Science.gov

Sample records for induction motor based

  1. An Induction Motor Based Wind Turbine Emulator

    NASA Astrophysics Data System (ADS)

    Sokolovs, A.; Grigans, L.; Kamolins, E.; Voitkans, J.

    2014-04-01

    The authors present a small-scale wind turbine emulator based on the AC drive system and discuss the methods for power coefficient calculation. In the work, the experimental set-up consisting of an AC induction motor, a frequency converter, a synchronous permanent magnet generator, a DC-DC boost converter and DC load was simulated and tested using real-life equipment. The experimentally obtained wind turbine power and torque diagrams using the emulator are in a good agreement with the theoretical ones. Šajā rakstā parādīta mazas jaudas vēja turbīnas emulatora izveide ar maiņstrāvas piedziņas sistēmu, kā arī analizētas vairākas turbīnas jaudas koeficienta analītiskās aprēķina metodes. Vēja turbīnas emulatora eksperimentālais stends, kas sastāv no asinhronā elektromotora, frekvenču pārveidotāja, sinhronā pastāvīgo magnētu ģeneratora, līdzstrāvas paaugstinošā pārveidotāja un slodzes, tika pārbaudīts gan simulēšanas vidē, gan uz reālām iekārtām. Eksperimentāli iegūtās vēja turbīnas emulatora jaudas un momenta diagrammas ir salīdzinātas ar teorētiskajām.

  2. Fuzzy Logic Based Rotor Health Index of Induction Motor

    NASA Astrophysics Data System (ADS)

    Misra, Rajul; Pahuja, G. L.

    2015-10-01

    This paper presents an experimental study on detection and diagnosis of broken rotor bars in Squirrel Cage Induction Motor (SQIM). The proposed scheme is based on Motor Current Signature Analysis (MCSA) which uses amplitude difference of supply frequency to upper and lower side bands. Initially traditional MCSA has been used for rotor fault detection. It provides rotor health index on full load conditions. However in real practice if a fault occurs motor can not run at full load. To overcome the issue of reduced load condition a Fuzzy Logic based MCSA has been designed, implemented, tested and compared with traditional MCSA. A simulation result shows that proposed scheme is not only capable of detecting the severity of rotor fault but also provides remarkable performance at reduced load conditions.

  3. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  4. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  5. Induction motor control

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  6. FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES

    EPA Science Inventory

    This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...

  7. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  8. The induction motor

    NASA Astrophysics Data System (ADS)

    Redinz, José Arnaldo

    2015-09-01

    We obtain analytical expressions for the torques and angular speed of an induction motor with a simple geometry, resembling the geometry of the first induction motor investigated by Arago in 1824. The rotor is a conducting disc rotating between the magnetic poles of two off-axis solenoids, displaced in space by 90^\\circ from each other. We apply our results to discuss a theory for the ubiquitous electromechanical watt-hour meter. For comparison of the theoretical result for the angular speed with measurements, we propose a simple experiment in which an induction motor with an aluminum disc rotor is constructed.

  9. Adaptive speed/position control of induction motor based on SPR approach

    NASA Astrophysics Data System (ADS)

    Lee, Hou-Tsan

    2014-11-01

    A sensorless speed/position tracking control scheme for induction motors is proposed subject to unknown load torque via adaptive strictly positive real (SPR) approach design. A special nonlinear coordinate transform is first provided to reform the dynamical model of the induction motor. The information on rotor fluxes can thus be derived from the dynamical model to decide on the proportion of input voltage in the d-q frame under the constraint of the maximum power transfer property of induction motors. Based on the SPR approach, the speed and position control objectives can be achieved. The proposed control scheme is to provide the speed/position control of induction motors while lacking the knowledge of some mechanical system parameters, such as the motor inertia, motor damping coefficient, and the unknown payload. The adaptive control technique is thus involved in the field oriented control scheme to deal with the unknown parameters. The thorough proof is derived to guarantee the stability of the speed and position of control systems of induction motors. Besides, numerical simulation and experimental results are also provided to validate the effectiveness of the proposed control scheme.

  10. Sound based induction motor fault diagnosis using Kohonen self-organizing map

    NASA Astrophysics Data System (ADS)

    Germen, Emin; Başaran, Murat; Fidan, Mehmet

    2014-05-01

    The induction motors, which have simple structures and design, are the essential elements of the industry. Their long-lasting utilization in critical processes possibly causes unavoidable mechanical and electrical defects that can deteriorate the production. The early diagnosis of the defects in induction motors is crucial in order to avoid interruption of manufacturing. In this work, the mechanical and the electrical faults which can be observed frequently on the induction motors are classified by means of analysis of the acoustic data of squirrel cage induction motors recorded by using several microphones simultaneously since the true nature of propagation of sound around the running motor provides specific clues about the types of the faults. In order to reveal the traces of the faults, multiple microphones are placed in a hemispherical shape around the motor. Correlation and wavelet-based analyses are applied for extracting necessary features from the recorded data. The features obtained from same types of motors with different kind of faults are used for the classification using the Self-Organizing Maps method. As it is described in this paper, highly motivating results are obtained both on the separation of healthy motor and faulty one and on the classification of fault types.

  11. Flux-Based Deadbeat Control of Induction-Motor Torque

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2003-01-01

    An improved method and prior methods of deadbeat direct torque control involve the use of pulse-width modulation (PWM) of applied voltages. The prior methods are based on the use of stator flux and stator current as state variables, leading to mathematical solutions of control equations in forms that do not lend themselves to clear visualization of solution spaces. In contrast, the use of rotor and stator fluxes as the state variables in the present improved method lends itself to graphical representations that aid in understanding possible solutions under various operating conditions. In addition, the present improved method incorporates the superposition of high-frequency carrier signals for use in a motor-self-sensing technique for estimating the rotor shaft angle at any speed (including low or even zero speed) without need for additional shaft-angle-measuring sensors.

  12. Implementation of DSP Based Cost Effective Inverter Fed Induction Motor Drive with VisSim

    NASA Astrophysics Data System (ADS)

    Mohanty, Nalin K.; Muthu, Ranganath

    2012-03-01

    The implementation of a Digital Signal Processor (DSP) based high-performance cost effective fed Induction Motor drive with VisSim/Embedded Controls Developer (ECD) is presented in this paper. In the experimental work VisSim/ECD software automatically converts the in built block diagram to C code and compiles, links, and downloads the code to DSP processor TMS320F2812. The DSP processor generates the required PWM to a cost effective ie four switch 3-phase (FSTPI) inverter. The power circuit of FSTPI fed drive system consists of an IGBT based FSTPI bridge inverter module feeding to a 5 hp three-phase squirrel cage induction motor. In this work the speed of induction motor output is shown by the GUI of VisSim/ECD and SPWM pulses, line voltages and line current output curves are shown using digital storage oscilloscope to demonstrate the feasibility of the system.

  13. Research on Direct Torque Control of Induction Motor Based on TMS320LF2407A

    NASA Astrophysics Data System (ADS)

    Lufei, Xu; Guangqun, Nan

    The direct torque control of Induction Motor is one of the high performance control system, which was proposed after the vector control scheme. During the recent 20 years, It has been developed rapidly for its concise system scheme, excellent dynamic and static performances. DTC system directly controls the electromagnetic torque and stator flux, using the analyzing method of space vector and stator flux orientation. This paper establishes the mathematical model of direct torque control (DTC) system of induction motor, and direct torque control (DTC) scheme of induction motor based on TMS320LF2407A is introduced. The control scheme gets the switch control signal of inverter with the space voltage vector modulation technology. Finally the approach has been implemented on DSP in a 1.1 kW drive. The results show that the DTC with SVPWM has many merits such as simple realization, good running performance and high voltage utilization ratio.

  14. Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit

    NASA Astrophysics Data System (ADS)

    Morita, G.; Nakamura, T.; Muta, I.

    2006-06-01

    A HTS induction motor, with a HTS squirrel-cage rotor, is analysed using an electrical equivalent circuit. The squirrel-cage winding in the rotor consists of rotor bars and end rings, and both are considered to be made of YBCO film conductors. A wide range of electric field versus current density in YBCO film is formulated based on the Weibull function, and analysed as a non-linear resistance in the equivalent circuit. It is shown that starting and accelerating torques of the HTS induction motor are improved drastically compared to those of a conventional induction motor. Furthermore, large synchronous torque can also be realized by trapping the magnetic flux in the rotor circuit because of the persistent current mode.

  15. An Experimental Research on Vector Control of Induction Motor Based on Simple Model

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhai; Ge, Jinfa; Liu, Weixia; Wang, Qin

    Given the heavy computation, easy saturation and cumulate errors of conventional direct vector control, the vector control of induction motor based on simple model is studied and the detailed scheme is described on the basis of the decomposing and approximating the rotor flux. Because of the direct closed-loop control of the magnetizing current and the torque current and the complex current regulator is completed by PI regulator, so the direct vector control of induction motor is simplified. The experimental results show that the proposed method is effective in decreasing the dynamic disturbance and has the advantages of the simplicity of the code program, rare saturation and shocks.

  16. Singular value decomposition based feature extraction approaches for classifying faults of induction motors

    NASA Astrophysics Data System (ADS)

    Kang, Myeongsu; Kim, Jong-Myon

    2013-12-01

    This paper proposes singular value decomposition (SVD)-based feature extraction methods for fault classification of an induction motor: a short-time energy (STE) plus SVD technique in the time-domain analysis, and a discrete cosine transform (DCT) plus SVD technique in the frequency-domain analysis. To early identify induction motor faults, the extracted features are utilized as the inputs of multi-layer support vector machines (MLSVMs). Since SVMs perform well with the radial basis function (RBF) kernel for appropriately categorizing the faults of the induction motor, it is important to explore the impact of the σ values for the RBF kernel, which affects the classification accuracy. Likewise, this paper quantitatively evaluates the classification accuracy with different numbers of features, because the number of features affects the classification accuracy. According to the experimental results, although SVD-based features are effective for a noiseless environment, the STE plus SVD feature extraction approach is more effective with and without sensor noise in terms of the classification accuracy than the DCT plus SVD feature extraction approach. To demonstrate the improved classification of the proposed approach for identifying faults of the induction motor, the proposed SVD based feature extraction approach is compared with other state-of-the art methods and yields higher classification accuracies for both noiseless and noisy environments than conventional approaches.

  17. Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Glowacz, A.

    2014-10-01

    In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance and the number of faulty motors in the industry.

  18. Induction motor fault diagnosis based on the k-NN and optimal feature selection

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc-Tu; Lee, Hong-Hee

    2010-09-01

    The k-nearest neighbour (k-NN) rule is applied to diagnose the conditions of induction motors. The features are extracted from the time vibration signals while the optimal features are selected by a genetic algorithm based on a distance criterion. A weight value is assigned to each feature to help select the best quality features. To improve the classification performance of the k-NN rule, each of the k neighbours are evaluated by a weight factor based on the distance to the test pattern. The proposed k-NN is compared to the conventional k-NN and support vector machine classification to verify the performance of an induction motor fault diagnosis.

  19. RBFN Based Efficiency Optimization Method of Induction Motor Utilized in Electrically Driven Marine Propellers

    NASA Astrophysics Data System (ADS)

    Supari; Syafaruddin; Negara, I. Made Yulistya; Ashari, Mochamad; Hiyama, Takashi

    Thruster controllers of electric propulsion system with fixed pitch propellers are conventionally aimed to control only the shaft speed without utilizing the capabilities of the controllers to apply any other control strategies. In fact, the dynamic operating conditions lead to the fluctuation of motor load. For this reason, utilizing conventional controllers is hard enough due to the critical constraints and limitation of the ship power source. The paper presents study and analysis of efficiency optimization strategy in thruster shaft speed controllers driven by induction motor. The control strategy based on intelligent method called radial basis function neural network (RBFN) is implemented. A set of training data derived from a loss model controller of the induction motor working under indirect field-oriented-control (IFOC) drives is used for training process of RBFN. The loss model controller utilizes schematically the flux generating current as controlling variable. Estimation of the flux generating current through the RBFN process shows significant improvement in motor efficiency especially for low speed and ship transit system.

  20. High-power CSI-fed induction motor drive with optimal power distribution based control

    NASA Astrophysics Data System (ADS)

    Kwak, S.-S.

    2011-11-01

    In this article, a current source inverter (CSI) fed induction motor drive with an optimal power distribution control is proposed for high-power applications. The CSI-fed drive is configured with a six-step CSI along with a pulsewidth modulated voltage source inverter (PWM-VSI) and capacitors. Due to the PWM-VSI and the capacitor, sinusoidal motor currents and voltages with high quality as well as natural commutation of the six-step CSI can be obtained. Since this CSI-fed drive can deliver required output power through both the six-step CSI and PWM-VSI, this article shows that the kVA ratings of both the inverters can be reduced by proper real power distribution. The optimal power distribution under load requirements, based on power flow modelling of the CSI-fed drive, is proposed to not only minimise the PWM-VSI rating but also reduce the six-step CSI rating. The dc-link current control of the six-step CSI is developed to realise the optimal power distribution. Furthermore, a vector controlled drive for high-power induction motors is proposed based on the optimal power distribution. Experimental results verify the high-power CSI-fed drive with the optimal power distribution control.

  1. Sensorless Control of Synchronous Reluctance Motors based on an Extended Electromotive Force Model and Inductance Measurement in the Model

    NASA Astrophysics Data System (ADS)

    Ichikawa, Shinji; Tomita, Mutuwo; Doki, Shinji; Okuma, Shigeru

    In this paper, sensorless control for synchronous reluctance motors (SynRMs) without signal injection and an inductance measurement for position estimation are proposed. In the case of SynRMs, accuracy of inductances is the most important thing to realize precise position estimation because inductances are largely varied by a magnetic saturation phenomenon. Therefore, the inductance measurement method, which can measure appropriate inductances for position estimation, is important as well as a sensorless control method. The inductance measurement based on the observer is discussed, and the measurement method and the parameter adjustment method for improvement in stability of the closed loop are proposed. The proposed method can measure inductances easily and be applied for permanent magnet synchronous motors, too. Finally, the proposed sensorless control method is verified by experiments.

  2. An analysis and an operating method of switched reluctance motors based on a simple inductance representation

    SciTech Connect

    Chiba, Akira; Fukao, Tadashi

    1995-12-31

    In this paper, a mathematical analysis based on a simple model is carried out. The operating characteristics of switched reluctance motors fed by square waveform voltage are analyzed. Inductance variations with respect to the rotor rotational position is approximated with only a sinusoidal function and a constant. Square waveform voltage is approximated by a fundamental component only. Based on this simple representation, it is possible to analyze operating characteristics mathematically in normalized planes and to derive a general control method. It is found that there exists a particular voltage phase angle which realizes the maximum output per current. It was also found that the maximum output per voltage can be achieved at the another particular voltage phase angle. These characteristics are found to be very similar to those of synchronous reluctance motors. As a result of the analysis, an efficient operating method is proposed. These results are confirmed by a 6,000 r/min., 2kW prototype machine.

  3. Torque Ripple Reduction in Direct Torque Control Based Induction Motor using Intelligent Controllers

    NASA Astrophysics Data System (ADS)

    Sudhakar, Ambarapu; Vijaya Kumar, M.

    2015-09-01

    This paper presents intelligent control scheme together with conventional control scheme to overcome the problems with uncertainties in the structure encountered with classical model based design of induction motor drive based on direct torque control (DTC). It allows high dynamic performance to be obtained with very simple hysteresis control scheme. Direct control of the torque and flux is achieved by proper selection of inverter voltage space vector through a lookup table. This paper also presents the application of intelligent controllers like neural network and fuzzy logic controllers to control induction machines with DTC. Intelligent controllers are used to emulate the state selector of the DTC. With implementation of intelligent controllers the system is also verified and proved to be operated stably with reduced torque ripple. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using proportional integral speed controller.

  4. Finite element analysis of induction motors based on computing detailed equivalent circuit parameters

    SciTech Connect

    Zhou, P.; Gilmore, J.; Badics, Z.; Cendes, Z.J.

    1998-09-01

    A method for accurately predicting the steady-state performance of squirrel cage induction motors is presented. The approach is based on the use of complex two-dimensional finite element solutions to deduce per-phase equivalent circuit parameters for any operating condition. Core saturation and skin effect are directly considered in the field calculation. Corrections can be introduced to include three-dimensional effects such as end-winding and rotor skew. An application example is provided to demonstrate the effectiveness of the proposed approach.

  5. Emotional Learning Based Intelligent Controllers for Rotor Flux Oriented Control of Induction Motor

    NASA Astrophysics Data System (ADS)

    Abdollahi, Rohollah; Farhangi, Reza; Yarahmadi, Ali

    2014-08-01

    This paper presents design and evaluation of a novel approach based on emotional learning to improve the speed control system of rotor flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critics stress is reduced. The comparative simulation results show that the proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the high performance industrial drive applications.

  6. Two simple and novel SISO controllers for induction motors based on adaptive passivity.

    PubMed

    Travieso-Torres, Juan C; Duarte-Mermoud, Manuel A

    2008-01-01

    The design of two single-input single-output (SISO) controllers for induction motors based on adaptive passivity is presented in this paper. The two controllers work together with a field orientation block. Because of the adaptive nature of the proposed controllers, the knowledge of the set motor-load parameters is not needed and robustness under variations of such parameters is guaranteed. Simple proportional controllers for the torque, rotor flux and stator current control loops are used, due to the control simplification given by the use of feedback passive equivalence. A new principle called the "Torque-Flux Control Principle" is also stated in this article, which considerably simplifies the controller design, diminishing the control efforts and avoiding also rotor flux estimation. PMID:17714715

  7. Analysis of induction motors based on the numerical solution of the magnetic field and circuit equations

    NASA Astrophysics Data System (ADS)

    Arkkio, Antero

    1987-12-01

    A method for the analysis of induction motors based on the combined solution of the magnetic field equations and the circuit equations of the windings is presented. The equations are discretized by the finite element method. The magnetic field is assumed to be two-dimensional. The three-dimensional features, i.e., the skew of the rotor slots and the end-region fields, are taken into account within the two-dimensional formulation. The general time-dependence of the field and the motion of the rotor are modelled correctly in a step-by-step solution. The amount of computation is reduced significantly if the time-dependence is assumed to be sinusoidal and phasor quantities are used in the solution. The method is applied to the calculation of a cage rotor motor and of a solid rotor motor. The sinusoidal approximation gives good results in the computation of steady-state locked-rotor quantities, but it does not model the motion of the rotor properly. The step-by-step method is used for computing machine quantities in steady and transient states. The operation of the solid rotor motor supplied by a static frequency converter is simulated. The results obtained by the method agree well with the measured ones.

  8. FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors

    NASA Astrophysics Data System (ADS)

    Cabal-Yepez, E.; Valtierra-Rodriguez, M.; Romero-Troncoso, R. J.; Garcia-Perez, A.; Osornio-Rios, R. A.; Miranda-Vidales, H.; Alvarez-Salas, R.

    2012-07-01

    For industry, a faulty induction motor signifies production reduction and cost increase. Real-world induction motors can have one or more faults present at the same time that can mislead to a wrong decision about its operational condition. The detection of multiple combined faults is a demanding task, difficult to accomplish even with computing intensive techniques. This work introduces information entropy and artificial neural networks for detecting multiple combined faults by analyzing the 3-axis startup vibration signals of the rotating machine. A field programmable gate array implementation is developed for automatic online detection of single and combined faults in real time.

  9. A Fast Induction Motor Speed Estimation based on Hybrid Particle Swarm Optimization (HPSO)

    NASA Astrophysics Data System (ADS)

    Aryza, Solly; Abdallah, Ahmed N.; Khalidin, Zulkeflee bin; Lubis, Zulkarnain; Jie, Ma

    Intelligent control and estimation of power electronic systems by fuzzy logic and neural network techniques with fast torque and flux show tremendous promise in future. This paper proposed the application of Hybrid Particle Swarm Optimization (HPSO) for losses and operating cost minimization control in the induction motor drives. The main advantages of the proposed technique are; its simple structure and its straightforward maximization of induction motor efficiency and its operating cost for a given load torque. As will be demonstrated, Hybrid Particle Swarm Optimization (HPSO) is so efficient in finding the optimum operating machine's flux level. The results demonstrate the good quality and robustness in the system dynamic response and reduction in the steady-state and transient motor ripple torque.

  10. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  11. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  12. Induction Motor Drive System Based on Linear Active Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zhang, Yongli; Yao, Qingmei

    It is difficult to establish an exact mathematical model for the induction motor and the robustness is poor of the vector control system using PI regulator. This paper adopts the linear active disturbance rejection controller (LADRC) to control inductor motor. LADRC doesn't need the exact mathematical model of motor and it can not only estimate but also compensate the general disturbance that includes the coupling items in model of motor and parameters perturbations by linear extended state observer (LESO), so the rotor flux and torque fully decouple. As a result, the performance is improved. To prove the above control scheme, the proposed control system has been simulated in MATLAB/SIMULINK, and the comparison was made with PID. Simulation results show that LADRC' has better performance and robustness than PID.

  13. An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs.

    PubMed

    Tabbache, Bekheïra; Benbouzid, Mohamed; Kheloui, Abdelaziz; Bourgeot, Jean-Matthieu; Mamoune, Abdeslam

    2013-11-01

    This paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses. PMID:23916869

  14. A transputer-based adaptive speed controller for AC induction motor drives with load torque estimation

    SciTech Connect

    Tsai, M.F.; Tzou, Y.Y.

    1997-03-01

    In this paper, the authors design and implement an adaptive speed controller that can estimate load torque for ac induction motor drives employing a transputer-based parallel processing technique. The adaptive speed controller, which precedes the field-oriented control loop, consists of a two-degree-of-freedom controller and a feedforward load-torque compensator. The two-degree-of-freedom controller is designed by a pole-placement technique with polynomial manipulations. Its parameters are adjusted adaptively in terms of estimated model parameters. Estimating the model parameters entails a second-order least-squares estimator with constant trace to avoid estimator windup. The design of the feedforward compensator is based on an estimated load-torque model. Estimating the load torque entails a first-order least-squares estimator with variable forgetting factor and covariance resetting, the purposes of which are to detect any slow or sudden changes of torque disturbance, respectively. The resulting adaptive controller is implemented in parallel by IMS T800-20 transputers. Experimental results demonstrate the robustness of the proposed control method in contending with varying load and torque disturbance.

  15. Gravitational search algorithm based tuning of a PI speed controller for an induction motor drive

    NASA Astrophysics Data System (ADS)

    Abd Ali, Jamal; Hannan, M. A.; Mohamed, Azah

    2016-03-01

    Proportional-integral (PI)-controller is very useful for controlling speed and mechanical load variables for the three-phase induction motor (TIM) operation. However, the conventional PI-controller has a very exhaustive trial and error procedure for obtaining it is parameters. In this paper, PI speed controller has been improved in it is design technique to suite TIM by utilizing a gravitational search algorithm (GSA) optimization technique. The mean absolute error (MAE) of the speed response has been used as an objective function. An optimal GSA based PI speed controller (GSA-PI) objective function is also employed to tune and minimize the MAE for developing the performance of the TIM in terms of changes speed and mechanical load. This experiment use space vector pulse width modulation (SVPWM) technique to create pulse width modulation for switching devices for three phase bridge inverter. Results obtained from the GSA-PI speed controller are compared with those obtained through particle swarm optimization (PSO) to validate the developed controller. Then it has been proved that the robustness of the GSA-PI speed controller is far better than that of the1 PSO controller in all tested cases in terms of damping capability and transient response under different mechanical loads and speeds.

  16. Online Monitoring of Induction Motors

    SciTech Connect

    McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through a limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.

  17. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive.

    PubMed

    Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A

    2015-01-01

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677

  18. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive

    PubMed Central

    Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.

    2015-01-01

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677

  19. A fuzzy-based approach for open-transistor fault diagnosis in voltage-source inverter induction motor drives

    NASA Astrophysics Data System (ADS)

    Zhang, Jianghan; Luo, Hui; Zhao, Jin; Wu, Feng

    2015-02-01

    This paper develops a novel method for the detection and isolation of open-transistor faults in voltage-source inverters feeding induction motors. Based on analyzing the load currents trajectories after Concordia transformation, six diagnostic signals each of which indicates a certain switch are extracted and a fuzzy rule base is designed to perform fuzzy reasoning in order to detect and isolate 21 fault modes including single- and double-transistor faults. In addition, the fuzzy rules are rearranged and each of them is set to a reasonable value representing the fault modes. The simulation and experiment are carried out to demonstrate the effectiveness of the proposed fuzzy approach.

  20. Q-Axis Flux-Based Sensorless Vector Control of Induction Motor Taking into Account Iron Loss

    NASA Astrophysics Data System (ADS)

    Tsuji, Mineo; Chen, Shuo; Kai, Toshihiro; Hamasaki, Shin-Ichi

    This paper presents a sensorless vector control system for induction motors by taking into account iron loss, in which a flux-observer-based method is applied. Since the flux observer is constructed in a synchronously rotating reference frame with respect to the rotor flux of a current model and the iron loss resistance of parallel exiting circuit is used, the proposed system is very simple and the compensation of iron loss related to the operating frequency is directly realized while calculating rotor fluxes and slip frequency. The accuracies of estimated torque and speed are improved. The effectiveness of the proposed system has been verified by digital simulation and experimentation.

  1. Save power in AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1977-01-01

    Relatively simple and inexpensive circuitry improves power factor and reduces power dissipation in induction motors operating below full load. Electronic control loop conserves energy by reducing voltage applied to lightly loaded motor. Circuit forces motor to run at constant predetermined optimum power factor, regardless of load or line voltage variations. Solid-state switch varies voltage.

  2. Detection of the Short-Circuit Faults in the Stator Winding of Induction Motors based on Harmonics of the Neighboring Magnetic Field

    NASA Astrophysics Data System (ADS)

    Fireteanu, V.

    2013-06-01

    Based on the time domain finite element analysis of the electromagnetic field, this paper studies the signature of the short-circuit faults inside the stator winding in the magnetic field outside induction motors. The detection of the such a fault is based on the evaluation of the output voltage of coil sensors placed in the motors neighbouring and the comparison of amplitudes of harmonics of this voltage for the healthy and faulty operation states.

  3. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    PubMed

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. PMID:22742760

  4. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Ben Regaya, Chiheb; Ben Azza, Hechmi; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. PMID:26653141

  5. Comparison of capabilities of reluctance synchronous motor and induction motor

    NASA Astrophysics Data System (ADS)

    Štumberger, Gorazd; Hadžiselimović, Miralem; Štumberger, Bojan; Miljavec, Damijan; Dolinar, Drago; Zagradišnik, Ivan

    2006-09-01

    This paper compares the capabilities of a reluctance synchronous motor (RSM) with those of an induction motor (IM). An RSM and IM were designed and made, with the same rated power and speed. They differ only in the rotor portion while their stators, housings and cooling systems are identical. The capabilities of both motors in a variable speed drive are evaluated by comparison of the results obtained by magnetically nonlinear models and by measurements.

  6. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  7. Soft Computing Application in Fault Detection of Induction Motor

    SciTech Connect

    Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.

    2010-10-26

    The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

  8. FORTRAN program for induction motor analysis

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.

    1976-01-01

    A FORTRAN program for induction motor analysis is described. The analysis includes calculations of torque-speed characteristics, efficiency, losses, magnetic flux densities, weights, and various electrical parameters. The program is limited to three-phase Y-connected, squirrel-cage motors. Detailed instructions for using the program are given. The analysis equations are documented, and the sources of the equations are referenced. The appendixes include a FORTRAN symbol list, a complete explanation of input requirements, and a list of error messages.

  9. Bridge Inductance of Induction Motor with Closed Rotor Slots

    NASA Astrophysics Data System (ADS)

    Matsushita, Makoto; Ishibashi, Fuminori; Suzuki, Takao; Noda, Shinichi

    Closed rotor slots are widely employed in low-power squirrel-cage induction motors with die-cast aluminum cage rotors. Die-cast aluminum cages with closed rotor slots can be manufactured commercially. They help reduce flux pulsation in air gaps, attenuate acoustic noises, and achieve high efficiency. However, it is difficult to calculate bridge inductance of a closed rotor slot accurately because the main flux passes through the bridge and iron saturation can be achieved depending upon the bar current. In this study, bridge inductance was investigated by using a search coil and by FEM analysis and conventional equations. The bridge flux density and the bridge linkage flux were measured by using 4P-0.75kW motor with closed rotor slots, and the bridge inductance was calculated as a function of rotor bar current. The bridge inductance was also analyzed by FEM, and the results were analytically checked by using the calculated conventional equations. From these analyses, it is seen that the measured values of the bridge inductance are in good agreement with the values calculated by FEM and conventional methods. It is verified that the bridge inductance shows a trend similar to that of the μ-H curve of the rotor steel sheet.

  10. Transistorized PWM inverter-induction motor drive system

    NASA Technical Reports Server (NTRS)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  11. INSPECTION MEANS FOR INDUCTION MOTORS

    DOEpatents

    Williams, A.W.

    1959-03-10

    an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

  12. Harmonic Electromagnetic Forces in Induction Motors

    NASA Astrophysics Data System (ADS)

    Ishibashi, Fuminori; Matsushita, Makoto; Noda, Shinichi

    Recently, there has been increasing demand for quiet motors, and the same trend has been observed in the case of induction motors. In induction motors, electromagnetic noise is sometimes the predominant acoustic noise. In small motors, the major cause of vibration and noise is electromagnetic forces resulting from the combination of harmonic fluxes in the air gap. In this study, the spatial distribution of fundamental and harmonic time electromagnetic forces was studied by using search coils, by performing FEM analysis, and by using conventional equations. In a four-pole 2.2kW motor, harmonic electromagnetic forces were measured using 36 search coils on the inner surface of the stator teeth, and the spatial distribution of electromagnetic forces was obtained at each time harmonic frequency. Spatial distribution was also analyzed by FEM, and the results were analytically validated by using conventional equations. On the basis of these analyses, the spatial distribution of electromagnetic forces for various time harmonics was confirmed. These results can be used in the design and development of quiet motors.

  13. ANN based Performance Evaluation of BDI for Condition Monitoring of Induction Motor Bearings

    NASA Astrophysics Data System (ADS)

    Patel, Raj Kumar; Giri, V. K.

    2016-07-01

    One of the critical parts in rotating machines is bearings and most of the failure arises from the defective bearings. Bearing failure leads to failure of a machine and the unpredicted productivity loss in the performance. Therefore, bearing fault detection and prognosis is an integral part of the preventive maintenance procedures. In this paper vibration signal for four conditions of a deep groove ball bearing; normal (N), inner race defect (IRD), ball defect (BD) and outer race defect (ORD) were acquired from a customized bearing test rig, under four different conditions and three different fault sizes. Two approaches have been opted for statistical feature extraction from the vibration signal. In the first approach, raw signal is used for statistical feature extraction and in the second approach statistical features extracted are based on bearing damage index (BDI). The proposed BDI technique uses wavelet packet node energy coefficients analysis method. Both the features are used as inputs to an ANN classifier to evaluate its performance. A comparison of ANN performance is made based on raw vibration data and data chosen by using BDI. The ANN performance has been found to be fairly higher when BDI based signals were used as inputs to the classifier.

  14. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    NASA Astrophysics Data System (ADS)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  15. Field oriented control of induction motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  16. Supply-pollution (SP) loss in induction motor

    SciTech Connect

    Hsu, J.S.

    1995-07-01

    Power supply in the field is often noticeably polluted with various degrees of harmonics content and unbalanced voltages. In order to assess the energy loss caused by the supply pollution in the widely used induction motors, a method based on the air-gap torque power is discussed.

  17. Analytical calculation of the RFOC method in single-phase induction motor

    NASA Astrophysics Data System (ADS)

    Jannati, M.; Monadi, A.; Idris, N. R. N.; Faudzi, A. A. M.

    2016-05-01

    This study discusses the different techniques for speed control of single-phase induction motor with two asymmetrical main and auxiliary windings based on Rotor Field-Oriented Control (RFOC) method. In the presented methods, transformation matrices are introduced and applied to the equations of single-phase induction motor. It is shown by applying these rotational transformations to the unbalanced equations of single-phase induction motor, equations of single-phase induction motor are transformed into symmetrical equations. These rotational transformations are achieved based from the steady-state equivalent circuit of single-phase induction motor. Finally, a method for RFOC of single-phase induction motor is proposed. Results show the good performance of the proposed method.

  18. Induction generator-induction motor wind-powered pumping system

    SciTech Connect

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  19. Load Characteristics of Induction Motor Manufactured by Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Fukuda, Tomohiro; Sasaki, Yutaka; Morimoto, Masayuki

    The load characteristics of induction motor manufactured by soft magnetic composite (SMC) are presented. We manufactured three kinds of induction motors experimentally. One is a conventional laminated iron core motor. The others are SMC motors. One of the SMC motor uses SMC only for stator, while the other SMC motor uses SMC for stator and rotor. The experimental comparisons of load characteristics and loss analysis are shown. As a result, the difference between the efficiency of the SMC motor and the conventional laminated motor is 4.6%, in spite of the permeability of SMC being 20% lower than the conventional electromagnetic steel.

  20. A novel induction motor starting method using superconduction

    NASA Astrophysics Data System (ADS)

    Silva, F. B. B.; Orlando, M. T. D.; Fardin, J. F.; Simonetti, D. S.; Baldan, C. A.

    2014-12-01

    In this paper, an alternative method for starting up induction motors is proposed, taking into account experimental measurements. The new starting current limitation method is based on using a high-temperature superconductor. A prototype of the superconducting starting current limiter was constructed with a commercially available second-generation high-temperature superconductor YBCO tape, and this was tested with a 55-kW industrial induction motor in a 440-V/60-Hz three-phase power grid. Performance evaluations of the superconducting limiter method (applied to startup of the induction motor) were performed and were compared with a direct-on-line starter and an electronic soft starter. In addition, a computational model was developed and used for electromagnetic torque analysis of the system. As significant characteristics, our method offers the ability to limit the starting current of the induction motor with greater electromagnetic torque, reduced current waveform distortion and therefore lower harmonic pollution during startup when compared to the soft starter method.

  1. Fuzzy efficiency optimization of AC induction motors

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff

    1993-01-01

    This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.

  2. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  3. A simplified scheme for induction motor condition monitoring

    NASA Astrophysics Data System (ADS)

    Rodríguez, Pedro Vicente Jover; Negrea, Marian; Arkkio, Antero

    2008-07-01

    This work proposes a general scheme to detect induction motor fault by monitoring the motor current. The scheme is based on signal processing (predictive filters) and soft computing technique (fuzzy logic). The predictive filter is used in order to separate the fundamental component from the harmonic components. Fuzzy logic is used to identify the motor state. Finite element method (FEM) is utilised to generate virtual data that allows to test the proposed technique and foresee the change in the current under different motor conditions. A simple and reliable method for the detection of stator winding failures based on the phase current amplitudes is implemented and tested. The layout has been proved in MATLAB/SIMULINK, with both data from FEM motor simulation program and real measurements. The proposed method has the ability to work with variable speed drives and avoids the detailed spectral analysis of the motor current. This work shows the feasibility of spotting broken rotor bars, eccentricities and inter-turn short-circuit by monitoring the motor currents.

  4. Quantitative analysis of noninvasive diagnostic procedures for induction motor drives

    NASA Astrophysics Data System (ADS)

    Eltabach, Mario; Antoni, Jerome; Najjar, Micheline

    2007-10-01

    This paper reports quantitative analyses of spectral fault components in five noninvasive diagnostic procedures that use input electric signals to detect different types of abnormalities in induction motors. Besides the traditional one phase current spectrum analysis "SC", the diagnostic procedures based on spectrum analysis of the instantaneous partial powers " P ab", " P cb", total power " P abc", and the current space vector modulus " csvm" are considered. The aim of this comparison study is to improve the diagnosis tools for detection of electromechanical faults in electrical machines by using the best suitable diagnostic procedure knowing some motor and fault characteristics. Defining a severity factor as the increase in amplitude of the fault characteristic frequency, with respect to the healthy condition, enables us to study the sensitivity of the electrical diagnostic tools. As a result, it is shown that the relationship between the angular displacement of the current side-bands components at frequencies ( f± fosc) is directly related to the type of induction motor faults. It is also proved that the total instantaneous power diagnostic procedure was observed to exhibit the highest values of the detection criterion in case of mechanical faults while in case of electrical ones the most reliable diagnostic procedure is tightly related to the value of the motor power factor angle and the group motor-load inertia. Finally, simulation and experimental results show good agreement with the fault modeling theoretical results.

  5. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    SciTech Connect

    Vuckovic, V.; Vukosavic, S. )

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  6. Type-1 and Type-2 Fuzzy Logic and Sliding-Mode Based Speed Control of Direct Torque and Flux Control Induction Motor Drives - A Comparative Study

    NASA Astrophysics Data System (ADS)

    Ramesh, Tejavathu; Panda, A. K.; Kumar, S. Shiva

    2013-08-01

    In this research study, the performance of direct torque and flux control induction motor drive (IMD) is presented using five different speed control techniques. The performance of IMD mainly depends on the design of speed controller. The PI speed controller requires precise mathematical model, continuous and appropriate gain values. Therefore, adaptive control based speed controller is desirable to achieve high-performance drive. The sliding-mode speed controller (SMSC) is developed to achieve continuous control of motor speed and torque. Furthermore, the type-1 fuzzy logic speed controller (T1FLSC), type-1 fuzzy SMSC and a new type-2 fuzzy logic speed controller are designed to obtain high performance, dynamic tracking behaviour, speed accuracy and also robustness to parameter variations. The performance of each control technique has been tested for its robustness to parameter uncertainties and load disturbances. The detailed comparison of different control schemes are carried out in a MATALB/Simulink environment at different speed operating conditions, such as, forward and reversal motoring under no-load, load and sudden change in speed.

  7. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  8. Predictive Direct Torque Control for Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Benzaioua, A.; Ouhrouche, M.; Merabet, A.

    2008-06-01

    A predictive control combined with the direct torque control (DTC) to induction motor drive is presented. A new switching strategy is used in DTC, where the constant switching frequency is taken constant, and the speed tracking is done by a predictive controller. The scheme control is applied to induction motor drive in order to perform the dynamic responses of electromagnetic torque, stator flux and speed. A comparison between the PI controller and predictive controller for speed tracking is done. Results of simulation show that the performance of the proposed control scheme for induction motor drive is accurately achieved.

  9. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    NASA Astrophysics Data System (ADS)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2015-03-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  10. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    NASA Astrophysics Data System (ADS)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  11. Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Bashir Mahdi; Faiz, Jawad; Lotfi-fard, S.; Pillay, P.

    2012-07-01

    This paper introduces novel indices for broken rotor bars diagnosis in three-phase induction motors based on wavelet coefficients of stator current in a specific frequency band. These indices enable to diagnose occurrence and determine number of broken bars in different loads precisely. Besides thanks to the suitability of wavelet transform in transient conditions, it is possible to detect the fault during the start-up of the motor. This is important in the case of start-up of large induction motors with long starting time and also motors with frequent start-up. Furthermore, broken rotor bars in induction motor are detected using spectra analysis of the stator current. It is also shown that rise of number of broken bars and load levels increases amplitude of the particular side-band components of the stator currents in the faulty case. An induction motor with 1, 2, 3 and 4 broken bars at the rated load and the motor with 4 broken bars at no-load, 33%, 66%, 100% and 133% rated load are investigated. Time stepping finite element method is used for modeling broken rotor bars faults in induction motors. In this modeling, effects of the stator winding distribution, stator and rotor slots, geometrical and physical characteristics of different parts of the motor and non-linearity of the core materials are taken into account. The simulation results are are verified by the experimental results.

  12. FUZZY LOGIC CONTROL OF AC INDUCTION MOTORS

    EPA Science Inventory

    The paper discusses the fuzzy logic control (FLC) of electric motors, being investigated under the sponsorship of the U.S. EPA to reduce energy consumption when motors are operated at less than rated speeds and loads. lectric motors use 60% of the electrical energy generated in t...

  13. Integrated Cooling System for Induction Motor Traction Drives, CARAT Program Phase Two Final Report

    SciTech Connect

    Konrad, Charles E.

    2002-12-03

    This Program is directed toward improvements in electric vehicle/hybrid electric vehicle traction systems, and in particular, the development of a low cost, highly efficient, compact traction motor-controller system targeted for high volume automotive use. Because of the complex inter-relationships between the motor and the controller, the combination of motor and controller must be considered as a system in the design and evaluation of overall cost and performance. The induction motor is ideally suited for use as a traction motor because of its basic ruggedness, low cost, and high efficiency. As one can see in Figure 1.1, the induction motor traction drive has been continually evolving through a succession of programs spanning the past fifteen years. VPT marketed an induction motor-based traction drive system, the EV2000, which proved to be a reliable, high performance system that was used in a wide range of vehicles. The EV2000 drives evolved from the Modular Electric Vehicle Program (MEVP) and has been used in vehicles ranging in size from 3,000 lb. autos and utility vans, to 32,000 lb. city transit buses. Vehicles powered by the EV2000 induction motor powertrain have accumulated over 2 million miles of service. The EV2000 induction motor system represents 1993 state-of-the-art technology, and evolved from earlier induction motor programs that drove induction motor speeds up to 15,000 rpm to reduce the motor size and cost. It was recognized that the improvements in power density and motor cost sought in the PNGV program could only be achieved through increases in motor speed. Esson’s Rule for motor power clearly states that the power obtainable from a given motor design is the product of motor speed and volume. In order to meet the CARAT Program objectives, the maximum speed goal of the induction motor designed in this Program was increased from 15,000 rpm to 20,000 rpm while maintaining the efficiency and durability demonstrated by lower speed designs done in

  14. Control system for an induction motor with energy recovery

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A control circuit for an induction motor powered system is disclosed in which a power factor controlled servo loop is used to control, via the phase angle of firing of a triac, the power input to the motor, as a function of load placed on the motor by machinery of the powered system. Then, upon application of torque by this machinery to the motor, which tends to overspeed the motor, the firing angle of the triac is automatically set to a fixed, and relatively short, firing angle.

  15. Performance Analysis of Saturated Induction Motors by Virtual Tests

    ERIC Educational Resources Information Center

    Ojaghi, M.; Faiz, J.; Kazemi, M.; Rezaei, M.

    2012-01-01

    Many undergraduate-level electrical machines textbooks give detailed treatments of the performance of induction motors. Students can deepen this understanding of motor performance by performing the appropriate practical work in laboratories or in simulation using proper software packages. This paper considers various common and less-common tests…

  16. Power factor control system for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  17. Calculation and Measurement of Coil Inductance Profile in Tubular Linear Reluctance Motor and its Validation by Three Dimensional FEM

    NASA Astrophysics Data System (ADS)

    Mosallanejad, Ali; Shoulaie, Abbas

    2011-07-01

    This paper reports a study of coil inductance profile in all positions of plunger in tubular linear reluctance motors (TLRMs) with open type magnetic circuits. In this paper, maximum inductance calculation methods in winding of tubular linear reluctance motors are described based on energy method. Furthermore, in order to calculate the maximum inductance, equivalent permeability is measured. Electromagnetic finite-element analysis for simulation and calculation of coil inductance in this motor is used. Simulation results of coil inductance calculation using 3-D FEM with coil current excitation is compared to theoretical and experimental results. The comparison yields a good agreement.

  18. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  19. Unstable force analysis for induction motor eccentricity

    NASA Astrophysics Data System (ADS)

    Han, Xu; Palazzolo, Alan

    2016-05-01

    The increasing popularity of motors in machinery trains has led to an intensified interest in the forces they produce that may influence machinery vibration. Motor design typically assumes a uniform air gap, however in practice all motors operate with the rotor slightly displaced from the motor centerline in what is referred to as an eccentric position. Rotor center eccentricity can cause a radially unbalanced magnetic field when the motor is operating. This will results in both a radial force pulling the motor further away from the center, and a tangential force which can induce a vibration stability problem. In this paper, a magnetic equivalent circuit MEC modeling method is proposed to calculate both the radial and tangential motor eccentric force. The treatment of tangential force determination is rarely addressed, but it is very important for rotordynamic vibration stability evaluation. The proposed model is also coupled with the motor electric circuit model to provide capability for transient vibration simulations. FEM is used to verify the MEC model. A parametric study is performed on the motor radial and tangential eccentric forces. Also a Jeffcott rotor model is used to study the influence of the motor eccentric force on mechanical vibration stability and nonlinear behavior. Furthermore, a stability criteria for the bearing damping is provided. The motor radial and tangential eccentric forces are both curved fitted to include their nonlinearity in time domain transient simulation for both a Jeffcott rotor model and a geared machinery train with coupled torsional-lateral motion. Nonlinear motions are observed, including limit cycles and bifurcation induced vibration amplitude jumps.

  20. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation. PMID:25887841

  1. Use of fuzzy inference system for condition monitoring of induction motor

    NASA Astrophysics Data System (ADS)

    Janier, Josefina B.; Zaim Zaharia, M. F.; Karim, Samsul Ariffin Abd.

    2012-09-01

    Three phase induction motors are commonly used in industry due to its robustness, simplicity of its construction and high reliability. The tasks performed by these motors grow increasingly complex because of modern industries hence there is a need to determine the faults. Early detection of faults will reduce an unscheduled machine downtime that can upset production deadlines and may cause heavy financial losses. This paper is focused in developing a computer based system using Fuzzy Inference system's membership function. An unusual increase in vibration of the motor could be an indicator of faulty condition hence the vibration of the motor of an induction motor was used as an input, whereas the output is the motor condition. An inference system of the Fuzzy Logic was created to classify the vibration characteristics of the motor which is called vibration analysis. The system classified the motor of the gas distribution pump condition as from 'acceptable' to 'monitor closely'. The early detection of unusual increase in vibration of the induction motor is an important part of a predictive maintenance for motor driven machinery.

  2. Analytical and experimental study of high phase order induction motors

    NASA Astrophysics Data System (ADS)

    Klingshirn, Eugene A.

    1989-08-01

    Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.

  3. Analytical and experimental study of high phase order induction motors

    NASA Technical Reports Server (NTRS)

    Klingshirn, Eugene A.

    1989-01-01

    Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.

  4. Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature

    DOEpatents

    Kelledes, William L.; St. John, Don K.

    1992-01-01

    The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

  5. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  6. A novel indicator of stator winding inter-turn fault in induction motor using infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Eftekhari, M.; Moallem, M.; Sadri, S.; Hsieh, Min-Fu

    2013-11-01

    In this paper, a novel online and non-destructive algorithm is proposed to detect inter-turn short circuit faults in the stator windings of an induction motor. This fault detection algorithm is based on the features extracted from infrared images taken from the hottest region of the motor surface. Feature extraction method from infrared thermal images has been developed based on histogram of temperature profile, correlation between fault severity and the hottest region on the motor body, and comparison with healthy motor features. Experiments are conducted to demonstrate the effectiveness of the proposed method using a 2-hp induction motor.

  7. Improved magnetic field analysis of induction motor models

    SciTech Connect

    Enokizono, Masato; Sadanaga, Yuichiro

    1998-09-01

    This paper presents an improved magnetic field analysis for induction motor models. In the analysis with the conventional numerical modeling of magnetic materials, the vector relations between the flux density and the field intensity under a rotating field cannot be expressed exactly. In this paper, the authors derived the tensor magnetic reluctivity from the data measured with two-dimensional measurement method. This expression is applied to analyze a three-phase induction motor model core. The examples show that the calculated results obtained by the new method are different from those of the conventional modeling.

  8. Bearing Fault Detection in Induction Motor-Gearbox Drivetrain

    NASA Astrophysics Data System (ADS)

    Cibulka, Jaroslav; Ebbesen, Morten K.; Robbersmyr, Kjell G.

    2012-05-01

    The main contribution in the hereby presented paper is to investigate the fault detection capability of a motor current signature analysis by expanding its scope to include the gearbox, and not only the induction motor. Detecting bearing faults outside the induction motor through the stator current analysis represents an interesting alternative to traditional vibration analysis. Bearing faults cause changes in the stator current spectrum that can be used for fault diagnosis purposes. A time-domain simulation of the drivetrain model is developed. The drivetrain system consists of a loaded single stage gearbox driven by a line-fed induction motor. Three typical bearing faults in the gearbox are addressed, i.e. defects in the outer raceway, the inner raceway, and the rolling element. The interaction with the fault is modelled by means of kinematical and mechanical relations. The fault region is modelled in order to achieve gradual loss and gain of contact. A bearing fault generates an additional torque component that varies at the specific bearing defect frequency. The presented dynamic electromagnetic dq-model of an induction motor is adjusted for diagnostic purpose and considers such torque variations. The bearing fault is detected as a phase modulation of the stator current sine wave at the expected bearing defect frequency.

  9. Transient effects in application of PWM inverters to induction motors

    SciTech Connect

    Persson, E. )

    1992-10-01

    Standard squirrel cage induction (SCI) motors are subjected to nonsinusoidal waveshapes when supplied form adjustable-frequency inverters. In addition to causing increased heating, these wave patterns can be destructive to the insulation. In particular, pulse width modulated (PWM) inverter output amplitudes and rise times are investigated. Motor insulation capabilities are discussed. In this paper, voltage reflections are simulated for various cable lengths and rise times and are presented graphically. Simulations confirm potential problems with long cables and short rise times.

  10. Reluctance network analysis of an orthogonal-core type parametric induction motor

    SciTech Connect

    Tajima, Katsubumi; Sato, Kohei; Komukai, Toshihiko; Ichinokura, Osamu

    1999-09-01

    In this paper, an analytical method of an orthogonal-core type parametric induction motor is proposed, based on a reluctance network model of the stator. The model is derived by a similar technique applied to an orthogonal-core transformer. Using this model the parametric oscillation characteristic of the motor, without a rotor, is computed. The simulation results agree well with the experiments. It is obvious that the analytical model of the stator presented here is proper for analysis of the motor and that, by use of this model and suitable analytical model of the rotor, the motor characteristics can be analyzed.

  11. HTS axial flux induction motor with analytic and FEA modeling

    NASA Astrophysics Data System (ADS)

    Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J. H.

    2013-11-01

    This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.

  12. Simple and Robust Indirect Thrust Control for Positioning of Linear Induction Motors

    NASA Astrophysics Data System (ADS)

    Martínez-Iturralde, Miguel; Martínez, Gonzalo; Castelli, Marcelo; Rico, Andrés García; Flórez, Julián

    Dealing with position control of Linear Induction Motors (LIM), most strategies in bibliography are based on Secondary Flux Oriented Control (SFOC) and Direct Thrust Control (DTC). However, SFOC of linear induction motors needs complex identification methods to compensate parameter variation during operation, mainly due to local heating and end-effects. On the other hand, DTC based methods for LIMs present thrust ripple and have problems at low and zero speeds. In this paper, a new Indirect Thrust Control (ITC) based strategy for position control of linear induction motors that makes up for these drawbacks is presented. The position control loop design methodology and the method for automatic adjustment of compensators are described. Experimental results are presented to evaluate the performance and sensitivity of the control strategy. Finally, some conclusions are drawn about the applicability of the new algorithm that demonstrate the main advantages versus SFOC and DTC.

  13. Induction motor inter turn fault detection using infrared thermographic analysis

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Anil Kumar, T. Ch.; Naikan, V. N. A.

    2016-07-01

    Induction motors are the most commonly used prime movers in industries. These are subjected to various environmental, thermal and load stresses that ultimately reduces the motor efficiency and later leads to failure. Inter turn fault is the second most commonly observed faults in the motors and is considered the most severe. It can lead to the failure of complete phase and can even cause accidents, if left undetected or untreated. This paper proposes an online and non invasive technique that uses infrared thermography, in order to detect the presence of inter turn fault in induction motor drive. Two methods have been proposed that detect the fault and estimate its severity. One method uses transient thermal monitoring during the start of motor and other applies pseudo coloring technique on infrared image of the motor, after it reaches a thermal steady state. The designed template for pseudo-coloring is in acquiescence with the InterNational Electrical Testing Association (NETA) thermographic standard. An index is proposed to assess the severity of the fault present in the motor.

  14. Field-Oriented Control Of Induction Motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1993-01-01

    Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.

  15. Demonstration of Lenz's Law with an Induction Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2005-01-01

    The interaction of a conductor with a time-dependent magnetic field is an important topic of electromagnetic theory. A computerized classroom demonstration shows how the eddy currents induced in the rotor of an induction motor cause its rotation or braking. Both phenomena are directly related to Lenz's law.

  16. Close up of backup exciter showing induction motor at left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up of backup exciter showing induction motor at left and direct current generator at right. View to west - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  17. PWM-switching pattern-based diagnosis scheme for single and multiple open-switch damages in VSI-fed induction motor drives.

    PubMed

    Trabelsi, Mohamed; Boussak, Mohamed; Gossa, Moncef

    2012-03-01

    This paper deals with a fault detection technique for insulated-gate bipolar transistors (IGBTs) open-circuit faults in voltage source inverter (VSI)-fed induction motor drives. The novelty of this idea consists in analyzing the pulse-width modulation (PWM) switching signals and the line-to-line voltage levels during the switching times, under both healthy and faulty operating conditions. The proposed method requires line-to-line voltage measurement, which provides information about switching states and is not affected by the load. The fault diagnosis scheme is achieved using simple hardware and can be included in the existing inverter system without any difficulty. In addition, it allows not only accurate single and multiple faults diagnosis but also minimization of the fault detection time to a maximum of one switching period (T(c)). Simulated and experimental results on a 3-kW squirrel-cage induction motor drive are displayed to validate the feasibility and the effectiveness of the proposed strategy. PMID:22153956

  18. Identifying three-phase induction motor faults using artificial neural networks

    PubMed

    Kolla; Varatharasa

    2000-01-01

    This paper presents an artificial neural network (ANN) based technique to identify faults in a three-phase induction motor. The main types of faults considered are overload, single phasing, unbalanced supply voltage, locked rotor, ground fault, over-voltage and under-voltage. Three-phase currents and voltages from the induction motor are used in the proposed approach. A feedforward layered neural network structure is used. The network is trained using the backpropagation algorithm. The trained network is tested with simulated fault current and voltage data. Fault detection is attempted in the no fault to fault transition period. Off-line testing results on a 3 HP induction motor model show that the proposed ANN based method is effective in identifying various types of faults. PMID:11106295

  19. Steady-state, lumped-parameter model for capacitor-run, single-phase induction motors

    SciTech Connect

    Umans, S.D.

    1996-01-01

    This paper documents a technique for deriving a steady-state, lumped-parameter model for capacitor-run, single-phase induction motors. The objective of this model is to predict motor performance parameters such as torque, loss distribution, and efficiency as a function of applied voltage and motor speed as well as the temperatures of the stator windings and of the rotor. The model includes representations of both the main and auxiliary windings (including arbitrary external impedances) and also the effects of core and rotational losses. The technique can be easily implemented and the resultant model can be used in a wide variety of analyses to investigate motor performance as a function of load, speed, and winding and rotor temperatures. The technique is based upon a coupled-circuit representation of the induction motor. A notable feature of the model is the technique used for representing core loss. In equivalent-circuit representations of transformers and induction motors, core loss is typically represented by a core-loss resistance in shunt with the magnetizing inductance. In order to maintain the coupled-circuit viewpoint adopted in this paper, this technique was modified slightly; core loss is represented by a set of core-loss resistances connected to the ``secondaries`` of a set of windings which perfectly couple to the air-gap flux of the motor. An example of the technique is presented based upon a 3.5 kW, single-phase, capacitor-run motor and the validity of the technique is demonstrated by comparing predicted and measured motor performance.

  20. Nonlinear servo control of an induction motor with saturation

    SciTech Connect

    Bodson, M.; Chiasson, J.; Novotnak, R.

    1994-12-31

    This work is an extension of the authors` previous work on high-performance induction motor control in which the magnetic model of the motor was assumed to be linear. Saturation of the iron in the main path of the induction machine is taken into account. The saturation is modeled in the dq coordinate frame and the model is then used to design an input-output linearization controller to provide independent (decoupled) control of the speed and flux. With this controller, the flux reference becomes an extra degree of freedom for the designer to help achieve performance objectives. Taking into account saturation, the flux reference is chosen to achieve the optimal torque (maximum for acceleration & minimum for deceleration) at any given speed. The input-output controller is used to provide tracking of a given position & speed trajectory while simultaneously tracking the optimal flux reference. Experimental results are given to validate the approach.

  1. A current monitoring system for diagnosing electrical failures in induction motors

    NASA Astrophysics Data System (ADS)

    Acosta, G. G.; Verucchi, C. J.; Gelso, E. R.

    2006-05-01

    Induction motors are critical components in industrial processes. A motor failure may yield an unexpected interruption at the industrial plant, with consequences in costs, product quality, and safety. Many of these faulty situations in three phase induction motors have an electrical reason. Among different detection approaches proposed in the literature, those based on stator current monitoring are advantageous due to its non-invasive properties. One of these techniques resorts to spectrum analysis of machine line current. Another non-invasive technique is the Extended Park's Vector Approach, which allows the detection of inter-turn short circuits in the stator winding. This article presents the development of an on-line current monitoring system that uses both techniques for fault detection and diagnosis in the stator and in the rotor. Based on experimental observations and on the knowledge of the electrical machine, a knowledge-based system was constructed in order to carry out the diagnosis task from these estimated data.

  2. Voltage oscillatory instability caused by induction motor loads

    SciTech Connect

    Mello, F.P. de; Feltes, J.W.

    1996-08-01

    Isolated power systems which fit the structure of a single equivalent generator supplying an equivalent composite load can experience a voltage oscillatory instability entirely traceable to effects of induction motor loads interacting with automatic voltage regulators. This scenario is one where an AVR properly tuned for open circuit conditions is not necessarily well tuned for the on load condition. The phenomenon is explained and a simple solution through AVR compensation is suggested.

  3. Lyapunov exponent for aging process in induction motor

    NASA Astrophysics Data System (ADS)

    Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat

    2012-09-01

    Nonlinear systems like electrical circuits and systems, mechanics, optics and even incidents in nature may pass through various bifurcations and steady states like equilibrium point, periodic, quasi-periodic, chaotic states. Although chaotic phenomena are widely observed in physical systems, it can not be predicted because of the nature of the system. On the other hand, it is known that, chaos is strictly dependent on initial conditions of the system [1-3]. There are several methods in order to define the chaos. Phase portraits, Poincaré maps, Lyapunov Exponents are the most common techniques. Lyapunov Exponents are the theoretical indicator of the chaos, named after the Russian mathematician Aleksandr Lyapunov (1857-1918). Lyapunov Exponents stand for the average exponential divergence or convergence of nearby system states, meaning estimating the quantitive measure of the chaotic attractor. Negative numbers of the exponents stand for a stable system whereas zero stands for quasi-periodic systems. On the other hand, at least if one of the exponents is positive, this situation is an indicator of the chaos. For estimating the exponents, the system should be modeled by differential equation but even in that case mathematical calculation of Lyapunov Exponents are not very practical and evaluation of these values requires a long signal duration [4-7]. For experimental data sets, it is not always possible to acquire the differential equations. There are several different methods in literature for determining the Lyapunov Exponents of the system [4, 5]. Induction motors are the most important tools for many industrial processes because they are cheap, robust, efficient and reliable. In order to have healthy processes in industrial applications, the conditions of the machines should be monitored and the different working conditions should be addressed correctly. To the best of our knowledge, researches related to Lyapunov exponents and electrical motors are mostly

  4. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  5. Optimized performance of solar powered variable speed induction motor drive

    SciTech Connect

    Singh, B.N.; Singh, B.P.; Singh, B.; Chandra, A.; Al-Haddad, K.

    1995-12-31

    This paper deals with the design and development of a photo voltaic (PV) array fed cage induction motor for an isolated water pumping system. A drive system using a chopper circuit to track maximum power from the PV for different solar insolation and a current controlled voltage source inverter (CC-VSI) to optimally match the motor to PV characteristics is presented. The model equations governing interaction of torque and flux producing components of motor current with available solar power is developed for the operation of the system at optimum efficiency. Performance of the system is presented for different realistic operating conditions, which demonstrates its special features for applications such as solar water pumping system, solar vehicles and floor mills located in hilly and isolated areas.

  6. Electromechanical interaction in rotordynamics of cage induction motors

    NASA Astrophysics Data System (ADS)

    Holopainen, Timo P.; Tenhunen, Asmo; Arkkio, Antero

    2005-06-01

    Eccentric rotor motion induces an unbalanced magnetic pull between the rotor and stator of cage induction motors. Recently, a linear parametric model of this eccentricity force due to the arbitrary rotor motion was presented. The purpose of this study is to combine this electromagnetic force model with a simple mechanical rotor model, and further, to demonstrate the rotordynamic response induced by this electromechanical interaction. An electromechanical rotor model is derived on the basis of the Jeffcott rotor with two additional variables for the harmonic currents of the rotor cage. Applying this model, the rotordynamic effects of electromechanical interaction were studied. Three induction motors were used in the numerical examples. The electromechanical parameters of these motors were estimated from the numerical simulations carried out separately. The results obtained show that the electromechanical interaction may decrease the natural frequencies of the rotor, induce additional damping or cause rotordynamic instability. These interaction effects are most significant in motors operating at or near the first bending critical speed. Excluding the potential rotordynamic instability, the numerical results indicate that the electromechanical interaction reduces effectively the unbalance response close to the first bending critical speed.

  7. A current-source inverter fed induction motor drive system with reduced losses

    SciTech Connect

    Espinoza, J.R.; Joos, G.

    1995-12-31

    Standard low and medium induction power motor drives are based on the PWM voltage source inverter (VSI) fed from a diode rectifier. The dual topology, based on the current source inverter/rectifier structure is used in medium and high power applications. This paper addresses some of the drawbacks of this approach compared to the voltage source approach. The proposed drive features: (a) an on-line operated PWM inverter, using instantaneous output capacitor voltage control based on space vector modulation; (b) a line-synchronized PWM rectifier, with dc bus current control; (c) an additional inverter modulation index control loop, ensuring a constant inverter modulation index. The resulting advantages include: (a) ruggedness and inherent continuous regeneration capability; (b) near unity global input power factor; (c) reduced motor voltage distortion; (d) reduced dc bus inductor and switch conduction losses; (e) fast motor dynamic response; (f) elimination of motor circuit resonances. Simulated and experimental results based on a DSP implementation are given.

  8. Ac hysteresis loop measurement of stator-tooth in induction motor

    SciTech Connect

    Son, D.

    1999-09-01

    The properties of ac hysteresis loop of a stator tooth in a 5 hp induction motor was measured and analyzed. The load increase on the motor decreased magnetic induction, however increase the minor hysteresis loops in the high induction region. This effect caused increase in the core loss. Depending on condition of the motor, the core loss of the stator tooth can be 50% greater than the core loss under sinusoidal magnetic induction waveform.

  9. Evaluation of quasi-square wave inverter as a power source for induction motors

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Haggard, R. L.; Lanier, J. R., Jr.

    1977-01-01

    The relative merits of quasi-square wave inverter-motor technology versus a sine wave inverter-motor system were investigated. The empirical results of several tests on various sizes of wye-wound induction motors are presented with mathematical analysis to support the conclusions of the study. It was concluded that, within the limitations presented, the quasi-square wave inverter-motor system is superior to the more complex sine wave system for most induction motor applications in space.

  10. Speed and efficiency control of an induction motor with input-output linearization

    SciTech Connect

    Wang, W.J.; Wang, C.C.

    1999-09-01

    A combination of a composite adaptive speed controller and an explicit efficiency control algorithm is proposed to control the speed and power efficiency of the induction motor in this paper. First, the input-output linearization method is used to dynamically decouple the motor speed and rotor flux. Then, a composite adaptive control algorithm is designed to control the speed of the induction motor. At steady-state light-load conditions, the magnetizing current command is adjusted on the basis of the product of magnetizing current command and torque current command such that the steady-state power loss is minimum. A PC-based experimental drive system has been implemented, and some experimental results are provided to demonstrate the effectiveness of the presented approach.

  11. A Comparison of Different Techniques for Induction Motor Rotor Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Alwodai, A.; Gu, F.; Ball, A. D.

    2012-05-01

    The problem of failures in induction motors is a large concern due to its significant influence over industrial production. Therefore a large number of detection techniques were presented to avoid this problem. This paper presents the comparison results of induction motor rotor fault detection using three methods: motor current signature analysis (MCSA), surface vibration (SV), and instantaneous angular speed (IAS). These three measurements were performed under different loads with three rotor conditions: baseline, one rotor bar broken and two rotor bar broken. The faults can be detected and diagnosed based on the amplitude difference of the characteristic frequency components of power spectrum. However IAS may be the best technique because it gives the clearest spectrum representation in which the largest amplitude change is observed due to the faults.

  12. Modeling and Simulating of Single Side Short Stator Linear Induction Motor with the End Effect

    NASA Astrophysics Data System (ADS)

    Hamzehbahmani, Hamed

    2011-09-01

    Linear induction motors are under development for a variety of demanding applications including high speed ground transportation and specific industrial applications. These applications require machines that can produce large forces, operate at high speeds, and can be controlled precisely to meet performance requirements. The design and implementation of these systems require fast and accurate techniques for performing system simulation and control system design. In this paper, a mathematical model for a single side short stator linear induction motor with a consideration of the end effects is presented; and to study the dynamic performance of this linear motor, MATLAB/SIMULINK based simulations are carried out, and finally, the experimental results are compared to simulation results.

  13. Offline detection of broken rotor bars in AC induction motors

    NASA Astrophysics Data System (ADS)

    Powers, Craig Stephen

    ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.

  14. Sensorless speed estimation of an AC induction motor by using an artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Alkhoraif, Abdulelah Ali

    Sensorless speed detection of an induction motor is an attractive area for researchers to enhance the reliability of the system and to reduce the cost of the components. This paper presents a simple method of estimating a rotational speed by utilizing an artificial neural network (ANN) that would be fed by a set of stator current frequencies that contain some saliency harmonics. This approach allows operators to detect the speed in induction motors such an approach also provides reliability, low cost, and simplicity. First, the proposed method is based on converting the stator current signals to the frequency domain and then applying a tracking algorithm to the stator current spectrum in order to detect frequency peaks. Secondly, the ANN has to be trained by the detected peaks; the training data must be from very precise data to provide an accurate rotor speed. Moreover, the desired output of the training is the speed, which is measured by a tachometer simultaneously with the stator current signal. The databases were collected at many different speeds from two different types of AC induction motors, wound rotor and squirrel cage. They were trained and tested, so when the difference between the desired speed value and the ANN output value reached the wanted accuracy, the system does not need to use the tachometer anymore. Eventually, the experimental results show that in an optimal ANN design, the speed of the wound rotor induction motor was estimated accurately, where the testing average error was 1 RPM. The proposed method has not succeeded to predict the rotor speed of the squirrel cage induction motor precisely, where the smallest testing­average error that was achieved was 5 RPM.

  15. Disk-shaped superconducting rotor for an axial flux induction motor

    NASA Astrophysics Data System (ADS)

    Álvarez, A.; Suárez, P.; Cáceres, D.; Granados, X.; Pérez, B.; Ceballos, J. M.

    2003-11-01

    Most work on bulk-based superconducting electrical motors has been done with superconducting materials in the rotor only, due to the difficulty in machining the material into the conventional coil shape. As part of the design of a superconducting induction motor with superconductors in both rotor and stator, we made a disk-shaped rotor from the same YBCO bulks that we use to fabricate ceramic coils in constructing a modular stator for a biphasic axial flux motor, and studied this rotor’s working behaviour. To this end we constructed a system to simulate the working environment of a YBCO disk within the motor, and measured the magnetic field in the disk and the speed-torque characteristic.

  16. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  17. Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Kankam, M. David

    1997-01-01

    For a decade, induction motor drive-based electrical actuators have been under investigation as potential replacement for the conventional hydraulic and pneumatic actuators in aircraft. Advantages of electric actuator include lower weight and size, reduced maintenance and operating costs, improved safety due to the elimination of hazardous fluids and high pressure hydraulic and pneumatic actuators, and increased efficiency. Recently, the emphasis of research on induction motor drives has been on sensorless vector control which eliminates flux and speed sensors mounted on the motor. Also, the development of effective speed and flux estimators has allowed good rotor flux-oriented (RFO) performance at all speeds except those close to zero. Sensorless control has improved the motor performance, compared to the Volts/Hertz (or constant flux) controls. This report evaluates documented schemes for speed sensorless drives, and discusses the trends and tradeoffs involved in selecting a particular scheme. These schemes combine the attributes of the direct and indirect field-oriented control (FOC) or use model adaptive reference systems (MRAS) with a speed-dependent current model for flux estimation which tracks the voltage model-based flux estimator. Many factors are important in comparing the effectiveness of a speed sensorless scheme. Among them are the wide speed range capability, motor parameter insensitivity and noise reduction. Although a number of schemes have been proposed for solving the speed estimation, zero-speed FOC with robustness against parameter variations still remains an area of research for speed sensorless control.

  18. Augmenting Plasticity Induction in Human Motor Cortex by Disinhibition Stimulation.

    PubMed

    Cash, Robin F H; Murakami, Takenobu; Chen, Robert; Thickbroom, Gary W; Ziemann, Ulf

    2016-01-01

    Cellular studies showed that disinhibition, evoked pharmacologically or by a suitably timed priming stimulus, can augment long-term plasticity (LTP) induction. We demonstrated previously that transcranial magnetic stimulation evokes a period of presumably GABA(B)ergic late cortical disinhibition (LCD) in human primary motor cortex (M1). Here, we hypothesized that, in keeping with cellular studies, LCD can augment LTP-like plasticity in humans. In Experiment 1, patterned repetitive TMS was applied to left M1, consisting of 6 trains (intertrain interval, 8 s) of 4 doublets (interpulse interval equal to individual peak I-wave facilitation, 1.3-1.5 ms) spaced by the individual peak LCD (interdoublet interval (IDI), 200-250 ms). This intervention (total of 48 pulses applied over ∼45 s) increased motor-evoked potential amplitude, a marker of corticospinal excitability, in a right hand muscle by 147% ± 4%. Control experiments showed that IDIs shorter or longer than LCD did not result in LTP-like plasticity. Experiment 2 indicated topographic specificity to the M1 hand region stimulated by TMS and duration of the LTP-like plasticity of 60 min. In conclusion, GABA(B)ergic LCD offers a powerful new approach for augmenting LTP-like plasticity induction in human cortex. We refer to this protocol as disinhibition stimulation (DIS). PMID:25100853

  19. Inductance Calculation and New Modeling of a Synchronous Reluctance Motor Using Flux Linkages

    NASA Astrophysics Data System (ADS)

    Nashiki, Masayuki; Inoue, Yoshimitu; Kawai, Youichi; Okuma, Shigeru

    New modeling of a synchronous reluctance motor SynRM which has non-linear magnetic characteristics is proposed. And a control method of the SynRM using the new model is developed. The new model is based on the inductance data table or the flux linkage data table which is calculated with the flux linkages of the SynRM at each current (id, iq). Detailed calculation method of the inductances is described. The calculated torque TA with the inductance data table is compared with the torque Tfem which is calculated by FEM and the difference is less than 5% at the rated torque. Therefore the accuracy of the new model is certified. And the same method is applicable to an interior permanent magnet synchronous motor IPMSM. The high performance motor control is realized. The exact current commands (id, iq), the exact voltage feed-forward commands (FFd, FFq) and the adaptive current loop gain (Gd, Gq) are obtained using the FEM data of the motor.

  20. Diagnostics of an induction-motor rotor by the spectral analysis of stator currents

    NASA Astrophysics Data System (ADS)

    Weinreb, K.

    2013-12-01

    A method for achieving more efficient revealing and more unambiguous evaluation of various kinds of defects in the induction-motor (IM) rotor, which is based on changes occurring in the characteristic signs of the spectrum of the stator current, is presented. The results and analysis of measurements performed for artificially specified cases of faults in the rotor of a small-capacity IM are presented.

  1. Stability synthesis of control system in current fed inverter driven induction motor

    SciTech Connect

    Veda, R.; Irisa, T.; Ito, T.; Mochizuki, T.; Sonoda, T.

    1983-01-01

    This paper presents a new method of synthesizing a stabilizing control system in current fed inverter driven induction motor (CFIDIM). The method is focused on rotor dynamics and a concept of ''damping torque coefficient (DTC)'' is introduced concerning the electrical torque. At first the control system is synthesized on the assumption that an induction motor is driven by an ideally controllable current source. Then perturbed linearized technique indicates that the system can be stabilized if the stator current or frequency is controlled so as to make the DTC positive by feeding back a signal composed of rotor speed. Next, based on this fact, an approach of synthesizing the converter output voltage is presented under a fixed stator frequency. This result clarifies that the stable operation can be achieved by controlling the voltage in proportion to the acceleration of rotor speed or the deviation of electrical torque. These analytical results are verified with laboratory field tests.

  2. Adaptative Variable Structure Control for an Online Tuning Direct Vector Controlled Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Lasaad, Sbita; Dalila, Zaltni; Naceurq, Abdelkrim Mohamed

    This study demonstrates that high performance speed control can be obtained by using an adaptative sliding mode control method for a direct vector controlled Squirrel Cage Induction Motor (SCIM). In this study a new method of designing a simple and effective adaptative sliding mode rotational speed control law is developed. The design includes an accurate sliding mode flux observation from the measured stator terminals and rotor speed. The performance of the Direct Field-Orientation Control (DFOC) is ensured by online tuning based on a Model Reference Adaptative System (MRAS) rotor time constant estimator. The control strategy is derived in the sense of Lyapunov stability theory so that the stable tracking performance can be guaranteed under the occurrence of system uncertainties and external disturbances. The proposed scheme is a solution for a robust and high performance induction motor servo drives. Simulation results are provided to validate the effectiveness and robustness of the developed methodology.

  3. A novel sliding-mode control of induction motor using space vector modulation technique.

    PubMed

    Fu, Tian-Jun; Xie, Wen-Fang

    2005-10-01

    This paper presents a novel sliding-mode control method for torque control of induction motors. The control principle is based on sliding-mode control combined with space vector modulation technique. The sliding-mode control contributes to the robustness of induction motor drives, and the space vector modulation improves the torque, flux, and current steady-state performance by reducing the ripple. The Lyapunov direct method is used to ensure the reaching and sustaining of sliding mode and stability of the control system. The performance of the proposed system is compared with those of conventional sliding-mode controller and classical PI controller. Finally, computer simulation results show that the proposed control scheme provides robust dynamic characteristics with low torque ripple. PMID:16294775

  4. Speed sensorless hybrid vector controlled induction motor drive

    SciTech Connect

    Bose, B.K.; Simoes, M.G.; Crecelius, D.R.; Rajashekara, K.; Martin, R.

    1995-12-31

    The paper describes a speed and flux sensorless vector-controlled induction motor drive primarily aimed for electric vehicle type applications. The stator flux oriented drive starts at zero speed in indirect vector control mode, transitions to direct vector control mode as the speed develops, and then transitions back to indirect vector control at zero speed. The vector control uses stator flux orientation in both indirect and direct vector control modes with the stator resistance variation compensated by measurement of stator temperature. The problem of integration at low stator frequency is solved by cascaded low pass filters with programmable time constants. The control strategy of the four-quadrant drive has been analyzed, validated by simulation study, and finally evaluated by experimental study on a laboratory 5 hp drive system.

  5. Dynamic Performance of Subway Vehicle with Linear Induction Motor System

    NASA Astrophysics Data System (ADS)

    Wu, Pingbo; Luo, Ren; Hu, Yan; Zeng, Jing

    The light rail vehicle with Linear Induction Motor (LIM) bogie, which is a new type of urban rail traffic tool, has the advantages of low costs, wide applicability, low noise, simple maintenance and better dynamic behavior. This kind of vehicle, supported and guided by the wheel and rail, is not driven by the wheel/rail adhesion force, but driven by the electromagnetic force between LIM and reaction plate. In this paper, three different types of suspensions and their characteristic are discussed with considering the interactions both between wheel and rail and between LIM and reaction plate. A nonlinear mathematical model of the vehicle with LIM bogie is set up by using the software SIMPACK, and the electromechanical model is also set up on Simulink roof. Then the running behavior of the LIM vehicle is simulated, and the influence of suspension on the vehicle dynamic performance is investigated.

  6. Forward and reverse control system for induction motors

    DOEpatents

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  7. Vibration of Induction Motor Rotor in Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Iwata, Yoshio; Sato, Hidenori; Komatsuzaki, Toshihiko; Saito, Takuhiro

    The rotor vibration of two-pole induction motor with rotating magnetic field has been investigated. The vibration is measured at any relative location of the stator and the rotor with various power supply frequencies in the experiment and is analyzed in consideration of mechanical factors of the rotor. The following conclusion is obtained through the experiment and the analysis; (1) 2ω vibration of twice the power supply frequency ω is generated because of offset between the stator center and the gyrational center of the rotor. (2) Two vibrations of ω(1-s) and ω(1+s) where s is slip ratio are generated because of the rotor unbalance or the disagreement between the gyrational center and geometrical center of the rotor. (3) An unstable vibration is predicted in the analysis when the power supply frequency is equal to natural frequency of the rotor, however, the unstable vibration was not generated in the experiment because of the damping.

  8. Analytical analysis of single- and three-phase induction motors

    SciTech Connect

    Davey, K.R.

    1998-09-01

    The analysis of single and multiphase induction motors continues to represent a challenge to researchers in computational electromagnetics due to the presence of r{Omega} x B electric fields. This contribution cannot be inserted into the Green`s function for boundary element codes; finite difference and finite element approaches are forced to hard code these effects, compensating at high speeds with upwinding techniques. The direct computation of these affects using transfer relations in a linear environment offers an analytical backdrop both for benchmark testing numerical codes and for design assessment criteria. In addition to torque-speed predictions, the terminal relations and total power dissipation in the rotor are computed for an exposed winding three-phase and single-phase machine.

  9. Induction motor control system with voltage controlled oscillator circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J.; Currie, J. R.; Reid, H., Jr. (Inventor)

    1973-01-01

    A voltage controlled oscillator circuit is reported in which there are employed first and second differential amplifiers. The first differential amplifier, being employed as an integrator, develops equal and opposite slopes proportional to an input voltage, and the second differential amplifier functions as a comparator to detect equal amplitude positive and negative selected limits and provides switching signals which gate a transistor switch. The integrating differential amplifier is switched between charging and discharging modes to provide an output of the first differential amplifier which upon the application of wave shaping provides a substantially sinusoidal output signal. A two phased version with a second integrator provides a second 90 deg phase shifted output for induction motor control.

  10. Sensorless Detection of Induction Motor Rotor Faults Using the Clarke Vector Approach

    NASA Astrophysics Data System (ADS)

    Vaimann, Toomas; Kallaste, Ants; Kilk, Aleksander

    2011-01-01

    Due to their rugged build, simplicity and cost effective performance, induction motors are used in a vast number of industries, where they play a significant role in responsible operations, where faults and downtimes are either not desirable or even unthinkable. As different faults can affect the performance of the induction motors, among them broken rotor bars, it is important to have a certain condition monitoring or diagnostic system that is guarding the state of the motor. This paper deals with induction motor broken rotor bars detection, using Clarke vector approach.

  11. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    SciTech Connect

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-12

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  12. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  13. Loss Calculation of Induction Motors Considering Harmonic Electromagnetic Fields in Stator and Rotor

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi

    A method of loss calculation for induction motors is proposed. The combined 3D-2D time stepping finite element analysis is carried out to obtain the copper loss and the time-variation of the magnetic field in the motor. The iron loss is calculated approximately considering the time-variation of the magnetic field direction and the minor hysteresis loops caused by the time-harmonic fields using practical computer resources. The proposed method is applied to 4 types of induction motors, which are the solid rotor induction motors with/without slot and the cage induction motors with/without skew. The measured and the calculated total losses and the iron losses agree well in all cases. The differences of the loss distributions of each motor are also compared and investigated.

  14. MRAS state estimator for speed sensorless ISFOC induction motor drives with Luenberger load torque estimation.

    PubMed

    Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed

    2016-03-01

    This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor. PMID:26775088

  15. Variable frequency inverter for ac induction motors with torque, speed and braking control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  16. Field assessment of induction motor efficiency through air-gap torque

    SciTech Connect

    Hsu, J.S.; Sorenson, P.L.

    1995-11-01

    Induction motors are the most popular motors used in industry. This paper further suggests the use of air-gap torque method to evaluate their efficiency and load changes. The fundamental difference between Method E and the air-gap torque method is discussed. Efficiency assessments conducted on induction motors under various conditions show the accuracy and potential of the air-gap torque method.

  17. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, H.E.; Lucy, E.

    1998-02-03

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  18. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, Harvey E.; Lucy, Eric

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  19. Smart Technique for Induction Motors Diagnosis by Monitoring the Power Factor Using Only the Measured Current

    NASA Astrophysics Data System (ADS)

    Shnibha, R. A.; Albarabar, A. S.

    2012-05-01

    This paper is concerned with accurate, early and reliable induction motor IM fault detection and diagnosis using an enhanced power parameter measurement technique. IM protection devices typically monitor the motor current and/or voltage to provide the motor protection from e.g. current overload, over/under voltage, etc. One of the interesting parameters to monitor is the operating power factor (PF) of the IM which provides better under-load protection compared to the motor current based approaches. The PF of the motor is determined by the level of the current and voltage that are drawn, and offers non-intrusive monitoring. Traditionally, PF estimation would require both voltage and the current measurements to apply the displacement method. This paper will use a method of determining the operating PF of the IM using only the measured current and the manufacturer data that are typically available from the nameplate and/or datasheet for IM monitoring. The novelty of this work lies in detecting very low phase imbalance related faults and misalignment. Much of the previous work has dealt with detecting phase imbalance faults at higher degrees of severity, i.e. voltage drops of 10% or more. The technique was tested by empirical measurements on test rig comprised a 1.1 kW variable speed three phase induction motor with varying output load (No load, 25%, 50%, 75% and 100% load). One common faults was introduced; imbalance in one phase as the electrical fault The experimental results demonstrate that the PF can be successfully applied for IM fault diagnosis and the present study shows that severity fault detection using PF is promising. The proposed method offers a potentially reliable, non-intrusive, and inexpensive CM tool which can be implemented with real-time monitoring systems

  20. Comparison of Alternative Equivalent Circuits of Induction Motor with Real Machine Data

    NASA Astrophysics Data System (ADS)

    Bradna, J.; Bauer, J.; Fligl, S.; Hlinovsky, V.

    The algorithms based on separated control of the motor flux and torque is used in order to gain the maximum performance from the induction machine. To push the efficiency and dynamics limits of the IM to its limits mostly FOC or DTC control strategies are used. Both are based on the knowledge of the hardly measurable variable-machine flux. To obtain the information about inner machine flux models based on the machine equivalent circuit are mostly used. Therefore the accuracy of the equivalent circuits has direct influence on the accuracy of the machine control. To reduce the complexity of the mathematical model the resistances and inductances are concentrated to one component and three phase winding is assumed to be symmetrical. In order to design control strategy for the induction motor, system equations and equivalent circuit must be established at first. This paper examines and compares some of the issues of adequate machine modeling and attempts to provide a firmer basis for selection of an appropriate model and to confirm or disprove the equivalence of different approaches. The results of the IM model run up are then compared to the results obtained from the measurements on the real machine and the equivalency is discussed.

  1. Rotor resistance estimator design for indirect field-oriented induction motors

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhui; Wu, Zhong

    2006-11-01

    Exact information of the rotor resistance is the key to realize high-performance indirect field-oriented control of the induction motors. However, rotor resistance is time-varying when the motor works. Therefore, a new estimator of the rotor resistance is designed for the indirect field-oriented induction motors to attenuate the effect of the rotor resistance uncertainty. This estimator is derived from the steady-state procedure of the rotor flux using Lyapunov stability theory. Furthermore, this estimator is shown to be able to minimize the steady-state error the rotor flux and improve the control performance of the induction motor drive effectively. Compared with the previous studies, this estimator has a simple form and is easy to implement. Simulation results of a certain IFOC induction motor indicate that the estimator presented above is feasible.

  2. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  3. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  4. An Inverter-Driven Induction Motor System with a Deadlock Breaking Capability

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takuto; Yoshida, Toshiya; Miyashita, Osamu

    Induction motors are very widely used in various industrial applications. In semiconductor manufacturing processes, deadlock failure of pumps may occur by the adhering of glass material contained in the gas to the rotor. This can lead to the shutdown of the manufacturing plant. Therefore, a countermeasure to prevent deadlocking of a motor is required. This paper proposes a method for generating an impulse torque in an induction motor fed by an inverter. The proposed inverter circuit is composed of a conventional inverter and a few additional relays. The on-and-off control of the relays supplies an appropriate magnetizing current and a large torque current from the dc-link capacitor. In experiment, a 1.5-kW cage-type induction motor generated a torque that was approximately seven times larger than the rated torque of the motor. This large impulse torque is useful for breaking the motor deadlock.

  5. A new diagnosis of broken rotor bar fault extent in three phase squirrel cage induction motor

    NASA Astrophysics Data System (ADS)

    Shi, Pu; Chen, Zheng; Vagapov, Yuriy; Zouaoui, Zoubir

    2014-01-01

    This paper proposes a new induction motor broken bar fault extent diagnostic approach under varying load conditions based on wavelet coefficients of stator current in a specific frequency band. In this paper, winding function approach (WFA) is used to develop a mathematical model to provide indication references for parameters under different load levels and different fault cases. It is shown that rise of number of broken bars and load levels increases amplitude of the particular side band components of the stator currents in faulty case. Stator current, rotor speed and torque are used to demonstrate the relationship between these parameters and broken rotor bar severity. An induction motor with 1, 2 and 3 broken bars and the motor with 3 broken bars in experiment at no-load, 50% and 100% load are investigated. A novel criterion is then developed to assess rotor fault severity based on the stator current and the rotor speed. Simulations and experimental results confirm the validity of the proposed approach.

  6. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  7. The right {mu}P simplifies using induction motors to propel electric cars

    SciTech Connect

    Baum, J.; Berringer, K.

    1994-03-31

    In electric vehicles (EVs), AC induction motors can provide variable speed at low cost. The most common method for controlling induction motors uses a 3-phase AC voltage-source inverter with sine-wave PWM (pulse width modulation). Because the motor`s speed and acceleration depend on amplitude as well as frequency, the inverter must produce sine waves of variable voltage and frequency. The authors describe how a single microcontroller can provide such control functions while generating PWM waveforms in which the modulation is sinusoidal.

  8. Influence analysis of structural parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Zheng, T. Q.; Zhang, W.; Fang, J.; Liu, Y. M.

    2011-11-01

    A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.

  9. The pulsed linear induction motor concept for high-speed trains

    SciTech Connect

    Turman, B.N.; Marder, B.M.; Rohwein, G.J.; Aeschliman, D.P.; Kelley, J.B.; Cowan, M.; Zimmerman, R.M.

    1995-06-01

    The SERAPBIM (SEgmented RAil PHased Induction Motor) concept is a linear induction motor concept which uses rapidly-pulsed magnetic fields and a segmented reaction rail, as opposed to low-frequency fields and continuous reaction rails found in conventional linear induction motors. These improvements give a high-traction, compact, and efficient linear motor that has potential for advanced high speed rail propulsion. In the SERAPBIM concept, coils on the vehicle push against a segmented aluminum rail, which is mounted on the road bed. Current is pulsed as the coils cross an edge of the segmented rail, inducing surface currents which repel the coil. The coils must be pulsed in synchronization with the movement by reaction rail segments. This is provided by a sense-and-fire circuit that controls the pulsing of the power modulators. Experiments were conducted to demonstrate the feasibility of the pulsed induction motor and to collect data that could be used for scaling calculations. A 14.4 kg aluminum plate was accelerated down a 4 m track to speeds of over 15 m/sec with peak thrust up to 18 kN per coilset. For a trainset capable of 200 mph speed, the SERAPHIM concept design is based on coils which are each capable of producing up to 3.5 kN thrust, and 30 coil pairs are mounted on each power car. Two power cars, one at each end of the train, provide 6 MW from two gas turbine prime power units. The thrust is about 210.000 N and is essentially constant up to 200 km/hr since wheel slippage does not limit thrust as with conventional wheeled propulsion. A key component of the SERAPHIM concept is the use of passive wheel-on-rah support for the high speed vehicle. Standard steel wheels are capable of handling over 200 mph. The SERAPHIM cost is comparable to that for steel-wheel high-speed rail, and about 10% to 25% of the projected costs for a comparable Maglev system.

  10. Internal Model Controller of an ANN Speed Sensorless Controlled Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Hamed Mouna, Ben; Lassaad, Sbita

    This study deals with the performance analysis and implementation of a robust sensorless speed controller. The robustness is guaranteed by the use of the Internal Model Controller (IMC). An intelligent algorithm is evolved to eliminate the mechanical speed. It is based on the Artificial Neural Network (ANN) principle. Verification of the proposed robust sensorless controller is provided by experimental realistic tests on a scalar controlled induction motor drive. Sensorless robust speed control at low speeds and in field weakening region (high speeds) is studied in order to show the robustness of the speed controller under a wide range of load.

  11. Influence of the inverter characteristics on the iron losses in PWM inverter fed induction motors

    SciTech Connect

    Boglietti, A.; Ferraris, P.; Lazzari, M.; Pastorelli, M.

    1995-12-31

    In this paper the authors deal with the effects of the inverter characteristics on the iron losses increment in induction motors fed by PWM controlled converters. Laboratory tests based on no-load input power measurement were carried out and in order to avoid the influence of mechanical losses and rotor copper losses, difficult to be measured or computed, a special test bench with an unconventional test device was employed. In particular the influence of the following inverter parameters are considered: modulation index; modulation waveform; switching frequency. Complete experimental results are presented and discussed.

  12. Rotor Speed Detection Method for Vector Control of Induction Motor without Speed Sensor Utilizing Slot Harmonics

    NASA Astrophysics Data System (ADS)

    Kiyotake, Hirofumi; Shinohara, Katsuji; Yamamoto, Kichiro

    Speed sensorless vector controlled induction motor drives are the standard choice in many industrial applications, but this can hardly control torque and rotor speed at low speed. Recently, a method based on the high-frequency signal injection has been studied. This paper presents a method for suppressing the effects of the saturation saliency by using high pass filter, and a new approach to estimate the rotor speed. The effectiveness of these methods are demonstrated through experimental results showing both good suppression of saturation harmonics and good sensorless speed control at low speed.

  13. Modelling and simulation of voltage inverter fed induction motor with stator flux orientation

    SciTech Connect

    Rafajlovski, G.; Ratz, E.; Manov, D.; Mircevski, S.

    1995-12-31

    This paper deals with the application of a non-linear control technique in a three phase inverter-fed induction motor. Also mathematical model for dynamic analysis of an induction motor and voltage controlled inverter in stator coordinate system is described. Digital simulation has been utilized to prove the performance and simplicity of the induction motor mathematical formulation. These models can be easily transformed for freely chosen rotating frame of reference. In this control system of stator flux controlled induction motor the instantaneous values of the flux and torque are calculated from only the primary current variables. By using instantaneous voltage space vectors with selection of optimum inverter switching modes employing vector modulation technique, the direct control of torque and stator flux is achieved.

  14. Optimal efficiency vector control of induction motor drive system for drum washing machine

    NASA Astrophysics Data System (ADS)

    Lee, Won Cheol; Yu, Jae Sung; Jang, Bong An; Won, Chung Yuen

    2005-12-01

    In home appliances, electric energy is optimally controlled by using power electronics technology, creating a comfortable environment in terms of energy saving, low sound generation, and reduced time consumption. Usually simplicity and robustness make the three phase induction motor attractive for use in domestic appliance, including washing machines. Two main types of domestic washing machine have evolved. We focus on efficiency of the front loading machine favored in Europe, which has a horizontal drum axis. This paper presents the control algorithm for optimal efficiency drives of an induction motor for drum washing machine. This system uses a simple model of the induction motor that include equations of the iron losses. The proposed optimal efficiency control algorithm calculates commands of the reference torque and flux currents for the flux oriented control of the induction motor. The proposed algorithm is verified through digital simulation.

  15. A new direct torque control scheme for induction motors using linear state feedback

    SciTech Connect

    Kandianis, A.; Manias, S.N.; Griva, G.; Profumo, F.

    1995-12-31

    In this paper a new Direct Torque Control (DTC) scheme for induction motor drives is described, based on the linear state feedback method with dynamic output feedback. The DTC has been shown to be a good solution in torque controlled drives applications when the speed control is not required (e.g. traction drives for electric vehicles). In such cases, the torque command comes directly from the user input. By considering the torque and flux as the outputs of the linearized motor model, it is possible to design an optimum controller with constant gain state feedback and dynamic output feedback through an integral term. The design procedure of the proposed control scheme is described and the simulation results are presented to show the overall performance of the system.

  16. Propulsive characteristics of a novel linear hybrid motor with both induction and synchronous operations

    SciTech Connect

    Jeon, W.J.; Katoh, S.; Iwamoto, T.; Kamiya, Y.; Onuki, T.

    1999-09-01

    This paper treats a novel linear hybrid motor (LHM) by both induction and synchronous operations. The proposed motor consists of one pair of linear synchronous motors (LSMs) and a linear induction motor (LIM). The primary-cores of both LSM and LIM have a common ring winding, and the secondary solid-conductor is arranged in both LIM and the interpole space of LSM. The feature of the motor is that the undesirable vertical force in LSM is offset by the symmetrical double-sided construction and the secondary is capable of self-starting by induction operation. From the investigation by the three-dimensional finite element analysis and experiment, the authors derive an optimal exciting condition for starting, and then verify that the proposed LHM is effective for practical use.

  17. Three-phase induction motor integrated with a magnetic frequency changer

    NASA Astrophysics Data System (ADS)

    Goleman, Ryszard

    2003-01-01

    The new solution of the high-speed induction motor model is presented. The basic structural part of the motor is magnetic circuit with non-linear elements in which the third harmonic of the flux is generated. The finite element method is used to solve the coupled equations for the magnetic field, the stator windings and conductors of the rotor.

  18. Implementation of damped-oscillation crane control for existing ac induction motor-driven cranes

    SciTech Connect

    Noakes, M.W.; Kress, R.L.; Appleton, G.T.

    1993-04-01

    The Oak Ridge National Laboratory (ORNL) has implemented damped-oscillation crane control on one of its existing ac induction motor-driven facility overhead cranes. The purpose of this engineering grade test has been to determine feasibility, determine control and interfacing specifications, and establish the capability of newly available ac motor-control hardware. A flux vector inverter drive is used in the initial demonstration to investigate acceptability for swing-free crane control. Motor performance and restrictions are also examined. Control hardware design is based upon the Environmental Restoration and Waste Management (ER&WM) Robotics Technology Development Program (RTDP) standards. This includes the use of the VME bus and Motorola 680X0-based CPU boards for the hardware and UNIX and VxWorks for the software. However, smaller, cheaper, and more simple embedded controller design constraints are also considered in order to make the technology more attractive for general industrial use. Theoretical background, specific implementation, and recommendations are presented in this paper.

  19. Implementation of damped-oscillation crane control for existing ac induction motor-driven cranes

    SciTech Connect

    Noakes, M.W.; Kress, R.L. ); Appleton, G.T. . School of Electrical Engineering)

    1993-01-01

    The Oak Ridge National Laboratory (ORNL) has implemented damped-oscillation crane control on one of its existing ac induction motor-driven facility overhead cranes. The purpose of this engineering grade test has been to determine feasibility, determine control and interfacing specifications, and establish the capability of newly available ac motor-control hardware. A flux vector inverter drive is used in the initial demonstration to investigate acceptability for swing-free crane control. Motor performance and restrictions are also examined. Control hardware design is based upon the Environmental Restoration and Waste Management (ER WM) Robotics Technology Development Program (RTDP) standards. This includes the use of the VME bus and Motorola 680X0-based CPU boards for the hardware and UNIX and VxWorks for the software. However, smaller, cheaper, and more simple embedded controller design constraints are also considered in order to make the technology more attractive for general industrial use. Theoretical background, specific implementation, and recommendations are presented in this paper.

  20. EFFICIENCY OPTIMIZATION CONTROL OF AC INDUCTION MOTORS: INITIAL LABORATORY RESULTS

    EPA Science Inventory

    The report discusses the development of a fuzzy logic, energy-optimizing controller to improve the efficiency of motor/drive combinations that operate at varying loads and speeds. his energy optimizer is complemented by a sensorless speed controller that maintains motor shaft rev...

  1. EFFICIENCY OPTIMIZATIN CONTROL OF AC INDUCTION MOTORS: INITIAL LABORATORY RESULTS

    EPA Science Inventory

    The report discusses the development of a fuzzy logic, energy-optimizing controller to improve the efficiency of motor/drive combinations that operate at varying loads and speeds. This energy optimizer is complemented by a sensorless speed controller that maintains motor shaft re...

  2. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data

    NASA Astrophysics Data System (ADS)

    Ocak, Hasan; Loparo, Kenneth A.

    2004-05-01

    This paper presents two separate algorithms for estimating the running speed and the bearing key frequencies of an induction motor using vibration data. Bearing key frequencies are frequencies at which roller elements pass over a defect point. Most frequency domain-based bearing fault detection and diagnosis techniques (e.g. envelope analysis) rely on vibration measurements and the bearing key frequencies. Thus, estimation of the running speed and the bearing key frequencies are required for failure detection and diagnosis. The paper also incorporates the estimation algorithms with the most commonly used bearing fault detection technique, high-frequency demodulation, to detect bearing faults. Experimental data were used to verify the validity of the algorithms. Data were collected through an accelerometer measuring the vibration from the drive-end ball bearing of an induction motor (Reliance Electric 2HP IQPreAlert)-driven mechanical system. Both inner and outer race defects were artificially introduced to the bearing using electrical discharge machining. A linear vibration model was also developed for generating simulated vibration data. The simulated data were also used to validate the performance of the algorithms. The test results proved the algorithms to be very reliable.

  3. Thermal and vibration dynamic analysis of an induction motor using optical fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Sousa, Kleiton d. M.; Dreyer, Uilian J.; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2015-09-01

    In this paper it is presented the results of temperature and vibration measurements in a Three-phase Induction Motor (TIM) running at no-load condition. Vibration and temperature analysis are the most successful techniques used for condition monitoring of induction motors. The vibration is measured using two FBGs installed inside of the motor between two subsequent stator teeth. The motor spectrum of vibration when power is at 60 Hz presents the frequencies 60 Hz, 120 Hz, 180 Hz, and 240 Hz as theoretically expected. For the temperature measurement two FBGs are encapsulated in an alumina tube fixed along the stator. The results show 0.9°C difference between the two FBG caused by the motor ventilation nearer of one FBG. These measurements can be used to determine TIM parameters and still be predictive maintenance tool.

  4. Adaptive control schemes for improving dynamic performance of efficiency-optimized induction motor drives.

    PubMed

    Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P

    2015-07-01

    Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. PMID:25820090

  5. Performance Evaluation and Slip Regulation Control of an Asymmetrical Parameter Type Two-Phase Induction Motor Drive Using a Three-Leg Voltage Source Inverter

    NASA Astrophysics Data System (ADS)

    Piyarat, Wekin; Kinnares, Vijit

    This paper presents a performance evaluation and a simple speed control method of an asymmetrical parameter type two-phase induction motor drive using a three-leg VSI (Voltage Source Inverter). The two-phase induction motor is adapted from an existing single-phase induction motor resulting in impedance unbalance between main and auxiliary windings. The unbalanced two-phase inverter outputs with orthogonal displacement based on a SPWM (Sinusoidal Pulse Width Modulation) method are controlled with appropriate amplitudes for improving the motor performance. Dynamic simulation of the proposed drive system is given. A simple speed controller based on a slip regulation method is designed. The overall system is implemented on a DSP (Digital Signal Processor) board. The validity of the proposed system is verified by simulation and experimental results.

  6. Fault analysis for condition monitoring of induction motors

    NASA Astrophysics Data System (ADS)

    Nandi, Subhasis

    Recently, research has picked up a fervent pace in the area of fault diagnosis of electrical machines. Like adjustable speed drives, fault prognosis has become almost indispensable. The manufacturers of these drives are now keen to include diagnostic features in the software to decrease machine down time and improve salability. Prodigious improvement in signal processing hardware and software has made this possible. Primarily, these techniques depend upon locating specific harmonic components in the line current, also known as motor current signature analysis (MCSA). These harmonic components are usually different for different types of faults. However, with multiple faults or different varieties of drive schemes, MCSA can become an onerous task as different types of faults and time harmonics may end up generating similar signatures. Thus, other signals such as speed, torque, noise, vibration, etc., are also explored for their frequency contents. Sometimes, altogether different techniques such as thermal measurements, chemical analysis, etc., are also employed to find out the nature and the degree of the fault. It is indeed evident that this area is vast in scope. Going by the present trend, human involvement in the actual fault detection decision making is slowly being replaced by automated tools such as expert systems, neural networks, fuzzy logic based systems; to name a few. However, this cannot be achieved without detailed fault analysis and subsequent recognition of the fault pattern. Keeping this in mind, simulation studies of the broken bar and eccentricity related faults using MCSA have been taken up. Also, a common theoretical basis for the different types (static, dynamic and mixed) of eccentricity related faults which give different signatures for different pole and rotor bar combinations has been developed. This will be of great importance both from fault diagnosis as well as sensorless drive applications' viewpoint. Finally, the insight gained from

  7. Optical fiber method for detection of single-phasing faults in three-phase induction motors used in underground mines

    NASA Astrophysics Data System (ADS)

    Kumar, Virendra; Chandra, Dinesh

    1998-09-01

    In this paper, a brief description of fiber optic based system for detection of single-phasing faults in 3-phase induction motors used in underground coal mines has been given. The system has an alarm facility which start sounding in absence of power. It also consists of three light emitting diodes of different colors to show the absence of power in a particular phase along with the alarm. Optical fiber, being a dielectric, non-metallic, and non-sparking is an intrinsically safe media and is ideally suited for single phasing faults detection of 3-phase motors used in underground mines or in any other hazardous environment.

  8. A thermal network model for induction motors of hermetic reciprocating compressors

    NASA Astrophysics Data System (ADS)

    Dutra, T.; Deschamps, C. J.

    2015-08-01

    This paper describes a simulation model for small reciprocating compressors with emphasis on the electrical motor modelling. Heat transfer is solved through algebraic equations derived from lumped thermal energy balances applied to the compressor components. Thermal conductances between the motor components are characterized via a thermal network model. The single-phase induction motor is modelled via an equivalent circuit, allowing predictions for the motor performance and distributed losses. The predicted temperature distribution is used to evaluate the stator and rotor windings resistances. The thermal and electric models are solved in a coupled manner with a model for the compression cycle. Predictions of temperature distribution, motor efficiency, as well as isentropic and volumetric efficiencies, are compared with experimental data at different operating conditions. The model is then applied to analyse the motor temperature as a function of input voltage and stator wire diameter.

  9. Evaluation of half wave induction motor drive for use in passenger vehicles

    NASA Technical Reports Server (NTRS)

    Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.

    1985-01-01

    Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.

  10. Heat transfer enhancement in the unfinned frame of an externally cooled induction motor

    SciTech Connect

    Jeon, C.S.; Yoon, M.K.; Kauh, S.K.

    2000-02-01

    This article describes an experimental investigation to study the effect of guide vanes on the heat transfer coefficient over the unfinned frame of an externally cooled induction motor. Guide vanes with various heights and spacings have been tested. In general, the guide vanes modify the air flow over the frame, hence increasing the heat transfer coefficient. An optimum heat transfer case is found, for which the average heat transfer coefficient is 70% higher than for the case without guide vanes. The velocity distributions of the air flow are measured for comparison with the heat transfer coefficient fields. The location of the terminal box is optimized, resulting in a 1 C drop in the average temperature rise of the coil motor. Finally, the results of this research are applied to a real induction motor and its average coil temperature becomes 9 C lower than that of a commercial motor.

  11. Constant slip control of induction motor at light load

    SciTech Connect

    Feng Xiaogang; Chen Boshi

    1996-12-31

    The most widely used AC motor drives adopt Rated Flux Control (RFC) method. However, at light load condition, RFC causes excessive iron loss, thus the conversion efficiency of the drive system impaired. This paper introduces a new control approach--Constant Slip Control (CSC), which minimize the stator current at light load, so that the iron loss and reactive power consumption of the motor are decreased. Simulation results compare the power consumption of CSC with that of RFC in order to validate the theoretical development. In the last part, realization of CSC is discussed.

  12. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  13. Fault diagnosis in induction motors using radial magnetic field measurement with an antenna

    NASA Astrophysics Data System (ADS)

    Belkhayat, D.; Romary, R.; El Adnani, M.; Corton, R.; Brudny, J. F.

    2003-09-01

    In this paper the emf induced in a search coil is measured in order to detect faults in an induction motor. Anomalous operations caused by a broken rotor bar or a faulty stator cutting phase are analysed. Starting from a theoretical analysis of the radial field spectrum associated with these faults, the measurement of the corresponding emf in the search antenna is examined. The saturation and harmonic components of the permeance produced by the slotting effect are taken into account. Their interactions are analysed, allowing the identification of the frequencies which are of interest for the detection of stator cutting phase faults in a working induction motor.

  14. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  15. A high-speed induction motor making use of the third harmonic of the magnetic flux

    NASA Astrophysics Data System (ADS)

    Goleman, Ryszard

    1994-05-01

    This paper indicates some possibilities of construction of high-speed induction motors taking advantage of the magnetic flux third harmonic due to a process of magnetization of nonlinear magnetic circuits. Configurations of magnetic frequency triplers, which can be used as basic stator structures and generate a distorted flux, are presented. The paper also describes an experimental high-speed induction motor supplied from a single-phase source via a magnetic frequency tripler that make possible to obtain a rotating field having a synchronous speed equal to 9000 rpm at a supply voltage angular frequency of 314 rd.

  16. Analytical investigation of torque and flux ripple in induction motor control scheme using wavelet network

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Zhang, Hong; Qin, Aili

    2008-10-01

    An effective scheme of parameter identification based on wavelet neural network is presented for improving dynamic performance of direct torque control system. The wavelet transform is localized in time-frequency domains, yielding wavelet coefficients at different scales. This gives the wavelet transform much greater compact support for analysis of signals with localized transient components. The input nodes of wavelet neural network are current error and change in the current error and the output node is the stator resistance error. To fulfill the network structure parameter, the improved least squares algorithm is used for initialization. The stator flux vector and electromagnetic torque are acquired accurately by the parameter estimator once the instants are detected. This function can make induction motor operate well in low region and can optimize the inverter control strategy. The simulation results show that the proposed method can efficiently reduce the torque ripple and current ripple.

  17. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  18. Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors.

    PubMed

    Camarena-Martinez, David; Valtierra-Rodriguez, Martin; Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  19. Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors

    PubMed Central

    Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  20. Prediction of induction motor line current spectra from design data

    NASA Astrophysics Data System (ADS)

    Guldemir, Hanifi

    The thesis concentrates on the estimation of the magnitude and frequency of the spectral components of line current that may be used for sensorless speed detection. The prediction method uses a mixture of permeance-mmf, finite element and reluctance mesh techniques to establish the air gap magnetic field. This traditional type of approach is chosen to maintain a visible link between cause and effect so enhancing understanding. The approach is enhanced by the use of slot permanence effects calculated by finite element techniques where saturation due to the current carrying conductors in the slots is incorporated. This is essential for closed slots. Further enhancements include examining slot permeance effects over one or more poles so that the influence of the spatial distribution of slot currents, and slot top saturation can be incorporated. The harmonic chain equivalent circuit is extensively modified to provide a vehicle for predicting the correct saturation conditions in a skewed machine and the correct winding currents for the field solutions. Rotor pole aliasing is introduced to explain the large number of independent speed harmonic terms found experimentally. Special equivalent circuits are introduced to enable these current harmonic to be predicted. A thorough experimental validation is then conducted of the model using a 30 kW experimental machine with adjustable eccentricity with rotors of different slotting form, slot number and skew to determine their effect on the speed dependent harmonic components. Very good agreement is demonstrated. Finally, the improved prediction model is used to provide information on the significance of saturation, skew, slot number and rotor eccentricity on the level of speed dependent harmonic signals. All of this information helps formulate important rules to assist in the choice of motors for satisfactory operation with sensorless speed control of drives using RSH. This in itself is an important extension to the knowledge

  1. Dual-circuit segmented rail phased induction motor

    DOEpatents

    Marder, Barry M.; Cowan, Jr., Maynard

    2002-01-01

    An improved linear motor utilizes two circuits, rather that one circuit and an opposed plate, to gain efficiency. The powered circuit is a flat conductive coil. The opposed segmented rail circuit is either a plurality of similar conductive coils that are shorted, or a plurality of ladders formed of opposed conductive bars connected by a plurality of spaced conductors. In each embodiment, the conductors are preferably cables formed from a plurality of intertwined insulated wires to carry current evenly.

  2. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  3. Concept for sleeve induction motor with 1-msec mechanical time constant

    NASA Technical Reports Server (NTRS)

    Wiegand, D. E.

    1968-01-01

    Conductive sleeve induction motor having a 1-msec mechanical time constant is used with solid-state devices to control all-electric servo power systems. The servomotor rotor inertia is small compared to the maximum force rating of the servo motion, permitting high no-load acceleration.

  4. Feature Extraction using Wavelet Transform for Multi-class Fault Detection of Induction Motor

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Konar, P.

    2014-01-01

    In this paper the theoretical aspects and feature extraction capabilities of continuous wavelet transform (CWT) and discrete wavelet transform (DWT) are experimentally verified from the point of view of fault diagnosis of induction motors. Vertical frame vibration signal is analyzed to develop a wavelet based multi-class fault detection scheme. The redundant and high dimensionality information of CWT makes it computationally in-efficient. Using greedy-search feature selection technique (Greedy-CWT) the redundancy is eliminated to a great extent and found much superior to the widely used DWT technique, even in presence of high level of noise. The results are verified using MLP, SVM, RBF classifiers. The feature selection technique has enabled determination of the most relevant CWT scales and corresponding coefficients. Thus, the inherent limitations of CWT like proper selection of scales and redundant information are eliminated. In the present investigation `db8' is found as the best mother wavelet, due to its long period and higher number of vanishing moments, for detection of motor faults.

  5. Temperature and Light Control of Three phase Induction Motor Speed Drive by PIC

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2010-06-01

    PIC is a family of Harvard architecture microcontrollers made by Microchip Technology, derived from the PIC1640 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to "Peripheral Interface Controller". PICs are popular with the developers and the hobbyists due to their low cost, wide availability, large user base, extensive collection of application notes, free development tools, and serial programming (and re-programming with flash memory) capability. In modern days, PIC microcontrollers are used in the industrial world to control many types of equipment, ranging from consumer to specialized devices. They have replaced older types of controllers, including microprocessors. Also, there is a growing need for off-line support of a computer's main processor. The demand is going to grow with more equipment uses more intelligence. In the engineering field for instance, PIC has brought a very positive impact in designing an automation control system and controlling industrial machineries. Accordingly, this paper shows the change in the motor speed by the use of PIC in accordance to the light and level of temperature. The project focuses on programming the PIC by embedded software that detects the temperature and light signals and send it to 3 phase induction motor of 240 volt. A theoretical analysis and the practical approach in achieving this work goal have proved that PIC plays an important role in the field of electronics control.

  6. An innovative direct self-control scheme for induction motor drives

    SciTech Connect

    Bonanno, F.; Consoli, A.; Raciti, A.; Testa, A.

    1997-09-01

    The paper presents a new direct self-control (DSC) scheme for induction motor drives using the stator voltage third harmonic component in order to estimate the air-gap flux and the torque as well as to synchronize the supply voltage vector. Compared to previous DSC schemes the new one is independent from any motor parameter variation, specifically on stator resistance thus showing better performances at low speeds. The paper starts with a quick review on standard DSC main features pointing out the influence of stator resistance variations on the flux and torque control. The new DSC scheme is then introduced and evaluated by simulations and experimental tests on a 1.5-kW induction motor drive.

  7. Influence analysis of structural parameters and operating parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.

    A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.

  8. Linearization Method for Starting Control of Speed-Sensorless Vector-Controlled Induction Motors

    NASA Astrophysics Data System (ADS)

    Fujinami, Kazuki; Kondo, Keiichiro

    A linearization method is proposed for controlling the start-up operation of a rotating induction motor. The dynamics of this motor are deteriorated when the starting operation is carried out at high frequencies. In this method, the characteristics of the method are analyzed to reveal that the aforementioned problem is caused by the low equivalent gain of the induced voltage during the rotor flux establishment. A method to compensate for the angle of the rotor-flux-induced voltage vector is proposed to overcome this problem. The proposed method is experimentally verified by a test set, and the influence of changes in the rotor resistance is analyzed.

  9. Evaluation of induction motor performance using an electronic power factor controller

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of reducing the losses in an induction motor by electronically controlling the time interval between the zero crossing of the applied voltage and the zero crossing of the armature current was evaluated. The effect on power losses and power factor of reducing the applied sinusoidal voltages below the rated value was investigated experimentally. The reduction in power losses was measured using an electronic controller designed and built at MSFC. Modifications to the MSFC controller are described as well as a manually controlled electronic device which does not require that the motor be wye connected and the neutral available. Possible energy savings are examined.

  10. Flywheel induction motor-generator for magnet power supply in small fusion device

    NASA Astrophysics Data System (ADS)

    Hatakeyma, S.; Yoshino, F.; Tsutsui, H.; Tsuji-Iio, S.

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  11. Flywheel induction motor-generator for magnet power supply in small fusion device.

    PubMed

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms). PMID:27131676

  12. Development of Voltage Sag Compensator and UPS using a Flywheel Induction Motor and an Engine Generator

    NASA Astrophysics Data System (ADS)

    Kato, Shuhei; Takaku, Taku; Sumitani, Hideo; Shimada, Ryuichi

    Flywheel energy storage systems are focused as uninterruptible power supplies (UPS) from the viewpoint of environmental friendliness and high durability performance. Using a low-speed and heavy flywheel, and a low-cost squirrel-cage induction motor/generator, two applications are proposed; 1) 11kW voltage sag compensator using a capacitor self-excited induction generator without semiconductor converters; 2) UPS composed of the flywheel system and an engine generator. From some experimental results, an ideal voltage sag compensator and UPS are realized by the low-technology flywheel system.

  13. Tuning the stator resistance of induction motors using artificial neural network

    SciTech Connect

    Cabrera, L.A.; Elbuluk, M.E.; Husain, I.

    1997-09-01

    Tuning the stator resistance of induction motors is very important, especially when it is used to implement direct torque control (DTC) in which the stator resistance is a main parameter. In this paper, an artificial network (ANN) is used to accomplish tuning of the stator resistance of an induction motor. The parallel recursive prediction error and backpropagation training algorithms were used in training the neural network for the simulation and experimental results, respectively. The neural network used to tune the stator resistance was trained on-line, making the DTC strategy more robust and accurate. Simulation results are presented for three different neural-network configurations showing the efficiency of the tuning process. Experimental results were obtained for the one of the three neural-network configuration. Both simulation and experimental results showed that the ANN have tuned the stator resistance in the controller to track actual resistance of the machine.

  14. Mixed eccentricity diagnosis in Inverter-Fed Induction Motors via the Adaptive Slope Transform of transient stator currents

    NASA Astrophysics Data System (ADS)

    Pons-Llinares, J.; Antonino-Daviu, J.; Roger-Folch, J.; Moríñigo-Sotelo, D.; Duque-Pérez, O.

    2014-10-01

    This paper researches the detection of mixed eccentricity in Inverter-Fed Induction Motors. The classic FFT method cannot be applied when the stator current captured is not in steady state, which is very common in these motors. Therefore, a transform able to detect the time-frequency evolutions of the components present in the transient signal captured must be applied. In order to optimize the result, a method to calculate the theoretical time-frequency evolution of the stator current components is presented, using only the captured current. This previously obtained information enables the use of the proposed transform: the Adaptive Slope Transform, based on appropriately choosing the atom slope in each point analyzed. Thanks to its adaptive characteristics, the time-frequency evolution of the main components in a stator transient current is traced precisely and with high detail in the 2D time-frequency plot obtained. As a consequence, the time-frequency plane characteristic patterns produced by the Eccentricity Related Harmonics are easily and clearly identified enabling a reliable diagnosis. Moreover, the problem of quantifying the presence of the fault is solved presenting a simple and easy to apply method. The transform capabilities have been shown successfully diagnosing an Inverter-Fed Induction Motor with mixed eccentricity during a startup, a decrease in the assigned frequency, and a load variation with and without slip compensation.

  15. Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform

    NASA Astrophysics Data System (ADS)

    He, Wangpeng; Zi, Yanyang; Chen, Binqiang; Wu, Feng; He, Zhengjia

    2015-03-01

    Mechanical anomaly is a major failure type of induction motor. It is of great value to detect the resulting fault feature automatically. In this paper, an ensemble super-wavelet transform (ESW) is proposed for investigating vibration features of motor bearing faults. The ESW is put forward based on the combination of tunable Q-factor wavelet transform (TQWT) and Hilbert transform such that fault feature adaptability is enabled. Within ESW, a parametric optimization is performed on the measured signal to obtain a quality TQWT basis that best demonstrate the hidden fault feature. TQWT is introduced as it provides a vast wavelet dictionary with time-frequency localization ability. The parametric optimization is guided according to the maximization of fault feature ratio, which is a new quantitative measure of periodic fault signatures. The fault feature ratio is derived from the digital Hilbert demodulation analysis with an insightful quantitative interpretation. The output of ESW on the measured signal is a selected wavelet scale with indicated fault features. It is verified via numerical simulations that ESW can match the oscillatory behavior of signals without artificially specified. The proposed method is applied to two engineering cases, signals of which were collected from wind turbine and steel temper mill, to verify its effectiveness. The processed results demonstrate that the proposed method is more effective in extracting weak fault features of induction motor bearings compared with Fourier transform, direct Hilbert envelope spectrum, different wavelet transforms and spectral kurtosis.

  16. A combined lift and propulsion system of a steel plate by transverse flux linear induction motors

    SciTech Connect

    Hayashiya, H.; Ohsaki, H.; Masada, E.

    1999-09-01

    To realize a non-contacting conveyance of a steel plate, a combined lift and propulsion system of a steel plate by transverse flux linear induction motors (LIMs) is proposed. By introducing the DC biased AC feeding to the LIM< a steel plate is supported stably and efficiently. In this paper, after showing the advantages of the system, the magnetic levitation experiments are carried out to investigate the feasibility of the system.

  17. Performance of station service induction motors following full load rejection of a nuclear generating unit

    SciTech Connect

    Rogers, G.J.; Beaulieu, R.E.; Hajagos, L.M.

    1995-08-01

    In this paper the authors describe simulations, using EPRI`s Extended Transient Midterm Stability Program (ETMSP), which were performed to understand the nature of a failed load rejection test on a nuclear unit. The failure was a result of large induction motors stalling, causing protective relays to operate. Potential remedial measures were simulated and a final solution, using a temporary voltage boost on the AVR, adopted and implemented to prevent further failures.

  18. Direct Torque Control with Full Order Stator Flux Observer for Dual-Three Phase Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Farina, Francesco; Bojoi, Radu; Tenconi, Alberto; Profumo, Francesco

    A Direct Torque Control (DTC) strategy for dual-three phase induction motor drives is discussed in this paper. The induction machine has two sets of stator three-phase windings spatially shifted by 30 electrical degrees with isolated neutral points. The proposed control strategy is based on Proportional Integral (PI) regulators implemented in the stator flux synchronous reference frame. To improve the flux estimation, an Adaptive Stator Flux Observer (ASFO) has been used. Doing so, besides a better flux estimation in contrast to open-loop flux estimators, it is possible to use the observed currents to compensate the inverter non-linear behavior (such as dead-time effects), improving the drive performance at low speed. This is particularly important for low voltage/high current applications, as the drive considered in this paper. The advantages of the discussed control strategy are: constant inverter switching frequency, good transient and steady-state performance and less distorted machine currents in contrast to DTC schemes with variable switching frequency. Experimental results are presented for a 10kW dual three-phase induction motor drive prototype.

  19. Magnetic rotor flux observer of induction motors with fast convergence and less transient oscillation

    NASA Astrophysics Data System (ADS)

    Park, Chang-Woo; Hwang, Jung-Hoon

    2013-03-01

    This paper presents an observer design for the estimation of magnetic rotor flux of induction motors. We characterize the class of MIMO induction motor systems that consists of the linear observable and the nonlinear part with a block triangular structure. The similarity transformation that plays an important role in proving the convergence of the proposed observer is generalized to the systems. Since the gain of the proposed observer minimizes a nonlinear part of the system to suppress for the stability of the error dynamics, it improves the transient performance of the high gain observer. Moreover, by using the generalized similarity transformation, it is shown that under some observability and boundedness conditions, the proposed observer guarantees the global exponential convergence to zero of the estimation error. Since the proposed scheme minimizes the nonlinearity of an induction motor system, it improves the transient performance of the observer and guarantees the global exponential convergence to zero of the estimation error. The estimation results of magnetic rotor fluxes through experiments are shown and it is presented that the proposed magnetic flux observer exhibits less transient oscillation and faster convergence time than the general observer.

  20. Sliding-mode control of a six-phase series/parallel connected two induction motors drive.

    PubMed

    Abjadi, Navid R

    2014-11-01

    In this paper, a parallel configuration is proposed for two quasi six-phase induction motors (QIMs) to feed them from a single six-phase voltage source inverter (VSI). A direct torque control (DTC) based on input-output feedback linearization (IOFL) combined with sliding mode (SM) control is used for each QIM in stationary reference frame. In addition, an adaptive scheme is employed to solve the motor resistances mismatching problem. The effectiveness and capability of the proposed method are shown by practical results obtained for two QIMs in series/parallel connections supplied from a single VSI. The decoupling control of QIMs and the feasibility of their torque and flux control are investigated. Moreover, a complete comparison between series and parallel connections of two QIMs is given. PMID:25264286

  1. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  2. Application to induction motor faults diagnosis of the amplitude recovery method combined with FFT

    NASA Astrophysics Data System (ADS)

    Liu, Yukun; Guo, Liwei; Wang, Qixiang; An, Guoqing; Guo, Ming; Lian, Hao

    2010-11-01

    This paper presents a signal processing method - amplitude recovery method (abbreviated to ARM) - that can be used as the signal pre-processing for fast Fourier transform (FFT) in order to analyze the spectrum of the other-order harmonics rather than the fundamental frequency in stator currents and diagnose subtle faults in induction motors. In this situation, the ARM functions as a filter that can filter out the component of the fundamental frequency from three phases of stator currents of the induction motor. The filtering result of the ARM can be provided to FFT to do further spectrum analysis. In this way, the amplitudes of other-order frequencies can be extracted and analyzed independently. If the FFT is used without the ARM pre-processing and the components of other-order frequencies, compared to the fundamental frequency, are fainter, the amplitudes of other-order frequencies are not able easily to extract out from stator currents. The reason is when the FFT is used direct to analyze the original signal, all the frequencies in the spectrum analysis of original stator current signal have the same weight. The ARM is capable of separating the other-order part in stator currents from the fundamental-order part. Compared to the existent digital filters, the ARM has the benefits, including its stop-band narrow enough just to stop the fundamental frequency, its simple operations of algebra and trigonometry without any integration, and its deduction direct from mathematics equations without any artificial adjustment. The ARM can be also used by itself as a coarse-grained diagnosis of faults in induction motors when they are working. These features can be applied to monitor and diagnose the subtle faults in induction motors to guard them from some damages when they are in operation. The diagnosis application of ARM combined with FFT is also displayed in this paper with the experimented induction motor. The test results verify the rationality and feasibility of the

  3. Detection of a static eccentricity fault in a closed loop driven induction motor by using the angular domain order tracking analysis method

    NASA Astrophysics Data System (ADS)

    Akar, Mehmet

    2013-01-01

    In this study, a new method was presented for the detection of a static eccentricity fault in a closed loop operating induction motor driven by inverter. Contrary to the motors supplied by the line, if the speed and load, and therefore the amplitude and frequency, of the current constantly change then this also causes a continuous change in the location of fault harmonics in the frequency spectrum. Angular Domain Order Tracking analysis (AD-OT) is one of the most frequently used fault diagnosis methods in the monitoring of rotating machines and the analysis of dynamic vibration signals. In the presented experimental study, motor phase current and rotor speed were monitored at various speeds and load levels with a healthy and static eccentricity fault in the closed loop driven induction motor with vector control. The AD-OT method was applied to the motor current and the results were compared with the traditional FFT and Fourier Transform based Order Tracking (FT-OT) methods. The experimental results demonstrate that AD-OT method is more efficient than the FFT and FT-OT methods for fault diagnosis, especially while the motor is operating run-up and run-down. Also the AD-OT does not incur any additional cost for the user because in inverter driven systems, current and speed sensor coexist in the system. The main innovative parts of this study are that AD-OT method was implemented on the motor current signal for the first time.

  4. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    PubMed Central

    Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir

    2013-01-01

    Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  5. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  6. Numerical inductance calculations based on first principles.

    PubMed

    Shatz, Lisa F; Christensen, Craig W

    2014-01-01

    A method of calculating inductances based on first principles is presented, which has the advantage over the more popular simulators in that fundamental formulas are explicitly used so that a deeper understanding of the inductance calculation is obtained with no need for explicit discretization of the inductor. It also has the advantage over the traditional method of formulas or table lookups in that it can be used for a wider range of configurations. It relies on the use of fast computers with a sophisticated mathematical computing language such as Mathematica to perform the required integration numerically so that the researcher can focus on the physics of the inductance calculation and not on the numerical integration. PMID:25402467

  7. High Ripples Reduction in DTC of Induction Motor by Using a New Reduced Switching Table

    NASA Astrophysics Data System (ADS)

    Mokhtari, Bachir; Benkhoris, Mohamed F.

    2016-05-01

    The direct torque and flux control (DTC) of electrical motors is characterized by ripples of torque and flux. Among the many solutions proposed to reduce them is to use modified switching tables which is very advantageous; because its implementation is easy and requires no additional cost compared to other solutions. This paper proposes a new reduced switching table (RST) to improve the DTC by reducing harmful ripples of torque and flux. This new switching table is smaller than the conventional one (CST) and depends principally at the flux error. This solution is studied by simulation under Matlab/Simulink and experimentally validated on a testbed with DSPACE1103. The results obtained of a DTC with RST applied to a three-phase induction motor (IM) show a good improvement and an effectiveness of proposed solution, the torque ripple decreases about 47% and 3% for the stator flux compared with a basic DTC.

  8. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    NASA Astrophysics Data System (ADS)

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  9. Analysis of axially non-uniform loss distribution in 3-phase induction motor considering skew effect

    SciTech Connect

    Kown, B.I.; Kim, B.T.; Jun, C.S.; Park, S.C. )

    1999-05-01

    This paper discusses the phenomena of the axially non-uniform distribution of magnetic flux densities and losses in a 3-phase squirrel cage induction motor of which the rotor bars are skewed. A 2-dimensional complex finite element method taking account of the effects of the skewed rotor bars is utilized for the analysis of characteristics such as copper and iron losses and the loss distributions are examined. The summing up values of non-uniform losses resulted from the finite element analysis are compared with measurement values.

  10. Finite element analysis of direct thrust-controlled linear induction motor

    SciTech Connect

    Kwon, B.I.; Woo, K.I.; Kim, S. . Dept. of Electrical Engineering)

    1999-05-01

    This paper describes the finite element analysis of a direct thrust-controlled linear induction motor (LIM). The time-stepping finite element method and the moving mesh technique are used to calculate the dynamic characteristics of LIM during the direct thrust control. Because LIM has the end effect, thrust correction coefficient is introduced to predict an actual thrust in control. The simulation results, the thrust and the stator flux linkage are shown below and the stator current is compared with an experimental one.

  11. Distribution of local magnetic properties in three-phase induction motor model core

    SciTech Connect

    Enokizono, M.; Morikawa, M.; Fujiyama, S.; Sievert, J.; Serikawa, I.

    1999-09-01

    Efficiency improvement of electrical machines, is a very important problem. However the local magnetic properties in core materials have not yet understood fully. On the other hand, the concept of the two-dimensional magnetic property has been reported. It means the relationship between the magnetic field strength vector H and the flux density vector B. They are not usually parallel but have a phase angle in space. This paper presents the measured local vector-magnetic properties in a three-phase induction motor model core.

  12. Identification of significant intrinsic mode functions for the diagnosis of induction motor fault.

    PubMed

    Cho, Sangjin; Shahriar, Md Rifat; Chong, Uipil

    2014-08-01

    For the analysis of non-stationary signals generated by a non-linear process like fault of an induction motor, empirical mode decomposition (EMD) is the best choice as it decomposes the signal into its natural oscillatory modes known as intrinsic mode functions (IMFs). However, some of these oscillatory modes obtained from a fault signal are not significant as they do not bear any fault signature and can cause misclassification of the fault instance. To solve this issue, a novel IMF selection algorithm is proposed in this work. PMID:25096149

  13. DWT analysis of numerical and experimental data for the diagnosis of dynamic eccentricities in induction motors

    NASA Astrophysics Data System (ADS)

    Antonino-Daviu, J.; Jover, P.; Riera, M.; Arkkio, A.; Roger-Folch, J.

    2007-08-01

    The behaviour of an induction machine during a startup transient can provide useful information for the diagnosis of electromechanical faults. During this process, the machine works under high stresses and the effects of the faults may also be larger than those in steady-state. These facts may help to amplify the magnitude of the indicators of some incipient faults. In addition, fault components with frequencies dependant on the slip evolve in a particular way during that transient, a fact that allows the diagnosis of the corresponding fault and the discrimination between different faults. The discrete wavelet transform (DWT) is an ideal tool for analysing signals with frequency spectrum variable in time. Some research works have applied with success the DWT to the stator startup current in order to diagnose the presence of broken rotor bars in induction machines. However, few works have used this technique for the study of other common faults, such as eccentricities. In this work, time-frequency analysis of the stator startup current is carried out in order to detect the presence of dynamic eccentricities in an induction motor. For this purpose, the DWT is applied and wavelet signals at different levels are studied. Data are obtained from simulations, using a finite element (FE) model of an induction motor, which allows forcing several kinds of faults in the machine, and also from experimental tests. The results show the validity of the approach for detecting the fault and discriminating with respect to other failures, presenting for certain applications (or working conditions) some advantages over the traditional stationary analysis.

  14. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  15. The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator

    NASA Astrophysics Data System (ADS)

    Yamashita, Nicholas; Jacobs, Jeffrey

    2009-11-01

    The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.

  16. Torsional Vibration Analysis of Reciprocating Compressor Trains driven by Induction Motors

    NASA Astrophysics Data System (ADS)

    Brunelli, M.; Fusi, A.; Grasso, F.; Pasteur, F.; Ussi, A.

    2015-08-01

    The dynamic study of electric motor driven compressors, for Oil&Gas (O&G) applications, are traditionally performed in two steps separating the mechanical and the electrical systems. The packager conducts a Torsional Vibration Analysis (TVA) modeling the mechanical system with a lumped parameter scheme, without taking into account the electrical part. The electric motor supplier later performs a source current pulsation analysis on the electric motor system, based on the TVA results. The mechanical and the electrical systems are actually linked by the electromagnetic effect. The effect of the motor air-gap on TVA has only recently been taken into account by adding a spring and a damper between motor and ground in the model. This model is more accurate than the traditional one, but is applicable only to the steady-state condition and still fails to consider the reciprocal effects between the two parts of the system. In this paper the torsional natural frequencies calculated using both the traditional and the new model have been compared. Furthermore, simulation of the complete system has been achieved through the use of LMS AMESim, multi-physics, one-dimensional simulation software that simultaneously solves the shafts rotation and electric motor voltage equation. Finally, the transient phenomena that occur during start-up have been studied.

  17. Immediate Effects of Kinesiology Taping of Quadriceps on Motor Performance after Muscle Fatigued Induction

    PubMed Central

    Ahn, Ick Keun; Kim, You Lim; Bae, Young-Hyeon; Lee, Suk Min

    2015-01-01

    Objectives. The purpose of this cross-sectional single-blind study was to investigate the immediate effects of Kinesiology taping of quadriceps on motor performance after muscle fatigued induction. Design. Randomized controlled cross-sectional design. Subjects. Forty-five subjects participated in this study. Participants were divided into three groups: Kinesiology taping group, placebo taping group, and nontaping group. Methods. Subjects performed short-term exercise for muscle fatigued induction, followed by the application of each intervention. Peak torque test, one-leg single hop test, active joint position sense test, and one-leg static balance test were carried out before and after the intervention. Results. Peak torque and single-leg hopping distance were significantly increased when Kinesiology taping was applied (p < 0.05). But there were no significant effects on active joint position sense and single-leg static balance. Conclusions. We proved that Kinesiology taping is effective in restoring muscle power reduced after muscle fatigued induction. Therefore, we suggest that Kinesiology taping is beneficial for fatigued muscles. PMID:26246835

  18. High-response flux control of direct-field-oriented induction motor with high efficiency taking core loss into account

    SciTech Connect

    Matsuse, Kouki; Yoshizumi, Tatsuya; Katsuta, Seiji; Taniguchi, Shotaro

    1999-01-01

    Stator core loss has significant adverse effects when an induction motor is controlled by the conventional field-oriented method. Therefore, taking core loss into account should make it possible to control the torque very precisely. In this paper, a direct-field-oriented induction motor with a deadbeat rotor flux controller was developed. The method ensures maximum efficiency in the steady state without degradation of the dynamic response. Simulation and experimental results have demonstrated that this method has higher efficiency and good speed response without any degradation in the transient characteristics.

  19. Conceptual influences on category-based induction

    PubMed Central

    Gelman, Susan A.; Davidson, Natalie S.

    2013-01-01

    One important function of categories is to permit rich inductive inferences. Prior work shows that children use category labels to guide their inductive inferences. However, there are competing theories to explain this phenomenon, differing in the roles attributed to conceptual information versus perceptual similarity. Seven experiments with 4- to 5-year-old children and adults (N = 344) test these theories by teaching categories for which category membership and perceptual similarity are in conflict, and varying the conceptual basis of the novel categories. Results indicate that for non-natural kind categories that have little conceptual coherence, children make inferences based on perceptual similarity, whereas adults make inferences based on category membership. In contrast, for basic- and ontological-level categories that have a principled conceptual basis, children and adults alike make use of category membership more than perceptual similarity as the basis of their inferences. These findings provide evidence in favor of the role of conceptual information in preschoolers’ inferences, and further demonstrate that labeled categories are not all equivalent; they differ in their inductive potential. PMID:23517863

  20. Flagellar motor based micro hybrid devices.

    PubMed

    Tung, S; Kim, J-W

    2004-01-01

    We are in the process of developing a series of micro hybrid devices based on tethered flagellar motors. Examples of the devices include a microfluidic pump and a micro AC dynamo. The microfluidic pump is realized through the tethering of a harmless strain of Escherichia coli cells to a MEMS based micro channel. Each E. coli cell is about 3 mum long and 1 mum in diameter, with several flagella that are driven at the base by molecular rotary motors. The operational principle of the micro pump is based on the viscous pumping effect where continuous rotation of the tethered cells forms a fluidic conveyor belt that 'drags' fluid from one end of the channel to the other. We used hydrodynamic loading to synchronize cell rotation in order to maximize the fluid pumping capability. The micro dynamo is realized through the integration of tethered flagellar motors with micro ferromagnetic beads and micro copper coils. The micro dynamo generates AC power by using the tethered cells to create a rotating magnetic field around the copper coils. Preliminary result indicates a high power density when compared to other biologically based micro power generators. PMID:17270806

  1. The effects of various magnetic materials on lamination design for stator-rotor diecasting of induction motors for electric vehicle applications

    SciTech Connect

    Elkasabgy, N.M.; Di Pietro, C.

    1994-05-15

    In this paper the authors describe a novel technique to model induction motors with a diecast stator and rotor and to examine the effects of various magnetic materials on the electrical performance of the motor. For electric vehicle applications, a high volume production operation of the electric motor requires the motor to be small and inexpensive. The expensive labor and material used to manufacture the motor encouraged the researchers to find new methods and techniques to reduce the cost and improve the performance. Diecast rotor and stator windings reduce motor cost and size. For diecasting induction motors, the motor laminations should be designed to optimize the electromagnetic field distribution over the cross section and along the axial direction. The magnetic material used for the laminations should also reduce losses and improve the overall efficiency. A 100 hp four-pole induction motor was modeled with finite elements, and the field distribution, the magnetic flux density, and the mechanical performance of the motor were computed using nonlinear magnetostatic and complex steady-state eddy current techniques. The difference in the electrical and mechanical performance of the motor were evaluated for copper and aluminum diecasting. The results show that copper diecasting of the rotor and the stator of the induction motor with magnetic material properties and identified slotting shape is the way to achieve better motor performance and low cost operation. 5 refs.

  2. Fast rotor flux control of direct-field-oriented induction motor operating at maximum efficiency using adaptive rotor flux observer

    SciTech Connect

    Matsuse, Kouki; Katsuta, Seiji; Tsukakoshi, Masahiko; Ohta, Masaru; Huang, L.

    1995-12-31

    A method of using an adaptive rotor flux observer to rapidly control the rotor flux of direct-field-oriented induction motors driven by a deadbeat rotor flux controller has been developed. The method ensures maximum efficiency in the steady state without degradation of the dynamic response. Furthermore, to solve the problem of flux current variations that arise from small errors in the measurement of the stator voltage and current, a flux current reference is calculated from the appropriate rotor flux in the steady state. Simulation and experimental results for an induction motor have demonstrated that this method yields the maximum efficiency and good speed response to changes in both torque and motor speed without any degradation in the transient characteristics.

  3. Genetic algorithm based design optimization of a permanent magnet brushless dc motor

    NASA Astrophysics Data System (ADS)

    Upadhyay, P. R.; Rajagopal, K. R.

    2005-05-01

    Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.

  4. High speed electric motors based on high performance novel soft magnets

    NASA Astrophysics Data System (ADS)

    Silveyra, J. M.; Leary, A. M.; DeGeorge, V.; Simizu, S.; McHenry, M. E.

    2014-05-01

    Novel Co-based soft magnetic materials are presented as a potential substitute for electrical steels in high speed motors for current industry applications. The low losses, high permeabilities, and good mechanical strength of these materials enable application in high rotational speed induction machines. Here, we present a finite element analysis of Parallel Path Magnetic Technology rotating motors constructed with both silicon steel and Co-based nanocomposite. The later achieved a 70% size reduction and an 83% reduction on NdFeB magnet volume with respect to a similar Si-steel design.

  5. Induction of Long-term Depression-like Plasticity by Pairings of Motor Imagination and Peripheral Electrical Stimulation

    PubMed Central

    Jochumsen, Mads; Signal, Nada; Nedergaard, Rasmus W.; Taylor, Denise; Haavik, Heidi; Niazi, Imran K.

    2015-01-01

    Long-term depression (LTD) and long-term potentiation (LTP)-like plasticity are models of synaptic plasticity which have been associated with memory and learning. The induction of LTD and LTP-like plasticity, using different stimulation protocols, has been proposed as a means of addressing abnormalities in cortical excitability associated with conditions such as focal hand dystonia and stroke. The aim of this study was to investigate whether the excitability of the cortical projections to the tibialis anterior (TA) muscle could be decreased when dorsiflexion of the ankle joint was imagined and paired with peripheral electrical stimulation (ES) of the nerve supplying the antagonist soleus muscle. The effect of stimulus timing was evaluated by comparing paired stimulation timed to reach the cortex before, at and after the onset of imagined movement. Fourteen healthy subjects participated in six experimental sessions held on non-consecutive days. The timing of stimulation delivery was determined offline based on the contingent negative variation (CNV) of electroencephalography brain data obtained during imagined dorsiflexion. Afferent stimulation was provided via a single pulse ES to the peripheral nerve paired, based on the CNV, with motor imagination of ankle dorsiflexion. A significant decrease (P = 0.001) in the excitability of the cortical projection of TA was observed when the afferent volley from the ES of the tibial nerve (TN) reached the cortex at the onset of motor imagination based on the CNV. When TN stimulation was delivered before (P = 0.62), or after (P = 0.23) imagined movement onset there was no significant effect. Nor was a significant effect found when ES of the TN was applied independent of imagined movement (P = 0.45). Therefore, the excitability of the cortical projection to a muscle can be inhibited when ES of the nerve supplying the antagonist muscle is precisely paired with the onset of imagined movement. PMID:26648859

  6. Transient tracking of low and high-order eccentricity-related components in induction motors via TFD tools

    NASA Astrophysics Data System (ADS)

    Climente-Alarcon, V.; Antonino-Daviu, J.; Riera-Guasp, M.; Pons-Llinares, J.; Roger-Folch, J.; Jover-Rodriguez, P.; Arkkio, A.

    2011-02-01

    The present work is focused on the diagnosis of mixed eccentricity faults in induction motors via the study of currents demanded by the machine. Unlike traditional methods, based on the analysis of stationary currents (Motor Current Signature Analysis (MCSA)), this work provides new findings regarding the diagnosis approach proposed by the authors in recent years, which is mainly focused on the fault diagnosis based on the analysis of transient quantities, such as startup or plug stopping currents (Transient Motor Current Signature Analysis (TMCSA)), using suitable time-frequency decomposition (TFD) tools. The main novelty of this work is to prove the usefulness of tracking the transient evolution of high-order eccentricity-related harmonics in order to diagnose the condition of the machine, complementing the information obtained with the low-order components, whose transient evolution was well characterised in previous works. Tracking of high-order eccentricity-related harmonics during the transient, through their associated patterns in the time-frequency plane, may significantly increase the reliability of the diagnosis, since the set of fault-related patterns arising after application of the corresponding TFD tool is very unlikely to be caused by other faults or phenomena. Although there are different TFD tools which could be suitable for the transient extraction of these harmonics, this paper makes use of a Wigner-Ville distribution (WVD)-based algorithm in order to carry out the time-frequency decomposition of the startup current signal, since this is a tool showing an excellent trade-off between frequency resolution at both high and low frequencies. Several simulation results obtained with a finite element-based model and experimental results show the validity of this fault diagnosis approach under several faulty and operating conditions. Also, additional signals corresponding to the coexistence of the eccentricity and other non-fault related phenomena making

  7. Fuzzy virtual reference model sensorless tracking control for linear induction motors.

    PubMed

    Hung, Cheng-Yao; Liu, Peter; Lian, Kuang-Yow

    2013-06-01

    This paper introduces a fuzzy virtual reference model (FVRM) synthesis method for linear induction motor (LIM) speed sensorless tracking control. First, we represent the LIM as a Takagi-Sugeno fuzzy model. Second, we estimate the immeasurable mover speed and secondary flux by a fuzzy observer. Third, to convert the speed tracking control into a stabilization problem, we define the internal desired states for state tracking via an FVRM. Finally, by solving a set of linear matrix inequalities (LMIs), we obtain the observer gains and the control gains where exponential convergence is guaranteed. The contributions of the approach in this paper are threefold: 1) simplified approach--speed tracking problem converted into stabilization problem; 2) omit need of actual reference model--FVRM generates internal desired states; and 3) unification of controller and observer design--control objectives are formulated into an LMI problem where powerful numerical toolboxes solve controller and observer gains. Finally, experiments are carried out to verify the theoretical results and show satisfactory performance both in transient response and robustness. PMID:23076069

  8. Measurement of position deviation and eccentricity for μ-disc-type inductive micro-motor

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Che; Tsai, Nan-Chyuan

    2015-12-01

    An innovative capacitive gap-sensing readout circuit to replace traditional gap sensor is designed to measure the motion of the levitated micro-disc embedded in an inductive micro-motor. Twelve equivalent capacitor pairs are constructed to detect the position deviation of the disc. As the position deviation of disc occurs, the capacitances of the corresponding capacitor pairs are altered. In addition, by applying the effects of inertial force and centrifugal force, an innovative non-contact measurement method to quantify the unbalance degree of the micro-disc, i.e., eccentricity, is also proposed. By commercial computer simulations and realistic experiments undertaken, the performance of the proposed capacitive gap-sensing readout circuit has been successfully verified. The mean of output voltage of gap-sensing readout circuit is about 327 mV under the position deviation of the disc being 8 μm. Moreover, the unbalance degree of the disc is approximately proportional to the square of the position deviation of the disc.

  9. Conceptual Influences on Category-Based Induction

    ERIC Educational Resources Information Center

    Gelman, Susan A.; Davidson, Natalie S.

    2013-01-01

    One important function of categories is to permit rich inductive inferences. Prior work shows that children use category labels to guide their inductive inferences. However, there are competing theories to explain this phenomenon, differing in the roles attributed to conceptual information vs. perceptual similarity. Seven experiments with 4- to…

  10. A Position Sensorless Control Method for SRM Based on Variation of Phase Inductance

    NASA Astrophysics Data System (ADS)

    Komatsuzaki, Akitomo; Miki, Ichiro

    Switched reluctance motor (SRM) drives are suitable for variable speed industrial applications because of the simple structure and high-speed capability. However, it is necessary to detect the rotor position with a position sensor attached to the motor shaft. The use of the sensor increases the cost of the drive system and machine size, and furthermore the reliability of the system is reduced. Therefore, several approaches to eliminate the position sensor have already been reported. In this paper, a position sensorless control method based on the variation of the phase inductance is described. The phase inductance regularly varies with the rotor position. The SRM is controlled without the position sensor using the de-fluxing period and the phase inductance. The turn-off timing is determined by computing the difference of angle between the sampling point and the aligned point and the variation of angle during the de-fluxing period. In the magnetic saturation region, the phase inductance at the current when the effect of the saturation starts is computed and the sensorless control can be carried out using this inductance. Experimental results show that the SRM is well controlled without the position sensor using the proposed method.

  11. A new viewpoint of end effect of linear induction motor from secondary side in ladder type model

    SciTech Connect

    Fujii, N.; Harada, T.

    1999-09-01

    In Japan, the subway trains driven by linear induction motors (LIMs) have been used in metropolitans of Tokyo and Osaka. As a new viewpoint, the physical phenomenon of end effect in ladder type linear induction motor (LIM) is observed from secondary side by making use of the structural feature. The phenomena in the ladder type and the sheet type LIM are the same fundamentally. The analytical method for the study is the special two-dimensional electromagnetic analysis, in which the current in each conducting bar is determined considering with time harmonics of secondary current. A new factor t{sub p}/t{sub s} is proposed to present the degree of end effect, in where t{sub p} is the passing duration of primary core at a secondary point and t{sub s} the half-period of slip frequency. The factor will be useful for the design grasping the essential of end effect of LIM.

  12. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes.

    PubMed

    Arun Dominic, D; Chelliah, Thanga Raj

    2014-09-01

    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. PMID:24981890

  13. Efficiency modeling and evaluation of a resonant snubber based soft- switching inverter for motor drive applications

    SciTech Connect

    Lai, J.S.; Young, R.W.; Ott, G.W.

    1995-12-31

    This paper establishes an analytical model for a resonant snubber based soft-switching inverter. The model adopts loss separation method to evaluate losses in individual components. Because of symmetry of the inverter circuit, the developed model is suitable for both single-phase and three-phase inverters. A single-phase inverter was built and tested with a single-phase induction motor driving a fan load to verify the developed model. The equivalent single-phase induction motor model was curve-fitted from experiment. Analytical results showed reasonable agreement with experiment. The same efficiency evaluation method was then applied to the conventional hard-switching inverter, and the results were compared with that of the soft-switching inverter. The resonant snubber base soft-switching inverter shows substantial efficiency improvement over the hard switching PWM (pulse-width-modulation) inverter, especially in low speed operation.

  14. Experimental Study on a Voltage Source Inverter-fed Induction Motor Traction System Connected to Fuel Cell

    NASA Astrophysics Data System (ADS)

    Furuya, Takemasa; Kondo, Keiichiro; Yamamoto, Takamitsu

    This paper describes the experimental results of a test to drive two induction motors through a VVVF inverter by 25kW class proton membrane type fuel cells (PEMFCs). The experiments are aimed at verifying the compatibility between the drive system for the railway vehicle traction and FCs. This paper describes test results of powering, powering-off procedure, and simulated slip-readhesion control test, respectively. Through the experiments, we obtained useful knowledge required in designing the fuel cell drive system.

  15. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  16. Development of Category-based Induction and Semantic Knowledge

    ERIC Educational Resources Information Center

    Fisher, Anna V.; Godwin, Karrie E.; Matlen, Bryan J.; Unger, Layla

    2015-01-01

    Category-based induction is a hallmark of mature cognition; however, little is known about its origins. This study evaluated the hypothesis that category-based induction is related to semantic development. Computational studies suggest that early on there is little differentiation among concepts, but learning and development lead to increased…

  17. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive

    NASA Astrophysics Data System (ADS)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.

    2010-05-01

    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  18. Performance improvement of direct torque control system for induction motor in low-speed operation using wavelet network

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Liao, Wei; Wang, Yuguo; Shen, Songhua

    2006-11-01

    To improve the low-speed dynamic performance of induction motor in direct torque control (DTC), a novel method of stator resistance identification based on wavelet network (WN) is presented and the determination of wavelet network structure is discussed. The inputs of the WN are the current error and the change in the current error and the output of the WN is the stator resistance error. The improved least squares algorithm (LSA) is used to fulfill the network structure and parameter identification. By the use of wavelet transform that accurately localizes the characteristics of a signal both in the time and frequency domains, the occurring instants of the stator resistance change can be identified by the multi-scale representation of the signal. Once the instants are detected, the accurate stator flux vector and electromagnetic torque are acquired by the parameter estimator, which makes the DTC applicable in the low region, optimizing the inverter control strategy. By detailed comparison between the wavelet and the typical backward-propagation (BP) neural network, the simulation results show that the proposed method can efficiently reduce the torque ripple and current ripple, superior to the BP neural network.

  19. Analysis of a three phase induction motor directly from Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Shayak

    2012-01-01

    The torque developed in a three phase AC squirrel cage motor is usually expressed in terms of resistances and reactances of the stator, the rotor, and the motor as a whole. We use Maxwell's equations to find the torque in terms of geometrical parameters. This formulation allows us to estimate the torque developed by a motor without knowing the details of its circuitry.

  20. A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes

    NASA Astrophysics Data System (ADS)

    Ghorbanian, Vahid; Faiz, Jawad

    2015-03-01

    This paper deals with the comprehensive detailed concepts of the rotor broken bars fault in industrial induction motors. It reviews the most important and applicable techniques for fault detection, and addresses fault diagnosing procedures at different supply modes including line-start and inverter-fed modes. Moreover, new analytical and experimental aspects of fault are proposed using the time and frequency domain variations of the motor variables such as current, voltage, electromagnetic torque and speed. Since the faulty motor behavior cannot be correctly identified without considering the motor operating condition, and the capability of the previous fault indicators are studied deeply in order to investigate their applicability at different conditions. These conditions include various faults, load and reference speed levels and also fault location. All in all, a precise condition assessment of the rotor broken bar induction motors, suitable for industrial purposes, is presented considering motor supply and conditions changes.

  1. Optimization of a motor learning attention-directing strategy based on an individual's motor imagery ability.

    PubMed

    Sakurada, Takeshi; Hirai, Masahiro; Watanabe, Eiju

    2016-01-01

    Motor learning performance has been shown to be affected by various cognitive factors such as the focus of attention and motor imagery ability. Most previous studies on motor learning have shown that directing the attention of participants externally, such as on the outcome of an assigned body movement, can be more effective than directing their attention internally, such as on body movement itself. However, to the best of our knowledge, no findings have been reported on the effect of the focus of attention selected according to the motor imagery ability of an individual on motor learning performance. We measured individual motor imagery ability assessed by the Movement Imagery Questionnaire and classified the participants into kinesthetic-dominant (n = 12) and visual-dominant (n = 8) groups based on the questionnaire score. Subsequently, the participants performed a motor learning task such as tracing a trajectory using visuomotor rotation. When the participants were required to direct their attention internally, the after-effects of the learning task in the kinesthetic-dominant group were significantly greater than those in the visual-dominant group. Conversely, when the participants were required to direct their attention externally, the after-effects of the visual-dominant group were significantly greater than those of the kinesthetic-dominant group. Furthermore, we found a significant positive correlation between the size of after-effects and the modality-dominance of motor imagery. These results suggest that a suitable attention strategy based on the intrinsic motor imagery ability of an individual can improve performance during motor learning tasks. PMID:26466828

  2. A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors

    NASA Astrophysics Data System (ADS)

    Martinez, J.; Belahcen, A.; Detoni, J. G.

    2016-01-01

    This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.

  3. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  4. The Design and its Verification of the Double Rotor Double Cage Induction Motor

    NASA Astrophysics Data System (ADS)

    Sinha, Sumita; Deb, Nirmal K.; Biswas, Sujit K.

    2016-06-01

    The concept of a double rotor motor presented earlier and its equivalent circuit has been developed, showing a non-linear parameter content. The two rotors (which are recommended to be double cage type for development of high starting torque) can run with equal or unequal speed independently, depending on their individual loading. This paper presents the elaborate design procedure, step-by-step, for the double rotor double cage motor and verifies the designed data with that obtained from three separate tests (compared to two for conventional motor) on a prototype, such that optimum performance can be obtained from the motor.

  5. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  6. Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.

    ERIC Educational Resources Information Center

    Trumper, Ricardo; Gelbman, Moshe

    2000-01-01

    Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)

  7. Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions.

    PubMed

    Yahia, K; Cardoso, A J M; Ghoggal, A; Zouzou, S E

    2014-03-01

    Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations. PMID:24461376

  8. An investigation on the characteristics of a single-sided linear induction motor at standstill for maglev vehicles

    SciTech Connect

    Cho, Y.; Lee, J.

    1997-03-01

    This paper presents the single-sided linear induction motor (SLIM) developed as electrical drives for magnetic levitation vehicle with a cruising speed 40--100Km/h for EXPO`93 in Taejon, Korea. The SLIM is designed to produce a 2,440 Newtons thrust from an active area of 2,836mm long by 235 mm wide at the airgap of 14 mm. In order to investigate its performance characteristics both experimentally and theoretically, the static test facilities was designed and equipped. At standstill, the experimental results are compared with the analytical ones.

  9. The impact of different stator and rotor slot number combinations on iron losses of a three-phase induction motor at no-load

    NASA Astrophysics Data System (ADS)

    Marčič, T.; Štumberger, B.; Štumberger, G.; Hadžiselimović, M.; Zagradišnik, I.

    The electromechanical characteristics of induction motors depend on the used stator and rotor slot combination. The correlation between the usage of different stator and rotor slot number combinations, magnetic flux density distributions, no-load iron losses and rated load winding over-temperatures for a specific induction motor is presented. The motor's magnetic field was analyzed by traces of the magnetic flux density vector, obtained by FEM. Post-processing of FE magnetic field solution was used for posterior iron loss calculation of the motor iron loss at no-load. The examined motor stator lamination had 36 semi-closed slots and the rotor laminations had 28, 33, 34, 44 and 46 semi-closed slots.

  10. Feature-Based versus Category-Based Induction with Uncertain Categories

    ERIC Educational Resources Information Center

    Griffiths, Oren; Hayes, Brett K.; Newell, Ben R.

    2012-01-01

    Previous research has suggested that when feature inferences have to be made about an instance whose category membership is uncertain, feature-based inductive reasoning is used to the exclusion of category-based induction. These results contrast with the observation that people can and do use category-based induction when category membership is…