. Inducible viral receptor, A possible concept to induce viral protection in primitive immune animals.

    PubMed

    Pasharawipas, Tirasak

    2011-01-01

    A pseudolysogen (PL) is derived from the lysogenic Vibrio harveyi (VH) which is infected with the VHS1 (Vibrio harveyi Siphoviridae-like 1) bacteriophage. The lysogenic Vibrio harveyi undergoes an unequivalent division of the extra-chromosomal VHS1 phage genome and its VH host chromosome and produces a true lysogen (TL) and pseudolysogen (PL). The PL is tolerant to super-infection of VHS1, as is of the true lysogen (TL), but the PL does not contain the VHS1 phage genome while the TL does. However, the PL can become susceptible to VHS1 phage infection if the physiological state of the PL is changed. It is postulated that this is due to a phage receptor molecule which can be inducible to an on-and-off regulation influence by an alternating condition of the bacterial host cell. This characteristic of the PL leads to speculate that this phenomenon can also occur in high organisms with low immunity such as shrimp. This article proposes a hypothesis that the viral receptor molecule on the target cell can play a crucial role in which the invertebrate aquaculture animals can become tolerant to viral infection. A possible mechanism may be that the target cell disrupts the viral receptor molecule to prevent super infection. This concept can explain a mechanism for the prevention of viral infection in invertebrate animals which do not have acquired immunity in response to pathogens. It can guide us to develop a mechanism of immunity to viral infection in low-evolved-immune animals. Also, it can be an additional mechanism that exists in high immune organism, as in human for the prevention of viral infection. PMID:21711515

  19. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    PubMed

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen. PMID:26410104

  20. CD90(+) human dermal stromal cells are potent inducers of FoxP3(+) regulatory T cells.

    PubMed

    Pfisterer, Karin; Lipnik, Karoline M; Hofer, Erhard; Elbe-Bürger, Adelheid

    2015-01-01

    The skin has to effectively combat external attacks, while maintaining skin immune homeostasis under steady-state conditions. To fulfill these challenging tasks, the dermis harbors a variety of heterogeneous cell types that are able to suppress T-cell proliferation similar to bone marrow mesenchymal stromal cells. Here we show that plastic-adherent, human dermal cells induce FoxP3 expression in TCR-complex-stimulated CD25(-)CD4(+)CD45RA(+) T cells in the absence of CD28 co-ligation in a cell-contact-dependent manner. These FoxP3(+) T cells reveal an effective suppressive capacity in vitro. Moreover, we found that the vast majority of CD90(+) dermal cells are perivascularly located and generate a significantly higher percentage of regulatory T cells compared with cells expressing markers such as CD271 in vitro. Importantly, we further demonstrate that plastic-adherent dermal cells are also able to differentiate toward the endothelial lineage. Our data show that human skin harbors specific cell types with immunosuppressive potential, which are located in close vicinity to their likely operational area and provide evidence for a CD28-independent regulatory mechanism. Further, the differentiation potential into endothelial cells suggests the existence of a tissue-resident cell pool for vessel regeneration. These findings might have important implications for the clinical use of allogeneic dermal cells to rebuild an imbalanced human skin immune homeostasis. PMID:25050599

  1. Design and synthesis of 4'-O-alkylamino-tethered-benzylideneindolin-2-ones as potent cytotoxic and apoptosis inducing agents.

    PubMed

    Senwar, Kishna Ram; Reddy, T Srinivasa; Thummuri, Dinesh; Sharma, Pankaj; Bharghava, Suresh K; Naidu, V G M; Shankaraiah, Nagula

    2016-08-15

    A series of new 4'-O-alkylamino-tethered-benzylideneindolin-2-one derivatives has been synthesized and evaluated for their anti-proliferative activity against selected human cancer cell lines of lung (A549), prostate (DU-145), breast (BT549 and MDA-MB-231) and normal breast epithelial cells (MCF-10A). Gratifyingly, the compounds 5j, 5o and 5r exhibited potent cytotoxicity against breast cancer cell lines (BT549 and MDA-MB-231) with IC50 values in the range of 1.26-2.77μM, and are found to be safer with lesser cytotoxicity on normal breast epithelial cells (MCF-10A). Further, experiments were conducted with these compounds 5j, 5o and 5r on MDA-MB-231 cancer cells to study the mechanism of growth inhibition and apoptosis inducing effect. Treatment of MDA-MB-231 cells with test compounds resulted in inhibition of cell migration through disorganization and disruption of F-actin capping protein. The flow-cytometry analysis results showed that the compound 5o arrested MDA-MB-231 cells in G0/G1 phase of cell cycle in a dose dependent manner. Hoechst staining study revealed that the test compounds inhibited tumor cell proliferation through induction of apoptosis. In addition, the mitochondrial membrane potential (DΨm) was affected and the increased level of reactive oxygen species (ROS) was noted in MDA-MB-231 cells. PMID:27397498

  2. Green tea catechins are potent anti-oxidants that ameliorate sodium iodate-induced retinal degeneration in rats

    PubMed Central

    Yang, Yaping; Qin, Yong Jie; Yip, Yolanda W. Y.; Chan, Kwok Ping; Chu, Kai On; Chu, Wai Kit; Ng, Tsz Kin; Pang, Chi Pui; Chan, Sun On

    2016-01-01

    Green tea extracts exhibit anti-oxidative and anti-inflammatory actions in different disease conditions. We hypothesized that green tea extract and its catechin constituents ameliorate sodium iodate-induced retinal degeneration in rats by counteracting oxidative stress. In this study, adult Sprague-Dawley rats were intravenously injected with a single dose of sodium iodate. Green tea extract (GTE; Theaphenon-E) or combinations of its catechin constituents, including (−)-epigallocatechin gallate (EGCG), were administered intra-gastrically before injection. Live imaging analysis using confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography showed a progressive increase of degenerating profile across the retinal surface and decrease in thickness of outer nuclear layer (ONL) at Day-14 of post-injection. These lesions were significantly ameliorated by Theaphenon-E and catechin combinations with EGCG. Catechins with exclusion of EGCG did not show obvious protective effect. Histological analyses confirmed that Theaphenon-E and catechins containing EGCG protect the retina by reducing ONL disruption. Retinal protective effects were associated with reduced expression of superoxide dismutase, glutathione peroxidase and caspase-3, and suppression of 8-iso-Prostaglandin F2α generation in the retina. In summary, GTE and its catechin constituents are potent anti-oxidants that offer neuroprotection to the outer retinal degeneration after sodium iodate insult, among which EGCG is the most active constituent. PMID:27383468

  3. Green tea catechins are potent anti-oxidants that ameliorate sodium iodate-induced retinal degeneration in rats.

    PubMed

    Yang, Yaping; Qin, Yong Jie; Yip, Yolanda W Y; Chan, Kwok Ping; Chu, Kai On; Chu, Wai Kit; Ng, Tsz Kin; Pang, Chi Pui; Chan, Sun On

    2016-01-01

    Green tea extracts exhibit anti-oxidative and anti-inflammatory actions in different disease conditions. We hypothesized that green tea extract and its catechin constituents ameliorate sodium iodate-induced retinal degeneration in rats by counteracting oxidative stress. In this study, adult Sprague-Dawley rats were intravenously injected with a single dose of sodium iodate. Green tea extract (GTE; Theaphenon-E) or combinations of its catechin constituents, including (-)-epigallocatechin gallate (EGCG), were administered intra-gastrically before injection. Live imaging analysis using confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography showed a progressive increase of degenerating profile across the retinal surface and decrease in thickness of outer nuclear layer (ONL) at Day-14 of post-injection. These lesions were significantly ameliorated by Theaphenon-E and catechin combinations with EGCG. Catechins with exclusion of EGCG did not show obvious protective effect. Histological analyses confirmed that Theaphenon-E and catechins containing EGCG protect the retina by reducing ONL disruption. Retinal protective effects were associated with reduced expression of superoxide dismutase, glutathione peroxidase and caspase-3, and suppression of 8-iso-Prostaglandin F2α generation in the retina. In summary, GTE and its catechin constituents are potent anti-oxidants that offer neuroprotection to the outer retinal degeneration after sodium iodate insult, among which EGCG is the most active constituent. PMID:27383468

  4. Immunizations.

    PubMed

    Sanford, Christopher A; Jong, Elaine C

    2016-03-01

    Vaccinations are a cornerstone of the pretravel consultation. The pretravel provider should assess a traveler's past medical history, planned itinerary, activities, mode of travel, and duration of stay and make appropriate vaccine recommendations. Given that domestic vaccine-preventable illnesses are more common in international travelers than are exotic or low-income nation-associated vaccine-preventable illnesses, clinicians should first ensure that travelers are current regarding routine immunizations. Additional immunizations may be indicated in some travelers. Familiarity with geographic distribution and seasonality of infectious diseases is essential. Clinicians should be cognizant of which vaccines are live, as there exist contraindications for live vaccines. PMID:26900111

  5. Psychological stress may induce increased humoral and decreased cellular immunity.

    PubMed

    Paik, I H; Toh, K Y; Lee, C; Kim, J J; Lee, S J

    2000-01-01

    Stress alters immune function and affects different immune cell populations in different ways. The authors examined whether psychological stress has different effects on the production of macrophage, T-helper 1(Th1) cell, and T-helper 2(Th2) cell-derived cytokines. Forty-two college students were recruited and their blood was sampled on the day they were to take a stressful academic examination and again 4 weeks after the examination. The stress from the academic examination significantly increased IL-1 beta, IL-6, and IL-10 and decreased IFN-gamma production. These findings suggest that examination stress may increase Th2 cell-mediated humoral immunity and macrophage activities and may decrease Th1 cell-mediated cellular immunity. PMID:11209594

  6. Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells via Toll-like receptor 7 signaling.

    PubMed

    Feng, Yan; Chen, Hongliang; Cai, Jiayan; Zou, Lin; Yan, Dan; Xu, Ganqiong; Li, Dan; Chao, Wei

    2015-10-30

    We have recently reported that extracellular RNA (exRNA) released from necrotic cells induces cytokine production in cardiomyocytes and immune cells and contributes to myocardial ischemia/reperfusion injury. However, the signaling mechanism by which exRNA exhibits its pro-inflammatory effect is unknown. Here we hypothesize that exRNA directly induces inflammation through specific Toll-like receptors (TLRs). To test the hypothesis, we treated rat neonatal cardiomyocytes, mouse bone marrow-derived macrophages (BMDM), or mouse neutrophils with RNA (2.5-10 μg/ml) isolated from rat cardiomyocytes or the hearts from mouse, rat, and human. We found that cellular RNA induced production of several cytokines such as macrophage inflammatory protein-2 (MIP-2), ILs, TNFα, and the effect was completely diminished by RNase, but not DNase. The RNA-induced cytokine production was partially inhibited in cells treated with TLR7 antagonist or genetically deficient in TLR7. Deletion of myeloid differentiation primary response protein 88 (MyD88), a downstream adapter of TLRs including TLR7, abolished the RNA-induced MIP-2 production. Surprisingly, genetic deletion of TLR3 had no impact on the RNA-induced MIP-2 response. Importantly, extracellular RNA released from damaged cardiomyocytes also induced cytokine production. Finally, mice treated with 50 μg of RNA intraperitoneal injection exhibited acute peritonitis as evidenced by marked neutrophil and monocyte migration into the peritoneal space. Together, these data demonstrate that exRNA of cardiac origin exhibits a potent pro-inflammatory property in vitro and in vivo and that exRNA induces cytokine production through TLR7-MyD88 signaling. PMID:26363072

  7. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  8. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  9. Costs of an induced immune response on sexual display and longevity in field crickets.

    PubMed

    Jacot, Alain; Scheuber, Hannes; Brinkhof, Martin W G

    2004-10-01

    Immune system activation may benefit hosts by generating resistance to parasites. However, natural resources are usually limited, causing a trade-off between the investment in immunity and that in other life-history or sexually selected traits. Despite its importance for the evolution of host defense, state-dependent fitness costs of immunity received little attention under natural conditions. In a field experiment we manipulated the nutritional condition of male field crickets Gryllus campestris and subsequently investigated the effect of an induced immune response through inoculation of bacterial lipopolysaccharides. Immune system activation caused a condition-dependent reduction in body condition, which was proportional to the condition-gain during the preceding food-supplementation period. Independent of nutritional condition, the immune insult induced an enduring reduction in daily calling rate, whereas control-injected males fully regained their baseline level of sexual signaling following a temporary decline. Since daily calling rate affects female mate choice under natural conditions, this suggests a decline in male mating success as a cost of induced immunity. Food supplementation enhanced male life span, whereas the immune insult reduced longevity, independent of nutritional status. Thus, immune system activation ultimately curtails male fitness due to a combined decline in sexual display and life span. Our field study thus indicates a key role for fitness costs of induced immunity in the evolution of host defense. In particular, costs expressed in sexually selected traits might warrant the honest advertisement of male health status, thus representing an important mechanism in parasite-mediated sexual selection. PMID:15562690

  10. Ameliorating effect of microdoses of a potentized homeopathic drug, Arsenicum Album, on arsenic-induced toxicity in mice

    PubMed Central

    Mallick, P; Chakrabarti Mallick, J; Guha, B; Khuda-Bukhsh, AR

    2003-01-01

    Background Arsenic in groundwater and its accumulation in plants and animals have assumed a menacing proportion in a large part of West Bengal, India and adjoining areas of Bangladesh. Because of the tremendous magnitude of the problem, there seems to be no way to tackle the problem overnight. Efforts to provide arsenic free water to the millions of people living in these dreaded zones are being made, but are awfully inadequate. In our quest for finding out an easy, safe and affordable means to combat this problem, a homeopathic drug, Arsenicum Album-30, appears to yield promising results in mice. The relative efficacies of two micro doses of this drug, namely, Arsenicum Album-30 and Arsenicum Album-200, in combating arsenic toxicity have been determined in the present study on the basis of some accepted biochemical protocols. Methods Mice were divided into different sets of control (both positive and negative) and treated series (As-intoxicated, As-intoxicated plus drug-fed). Alanine amino transferase (ALT) and aspartate amino transferase (AST) activities and reduced glutathione (GSH) level in liver and blood were analyzed in the different series of mice at six different fixation intervals. Results Both Arsenicum Album-30 and Arsenicum Album-200 ameliorated arsenic-induced toxicity to a considerable extent as compared to various controls. Conclusions The results lend further support to our earlier views that microdoses of potentized Arsenicum Album are capable of combating arsenic intoxication in mice, and thus are strong candidates for possible use in human subjects in arsenic contaminated areas under medical supervision. PMID:14570596

  11. The angular structure of ONC201, a TRAIL pathway-inducing compound, determines its potent anti-cancer activity

    PubMed Central

    Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S.; Nallaganchu, Bhaskara Rao; Olson, Gary L.; Dicker, David T.; Allen, Joshua E.; El-Deiry, Wafik S.

    2014-01-01

    We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers. PMID:25587031

  12. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    PubMed

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes; Bassi, Maria Rosaria; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2012-01-01

    Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii). To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity. PMID:22514686

  13. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells.

    PubMed

    Aliberti, Julio

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn's disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions. PMID:27034589

  14. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells

    PubMed Central

    Aliberti, Julio

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn's disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions. PMID:27034589

  15. SIV antigen immunization induces transient antigen-specific T cell responses and selectively activates viral replication in draining lymph nodes in retroviral suppressed rhesus macaques

    PubMed Central

    2011-01-01

    Background HIV infection causes a qualitative and quantitative loss of CD4+ T cell immunity. The institution of anti-retroviral therapy (ART) restores CD4+ T cell responses to many pathogens, but HIV-specific responses remain deficient. Similarly, therapeutic immunization with HIV antigens of chronically infected, ART treated subjects results in poor induction of HIV-specific CD4 responses. In this study, we used a macaque model of ART treatment during chronic infection to study the virologic consequences of SIV antigen stimulation in lymph nodes early after immunization. Rhesus CMV (RhCMV) seropositive, Mamu A*01 positive rhesus macaques were chronically infected with SIVmac251 and treated with ART. The immune and viral responses to SIV gag and RhCMV pp65 antigen immunization in draining lymph nodes and peripheral blood were analyzed. Animals were immunized on contralateral sides with SIV gag and RhCMV pp65 encoding plasmids, which allowed lymph nodes draining each antigen to be obtained at the same time from the same animal for direct comparison. Results We observed that both SIV and RhCMV immunizations stimulated transient antigen-specific T cell responses in draining lymph nodes. The RhCMV-specific responses were potent and sustained (50 days post-immunization) in the periphery, while the SIV-specific responses were transient and extinguished quickly. The SIV antigen stimulation selectively induced transient SIV replication in draining lymph nodes. Conclusions The data are consistent with a model whereby viral replication in response to SIV antigen stimulation limits the generation of SIV antigen-specific responses and suggests a potential mechanism for the early loss and poor HIV-specific CD4+ T cell response observed in HIV-infected individuals. PMID:21752277

  16. Opioid-induced central immune signaling: implications for opioid analgesia

    PubMed Central

    Grace, Peter M.; Maier, Steven F.; Watkins, Linda R.

    2015-01-01

    Despite being the mainstay of pain management, opioids are limited in their clinical utility by adverse effects, such as tolerance and paradoxical hyperalgesia. Research of the past 15 years has extended beyond neurons, to implicate central nervous system immune signaling in these adverse effects. This article will provide an overview of these central immune mechanisms in opioid tolerance and paradoxical hyperalgesia, including those mediated by toll like receptor 4, purinergic, ceramide and chemokine signaling. Challenges for the future, as well as new lines of investigation will be highlighted. PMID:25833219

  17. A mechanism for trauma induced muscle wasting and immune dysfunction

    NASA Astrophysics Data System (ADS)

    Madihally, S.; Toner, M.; Yarmush, M.; Mitchell, R.

    A diverse physiological conditions lead to a hypercatabolic state marked by the loss of proteins, primarily derived from skeletal muscle. The sustained loss of proteins results in loss of muscle mass and strength, poor healing, and long-term hospitalization. These problems are further compounded by the deterioration of immunity to infection which is a leading cause of morbidity and mortality of traumatic patients. In an attempt to understand the signal propagation mechanism(s), we tested the role of Interferon-? (IFN-? ) in an animal burn injury model; IFN-? is best conceptualized as a macrophage activating protein and known to modulate a variety of intracellular processes potentially relevant to muscle wasting and immune dysfunction. Mice congenitally -deficient in IFN-? , and IFN-? -Receptor, and wild type (WT) animals treated with IFN-? neutralizing antibody received either a 20% total body surface area burn or a control sham treatment. At days 1, 2, and 7 following treatment, skeletal muscle, peripheral blood, and spleen were harvested from both groups. Overall body weight, protein turnovers, changes in the lymphocyte subpopulations and alterations in the major histocompatibility complex I expression (MHC I) and proliferation capacity of lymphocytes was measured using mixed lymphocyte reaction (MLR). These results indicate that we can prevent both muscle wasting and immune dysfunction. Based on these observations and our previous other animal model results (using insulin therapy), a novel mechanism of interactions leading to muscle wasting and immune dysfunction will be discussed. Further, implications of these findings on future research and clinical therapies will be discussed in detail.

  18. Mycobacterial infection induces a specific human innate immune response

    PubMed Central

    Blischak, John D.; Tailleux, Ludovic; Mitrano, Amy; Barreiro, Luis B.; Gilad, Yoav

    2015-01-01

    The innate immune system provides the first response to infection and is now recognized to be partially pathogen-specific. Mycobacterium tuberculosis (MTB) is able to subvert the innate immune response and survive inside macrophages. Curiously, only 5–10% of otherwise healthy individuals infected with MTB develop active tuberculosis (TB). We do not yet understand the genetic basis underlying this individual-specific susceptibility. Moreover, we still do not know which properties of the innate immune response are specific to MTB infection. To identify immune responses that are specific to MTB, we infected macrophages with eight different bacteria, including different MTB strains and related mycobacteria, and studied their transcriptional response. We identified a novel subset of genes whose regulation was affected specifically by infection with mycobacteria. This subset includes genes involved in phagosome maturation, superoxide production, response to vitamin D, macrophage chemotaxis, and sialic acid synthesis. We suggest that genetic variants that affect the function or regulation of these genes should be considered candidate loci for explaining TB susceptibility. PMID:26586179

  19. Epitope spreading induced by immunization with synthetic SSB peptides

    PubMed Central

    DING, MIN; ZHANG, JIANZHONG

    2016-01-01

    Sjogren's syndrome type B (SSB)/La antibody is an autoantibody generally observed in connective tissue diseases whereas double-stranded deoxyribonucleic acid (dsDNA) antibodies are the most characteristic autoantibodies found in systemic lupus erythematosus (SLE) patients. The relationship of these autoantibodies remains unclear. The aim of the study was to determine the profile of antibody production in rabbits immunized with synthetic SSB peptides alone or with dsDNA. For this purpose, 214–225aa peptide of SSB antigen was synthesized based on the organic chemistry solid-phase peptide synthesis. Rabbits were immunized with the following antigens: i) synthetic SSB peptides linked with keyhole limpet hemocyanin (KLH); ii) dsDNA; iii) SSB plus dsDNA; iv) KLH; and v) phosphate-buffered saline. SSB peptide antibody was measured using the enzyme-linked immunosorbent assay while extractable nuclear antigens (ENA) antibody and dsDNA antibody were measured by immunoblotting and immunofluorescence, respectively. The results showed that a specific anti-SSB peptide antibody was produced following immunization with SSB epitope alone or with dsDNA. The SSB peptide antibody titer in the coimmunization group was higher than that of the SSB alone group. In addition, antibodies against ribonucleoprotein (RNP), Smith and/or dsDNA were detected in rabbits of the coimmunization group. The presence of anti-dsDNA antibodies in the rabbits immunized with SSB peptide suggested the induction of epitope spreading. In conclusions, SSB antibodies were produced in rabbits immunized with SSB peptide or SSB+dsDNA, whereas SSB antibody titers were higher in the coimmunization group. Furthermore, coimmunization was associated with epitope spreading. PMID:27347030

  20. Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo.

    PubMed

    Zhai, Lei; Sun, Nan; Han, Zhe; Jin, Hai-chao; Zhang, Bo

    Osteosarcoma (OS) remains one deadly disease for many affected patients. The search for novel and more efficient anti-OS agents is urgent. In the current study, we demonstrated that liposome-packed C6 ceramide exerted potent cytotoxic effect against established (U2OS and MG-63 lines) and primary human OS cells. Meanwhile, the liposomal C6 (ceramide) induced caspase-mediated apoptotic death in OS cells. Liposomal C6 was significantly more potent than conventional free C6 in inhibiting OS cells, yet it was safe to non-cancerous bone cells (primary murine osteoblasts or human MLO-Y4 osteocytic cells). At the signaling level, we showed that liposomal C6 potently inhibited Akt activation in OS cells. Further studies revealed that a low dose of liposomal C6 dramatically sensitized the in vitro anti-OS activity of two conventional chemodrugs: methotrexate (MTX) and doxorubicin. In vivo, intravenous injection of liposomal C6 inhibited Akt activation and suppressed U2OS xenograft growth in nude mice without causing apparent toxicities. Meanwhile, when given at a low-dose (5 mg/kg body weight), liposomal C6 dramatically sensitized MTX's anti-U2OS activity in vivo. Collectively, our data demonstrate that liposomal C6 exerts potent anti-tumor activity in preclinical OS models. PMID:26505795

  1. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression. PMID:19726579

  2. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    PubMed Central

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome. PMID:23087900

  3. Retnla (Relma/Fizz1) suppresses helminth-induced Th2-Type immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retnla (Resistin-like molecule alpha/FIZZ1) is induced during Th2 cytokine immune responses. Using Retnla deficient (-/-) mice and three helminth models, we show that Retnla functions as a negative regulator of Th2 responses. Pulmonary granuloma formation induced by the eggs of the helminth parasite...

  4. Kinetics of immunosuppression of sporozoite-induced immunity by Mycobacterium bovis BCG.

    PubMed Central

    Smrkovski, L L

    1982-01-01

    The data reported in this study demonstrate that the vaccination of NIH/Nmri mice with viable Mycobacterium bovis BCG organisms induces a state of immunosuppression that renders the recipient animals incapable of a protective immune response to the malaria sporozoite vaccine. The expression of this altered protective immune response is dependent upon the dosage of the two live vaccines, as well as upon the sequence of their administration. Data presented here show that the skin test responses (Arthus and delayed type) of BCG-vaccinated mice do not correlate with the suppression of sporozoite immunity. Evidence is also presented to support the hypothesis that the abrogated immune response to sporozoite vaccination induced by BCG is a result of a loss of immunological memory. PMID:6215354

  5. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells

    PubMed Central

    Wu, Han; Shi, Lili; Wang, Qing; Cheng, Lijing; Zhao, Xiang; Chen, Qiaoyuan; Jiang, Qian; Feng, Min; Li, Qihan; Han, Daishu

    2016-01-01

    Mumps virus (MuV) infection frequently causes orchitis and impairs male fertility. However, the mechanisms underlying the innate immune responses to MuV infection in the testis have yet to be investigated. This study showed that MuV induced innate immune responses in mouse Sertoli and Leydig cells through TLR2 and retinoic acid-inducible gene I (RIG-I) signaling, which result in the production of proinflammatory cytokines and chemokines, including TNF-α, IL-6, MCP-1, CXCL10, and type 1 interferons (IFN-α and IFN-β). By contrast, MuV did not induce the cytokine production in male germ cells. In response to MuV infection, Sertoli cells produced higher levels of proinflammatory cytokines and chemokines but lower levels of type 1 IFNs than Leydig cells did. The MuV-induced cytokine production by Sertoli and Leydig cells was significantly reduced by the knockout of TLR2 or the knockdown of RIG-I signaling. The local injection of MuV into the testis triggered the testicular innate immune responses in vivo. Moreover, MuV infection suppressed testosterone synthesis by Leydig cells. This is the first study examining the innate immune responses to MuV infection in testicular cells. The results provide novel insights into the mechanisms underlying the MuV-induced innate immune responses in the testis. PMID:26776505

  6. An Alphavirus Vector-Based Tetravalent Dengue Vaccine Induces a Rapid and Protective Immune Response in Macaques That Differs Qualitatively from Immunity Induced by Live Virus Infection

    PubMed Central

    Sariol, Carlos A.; Mattocks, Melissa D.; Wahala M. P. B., Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L.; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V.; Martinez, Melween I.; de Silva, Aravinda; Johnston, Robert E.

    2013-01-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans. PMID:23302884

  7. Single immunizing dose of recombinant adenovirus efficiently induces CD8+ T cell-mediated protective immunity against malaria.

    PubMed

    Rodrigues, E G; Zavala, F; Eichinger, D; Wilson, J M; Tsuji, M

    1997-02-01

    The immunogenicity of a recombinant replication defective adenovirus expressing a major malaria Ag, the circumsporozoite (CS) protein (AdPyCS), was determined using a rodent malaria model. A single immunizing dose of this construct induced a large number of CS-specific CD8+ and CD4+ T cells in the spleens of these animals, particularly when given by the s.c. or i.m. route. A single dose of AdPyCS also induced high titers of Abs to Plasmodium yoelii sporozoites in mice. No other form of presentation of the CS protein given as a single immunizing dose, i.e., irradiated sporozoites, recombinant vaccinia, or influenza virus, etc., elicits comparably high numbers of CS-specific CD8+ T cells. The high concentration of CS-specific CD8+ T cells in the spleen was relatively short-lived, decreasing to half of its original value by 4 wk and to one-third at 8 wk after AdPyCS inoculation. The decrease in splenic CS-specific CD4+ T cells was even more rapid. Most importantly, a single dose of inoculation of AdPyCS into mice rendered them highly resistant to sporozoite challenge, resulting in a 93% inhibition of liver stage development of the parasites. This protective effect was primarily mediated by CD8+ T cells, as shown by depletion of this T cell population, while depletion of the CD4+ T cell population had only a minor effect on anti-plasmodial activity. Moreover, the inoculation of mice with AdPyCS induces sterile immunity in a significant proportion of mice, preventing the occurrence of parasitemia. PMID:9013969

  8. Glucose supplement reverses the fasting-induced suppression of cellular immunity in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2011-10-01

    Glucose plays an important role in immunity. Three day fasting will decrease cellular immunity and blood glucose levels in Mongolian gerbils (Meriones unguiculatus). In the present study, we tested the hypothesis that glucose supplement can reverse the fasting-induced suppression in cellular immunity in gerbils. Twenty-eight male gerbils were selected and randomly divided into fed and fasting groups. Half of the gerbils in each group were then provided with either 10% glucose water or pure water. After 66 h, each gerbil was injected with phytohaemagglutinin (PHA) solution to challenge cellular immunity. Results showed that glucose supplement restored blood glucose levels in fasted gerbils to those of the fed controls. It also recovered cellular immunity, body fat mass and serum leptin levels in fasted gerbils to the values of the fed controls. Blood glucose levels were positively correlated with body fat mass, leptin levels and cellular immune responses. Thymus and spleen masses, and white blood cells in fasted gerbils were not affected by glucose supplement. In general, our data demonstrate that glucose supplement could reverse fasting-induced suppression of cellular immunity in Mongolian gerbils. PMID:21885265

  9. Strain-Specific Protective Effect of the Immunity Induced by Live Malarial Sporozoites under Chloroquine Cover

    PubMed Central

    Wijayalath, Wathsala; Cheesman, Sandra; Tanabe, Kazuyuki; Handunnetti, Shiroma; Carter, Richard; Pathirana, Sisira

    2012-01-01

    The efficacy of a whole-sporozoite malaria vaccine would partly be determined by the strain-specificity of the protective responses against malarial sporozoites and liver-stage parasites. Evidence from previous reports were inconsistent, where some studies have shown that the protective immunity induced by irradiated or live sporozoites in rodents or humans were cross-protective and in others strain-specific. In the present work, we have studied the strain-specificity of live sporozoite-induced immunity using two genetically and immunologically different strains of Plasmodium cynomolgi, Pc746 and PcCeylon, in toque monkeys. Two groups of monkeys were immunized against live sporozoites of either the Pc746 (n = 5), or the PcCeylon (n = 4) strain, by the bites of 2–4 sporozoite-infected Anopheles tessellates mosquitoes per monkey under concurrent treatments with chloroquine and primaquine to abrogate detectable blood infections. Subsequently, a group of non-immunized monkeys (n = 4), and the two groups of immunized monkeys were challenged with a mixture of sporozoites of the two strains by the bites of 2–5 infective mosquitoes from each strain per monkey. In order to determine the strain-specificity of the protective immunity, the proportions of parasites of the two strains in the challenge infections were quantified using an allele quantification assay, Pyrosequencing™, based on a single nucleotide polymorphism (SNP) in the parasites’ circumsporozoite protein gene. The Pyrosequencing™ data showed that a significant reduction of parasites of the immunizing strain in each group of strain-specifically immunized monkeys had occurred, indicating a stronger killing effect on parasites of the immunizing strain. Thus, the protective immunity developed following a single, live sporozoite/chloroquine immunization, acted specifically against the immunizing strain and was, therefore, strain-specific. As our experiment does not allow us to determine the

  10. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed Central

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  11. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed

    Patra, VijayKumar; Byrne, Scott N; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  12. Inhibition of class I histone deacetylases by romidepsin potently induces Epstein-Barr virus lytic cycle and mediates enhanced cell death with ganciclovir.

    PubMed

    Hui, Kwai Fung; Cheung, Arthur Kwok Leung; Choi, Chung King; Yeung, Po Ling; Middeldorp, Jaap M; Lung, Maria Li; Tsao, Sai Wah; Chiang, Alan Kwok Shing

    2016-01-01

    Pan-histone deacetylase (HDAC) inhibitors, which inhibit 11 HDAC isoforms, are widely used to induce Epstein-Barr virus (EBV) lytic cycle in EBV-associated cancers in vitro and in clinical trials. Here, we hypothesized that inhibition of one or several specific HDAC isoforms by selective HDAC inhibitors could potently induce EBV lytic cycle in EBV-associated malignancies such as nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). We found that inhibition of class I HDACs, particularly HDAC-1, -2 and -3, was sufficient to induce EBV lytic cycle in NPC and GC cells in vitro and in vivo. Among a panel of selective HDAC inhibitors, the FDA-approved HDAC inhibitor romidepsin was found to be the most potent lytic inducer, which could activate EBV lytic cycle at ∼0.5 to 5 nM (versus ∼800 nM achievable concentration in patients' plasma) in more than 75% of cells. Upregulation of p21(WAF1) , which is negatively regulated by class I HDACs, was observed before the induction of EBV lytic cycle. The upregulation of p21(WAF1) and induction of lytic cycle were abrogated by a specific inhibitor of PKC-δ but not the inhibitors of PI3K, MEK, p38 MAPK, JNK or ATM pathways. Interestingly, inhibition of HDAC-1, -2 and -3 by romidepsin or shRNA knockdown could confer susceptibility of EBV-positive epithelial cells to the treatment with ganciclovir (GCV). In conclusion, we demonstrated that inhibition of class I HDACs by romidepsin could potently induce EBV lytic cycle and mediate enhanced cell death with GCV, suggesting potential application of romidepsin for the treatment of EBV-associated cancers. PMID:26205347

  13. Mechanism of Hbγ-35-induced an increase in the activation of the human immune system by endotoxins.

    PubMed

    Heinbockel, Lena; Palacios-Chaves, Leyre; Alexander, Christian; Rietschel, Ernst; Behrends, Jochen; Correa, Wilmar; Fukuoka, Satoshi; Gutsmann, Thomas; Ulmer, Artur J; Brandenburg, Klaus

    2015-04-01

    Endotoxins (LPS) are highly potent immune stimulatory molecules and are mainly known for triggering Gram-negative sepsis. However, besides their toxic effects, this stimulatory function may be advantageous, for example when used as an adjuvant during vaccination. Thus, there is always a narrow range between the useful wake-up of the immune system and its overwhelming reaction, which can lead to diseases like sepsis. This raises the question of which conformational properties are responsible for making the LPS aggregates more or less potent. As described previously, the size, type and form of LPS aggregates play a major role in their immune stimulatory activity. In this study we investigate the role of these parameters. On the one hand, we use a peptide (Pep19-2.5; Aspidasept) that causes a change of the LPS aggregate structure into a less toxic state; on the other hand, we use a potent immune stimulating peptide (Hbγ-35), leading to higher toxicity. We have found opposing effects on LPS aggregate conformations allowing a better understanding of the processes of immune stimulation. PMID:25034969

  14. Immune Cells and Molecular Networks in Experimentally Induced Pulpitis.

    PubMed

    Renard, E; Gaudin, A; Bienvenu, G; Amiaud, J; Farges, J C; Cuturi, M C; Moreau, A; Alliot-Licht, B

    2016-02-01

    Dental pulp is a dynamic tissue able to resist external irritation during tooth decay by using immunocompetent cells involved in innate and adaptive responses. To better understand the immune response of pulp toward gram-negative bacteria, we analyzed biological mediators and immunocompetent cells in rat incisor pulp experimentally inflamed by either lipopolysaccharide (LPS) or saline solution (phosphate-buffered saline [PBS]). Untreated teeth were used as control. Expression of pro- and anti-inflammatory cytokines, chemokine ligands, growth factors, and enzymes were evaluated at the transcript level, and the recruitment of the different leukocytes in pulp was measured by fluorescence-activated cell-sorting analysis after 3 h, 9 h, and 3 d post-PBS or post-LPS treatment. After 3 d, injured rat incisors showed pulp wound healing and production of reparative dentin in both LPS and PBS conditions, testifying to the reversible pulpitis status of this model. IL6, IL1-β, TNF-α, CCL2, CXCL1, CXCL2, MMP9, and iNOS gene expression were significantly upregulated after 3 h of LPS stimulation as compared with PBS. The immunoregulatory cytokine IL10 was also upregulated after 3 h, suggesting that LPS stimulates not only inflammation but also immunoregulation. Fluorescence-activated cell-sorting analysis revealed a significant, rapid, and transient increase in leukocyte levels 9 h after PBS and LPS stimulation. The quantity of dendritic cells was significantly upregulated with LPS versus PBS. Interestingly, we identified a myeloid-derived suppressor cell-enriched cell population in noninjured rodent incisor dental pulp. The percentage of this population, known to regulate immune response, was higher 9 h after inflammation triggered with PBS and LPS as compared with the control. Taken together, these data offer a better understanding of the mechanisms involved in the regulation of dental pulp immunity that may be elicited by gram-negative bacteria. PMID:26472753

  15. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity.

    PubMed

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R

    2009-10-30

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We previously reported the use of a novel Ad5 platform to induce cellular immune responses (CMI) against HIV-1 Gag in Ad5 hyper immune mice. Here, the effectiveness of the Ad5 [E1-, E2b-] vaccine platform was evaluated using a triad mixture of HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced following vaccination with the HIV-1 expressing vectors in Ad5 naïve and Ad5 immunized mice. A mixture of the three vaccines induced CMI against each transgene product even in the presence of hyper Ad5 immunity. These studies revealed that CMI responses to immunization with Ad5 [E1-, E2b-]-gag, Ad5 [E1-, E2b-]-pol or Ad5 [E1-, E2b-]-nef vectors were transgene specific and did not induce CMI responses against irrelevant antigens such as carcinoembryonic antigen (CEA), herpes simplex virus glycoprotein B (HSV), cytomegalovirus (CMV) or influenza virus antigens. We are evaluating this recombinant triad viral vector as an HIV-1 vaccine in a non-human primate model and the data indicate that the vaccine is worthy of clinical evaluation. PMID:19559110

  16. Polycation-decorated PLA microspheres induce robust immune responses via commonly used parenteral administration routes.

    PubMed

    Chen, Xiaoming; Wang, Lianyan; Liu, Qi; Jia, Jilei; Liu, Yuan; Zhang, Weifeng; Ma, Guanghui; Su, Zhiguo

    2014-12-01

    Recombinant viral subunit-based vaccines have gained increasing attention due to their enhanced safety over the classic live-attenuated or inactivated vaccines. The low immunogenicity of the subunit antigen alone, however, requires the addition of an adjuvant to induce immunity. Particulate-based delivery systems have great potential for developing new vaccine adjuvants, compared to traditional aluminum-based saline adjuvants. The physicochemical properties of particulate vaccines have been extensively investigated; however, few studies have focused on how the administration route of various adjuvant-antigen combinations impacts the efficacy of the immune response. Here, for the first time, the viral Hepatitis B surface antigen (HBsAg) was combined with aluminum-based or cationic-microsphere (MP) based adjuvants to investigate the characteristics of immune responses elicited after immunization via the subcutaneous, intramuscular, or intraperitoneal routes respectively. In vitro, the MP-based vaccine significantly increased dendritic cell (DC) activation with up-regulated CD40 and CD80 expression and IL-12 production compared to alum-based vaccine. After immunization, both MP and alum-based vaccines produced increased IgG titers in mice. The administration route of these vaccines did influenced immune responses. The MP-based vaccine delivered via the intramuscular route yielded the highest levels of the IgG2a isotype. The alum-based vaccine, delivered via the same route, produced an IgG1-dominated humoral immune response. Moreover, subcutaneous and intramuscular immunizations with MP-based vaccine augmented Granzyme B, Th1-type cytokines (IL-2, IL-12, and IFN-γ), and Th2 cytokine IL-4 secretions. These results demonstrate that MP-based vaccines have the capacity to induce higher cellular and humoral immune response especially via an intramuscular administration route than an alum-based vaccine. PMID:25466267

  17. Does Infection-Induced Immune Activation Contribute to Dementia?

    PubMed Central

    Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe

    2015-01-01

    The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders. PMID:26425389

  18. Photodynamic therapy induces an immune response against a bacterial pathogen

    PubMed Central

    Huang, Ying-Ying; Tanaka, Masamitsu; Vecchio, Daniela; Garcia-Diaz, Maria; Chang, Julie; Morimoto, Yuji; Hamblin, Michael R

    2012-01-01

    Photodynamic therapy (PDT) employs the triple combination of photosensitizers, visible light and ambient oxygen. When PDT is used for cancer, it has been observed that both arms of the host immune system (innate and adaptive) are activated. When PDT is used for infectious disease, however, it has been assumed that the direct antimicrobial PDT effect dominates. Murine arthritis caused by methicillin-resistant Staphylococcus aureus in the knee failed to respond to PDT with intravenously injected Photofrin®. PDT with intra-articular Photofrin produced a biphasic dose response that killed bacteria without destroying host neutrophils. Methylene blue was the optimum photosensitizer to kill bacteria while preserving neutrophils. We used bioluminescence imaging to noninvasively monitor murine bacterial arthritis and found that PDT with intra-articular methylene blue was not only effective, but when used before infection, could protect the mice against a subsequent bacterial challenge. The data emphasize the importance of considering the host immune response in PDT for infectious disease. PMID:22882222

  19. Low doses of paclitaxel potently induce apoptosis in human retinoblastoma Y79 cells by up-regulating E2F1.

    PubMed

    Drago-Ferrante, Rosa; Santulli, Andrea; Di Fiore, Riccardo; Giuliano, Michela; Calvaruso, Giuseppe; Tesoriere, Giovanni; Vento, Renza

    2008-10-01

    Paclitaxel (PTX) is an anticancer drug currently in phase II clinical trials. This study shows for the first time that low doses of PTX (5 nM) potently induce apoptosis in human retinoblastoma Y79 cells. The effect of PTX is accompanied by a potent induction of E2F1 which appears to play a critical role in the effects induced by PTX. PTX induced a dose- and time-dependent effect, with G2/M arrest, cyclines A, E and B1 accumulation and a marked modification in the status of Cdc2-cyclin B1 complex, the major player of the G2/M checkpoint. Apoptosis followed G2/M arrest. An early and prolonged increase in p53 expression with its stabilization by phosphorylation and acetylation and its nuclear translocation occurred. Consistently, PTX increased p21WAF1, bax and MDM2 levels, suggesting that p53 is transcriptionally active. p53 accumulated following both E2F1 up-regulation and increase in the levels of p14ARF which interacts with MDM2 preventing ubiquitination and proteosomal degradation of p53. Both extrinsic (E2F1/Fas/JNK/caspase-2 activation) and intrinsic (Bcl-2 phosphorylation, Bid fragmentation and Bax increase) pathways seemed to be involved. Loss of mitochondrial potential and activation of apoptosome and executive caspase-3,-6 and-7 was shown. Incubation with either the irreversible pan-caspase inhibitors Z-VAD-FMK, or SP600125, a selective inhibitor of JNK, or pifithrin alpha, a potent p53 inhibitor, significantly inhibited the effects induced by PTX. PMID:18813780

  20. Hydralazine-induced pauci-immune glomerulonephritis: intriguing case series with misleading diagnoses

    PubMed Central

    Babar, Faizan; Posner, Jeffery N.; Obah, Eugene A.

    2016-01-01

    Hydralazine has been used since the 1950s for the management of hypertension. Evidence for hydralazine-associated vasculitis dates to pre-ANCA (antineutrophil cytoplasmic antibodies) era. This abstract describes two cases of ANCA-positive pauci-immune glomerulonephritis (GN) in challenging scenarios where diagnosis was misconstrued. A comprehensive literature review was done to understand the pathogenesis of drug-induced pauci-immune GN. We have described key diagnostic features that are helpful in distinguishing idiopathic ANCA vasculitis from drug-induced vasculitis. Additionally, we have also described different treatments meant to provide therapy options with the least side effects. PMID:27124161

  1. Neonatal Immunization with Respiratory Syncytial Virus Glycoprotein Fragment Induces Protective Immunity in the Presence of Maternal Antibodies in Mice

    PubMed Central

    Noh, Youran; Shim, Byoung-Shik; Cheon, In Su; Rho, Semi; Kim, Hee Joo; Choi, Youngjoo; Kang, Chang-Yuil; Chang, Jun

    2013-01-01

    Abstract Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants and the elderly worldwide. The significant morbidity and mortality associated with this infection underscores the urgent need for development of RSV vaccine. In this study, we first show that intranasal administration of RSV glycoprotein core fragment (Gcf) to neonatal mice can induce systemic humoral immune responses and protective immunity against RSV without causing lung eosinophilia, although antibody response was shifted to a Th2 response. Next, we examined whether the presence of maternal anti-RSV antibodies would affect the responsiveness and protection efficacy of Gcf in newborn mice, since infants can possess RSV-specific maternal antibodies due to frequent RSV re-infections to adults. Intranasal administration of Gcf induced antibody response and increased IFNγ secretion and protected mice against RSV challenge without severe lung eosinophilia, even in the presence of high levels of RSV-specific maternal antibodies. Thus, our findings suggest that Gcf may be an effective and safe RSV vaccine during the neonatal period. PMID:23869549

  2. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge.

    PubMed

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-12-20

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8(+) T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains. PMID:19836045

  3. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge

    SciTech Connect

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-12-20

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8{sup +} T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.

  4. Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity.

    PubMed

    Magpantay, F M G; Domenech DE Cellès, M; Rohani, P; King, A A

    2016-06-01

    The resurgence of pertussis in some countries that maintain high vaccination coverage has drawn attention to gaps in our understanding of the epidemiological effects of pertussis vaccines. In particular, major questions surround the nature, degree and durability of vaccine protection. To address these questions, we used mechanistic transmission models to examine regional time series incidence data from Italy in the period immediately following the introduction of acellular pertussis (aP) vaccine. Our results concur with recent animal-challenge experiments wherein infections in aP-vaccinated individuals proved as transmissible as those in naive individuals but much less symptomatic. On the other hand, the data provide evidence for vaccine-driven reduction in susceptibility, which we quantify via a synthetic measure of vaccine impact. As to the precise nature of vaccine failure, the data do not allow us to distinguish between leakiness and waning of vaccine immunity, or some combination of these. Across the range of well-supported models, the nature and duration of vaccine protection, the age profile of incidence and the range of projected epidemiological futures differ substantially, underscoring the importance of the remaining unknowns. We identify key data gaps: sources of data that can supply the information needed to eliminate these remaining uncertainties. PMID:26337864

  5. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. PMID:26278659

  6. Pentabody-mediated antigen delivery induces antigen-specific mucosal immune response.

    PubMed

    Li, Shenghua; Zheng, Wenju; Kuolee, Rhonda; Hirama, Tomoko; Henry, Matthew; Makvandi-Nejad, Shokouh; Fjällman, Ted; Chen, Wangxue; Zhang, Jianbing

    2009-05-01

    An efficient immunization system is essential for the development of mucosal vaccine. Cholera toxin (CT) and Escherichia coli heat labile toxin (LT) are among the strongest adjuvants tested in experimental animals but their use in humans has been hindered by their toxicity. On the other hand, the role of their non-toxic B-subunits, CTB or LTB, in enhancing mucosal immune response is not clear. We propose here a novel strategy for the induction of mucosal immune responses. Single domain antibodies (sdAbs) against a model antigen bovine serum albumin (BSA) were raised from the antibody repertoire of a llama immunized with BSA, pentamerized by fusing the sdAbs to CTB, generating the so-called pentabodies. These pentabodies were used to deliver the antigen by mixing the two components and administering the mixture to mice intranasally. One construct was equivalent to CT in helping induce mucosal immune response. It was also found that this ability was probably due to its high affinity to BSA, providing some insight into the controversial role of CTB in mucosal immunization: at least for BSA, the model antigen BSA employed in this study, CTB has to be tightly linked to the antigen to have adjuvant/immune-enhancing effect. PMID:19269688

  7. Mouse and pig models for studies of natural and vaccine-induced immunity to Bordetella pertussis.

    PubMed

    Mills, Kingston H G; Gerdts, Volker

    2014-04-01

    The increasing incidence of whooping cough in many developed countries has been linked with waning immunity induced after immunization with acellular pertussis (aP) vaccines. The rational design of an improved aP vaccine requires a full understanding of the mechanism of protective immunity and preclinical studies in animal models. Infection of mice and pigs with Bordetella pertussis has many features of the infection seen in humans and has already provided valuable information on the roles of innate and adaptive immune responses in protection. Recent findings in these models have already indicated that it may be possible to develop an improved aP vaccine based on a formulation that includes a Toll-like receptor agonist as an adjuvant. PMID:24626866

  8. DNA prime-adenovirus boost immunization induces a vigorous and multifunctional T-cell response against hepadnaviral proteins in the mouse and woodchuck model.

    PubMed

    Kosinska, Anna D; Johrden, Lena; Zhang, Ejuan; Fiedler, Melanie; Mayer, Anja; Wildner, Oliver; Lu, Mengji; Roggendorf, Michael

    2012-09-01

    Induction of hepatitis B virus (HBV)-specific cytotoxic T cells by therapeutic immunization may be a strategy to treat chronic hepatitis B. In the HBV animal model, woodchucks, the application of DNA vaccine expressing woodchuck hepatitis virus (WHV) core antigen (WHcAg) in combination with antivirals led to the prolonged control of viral replication. However, it became clear that the use of more potent vaccines is required to overcome WHV persistence. Therefore, we asked whether stronger and more functional T-cell responses could be achieved using the modified vaccines and an optimized prime-boost vaccination regimen. We developed a new DNA plasmid (pCGWHc) and recombinant adenoviruses (AdVs) showing high expression levels of WHcAg. Mice vaccinated with the improved plasmid pCGWHc elicited a stronger WHcAg-specific CD8(+) T-cell response than with the previously used vaccines. Using multicolor flow cytometry and an in vivo cytotoxicity assay, we showed that immunization in a DNA prime-AdV boost regimen resulted in an even more vigorous and functional T-cell response than immunization with the new plasmid alone. Immunization of naïve woodchucks with pCGWHc plasmid or AdVs induced a significant WHcAg-specific degranulation response prior to the challenge, this response had not been previously detected. Consistently, this response led to a rapid control of infection after the challenge. Our results demonstrate that high antigen expression levels and the DNA prime-AdV boost immunization improved the T-cell response in mice and induced significant T-cell responses in woodchucks. Therefore, this new vaccination strategy may be a candidate for a therapeutic vaccine against chronic HBV infection. PMID:22718818

  9. Commonly administered bacille Calmette-Guerin strains induce comparable immune response

    PubMed Central

    Wang, Jun-Fang; Dai, Fu-Ying; Gong, Xue-Li; Bao, Lang

    2015-01-01

    Bacille Calmette-Guerin (BCG) is currently the only available vaccine against tuberculosis (TB), but its protective efficacy in adults is highly variable. This study aimed to compare the immune response induced by two widely used BCG strains: BCG China strain (derivative of BCG Danish strain) in DU2-III group and BCG Pasteur in DU2 -IV group. Healthy BALB/c mice were immunized with BCG China strain or BCG Pasteur strain. Specific IgG, IgG1, and IgG2a antibodies titers, the proliferation of splenocytes, the percentages of splenocyte subsets and the concentrations of induced IFN-γ and IL-4 at 6th, 8th, 10th, and 12th weeks after the immunization were detected. We found that BCG Pasteur strain induced higher specific IgG and IgG1 titers, higher proliferation of splenocytes, higher percentages of CD4+ or CD8+ T cells, and higher concentration of secreted IFN-γ than BCG China strain. However, there were no significant differences in IgG2a titer and IL-4 concentration between both strains. In conclusion, our study shows that immune responses to BCG vaccine differ by strain, which may account for variable outcomes of BCG immunization. PMID:26629084

  10. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  11. CREBRF is a potent tumor suppressor of glioblastoma by blocking hypoxia-induced autophagy via the CREB3/ATG5 pathway.

    PubMed

    Xue, Hao; Zhang, Jinsen; Guo, Xing; Wang, Jian; Li, Jiangbing; Gao, Xiao; Guo, Xiaofan; Li, Tong; Xu, Shugang; Zhang, Ping; Liu, Qinglin; Li, Gang

    2016-08-01

    Hypoxia induces protective autophagy in advanced glioblastoma cells, and targeting this process may improve the outcome for glioblastoma patients. Recent studies have suggested that the autophagic process is upregulated in glioblastoma cells in response to extensive hypoxia. Here, we describe a novel tumor suppressor in glioblastoma cells, whereby hypoxia downregulated CREBRF expression and acts as a potent inhibitor of autophagy in glioblastoma cells via the CREB3/ATG5 pathway. Our results demonstrate that CREBRF expression negatively correlates with autophagic and HIF-1α levels in different grade gliomas. Given that CREBRF is a negative regulator of CREB3, CREB3 knockdown also repressed hypoxia-induced autophagy in glioblastoma cells in vitro. Collectively, our findings provide new insight into the molecular mechanisms underlying hypoxia-induced glioblastoma cell autophagy and indicate that the hypoxia/CREBRF/CREB3/ATG5 pathway plays a central role in malignant glioma progression. PMID:27278737

  12. Steroid-induced femoral head osteonecrosis in immune thrombocytopenia treatment with osteochondral autograft transplantation.

    PubMed

    Fotopoulos, Vasileios Ch; Mouzopoulos, George; Floros, Themistoklis; Tzurbakis, Matthaios

    2015-09-01

    Osteonecrosis of the femoral head is a devastating complication of steroid administration and has rarely been observed in the treatment of immune thrombocytopenia. The treatment of osteochondral defects in advanced stages of avascular necrosis (AVN), characterized by collapse of the subchondral bone, remains an unsolved burden in orthopedic surgery. In this report, we present a case of a 19-year-old female that was admitted in the Emergency Department with walking disability and painful hip joint movement due to steroid-induced femoral head osteonecrosis. Two years before she was diagnosed with immune thrombocytopenia, for which she received pulse steroid therapy with high dose of dexamethasone and underwent a splenectomy. This case report is the first to describe the use of osteochondral autograft transplantation as a treatment of steroid-induced AVN of the femoral head due to immune thrombocytopenia at the age of 19 years with very good clinical and radiological results 3 years postoperatively. PMID:25173503

  13. Oxaliplatin-induced immune-mediated cytopenias: a case report and literature review.

    PubMed

    Forcello, Nicholas P; Khubchandani, Sapna; Patel, Shrina J; Brahaj, Driola

    2015-04-01

    Oxaliplatin is a third-generation platinum antineoplastic agent that commonly causes diarrhea, nausea, vomiting, myelosuppression, and peripheral neuropathy. Less common adverse effects that are increasingly being reported include acute immune-mediated thrombocytopenia, hemolytic anemia, and pancytopenia. Here, we report a patient case of suspected oxaliplatin-induced immune-mediated thrombocytopenia and a thorough literature evaluation of acute oxaliplatin-induced immune-mediated thrombocytopenia, hemolytic anemia, and pancytopenia that has yet to be reported until now. There have been 39 previously published reports of these cytopenic events with a median number of 16 treatment cycles prior to presentation. Patients experiencing unusual signs and symptoms such as chills, rigors, fever, back pain, abdominal pain, ecchymosis, hematemesis, hematuria, dark urine, hematochezia, petechiae, epistaxis, or mental status changes during or shortly after an oxaliplatin infusion should have complete blood counts ordered and evaluated promptly. PMID:24500808

  14. Human Pappilomavirus (HPV) induced cancers and prevention by immunization.

    PubMed

    Khaliq, Sheikh Abdul; Shyum Naqvi, Syed Baqir; Fatima, Anab

    2012-10-01

    Incidences of different types of cancer are increasing in Pakistan, among which cancer of Cervix and Respiratory pappilomatosis are of great concern because of their association with human Pappilomavirus (HPV). Cervical cancers typically distress women of middle age or older; however it may affect women in any age after the puberty. Two serotypes of HPV (16 & 18) accounts 70% of cervical cancer cases, while HPV (6 & 11) are considered low-risk viruses associated with genital warts (Condyloma acuminata) and Respiratory pappilomatosis in both gender. Generally, there is transient role of HPV in human body and are removed by immune system in or around 1 year. Data from different Pakistani hospitals provides sound evidence for increasing trends of cervical cancer, which is, being developing country imperative for us. As the cost of cancer management is increasing day by day with poor survival rate and its burden is borne by patient, their family or society in-large, so if screening or prevention is possible then there would be need to identify target population for screening and vaccination. By quality adjusted life year (QALY) measurement, the data from different sources indicates that adolescent age is the appropriate target population and is cost effective for vaccination. Two vaccines manufactured by recombinant DNA technology are licensed in some parts of the world for prevention of HPV related cancers, however both have certain advantage over another, as one of the vaccines contains viral like proteins of two HPV serotypes 16 & 18 and provide additional cross protection against HPV type 13 and 45 with 100% seroprotection, while the other vaccine, being quadrivalent offers protection against four serotypes 6, 11, 16 and 18. Both vaccines tolerability and safety profiles are similar and acceptable, however bivalent vaccine appears to provide long-lasting immunity by the development of memory B-cells hypothetically due to difference of adsorbing agent used by

  15. T-Cell Immune Response Assessment as a Complement to Serology and Intranasal Protection Assays in Determining the Protective Immunity Induced by Acellular Pertussis Vaccines in Mice

    PubMed Central

    Ausiello, C. M.; Lande, R.; Stefanelli, P.; Fazio, C.; Fedele, G.; Palazzo, R.; Urbani, F.; Mastrantonio, P.

    2003-01-01

    The relative value of antibodies and/or T-cell immune responses to Bordetella pertussis antigens in the immunity induced by acellular pertussis (aP) vaccines is still an open issue, probably due to the incomplete knowledge on the mechanisms of protective immunity to pertussis. The relevance of T-cell immune responses in protection from pertussis has been demonstrated in murine and human models of infection; thus, in this study, the ability of different vaccine preparations of three component (pertussis toxin, filamentous hemagglutinin, and pertactin) aP vaccines to induce T-cell responses was investigated in mice. All vaccine preparations examined passed the immunogenicity control test, based on antibody titer assessment, according to European Pharmacopoeia standards, and protected mice from B. pertussis intranasal challenge, but not all preparations were able to prime T cells to pertussis toxin, the specific B. pertussis antigen. In particular, one vaccine preparation was unable to induce proliferation and gamma interferon (IFN-γ) production while the other two gave borderline results. The evaluation of T-cell responses to pertussis toxin antigen may provide information on the protective immunity induced by aP vaccines in animal models. Considering the critical role of the axis interleukin-12-IFN-γ for protection from pertussis, our results suggest that testing the induction of a key protective cytokine such as IFN-γ could be an additional tool for the evaluation of the immune response induced by aP vaccines. PMID:12853397

  16. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    SciTech Connect

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  17. Fatal carboplatin-induced immune hemolytic anemia in a child with a brain tumor

    PubMed Central

    Haley, Kristina M; Russell, Thomas B; Boshkov, Lynn; Leger, Regina M; Garratty, George; Recht, Michael; Nazemi, Kellie J

    2014-01-01

    Drug-induced immune hemolytic anemia (DIIHA) is an uncommon side effect of pharmacologic intervention. A rare mediator of DIIHA, carboplatin is an agent used to treat many pediatric cancers. We describe here, the first case of fatal carboplatin induced DIIHA in a pediatric patient and a brief review of the literature. Our patient developed acute onset of multi-organ failure with evidence of complement activation, secondary to a drug induced red cell antibody. Early recognition of the systemic insult associated with carboplatin induced hemolytic anemia may allow for future affected patients to receive plasmapheresis, a potentially effective therapy. PMID:24868179

  18. Baculovirus-Vectored Multistage Plasmodium vivax Vaccine Induces Both Protective and Transmission-Blocking Immunities against Transgenic Rodent Malaria Parasites

    PubMed Central

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M.; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E.

    2014-01-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. PMID:25092912

  19. GMCSF-armed vaccinia virus induces an antitumor immune response.

    PubMed

    Parviainen, Suvi; Ahonen, Marko; Diaconu, Iulia; Kipar, Anja; Siurala, Mikko; Vähä-Koskela, Markus; Kanerva, Anna; Cerullo, Vincenzo; Hemminki, Akseli

    2015-03-01

    Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials. PMID:25042001

  20. A VACCINE STRATEGY THAT INDUCES PROTECTIVE IMMUNITY AGAINST HEROIN

    PubMed Central

    Stowe, G. Neil; Vendruscolo, Leandro F.; Edwards, Scott; Schlosburg, Joel E.; Misra, Kaushik K.; Schulteis, Gery; Mayorov, Alexander V.; Zakhari, Joseph S.; Koob, George F.; Janda, Kim D.

    2011-01-01

    Heroin addiction is a wide-reaching problem with a spectrum of damaging social consequences. A vaccine capable of blocking heroin's effects could provide a long-lasting and sustainable adjunct to heroin addiction therapy. Heroin, however, presents a particularly challenging immunotherapeutic target as it is metabolized to multiple psychoactive molecules. To reconcile this dilemma we examined the idea of a singular vaccine with the potential to display multiple drug-like antigens; thus two haptens were synthesized, one heroin-like and another morphine-like in chemical structure. A key feature in this approach is that immunopresentation with the heroin-like hapten is thought to be immunochemically dynamic such that multiple haptens are simultaneously presented to the immune system. We demonstrate the significance of this approach though the extremely rapid generation of robust polyclonal antibody titers with remarkable specificity. Importantly, both the antinociceptive effects of heroin and acquisition of heroin self-administration were blocked in rats vaccinated using the heroin-like hapten. PMID:21692508

  1. Heterologous Vaccination and Checkpoint Blockade Synergize To Induce Antileukemia Immunity.

    PubMed

    Manlove, Luke S; Schenkel, Jason M; Manlove, Kezia R; Pauken, Kristen E; Williams, Richard T; Vezys, Vaiva; Farrar, Michael A

    2016-06-01

    Checkpoint blockade-based immunotherapies are effective in cancers with high numbers of nonsynonymous mutations. In contrast, current paradigms suggest that such approaches will be ineffective in cancers with few nonsynonymous mutations. To examine this issue, we made use of a murine model of BCR-ABL(+) B-lineage acute lymphoblastic leukemia. Using a principal component analysis, we found that robust MHC class II expression, coupled with appropriate costimulation, correlated with lower leukemic burden. We next assessed whether checkpoint blockade or therapeutic vaccination could improve survival in mice with pre-established leukemia. Consistent with the low mutation load in our leukemia model, we found that checkpoint blockade alone had only modest effects on survival. In contrast, robust heterologous vaccination with a peptide derived from the BCR-ABL fusion (BAp), a key driver mutation, generated a small population of mice that survived long-term. Checkpoint blockade strongly synergized with heterologous vaccination to enhance overall survival in mice with leukemia. Enhanced survival did not correlate with numbers of BAp:I-A(b)-specific T cells, but rather with increased expression of IL-10, IL-17, and granzyme B and decreased expression of programmed death 1 on these cells. Our findings demonstrate that vaccination to key driver mutations cooperates with checkpoint blockade and allows for immune control of cancers with low nonsynonymous mutation loads. PMID:27183622

  2. Antigens linked to synthetic microspheres induce immune responses in primates in the absence of adjuvant.

    PubMed

    Sedlik, C; Perraut, R; Bonnemains, B; Leclerc, C

    1996-01-01

    Although most strategies of vaccination require immunopotentiation to induce efficient immune responses, the development of new adjuvants for human vaccines is highly limited by safety problems. In order to overcome this problem, we developed a new vaccine formulation based on the covalent linkage of protein or peptide to synthetic microspheres. In previous experiments performed in mice, we demonstrated that these particulate antigens induce strong antigen-specific CD4+ T cell proliferative responses in the absence of adjuvant. In the present study, we analyzed the immunogenicity in primate Saimiri sciureus monkeys of two different proteins linked to synthetic microspheres. Immune responses induced by these particulate proteins administered without adjuvant were compared to those stimulated by the soluble antigens injected with alum. We currently demonstrated that, in monkeys, particulate antigens administered without adjuvant, induced good PBMC proliferative response and antibody production. Furthermore, the analysis of antibody responses using mAbs specific for different Saimiri sciureus immunoglobulins showed that the antibody response profiles were different in monkeys immunized with soluble versus particulate form of antigens. Results of this study demonstrate that particulate form of antigen may stimulate qualitatively different immune responses as compared to alum and therefore suggest that this new antigen formulation could be an attractive candidate for the development of vaccines. PMID:8852604

  3. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resi...

  4. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and very little is known about fungal molecular responses to bacteria, a...

  5. Marek's Disease Virus-Induced Immunosuppression: Array Analysis of Chicken Immune Response Gene Expression Profiling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a lymphoproliferative disease of chickens induced by a highly cell-associated oncogenic alpha-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latency infection within CD4+ T cells. Host-virus interaction, immune responses to...

  6. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under physiological conditions the gut-associated lymphoid tissues not only prevent the induction of a local inflammatory immune response, but also induce systemic tolerance to fed antigens. A notable exception is coeliac disease, where genetically susceptible individuals expressing human leukocyte...

  7. Basophil-derived amphiregulin is essential for UVB irradiation-induced immune suppression.

    PubMed

    Meulenbroeks, Chantal; van Weelden, Huib; Schwartz, Christian; Voehringer, David; Redegeld, Frank A M; Rutten, Victor P M G; Willemse, Ton; Sijts, Alice J A M; Zaiss, Dietmar M W

    2015-01-01

    UVB irradiation (290-320 nm) is used to treat skin diseases like psoriasis and atopic dermatitis, and is known to suppress contact hypersensitivity (CHS) reactions in mouse models. Regulatory T cells (Treg cells) have been shown to be responsible for this UVB-induced suppression of CHS. The epidermal growth factor (EGF)-like growth factor amphiregulin (AREG) engages EGFR on Treg cells and, in different disease models, it was shown that mast cell-derived AREG is essential for optimal Treg cell function in vivo. Here we determined whether AREG has a role in UVB-induced, Treg cell-mediated suppression of CHS reactions in the skin. Our data show that AREG is essential for UVB-induced CHS suppression. In contrast to the general assumption, however, mast cells were dispensable for UVB-induced immune suppression, whereas basophil-derived AREG was essential. These data reveal, to our knowledge, a previously unreported function for basophils in the homeostasis of immune responses in the skin. Basophils thus fulfill a dual function: they contribute to the initiation of effective type 2 immune responses and, by enhancing the suppressive capacity of local Treg cell populations, also to local immune regulation in the skin. PMID:25089660

  8. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector

    SciTech Connect

    Wang, Z.; Zhou, W.; Srivastava, T.; La Rosa, C.; Mandarino, A.; Forman, S.J.; Zaia, J.A.; Britt, W.J.; Diamond, D.J.

    2008-08-01

    A therapeutic CMV vaccine incorporating an antigenic repertoire capable of eliciting a cellular immune response has yet to be successfully implemented for patients who already have acquired an infection. To address this problem, we have developed a vaccine candidate derived from modified vaccinia Ankara (MVA) that expresses three immunodominant antigens (pp65, IE1, IE2) from CMV. The novelty of this vaccine is the fusion of two adjacent exons from the immediate-early region of CMV, their successful expression in MVA, and robust immunogenicity in both primary and memory response models. Evaluation of the immunogenicity of the viral vaccine in mouse models shows that it can stimulate primary immunity against all three antigens in both the CD4{sup +} and CD8{sup +} T cell subsets. Evaluation of human PBMC from healthy CMV-positive donors or patients within 6 months of receiving hematopoietic cell transplant shows robust stimulation of existing CMV-specific CD4{sup +} and CD8{sup +} T cell subsets.

  9. In vitro activation of rat neutrophils and alveolar macrophages with IgA and IgG immune complexes. Implications for immune complex-induced lung injury.

    PubMed Central

    Warren, J. S.; Kunkel, S. L.; Johnson, K. J.; Ward, P. A.

    1987-01-01

    In the rat, both IgG and IgA immune complexes induce oxygen radical mediated lung injury that is partially complement-dependent. In vivo studies have suggested that the chief sources of oxygen radicals in IgG and IgA immune complex-induced lung injury are neutrophils and tissue macrophages, respectively. The current studies have been designed to provide additional insights into these two models of tissue injury. Preformed monoclonal IgG and IgA immune complexes stimulated dose-dependent O2-. and H2O2 production by alveolar macrophages. In contrast, neutrophils exhibited O2-. production and lysosomal enzyme secretion in response to IgG immune complexes, but not in response to IgA complexes. There is evidence that C5a significantly amplifies these responses. Purified human C5a enhanced the O2-. responses of neutrophils activated with IgG immune complexes and alveolar macrophages activated with either IgG or IgA immune complexes. Addition of C5a alone to neutrophils or alveolar macrophages had no direct stimulatory effect as measured by O2-. production. The observation that O2-. responses of immune complex-activated alveolar macrophages can be significantly enhanced by the presence of C5a and that C5a can also enhance O-2. responses of IgG immune complex-stimulated neutrophils suggests a potential amplification mechanism through which complement may participate in both IgG and IgA immune complex-induced lung injury. The present data corroborate in vivo studies which suggest that IgG immune complex lung injury is primarily neutrophil-mediated, whereas IgA complex lung injury is predominantly macrophage-mediated. PMID:2827492

  10. Transgenic 4-1BBL-engineered vaccine stimulates potent Gag-specific therapeutic and long-term immunity via increased priming of CD44+CD62Lhigh IL-7R+ CTLs with up- and downregulation of anti- and pro-apoptosis genes

    PubMed Central

    Wang, Rong; Freywald, Andrew; Chen, Yue; Xu, Jianqing; Tan, Xin; Xiang, Jim

    2015-01-01

    Human immunodeficiency virus type-1 (HIV-1)-specific dendritic cell (DC) vaccines have been used in clinical trials. However, they have been found to only induce some degree of immune responses in these studies. We previously demonstrated that the HIV-1 Gag-specific Gag-Texo vaccine stimulated Gag-specific effector CD8+ cytotoxic T lymphocyte (CTL) responses, leading to completely protective, but very limited, therapeutic immunity. In this study, we constructed a recombinant adenoviral vector, adenovirus (AdV)4-1BBL, which expressed mouse 4-1BB ligand (4-1BBL), and generated transgenic 4-1BBL-engineered OVA-Texo/4-1BBL and Gag-Texo/4-1BBL vaccines by transfecting ovalbumin (OVA)-Texo and Gag-Texo cells with AdV4-1BBL, respectively. We demonstrate that the OVA-specific OVA-Texo/4-1BBL vaccine stimulates more efficient OVA-specific CTL responses (3.26%) compared to OVA-Texo-activated responses (1.98%) in wild-type C57BL/6 mice and the control OVA-Texo/Null vaccine without transgenic 4-1BBL expression, leading to enhanced therapeutic immunity against 6-day established OVA-expressing B16 melanoma BL6-10OVA cells. OVA-Texo/4-1BBL-stimulated CTLs, which have a CD44+CD62Lhigh IL-7R+ phenotype, are likely memory CTL precursors, demonstrating prolonged survival and enhanced differentiation into memory CTLs with functional recall responses and long-term immunity against BL6-10OVA melanoma. In addition, we demonstrate that OVA-Texo/4-1BBL-stimulated CTLs up- and downregulate the expression of anti-apoptosis (Bcl2l10, Naip1, Nol3, Pak7 and Tnfrsf11b) and pro-apoptosis (Casp12, Trp63 and Trp73) genes, respectively, by RT2 Profiler PCR array analysis. Importantly, the Gag-specific Gag-Texo/4-1BBL vaccine also stimulates more efficient Gag-specific therapeutic and long-term immunity against HLA-A2/Gag-expressing B16 melanoma BL6-10Gag/A2 cells than the control Gag-Texo/Null vaccine in transgenic HLA-A2 mice. Taken together, our novel Gag-Texo/4-1BBL vaccine, which is capable of

  11. Coffea arabica Seed Extract Stimulate the Cellular Immune Function and Cyclophosphamide-induced Immunosuppression in Mice

    PubMed Central

    Rafiul Haque, Mohammad; Ansari, Shahid Hussain; Rashikh, Azhar

    2013-01-01

    In this study, we investigate the immunostimulatory effects of alcoholic extract of the coffee seed on cell-mediated immune response and cyclophosphamide-induced (CP) immunosuppressed mice. The assessment of cellular immune function was carried out by the measurement of delayed-type hypersensitivity (DTH) response. According to the literature survey, cyclophosphamide has only suppressing effect on the lymphoid organ, white blood cell (WBC) and other parts of humoral immunity. Humoral immunity was assessed by the hemagglutination antibody titre. Mice were treated with three doses of extract (50, 150 and 250 mg/Kg body weight per os). Relative organ weight and WBC counts were also studied in these animals. At doses of 50 and 150, a significant increase (p < 0.05) in relative organ weight of spleen and thymus was observed but there was no effect on kidney and liver weights. WBC counts was also increased significantly (p < 0.001) in all doses of the plant extract. Coffea arabica extract elicited a significant (p < 0.001) increase in the DTH response at doses of 50 and 150 mg/Kg, but the change at higher dose of 250 mg/Kg was not statistically significant. In the HT test, plant extract also showed modulatory effect at all doses groups. Over all, coffee seed showed the stimulatory effect on cellular immune function and cyclophosphamide induced immunosuppression in mice. PMID:24250577

  12. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    SciTech Connect

    Streeter, P.R.; Fortner, G.W.

    1986-03-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes.

  13. Immunity against Boophilus annulatus induced by the Bm86 (Tick-GARD) vaccine.

    PubMed

    Pipano, Eugene; Alekceev, Eugene; Galker, Felicia; Fish, Lea; Samish, Michael; Shkap, Varda

    2003-01-01

    Friesian cattle were immunized with two inoculations of anti-tick Bm86 (Tick-GARD) vaccine and were challenged 30 or 90 d later with Boophilus annulatus larvae derived from 1.2 g of eggs. No nymphs or adult ticks were found on the immunized cattle during four weeks after challenge. Repeated infestations (2 to 4) with larvae on three other calves during a period of 160 and 390 d after the immunization did not result in development of nymphal and adult stages. In control, non-immunized cattle infested with corresponding batches of larvae 1380 to 4653 replete adult female ticks were collected. Larvae issued from Babesia bovis-infected female ticks transmitted the infection to Bm86-immunized cattle, but the progeny of B. bigemina-infected females did not. Since B. bigemina is transmitted exclusively by nymphal stages of Bo. annulatus these results support the observation that immunity induced by Bm86 affects the larval stage of this tick. PMID:14580066

  14. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  15. High physical activity in young children suggests positive effects by altering autoantigen-induced immune activity.

    PubMed

    Carlsson, E; Ludvigsson, J; Huus, K; Faresjö, M

    2016-04-01

    Physical activity in children is associated with several positive health outcomes such as decreased cardiovascular risk factors, improved lung function, enhanced motor skill development, healthier body composition, and also improved defense against inflammatory diseases. We examined how high physical activity vs a sedentary lifestyle in young children influences the immune response with focus on autoimmunity. Peripheral blood mononuclear cells, collected from 55 5-year-old children with either high physical activity (n = 14), average physical activity (n = 27), or low physical activity (n = 14), from the All Babies In Southeast Sweden (ABIS) cohort, were stimulated with antigens (tetanus toxoid and beta-lactoglobulin) and autoantigens (GAD65 , insulin, HSP60, and IA-2). Immune markers (cytokines and chemokines), C-peptide and proinsulin were analyzed. Children with high physical activity showed decreased immune activity toward the autoantigens GAD65 (IL-5, P < 0.05), HSP60 and IA-2 (IL-10, P < 0.05) and also low spontaneous pro-inflammatory immune activity (IL-6, IL-13, IFN-γ, TNF-α, and CCL2 (P < 0.05)) compared with children with an average or low physical activity. High physical activity in young children seems to have positive effects on the immune system by altering autoantigen-induced immune activity. PMID:25892449

  16. Lipopolysaccharide Induces Immune Activation and SIV Replication in Rhesus Macaques of Chinese Origin

    PubMed Central

    Bao, Rong; Zhuang, Ke; Liu, Jinbiao; Wu, Jianguo; Li, Jieliang; Wang, Xu; Ho, Wen-Zhe

    2014-01-01

    Background Chronic immune activation is a hallmark of progressive HIV infection and a key determinant of immunodeficiency in HIV-infected individuals. Bacterial lipopolysaccharide (LPS) in the circulation has been implicated as a key factor in HIV infection-related systemic immune activation. We thus investigate the impact of LPS on systemic immune activation in simian immunodeficiency virus (SIV)-infected rhesus macaques of Chinese origin. Methods The animals were inoculated intravenously with SIVmac239. The levels of plasma viral load and host inflammatory cytokines in PBMC were measured by real-time RT-PCR. CD4/CD8 ratio and systemic immune activation markers were examined by flow cytometric analysis of PBMCs. White blood cell and neutrophil counts and C Reactive Protein levels were determined using biochemistry analyzer. The plasma levels of LPS were determined by Tachypleus Amebocyte Lysate (TAL) test. Results The animals inoculated with SIVmac239 became infected as evidenced by the increased plasma levels of SIV RNA and decreased CD4/CD8 ratio. LPS administration of SIV-infected animals induced a transient increase of plasma SIV RNA and immune activation, which was indicated by the elevated expression of the inflammatory cytokines and CD4+HLA-DR+ T cells in PBMCs. Conclusions These data support the concept that LPS is a driving factor in systemic immune activation of HIV disease. PMID:24918575

  17. Brief Report: Immune Microenvironment Determines the Immunogenicity of Induced Pluripotent Stem Cell Derivatives.

    PubMed

    Todorova, Dilyana; Kim, Jinchul; Hamzeinejad, Sara; He, Jingjin; Xu, Yang

    2016-02-01

    The breakthrough of induced pluripotent stem cells (iPSCs) has raised the possibility that patient-specific iPSCs can provide autologous cells for cell therapy without the concern for immune rejection. However, the immunogenicity of iPSC-derived cells remains controversial. Using syngeneic C57BL/6 (B6) mouse transplantation model, several studies indicate that B6 iPSC-derived cells exhibit some levels of immunogenicity when transplanted into B6 mice subcutaneously. In contrast, one recent study has concluded that various lineages of B6 iPSC-derived cells exhibit no immunogenicity when transplanted under the kidney capsule of B6 mice. To resolve the controversy concerning this critical issue of iPSC biology, we used the same B6 transplantation model to demonstrate that the immune response toward antigens is dependent on the immune environment of the transplantation site. Immunogenic antigen-expressing B6 embryonic stem cells (ESCs) as well as B6 iPSCs and their terminally differentiated cells survived under the kidney capsule but are immune rejected when transplanted subcutaneously or intramuscularly. The cotransplantation of mature B6 dendritic cells under the kidney capsule leads to immune rejection of B6 iPSC-derived grafts but not B6 ESC-derived grafts, indicating that the lack of detectable immune response to iPSC-derived grafts under the kidney capsule is due to the lack of functional antigen presenting cells. PMID:26439188

  18. Commercial sunscreen lotions prevent ultraviolet-radiation-induced immune suppression of contact hypersensitivity.

    PubMed

    Roberts, L K; Beasley, D G

    1995-09-01

    Ultraviolet (UV) radiation suppresses certain immunologic responses, such as contact hypersensitivity (CH). Some previous studies, using sunlamps emitting nonsolar-spectrum UV or excessive UV doses, have questioned the ability of sunscreens to prevent UV-induced immune suppression. Our study evaluated the immune protection capacities of commercial sunscreen lotions in relation to the effects of UV spectrum and dose. C3H mice were exposed to a fixed UV dose from Kodacel-filtered FS sunlamps that caused maximum Langerhans cell depletion and suppression of CH. Kodacel film blocks UV energy below 290 nm, thus eliminating immune-suppressive effects of UVC (200-290 nm) not present in sunlight. CH was equally suppressed in unprotected and placebo-lotion-treated, UV-exposed mice. Mice protected with sun protection factor (SPF)-15 and SPF-30 sunscreens mounted normal CH responses. SPF-4 and SPF-8 sunscreen-protected mice had CH responses significantly greater than those of unprotected mice. Direct effects of UV spectral differences on the immune protection value of an SPF-15 sunscreen were determined by exposing mice to UV radiation from unfiltered and Kodacel-filtered sunlamps and a 1000-W xenon lamp solar simulator (UV spectrum nearly equivalent to sunlight). The sunscreen immune protection value was 30 times the minimum immune suppression dose for the solar simulator, while being 7.5 times this dose for Kodacel-filtered and 2 times the dose for unfiltered sunlamps. These results demonstrate that commercial sunscreen lotions prevent UV-induced immune suppression at a level exceeding the labeled SPF when tested with an environmentally relevant UV source. PMID:7665909

  19. Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution.

    PubMed

    Imrich, Richard; Tibenska, Elena; Koska, Juraj; Ksinantova, Lucia; Kvetnansky, Richard; Bergendiova-Sedlackova, Katarina; Blazicek, Pavol; Vigas, Milan

    2004-06-01

    Stress response is considered an important factor in the modulation of immune function. Neuroendocrine hormones, including catecholamines, affect the process of immune cell redistribution, important for cell-mediated immunity. This longitudinal investigation was aimed at evaluating the effect of repeated stress-induced elevation of catecholamines on immune cell redistribution and expression of adhesive molecules. We assessed the responses of epinephrine (EPI), norepinephrine (NE), cortisol, changes in lymphocytes subpopulations, and percentages of CD11a+, CD11b+, and CD62L+ lymphocytes to a 20-min treadmill exercise of an intensity equal to 80% of the individual's Vo(2)max. The exercise was performed before and after 6 weeks of endurance training consisting of a 1-h run 4 times a week (ET) and after 5 days of bed rest (HDBR) in 10 healthy males. We did not observe any significant changes in the basal levels of EPI, NE, and cortisol in the plasma, nor in the immune parameters after ET and HDBR. The exercise test led to a significant (P <.001) elevation of EPI and NE levels after both ET and HDBR, a significant elevation (P <.01) of cortisol after HDBR, an increase in the absolute numbers of leukocytes, granulocytes, monocytes, CD3+, CD4+, CD8+, CD16+, CD19+ lymphocytes, percentage of CD11a+ and CD11b+ lymphocytes, and to a decrease of CD62L1 before, after ET, and after HDBR. We found comparable changes in all measured immune parameters after ET and HDBR. In conclusion, repeated stress-induced elevation of EPI and NE was not associated with an alteration in immune cell redistribution found in response to the single bout of exercise. PMID:15240377

  20. Trivalent Combination Vaccine Induces Broad Heterologous Immune Responses to Norovirus and Rotavirus in Mice

    PubMed Central

    Tamminen, Kirsi; Lappalainen, Suvi; Huhti, Leena; Vesikari, Timo; Blazevic, Vesna

    2013-01-01

    Rotavirus (RV) and norovirus (NoV) are the two major causes of viral gastroenteritis (GE) in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1) derived virus-like particles (VLPs) of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6), the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50%) as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs) and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes. PMID:23922988

  1. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral

    NASA Astrophysics Data System (ADS)

    Sheridan, C.; Grosjean, Ph.; Leblud, J.; Palmer, C. V.; Kushmaro, A.; Eeckhaut, I.

    2014-12-01

    High sedimentation rates have been linked to reduced coral health within multiple systems; however, whether this is a direct result of compromised coral immunity has not been previously investigated. The potential effects of sedimentation on immunity of the hard coral Montipora patula were examined by comparing physiological responses of coral fragments inoculated with sterilized marine sediments and those under control conditions. Sediments were collected from terrestrial runoff-affected reefs in SW Madagascar and applied cyclically for a total of 24 h at a rate observed during precipitation-induced sedimentation events. Coral health was determined 24 h after the onset of the sedimentation stress through measuring metabolic proxies of O2 budget and lipid ratios. Immune response of the melanin synthesis pathway was measured by quantifying phenoloxidase activity and melanin deposits. Sedimentation induced both immune and metabolic responses in M. patula. Both phenoloxidase activity and melanin deposition were significantly higher in the sediment treatment compared to controls, indicating an induced immune response. Sediment-treated corals also showed a tendency towards increased respiration (during the night) and decreased photosynthesis (during the day) and a significant depletion of energy reserves as compared to controls. These data highlight that short-term (24 h) sedimentation, free of live microorganisms, compromises the health of M. patula. The energetically costly immune response, potentially elicited by residual endotoxins and other inflammatory particles associated with the sterile sediments, likely contributes to the energy depletion. Overall, exposure to sedimentation adversely affects coral health and continued exposure may lead to resource depletion and an increased susceptibility to disease.

  2. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    PubMed Central

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979

  3. Agents that reverse UV-induced immune suppression and photocarcinogenesis affect DNA repair

    PubMed Central

    Sreevidya, Coimbatore S.; Fukunaga, Atsushi; Khaskhely, Noor M.; Masaki, Taro; Ono, Ryusuke; Nishigori, Chikako; Ullrich, Stephen E.

    2010-01-01

    UV exposure induces skin cancer, in part by inducing immune suppression. Repairing DNA damage, neutralizing the activity of cis-urocanic acid (cis-UCA), and reversing oxidative stress abrogates UV-induced immune suppression and skin cancer induction, suggesting the DNA, UCA and lipid photo-oxidation serves as UV photoreceptors. What is not clear is whether signaling through each of these different photoreceptors activates independent pathways to induce biological effects or whether there is a common checkpoint where these pathways converge. Here we show that agents known to reverse photocarcinogenesis and photoimmune suppression, such as platelet activating factor (PAF) and serotonin (5-HT) receptor antagonists regulate DNA repair. Pyrimidine dimer repair was accelerated in UV-irradiated mice injected with PAF and 5-HT receptor antagonists. Nucleotide excision repair, as measured by unscheduled DNA synthesis, was accelerated by PAF and 5-HT receptor antagonists. Injecting PAF and 5-HT receptor antagonists into UV-irradiated Xeroderma pigmentosum complementation group A (XPA) deficient mice, which lack the enzymes responsible for nucleotide excision repair, did not accelerate photoproduct repair. Similarly, UV-induced formation of 8-oxo-deoxyguanosine (8-oxo-dG) was reduced by PAF and 5-HT receptor antagonists. We conclude that PAF and 5-HT receptor antagonists accelerate DNA repair caused by UV radiation, which prevents immune suppression and interferes with photocarcinogenesis. PMID:19829299

  4. TLR 9 involvement in early protection induced by immunization with rPb27 against Paracoccidioidomycosis.

    PubMed

    Morais, Elis Araujo; Chame, Daniela Ferreira; Melo, Eliza Mathias; de Carvalho Oliveira, Junnia Alvarenga; de Paula, Ana Cláudia Chagas; Peixoto, Andiara Cardoso; da Silva Santos, Lílian; Gomes, Dawidson Assis; Russo, Remo Castro; de Goes, Alfredo Miranda

    2016-02-01

    Paracoccidioidomycosis is caused by fungi of the Paracoccidioides genus and constitutes the most prevalent deep mycosis in Latin America. Toll-like receptors promote immune response against infectious agents. Recently, it was reported that TLR9 is crucial for mice survival during the first 48 h of P. brasiliensis infection. In this study, we used CPG oligodeoxynucleotide motif as an adjuvant with and without rPb27 to immunize mice against Paracoccidioidomycosis. CPG adjuvant induced differential recruitment of lymphocytes in the inflammatory process and a lower recruitment of neutrophils. In addition, CPG induced the production of pro-inflammatory cytokines such as IL-1β, TNF-α, IL-6 and IL-12; increased phagocytic ability and microbicidal activity by macrophages; and induced differential production of lgG2a and lgG2b, subtypes of Ig. Knockout mice for TLR9 and IL-12 showed higher fungal loads and rates of mortality compared to control mice after 30 days of infection. The association between CPG and rPb27 induced a high level of protection against Paracoccidioidomycosis after the first 30 days of infection but not at 60 days. Our findings demonstrate that TLR 9 plays a role in the protection induced by immunization with rPb27 and confirms the importance of TLR9 in the initial protection against Paracoccidioidomycosis. PMID:26597327

  5. Cell mediated immunity to corn starch in starch-induced granulomatous peritonitis.

    PubMed

    Goodacre, R L; Clancy, R L; Davidson, R A; Mullens, J E

    1976-03-01

    Two patients with histologically diagnosed starch induced granulomatous peritonitis (SGP) have been shown to have cell mediated immunity to corn starch using the techniques of macrophage migration inhibition and lymphocyte DNA synthesis. Control groups of normal subjects, patients with uncomplicated laparotomy, and patients with Crohn's disease were negative in both tests. Lymphocytes from two patients with band adhesions, one of whom had biopsy evidence of a granulomatous reaction to starch, were sensitized to starch. Cell mediated immunity to starch may contribute to the pathogenesis of SGP, and some band adhesions may be a chronic low grade manifestation of this disorder. PMID:1269987

  6. Drug-induced immune hemolytic anemia associated with albumin-bound paclitaxel.

    PubMed

    Thomas, Roby; Shillingburg, Alexandra

    2015-08-01

    Drug-induced immune hemolytic anemia (DIIHA) is rare, with only 1 patient in 1 million affected by the condition.1 Garratty identified 125 drugs indicated in DIIHA of which 11% were antineoplastic agents, and neither paclitaxel nor albumin-bound paclitaxel were included.2 In addition, we did not find any reports in our own search of the literature. Taxanes are known to cause anemia as a result of their myelosuppressive effects, but an immune hemolysis is rare. To our knowledge, we present here the first case of DIIHA with nab-paclitaxel. PMID:26859672

  7. The first report of cabergoline-induced immune hemolytic anemia in an adolescent with prolactinoma.

    PubMed

    Gürbüz, Fatih; Yağcı-Küpeli, Begül; Kör, Yılmaz; Yüksel, Bilgin; Zorludemir, Suzan; Gürbüz, Berrak Bilginer; Küpeli, Serhan

    2014-01-01

    Prolactinomas are common pituitary tumors that can cause gonadal dysfunction and infertility related to hyperprolactinemia. Dopamine agonists are the first-line treatment in these patients. Cabergoline leads to significant reduction in serum prolactin levels and tumor size in patients with prolactinoma. Dopamine agonists have been associated with adverse effects such as nausea, vomiting and psychosis. We report here a case with cabergoline-induced immune hemolytic anemia. The patient had cabergoline treatment history for prolactinoma and presented with weakness, fatigue, nausea, and paleness. Laboratory findings revealed severe anemia-related immune hemolysis. There were no causes identified to explain hemolytic anemia except cabergoline. Therefore, cabergoline therapy was stopped and subsequently hemolytic anemia resolved and did not occur again. This is the first reported pediatric case with prolactinoma and cabergoline-induced hemolytic anemia. Clinicians should be watchful for this rare side effect induced by cabergoline. PMID:23945126

  8. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain

    PubMed Central

    Chan, Mun Chiang; Atasoylu, Onur; Hodson, Emma; Tumber, Anthony; Leung, Ivanhoe K. H.; Chowdhury, Rasheduzzaman; Gómez-Pérez, Verónica; Demetriades, Marina; Rydzik, Anna M.; Holt-Martyn, James; Tian, Ya-Min; Bishop, Tammie; Claridge, Timothy D. W.; Kawamura, Akane; Pugh, Christopher W.; Ratcliffe, Peter J.; Schofield, Christopher J.

    2015-01-01

    As part of the cellular adaptation to limiting oxygen availability in animals, the expression of a large set of genes is activated by the upregulation of the hypoxia-inducible transcription factors (HIFs). Therapeutic activation of the natural human hypoxic response can be achieved by the inhibition of the hypoxia sensors for the HIF system, i.e. the HIF prolyl-hydroxylases (PHDs). Here, we report studies on tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with the 2-oxoglutarate co-substrate. One compound (IOX4) induces HIFα in cells and in wildtype mice with marked induction in the brain tissue, revealing that it is useful for studies aimed at validating the upregulation of HIF for treatment of cerebral diseases including stroke. PMID:26147748

  9. Intralymphatic immunization enhances DNA vaccination

    NASA Astrophysics Data System (ADS)

    Maloy, Kevin J.; Erdmann, Iris; Basch, Veronique; Sierro, Sophie; Kramps, Thomas A.; Zinkernagel, Rolf M.; Oehen, Stefan; Kündig, Thomas M.

    2001-03-01

    Although DNA vaccines have been shown to elicit potent immune responses in animal models, initial clinical trials in humans have been disappointing, highlighting a need to optimize their immunogenicity. Naked DNA vaccines are usually administered either i.m. or intradermally. The current study shows that immunization with naked DNA by direct injection into a peripheral lymph node enhances immunogenicity by 100- to 1,000-fold, inducing strong and biologically relevant CD8+ cytotoxic T lymphocyte responses. Because injection directly into a lymph node is a rapid and easy procedure in humans, these results have important clinical implications for DNA vaccination.

  10. Rapeseed Oil and Ginseng Saponins Work Synergistically To Enhance Th1 and Th2 Immune Responses Induced by the Foot-and-Mouth Disease Vaccine

    PubMed Central

    Zhang, Cenrong; Wang, Yuemin; Wang, Meng; Su, Xiaoyan; Lu, Yisong; Su, Fei

    2014-01-01

    Previous investigations demonstrated that saponins isolated from the root of Panax ginseng C. A. Meyer (i.e., ginseng root saponin [GS-R]) had adjuvant activity. In the present study, the combined effects of rapeseed oil (RO) and GS-R on the immune responses elicited by foot-and-mouth disease (FMD) vaccine were investigated by measuring FMD virus (FMDV)-specific antibody levels, cytokine levels, lymphocyte proliferation, and long-lived IgG-secreting plasma cells from bone marrow in a mouse model. The results indicated that RO in combination with GS-R significantly enhanced serum IgG and isotype concentrations, gamma interferon (IFN-γ) and interleukin 5 (IL-5) levels, splenocyte proliferative responses to stimulations with concanavalin A (ConA), lipopolysaccharide (LPS), and FMDV antigen, and the numbers of IgG-secreting plasma cells in the bone marrow, suggesting that RO/GS-R enhanced both Th1 and Th2 immune responses. In addition, no significant difference was found between RO/GS-R and the commercial adjuvant oil ISA 206 in the promotion of FMD vaccine-induced immune responses. Considering the vegetable origin of RO and GS-R and the potent adjuvant activity, RO/GS-R should be studied further for the development of veterinary vaccines, especially for use in food animals in order to promote food safety. PMID:24920601

  11. NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay.

    PubMed

    Ridnour, Lisa A; Cheng, Robert Y S; Weiss, Jonathan M; Kaur, Sukhbir; Soto-Pantoja, David R; Basudhar, Debashree; Heinecke, Julie L; Stewart, C Andrew; DeGraff, William; Sowers, Anastasia L; Thetford, Angela; Kesarwala, Aparna H; Roberts, David D; Young, Howard A; Mitchell, James B; Trinchieri, Giorgio; Wiltrout, Robert H; Wink, David A

    2015-07-15

    Nitric oxide synthases (NOS) are important mediators of progrowth signaling in tumor cells, as they regulate angiogenesis, immune response, and immune-mediated wound healing. Ionizing radiation (IR) is also an immune modulator and inducer of wound response. We hypothesized that radiation therapeutic efficacy could be improved by targeting NOS following tumor irradiation. Herein, we show enhanced radiation-induced (10 Gy) tumor growth delay in a syngeneic model (C3H) but not immunosuppressed (Nu/Nu) squamous cell carcinoma tumor-bearing mice treated post-IR with the constitutive NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME). These results suggest a requirement of T cells for improved radiation tumor response. In support of this observation, tumor irradiation induced a rapid increase in the immunosuppressive Th2 cytokine IL10, which was abated by post-IR administration of L-NAME. In vivo suppression of IL10 using an antisense IL10 morpholino also extended the tumor growth delay induced by radiation in a manner similar to L-NAME. Further examination of this mechanism in cultured Jurkat T cells revealed L-NAME suppression of IR-induced IL10 expression, which reaccumulated in the presence of exogenous NO donor. In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 also abated IR-induced IL10 expression in Jurkat T cells and ANA-1 macrophages, which further suggests that the immunosuppressive effects involve eNOS. Moreover, cytotoxic Th1 cytokines, including IL2, IL12p40, and IFNγ, as well as activated CD8(+) T cells were elevated in tumors receiving post-IR L-NAME. Together, these results suggest that post-IR NOS inhibition improves radiation tumor response via Th1 immune polarization within the tumor microenvironment. PMID:25990221

  12. CsBAFF, a Teleost B Cell Activating Factor, Promotes Pathogen-Induced Innate Immunity and Vaccine-Induced Adaptive Immunity

    PubMed Central

    Sun, Yun; Sun, Li

    2015-01-01

    B cell activating factor (BAFF) is a member of the tumor necrosis factor family that is known to play an important role in B cell activation, proliferation, and differentiation in mammals. However, studies of BAFF in teleosts are very limited and its function, in particular that under in vivo conditions, is essentially unknown. In this study, we conducted in vivo as well as in vitro functional analyses of a BAFF homologue (CsBAFF) from the teleost fish tongue sole (Cynoglossus semilaevis). CsBAFF is composed of 261 residues and shares moderate sequence identities with known BAFFs of other teleosts. CsBAFF expression was most abundant in immune organs and was upregulated during bacterial infection. Purified recombinant CsBAFF (rCsBAFF) bound to tongue sole lymphocytes and promoted cellular proliferation and survival. The results of an in vivo study showed that CsBAFF overexpression in tongue sole significantly enhanced macrophage activation and reduced bacterial infection in fish tissues, whereas knockdown of CsBAFF expression resulted in increased bacterial dissemination and colonization in fish tissues. Furthermore, vaccination studies showed that CsBAFF enhanced the immunoprotection of a DNA vaccine and augmented the production of specific serum antibodies. Taken together, these results provide the first in vivo evidence to indicate that teleost BAFF is an immunostimulator that significantly contributes to the innate antibacterial immune response and vaccine-induced adaptive immune response. PMID:26295165

  13. DNA vaccination using expression vectors carrying FIV structural genes induces immune response against feline immunodeficiency virus.

    PubMed

    Cuisinier, A M; Mallet, V; Meyer, A; Caldora, C; Aubert, A

    1997-07-01

    Following inactivated virus vaccination trials, the surface glycoprotein gp120 of the feline immunodeficiency virus (FIV) was considered as one of the determinants for protection. However, several vaccination trials using recombinant Env protein or some peptides failed to induce protection. To understand the role of the gp120 protein in vivo, we vaccinated cats with naked DNA coding for FIV structural proteins gp120 and p10. We analyzed the ability of these vaccinations to induce immune protection and to influence the onset of infection. Injection in cat muscles of expression vectors coding for the FIV gp120 protein induced a humoral response. Cats immunized twice with the gp120 gene showed different patterns after challenge. Two cats were, like the control cats, infected from the second week after infection onwards. The two others maintained a low proviral load with no modification of their antibody pattern. The immune response induced by gp120 DNA injection could control the level of viral replication. This protective-like immune response was not correlated to the humoral response. All the cats immunized with the gp120 gene followed by the p10 gene were infected, like the control cats, from the second week but they developed a complete humoral response against viral proteins after challenge. Furthermore, they showed a sudden but transient drop of the proviral load at 4 weeks after infection. Under these conditions, one injection of the p10 gene after one injection of the gp120 gene was not sufficient to stimulate protection. On the contrary, after a period, it seems to facilitate virus replication. PMID:9269051

  14. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level.

    PubMed

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J; Finkenstaedt, Felix W; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas; Schwab, Jan M

    2016-03-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient's environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS ('immune paralysis'), sufficient to propagate clinically relevant infection in an injury level dependent manner. PMID:26754788

  15. Vaccination with replication-deficient recombinant adenoviruses encoding the main surface antigens of toxoplasma gondii induces immune response and protection against infection in mice.

    PubMed

    Caetano, Bráulia C; Bruña-Romero, Oscar; Fux, Blima; Mendes, Erica A; Penido, Marcus L O; Gazzinelli, Ricardo T

    2006-04-01

    We have generated recombinant adenoviruses encoding three genetically modified surface antigens (SAGs) of the parasite Toxoplasma gondii, that is, AdSAG1, AdSAG2, and AdSAG3. Modifications included the removal of their glycosylphosphatidylinositol (GPI) anchoring motifs and, in some cases, the exchange of the native signal peptide for influenza virus hemagglutinin signal sequence. Adenovirus immunization of BALB/c mice elicited potent antibody responses against each protein, displaying a significant bias toward a helper T cell type 1 (Th1) profile in animals vaccinated with AdSAG1. Furthermore, the presence of parasite-specific IFN-gamma-producing T cells was analyzed by proliferation assays and enzyme-linked immunospot assays in the same animals. Splenocytes from immunized mice secreted IFN-gamma after in vitro stimulation with tachyzoite lysate antigen or with a fraction enriched for membrane-purified GPI-anchored proteins (F3) from the T. gondii tachyzoite surface. Epitopes recognized by CD8+ T cells were identified in SAG1 and SAG3, but not SAG2, sequences, although this protein also induced a specific response. We also tested the capacity of the immune responses detected to protect mice against a challenge with live T. gondii parasites. Although no protection was observed against tachyzoites of the highly virulent RH strain, a significant reduction in cyst loads in the brain was observed in animals challenged with the P-Br strain. Thus, up to 80% of the cysts were eliminated from animals vaccinated with a mixture of the three recombinant viruses. Because adenoviruses seemed capable of inducing Th1-biased protective immune responses against T. gondii antigens, other parasite antigens should be tested alone or in combination with those described here to further develop a protective vaccine against toxoplasmosis. PMID:16610929

  16. Beryllium-induced immune response in C3H mice

    SciTech Connect

    Benson, J.M.; Bice, D.E.; Nikula, K.J.

    1995-12-01

    Studies conducted at ITRI over the past several years have investigated whether Beagle dogs, monkeys, and mice are suitable models for human chronic beryllium-induced lung disease (CBD). Recent studies have focused on the histopathological and immunopathological changes occurring in A/J and C3H/HeJ mice acutely exposed by inhalation to Be metal. Lung lesions in both strains of mice included focal lymphocyte aggregates comprised primarily of B lymphocytes and lesser amounts of T-helper lymphocytes and microgranulomas consisting chiefly of macrophages and T-helper lymphocytes. The distribution of proliferating cells within the microgranulomas was similar to the distribution of T-helper cells. These results strongly suggested that A/J and C3H/HeJ mice responded to inhaled Be metal in a fashion similar to humans in terms of pulmonary lesions and the apparent in situ proliferation of T-helper cells. Results of these studies confirm lymphocyte involvement in the pulmonary response to inhaled Be metal.

  17. Molecular Components of the Sporothrix schenckii Complex that Induce Immune Response.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Romo-Lozano, Yolanda; López-Romero, Everardo; Ruiz-Baca, Estela

    2016-08-01

    Sporotrichosis is a fungal disease caused by the Sporothrix schenckii complex that includes species such as S. brasiliensis, S. schenckii sensu stricto, S. globosa, S. luriei, S. mexicana, and S. pallida, which exhibit different potentially antigenic molecular components. The immune response of susceptible hosts to control infection and disease caused by these fungi has been little studied. Besides, the fungus-host interaction induces the activation of different types of immune response. This mini-review analyzes and discusses existing reports on the identification and functional characterization of molecules from species of the S. schenckii complex with clinical relevance, and the mechanisms that mediate the type and magnitude of the immune response in experimental models in vivo and in vitro. This knowledge is expected to contribute to the development of protective and therapeutic strategies against sporotrichosis and other mycoses. PMID:27117164

  18. Dissecting Polyclonal Vaccine-Induced Humoral Immunity against HIV Using Systems Serology.

    PubMed

    Chung, Amy W; Kumar, Manu P; Arnold, Kelly B; Yu, Wen Han; Schoen, Matthew K; Dunphy, Laura J; Suscovich, Todd J; Frahm, Nicole; Linde, Caitlyn; Mahan, Alison E; Hoffner, Michelle; Streeck, Hendrik; Ackerman, Margaret E; McElrath, M Juliana; Schuitemaker, Hanneke; Pau, Maria G; Baden, Lindsey R; Kim, Jerome H; Michael, Nelson L; Barouch, Dan H; Lauffenburger, Douglas A; Alter, Galit

    2015-11-01

    While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine trials. Each vaccine regimen induced a unique humoral "Fc fingerprint." Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive. PMID:26544943

  19. Characterization of the immune response induced by pertussis OMVs-based vaccine.

    PubMed

    Bottero, D; Gaillard, M E; Zurita, E; Moreno, G; Martinez, D Sabater; Bartel, E; Bravo, S; Carriquiriborde, F; Errea, A; Castuma, C; Rumbo, M; Hozbor, D

    2016-06-14

    For the development of a third generation of pertussis vaccine that could improve the control of the disease, it was proposed that the immune responses induced by the classic whole cell vaccine (wP) or after infection should be used as a reference point. We have recently identified a vaccine candidate based on outer membrane vesicles (OMVs) derived from the disease etiologic agent that have been shown to be safe and protective in mice model of infection. Here we characterized OMVs-mediated immunity and the safety of our new candidate. We also deepen the knowledge of the induced humoral response contribution in pertussis protection. Regarding the safety of the OMVs based vaccine (TdapOMVsBp,) the in vitro whole blood human assay here performed, showed that the low toxicity of OMVs-based vaccine previously detected in mice could be extended to human samples. Stimulation of splenocytes from immunized mice evidenced the presence of IFN-γ and IL-17-producing cells, indicated that OMVs induces both Th1 and Th17 response. Interestingly TdapOMVsBp-raised antibodies such as those induced by wP and commercial acellular vaccines (aP) which contribute to induce protection against Bordetella pertussis infection. As occurs with wP-induced antibodies, the TdapOMVsBp-induced serum antibodies efficiently opsonized B. pertussis. All the data here obtained shows that OMVs based vaccine is able to induce Th1/Th17 and Th2 mixed profile with robust humoral response involved in protection, positioning this candidate among the different possibilities to constitute the third generation of anti-pertussis vaccines. PMID:27151884

  20. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection

    PubMed Central

    Kroetz, Danielle N.; Allen, Ronald M.; Schaller, Matthew A.; Cavallaro, Cleyton; Ito, Toshihiro; Kunkel, Steven L.

    2015-01-01

    Influenza A virus (IAV) is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ) are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I) potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and alveolar Mϕ in the

  1. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection.

    PubMed

    Kroetz, Danielle N; Allen, Ronald M; Schaller, Matthew A; Cavallaro, Cleyton; Ito, Toshihiro; Kunkel, Steven L

    2015-12-01

    Influenza A virus (IAV) is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ) are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I) potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and alveolar Mϕ in the

  2. Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance.

    PubMed

    Zheng, Peiguo; Fu, Hanxiao; Wei, Gaohui; Wei, Zhongwei; Zhang, Junhua; Ma, Xuehan; Rui, Dong; Meng, Xianchun; Ming, Liang

    2016-08-01

    Treatment with soluble myelin peptide can efficiently and specifically induce tolerance to demyelination autoimmune diseases including multiple sclerosis, however the mechanism underlying this therapeutic effect remains to be elucidated. In actively induced mouse model of experimental autoimmune encephalomyelitis (EAE) we analyzed T cell and innate immune cell responses in the central nervous system (CNS) and spleen after intraperitoneal (i.p.) infusion of myelin oligodendrocyte glycoprotein (MOG). We found that i.p. MOG infusion blocked effector T cell recruitment to the CNS and protected mice from EAE and lymphoid organ atrophy. Innate immune CD11b(+) cells preferentially recruited MOG-specific effector T cells, particularly when activated to become competent antigen presenting cells (APCs). During EAE development, mature APCs were enriched in the CNS rather than in the spleen, attracting effector T cells to the CNS. Increased myelin antigen exposure induced CNS-APC maturation, recruiting additional effector T cells to the CNS, causing symptoms of disease. MOG triggered functional maturation of splenic APCs. MOG presenting APCs interacted with MOG-specific T cells in the spleen, aggregating to cluster around CD11b(+) cells, and were trapped in the periphery. This process was MHC II dependent as an MHC II directed antibody blocked CD4(+) T cell cluster formation. These findings highlight the role of myelin peptide-loaded APCs in myelin peptide-induced EAE and immune tolerance. PMID:27327113

  3. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children

    PubMed Central

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-01-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles–mumps–rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3–5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  4. Effect of adjuvants on immunization with dengue virus-induced cytotoxic factor.

    PubMed Central

    Mukerjee, R; Chaturvedi, U C

    1995-01-01

    Specific active immunization with dengue type 2 virus (DV)-induced cytokine, cytotoxic factor (CF), prevents CF-mediated pathology in mice. The present study was undertaken to determine the optimum dose of CF and the effect of different adjuvants on the immune response as assessed by the study of anti-CF antibody titre by ELISA and protection against increase in capillary permeability to challenging dose of 3 micrograms CF. The maximum protection of 94 +/- 4% against increase in capillary permeability was observed at week 4 after immunization with 5 micrograms dose of CF mixed with Freund's incomplete adjuvant (FIA), which gradually decreased to 21 +/- 10% on week 24. With a dose of 10 micrograms the protection obtained was 79 +/- 5%, but persisted for a longer time at a higher level. The response was poor with 1 microgram dose of CF. The mean anti-CF antibody titres gradually decreased after reaching the peak at week 4 after immunization. Mice immunized with different adjuvants emulsified with 5 micrograms CF were challenged at different intervals with 3 micrograms CF. Maximum protection observed with CF + tetanus toxoid (TT) and 84/246 was about 93 +/- 2% and 97 +/- 2%, while that with alhydrogel was 33 +/- 12% and with bacille Calmette-Guérin (BCG) was 67 +/- 4%. At week 24 after immunization, however, the best response was obtained with 10 micrograms of adjuvant 84/246. Intracerebral challenge with 10 or 100 LD50 dose of dengue type 2 virus showed significantly prolonged mean survival time and delayed onset of signs of sickness in immunized mice compared with normal mice. The maximum survival time was with adjuvant 84/246 even at week 24. The findings thus show that the optimum dose of CF is 5 micrograms and the adjuvant of choice is 84/246. PMID:8536363

  5. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    PubMed

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  6. Surfactant protein D induces immune quiescence and apoptosis of mitogen-activated peripheral blood mononuclear cells.

    PubMed

    Pandit, Hrishikesh; Thakur, Gargi; Koippallil Gopalakrishnan, Aghila Rani; Dodagatta-Marri, Eswari; Patil, Anushree; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant protein D (SP-D) is an integral molecule of the innate immunity secreted by epithelial cells lining the mucosal surfaces. The C-type lectin domain of SP-D performs pattern recognition functions while it binds to putative receptors on immune cells to modify cellular functions. Activation of immune cells and increased serum SP-D is observed in a range of patho-physiological conditions including infections. We speculated if SP-D can modulate systemic immune response via direct interaction with activated PBMCs. In this study, we examined interaction of a recombinant fragment of human SP-D (rhSP-D) on PHA-activated PBMCs. We report a significant downregulation of activation receptors such as TLR2, TLR4, CD11c and CD69 upon rhSP-D treatment. rhSP-D inhibited production of Th1 (TNF-α and IFN-γ) and Th17 (IL-17A) cytokines along with IL-6. Interestingly, levels of IL-2, Th2 (IL-4) and regulatory (IL-10 and TGF-β) cytokines remained unaltered. Analysis of co-stimulatory CD28 and co-inhibitory CTLA4 receptors along with their ligands CD80 and CD86 revealed a selective up-regulation of CTLA4 in the lymphocyte subset. rhSP-D induced apoptosis in the activated but not in non-activated lymphocytes. Blockade of CTLA4 inhibited rhSP-D mediated apoptosis of activated lymphocytes, confirming involvement of CTLA4. We conclude that SP-D restores immune homeostasis. It regulates expression of immunomodulatory receptors and cytokines, which is followed by induction of apoptosis in activated lymphocytes. These findings suggest a critical role of SP-D in immune surveillance against activated immune cells. PMID:26563748

  7. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway.

    PubMed

    Niu, Dongdong; Wang, Xiujuan; Wang, Yanru; Song, Xiaoou; Wang, Jiansheng; Guo, Jianhua; Zhao, Hongwei

    2016-01-01

    Induced resistance responses play a potent role in plant defense system against pathogen attack. Bacillus cereus AR156 is a plant growth promoting rhizobacterium (PGPR) that installs induced systemic resistance (ISR) to Pseudomonas syringae pv. tomato (Pst) in Arabidopsis. Here, we show that AR156 leaf infiltration enhances disease resistance in Arabidopsis through the activation of a systemic acquired resistance (SAR). PR1 protein expression and reactive oxygen species (ROS) burst are strongly induced in plants treated with AR156 and inoculated with Pst than that in plants inoculated with Pst only. Moreover, AR156 can trigger SAR in jar1 or ein2 mutants, but not in the NahG transgenic and NPR1 mutant plants. Our results indicate that AR156-induced SAR depends on SA-signaling pathway and NPR1, but not JA and ET. Also, AR156-treated plants are able to rapidly activate MAPK signaling and FRK1 gene expression, which are involved in pathogen associated molecular pattern (PAMP)-triggered immunity (PTI). Altogether, our results indicate that AR156 can induce SAR by the SA-signaling pathways in an NPR1-dependent manner and involves multiple PTI components. PMID:26616055

  8. Protective immunity induced by recombinant protein CPSIT_p8 of Chlamydia psittaci.

    PubMed

    Liang, Mingxing; Wen, Yating; Ran, Ou; Chen, Liesong; Wang, Chuan; Li, Li; Xie, Yafeng; Zhang, Yang; Chen, Chaoqun; Wu, Yimou

    2016-07-01

    Chlamydia psittaci is a zoonotic pathogen with a broad host range that can lead to severe respiratory and systemic disease in humans. Currently, an effective commercial vaccine against C. psittaci infection is not available. The chlamydial plasmid is an important virulence factor and encodes plasmid proteins that play important roles in chlamydial infection and the corresponding immune response. In this study, we assessed the efficacy of vaccination with plasmid proteins at preventing C. psittaci lung infection in a murine model. BALB/c mice were immunized intraperitoneally, three times at 2-week intervals, with purified recombinant CPSIT_p8 protein and then infected with C. psittaci. Immunization significantly decreased chlamydial load in the lungs of infected mice, resulted in a lower level of IFN-γ, and reduced the extent of inflammation. In vivo or in vitro neutralization of C. psittaci with sera collected from immunized mice did not reduce the amount of viable C. psittaci in the lungs of mice, indicating that CPSIT_p8-specific antibodies do not have neutralizing capacity. Furthermore, confocal fluorescence microscopy using a mouse anti-CPSIT_p8 antibody revealed that CPSIT_p8 was localized inside the inclusion of C. psittaci 6BC-infected cells. Our results demonstrate that CPSIT_p8 protein induces significant protective immunity against challenge with C. psittaci in mice and represents a promising new vaccine candidate for the prevention of C. psittaci infection. PMID:27052378

  9. Efficient Qualitative and Quantitative Determination of Antigen-induced Immune Responses*

    PubMed Central

    2016-01-01

    To determine the effectiveness of immunization strategies used in therapeutic antibody or vaccine development, it is critical to assess the quality of immunization-induced polyclonal antibody responses. Here, we developed a workflow that uses sensitive methods to quantitatively and qualitatively assess immune responses against foreign antigens with regard to antibody binding affinity and epitope diversity. The application of such detailed assessments throughout an immunization campaign can significantly reduce the resources required to generate highly specific antibodies. Our workflow consists of the following two steps: 1) the use of surface plasmon resonance to quantify antigen-specific antibodies and evaluate their apparent binding affinities, and 2) the recovery of serum IgGs using an automated small scale purification system, followed by the determination of their epitope diversity using hydrogen deuterium exchange coupled with mass spectrometry. We showed that these methods were sensitive enough to detect antigen-specific IgGs in the nanogram/μl range and that they provided information for differentiating the antibody responses of the various immunized animals that could not be obtained by conventional methods. We also showed that this workflow can guide the selection of an animal that produces high affinity antibodies with a desired epitope coverage profile, resulting in the generation of potential therapeutic monoclonal antibody clones with desirable functional profiles. We postulate that this workflow will be an important tool in the development of effective vaccines to combat the highly sophisticated evasion mechanisms of pathogens. PMID:27288409

  10. Immunity against heterosubtypic influenza virus induced by adenovirus and MVA expressing nucleoprotein and matrix protein-1.

    PubMed

    Lambe, Teresa; Carey, John B; Li, Yuanyuan; Spencer, Alexandra J; van Laarhoven, Arjan; Mullarkey, Caitlin E; Vrdoljak, Anto; Moore, Anne C; Gilbert, Sarah C

    2013-01-01

    Alternate prime/boost vaccination regimens employing recombinant replication-deficient adenovirus or MVA, expressing Influenza A virus nucleoprotein and matrix protein 1, induced antigen-specific T cell responses in intradermally (ID) vaccinated mice; with the strongest responses resulting from Ad/MVA immunization. In BALB/C mice the immunodominant response was shifted from the previously identified immunodominant epitope to a novel epitope when the antigen was derived from A/Panama/2007/1999 rather than A/PR/8. Alternate immunization routes did not affect the magnitude of antigen-specific systemic IFN-γ response, but higher CD8(+) T-cell IFN-γ immune responses were seen in the bronchoalveolar lavage following intransal (IN) boosting after intramuscular (IM) priming, whilst higher splenic antigen-specific CD8(+) T cell IFN-γ was seen following IM boosting. Partial protection against heterologous influenza virus challenge was achieved following either IM/IM or IM/IN but not ID/ID immunization. These data may be of relevance for the design of optimal immunization regimens for human influenza vaccines, especially for influenza-naïve infants. PMID:23485942

  11. Efficient Qualitative and Quantitative Determination of Antigen-induced Immune Responses.

    PubMed

    Yang, Danlin; Frego, Lee; Lasaro, Marcio; Truncali, Kristopher; Kroe-Barrett, Rachel; Singh, Sanjaya

    2016-07-29

    To determine the effectiveness of immunization strategies used in therapeutic antibody or vaccine development, it is critical to assess the quality of immunization-induced polyclonal antibody responses. Here, we developed a workflow that uses sensitive methods to quantitatively and qualitatively assess immune responses against foreign antigens with regard to antibody binding affinity and epitope diversity. The application of such detailed assessments throughout an immunization campaign can significantly reduce the resources required to generate highly specific antibodies. Our workflow consists of the following two steps: 1) the use of surface plasmon resonance to quantify antigen-specific antibodies and evaluate their apparent binding affinities, and 2) the recovery of serum IgGs using an automated small scale purification system, followed by the determination of their epitope diversity using hydrogen deuterium exchange coupled with mass spectrometry. We showed that these methods were sensitive enough to detect antigen-specific IgGs in the nanogram/μl range and that they provided information for differentiating the antibody responses of the various immunized animals that could not be obtained by conventional methods. We also showed that this workflow can guide the selection of an animal that produces high affinity antibodies with a desired epitope coverage profile, resulting in the generation of potential therapeutic monoclonal antibody clones with desirable functional profiles. We postulate that this workflow will be an important tool in the development of effective vaccines to combat the highly sophisticated evasion mechanisms of pathogens. PMID:27288409

  12. Identification of immune inducible genes from the velvet worm Epiperipatus biolleyi (Onychophora).

    PubMed

    Altincicek, Boran; Vilcinskas, Andreas

    2008-01-01

    Onychophora are the next relatives of Arthropoda and, hence, represent an important taxon to unravel relationships among Insecta, Crustacea, Arachnida, and Myriapoda. Here, we screened for immune inducible genes from the onychophoran Epiperipatus biolleyi (Peripatidae) by injecting crude bacterial LPS and applying the suppression subtractive hybridization technique. Our analysis of 288 cDNAs resulted in identification of 36 novel genes in E. biolleyi whose potential homologues from other animals are known to mediate immune-related signaling (e.g. mitogen-activated protein kinase kinase 1 and immunoglobulin enhancer binding protein), to be involved in cellular processes (e.g. perilipin and myosin light chain), or to act as immune effector molecules (e.g. lysosomal beta-galactosidase, a putative antimicrobial peptide and a potential thiolester containing protein). Comparisons with homologous genes from other animals including the two most favored ecdysozoan model organisms of innate immunity research, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, provide further insights into the origin and evolution of Arthropoda immunity. PMID:18598713

  13. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis

    PubMed Central

    Zinselmeyer, Bernd H.; Heydari, Sara; Sacristán, Catarina; Nayak, Debasis; Cammer, Michael; Herz, Jasmin; Cheng, Xiaoxiao; Davis, Simon J.; Dustin, Michael L.

    2013-01-01

    Immune responses to persistent viral infections and cancer often fail because of intense regulation of antigen-specific T cells—a process referred to as immune exhaustion. The mechanisms that underlie the induction of exhaustion are not completely understood. To gain novel insights into this process, we simultaneously examined the dynamics of virus-specific CD8+ and CD4+ T cells in the living spleen by two-photon microscopy (TPM) during the establishment of an acute or persistent viral infection. We demonstrate that immune exhaustion during viral persistence maps anatomically to the splenic marginal zone/red pulp and is defined by prolonged motility paralysis of virus-specific CD8+ and CD4+ T cells. Unexpectedly, therapeutic blockade of PD-1–PD-L1 restored CD8+ T cell motility within 30 min, despite the presence of high viral loads. This result was supported by planar bilayer data showing that PD-L1 localizes to the central supramolecular activation cluster, decreases antiviral CD8+ T cell motility, and promotes stable immunological synapse formation. Restoration of T cell motility in vivo was followed by recovery of cell signaling and effector functions, which gave rise to a fatal disease mediated by IFN-γ. We conclude that motility paralysis is a manifestation of immune exhaustion induced by PD-1 that prevents antiviral CD8+ T cells from performing their effector functions and subjects them to prolonged states of negative immune regulation. PMID:23530125

  14. The immune tolerance network: a new paradigm for developing tolerance-inducing therapies.

    PubMed

    Rotrosen, Daniel; Matthews, Jeff B; Bluestone, Jeffrey A

    2002-07-01

    Immune tolerance therapies are designed to reprogram immune cells in a highly specific fashion to eliminate pathogenic responses while preserving protective immunity. A concept that has tantalized immunologists for decades, the development of tolerance-inducing therapies, would revolutionize the management of a wide range of chronic and often debilitating diseases by obviating the need for lifelong immunosuppressive regimens. The advances of the past decade have provided a more detailed understanding of the molecular events associated with T-cell recognition and activation. Building on these advances, immunologists have demonstrated the feasibility of various tolerance-inducing approaches in small- and large-animal models of autoimmunity, allergy, and transplant graft rejection. Unprecedented opportunities to test these approaches in a variety of human diseases have now emerged. To capitalize on these advances, the National Institutes of Health recently established the Immune Tolerance Network (ITN), an international consortium of more than 70 basic and clinical immunologists dedicated to the evaluation of novel tolerance-inducing therapies and associated studies of immunologic mechanisms. By using a unique interactive approach to accelerate the development of clinical tolerance therapies, the ITN is partnering with the biotechnology and pharmaceutical industries to examine innovative tolerogenic approaches in a range of allergic and autoimmune diseases and to prevent graft rejection after transplantation. Two years since its inception, the ITN now has approximately 2 dozen clinical trials or tolerance assays studies ongoing or in later stages of protocol development. This report summarizes the rationale for emphasizing clinical research on immune tolerance and highlights the progress of the ITN. PMID:12110811

  15. Inducible factors with antimicrobial activity after immune challenge in the haemolymph of Red Palm Weevil (Insecta).

    PubMed

    Mastore, Maristella; Binda Rossetti, Simona; Giovannardi, Stefano; Scarì, Giorgio; Brivio, Maurizio F

    2015-05-01

    Insects are capable of innate immune responses elicited after microbial infection. In this process, the receptor-mediated recognition of foreign bodies and the subsequent activation of immunocompetent cells lead to the synthesis ex novo of a peptide pool with antimicrobial activity. We investigated the inducible immune response of a coleopteran, Rhynchophorus ferrugineus, challenged with both Gram-negative and Gram-positive bacteria. After immunization, we evaluated the presence of antimicrobial peptides using either biochemical analyses or microbiological techniques. The antimicrobial properties of the newly synthesized protein pool, detectable in haemolymph fractions of low molecular mass, showed strong antibacterial activity against various bacterial strains (Escherichia coli, Pseudomonas sp. OX1, Bacillus subtilis and Micrococcus luteus). In addition to the preliminary study of the mechanism of action of the pool of antimicrobial peptides, we also investigated its effects on bacterial cell walls by means of fluorescence microscopy and scanning electron microscopy. The data suggest that the main effects seem to be directed at destabilizing and damaging the bacterial wall. This study provides data that help us to understand some aspects of the inducible innate immunity in a system model that lacks anticipatory responses. However, the weevil has finely tuned its defensive strategies to counteract effectively microbial infection. PMID:25114180

  16. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    PubMed Central

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms. PMID:27054895

  17. Platycodin D exerts anti-tumor efficacy in H22 tumor-bearing mice via improving immune function and inducing apoptosis.

    PubMed

    Li, Wei; Tian, Yu-Hong; Liu, Ying; Wang, Zi; Tang, Shan; Zhang, Jing; Wang, Ying-Ping

    2016-01-01

    Platycodin D (PD), a major saponin derived and isolated from the roots of Platycodon grandiflorum, exerts potent growth inhibition and strong cytotoxicity against various cancer cell lines. However, the anti-tumor efficacy of PD on H22 hepatocellular carcinoma remains unknown. In the present study, we aimed to explore the anti-hepatoma activity in vivo and the underlying mechanism of PD in H22 tumor-bearing mice. The results revealed that PD could considerably suppress tumor growth with no significant side effects on immune organs and body weight. Further investigations showed that the levels of serum cytokines, including interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-2 (IL-2), were enhanced by PD administration. On the other hand, PD inhibited the production of vascular endothelial growth factor (VEGF) in serum of H22 tumor mice. Additionally, the observations from H&E and Hoechst 33258 staining results demonstrated that PD noticeably induced apoptosis in H22 hepatocellular carcinoma cells. Importantly, immunohistochemical analysis showed that PD treatment increased Bax expression and decreased Bcl-2 and VEGF expression of H22 tumor tissues in a dose-dependent manner. Taken together, the findings in the present investigation clearly demonstrated that the PD markedly suppressed the tumor growth of H22 transplanted tumor in vivo at least partly via improving the immune functions, inducing apoptosis, and inhibiting angiogenesis. PMID:27193733

  18. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine.

    PubMed

    Kim, Kwang Soon; Hong, Sung-Wook; Han, Daehee; Yi, Jaeu; Jung, Jisun; Yang, Bo-Gie; Lee, Jun Young; Lee, Minji; Surh, Charles D

    2016-02-19

    Dietary antigens are normally rendered nonimmunogenic through a poorly understood "oral tolerance" mechanism that involves immunosuppressive regulatory T (Treg) cells, especially Treg cells induced from conventional T cells in the periphery (pTreg cells). Although orally introducing nominal protein antigens is known to induce such pTreg cells, whether a typical diet induces a population of pTreg cells under normal conditions thus far has been unknown. By using germ-free mice raised and bred on an elemental diet devoid of dietary antigens, we demonstrated that under normal conditions, the vast majority of the small intestinal pTreg cells are induced by dietary antigens from solid foods. Moreover, these pTreg cells have a limited life span, are distinguishable from microbiota-induced pTreg cells, and repress underlying strong immunity to ingested protein antigens. PMID:26822607

  19. Beta-aescin: a potent natural inhibitor of proliferation and inducer of apoptosis in human chronic myeloid leukemia K562 cells in vitro.

    PubMed

    Niu, Yang-Ping; Li, Lian-Da; Wu, Li-Mao

    2008-07-01

    Beta-aescin, a natural triterpenoid saponin isolated from the seed of Chinese horse chestnut (Aesculus chinensis), is known to generate a wide variety of biochemical and pharmacological effects. In the present study, the authors investigated the anti-proliferative and apoptotic effects of beta-aescin in human chronic myeloid leukemia K562 cell line in vitro. The anti-proliferative effects were detected by CFU-K562 colony formation and cell viability assay. The apoptotic effects were analysed by morphological analysis, annexin V assay, DNA fragmentation assay and flow cytometry DNA content analysis. The results showed that beta-aescin exhibited potent dose- and time-dependent anti-proliferative effects in K562 cells. Morphological evidence of apoptosis, a significant increase of annexin V+ and PI- cells (early apoptotic) and apoptotic DNA fragmentation, were observed in cells treated with beta-aescin. Flow cytometry analysis revealed that beta-aescin could lead to an accumulation of sub G1 population in K562 cells, and suggesting a potential G1 phase accumulation in cell cycle profile of K562 cells. Our findings revealed that beta-aescin is a potent natural inhibitor of proliferation and inducer of apoptosis in K562 cells, and beta-aescin may be a candidate lead compound to explore potential antileukemia drugs. PMID:18452082

  20. 2,8-Diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine potent CCR4 antagonists capable of inducing receptor endocytosis.

    PubMed

    Shukla, Lena; Ajram, Laura A; Begg, Malcolm; Evans, Brian; Graves, Rebecca H; Hodgson, Simon T; Lynn, Sean M; Miah, Afjal H; Percy, Jonathan M; Procopiou, Panayiotis A; Richards, Stephen A; Slack, Robert J

    2016-06-10

    A number of potent 2,8-diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine CCR4 antagonists binding to the extracellular allosteric site were synthesised. (R)-N-(2,4-Dichlorobenzyl)-2-(2-(pyrrolidin-2-ylmethyl)-2,8-diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine (R)-(18a) has high affinity in both the [(125)I]-TARC binding assay with a pKi of 8.8, and the [(35)S]-GTPγS functional assay with a pIC50 of 8.1, and high activity in the human whole blood actin polymerisation assay (pA2 = 6.7). The most potent antagonists were also investigated for their ability to induce endocytosis of CCR4 and were found to internalise about 60% of the cell surface receptors, a property which is not commonly shared by small molecule antagonists of chemokine receptors. PMID:26991939

  1. Effects of serostatus and gender on the HRV-16-induced local immune response.

    PubMed

    Koch, Rebecca M; Kox, Matthijs; Pickkers, Peter; de Jonge, Marien I

    2016-07-29

    The "experimental cold model" is widely used to investigate effects of HRV infection. However, effects of serostatus and gender on the HRV-induced immune response have not been clarified. 40 healthy seropositive and seronegative (1:1) male and female (1:1) subjects were inoculated with HRV-16. HRV infection increased viral load in nasal wash, which tended to be more pronounced in seronegative subjects. Furthermore, HRV infection increased levels of IP-10, IL-6, and IL-10 and leukocyte numbers in nasal wash of seronegative, but not of seropositive subjects. No differences in any of the parameters were found between both sexes. The HRV-induced local immune response is diminished in seropositive subjects compared with seronegative subjects, while gender does not influence this response. These results have important implications for the design of future experimental cold studies: seronegative subjects, from both sexes can be included. PMID:27389172

  2. Nonimmunogenic radiation-induced lymphoma: immunity induction by a somatic cell hybrid

    SciTech Connect

    Yefenof, E.; Goldapfel, M.; Ber, R.

    1982-05-01

    The cell line designated PIR-2 is a nonimmunogenic X-ray-induced thymoma of C57BL/6 origin that is unable to induce antitumor immunity in syngeneic lymphocytes in vitro and in mice in vivo. Fusion of PIR-2 with an allogeneic universal fuser A9HT (clone 3c) resulted in the establishment of a somatic cell hybrid designated A9/PIR. C57BL/6 lymphocytes sensitized in vitro with A9/PIR could lyse parental PIR-2 cells, as well as other syngeneic tumors. However, immunization of mice with the hybrid significantly enhanced PIR-2 tumor takes while it partially protected the animals against a challenge with unrelated syngeneic tumors. The results imply that somatic cell hybridization can increase the immunogenicity of an otherwise nonimmunogenic tumor. However, in view of the enhancing effects of hybrid preimmunization on parental tumor cell growth, the possible application of this approach for immunotherapy is questionable.

  3. White spot syndrome virus strains of different virulence induce distinct immune response in Cherax quadricarinatus.

    PubMed

    Gao, Meiling; Li, Fang; Xu, Limei; Zhu, Xiaoming

    2014-07-01

    In this study, we identified three white spot syndrome virus (WSSV) strains (WSSV-CN01, WSSV-CN02 and WSSV-CN03) with significant differences in virulence. Among them, WSSV-CN01 caused significant higher and earlier mortality in redclaw crayfish Cherax quadricarinatus, thus was determined as high-virulent, while WSSV-CN02 and WSSV-CN03 were moderate-virulent and low-virulent. By investigating the total number of the circulating haemocytes and the activity of immune relative enzymes, we demonstrated that the different virulent WSSV strains induced distinct immune response in the host. Notably, a dramatic reduction of circulating haemocytes was observed in the crayfish infected with WSSV-CN01 and WSSV-CN02 but not WSSV-CN03. Further analysis revealed that cell death induced by WSSV-CN01 and WSSV-CN02 might be responsible for the decrease of circulating haemocytes. PMID:24795080

  4. A horse chestnut extract, which induces contraction forces in fibroblasts, is a potent anti-aging ingredient.

    PubMed

    Fujimura, Tsutomu; Tsukahara, Kazue; Moriwaki, Shigeru; Hotta, Mitsuyuki; Kitahara, Takashi; Takema, Yoshinori

    2006-01-01

    Contraction forces generated by non-muscle cells, such as fibroblasts, play important roles in determining cell morphology, vasoconstriction, and/or wound healing. We have searched among various plant extracts for ingredients that generate cell contraction forces using fibroblast-populated collagen gels. Using that model, we found that an extract of horse chestnuts (Aesculus hippocastanum) is able to generate such contraction forces in fibroblasts. The involvement of stress fiber formation in that response is suggested by the inhibition of such force generation by cytochalasin D and rhodamine phalloidin stain. Clinical testing of the extract was carried out using 40 healthy female volunteers. A gel formulation that included 3% of the extract was applied topically to the skin around the eye three times daily for nine weeks. The efficacy of the extract to diminish wrinkles was evaluated by visual scoring based on photo scales. After six weeks, significant decreases in the wrinkle scores at the corners of the eye or in the lower eyelid skin were observed compared with controls. After nine weeks, similar results were obtained. Taken together, our results suggest that an extract of horse chestnuts can generate contraction forces in fibroblasts and is a potent anti-aging ingredient. PMID:17111071

  5. Discovery of potent, novel Nrf2 inducers via quantum modeling, virtual screening and in vitro experimental validation

    PubMed Central

    Williamson, Tracy P.; Amirahmadi, Sara; Joshi, Gururaj; Kaludov, Nikola K.; Martinov, Martin N.; Johnson, Delinda A.; Johnson, Jeffrey A.

    2012-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is the master transcription factor of the antioxidant response element (ARE) pathway, coordinating the induction of detoxifying and antioxidant enzymes. Nrf2 is normally sequestered in the cytoplasm by Kelch-like ECH associating protein 1 (Keap1). To identify novel small molecules that will disturb Nrf2:Keap1 binding and promote activation of the Nrf2-ARE pathway, we generated a quantum model based on the structures of known Nrf2-ARE activators. We used the quantum model to perform in silico screening on over 18 million commercially available chemicals to identify the structures predicted to activate the Nrf2-ARE pathway based on the quantum model. The top hits were tested in vitro and half of the predicted hits activated the Nrf2-ARE pathway significantly in primary cell culture. In addition, we identified a new family of Nrf2-ARE activating structures that all have comparable activity to tBHQ and protect against oxidative stress and dopaminergic toxins in vitro. The improved ability to identify potent activators of Nrf2 through the combination of in silico and in vitro screening described here improves the speed and cost associated with screening Nrf2-ARE activating compounds for drug development. PMID:22925725

  6. The Potent Humanin Analogue (HNG) Protects Germ Cells and Leucocytes While Enhancing Chemotherapy-Induced Suppression of Cancer Metastases in Male Mice.

    PubMed

    Lue, YanHe; Swerdloff, Ronald; Wan, Junxiang; Xiao, Jialin; French, Samuel; Atienza, Vince; Canela, Victor; Bruhn, Kevin W; Stone, Brian; Jia, Yue; Cohen, Pinchas; Wang, Christina

    2015-12-01

    Humanin is a peptide that is cytoprotective against stresses in many cell types. We investigated whether a potent humanin analogue S14G-humanin (HNG) would protect against chemotherapy-induced damage to normal cells without interfering with the chemotherapy-induced suppression of cancer cells. Young adult male mice were inoculated iv with murine melanoma cells. After 1 week, cancer-bearing mice were randomized to receive either: no treatment, daily ip injection of HNG, a single ip injection of cyclophosphamide (CP), or CP+HNG and killed at the end of 3 weeks. HNG rescued the CP-induced suppression of leucocytes and protected germ cell from CP-induced apoptosis. Lung metastases were suppressed by HNG or CP alone, and further suppressed by CP+HNG treatment. Plasma IGF-1 levels were suppressed by HNG with or without CP treatment. To investigate whether HNG maintains its protective effects on spermatogonial stem cells, sperm output, and peripheral leucocytes after repeated doses of CP, normal adult male mice received: no treatment, daily sc injection of HNG, 6 ip injections of CP at 5-day intervals, and the same regimens of CP+HNG and killed at the end of 4 weeks of treatment. Cauda epididymal sperm counts were elevated by HNG and suppressed by CP. HNG rescued the CP-induced suppression of spermatogonial stem cells, sperm count and peripheral leucocytes. We conclude that HNG 1) protects CP-induced loss of male germ cells and leucocytes, 2) enhances CP-induced suppression of cancer metastases, and 3) acts as a caloric-restriction mimetic by suppressing IGF-1 levels. Our findings suggest that humanin analogues may be promising adjuvants to chemotherapy. PMID:26384090

  7. Low-dose spiruchostatin-B, a potent histone deacetylase inhibitor enhances radiation-induced apoptosis in human lymphoma U937 cells via modulation of redox signaling.

    PubMed

    Rehman, Mati Ur; Jawaid, Paras; Zhao, Qing Li; Li, Peng; Narita, Koichi; Katoh, Tadashi; Shimizu, Tadamichi; Kondo, Takashi

    2016-06-01

    Spiruchostatin B (SP-B), is a potent histone deacetylase (HDAC) inhibitor, in addition to HDAC inhibition, the pharmacological effects of SP-B are also attributed to its ability to produce intracellular reactive oxygen species (ROS), particularly H2O2. In this study, we investigated the effects of low dose (non-toxic) SP-B on radiation-induced apoptosis in human lymphoma U937 cells in vitro. The treatment of cells with low-dose SP-B induced the acetylation of histones, however, does not induce apoptosis. Whereas, the combined treatment with SP-B and radiation significantly enhanced the radiation-induced apoptosis, suggesting the potential role of this combined treatment for future radiation therapy. Interestingly, the enhancement of apoptosis was accompanied by significant increased in the ROS generation. Pre-treatment with an antioxidant, N-acetyl-l-cysteine (NAC) significantly inhibited the enhancement of apoptosis induced by combined treatment, indicating that ROS play an essential role. It was also found that SP-B combined with radiation caused the activation of death receptor and intrinsic apoptotic pathways, via modulation of ROS-mediated signaling. Moreover, SP-B also significantly enhanced the radiation-induced apoptosis in other lymphoma cell lines such as Molt-4 and HL-60. Taken together, our findings suggest that the low-dose SP-B enhances radiation-induced apoptosis via modulation of redox signaling because of its ability to serve as an intracellular ROS generating agent, mainly (H2O2 or [Formula: see text]). This study provides further insights into the mechanism of action of SP-B with radiation and demonstrates that SP-B can be used as a future novel sensitizer for radiation therapy. PMID:27108737

  8. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers.

    PubMed

    Ubillos, Luis; Freire, Teresa; Berriel, Edgardo; Chiribao, María Laura; Chiale, Carolina; Festari, María Florencia; Medeiros, Andrea; Mazal, Daniel; Rondán, Mariella; Bollati-Fogolín, Mariela; Rabinovich, Gabriel A; Robello, Carlos; Osinaga, Eduardo

    2016-04-01

    Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, has anticancer effects mediated, at least in part, by parasite-derived products which inhibit growth of tumor cells. We investigated whether immunity to T. cruzi antigens could induce antitumor activity, using two rat models which reproduce human carcinogenesis: colon cancer induced by 1,2-dimethylhydrazine (DMH), and mammary cancer induced by N-nitroso-N-methylurea (NMU). We found that vaccination with T. cruzi epimastigote lysates strongly inhibits tumor development in both animal models. Rats immunized with T. cruzi antigens induce activation of both CD4(+) and CD8(+) T cells and splenocytes from these animals showed higher cytotoxic responses against tumors as compared to rats receiving adjuvant alone. Tumor-associated immune responses included increasing number of CD11b/c(+) His48(-) MHC II(+) cells corresponding to macrophages and/or dendritic cells, which exhibited augmented NADPH-oxidase activity. We also found that T. cruzi lysate vaccination developed antibodies specific for colon and mammary rat cancer cells, which were capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in vitro. Anti-T. cruzi antibodies cross-reacted with human colon and breast cancer cell lines and recognized 41/60 (68%) colon cancer and 38/63 (60%) breast cancer samples in a series of 123 human tumors. Our results suggest that T. cruzi antigens can evoke an integrated antitumor response involving both the cellular and humoral components of the immune response and provide novel insights into the understanding of the intricate relationship between parasite infection and tumor growth. PMID:26519949

  9. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    PubMed

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. PMID:26478541

  10. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    PubMed Central

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  11. Immune response induced by candidate Sarcoptes scabiei var. cuniculi DNA vaccine encoding paramyosin in mice.

    PubMed

    Gu, Xiaobin; Xie, Yue; Wang, Shuxian; Peng, Xuerong; Lai, Songjia; Yang, Guangyou

    2014-07-01

    Sarcoptes scabiei is the causal agent of the highly contagious disease sarcoptic mange (scabies) that affects animals and humans worldwide. An increasing number of cases of treatment failure is being reported because of drug resistance. The development of a specific vaccine would be a sustainable option for control of this disease. In this study, we cloned and expressed a S. scabiei gene encoding paramyosin (PAR) and investigated the immune response elicited by DNA encoding PAR in mice. The ability of the DNA vaccine to express antigen in COS-7 cells was confirmed by RT-PCR and IFA. The immune response induced by DNA vaccine was investigated by ELISA, splenocyte proliferation assay, and cytokine production assay. Compared to the pVAX1 control group, the PAR DNA vaccination group showed the higher levels of IgG, IgG1, IgG2a, IgE, IgM, stronger lymphocyte proliferation in mouse spleen, and larger production of IL-2, IL-4, IL-5, and IFN-γ in the supernatant of cultures from splenocytes. These results indicated that the PAR DNA vaccine induced a mixed Th1/Th2 response in mice. In conclusion, our results revealed that the S. scabiei PAR DNA vaccine induced both a humoral and cellular immune response, which would provide basic data for the further study to develop an effective vaccine against sarcoptic mange. PMID:24729069

  12. Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells.

    PubMed

    Tomić, Sergej; Kokol, Vanja; Mihajlović, Dušan; Mirčić, Aleksandar; Čolić, Miodrag

    2016-01-01

    Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4(+)T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4(+)CD25(hi)FoxP3(hi) regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies. PMID:27558765

  13. Toxoplasma gondii GRA7-Induced TRAF6 Activation Contributes to Host Protective Immunity

    PubMed Central

    Yuk, Jae-Min; Lee, Young-Ha; Jo, Eun-Kyeong

    2015-01-01

    The intracellular parasite Toxoplasma gondii has unique dense granule antigens (GRAs) that are crucial for host infection. Emerging evidence suggests that GRA7 of T. gondii is a promising serodiagnostic marker and an effective toxoplasmosis vaccine candidate; however, little is known about the intracellular regulatory mechanisms involved in the GRA7-induced host responses. Here we show that GRA7-induced MyD88 signaling through the activation of TRAF6 and production of reactive oxygen species (ROS) is required for the induction of NF-κB-mediated proinflammatory responses by macrophages. GRA7 stimulation resulted in the rapid activation of mitogen-activated protein kinases and an early burst of ROS in macrophages in a MyD88-dependent manner. GRA7 induced a physical association between GRA7 and TRAF6 via MyD88. Remarkably, the C terminus of GRA7 (GRA7-V) was sufficient for interaction with and ubiquitination of the RING domain of TRAF6, which is capable of inflammatory cytokine production. Interestingly, the generation of ROS and TRAF6 activation are mutually dependent on GRA7/MyD88-mediated signaling in macrophages. Furthermore, mice immunized with GRA7-V showed markedly increased Th1 immune responses and protective efficacy against T. gondii infection. Collectively, these results provide novel insight into the crucial role of GRA7-TRAF6 signaling in innate immune responses. PMID:26553469

  14. Interleukin-5 is necessary for eosinophilia induced by cyclophosphamide in immunized mice.

    PubMed Central

    Mu, H H; Penny, R; Sewell, W A

    1993-01-01

    Interleukin-5 (IL-5) has an important role in the induction of eosinophilia, which is associated with parasitic infestations and with allergic conditions, and which can be induced in a number of experimental systems. One of these model systems involves the administration of cyclophosphamide (CY) to immunized animals. In order to assess the role of IL-5 in this model, eosinophilia was induced in vivo and cell suspensions of spleens or lymph nodes were stimulated in vitro. IL-5 protein secretion was detected by bioassay using an IL-5-dependent cell line (T88-m), and mRNA was assessed by reverse transcription and polymerase chain reaction (RT-PCR). The production of IL-5 protein and mRNA were greatly enhanced in the cells from mice given CY with ovalbumin (OVA), compared with mice given either agent alone. IL-5 protein and mRNA were increased both in spleen and in lymph node cells, and in response either to OVA or to polyclonal stimuli. Further evidence for the importance of IL-5 in this model of eosinophilia was provided by experiments with monoclonal antibodies (mAb) in vivo. A single injection of an IL-5-specific mAb at the time of immunization completely abolished the eosinophilia. By contrast, a monoclonal antibody to IL-4 had no effect. These experiments indicate that IL-5 is required for the eosinophilia induced by CY in immunized mice. Images Figure 3 PMID:8406572

  15. Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells

    PubMed Central

    Tomić, Sergej; Kokol, Vanja; Mihajlović, Dušan; Mirčić, Aleksandar; Čolić, Miodrag

    2016-01-01

    Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4+T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4+CD25hiFoxP3hi regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies. PMID:27558765

  16. Escherichia coli O157:H7 Induces Stronger Plant Immunity than Salmonella enterica Typhimurium SL1344

    PubMed Central

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A

    2014-01-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity (RH); an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 as compared to SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis resulting in low bacterial titers in the plant apoplast suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies. PMID:23301812

  17. Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors

    PubMed Central

    Sun, Y; Peng, S; Qiu, J; Miao, J; Yang, B; Jeang, J; Hung, C-F; Wu, T-C

    2015-01-01

    Therapeutic human papillomavirus (HPV) vaccines have the potential to inhibit the progression of an established HPV infection to precancer and cancer lesions by targeting HPV oncoproteins. We have previously developed a therapeutic DNA vaccine encoding calreticulin (CRT) linked to E7, CRT/E7 DNA vaccine, for use in the treatment of HPV-associated lesions. Since the transfection efficiency of DNA vaccines administered in vivo is typically low, we examined the use of electroporation as well as different routes of administration to enhance antigen-specific tumor control. We tested the effects of the CRT/E7 DNA vaccine administered intramuscularly or intravaginally, with or without electroporation, on the generation of CD8+ T-cell immunity and therapeutic antitumor effects in HPV16 E7-expressing cervicovaginal tumor-bearing mice. We found that intravaginal vaccination of CRT/E7 DNA followed by electroporation-induced potent E7-specific CD8+ T-cell responses in the cervicovaginal tract, compared with intramuscular injection followed by electroporation. Furthermore, tumor-bearing mice vaccinated intravaginally followed by electroporation had an enhanced survival, antitumor effects and local production of IFN-γ+CD8+ T cells compared with those vaccinated intramuscularly with electroporation. Thus, we show that intravaginal CRT/E7 DNA vaccination followed by electroporation generates the most potent therapeutic antitumor effects against an orthotopic E7-expressing tumor model. The current study will have significant clinical implications once a clinically applicable electroporation device for intravaginal use becomes available. PMID:25786869

  18. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein

    PubMed Central

    Parra, Marcela; Liu, Xia; Derrick, Steven C.; Yang, Amy; Molina-Cruz, Alvaro; Barillas-Mury, Carolina; Zheng, Hong; Thao Pham, Phuong; Sedegah, Martha; Belmonte, Arnel; Litilit, Dianne D.; Waldmann, Thomas A.; Kumar, Sanjai; Morris, Sheldon L.; Perera, Liyanage P.

    2015-01-01

    Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)–based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies. PMID:26505634

  19. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein.

    PubMed

    Parra, Marcela; Liu, Xia; Derrick, Steven C; Yang, Amy; Molina-Cruz, Alvaro; Barillas-Mury, Carolina; Zheng, Hong; Thao Pham, Phuong; Sedegah, Martha; Belmonte, Arnel; Litilit, Dianne D; Waldmann, Thomas A; Kumar, Sanjai; Morris, Sheldon L; Perera, Liyanage P

    2015-01-01

    Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)-based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies. PMID:26505634

  20. Immune response induced by conjunctival immunization with polymeric antigen BLSOmp31 using a thermoresponsive and mucoadhesive in situ gel as vaccine delivery system for prevention of ovine brucellosis.

    PubMed

    Díaz, Alejandra Graciela; Quinteros, Daniela Alejandra; Gutiérrez, Silvina Elena; Rivero, Mariana Alejandra; Palma, Santiago Daniel; Allemandi, Daniel Alberto; Pardo, Romina Paola; Zylberman, Vanesa; Goldbaum, Fernando Alberto; Estein, Silvia Marcela

    2016-10-01

    Control of ovine brucellosis with subcellular vaccines can solve some drawbacks associated with the use of Brucella melitensis Rev.1. Previous studies have demonstrated that the polymeric antigen BLSOmp31 administered by parenteral route was immunogenic and conferred significant protection against B. ovis in rams. Immunization with BLSOmp31 by conjunctival route could be efficient for the induction of mucosal and systemic immune responses. In this work, we evaluated the conjunctival immunization using a thermoresponsive and mucoadhesive in situ gel composed of Poloxamer 407 (P407) and chitosan (Ch) as vaccine delivery system for BLSOmp31 in rams. Serum samples, saliva, lacrimal, preputial and nasal secretions were analyzed to measure specific IgG and IgA antibodies. Cellular immune response was evaluated in vivo and in vitro. Immunization with BLSOmp31-P407-Ch induced high IgG antibody levels in serum and preputial secretions which remained at similar levels until the end of the experiment. Levels of IgG in saliva, lacrimal and nasal secretions were also higher compared to unvaccinated control group but decreased more rapidly. IgA antibodies were only detected in nasal and preputial secretions. BLSOmp31-P407-Ch stimulated a significant cellular immune response in vivo and in vitro. The induction of systemic and local immune responses indicates a promising potential of P407-Ch for the delivery of BLSOmp31 by conjunctival route. PMID:27496742

  1. Effect of Phlebodium Decumanum on the Immune Response Induced by Training in Sedentary University Students

    PubMed Central

    Gonzalez-Jurado, Jose A.; Pradas, Francisco; Molina, Edgardo S.; de Teresa, Carlos

    2011-01-01

    Exercise training is considered a good model to provoke different degrees of immune dysfunction affecting physical performance and some physiological responses related to oxidative stress and low grade inflammation. Phlebodium decumanum is a polypodiaceae may induce shown immunomodulating effects, specifically directed to the release of proinflammatory cytokines by macrophages in response to various stimuli, as reported different in vitro studies. The aim of this study was to evaluate the modulating effect of phlebodium decumanum, on the immune response induced by physical exercise. Thirty-one subjects (males only) were randomly divided into two groups: Group PD (n = 18); age: 22.1 ± 1.81, weight 74.21 ± 8.74 kg) that was treated with phlebodium decumanum; Group P (n = 13); age: 22.5 ± 1.63, weight 78 ± 12.5 kg) that was treated with a placebo. Before and after one month training program performed by both groups (three times a week), the following performance parameters and immune response variables were measured: Dynamic Maximum Force; Interval-Training; Tennis test; pro-inflammatory (TNF , IL6) and anti-inflammatory (TNFα-IIrs, IL1-ra) cytokines levels. Data were statistically analyzed with Mann- Whitney U test and Wilcoxon paired test (p < 0.05). Statistically significant differences were recorded within groups before and after the training program. PD group showed a significant improvement in the performance parameters (Strength Muscle Test: dorsal: p < 0.002; deltoids: p < 0.03; and pectorals: p < 0.07; Interval Training: p < 0.06; Tennis Test: p < 0.02). Cytokine levels resulted in a more positive profile in the PD group rather than in the P group, in which higher levels of IL-6 (p < 0.02) and a reduction of TNF-IIrs (p < 0.003) and IL1-ra (p < 0.03) were recorded. In this study the use of phlebodium decumanum demonstrated beneficial effects in the modulation of the immune response during physical performance. Key points Practicing sport or physical

  2. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation

    PubMed Central

    Zhong, Wenwei; Su, Wen; Zhang, Yanjie; Liu, Qi; Wu, Jinhong; Di, Caixia; Zhang, Zili; Xia, Zhenwei

    2014-01-01

    Antigen-induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) -induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up-regulation of activation marker of CD200R. However, depletion of basophils with MAR-1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin-4 level in lung and OVA-special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA-challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA-challenged mice were able to uptake DQ-OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin-4 following stimulation by IgE–antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen-induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin-4. PMID:24383680

  3. A Potent HDAC Inhibitor, 1-Alaninechlamydocin, from a Tolypocladium sp. Induces G2/M Cell Cycle Arrest and Apoptosis in MIA PaCa-2 Cells

    PubMed Central

    2015-01-01

    The cyclic tetrapeptide 1-alaninechlamydocin was purified from a Great Lakes-derived fungal isolate identified as a Tolypocladium sp. Although the planar structure was previously described, a detailed analysis of its spectroscopic data and biological activity are reported here for the first time. Its absolute configuration was determined using a combination of spectroscopic (1H–1H ROESY, ECD, and X-ray diffraction) and chemical (Marfey’s analysis) methods. 1-Alaninechlamydocin showed potent antiproliferative/cytotoxic activities in a human pancreatic cancer cell line (MIA PaCa-2) at low-nanomolar concentrations (GI50 5.3 nM, TGI 8.8 nM, LC50 22 nM). Further analysis revealed that 1-alaninechlamydocin induced G2/M cell cycle arrest and apoptosis. Similar to other cyclic epoxytetrapeptides, the inhibitory effects of 1-alaninechlamydocin are proposed to be produced primarily via inhibition of histone deacetylase (HDAC) activity. PMID:24999749

  4. IgA is a more potent inducer of NADPH oxidase activation and degranulation in blood eosinophils than IgE.

    PubMed

    Pleass, Richard J; Lang, Mark L; Kerr, Michael A; Woof, Jenny M

    2007-02-01

    Human eosinophils can mediate both beneficial and detrimental responses in parasitic and allergic diseases. Binding of aggregated immunoglobulin to Fc receptors on eosinophils mediates important defence processes, including generation of activated oxygen species resulting from NADPH oxidase activation, and eosinophil peroxidase release following degranulation. The abilities of a matched set of IgA, IgG and IgE antibodies to elicit such responses in blood-derived eosinophils were compared using a chemiluminescence assay. IgA and IgG, but not IgE, were found to trigger NADPH oxidase activation and degranulation in eosinophils. This non-responsiveness to IgE did not result from receptor blockade by endogenous IgE since no blood-derived IgE was detectable on freshly isolated eosinophils. Moreover, while cross-linking of FcalphaRI by specific mAbs triggered NADPH oxidase activation and degranulation in blood-derived eosinophils, equivalent cross-linking of FcvarepsilonRI or FcvarepsilonRII did not elicit such responses. Therefore IgA is more potent at eliciting activated oxygen species release and degranulation in eosinophils than IgE, suggesting that the importance of IgA in eosinophil activation in immune defence and allergy may have been underestimated. PMID:16777227

  5. Partially Protective Immunity Induced by a 20 kDa Protein Secreted by Trichinella spiralis Stichocytes

    PubMed Central

    Wang, Lei; Gu, Yuan; Zhan, Bin; Zhu, Xinping

    2015-01-01

    Background Trichinella spiralis infection induces protective immunity against re-infection in animal models. Identification of the antigens eliciting acquired immunity during infection is important for vaccine development against Trichinella infection and immunodiagnosis. Methods and Findings The T. spiralis adult cDNA library was immunoscreened with sera from pigs experimentally infected with 20,000 infective T. spiralis larvae. Total 43 positive clones encoding for 28 proteins were identified; one of the immunodominant proteins was 20 kDa Ts-ES-1 secreted by Trichinella stichocytes and existing in the excretory/secretory (ES) products of T. spiralis adult and muscle larval worms. Ts-ES-1 contains 172 amino acids with a typical signal peptide in the first 20 amino acids. The expression of Ts-ES-1 was detected in both the adult and muscle larval stages at the mRNA and protein expression levels. Mice immunized with recombinant Ts-ES-1 (rTs-ES-1) formulated with ISA50v2 adjuvant exhibited a significant worm reduction in both the adult worm (27%) and muscle larvae burden (42.1%) after a challenge with T. spiralis compared to the adjuvant control group (p<0.01). The rTs-ES-1-induced protection was associated with a high level of specific anti-Ts-ES-1 IgG antibodies and a Th1/Th2 mixed immune response. Conclusion The newly identified rTs-ES-1 is an immunodominant protein secreted by Trichinella stichocytes during natural infection and enables to the induction of partial protective immunity in vaccinated mice against Trichinella infection. Therefore, rTs-ES-1 is a potential candidate for vaccine development against trichinellosis. PMID:26288365

  6. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells

    PubMed Central

    Cohen, Evan N.; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G.; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J.; Cristofanilli, Massimo; Mani, Sendurai A.; Croix, Denise A.; Ueno, Naoto T.; Woodward, Wendy A.; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M.

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction. PMID:26207636

  7. Nasal immunization with M cell-targeting ligand-conjugated ApxIIA toxin fragment induces protective immunity against Actinobacillus pleuropneumoniae infection in a murine model.

    PubMed

    Park, Jisang; Seo, Ki-Weon; Kim, Sae-Hae; Lee, Ha-Yan; Kim, Bumseok; Lim, Chae Woong; Kim, Jin-Hee; Yoo, Han Sang; Jang, Yong-Suk

    2015-05-15

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and severe economic loss in the swine industry has been caused by the infection. Therefore, the development of an effective vaccine against the bacteria is necessary. ApxII toxin, among several virulence factors expressed by the bacteria, is considered to be a promising vaccine candidate because ApxII toxin not only accompanies cytotoxic and hemolytic activities, but is also expressed in all 15 serotypes of bacteria except serotypes 10 and 14. In this study, we identified the peptide ligand capable of targeting the ligand-conjugated ApxIIA #5 fragment antigen to nasopharynx-associated lymphoid tissue. It was found that nasal immunization with ligand-conjugated ApxIIA #5 induced efficient mucosal and systemic immune responses measured at the levels of antigen-specific antibodies, cytokine-secreting cells after antigen exposure, and antigen-specific lymphocyte proliferation. More importantly, the nasal immunization induced protective immunity against nasal challenge infection of the bacteria, which was confirmed by histopathological studies and bacterial clearance after challenge infection. Collectively, we confirmed that the ligand capable of targeting the ligand-conjugated antigen to nasopharynx-associated lymphoid tissue can be used as an effective nasal vaccine adjuvant to induce protective immunity against A. pleuropneumoniae infection. PMID:25818577

  8. Killer B Lymphocytes and Their Fas Ligand Positive Exosomes as Inducers of Immune Tolerance

    PubMed Central

    Klinker, Matthew W.; Fox, David A.

    2015-01-01

    Induction of immune tolerance is a key process by which the immune system is educated to modulate reactions against benign stimuli such as self-antigens and commensal microbes. Understanding and harnessing the natural mechanisms of immune tolerance may become an increasingly useful strategy for treating many types of allergic and autoimmune diseases, as well as for improving the acceptance of solid organ transplants. Our laboratory and others have been interested in the natural ability of some B lymphocytes to express the death-inducing molecule Fas ligand (FasL), and their ability to kill T helper (TH) lymphocytes. We have recently shown that experimental transformation of human B cells by a non-replicative variant of Epstein-Barr virus (EBV) consistently resulted in high expression of functional FasL protein. The production and release of FasL+ exosomes that co-expressed major histocompatibility complex (MHC) class II molecules and had the capacity to kill antigen-specific TH cells was also observed. Several lines of evidence indicate that FasL+ B cells and FasL+MHCII+ exosomes have important roles in natural immune tolerance and have a great deal of therapeutic potential. Taken together, these findings suggest that EBV-immortalized human B lymphoblastoid cell lines could be used as cellular factories for FasL+ exosomes, which would be employed to therapeutically establish and/or regain immune tolerance toward specific antigens. The goals of this review are to summarize current knowledge of the roles of FasL+ B cells and exosomes in immune regulation, and to suggest methods of manipulating killer B cells and FasL+ exosomes for clinical purposes. PMID:25852690

  9. Synthetic Chalcones with Potent Antioxidant Ability on H2O2-Induced Apoptosis in PC12 Cells

    PubMed Central

    Wu, Jian-Zhang; Cheng, Chan-Chan; Shen, Lai-Lai; Wang, Zhan-Kun; Wu, Shou-Biao; Li, Wu-Lan; Chen, Su-Hua; Zhou, Rong-Ping; Qiu, Pei-Hong

    2014-01-01

    Chalcone derivatives (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(4-methoxyphenyl) prop-2-en-1-one and (E)-3-(4-hydroxyphenyl)-1-(4-methoxyphenyl) prop-2-en-1-one (Compounds 1 and 2) have been demonstrated to be potent anti-inflammatory agents in our previous study. In light of the relationship of intracellular mechanisms between anti-inflammatories and antioxidants, we further designed and synthesized a series of chalcone derivatives based on 1 and 2, to explore their antioxidant efficacy. The majority of the derivatives exhibited strong protective effects on PC12 (PC12 rat pheochromocytoma) cells exposed to H2O2, and all compounds were nontoxic. A preliminary structure-activity relationship was proposed. Compounds 1 and 1d ((E)-2-methoxy-4-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl) phenyl acrylate) exerted the action in a good dose-dependent manner. Quantitative RT-PCR (qRT-PCR) and western blot analysis showed that 1 and 1d significantly improve the expression of nuclear factor erythroid 2 p45-related factor 2 (Nrf2)-dependent antioxidant genes g-Glutamylcysteine Ligase Catalytic Subunit (GCLC) and heme oxygenase-1 (HO-1) and their corresponding proteins (γ-glutamyl cysteine synthase (γ-GCS) and HO-1) in PC12 cells. Inhibition of GCLC and HO-1 by specific inhibitors, l-buthionine-S-sulfoximine (BSO) and zinc protoporphyrin (ZnPP), respectively, partially reduce the protective effect of 1 and 1d. These data present a series of novel chalcone analogs, especially compounds 1 and 1d, as candidates for treating oxidative stress-related disease by activating the Nrf2-antioxidant responsive element (ARE) pathway. PMID:25318055

  10. Photosensitizers for photodynamic immune modulation

    NASA Astrophysics Data System (ADS)

    North, John R.; Boch, Ronald; Hunt, David W. C.; Ratkay, Leslie G.; Simkin, Guillermo O.; Tao, Jing-Song; Richter, Anna M.; Levy, Julia G.

    2000-06-01

    PDT may be an effective treatment for certain immune-mediated disorders. The immunomodulatory action of PDT is likely a consequence of effects exerted at a number of levels including stimulation of specific cell signaling pathways, selective depletion of activated immune cells, alteration of receptor expression by immune and non-immune cells, and the modulation of cytokine availability. QLT0074, a potent photosensitizer that exhibits rapid clearance kinetics in vivo, is in development for the treatment of immune disorders. In comparison to the well-characterized and structurally related photosensitizer verteporfin, lower concentrations of QLT0074 were required to induce apoptosis in human blood T cells and keratinocytes using blue light for photoactivation. Both photosensitizers triggered the stress activated protein kinase (SAPK) and p38 (HOG1) pathways but not extracellularly regulated kinase (ERK) activity in mouse Pam212 keratinocytes. In cell signaling responses, QLT0074 was active at lower concentrations than verteporfin. For all in vitro test systems, the stronger photodynamic activity of QLT0074 was associated with a greater cell uptake of this photosensitize than verteporfin. In mouse immune models, sub-erythemogenic doses of QLT0074 in combination with whole body blue light irradiation inhibited the contact hypersensitivity response and limited the development of adjuvant-induced arthritis. QLT0074 exhibits activities that indicate it may be a favorable agent for the photodynamic treatment of human immune disease.

  11. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-01

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. PMID:24365491

  12. YC-1, a potent antithrombotic agent, induces lipolysis through the PKA pathway in rat visceral fat cells.

    PubMed

    Chin, Chih-Hui; Tsai, Feng-Chou; Chen, Sy-Ping; Wang, Ke-Chuan; Chang, Chao-Chien; Pai, Man-Hui; Fong, Tsorng-Harn

    2012-08-15

    This study investigated the effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), a soluble guanylyl cyclase (sGC) activator and potential antithrombotic agent, on lipolysis in isolated visceral fat cells of the rat. Visceral fat cells were isolated from epididymal fat pads of rats and treated with YC-1 at different doses and times. Glycerol release, and intracellular cAMP and cGMP levels were analyzed by specific kits. Moreover, several inhibitors or drugs were used to examine the signal transduction pathways of YC-1-induced lipolysis in adipocytes. Herein we report that YC-1 stimulated glycerol release in dose- and time-dependent manners. Intracellular cAMP and cGMP levels of adipocytes both increased in time-dependent manners, but elevation of the cGMP level was faster and higher than that of the cAMP level after YC-1 treatment. An sGC inhibitor (ODQ) inhibited YC-1-induced glycerol release, indicating the involvement of sGC in YC-1-induced lipolysis. Administration of insulin, an activator of type-3B phosphodiesterase (PDE-3B), attenuated YC-1-induced lipolysis, indicating that elevation of the cAMP level is an important step in the lipolytic effect of YC-1. In addition, YC-1-induced lipolysis was inhibited by a protein kinase A (PKA) inhibitor (KT5720) but not by a PKG inhibitor (KT5823), indicating that YC-1-induced lipolysis occurs through a PKA-dependent pathway. A Western blot analysis showed that extracellular signal-regulated kinase was not phosphorylated by YC-1 treatment. In conclusion, our results suggest that YC-1 might stimulate lipolysis via activation of sGC/cGMP and then activation of the cAMP/PKA signaling cascade in isolated rat visceral adipocytes. PMID:22659114

  13. Pinostrobin from honey and Thai ginger (Boesenbergia pandurata): a potent flavonoid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes.

    PubMed

    Fahey, Jed W; Stephenson, Katherine K

    2002-12-01

    Over 60 different samples comprising 35 distinct honeys were evaluated for their ability to induce mammalian phase 2 detoxication enzymes using a microtiter plate assay of quinone reductase (QR) induction with murine hepatoma cells in microtiter plates. This assay has been used extensively to identify and isolate a variety of natural and synthetic inducers from plants. All 35 honeys examined induced elevations of mammalian QR activity ranging from 153 to 2155 units/g with a mean of 630 and a median of 417 units/g. The concentrations for doubling the QR activity (CD) of certain of the prominent flavonoids found in honey were also assessed (pinostrobin, 0.5 microM; pinocembrin, 110 microM; chrysin, 25 microM) and compared to those of related, more commonly described flavonoids such as quercetin (2.7 microM) and myricetin (58 microM). On the basis of the extremely high QR inducing potency of one of these compounds, pinostrobin (5-hydroxy-7-methoxyflavanone), a bioassay-guided search was conducted which revealed a dietary source of pinostrobin, Boesenbergia pandurata (fingerroot), with extraordinarily high ability to induce mammalian phase 2 detoxication enzymes. Although the QR inducing activity of buckwheat honeys was 2155 +/- 951 units/g (n = 8 samples), which is less than 10% of the average values obtained from fresh broccoli, the potency of fingerroot rhizomes (ca. 110,000 units/g) is even higher than that of broccoli and the potencies of fingerroot oil and powdered rhizome (ca. 500,000 units/g) rival that of broccoli sprouts. PMID:12452678

  14. Long-term functional duration of immune responses to HCV NS3/4A induced by DNA vaccination

    PubMed Central

    Ahlén, G; Holmström, F; Gibbs, A; Alheim, M; Frelin, L

    2014-01-01

    We have investigated the ability of hepatitis C virus non-structural (NS) 3/4A-DNA-based vaccines to activate long-term cell-mediated immune responses in mice. Wild-type and synthetic codon optimized (co) NS3/4A DNA vaccines have previously been shown to be immunogenic in mice, rabbits and humans, although we have very poor knowledge about the longevity of the immune responses primed. We therefore analyzed the functionality of primed NS3/4A-specific immune responses in BALB/c (H-2d) and/or C57BL/6J (H-2b) mice 1, 2, 3, 4, 6, 12 and 16 months after the last immunization. Mice were immunized one, two, three or four times using gene gun delivery to the skin or by intramuscular administration. Immunological responses after immunization were monitored by protection against in vivo challenge of NS3/4A-expressing syngeneic tumor cells. In addition, functionality of the NS3/4A-specific T cells was analyzed by a standard cytotoxicity assay. First, we identified a new unique murine H-2d-restricted NS3/4A cytotoxic T lymphocyte (CTL) epitope, which enabled us to study the epitope-specific immune responses. Our results show that the coNS3/4A vaccine was highly immunogenic by determination of interferon-γ/tumor necrosis factor-α production and lytic cytotoxic T cells, which could efficiently inhibit in vivo tumor growth. Importantly, we showed that one to four monthly immunizations protected mice from tumor development when challenged up to 16 months after the last immunization. When determining the functionality of NS3/4A-specific T cells in vitro, we showed detectable lytic activity up to 12 months after the last immunization. Thus, NS3/4A-based DNA vaccines activate potent cellular immune responses that are present and function in both BALB/c and C57BL/6J mice up to 12–16 months after the last immunization. The induction of long-term immunity after NS3/4A DNA immunization has not been shown previously and supports the use of NS3/4A in hepatitis C virus

  15. Long-term functional duration of immune responses to HCV NS3/4A induced by DNA vaccination.

    PubMed

    Ahlén, G; Holmström, F; Gibbs, A; Alheim, M; Frelin, L

    2014-08-01

    We have investigated the ability of hepatitis C virus non-structural (NS) 3/4A-DNA-based vaccines to activate long-term cell-mediated immune responses in mice. Wild-type and synthetic codon optimized (co) NS3/4A DNA vaccines have previously been shown to be immunogenic in mice, rabbits and humans, although we have very poor knowledge about the longevity of the immune responses primed. We therefore analyzed the functionality of primed NS3/4A-specific immune responses in BALB/c (H-2(d)) and/or C57BL/6J (H-2(b)) mice 1, 2, 3, 4, 6, 12 and 16 months after the last immunization. Mice were immunized one, two, three or four times using gene gun delivery to the skin or by intramuscular administration. Immunological responses after immunization were monitored by protection against in vivo challenge of NS3/4A-expressing syngeneic tumor cells. In addition, functionality of the NS3/4A-specific T cells was analyzed by a standard cytotoxicity assay. First, we identified a new unique murine H-2(d)-restricted NS3/4A cytotoxic T lymphocyte (CTL) epitope, which enabled us to study the epitope-specific immune responses. Our results show that the coNS3/4A vaccine was highly immunogenic by determination of interferon-γ/tumor necrosis factor-α production and lytic cytotoxic T cells, which could efficiently inhibit in vivo tumor growth. Importantly, we showed that one to four monthly immunizations protected mice from tumor development when challenged up to 16 months after the last immunization. When determining the functionality of NS3/4A-specific T cells in vitro, we showed detectable lytic activity up to 12 months after the last immunization. Thus, NS3/4A-based DNA vaccines activate potent cellular immune responses that are present and function in both BALB/c and C57BL/6J mice up to 12-16 months after the last immunization. The induction of long-term immunity after NS3/4A DNA immunization has not been shown previously and supports the use of NS3/4A in hepatitis C virus vaccine

  16. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-04-14

    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells

  17. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8+ T cell priming in response to intravaginal immunization

    PubMed Central

    Seavey, Matthew M.; Mosmann, Tim R.

    2010-01-01

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8+ T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APC) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8+ T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8+ T cell priming after insemination or vaginal vaccination. PMID:19428849

  18. Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry

    PubMed Central

    Williams, Gareth R.; Fierens, Kaat; Preston, Stephen G.; Lunn, Daniel; Rysnik, Oliwia; De Prijck, Sofie; Kool, Mirjam; Buckley, Hannah C.; O’Hare, Dermot; Austyn, Jonathan M.

    2014-01-01

    There is currently no paradigm in immunology that enables an accurate prediction of how the immune system will respond to any given agent. Here we show that the immunological responses induced by members of a broad class of inorganic crystalline materials are controlled purely by their physicochemical properties in a highly predictable manner. We show that structurally and chemically homogeneous layered double hydroxides (LDHs) can elicit diverse human dendritic cell responses in vitro. Using a systems vaccinology approach, we find that every measured response can be modeled using a subset of just three physical and chemical properties for all compounds tested. This correlation can be reduced to a simple linear equation that enables the immunological responses stimulated by newly synthesized LDHs to be predicted in advance from these three parameters alone. We also show that mouse antigen–specific antibody responses in vivo and human macrophage responses in vitro are controlled by the same properties, suggesting they may control diverse responses at both individual component and global levels of immunity. This study demonstrates that immunity can be determined purely by chemistry and opens the possibility of rational manipulation of immunity for therapeutic purposes. PMID:24799501

  19. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.

    PubMed

    Cecchini, Nicolás M; Jung, Ho Won; Engle, Nancy L; Tschaplinski, Timothy J; Greenberg, Jean T

    2015-04-01

    Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively. PMID:25372120

  20. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    SciTech Connect

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen . E-mail: aizhen@mail.hzau.edu.cn

    2006-09-08

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28{sub 4} were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d{sub 3} DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD{sub 5}) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d{sub 3} DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response.

  1. TRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling

    PubMed Central

    Lascano, Josefina; Uchil, Pradeep D.; Mothes, Walther

    2015-01-01

    ABSTRACT Host restriction factor TRIM5 inhibits retroviral transduction in a species-specific manner by binding to and destabilizing the retroviral capsid lattice before reverse transcription is completed. However, the restriction mechanism may not be that simple since TRIM5 E3 ubiquitin ligase activity, the proteasome, autophagy, and TAK1-dependent AP-1 signaling have been suggested to contribute to restriction. Here, we show that, among a panel of seven primate and Carnivora TRIM5 orthologues, each of which has potential for potent retroviral restriction activity, all activated AP-1 signaling. In contrast, TRIM family paralogues most closely related to TRIM5 did not. While each primate species has a single TRIM5 gene, mice have at least seven TRIM5 homologues that cluster into two groups, Trim12a, -b, and -c and Trim30a, -b, -c, and -d. The three Trim12 proteins activated innate immune signaling, while the Trim30 proteins did not, though none of the murine Trim5 homologues restricted any of a panel of cloned retroviruses. To determine if any mouse TRIM5 homologues had potential for restriction activity, each was fused to the human immunodeficiency virus type 1 (HIV-1) CA binding protein cyclophilin A (CypA). The three Trim12-CypA fusions all activated AP-1 and restricted HIV-1 transduction, whereas the Trim30-CypA fusions did neither. AP-1 activation and HIV-1 restriction by the Trim12-CypA fusions were inhibited by disruption of TAK1. Overall then, these experiments demonstrate that there is a strong correlation between TRIM5 retroviral restriction activity and the ability to activate TAK1-dependent innate immune signaling. IMPORTANCE The importance of retroviruses for the evolution of susceptible host organisms cannot be overestimated. Eight percent of the human genome is retrovirus sequence, fixed in the germ line during past infection. Understanding how metazoa protect their genomes from mutagenic retrovirus infection is therefore of fundamental importance to

  2. Cyclin-dependent kinase inhibitors sensitize tumor cells to nutlin-induced apoptosis: a potent drug combination.

    PubMed

    Cheok, Chit Fang; Dey, Anwesha; Lane, David P

    2007-11-01

    Current chemotherapy focuses on the use of genotoxic drugs that may induce general DNA damage in cancer cells but also high levels of toxicity in normal tissues. Nongenotoxic activation of p53 by targeting specific molecular pathways therefore provides an attractive therapeutic strategy in cancers with wild-type p53. Here, we explored the antitumor potential of cyclin-dependent kinase (CDK) inhibitors in combination with a small molecule inhibitor of p53-murine double minute 2 (MDM2) interaction. We show that low doses of CDK inhibitors roscovitine and DRB synergize with the MDM2 antagonist nutlin-3a in the induction of p53 activity and promote p53-dependent apoptosis in a dose- and time-dependent manner. Statistical measurement of the combination effects shows that the drug combination is additive on the reduction of cell viability and synergistic on inducing apoptosis, a critical end point of cytotoxic drugs. The degree of apoptosis observed 24 to 48 h after drug treatment correlated with the accumulation of p53 protein and concomitant induction of proapoptotic proteins Puma and PIG3. The antiproliferative and cytotoxic effects of this drug combination are validated in a range of tumor-derived cells including melanoma, colon carcinoma, breast adenocarcinoma, and hepatocarcinoma cells. Furthermore, this drug combination does not induce phosphorylation of Ser(15) on p53 and does not induce genotoxic stress in the cell. Given that many cytotoxic drugs rely on their ability to induce apoptosis via DNA damage-mediated activation of p53, the data presented here may provide a new therapeutic approach for the use of CDK inhibitors and MDM2 antagonists in combinatorial drug therapy. PMID:18025259

  3. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway.

    PubMed

    Tiwari, Shashi Kant; Agarwal, Swati; Seth, Brashket; Yadav, Anuradha; Nair, Saumya; Bhatnagar, Priyanka; Karmakar, Madhumita; Kumari, Manisha; Chauhan, Lalit Kumar Singh; Patel, Devendra Kumar; Srivastava, Vikas; Singh, Dhirendra; Gupta, Shailendra Kumar; Tripathi, Anurag; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2014-01-28

    Neurogenesis, a process of generation of new neurons, is reported to be reduced in several neurodegenerative disorders including Alzheimer's disease (AD). Induction of neurogenesis by targeting endogenous neural stem cells (NSC) could be a promising therapeutic approach to such diseases by influencing the brain self-regenerative capacity. Curcumin, a neuroprotective agent, has poor brain bioavailability. Herein, we report that curcumin-encapsulated PLGA nanoparticles (Cur-PLGA-NPs) potently induce NSC proliferation and neuronal differentiation in vitro and in the hippocampus and subventricular zone of adult rats, as compared to uncoated bulk curcumin. Cur-PLGA-NPs induce neurogenesis by internalization into the hippocampal NSC. Cur-PLGA-NPs significantly increase expression of genes involved in cell proliferation (reelin, nestin, and Pax6) and neuronal differentiation (neurogenin, neuroD1, neuregulin, neuroligin, and Stat3). Curcumin nanoparticles increase neuronal differentiation by activating the Wnt/β-catenin pathway, involved in regulation of neurogenesis. These nanoparticles caused enhanced nuclear translocation of β-catenin, decreased GSK-3β levels, and increased promoter activity of the TCF/LEF and cyclin-D1. Pharmacological and siRNA-mediated genetic inhibition of the Wnt pathway blocked neurogenesis-stimulating effects of curcumin. These nanoparticles reverse learning and memory impairments in an amyloid beta induced rat model of AD-like phenotypes, by inducing neurogenesis. In silico molecular docking studies suggest that curcumin interacts with Wif-1, Dkk, and GSK-3β. These results suggest that curcumin nanoparticles induce adult neurogenesis through activation of the canonical Wnt/β-catenin pathway and may offer a therapeutic approach to treating neurodegenerative diseases such as AD, by enhancing a brain self-repair mechanism. PMID:24467380

  4. Plasmepsin 4-Deficient Plasmodium berghei Are Virulence Attenuated and Induce Protective Immunity against Experimental Malaria

    PubMed Central

    Spaccapelo, Roberta; Janse, Chris J.; Caterbi, Sara; Franke-Fayard, Blandine; Bonilla, J. Alfredo; Syphard, Luke M.; Di Cristina, Manlio; Dottorini, Tania; Savarino, Andrea; Cassone, Antonio; Bistoni, Francesco; Waters, Andrew P.; Dame, John B.; Crisanti, Andrea

    2010-01-01

    Plasmodium parasites lacking plasmepsin 4 (PM4), an aspartic protease that functions in the lysosomal compartment and contributes to hemoglobin digestion, have only a modest decrease in the asexual blood-stage growth rate; however, PM4 deficiency in the rodent malaria parasite Plasmodium berghei results in significantly less virulence than that for the parental parasite. P. berghei Δpm4 parasites failed to induce experimental cerebral malaria (ECM) in ECM-susceptible mice, and ECM-resistant mice were able to clear infections. Furthermore, after a single infection, all convalescent mice were protected against subsequent parasite challenge for at least 1 year. Real-time in vivo parasite imaging and splenectomy experiments demonstrated that protective immunity acted through antibody-mediated parasite clearance in the spleen. This work demonstrates, for the first time, that a single Plasmodium gene disruption can generate virulence-attenuated parasites that do not induce cerebral complications and, moreover, are able to stimulate strong protective immunity against subsequent challenge with wild-type parasites. Parasite blood-stage attenuation should help identify protective immune responses against malaria, unravel parasite-derived factors involved in malarial pathologies, such as cerebral malaria, and potentially pave the way for blood-stage whole organism vaccines. PMID:20019192

  5. Oncolytic Adenovirus With Temozolomide Induces Autophagy and Antitumor Immune Responses in Cancer Patients

    PubMed Central

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari LM; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-01-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum—a possible indicator of immune response—increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  6. Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients.

    PubMed

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari L M; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-06-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum--a possible indicator of immune response--increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  7. Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins[W

    PubMed Central

    Qutob, Dinah; Kemmerling, Birgit; Brunner, Frédéric; Küfner, Isabell; Engelhardt, Stefan; Gust, Andrea A.; Luberacki, Borries; Seitz, Hanns Ulrich; Stahl, Dietmar; Rauhut, Thomas; Glawischnig, Erich; Schween, Gabriele; Lacombe, Benoit; Watanabe, Naohide; Lam, Eric; Schlichting, Rita; Scheel, Dierk; Nau, Katja; Dodt, Gabriele; Hubert, David; Gijzen, Mark; Nürnberger, Thorsten

    2006-01-01

    We show that oomycete-derived Nep1 (for necrosis and ethylene-inducing peptide1)–like proteins (NLPs) trigger a comprehensive immune response in Arabidopsis thaliana, comprising posttranslational activation of mitogen-activated protein kinase activity, deposition of callose, production of nitric oxide, reactive oxygen intermediates, ethylene, and the phytoalexin camalexin, as well as cell death. Transcript profiling experiments revealed that NLPs trigger extensive reprogramming of the Arabidopsis transcriptome closely resembling that evoked by bacteria-derived flagellin. NLP-induced cell death is an active, light-dependent process requiring HSP90 but not caspase activity, salicylic acid, jasmonic acid, ethylene, or functional SGT1a/SGT1b. Studies on animal, yeast, moss, and plant cells revealed that sensitivity to NLPs is not a general characteristic of phospholipid bilayer systems but appears to be restricted to dicot plants. NLP-induced cell death does not require an intact plant cell wall, and ectopic expression of NLP in dicot plants resulted in cell death only when the protein was delivered to the apoplast. Our findings strongly suggest that NLP-induced necrosis requires interaction with a target site that is unique to the extracytoplasmic side of dicot plant plasma membranes. We propose that NLPs play dual roles in plant pathogen interactions as toxin-like virulence factors and as triggers of plant innate immune responses. PMID:17194768

  8. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  9. Dermatophytes Activate Skin Keratinocytes via Mitogen-Activated Protein Kinase Signaling and Induce Immune Responses

    PubMed Central

    Achterman, Rebecca R.; Moyes, David L.; Thavaraj, Selvam; Smith, Adam R.; Blair, Kris M.

    2015-01-01

    Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. PMID:25667269

  10. The role of the immune system in hexachlorobenzene-induced toxicity.

    PubMed Central

    Michielsen, C C; van Loveren, H; Vos, J G

    1999-01-01

    Hexachlorobenzene (HCB) is a persistent environmental pollutant. The toxicity of HCB has been extensively studied after an accidental human poisoning in Turkey and more recently it has been shown that HCB has immunotoxic properties in laboratory animals and probably also in man. Oral exposure of rats to HCB showed stimulatory effects on spleen and lymph node weights and histology, increased serum IgM levels, and an enhancement of several parameters of immune function. Moreover, more recent studies indicate that HCB-induced effects in the rat may be related to autoimmunity. In Wistar rats exposed to HCB, IgM antibodies against several autoantigens were elevated; in the Lewis rat, HCB differently modulated two experimental models of autoimmune disease. Oral exposure of rats to HCB induces skin and lung pathology in the rat. Recently several studies have been conducted to investigate whether these skin and lung lesions can be related to HCB-induced immunomodulation, and these studies will be discussed in this review. HCB-induced skin and lung lesions probably have a different etiology; pronounced strain differences and correlation of skin lesions with immune parameters suggest a specific involvement of the immune system in HCB-induced skin lesions. The induction of lung lesions by HCB was thymus independent. Thymus-dependent T cells were not likely to be required for the induction of skin lesions, although T cells enhanced the rate of induction and the progression of the skin lesions. No deposition of autoantibodies was observed in nonlesional or lesional skin of HCB-treated rats. Therefore, we concluded that it is unlikely that the mechanism by which most allergic or autoimmunogenic chemicals work, i.e., by binding to macromolecules of the body and subsequent T- and B-cell activation, is involved in the HCB-induced immunopathology in the rat. Such a thymus-independent immunopathology is remarkable, as HCB strongly modulates T-cell-mediated immune parameters. This

  11. Optimization of a Fragment-Based Screening Hit toward Potent DOT1L Inhibitors Interacting in an Induced Binding Pocket.

    PubMed

    Scheufler, Clemens; Möbitz, Henrik; Gaul, Christoph; Ragot, Christian; Be, Céline; Fernández, César; Beyer, Kim S; Tiedt, Ralph; Stauffer, Frédéric

    2016-08-11

    Mixed lineage leukemia (MLL) gene rearrangement induces leukemic transformation by ectopic recruitment of disruptor of telomeric silencing 1-like protein (DOT1L), a lysine histone methyltransferase, leading to local hypermethylation of H3K79 and misexpression of genes (including HoxA), which drive the leukemic phenotype. A weak fragment-based screening hit identified by SPR was cocrystallized with DOT1L and optimized using structure-based ligand optimization to yield compound 8 (IC50 = 14 nM). This series of inhibitors is structurally not related to cofactor SAM and is not interacting within the SAM binding pocket but induces a pocket adjacent to the SAM binding site. PMID:27563394

  12. 4-Hydroxydocosahexaenoic acid, a potent peroxisome proliferator-activated receptor {gamma} agonist alleviates the symptoms of DSS-induced colitis

    SciTech Connect

    Yamamoto, Keiko; Ninomiya, Yuichi; Iseki, Mioko; Nakachi, Yutaka; Kanesaki-Yatsuka, Yukiko; Yamanoue, Yu; Itoh, Toshimasa; Nishii, Yasuho; Petrovsky, Nikolai; Okazaki, Yasushi

    2008-03-14

    (5E,7Z,10Z,13Z,16Z,19Z)-4-Hydroxy-5,7,10,13,16,19-docosahexaenoic acid (4-OHDHA) is a potential agonist of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) and antidiabetic agent as has been previously reported. As PPAR{gamma} agonists may also have anti-inflammatory functions, in this study, we investigated whether 4-OHDHA has an inhibitory effect on expression of inflammatory genes in vitro and whether 4-OHDHA could relieve the symptoms of dextran sodium sulfate (DSS)-induced colitis in a murine model of inflammatory bowel disease. 4-OHDHA inhibited production of nitric oxide and expression of a subset of inflammatory genes including inducible nitric oxide synthase (Nos2/iNOS) and interleukin 6 (Il6) by lipopolysaccharide (LPS)-activated macrophages. In addition, 4-OHDHA-treated mice when compared to control mice not receiving treatment recovered better from the weight loss caused by DSS-induced colitis. Changes in disease activity index (DAI) of 4-OHDHA-treated mice were also more favorable than for control mice and were comparable with mice treated with a typical anti-inflammatory-drug, 5-aminosalichylic acid (5-ASA). These results suggest that 4-OHDHA has potentially clinically useful anti-inflammatory effects mediated by suppression of inflammatory gene expression.

  13. Bax-derived membrane-active peptides act as potent and direct inducers of apoptosis in cancer cells

    PubMed Central

    Valero, Juan Garcia; Sancey, Lucie; Kucharczak, Jérôme; Guillemin, Yannis; Gimenez, Diana; Prudent, Julien; Gillet, Germain; Salgado, Jesús; Coll, Jean-Luc; Aouacheria, Abdel

    2011-01-01

    SUMMARY Although many cancer cells are primed for apoptosis, they usually develop resistance to cell death at multiple levels. Permeabilization of the outer mitochondrial membrane, which is mediated by proapoptotic Bcl-2 family members like Bax, is considered as a point-of-no-return for initiating apoptotic cell death. This crucial role has placed Bcl-2 family proteins as recurrent targets for anticancer drug development. Here, we propose and demonstrate a new concept based on using minimal active version of Bax to induce cell death independently of endogenous Bcl-2 proteins. We show that membrane-active segments of Bax can directly induce the release of mitochondria-residing apoptogenic factors and commit tumor cells promptly and irreversibly to caspase-dependent apoptosis. On this basis, we designed a peptide encompassing part of the Bax pore-forming domain, able to target mitochondria, induce cytochrome c release and trigger caspase-dependent apoptosis. Moreover, this Bax-derived poropeptide produced effective tumor regression after peritumoral injection in a nude mouse xenograft model. Thus, peptides derived from proteins evolutionary functionalized to form pores in the mitochondrial outer membrane represent novel templates for anticancer agents. PMID:21245196

  14. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    PubMed

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells. PMID:22802136

  15. Effects of T-2 Toxin on Turkey Herpesvirus-Induced Vaccinal Immunity Against Marek's Disease.

    PubMed

    Kufuor-Mensah, E; Reed, W M; Sleight, S; Pestka, J; Fadly, A M; Dunn, J R

    2016-03-01

    T-2 toxin, a very potent immunotoxic Type A trichothecene, is a secondary metabolite produced primarily by Fusarium spp., which grows on cereal grains and can lead to contaminated livestock feed. Repeated exposure to T-2 toxin has been shown to cause immunosuppression and decrease the resistance of exposed animals to a variety of infectious diseases; however, the effects of T-2 toxin on Marek's disease (MD) vaccinal immunity have not been reported. Four trials were conducted to determine the effects of T-2 toxin on vaccinal immunity against MD. Day-old, white leghorn chicks of Avian Disease and Oncology Laboratory line 15I5 × 71 were treated daily for 7 days via crop gavage with T-2 toxin at a sublethal dose of 1.25 mg/kg body weight. Treated and untreated chicks were also vaccinated with turkey herpesvirus (HVT) at hatch and were challenged with the JM strain of MD virus (MDV) at 8 days of age. Chickens were tested for HVT viremia at 1 wk postvaccination immediately before challenge, and for HVT and MDV viremia at 3 wk postchallenge. Chickens were observed for the development of MD lesions and mortality within 8 wk of age. T-2 toxin significantly reduced body weight and titers of HVT viremia within 7 days after hatch. T-2 toxin shortened the incubation period for the development of MD lesions and mortality, but only in unvaccinated chickens. The percent MD protection in T-2-toxin-treated, HVT-vaccinated chickens ranged from 82% to 96% and was comparable to that in HVT-vaccinated untreated control chickens (89%-100%). The data suggest that exposure of chickens to sublethal doses of T-2 toxin for 7 consecutive days after hatch may influence the development of 1) HVT viremia; and 2) MD lesions and mortality, but only in unvaccinated chickens. PMID:26953944

  16. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs)

    PubMed Central

    Ipcho, Simon; Sundelin, Thomas; Erbs, Gitte; Kistler, H. Corby; Newman, Mari-Anne; Olsson, Stefan

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals. PMID:27172188

  17. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs).

    PubMed

    Ipcho, Simon; Sundelin, Thomas; Erbs, Gitte; Kistler, H Corby; Newman, Mari-Anne; Olsson, Stefan

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals. PMID:27172188

  18. Immunization with anticardiolipin cofactor (beta-2-glycoprotein I) induces experimental antiphospholipid syndrome in naive mice.

    PubMed

    Blank, M; Faden, D; Tincani, A; Kopolovic, J; Goldberg, I; Gilburd, B; Allegri, F; Balestrieri, G; Valesini, G; Shoenfeld, Y

    1994-08-01

    Beta-2-GPI is a 50 kDa glycoprotein which is known to be a serum co-factor, with a role in determining the binding of pathogenic anticardiolipin antibodies to phospholipids. Immunization of naive mice with beta-2-GPI resulted in elevated levels of antibodies directed against negatively charged phospholipids (cardiolipin, phosphotidylserine, phosphatidylinositol). The presence of increased titres of antiphospholipid antibodies in the sera of the mice was later followed by prolonged activated partial thromboplastin time (APTT), thrombocytopenia, and when the mice were mated, by a high percentage of fetal resorptions in the uterus. These data point to the ability of beta-2-GPI to induce pathogenic anti-cardiolipin antibodies following active immunization. PMID:7980847

  19. Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C.elegans

    PubMed Central

    Melo, Justine A.; Ruvkun, Gary

    2012-01-01

    Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807

  20. Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep.

    PubMed

    Manoj, Sharmila; Griebel, Philip J; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2003-01-15

    CD40-CD154 interactions play an important role in regulating humoral and cell-mediated immune responses. Recently, these interactions have been exploited for the development of therapeutic and preventive treatments. The objective of this study was to test the ability of bovine CD154 to target a plasmid-encoded Ag to CD40-expressing APCs. To achieve this, a plasmid coding for bovine CD154 fused to a truncated secreted form of bovine herpesvirus 1 glycoprotein D (tgD), pSLIAtgD-CD154, was constructed. The chimeric tgD-CD154 was expressed in vitro in COS-7 cells and reacted with both glycoprotein D- and CD154-specific Abs. Both tgD and tgD-CD154 were capable of binding to epithelial cells, whereas only tgD-CD154 bound to B cells. Furthermore, dual-labeling of ovine PBMCs revealed that tgD-CD154 was bound by primarily B cells. The functional integrity of the tgD-CD154 chimera was confirmed by the induction of both IL-4-dependent B cell proliferation and tgD-specific lymphoproliferative responses in vitro. Finally, sheep immunized with pSLIAtgD-CD154 developed a more rapid primary tgD-specific Ab response and a significantly stronger tgD-specific secondary response when compared with animals immunized with pSLIAtgD and control animals. Similarly, virus-neutralizing Ab titers were significantly higher after secondary immunization with pSLIAtgD-CD154. These results demonstrate that using CD154 to target plasmid-expressed Ag can significantly enhance immune responses induced by a DNA vaccine. PMID:12517965

  1. Biofilm Matrix Exoproteins Induce a Protective Immune Response against Staphylococcus aureus Biofilm Infection

    PubMed Central

    Gil, Carmen; Solano, Cristina; Burgui, Saioa; Latasa, Cristina; García, Begoña; Toledo-Arana, Alejandro

    2014-01-01

    The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes