Science.gov

Sample records for indus river basin

  1. Water Availability in Indus River at the Upper Indus Basin under Different Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2015-04-01

    The last decade of the 20th century and the first decade of the 21st century showed that climate change or global warming is happening and the latter one is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C on May 26, 2010. The changing climate has impact on various areas including agriculture, water, health, among others. There are two main forces which have central role in changing climate: one is natural variability and the other one is human evoked changes, increasing the density of green house gases. The elements in the bunch of Energy-Food-Water are interlinked with one another and among them water plays a crucial role for the existence of the other two parts. This nexus is the central environmental issue around the globe generally, and is of particular importance in the developing countries. The study evaluated the importance and the availability of water in Indus River under different emission scenarios. Four emission scenarios are included, that is, the A2, B2, RCP4.5 and RCP8.5. One way coupling of regional climate models (RCMs) and Hydrological model have been implemented in this study. The PRECIS (Providing Regional Climate for Impact Studies) and CCAM (Conformal-Cubic Atmospheric Model) climate models and UBCWM (University of British Columbia Watershed Model) hydrological model are used for this purpose. It is observed that Indus River contributes 80 % of the hydro-power generation and contributes 44 % to available water annually in Pakistan. It is further investigated whether sufficient water will be available in the Indus River under climate change scenarios. Toward this goal, Tarbela Reservoir is used as a measurement tool using the parameters of the reservoir like maximum operating storage, dead level storage, discharge capacity of tunnels and spillways. The results of this study are extremely important for the economy of Pakistan in various key areas like agriculture, energy, industries and ecosystem. The analyses show that there will be much more water available in future under the considered emission scenarios but in some months there will be scarcity of water. However, by proper management and optimum utilization of the available water, the scarcity of water can be minimized considerably. Finally, a meta-analysis has been performed to present a combined picture of all scenarios considered in this study. One way to avoid water scarcity is to upgrade and install new reservoirs and water storage capacities to reserve the extra water during high river flow in Indus River, which will then be utilized during low river flow. __________________________________________________________________________________ KEY WORDS: Agriculture, Climate Change, Hydro-power, Indus River, Tarbela Reservoir, Upper Indus Basin, Meta-analysis, Hydrological model.

  2. Water governance and adaptation to climate change in the Indus River Basin

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Chen E.; Brown, Casey; Yu, Winston; Wescoat, James; Ringler, Claudia

    2014-11-01

    Conflicting approaches to water governance at multiple scales within large international river basins may have detrimental effects on the productivity of water resources and consequently the economic activities of the basin. In the Indus River Basin, local scale water productivity decisions are affected by international and intra-national scale water governance. Water availability and productivity is modulated by the Indus Waters Treaty between India and Pakistan, and within Pakistan by the agreements governing water allocation between and within provinces. Much of the literature on governance at multiple scales in the Indus basin, and others, has employed qualitative methods of institutional analysis. This paper extends that approach with quantitative modeling of surface water allocation rules at multiple scales and the consequent economic impact on water use and productivity in the Indus River of Pakistan. The effects of the existing water allocation mechanisms on the ability to adapt to possible future climate conditions are examined. The study is conducted using the Indus Basin Model Revised - Multi-Year (IBMR-MY), a hydro-agro-economic model of the Indus River within Pakistan that simulates river and canal flows, groundwater pumping, water use and economic activities with a distributed, partial equilibrium model of the local scale agro-economic activities in the basin. Results suggest that without changes in response to changing conditions, the current governance mechanisms impede the provinces' ability to adapt to changing climate conditions, in ways that are significant, inflicting economic costs under both high and low flow conditions. However surface water allocation between the provinces does not appear to hinder adaptation. The greatest gains for economic water allocation are achieved at the sub-provincial level. The results imply that adaptive mechanisms for water allocation that allow response to changing climate conditions within provinces may be a promising adaptive response in the Indus Basin.

  3. Drought Characteristics Based on the Retrieved Paleoprecipitation in Indus and Ganges River Basins

    NASA Astrophysics Data System (ADS)

    Davtalabsabet, R.; Wang, D.; Zhu, T.; Ringler, C.

    2014-12-01

    Indus and Ganges River basins (IGRB), which cover the major parts of India, Nepal, Bangladesh and Pakistan, are considered as the most important socio-economic regions in South Asia. IGRB support the food security of hundreds of millions people in South Asia. The food production in IGRB strictly relies on the magnitude and spatiotemporal pattern of monsoon precipitation. Due to severe drought during the last decades and food production failure in IGRB, several studies have focused on understanding the main drivers for south Asia monsoon failures and drought characteristics based on the historical data. However, the period of available historical data is not enough to address the full characteristic of drought under a changing climate. In this study, an inverse Palmer Drought Severity Index (PDSI) model is developed to retrieve the paleoprecipitation back to 700 years in the region, taking the inputs of available soil water capacity, temperature, and previous reconstructed PDSI based on tree-ring analysis at 2.5 degree resolution. Based on the retrieved paleoprecipitation, drought frequency and intensity are quantified for two periods of 1300-1899 (the reconstruction period) and 1900-2010 (the instrumental period). Previous studies have shown that in IGRB, a severe drought occurs when the annual precipitation deficit, compared with the long-term average precipitation, is greater than 10%. Climatic drought frequency is calculated as the percentage of years with predefined severe droughts. Drought intensity is defined as the average precipitation deficit during all of the years identified as severe droughts. Results show that the drought frequency, as well as the spatial extent, has significantly increased from the reconstruction period to the instrumental period. The drought frequency in the Indus River basin is higher than that in the Ganges River basin. Several mega-droughts are identified during the reconstruction period.

  4. Land surface hydrological investigation in Upper Indus River Basin (UIB), North Pakistan under the Framework of TPE Program

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2012-12-01

    The Upper Indus Basin (UIB) is home to three of the world's mightiest mountain ranges. The Karakoram in north and the Himalaya in northeast while the Hindukush in the northwest of Pakistan. The Indus River emerges from the Tibetan Plateau and flows toward northern areas of Pakistan where it changes its direction toward the south and flows into the Arabian Sea. The catchment area of Indus River is located in Pakistan, China and India, but most part covered in Pakistan. The Upper Indus Basin lies within the variable influence of three major weather systems: the sub-Mediterranean regime of mainly winter, westerly storms; the summer monsoon; and the Tibetan anticyclone. The Upper Indus River Basin has a total catchment area of approx. 206,000 km2. The UIB includes the Hunza, Gilgit, Astore, Shigar and Shyok sub-basins. Nearly 11.5% (22,000 km2) of the total area of the UIB is covered by perennial glacial ice (including most of the largest valley glaciers) making it the largest area outside the polar and Greenland regions (Hewitt, 2007). UIB has a mean elevation of 4750 m with almost 60% of its total area above an elevation of 4500 m and 12% of its area (almost the same area is glacier covered) above 5500 m. Glacial melt is one of the major sources of inflow in the Upper Indus Basin, 44.8% of its river flow depends upon glacial melting. Its mean discharge at Tarbela dam is 5533 m3/s (IUCN, IWMI). Most of the annual precipitation in the UIB falls in the winter and spring and originates from the west (Young and Hewitt, 1990). Several researchers reported that 80% of the flow of the Upper Indus River is contributed by less than 20% of its area, essentially from the zones of heavy snowfall and glaciated basins above 3500m in elevation. Under the Framework of TPE Program, observational researches have been lunched since last year. The project aim to the objective of hydrological consequence of snow cover in UIB; impact of glacier dynamic to basin drainage and response of discharge to climatic changes during past 50 years. The presentation will highlight the research including field expedition in 2011, objective and strategies, and request to cooperation as well.

  5. Early 21st century climatology of snow cover for the western river basins of the Indus River System

    NASA Astrophysics Data System (ADS)

    Hasson, S.; Lucarini, V.; Khan, M. R.; Petitta, M.; Bolch, T.; Gioli, G.

    2013-11-01

    In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River System (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001-2012. Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow products from Terra (MOD) and Aqua (MYD) have been first improved and then analysed on seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our applied cloud filtering technique has reduced the cloud cover from 37% (MOD) and 43% (MYD) to 7%, thus improving snow cover estimates from 7% (MOD) and 5% (MYD) to 14% for the area of interest (AOI) during the validation period (2004). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (Upper Indus Basin, Astore, Hunza, Shigar, Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Regarding the seasonal snow cover, decrease during winter and autumn and increase during spring and summer has been found, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitude/altitude show higher variability than basins at lower latitude/mid-altitude. Northeastern and northwestern aspects feature larger snow cover. The mean regional snow line altitude (SLA) zones range between 3000 and 5000 m a.s.l. for all basins. Our analysis provides an indication of a decrease in the regional SLA zone, thus indicating a change in the water resources of the studied basins, particularly for the Upper Indus Basin (UIB). Such results are consistent with the observed hydro-climate data, recently collected local perceptions and glacier mass balances for the investigated period. Moreover, our analysis suggests some potential for the seasonal stream flow forecast as a significant negative correlation has been detected for the inter-annual variability of winter snow cover and value of the North Atlantic Oscillation (NAO) index of the previous autumn.

  6. Early 21st century snow cover state over the western river basins of the Indus River system

    NASA Astrophysics Data System (ADS)

    Hasson, S.; Lucarini, V.; Khan, M. R.; Petitta, M.; Bolch, T.; Gioli, G.

    2014-10-01

    In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River system (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001-2012. First, we validate the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products from Terra (MOD10A1) and Aqua (MYD10A1) against the Landsat Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) data set, and then improve them for clouds by applying a validated non-spectral cloud removal technique. The improved snow product has been analysed on a seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (upper Indus basin (UIB), Astore, Hunza, Shigar and Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Seasonal average snow cover decreases during winter and autumn, and increases during spring and summer, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitudes/altitudes show higher variability than basins at lower latitudes/middle altitudes. Northeastern and northwestern aspects feature greater snow cover. The mean end-of-summer regional snow line altitude (SLA) zones range from 3000 to 5000 m a.s.l. for all basins. Our analysis provides an indication of a descending end-of-summer regional SLA zone for most of the studied basins, which is significant for the Shyok and Kabul basins, thus indicating a change in their water resources. Such results are consistent with the observed hydro-climatic data, recently collected local perceptions and glacier mass balances for the investigated period within the UIB. Moreover, our analysis shows a significant correlation between winter season snow cover and the North Atlantic Oscillation (NAO) index of the previous autumn. Similarly, the inter-annual variability of spring season snow cover and spring season precipitation explains well the inter-annual variability of the summer season discharge from most of the basins. These findings indicate some potential for the seasonal stream flow forecast in the region, suggesting snow cover as a possible predictor.

  7. Hydrologic Sensitivities of Upper Indus Basin (North Pakistan) Rivers to Multi-Decadal Climatic Variability

    NASA Astrophysics Data System (ADS)

    Farhan, S. B.; Zhang, Y.; Ma, Y.; Haifeng, G.; Jilani, R.; Hashmi, D.; Rasul, G.

    2014-12-01

    Thermal inputs play a vital role in the management and seasonal distribution of stream-flows particularly in snow and glacier fed basins, therefore the signatures of the recent climate trends can also be observed in various hydrological variables in those basins. Upper Indus Basin (UIB) is located in the western part of Tibetan Plateau, and most of its flows are dependent on snow- and glacier-melt produced water, thus the analyses of historical stream-flows and climatic indicators in the snow-melt dominated rivers of UIB was carried out, which points towards an advance in the spring flow onset time over the past few decades. Trend results reveal that warm temperature spells in spring have occurred much earlier in recent years, which explains in part the trend in the timing of spring peak stream-flows owing to earlier occurrence of snow melt onset. The observed increase in spring stream-flows and decrease in summer stream-flows suggests a broad shift of snow-melt yield and spring peak flows. These trends are found to be strongest at lower elevations basins where winter temperatures are closer to the melting point, even modest variation in temperatures are capable to enforce large shifts in the basin hydrologic feedback. In addition, it appears that in recent years due to winter and spring warming, more of the precipitation is falling as rain rather than snow particularly in late winter and early spring seasons, consequently it is speculated that this shift in precipitation ratio (snow vs rain) and early warming spells might also affect local (basin-scale) Albedo via early recession and systematic decrease of snow cover area, which tends in lowering Albedo from an increased fraction of snow-free area, which instigate positive feedback on radiative balance that can perhaps causes local-scale heat redistribution, which collectively in turn augmented winter and early spring stream-flows in those basins. These observed hydro-climatological trends over UIB can have significant impacts on water resource planning and management.

  8. Hydrocarbon prospects of southern Indus basin, Pakistan

    SciTech Connect

    Quadri, V.U.N.; Shuaib, S.M.

    1986-06-01

    The Southern Indus basin extends approximately between lat. 23/sup 0/ and 28/sup 0/31'N, and from long. 66/sup 0/E to the eastern boundary of Pakistan. Of the 55 exploratory wells drilled (1955-1984), 27 were based on results of multifold seismic surveys. Five commercial oil discoveries and one gas discovery in Cretaceous sands, three gas discoveries in Paleocene limestone or sandstone, and one gas-condensate discovery from lower Eocene limestone prove that hydrocarbons are present. The main hydrocarbon fairways are Mesozoic tilted fault blocks. Tertiary reefal banks, and drape and compressional anticlines. Older reservoirs are accessible toward the east and northeast, and younger mature source rocks are to the west, including offshore, of the Badin block oil field area. The Indus offshore basin reflects sedimentation associated with Mesozoic rifting of the Pakistan-Indian margin, superimposed by a terrigenous clastic depositional system comprised of deltas, shelves, and deep-sea fans of the Indus River.

  9. Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin

    NASA Astrophysics Data System (ADS)

    Su, Buda; Huang, Jinlong; Gemmer, Marco; Jian, Dongnan; Tao, Hui; Jiang, Tong; Zhao, Chengyi

    2016-09-01

    The simulation results of CMIP5 (Coupled Model Inter-comparison Project phase 5) multi-model ensemble in the Indus River Basin (IRB) are compared with the CRU (Climatic Research Unit) and APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation) datasets. The systematic bias between simulations and observations is corrected by applying the equidistant Cumulative Distribution Functions matching method (EDCDFm) and high-resolution simulations are statistically downscaled. Then precipitation and temperature are projected for the IRB for the mid-21st century (2046-2065) and late 21st century (2081-2100). The results show that the CMIP5 ensemble captures the dominant features of annual and monthly mean temperature and precipitation in the IRB. Based on the downscaling results, it is projected that the annual mean temperature will increase over the entire basin, relative to the 1986-2005 reference period, with greatest changes in the Upper Indus Basin (UIB). Heat waves are more likely to occur. An increase in summer temperature is projected, particularly for regions of higher altitudes in the UIB. The persistent increase of summer temperature might accelerate the melting of glaciers, and has negative impact on the local freshwater availability. Projections under all RCP scenarios show an increase in monsoon precipitation, which will increase the possibility of flood disaster. A decreasing trend in winter and spring precipitation in the IRB is projected except for the RCP2.6 scenario which will cause a lower contribution of winter and spring precipitation to water resources in the mid and high altitude areas of the IRB.

  10. Early 21st century climatology of snow cover for the western river basins of the Indus River System: effects of changes on hydrological balance and society.

    NASA Astrophysics Data System (ADS)

    Hasson, Shabeh; Lucarini, Valerio; Riaz Khan, Mobushir; Petitta, Marcello; Bolch, Tobias; Gioli, Giovanna

    2014-05-01

    In this study we assess the snow cover and its dynamics for the western river basins of the Indus River System (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001-2012. Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow products from Terra (MOD) and Aqua (MYD) have been first improved and then analysed on seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our applied cloud filtering technique has reduced the cloud cover from 37% (MOD) and 43% (MYD) to 7%, thus improving snow cover estimates from 7% (MOD) and 5% (MYD) to 14% for the area of interest (AOI) during the validation period (2004). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (Upper Indus Basin, Astore, Hunza, Shigar, Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Regarding the seasonal snow cover, decrease during winter and autumn and increase during spring and summer has been found, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitude/altitude show higher variability than basins at lower latitude/mid-altitude. Northeastern and northwestern aspects feature larger snow cover. The mean regional snow line altitude (SLA) zones range between 3000 and 5000 m a.s.l. for all basins. Our analysis provides an indication of a decrease in the regional SLA zone, thus indicating a change in the water resources of the studied basins, particularly for the Upper Indus Basin (UIB). Such results are consistent with the observed hydro-climate data, recently collected local perceptions and glacier mass balances for the investigated period. Moreover, our analysis suggests some potential for the seasonal stream flow forecast as a significant negative correlation has been detected for the inter-annual variability of winter snow cover and value of the North Atlantic Oscillation (NAO) index of the previous autumn.

  11. Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin: Implications for the composition of the Archean atmosphere

    SciTech Connect

    Maynard, J.B.; Ritger, S.D. ); Sutton, S.J. )

    1991-03-01

    Both the Indus River and the Witwatersrand basin contain sand with grains of detrital uraninite. Because this mineral is easily oxidized, its presence in Archean strata as a detrital particle has been used as evidence for a low-oxygen atmosphere before 2.5 Ga. However, its presence in modern sand from the Indus River system has been used to argue that detrital uraninite does not provide information about the oxygen concentration of Earth's early atmosphere. Petrographic and chemical study of sand from these two sources reveals differences that suggest the modern Indus sand cannot be used as an analog for the Archean Witwatersrand occurrences. The Witwatersrand quartzites are depleted in Ca, Mg, and Na, indicating that the original sand from which they formed had been subjected to intense weathering. The chemical index of alteration (CIA), a commonly used indicator of degree of weathering, yields an average value of about 0.80 for Witwatersrand quartzites, comparable to modern tropical streams such as the Orinoco that drain deeply weathered terrains under tropical conditions (CIA=0.75). In contrast, the CIA for Indus sand is 0.45, indicating virtually no chemical weathering. The significance of Archean quartz-pebble conglomerates is not just that they contain unstable detrital phases like uraninite and pyrite, but that these particles are associated with rocks whose compositions suggest intense weathering. These conglomerates must have been subjected to intense weathering under tropical conditions, either in their source area or at the site of deposition, and the preservation of minerals like uraninite such conditions is indeed strong evidence for a low-oxygen atmosphere.

  12. Tracking the fingerprints and combined TOC-black carbon mediated soil-air partitioning of polychlorinated naphthalenes (PCNs) in the Indus River Basin of Pakistan.

    PubMed

    Ali, Usman; Sánchez-García, Laura; Rehman, Muhammad Yasir Abdur; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-01-01

    This study reports the first investigation of polychlorinated naphthalenes (PCNs) in air and soil samples from ecologically important sites of the Indus River Basin, Pakistan. The concentrations of ∑39-PCNs in air and soil were found in a range between 1-1588 pg m(-3) and 0.02-23 ng g(-1) while the mean TEQ values were calculated to be 5.4E(-04) pg TEQ m(-3) and 1.6E(+01) pg TEQ g(-1), respectively. Spatially, air and soil PCN concentrations were found to be high at Rahim Yar Khan (agricultural region). Lower-medium chlorinated PCNs (sum of tri-, tetra- and penta-CNs) predominated in both air and soil, altogether constituting 87 and 86% of total PCNs in the two environmental matrices, respectively. According to the data, soil-air partitioning of PCNs was interpreted to be similarly controlled by the combined effect of black carbon and organic matter in the Indus River Basin, with no preferential implication of the recalcitrant organic form. PMID:26613673

  13. Five centuries of Upper Indus River flow from tree rings

    NASA Astrophysics Data System (ADS)

    Cook, Edward R.; Palmer, Jonathan G.; Ahmed, Moinuddin; Woodhouse, Connie A.; Fenwick, Pavla; Zafar, Muhammad Usama; Wahab, Muhammad; Khan, Nasrullah

    2013-04-01

    SummaryWater wars are a prospect in coming years as nations struggle with the effects of climate change, growing water demand, and declining resources. The Indus River supplies water to the world's largest contiguous irrigation system generating 90% of the food production in Pakistan as well as 13 gigawatts of hydroelectricity. Because any gap between water supply and demand has major and far-reaching ramifications, an understanding of natural flow variability is vital - especially when only 47 years of instrumental record is available. A network of tree-ring sites from the Upper Indus Basin (UIB) was used to reconstruct river discharge levels covering the period AD 1452-2008. Novel methods tree-ring detrending based on the 'signal free' method and estimation of reconstruction uncertainty based on the 'maximum entropy bootstrap' are used. This 557-year record displays strong inter-decadal fluctuations that could not have been deduced from the short gauged record. Recent discharge levels are high but not statistically unprecedented and are likely to be associated with increased meltwater from unusually heavy prior winter snowfall. A period of prolonged below-average discharge is indicated during AD 1572-1683. This unprecedented low-flow period may have been a time of persistently below-average winter snowfall and provides a warning for future water resource planning. Our reconstruction thus helps fill the hydrological information vacuum for modeling the Hindu Kush-Karakoram-Himalayan region and is useful for planning future development of UIB water resources in an effort to close Pakistan's "water gap". Finally, the river discharge reconstruction provides the basis for comparing past, present, and future hydrologic changes, which will be crucial for detection and attribution of hydroclimate change in the Upper Indus Basin.

  14. Climate Risks on Water and Agriculture in the Indus Basin of Pakistan

    NASA Astrophysics Data System (ADS)

    Yang, Y. E.; Brown, C. M.; Yu, W.

    2012-12-01

    Pakistan relies on the largest contiguous irrigation system in the world, known as the Indus Basin Irrigation System (IBIS) for its basic food security and water supply for all sectors of the economy. The basin that supports this irrigation system consists of the Indus River mainsteam and its major tributaries. The integrated systems framework used in this analysis provides a broad and unique approach to estimating the hydrologic and crop impacts of climate change risks, the macro-economic and household-level responses and an effective method for assessing a variety of adaptation investments and policies. In assessing the impacts, several different modeling environments must be integrated to provide a more nuanced and complete picture of how water and agriculture inter-relate. Moreover, such a framework allows for extensive scenario analysis to identify and understand key sensitivities. This is critical to making decisions in a highly uncertain future. Finally, through this integration of multiple disciplines, a richer and more robust set of adaptation investment options and policies for the agriculture and water sectors can be identified and tested. Continued refinements to the assessment approach developed in this volume will further help to sharpen critical policies and interventions by the Pakistan government. Fig 2. Impacts of climate change on GDP, Ag-GDP and Household income in the Indus Basin Fig1. The Indus River Basin

  15. Development of Flood GIS Database of River Indus using RS and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Siddiqui, Z.; Farooq, M.; Shah, S.

    Remote sensing and Geographic Information System (GIS) are information technologies that furnish a broad range of tools to assist in preparing for the next flood and for obtaining vital information about the flood plain. This type of information is used to improve flood forecasting and preparedness, monitoring flood conditions, assess flood damage, relief efforts, flood control etc. Severe floods of varied magnitudes have occurred in the river Indus and its tributaries viz; Jhelum, Chenab, Ravi and Sutlej during the past three decades covering the Indus flood plain from Cheshma Barrage in the province of Punjab to downstream of Kotri Barrage in the souh of Sindh province of Pakistan. Digital mapping of different floods in the Indus Basin was carried out using both MSS and TM data of Landsat yielding flood maps. These maps depict flood extent and other relevant information in the flood plain. In order to create comprehensive GIS database, various hydrologic information such as rainfall, river discharge, canal withdrawal, embankment, breach etc. were incorporated. Flood database provide comprehensive information both in separate layer and combination of multiple layers pertaining to floods that occurred in the past three decades . GIS database on flood provides easy access to updated in-situ geographic information to planners and irrigation engineers concerned with overall river Indus operation and management system. GIS database of Indus floods can als o be used to improve the efficiency of decision making and management by collecting, organizing and integrating geographic, environmental and socio-economic spatial data and information.

  16. Indus basin off Pakistan contains few wells

    SciTech Connect

    Quadri, V.N.; Quadri, S.M.G.J.

    1997-06-16

    The U.N. Conference on the Law of the Sea reaffirmed sovereignty of nations over 22 km of territorial sea, a 370 km Exclusive Economic Zone (EEZ), and rights over the continental shelf to at least 370 km and out to 648 km or beyond under specified conditions. With a coast line of about 990 km, the EEZ for Pakistan extends over an area almost 240,000 sq km, or 40% of the land sedimentary area, in which two distinct geological provinces, and the Indus Offshore and the Makran offshore, have been defined. The paper discusses the tectonics, structure, exploration history, and play types offshore Pakistan. Data show a potential for both oil and gas.

  17. On the control of climate- and human-modulated fluvial sediment delivery on river delta development: The Indus

    NASA Astrophysics Data System (ADS)

    Giosan, L.; Clift, P. D.; Blusztajn, J.; Tabrez, A.; Constantinescu, S.; Filip, F.

    2006-12-01

    Deltas are particularly vulnerable coasts, affected by changes in both continental and coastal ocean processes. The currently accelerated loss of deltaic lands across the world is primarily due to fluvial sediment starvation following the pandemic construction of river dams and water diversions. However, the influence on deltas of human- or even climate-modulated changes in fluvial sediment discharge has been studied less comprehensively than other controls e.g., the sea-level rise. We examined the Indus delta to understand how the sediment source (i.e., available fluvial sediment) has affected the development of the sediment sink (i.e., the subaerial and subaqueous delta evolution). With an elevated topography and generally arid climate in the watershed, the Indus has been, in natural conditions (i.e., before dams reduced its flow and sediment discharge by over 80%), one of the most important sediment-producing rivers in the world. Bathymetric data show that the Indus shelf morphology exhibits a compound clinoform morphology. Whereas the inner shoreface-connected clinoform has clearly developed as the subaqueous part of the modern Indus delta, the offshore clinoform is either a relict or a contemporaneous prodelta clinoform. Following the reduction in sediment discharge after the late 1950's, the deltaic shoreline in the central part of the delta coast started to recede providing sediment for the southeastern and northwestern coast sectors that remained largely progradational. This differential behavior of the delta shoreline indicates that even a drastic loss of fluvial sediment is initially buffered by an erosional smoothing of the delta coast. New data from onland drilling shows that unlike most Holocene deltas, the Indus delta prograded through the later part of the deglacial sea level rise, starting no later than 12,000 cal. years BP. Neodymium isotope data indicate that sediments comprising the entire Holocene delta originated predominantly in the monsoon-affected Himalayas. This early inception of the Indus delta was probably controlled by an augmented sediment delivery from the Indus basin occurring between 13000 and 9500 years BP during a period of abrupt increase in the intensity of the summer monsoon. Subsequently, a centuries-long phase of reduced precipitations in the Indus basin resulted in an abrupt decrease of the Indus discharge sometimes between 9000 and 8000 years. During this phase, almost the entire early Indus delta was flooded as marine waters penetrated deep inland, providing a grim analog for the future of currently sediment starved river deltas. Furthermore, it will be discussed that this complex evolution of the Indus delta points toward a fundamental change in paradigm for the dynamics deltas at centennial to millennial time scales and for interpreting the sedimentary architecture of transgressive and highstand deltaic deposits.

  18. Makran Mountain Range, Indus River Valley, Pakistan, India

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  19. Fluvial-aeolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus Basin and Thar Desert

    USGS Publications Warehouse

    East, Amy E.; Clift, Peter D.; Carter, Andrew; Alizai, Anwar; VanLaningham, Sam

    2015-01-01

    Sediment production and its subsequent preservation in the marine stratigraphic record offshore of large rivers are linked by complex sediment-transfer systems. To interpret the stratigraphic record it is critical to understand how environmental signals transfer from sedimentary source regions to depositional sinks, and in particular to understand the role of buffering in obscuring climatic or tectonic signals. In dryland regions, signal buffering can include sediment cycling through linked fluvial and eolian systems. We investigate sediment-routing connectivity between the Indus River and the Thar Desert, where fluvial and eolian systems exchanged sediment over large spatial scales (hundreds of kilometers). Summer monsoon winds recycle sediment from the lower Indus River and delta northeastward, i.e., downwind and upstream, into the desert. Far-field eolian recycling of Indus sediment is important enough to control sediment provenance at the downwind end of the desert substantially, although the proportion of Indus sediment of various ages varies regionally within the desert; dune sands in the northwestern Thar Desert resemble the Late Holocene–Recent Indus delta, requiring short transport and reworking times. On smaller spatial scales (1–10 m) along fluvial channels in the northern Thar Desert, there is also stratigraphic evidence of fluvial and eolian sediment reworking from local rivers. In terms of sediment volume, we estimate that the Thar Desert could be a more substantial sedimentary store than all other known buffer regions in the Indus basin combined. Thus, since the mid-Holocene, when the desert expanded as the summer monsoon rainfall decreased, fluvial-eolian recycling has been an important but little recognized process buffering sediment flux to the ocean. Similar fluvial-eolian connectivity likely also affects sediment routing and signal transfer in other dryland regions globally.

  20. Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination

    NASA Astrophysics Data System (ADS)

    Hamidullah, S.; Tariq, S.; Shah, M. T.; Bishop, M. P.; Kamp, U.; Olsenholler, J.

    2002-05-01

    Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination Terrorism has temporarily constrained the dynamism of the world it was enjoying before September 11, 2001, but also has opened avenues for people of all ethnicities, creeds, and professions to join hands in combating it. Scientific efforts to combat terrorism are likely to lead to better use of existing scientific knowledge as well as to discoveries that will increase world organization, interconnectivity, and peace promotion. Afghanistan and surrounding regions are major focal points for current anti-terrorist activities of the USA and its allies, including Pakistan. The United States, Pakistan, and Afghanistan have shared many similar political objectives, as well as differences, in cold war and post-cold-war eras, reflected by variable provisions of material aid. It is well recognized that understanding Afghanistan requires comprehension of the Pakistan situation as well, especially for common resources. Water is paramount because it is absolutely vital, but can be contaminated by internal or cross-border terrorism. The Kabul and Indus rivers originate in the Hindu Kush - Himalaya ranges. The Kabul River flows from Afghanistan into Pakistan, and after irrigating Peshawar basin, joins the Indus. The Indus, after its origin in Tibet and flow through the Indian Himalaya, enters Pakistan and flows south as the irrigation lifeblood of the country. Any terroristic addition of radioactive nuclides or contaminants to either river could dramatically impact the dependent riverine ecologies. Monitoring cells thus need to be established at locations in Afghanistan and Pakistan to assess base-line river variances for possible future contamination by terrorists. This paper presents a general view and the physical and chemical parameters of parts of the two rivers, and of the surrounding underground water in Peshawar Basin, including pH, conductivity, total dissolved solids, major elements, trace elements, heavy metals and oxygen isotopes. Data are mostly within allowed limits of US-EPA for surface and underground water. Oxygen isotopes confirm the dangers of contamination from the Kabul River to underground water. Heavy metals were determined through spectrophotometery, however, modern geophysical methods are cheaper and quicker and can be applied at monitoring stations. With Kabul river and its surroundings as examples, similar theory and practice can be applied to rivers within the United States and other parts of the world.

  1. Spatial quantification of groundwater abstraction in the irrigated Indus basin.

    PubMed

    Cheema, M J M; Immerzeel, W W; Bastiaanssen, W G M

    2014-01-01

    Groundwater abstraction and depletion were assessed at a 1-km resolution in the irrigated areas of the Indus Basin using remotely sensed evapotranspiration (ET) and precipitation; a process-based hydrological model and spatial information on canal water supplies. A calibrated Soil and Water Assessment Tool (SWAT) model was used to derive total annual irrigation applied in the irrigated areas of the basin during the year 2007. The SWAT model was parameterized by station corrected precipitation data (R) from the Tropical Rainfall Monitoring Mission, land use, soil type, and outlet locations. The model was calibrated using a new approach based on spatially distributed ET fields derived from different satellite sensors. The calibration results were satisfactory and strong improvements were obtained in the Nash-Sutcliffe criterion (0.52 to 0.93), bias (-17.3% to -0.4%), and the Pearson correlation coefficient (0.78 to 0.93). Satellite information on R and ET was then combined with model results of surface runoff, drainage, and percolation to derive groundwater abstraction and depletion at a nominal resolution of 1 km. It was estimated that in 2007, 68 km³ (262 mm) of groundwater was abstracted in the Indus Basin while 31 km³ (121 mm) was depleted. The mean error was 41 mm/year and 62 mm/year at 50% and 70% probability of exceedance, respectively. Pakistani and Indian Punjab and Haryana were the most vulnerable areas to groundwater depletion and strong measures are required to maintain aquifer sustainability. PMID:23441997

  2. Changing Pattern of Heavy Rainstorms in Indus Basin of India Under Global Warming Scenario

    NASA Astrophysics Data System (ADS)

    Deshpande, N. R.; Kulakarni, B. D.

    2012-12-01

    A major concern of the hydraulic design engineers is to determine a practical value for the design storm where maximum protection against structural failure is required. Design of such structures is based on the extremely large values such as 'Probable Maximum Precipitation (PMP)'. The estimation of PMP involves selection of heavy rainstorm, its areal rainfall distribution and maximization of areal rainfall for moisture content. The study attempts to examine the characteristics of heavy rainstorms of Indus basin located in northern parts of India under changing climate and to provide information on heavy rainfall over a large area which serves as a guide in hydrologic design projects in the basin. The Indus river originates in the northern slopes of the Kailash ranges in the Himalaya and flows through India and Pakistan where it meets Arabian sea. Heavy rainstorms occurred in the Indus basin during 1971-2009 are selected and analyzed. Future scenarios of such heavy rainstorms occurring in this basin are projected using regional climate model, PRECIS (Providing REgional Climate for Impact Studies) scenarios for the period 2071-2100. Baseline simulations (1961-1990) generated by this model used to assess the efficiency of the model to generate widespread heavy rainfall in the basin. Primary emphasis is given on the areal distribution of rainfall during severe rainstorms having durations of 24 hours and producing excessive amount of rainfall over an area of at least 25000 square kilometers with rainfall intensity at the centre of rainstorm more than 30cm. Information is also provided on other important storm factors such as its shape, orientation and movement. Fig.1 shows the spatial patterns of severe-most rainstorms from observational data sets, baseline and future simulated datasets from PRECIS. Table gives the average shape factor (ratio of major to minor axis) and average orientation of these rainstorms. In general it is observed that common shape of the rainstorm occurring in the study basin is elliptical with its orientation in WNW-ESE direction. It has also been observed that model well generates the rainstorm pattern in terms of rainfall intensity and orientation and shape. Future scenario indicates increase in central value of rainfall value with decreasing areal spread.; t;

  3. Predictable Equilibrium Multichannel Network Characteristizes The Indus River, Pakistan

    NASA Astrophysics Data System (ADS)

    Carling, Paul

    2015-04-01

    PREDICTABLE EQUILIBRIUM MULTICHANNEL NETWORK CHARACTERIZES THE INDUS RIVER, PAKISTAN Carling, P.A.1, Trieu, H.1, Hornby, D.2, Darby, S.E.1, Sear, D.A.1, Hutton, C.2, Ali, Z.3, Iqbal, I.3 1Geography & Environment, University of Southampton, Southampton, UK; 2GeoData, University of Southampton, Southampton, UK; 3SUPARCO, Karachi, Pakistan The Indus River in Pakistan between Chasma and Taunsa is a 304 river km reach characterised by islands dividing multiple channels. Previously, the behaviour of such channel networks has been considered unpredictable. Crosato & Mosselman (2009) argue that physics-based predictors of channel splitting developed for braided-river bars apply poorly to island-divided rivers and recommend the application of regime theory (Bettess & White, 1983) to predict the number (n) of channels in rivers such as the Indus. The Indus is characterized by two to 11 channels at each cross section with, on average, about four channels being active during the dry season and five during the monsoon. Thus the expansion of the network during the monsoon is slight and is due to reoccupation of channels that are dry during low flows. The network evolves on an annual basis primarily due to bendway progression, whilst avulsions to form major new channels are relatively rare (one or two in the reach per year) and are matched by a similar number of closures. Thus the network structure, if not its shape, is relatively stable year to year. The standard deviation of channel numbers comparing sections throughout the reach is practically identical at c. two channels and there is no significant variation between years. Theory indicates that stable networks have three to four channels, thus the stability in the number of active channels through the annual monsoon and between years accords with the presence of a near-equilibrium reach-scale channel network that demonstrates local disequilibrium when 3 > n > 4, being perturbed by the annual monsoon. Application of the Bettess & White regime theory demonstrates that the river channel network does not respond to monsoon floods (which typically peak at 13,200 m3s-1), but rather it maintains a network that is in near-equilibrium with the 20-year mean annual flow (3090 m3s-1) for a narrow range of channel slopes (2.8 - 2.9 10-4) and a narrow range of total sediment load (120 - 180 mg l-1). Given the stability in n and B (channel width), it can be inferred that channel depths (d) also are relatively stable during the monsoon. Thus despite any minor adjustments in B:d during the annual hydrological cycle, the time-scale for adjustment of the physical network is much longer than the time-scale of the monsoon hydrograph, with the annual excess water being stored and transported across neighbouring floodplains, rather than being conveyed in enlarged channels or in new avulsed channels. The analysis explains the lack of significant channel adjustment following the largest recorded flood in 40 years: 27,100 m3s-1 in 2010.

  4. Future hydrological regimes of the upper Indus basin: results from the PAPRIKA project.

    NASA Astrophysics Data System (ADS)

    Bocchiola, Daniele; Soncini, Andrea; Confortola, Gabriele; Nana, Ester; Bianchi, Alberto; Rosso, Renzo; Diolaiuti, Guglielmina; Smiraglia, Claudio; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello; Giorgi, Filippo; Solmon, Fabien; Vuillermoz, Elisa

    2013-04-01

    The mountain regions of the Hindu Kush, Karakoram and Himalaya (HKKH) are the "third pole" of our planet, and the glaciers in this area play the role of "water towers", delivering significant amounts of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. The recent dynamics of glaciers in the Karakoram area is also called the "Karakoram anomaly", characterized by substantially unchanged ice cover during the last decade, against noticeable area loss worldwide, possibly leading to slightly decreasing stream fluxes. Yet, recent major floods occurring in Pakistan and the Karakoram area, may represent an effect of modified climate in the area, carrying heavier precipitation in the Monsoon season. Therefore, and notwithstanding the uncertainty embedded in measuring and modelling the hydrological behaviour of this area, there is a great need for assessment of future water resources and hydrological variability in this area. We present here results obtained at year two of the SHARE-Paprika project of the EvK2CNR Committee of Italy, aiming at evaluating the impact of recent and prospective climate change on the hydrology of the upper Indus river. We focus here on a particular watershed, the Shigar river close to Shigar, with an area of about 7000 km2, nested within the upper Indus basin, and fed by seasonal melt from two major glaciers (Baltoro and Biafo), at the toe of the K2 peak. We illustrate data gathered during three field campaigns during 2011-2012, aimed at investigating ice ablation dynamics, seasonal accumulation, and hydrological fluxes from the Baltoro-Biafo glaciers area and Shigar river. Based upon these data, topographic information, historical climate data and remote sensing data of ice and snow cover, we set up a semi-distributed, altitude belt based hydrological model, providing acceptable depiction of in stream flows, and snow and ice cover dynamics. We then project the future (until 2050) hydrological cycle in the area by feeding the hydrological model with future precipitation and temperature (plus downscaling, whenever necessary) from two climate models, one global (EC-Earth), and one regional (RegCM), the latter specifically set up for SHARE-Paprika project. The projected flow duration curves, some selected flow descriptors, and the significance of modified flow regimes in the Shigar river are then evaluated. We comment upon modified snow cover, ice ablation regime and implications for future water resources and flood regime in the area. The uncertainty of the results is addressed, and future research questions are discussed. Keywords: Upper Indus basin; hydrological models; climate models; future water resources.

  5. Precipitation and temperature variations affecting glacierised Himalayan headwaters and water resources in the upper Indus and Sutlej basins

    NASA Astrophysics Data System (ADS)

    Collins, D. N.; Eaton, D.; Entwistle, N. S.

    2013-12-01

    Both the main stem upper Indus and Sutlej rivers feed major reservoirs for hydropower plants and supply water for irrigated agriculture in the Punjab plains. Flows in both rivers have shown significant decreases since the mid-20th century. Monsoon precipitation, which dominates flow in lower Himalayan section of the Sutlej as the upper basin on the Tibetan plateau is fairly dry, has declined by about 30% since the 1950s maximum. Air temperatures decreased from the 1960s to 1980s before recovering in the early 2000s to previous levels. Any enhanced glacier melt in the late twentieth century failed to offset declining precipitation and river flow continued to fall. In the upper Indus basin, precipitation derived in winter from the westerlies was enhanced but temperatures remained flat at stations in valleys at which measurements were undertaken. Runoff from tributary basins of the Indus, which have variable percentages of ice-cover, appears to be subdued as precipitation gently increased. Temperature was more stable than in mountain basins farther east. Valley bottoms in the Karakoram are arid, so that precipitation on glaciers reduces flow but there is little seasonal slow to melt to contribute to runoff in the ice-free areas. Changes in glacierised area seem to have limited impact on flow in these two significant rivers. Precipitation in Himalayan sub-catchments dominates flow, but has contrasting effects on runoff downstream. Temporal variations in both winter and summer precipitation along the Himalayan arc therefore have strong influences on the sustainability of water resources in the adjacent plains.

  6. Quantification of glacier elevation changes using ICESat and SRTM elevation data in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Naz, B. S.; Bowling, L. C.; Crawford, M. M.

    2010-12-01

    Recent studies carried out in the Karakoram Himalayas suggest an expansion of glaciers. Many studies conducted in the Himalayan region have focused on monitoring changes in the aerial extent of individual glaciers from remotely sensed data or through field surveys. Limited work, however, has been done in this region to estimate glacier volume changes using measurements of elevation change over time, particularly at a large scale. Here we used Ice, Cloud and Land Elevation Satellite (ICESat) and the Shuttle Radar Topography Mission (SRTM) data to estimate glacier elevation changes within the Upper Indus River Basin (UIB). The elevation changes were estimated within snow-covered and clean-ice zones which were delineated using historic Land Remote-Sensing Satellite (Landsat) images. ICESat/GLA06 elevations data from spring campaigns, release 28 were used to estimate ice elevation changes for the period of 2004-2008 relative to 2000. The accuracy of elevation change was assessed by analyzing non-glacier elevation difference points within different categories of a Terrain Ruggedness Index (TRI). This comparison showed that elevations precision decreased with increasing TRI, so using TRI to categorize glacier areas helps to identify data points with higher accuracy. Our analysis of elevation changes estimated from the ICESat altimeter identified two clear patterns in elevation changes. Firstly, glaciers in the northern half of the Upper Indus valley have thickened in the last decade, while those in the southern sub-watersheds are thinning. Secondly, glacier thickening occurred on the higher elevation snow-covered ice zone, while more thinning rates were observed within the clean ice zone for all sub-watersheds of the UIB, except in the Hunza river basin. Such results showed the potential of ICESat data for assessing relief changes on mountain glaciers and could be used in the estimation of glacier mass balance at higher temporal resolutions.

  7. Impact of altitudinal variability on streamflows in mountainous catchments under changing climate (Upper Indus Basin), Himalayas Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, K. M.; Yaseen, M.

    2014-12-01

    Pakistan's economy is based on agriculture that is highly dependent on water resources originating in the mountain sources of the Upper Indus Basin (UIB). Various rivers i.e. Chitral, Swat, Kabul, Hunza, Gilgit, Astore, Shigar, Shyok & tributaries contribute water to main Indus River. The elevation of UIB ranges from 254 m to 8570 m a.m.s.l. Changes in climate and related hydrological impacts vary in space and time as affected by local climatic and topographic settings. So, the objective of this study was to assess the climate change and related hydrological impacts resulting from altitudinal variability. Trend analyses were performed by applying Mann-Kendall and Sen's method was applied to estimate slope time series that indicates changes in river flows. The results of this study indicate that maximum temperature in annual, winter, spring and autumn seasons has increased with increased in altitude while annual, winter and autumn minimum temperature has decreased with increased in altitude for the period (1961-2011). Moreover, annual, winter, summer and autumn precipitation has been decreased. The impact of altitudinal variability under changing climate yields that annual and seasonal streamflows in River Indus (at Kharmong, Alam Br. and Khairabad), Sawat (at Kalam) and Kabul (at Nowshera) have decreased whereas in River Shoyk (9%), Shigar (7%) and Indus at Kachura (5%) have been increased. However, annual runoff in Gilgit (1%) and Hunza River (18%) has increased by increasing 2 % annual temperature. A seasonal correlation coefficient between temperature and streamflow has the positive correlation in most of the sub-basins of UIB for both spring and summer. With increased 1 oC temperature in spring yields increased streamflow for rives Gilgit, Chitral, Astore, Shoyk, Shigar, Indus at Kachura & Kharmong and Hunza with percentage of 19, 5, 11, 15, 9, 7, 1 and 12 respectively. The prevailing trends and variability, caused by climate change, have an effect on the flows that should be considered by the water managers for better water management in a water scarcity country like Pakistan. On the basis of collected real time data, an awareness regarding present Integrated Water Management (IWM) working with up-to-date techniques is recommended for effective water on-going reform process.

  8. Multi- Sensor Imaging and Space-Ground Cross-Validation for Flood Monitoring triggered by the 2010 Monsoon along Indus River, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, S. I.; Hong, Y.; Gourley, J. J.

    2013-12-01

    A multi-sensor network-based flood monitoring framework is developed by integrating space- borne optical, hyper-spectral, passive and active microwave sensors, with cross-validation using ground-based rain gauges and streamflow stations along the Indus River, Pakistan. First, the optical imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to delineate the extent of the 2010 flood along the Indus River, Pakistan. Moreover, the all-weather all-time capability of higher resolution imagery from the Advanced Synthetic Aperture Radar (ASAR) is used to monitor flooding in the lower Indus river basin. Then a proxy for river discharge from the Advanced Microwave Scanning Radiometer (AMSR-E) aboard NASA's Aqua satellite and rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) are used to retrieval streamflow time series and precipitation patterns. The AMSR-E detected water surface signal was cross-validated with ground-based river discharge observations at multiple streamflow stations along the main Indus River. A high correlation was found as indicated by a Pearson correlation coefficient of 0.7, 0.72, 0.7, 0.82, 0.84, 0.88, 0.83 for stations at Tarbela, Kalabagh, Chashma, Taunsa, Guddu, Sukkur, Kotri, respectively. It is concluded that remote-sensing data integrated from optical, hyper-spectral and microwave sensors could be used to supplement stream gauges in sparsely gauged basins to detect floods. The study demonstrates that the capability to detecting ongoing flooding situations in its upper reaches can be valuable early warning for spatially distributed flood monitoring and even prediction in the lower reaches of the Indus river basin.

  9. Effect of climate change on water resources of the Upper Indus River

    NASA Astrophysics Data System (ADS)

    Bowling, L. C.; Naz, B. S.; Ashfaq, M.; Diffenbaugh, N. S.

    2010-12-01

    In recent years, accelerated glacier recession trends have been reported for the Himalayan region, based largely on the studies in the Eastern Himalayas. However, recent studies carried out in the Karakoram Himalayas, suggest an expansion of glaciers and a reduction in summer streamflow due to a significant decrease in summer temperatures. Snow and ice melt from these glaciers is the primary input to the Upper Indus River, upstream of Tarbela Reservoir, a water resource for irrigation and hydroelectric power in Pakistan. Given the complexity of variations in the Himalayan glaciers and their socio-economic significance, it is important to understand the mechanisms that governed these changes in the historical period. More importantly, it is critical to accurately project expected future changes in the extent of Himalayan glaciers due to anthropogenic variations in temperature and precipitation patterns and impacts of such changes on water supply and agriculture. Projecting future changes to perennial water supply or flood risk in the Upper Indus River requires a modeling tool that can represent the effect of glacier and snow cover fluctuations. In this study, the Variable Infiltration Capacity (VIC) hydrology model is modified to better represent ice accumulation, ablation and transport in alpine glacier systems. Ice transport from the higher elevations to the lower elevations within a new glacial ice layer is represented via both ice deformation and basal sliding based on the Glen’s flow law. The transformation of snow to ice during the snow metamorphism process is implemented based on snow density changes within snowpack. The revised VIC model forced with daily precipitation and temperature data from the high resolution FVGCM-RegCM3 climate model for reference time period of 1961-1990, is evaluated at watershed scale using observed historical river discharge, glacier velocities and point observations of snow accumulation. Changes in streamflow seasonality in the Upper Indus Basin (UIB) are determined for the future climate period 2071-2100 relative to the reference period using daily precipitation and temperature data from RegCM3 climate model. The results from this analysis provide an enhanced understanding of the influence of glacier and snow cover variations on the magnitude and timing of total annual discharge of major rivers in the UIB.

  10. Influence of mid-latitude circulation on upper Indus basin precipitation: the explicit role of irrigation

    NASA Astrophysics Data System (ADS)

    Saeed, Fahad; Hagemann, Stefan; Saeed, Sajjad; Jacob, Daniela

    2013-01-01

    Since much of the flow of the Indus River originates in the Himalayas, Karakoram and Hindu Kush Mountains, an understanding of weather characteristics leading to precipitation over the region is essential for water resources management. This study examines the influence of upper level mid-latitude circulation on the summer precipitation over upper Indus basin (UIB). Using reanalysis data, a geopotential height index (GH) is defined at 200 hPa over central Asia, which has a significant correlation with the precipitation over UIB. GH has also shown significant correlation with the heat low (over Iran and Afghanistan and adjoining Pakistan), easterly shear of zonal winds (associated with central Asian high) and evapotranspiration (over UIB). It is argued that the geopotential height index has the potential to serve as a precursor for the precipitation over UIB. In order to assess the influence of irrigation on precipitation over UIB, a simplified irrigation scheme has been developed and applied to the regional climate model REMO. It has been shown that both versions of REMO (with and without irrigation) show significant correlations of GH with easterly wind shear and heat low. However contrary to reanalysis and the REMO version with irrigation, the REMO version without irrigation does not show any correlation between GH index and evapotranspiration as well as between geopotential height and precipitation over UIB, which is further confirmed by the quantitative analysis of extreme precipitation events over UIB. It is concluded that although atmospheric moisture over coastal Arabian sea region, triggered by wind shear and advected northward due to heat low, also contribute to the UIB precipitation. However for the availability of necessary moisture for precipitation over UIB, the major role is played by the evapotranspiration of water from irrigation. From the results it may also be inferred that the representation of irrigated water in climate models is unavoidable for studying the impact of global warming over the region.

  11. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    NASA Astrophysics Data System (ADS)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  12. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin

    NASA Astrophysics Data System (ADS)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2013-07-01

    The paper demonstrates the application of a new water accounting plus (WA+) framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in addition to measured basin outflow, for water accounting with WA+. It is demonstrated how the accounting results can be interpreted to identify existing issues and examine solutions for the future. The results for one selected year (2007) showed that total annual water depletion in the basin (501 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The water storage systems that were effected are groundwater storage (30 km3), surface water storage (9 km3), and glaciers and snow storage (2 km3). Evapotranspiration of rainfall or "landscape ET" was 344 km3 (69 % of total depletion). "Incremental ET" due to utilized flow was 157 km3 (31% of total depletion). Agriculture depleted 297 km3, or 59% of the total depletion, of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. Due to excessive soil evaporation in agricultural areas, half of all water depletion in the basin was non-beneficial. Based on the results of this accounting exercise loss of storage, low beneficial depletion, and low land and water productivity were identified as the main water resources management issues. Future scenarios to address these issues were chosen and their impacts on the Indus Basin water accounts were tested using the new WA+ framework.

  13. Reconciling high altitude precipitation in the upper Indus Basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Wanders, N.; Lutz, A. F.; Shea, J. M.; Bierkens, M. F. P.

    2015-05-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high altitude precipitation. Yet direct observations of high altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high altitude precipitation in the upper Indus Basin and show that the amount of precipitation required to sustain the observed mass balances of the large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation is up to a factor ten higher than previously thought. We conclude that these findings alter the present understanding of high altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs and the regional geopolitical situation in general.

  14. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Wanders, N.; Lutz, A. F.; Shea, J. M.; Bierkens, M. F. P.

    2015-11-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high-altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  15. Surface and Groundwater Contribution in Convening with High Crop Water Demand in Indus Basin

    NASA Astrophysics Data System (ADS)

    Hafeez, Mohsin; Ullah, Kaleem; Hanjra, Munir Ahmad; Ullah Bodla, Habib; Niaz Ahmad, Rai

    2010-05-01

    The water resources of the Indus Basin, Pakistan are mostly exploited, however the demand for water is on a permanent rise due to population growth and associated urbanization and industrialization process. Owing to rapidly increasing population, the available surface water resources are not able to cope up with people's needs. The cropping intensities and cropping patterns have changed for meeting the increased demand of food and fiber in the Indus Basin of Pakistan. Cumulative effect of all sources water i.e rainfall, irrigation and groundwater resulted in the high cropping intensities in the Basin. Presently rainfall, surface irrigation and river supplies have been unsuccessful to convene irrigation water requirements in most areas. Such conditions due to high cropping intensities in water scarce areas have diverted pressure on groundwater, which has inconsistent potential across the Indus Basin both in terms of quality and quantity. Farmers are over exploiting the groundwater to meet the high crop water demand in addition to surface water supplies. The number of private tubewells has increased more than four-fold in the last 25 years. This increasing trend of tubewell installation in the basin, along with the uncontrolled groundwater abstraction has started showing aquifer stress in most of the areas. In some parts, especially along the tail of canal systems, water levels are showing a steady rate of decline and hence - the mining of aquifer storage. Fresh groundwater areas have higher tubewell density as compared to saline groundwater zones. Even in fresh groundwater areas, uncontrolled groundwater abstraction has shown sign of groundwater quality deterioration. Under such aquifer stress conditions, there is a need to understand groundwater usage for sustainable irrigated agriculture on long term basis. In this paper the contribution of groundwater in the irrigated agriculture of Lower Chenb Canal (LCC) East, Punjab, Pakistan is explored using a nodal network approach and water balance. Also, crop water demands, rainfall, and surface water are calculated to estimate the groundwater abstraction in different districts of Lower Chenb Canal East to understand its usage patterns in year 2008-09. Crop water demand has been estimated using SAM-ET (spatial algorithm for mapping evapotranspiration) algorithm which is based on surface energy balance. Landsat 5 TM satellite images are used to estimate actual crop water demand and the results are compared with Penman Monteith method. The irrigation supplies are calculated from real time data collected by Project Monitoring and Implementation Unit (PMIU), Punjab Irrigation Department. The PMIU envisaged for efficient and optimal canal operations oriented towards equity and transparency. Initial results from nodal network water balance model also provide the spatial variation in crop water demand for each node in LCC East. This work is also aimed at evaluating surface water availability and the assessment of spatial distribution of groundwater abstractions by considering the present crop water demand.

  16. The Indus basin in the framework of current and future water resources management

    NASA Astrophysics Data System (ADS)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2011-03-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options.

  17. Comparative morphometrics of two populations of giant river catfish (Mystus seenghala) from the Indus river system.

    PubMed

    Saini, Archana; Dua, Anish; Mohindra, Vindhya

    2008-09-01

    Giant river catfish (Mystus seenghala) from the Beas river were compared with a population in the Sutlej river of the Indus river system using 28 morphometric characters. Discriminant analyses and a univariate anova were used to explore these data. Allometric transformation of each measurement was done to eliminate correlations with size. The stepwise discriminant analysis retained nine variables that significantly discriminated the Beas samples from the Sutlej samples. Using these variables, 91.2% (original) and 89.0% (cross validated) of fish were classified into their correct samples. Misclassification was higher for the Sutlej samples (12.5%) than for the Beas samples (6.3%). The results of the discriminant analyses showed that variability in the Beas samples was more homogeneous and provided a more characteristic picture of the group than the Sutlej samples. The univariate ANOVA revealed significant differences between the means of the two populations for 12 of the 28 transformed morphometric measurements. PMID:21396072

  18. Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan

    NASA Astrophysics Data System (ADS)

    Ali, Shaukat; Li, Dan; Congbin, Fu; Khan, Firdos

    2015-01-01

    This study is based on both the recent and the predicted twenty first century climatic and hydrological changes over the mountainous Upper Indus Basin (UIB), which are influenced by snow and glacier melting. Conformal-Cubic Atmospheric Model (CCAM) data for the periods 1976-2005, 2006-2035, 2041-2070, and 2071-2100 with RCP4.5 and RCP8.5; and Regional Climate Model (RegCM) data for the periods of 2041-2050 and 2071-2080 with RCP8.5 are used for climatic projection and, after bias correction, the same data are used as an input to the University of British Columbia (UBC) hydrological model for river flow projections. The projections of all of the future periods were compared with the results of 1976-2005 and with each other. Projections of future changes show a consistent increase in air temperature and precipitation. However, temperature and precipitation increase is relatively slow during 2071-2100 in contrast with 2041-2070. Northern parts are more likely to experience an increase in precipitation and temperature in comparison to the southern parts. A higher increase in temperature is projected during spring and winter over southern parts and during summer over northern parts. Moreover, the increase in minimum temperature is larger in both scenarios for all future periods. Future river flow is projected by both models to increase in the twenty first century (CCAM and RegCM) in both scenarios. However, the rate of increase is larger during the first half while it is relatively small in the second half of the twenty first century in RCP4.5. The possible reason for high river flow during the first half of the twenty first century is the large increase in temperature, which may cause faster melting of snow, while in the last half of the century there is a decreasing trend in river flow, precipitation, and temperature (2071-2100) in comparison to 2041-2070 for RCP4.5. Generally, for all future periods, the percentage of increased river flow is larger in winter than in summer, while quantitatively large river flow was projected, particularly during the summer monsoon. Due to high river flow and increase in precipitation in UIB, water availability is likely to be increased in the twenty first century and this may sustain water demands.

  19. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    PubMed

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area. PMID:26802357

  20. Hydrology of mountainous areas in the upper Indus Basin, Northern Pakistan with the perspective of climate change.

    PubMed

    Ahmad, Zulfiqar; Hafeez, Mohsin; Ahmad, Iftikhar

    2012-09-01

    Mountainous areas in the northern Pakistan are blessed by numerous rivers that have great potential in water resources and hydropower production. Many of these rivers are unexploited for their water resource potential. If the potential of these rivers are explored, hydropower production and water supplies in these areas may be improved. The Indus is the main river originating from mountainous area of the Himalayas of Baltistan, Pakistan in which most of the smaller streams drain. In this paper, the hydrology of the mountainous areas in northern Pakistan is studied to estimate flow pattern, long-term trend in river flows, characteristics of the watersheds, and variability in flow and water resource due to impact of climate change. Eight watersheds including Gilgit, Hunza, Shigar, Shyok, Astore, Jhelum, Swat, and Chitral, Pakistan have been studied from 1960 to 2005 to monitor hydrological changes in relation to variability in precipitation, temperature and mean monthly flows, trend of snow melt runoff, analysis of daily hydrographs, water yield and runoff relationship, and flow duration curves. Precipitation from ten meteorological stations in mountainous area of northern Pakistan showed variability in the winter and summer rains and did not indicate a uniform distribution of rains. Review of mean monthly temperature of ten stations suggested that the Upper Indus Basin can be categorized into three hydrological regimes, i.e., high-altitude catchments with large glacierized parts, middle-altitude catchments south of Karakoram, and foothill catchments. Analysis of daily runoff data (1960-2005) of eight watersheds indicated nearly a uniform pattern with much of the runoff in summer (June-August). Impact of climate change on long-term recorded annual runoff of eight watersheds showed fair water flows at the Hunza and Jhelum Rivers while rest of the rivers indicated increased trends in runoff volumes. The study of the water yield availability indicated a minimum trend in Shyok River at Yogo and a maximum trend in Swat River at Kalam. Long-term recorded data used to estimate flow duration curves have shown a uniform trend and are important for hydropower generation for Pakistan which is seriously facing power crisis in last 5 years. PMID:22109645

  1. Human induced flooding of the Indus River in 2010: How it changed the landscape

    NASA Astrophysics Data System (ADS)

    Kettner, A.; Syvitski, J. P.; Overeem, I.; Brakenridge, G. R.

    2012-12-01

    Major rivers in densely populated areas are typically heavily engineered to fulfill. water needs and importantly to ensure protection for citizens and structures. The Indus River forms no exception to this. The river has been dammed and engineered for centuries, comprising one of the largest irrigation networks in the world. The engineered river system results in a reduction of its outflow to 10% of its historical value, with commonly no flow at the outlet for several months of the year. During July 2010, extensive flooding occurred causing ~2,000 fatalities and ~20 million people were displaced for weeks to months due to a peak discharge that was not exceptional in any sense (~10 year reoccurrence interval). The northern breach was located near the Sukkur Barrage and likely caused by undercapacity of the engineered channel. We analyzed AMSR-E, ASTER-A1 and MODIS satellite data to map the propagation of the Indus flood wave in the main channel and through the major breaches. The flood wave traveled through the main channel in ~20 days and much slower through newly-formed avulsion pathway onwards from the breach at Sukkur Barrage (~42 days).Analysis of MODIS reflectance changes between pre- and post-flood imagery allowed analysis of the extent of sandy flood deposition as well as quantification of channel migration patterns. The river channel migrates over 100's of meters during the July 2010 flood event controlled by massive pointbar accretion and river cutbank erosion and slumping. Lateral migration averaged ~340m in just 52 days along a 1000km stretch of the Indus River. Crevasse splaying is widespread and appears to occur as a flow stripping process both upon the point bars as well as in river outer bends. Crevasse deposits extend generally less than 2 km from the main channel axis. The mapped flood deposits are analyzed for different river stretches and quantitatively related to river gradient and sinuosity. The 2010 Indus flood shows an example of a heavily engineered system, it provides us with insights on flood water propagation and sedimentation and river migration in a river system with many dams and stopbanks.

  2. CHARIS - The Contribution to High Asian Runoff from Ice and Snow, Preliminary results from the Upper Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Barrett, A. P.; Brodzik, M.; Fetterer, F. M.; Hashmey, D.; Horodyskyj, U. N.; Khalsa, S.; Racoviteanu, A.; Raup, B. H.; Williams, M. W.; Wilson, A.

    2013-12-01

    The goal of the CHARIS project is to improve the understanding of the regional water resources of High Asia. In order to achieve this goal CHARIS is a cross-boundary exercise with University of Colorado scientists working directly with researchers at institutions in nine different nations where these ice and snow resources are located (Bhutan, Nepal, India, Pakistan, Afghanistan, Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan). These countries contain the headwaters of the Brahmaputra, Ganges, Indus, Syr Darya and Amu Darya rivers. This collaboration includes both joint research and capacity building that includes augmented field programs and technical training. While it is generally accepted that a significant component of these water resources results from the melting of glacier ice and seasonal snow, the actual water volume available from these two individual sources remains uncertain. The amount, timing, and spatial patterns of snow and ice melt play key roles in providing water for downstream irrigation, hydropower generation, and general consumption. The fundamental objective of this collaborative study is to develop a thorough and systematic assessment of the separate contributions from seasonal snow melt and from glacier ice melt to the water resources originating across the region. To accomplish project objectives, a suite of satellite remote sensing, reanalysis and ground based data are applied as input to specific snow and ice melt models. Gridded maps of snow and glacier area/elevation are used as input to temperature-index melt models to estimate runoff from snow covered grid cells, based on cell area and melt depth. Glacier melt is estimated in the same way, once seasonal snow has disappeared from glacierized grid cells. The melt models are driven by daily mean temperature from reanalysis data. We are comparing the melt volume time series generated from temperature-index models with measured river discharge volumes and comparing the regional scale results with local sub-basin studies based on energy balance modeling approaches. We are also evaluating the accuracy of the melt model results using isotopic and geochemical tracers to identify and quantify the sources of water (ice melt, snow melt, rainfall and ground water) flowing into selected rivers representing the major hydro-climates of the study area. Preliminary results are presented for the Upper Indus Basin, and the Hunza sub-basin, for the period 2000-2012.

  3. Penobscot River Basin overview

    SciTech Connect

    Not Available

    1981-09-01

    The New England River Basins Commission has prepared summary reports on each of the region's major river basins. These reports concentrate on identifying problems in the existing network of planning and resource management programs. The most significant water resources issues identified in the Penobscot River basin are concerned with hydropower development, minerals development, forestry, and acid rain. Other water resource problems in the basin, principally related to the urban centers in the southern portion, include point source wastewater discharges, water supply needs, some flooding, and access to water-related recreation.

  4. Impact of warming climate on the monsoon and water resources of a western Himalayan watershed in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Booij, Martijn J.

    2015-04-01

    This study discusses the impact of a warming climate on the monsoon and on water resources in the Astore watershed, a major tributary of the Upper Indus Basin (UIB). It uses precipitation and temperature time series data from climatic stations, European Reanalysis (ERA) interim precipitation data, and monthly river flow data, all for the 1984-2009 period. Monthly average temperature data show statistically significant increasing trends for November-June through this period, while June and July, which experience episodic and intense precipitation, show statistically significant but opposing trends between the first and second halves of the period. To examine precipitation and flow data in more detail, two equal sub-periods were defined; 1984-1996 (T1) and 1997-2009 (T2). Basin-wide average annual precipitation (based on ERA data) declined by ~29% from 1481 mm/yr in T1 to 1148 inT2, whereas during the same periods flows declined by only ~17% (1245 to 1061 mm/yr), suggesting an increase in glacier melt in the T2 period. Spring to early summer flows increased during the T2 period concomitant with shift in the streamflow peak from July to June. Increasing spring discharge, the shift in timing of annual peak discharge, and an increase in the glacial melt component in river flows have been accompanied by a depletion of glacial storage within the Astore watershed, especially in the T2 period. If recent trends in climate and river flow continue in the future, then river flows will eventually decrease more sharply once the glacial reserves can no longer provide sustained nourishment to the river waters. Thus, there is a vital need to prepare and adopt policies for water resource management and reservoir operation that support sustainable development, agricultural expansion, and increased hydro-power generation.

  5. Integrated simulation of snow and glacier melt runoff in a distributed biosphere hydrological modeling framework at Upper Indus Basin, Karakoram region

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Koike, T.; Xue, Y.; Wang, L.; Hirabayashi, Y.

    2014-12-01

    High mountain river basins in Hindukush Karakoram and Himalaya (HKH) regions are considered as 'water towers' of Asia with abundant source of fresh water as snow and glaciers. Upper Indus basin is one of the mega scale river basin in HKH region where snow and glaciermelt runoff is the major contributor to the annual runoff. The hostile climate, remote and extreme rough topography imposes many restraints regarding hydro-meteorological and glaciological observations, leading towards limited understanding of hydrological processes of river basins in this region. It is vital to integrate snow and glacier melt processes in a distributed biosphere hydrological framework to estimate the snow and glacier melt runoff and to quantify the river flow composition (snowmelt, glacier melt and rainfall contribution). An integrated system of distributed biosphere hydrological modeling framework with multilayer energy balance based snow and glaciermelt runoff schemes (WEB-DHM-S model) was implemented at Upper Indus basin (207300 km2) with a spatial resolution of 1 km and temporal resolution of an hour. Model input were meteorological forcing from Global Land Data Assimilation System (GLDAS), APHRODITE precipitation and de-trended gridded air temperature from observations. Simulations were carried out for two hydrological years (2002-2003). Discharge simulation results at multiple gauges showed good agreement with the observed one having Nash efficiency at 0.86. The spatial distribution of snow cover is simulated well as compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) derived eight-day maximum snow-cover extent data (MOD10A2). Model accuracy, overestimation error and underestimation error in snow cover simulation were obtained at 78%, 7% and 15% respectively. Uncertainty in precipitation was the main reason for the biases in seasonal variation of snow pixel errors. The model demonstrated its sound capability in comprehensive simulation of discharge with its flow composition, spatial distribution of snow cover and net mass balance.

  6. Genetic variability analysis of Giant river catfish (Sperata seenghala) populations from Indus river system by RAPD-PCR.

    PubMed

    Saini, A; Dua, A; Mohindra, V

    2010-08-01

    The Giant river catfish, Sperata seenghala (Sykes) is commercially very important fish species of South Asia. Genetic variability between its populations collected from two rivers i.e. river Sutlej and river Beas of Indus river system in India were examined using randomly amplified polymorphic DNA analysis. Total 38 fish samples were collected from river Sutlej whereas 46 fish samples were collected from river Beas. Total 40 primers were screened, out of these 7 were selected for studying polymorphism which produced a total of 64 RAPD loci in two populations. Percentage polymorphic loci calculated following 95% criterion was 89.06% for Beas population as compared to 95.31% for Sutlej population. Moderate level of genetic divergence (genetic distance of 0.0486) between both the populations suggests distinct population substructure of giant river catfish in both the rivers. PMID:20873207

  7. A quantitative assessment of the genetic sources of the hydrologic flow regimes in Upper Indus Basin and its significance in a changing climate

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Biswajit; Khan, Asif

    2014-02-01

    Reliable quantitative estimates of contributions melt water of different genetic sources make to river flows in Himalayan river basins are largely unknown. Here we provide such estimates for Upper Indus Basin (UIB). Analyses of historical flow records at 11 gauging stations spanning 14-48 years during a period of record from 1962 to 2010 reveal: a uniform character of annual flow distributions at all gauging stations given by a Gaussian function implying a unique glacio-hydrometeorological condition prevailing throughout the basin controlling four hydrologic flow regimes within UIB. Two low flow regimes occur during the months of October to December (L1) and January to March (L2) and two high flow regimes that occur during April-June (H1) and July-September (H2). For all stations, flow magnitudes follow, H2 > H1 > L1 > L2. In the main stem of Upper Indus River, the contributions to total annual flow volumes (m3) during these flow regimes are 53-62% during H2, 24-32% during H1, 8-9% during L1, and 4-6% during L2. In the main tributaries, these ranges are 47-74% during H2, 15-38% during H1, 8-10% during L1, and 4-6% during L2. Separation of annual hydrographs by linear smoothing and recursive digital filtering technique shows that the annual contribution of melt water (M2) from an elevation band 3500-5300 m to total annual flow volume (m3) varies from 41% to 54% along the main stem of Indus, upstream of the Himalayan foothills. Contribution of melt water (M1) from an elevation band 2500-3500 m varies from 16% to 29%. In the tributaries, annual contributions of M2 vary from 37% to as high as 65%. Similarly, annual contributions of M1 in the tributaries vary from as low as 12% to 34%. Thus, the relative importance of melt water originating from high-altitudes far overweighs that originating from mid-altitudes, in river runoff within UIB. The chief component of M1 is seasonal snows whereas M2 is a mixture of glacial melts, seasonal snows falling in winter and spring, and monsoonal snows falling in the summer (July-September). The M2 component contributes to base flows during L1 regime. Base flow recession occurs during L2 regime. During the H2 regime, three watersheds with greatest glaciated surfaces straddling the Karakoram Mountains contribute 48-54% of flows at Shatial Bridge, a point upstream of Tarbela reservoir up to which rainfall contributions to river discharges in UIB are inconsequential. During the H1 regime, these watersheds drained by Shyok, Shigar, and Hunza rivers contribute 20-31% of flows at this point. During L1 and L2 regimes, their contributions are 33-39% and 31-32% respectively. Contributions of glacial melt and snowmelt to annual river flows vary from 18-35% and 38-50% respectively in the major tributaries and the main stem of Upper Indus, depending on the location. Upper Indus River just upstream of Tarbela Reservoir carries annual flows constituted of 70% melt water of which 21% is contributed by glacial melts and 49% by snowmelts. Thus, changes in climatic trends will greatly control the future water availability within UIB. If glacial retreat and reduction of the perennial snow and ice covers are happening in UIB in a changing climate, then there will indeed be long-term reductions in river flows in UIB and hence sustainability of water resources in this basin will potentially be at risk.

  8. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Mukhopadhyay, Biswajit

    2014-02-01

    Extraction of watershed areas from Digital Elevation Models (DEMs) is increasingly required in a variety of environmental analyses. It is facilitated by the availability of DEMs based on remotely sensed data, and by Geographical Information System (GIS) software. However, accurate delineation depends on the quality of the DEM and the methodology adopted. This paper considers automated and supervised delineation in a case study of the Upper Indus Basin (UIB), Pakistan, for which published estimates of the basin area show significant disagreement, ranging from 166,000 to 266,000 km2. Automated delineation used ArcGIS Archydro and hydrology tools applied to three good quality DEMs (two from SRTM data with 90m resolution, and one from 30m resolution ASTER data). Automatic delineation defined a basin area of c.440,000 km2 for the UIB, but included a large area of internal drainage in the western Tibetan Plateau. It is shown that discrepancies between different estimates reflect differences in the initial extent of the DEM used for watershed delineation, and the unchecked effect of iterative pit-filling of the DEM (going beyond the filling of erroneous pixels to filling entire closed basins). For the UIB we have identified critical points where spurious addition of catchment area has arisen, and use Google Earth to examine the geomorphology adjacent to these points, and also examine the basin boundary data provided by the HydroSHEDS database. We show that the Pangong Tso watershed and some other areas in the western Tibetan plateau are not part of the UIB, but are areas of internal drainage. Our best estimate of the area of the Upper Indus Basin (at Besham Qila) is 164,867 km2 based on the SRTM DEM, and 164,853 km2 using the ASTER DEM). This matches the catchment area measured by WAPDA SWHP. An important lesson from this investigation is that one should not rely on automated delineation, as iterative pit-filling can produce spurious drainage networks and basins, when there are areas of internal drainage nearby.

  9. The Indus basin in the framework of current and future water resources management

    NASA Astrophysics Data System (ADS)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2012-04-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use planning and soil conservation as well as flood management, with a focus on the reduction of erosion and resulting sedimentation as well as the restoration of ecosystem services like wetlands and natural floodplains. Water demand management options include: (1) the management of conjunctive use of surface and groundwater; as well as (2) the rehabilitation and modernization of existing infrastructure. Other demand management options are: (3) the increase of water productivity for agriculture; (4) crop planning and diversification including the critical assessment of agricultural export, especially (basmati) rice; (5) economic instruments and (6) changing food demand patterns and limiting post-harvest losses.

  10. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.

    2011-04-01

    In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in facts typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the model for nearby catchments discussed. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged high altitude areas, and to project forward their hydrological behavior pending climate change.

  11. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.

    2011-07-01

    In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the model for nearby catchments discussed. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged high altitude areas, and to project forward their hydrological behavior pending climate change.

  12. Timing of Indian-Eurasian collision from the Indus Basin in Ladakh, northwestern Indian Himalaya: An interdisciplinary approach

    NASA Astrophysics Data System (ADS)

    Tripathy, A.; Hodges, K.; Edwards, C. S.; Gordon, G. W.; Wartho, J.

    2012-12-01

    The early Cenozoic Indus Basin of northwest India straddles the Indus suture zone and has long been regarded as having the potential to yield important constraints on the timing of collision between India and Eurasia and final closure of the intervening Neo-Tethys ocean basin. Unfortunately, three issues have frustrated previous attempts to capitalize on that potential. First, outcrops in the Indus Basin are deformed, making accurate reconstructions of basin stratigraphy difficult. As a consequence, published maps of the basin are discrepant - in some cases significantly so. Second, previously published detrital zircon U-Pb data for Pre-Oligocene sandstone units point to a distinctive Eurasian source, with scant evidence for Indian detritus, leaving open the possibility that deposition could have been prior to the docking of India. Finally, much of the succession does not contain age-diagnostic fossils and datable volcanic units (e.g., tuffs) have not been found. We report here the results of an interdisciplinary study that has permitted us to overcome these obstacles and better constrain the timing of collision at this sector of the orogen. Detailed photogeologic analysis of most of the Indus Basin using all bands (visible to thermal infrared) of ASTER satellite imagery, coupled with topical ground-truthing in the field, has allowed for both improved mapping of the macroscopic structure and improved resolution of key stratigraphic characteristics. Based upon our map, we present both isotopic and trace element geochemical data from various, carefully selected samples. First, the distribution of U-Pb dates for detrital zircons from quartzite cobbles within the oldest Indus Basin unit are comparable to those found in Indian passive margin units. Trace element geochemistry of mafic pebbles from throughout the older Indus Basin units appear to demonstrate derivation from the Shyok suture zone, situated north of the local Eurasian source area. However, several clasts are geochemically similar to ophiolitic material found within the Indus suture zone, implying sourcing from fragments of the Neo-Tethys ocean basin caught up in the suture or obducted onto the Indian passive margin prior to collision. 40Ar/39Ar cooling dates for detrital biotite from a sandstone unit intercalated with an upper Ypresian marine limestone (the youngest marine unit in the Indus Basin) are more consistent with an Indian plate source region than a Eurasian provenance. These results collectively point to an Early Eocene (upper Ypresian) minimum age for India-Eurasia collision in this sector of the orogenic system, consistent with conventional wisdom but seemingly inconsistent with suggestions of Oligocene-aged collision (e.g., Aitchison et al., 2007). Aitchison, J. C., J. R. Ali, and A. M. Davis (2007), When and where did India and Asia collide?, J. Geophys. Res., 112, B05423, doi: 10.1029/2006JB004706.

  13. Sustainability Within the Great Monsoon River Basins

    NASA Astrophysics Data System (ADS)

    Webster, P. J.

    2014-12-01

    For over five millenia, the great monsoon river basins of the Ganges, Brahmaputra and Indus have provided for great and flourishing agrarian civilizations. However, rapid population growth and urbanization have placed stress on the rural sector causing the use of land that is more prone for flood and drought. In addition, increased population and farming have stressed the availability of fresh water both from rivers and aquifers. Additionally, rapid urbanization has severely reduced water quality within the great rivers. Added to these problems is delta subsidence from water withdrawal that, at the moment far surpasses sea level rise from both natural and anthropogenic effects. Finally, there appear to be great plans for river diversion that may reduce fresh water inflow into the Brahmaputra delta. All of these factors fall against a background of climate change, both anthropogenic and natural, of which there is great uncertainty. We an attempt a frank assessment assessment of the sustainability of society in the great basins and make some suggestions of factors that require attention in the short term.

  14. Habitat Fragmentation and Species Extirpation in Freshwater Ecosystems; Causes of Range Decline of the Indus River Dolphin (Platanista gangetica minor)

    PubMed Central

    Braulik, Gill T.; Arshad, Masood; Noureen, Uzma; Northridge, Simon P.

    2014-01-01

    Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world’s most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world’s most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin’s range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin. PMID:25029270

  15. Taunton River basin

    USGS Publications Warehouse

    Williams, John R.; Willey, Richard E.

    1970-01-01

    This report presents in tabular form selected records of wells, test wells, and borings collected during a study of the basin from 1966 to 1968 in cooperation with the Massachusetts Water Resources Commission, and during earlier studies. This report is released in order to make available to the public and to local, state, and federal agencies basic ground-water information that may aid in planning water-resources development. Basic records contained in this report will complement an interpretative report on the Taunton River basin to be released at a later date.

  16. Climate Change and its Impacts on Water Resources and Management of Tarbela Reservoir under IPCC Climate Change Scenarios in Upper Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2014-05-01

    Water resources play a vital role in agriculture, energy, industry, households and ecological balance. The main source of water to rivers is the Himalaya-Karakorum-Hindukush (HKH) glaciers and rainfall in Upper Indus Basin (UIB). There is high uncertainty in the availability of water in the rivers due to the variability of the monsoon, Western Disturbances, prolonged droughts and melting of glaciers in the HKH region. Therefore, proper management of water resources is undeniably important. Due to the growing population, urbanization and increased industrialization, the situation is likely to get worse. For the assessment of possible climate change, maximum temperature, minimum temperature and precipitation were investigated and evidence was found in favor of climate change in the region. Due to large differences between historical meteorological data and Regional Climate Model (RCM) simulated data, different statistical techniques were used for bias correction in temperature and precipitation. The hydrological model was calibrated for the period of 1995-2004 and validated for the period of 1990-1994 with almost 90 % efficiencies. After the application of bias correction techniques output of RCM, Providing Regional Climate for Impact Studies (PRECIS) were used as input data to the hydrological model to produce inflow projections at Tarbela reservoir on Indus River. For climate change assessment, the results show that the above mentioned variables have greater increasing trend under A2 scenario compared to B2 scenario. The projections of inflow to Tarbela reservoir show that overall 59.42 % and 34.27 % inflow increasing to Tarbela Reservoir during 2040-2069 under A2 and B2 scenarios will occur, respectively. Highest inflow and comparatively more shortage of water is noted in the 2020s under A2 scenario. Finally, the impacts of changing climate are investigated on the operation of the Tarbela reservoir. The results show that there will be shortage of water in some months over different years. There are no chances of overtopping of the dam during the 2020s and the 2050s under A2 and B2 scenarios. _______________________________________________________________________________KEY WORDS: Climate Model, Climate Change, Hydrological Model, Climate Change Scenarios, Tarbela Reservoir, Inflow, Outflow, Evaporation, Indus River, Calibration, Bias Correction.

  17. Greenhouse gas emissions from agro-ecosystems and their contribution to environmental change in the Indus Basin of Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, M. Mohsin; Goheer, M. Arif

    2008-11-01

    There is growing concern that increasing concentrations of greenhouse gases in the atmosphere have been responsible for global warming through their effect on radiation balance and temperature. The magnitude of emissions and the relative importance of different sources vary widely, regionally and locally. The Indus Basin of Pakistan is the food basket of the country and agricultural activities are vulnerable to the effects of global warming due to accelerated emissions of GHGs. Many developments have taken place in the agricultural sector of Pakistan in recent decades in the background of the changing role of the government and the encouragement of the private sector for investment in new ventures. These interventions have considerable GHG emission potential. Unfortunately, no published information is currently available on GHG concentrations in the Indus Basin to assess their magnitude and emission trends. The present study is an attempt to estimate GHG (CO2, CH4 and N2O) emissions arising from different agro-ecosystems of Indus Basin. The GHGs were estimated mostly using the IPCC Guidelines and data from the published literature. The results showed that CH4 emissions were the highest (4.126 Tg yr-1) followed by N2O (0.265 Tg yr-1) and CO2 (52.6 Tg yr-1). The sources of CH4 are enteric fermentation, rice cultivation and cultivation of other crops. N2O is formed by microbial denitrification of NO3 produced from applied fertilizer-N on cropped soils or by mineralization of native organic matter on fallow soils. CO2 is formed by the burning of plant residue and by soil respiration due to the decomposition of soil organic matter.

  18. Sediment provenance, reworking and transport processes in the Indus River by U-Pb dating of detrital zircon grains

    NASA Astrophysics Data System (ADS)

    Alizai, Anwar; Carter, Andrew; Clift, Peter D.; VanLaningham, Sam; Williams, Jeremy C.; Kumar, Ravindra

    2011-03-01

    We present new major and trace element data, together with U-Pb ages for zircon sand grains from the major tributaries of the Indus River, as well as the adjacent Ghaggar and Yamuna Rivers and from bedrocks within the Sutlej Valley, in order to constrain the origin of the sediment reaching the Arabian Sea. Zircon grains from the upper Indus are generally younger than 200 Ma and contrast with those from the eastern tributaries eroded from Himalayan sources. Grains younger than 15 Ma, which typify the Nanga Parbat Massif, comprise no more than 1-2% of the total, even in the upper Indus, showing that this terrain is not a major sediment producer, in contrast with the Namche Barwe Massif in the eastern Himalayan syntaxis. The Sutlej and Yamuna Rivers in particular are very rich in Lesser Himalayan-derived 1500-2300 Ma zircons, while the Chenab is dominated by 750-1250 Ma zircons, mostly eroded from the Greater Himalaya. The upper Indus, Chenab and Ravi yield zircon populations broadly consistent with the outcrop areas, but the Jhelum and the Sutlej contain many more 1500-2300 Ma zircons than would be predicted from the area of Lesser Himalayan rock within their drainages. A significant population of grains younger than 200 Ma in the sands of the Thar Desert indicates preferential eolian, monsoon-related transport from the Indus lower reaches, rather than reworking from the local rivers. Modelling of observed zircon ages close to the delta contrasts with modern water discharge. The delta is rich in zircons dating 1500-2300 Ma, while discharge from modern rivers carrying such grains is low. The modest size of the Sutlej, the richest source of these materials in the modern system, raises the possibility that the compositionally similar Yamuna used to flow westwards in the recent past. Our data indicate a non-steady state river with zircon transport times of 5-10 k.y. inferred from earlier zircon dating of delta sands. The modern delta zircons image an earlier, likely Early-Mid Holocene, erosional state, in which the Lesser Himalaya were more important as sediment suppliers. Early-Mid Holocene sands show much less erosion from the Karakoram-Transhimalaya compared to those deposited at the Last Glacial Maximum, or calculated from the modern discharge. We favour variations in summer monsoon intensity as the primary cause of these temporal changes.

  19. Adaptation of a pattern-scaling approach for assessment of local (village/valley) scale water resources and related vulnerabilities in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.

    2010-05-01

    The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential sites for medium-scale infrastructure projects. These catchments are placed in their context within the hydrological regime classification using the spatial data and (remote sensing) observations as well as river gauging measurements. The study assesses the degree of similarity with the larger basins of the same hydrological regime. This assessment focuses on the measured response to observed climate variable anomalies. The smallest scale considered is comprised of a number of case studies at the ungauged village/valley scale. These examples are based on the delineation of areas to which specific communities (villages) have customary (riparian) water rights. These examples were suggested by non-governmental organisations working on grassroots economic development initiatives and small-scale infrastructure projects in the region. The direct observations available for these subcatchments are limited to spatial data (elevation, snow parameters). The challenge at this level is to accurately extrapolate areal values (precipitation, temperature, runoff) from point observations at the basin scale. The study assesses both the degree of similarity in the distribution of spatial parameters to the larger gauged basins and the interannual variability (spatial heterogeneity) of remotely-sensed snow cover and snow-water-equivalent at this subcatchment scale. Based upon the characterisation of spatial and interannual variability at these three spatial scales, the challenges facing local water resource managers and infrastructure operators are enumerated. Local vulnerabilities include, but are not limited to, varying thresholds in irrigation water requirements based on crop-type, minimum base flows for micro-hydropower generation during winter (high load) months and relatively small but growing demand for domestic water usage. In conclusion the study posits potential strategies for managing interannual variability and potential emerging trends. Suggested strategies are guided by the principles of low-risk adaptation, participative decision making and local capacity building.

  20. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-01

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology. PMID:24604204

  1. Detrital Geochemical Fingerprints of Rivers Along Southern Tibet and Nepal: Implications for Erosion of the Indus-Yarlung Suture Zone and the Himalayas

    NASA Astrophysics Data System (ADS)

    Hassim, M. F. B.; Carrapa, B.; DeCelles, P. G.; Kapp, P. A.; Gehrels, G. E.

    2014-12-01

    Our detrital geochemical study of modern sand collected from tributaries of the Yarlung River in southern Tibet and the Kali Gandaki River and its tributaries in Nepal shed light on the ages and exhumation histories of source rocks within the Indus-Yarlung Suture (IYS) zone and the Himalayas. Seven sand samples from rivers along the suture zone in southern Tibet between Xigatze to the east and Mt. Kailas to the west were collected for detrital zircon U-Pb geochronologic and Apatite Fission Track (AFT) thermochronologic analyses. Zircon U-Pb ages for all rivers range between 15 and 3568 Ma. Rivers draining the northern side of the suture zone mainly yield ages between 40 and 60 Ma, similar to the age of the Gangdese magmatic arc. Samples from rivers draining the southern side of the suture zone record a Tethyan Himalayan signal characterized by age clusters at 500 Ma and 1050 Ma. Our results indicate that the ages and proportion of U-Pb zircons ages of downstream samples from tributaries of the Yarlung River directly reflect source area ages and relative area of source rock exposure in the catchment basin. Significant age components at 37 - 40 Ma, 47 - 50 Ma, 55 - 58 Ma and 94 - 97 Ma reflect episodicity in Gangdese arc magmatism. Our AFT ages show two main signals at 23-18 Ma and 12 Ma, which are in agreement with accelerated exhumation of the Gangdese batholith during these time intervals. The 23 - 18 Ma signal partly overlaps with deposition of the Kailas Formation along the suture zone and may be related to exhumation due to upper plate extension in southern Tibet in response to Indian slab rollback and/or break-off events. Detrital thermochronology of four sand samples from the Kali Gandaki River and some of its tributaries in Nepal is underway and will provide constraints on the timing of erosion of the central Nepal Himalaya.

  2. Fifty-five million years of Tibetan evolution recorded in the Indus Fan

    NASA Astrophysics Data System (ADS)

    Clift, Peter; Shimizu, Nobu; Layne, Graham; Gaedicke, Christoph; Schlter, H.-U.; Clark, Marin; Amjad, Shahid

    Although the Indus Fan is only about one-third of the volume of its giant neighbor in the Bay of Bengal, it is one of the largest sediment bodies in the ocean basins, totaling 5106 km3. Its detrital sedimentary record is an important repository of information on the uplift and erosion of the western Himalaya. New seismic and provenance data from the Pakistan margin now suggest that the Indus River and fan system was initiated shortly after the India-Asia collision at 5 Ma. The modern Indus drainage basin is dominated by the high peaks of the Karakoram, Kohistan, and other tectonic units of the Indus Suture Zone rather than the High Himalaya. The Indus River, which rises in western Tibet near Mount Kailas, follows the Indus Suture Zone along strike before cutting orthogonally through the Himalaya to the Arabian Sea. The other tributaries to the Indus, such as the Chenab and Sutlej, do drain the crystalline High Himalayan range, but do so in an area where its topography is much reduced (Figure 1). In contrast, the Bengal Fans main feeder rivers, the Ganges and Brahmaputra, follow the High Himalaya along strike for much of the length of the orogen. In practice, this means that the Bengal Fan is swamped by the large volume of material derived from the rapidly unroofing High Himalaya [France-Lanord et al, 1993], while the Indus Fan is dominated by tectonic units adjacent to the suture zone, including western Tibet. This allows their erosional signal to be more readily isolated in the Indus Fan compared to in the Bengal.

  3. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus basin

    NASA Astrophysics Data System (ADS)

    Hasson, S.; Böhner, J.; Lucarini, V.

    2015-03-01

    Largely depending on meltwater from the Hindukush-Karakoram-Himalaya, withdrawals from the upper Indus basin (UIB) contribute to half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, we present a comprehensive hydro-climatic trend analysis over the UIB, including for the first time observations from high-altitude automated weather stations. We analyze trends in maximum, minimum and mean temperatures (Tx, Tn, and Tavg, respectively), diurnal temperature range (DTR) and precipitation from 18 stations (1250-4500 m a.s.l.) for their overlapping period of record (1995-2012), and separately, from six stations of their long term record (1961-2012). We apply Mann-Kendall test on serially independent time series to assess existence of a trend while true slope is estimated using Sen's slope method. Further, we statistically assess the spatial scale (field) significance of local climatic trends within ten identified sub-regions of UIB and analyze whether the spatially significant (field significant) climatic trends qualitatively agree with a trend in discharge out of corresponding sub-region. Over the recent period (1995-2012), we find a well agreed and mostly field significant cooling (warming) during monsoon season i.e. July-October (March-May and November), which is higher in magnitude relative to long term trends (1961-2012). We also find general cooling in Tx and a mixed response in Tavg during the winter season and a year round decrease in DTR, which are in direct contrast to their long term trends. The observed decrease in DTR is stronger and more significant at high altitude stations (above 2200 m a.s.l.), and mostly due to higher cooling in Tx than in Tn. Moreover, we find a field significant decrease (increase) in late-monsoonal precipitation for lower (higher) latitudinal regions of Himalayas (Karakoram and Hindukush), whereas an increase in winter precipitation for Hindukush, western- and whole Karakoram, UIB-Central, UIB-West, UIB-West-upper and whole UIB regions. We find a spring warming (field significant in March) and drying (except for Karakoram and its sub-regions), and subsequent rise in early-melt season flows. Such early melt response together with effective cooling during monsoon period subsequently resulted in a substantial drop (weaker increase) in discharge out of higher (lower) latitudinal regions (Himalaya and UIB-West-lower) during late-melt season, particularly during July. These discharge tendencies qualitatively differ to their long term trends for all regions, except for UIB-West-upper, western-Karakorum and Astore. The observed hydroclimatic trends, being driven by certain changes in the monsoonal system and westerly disturbances, indicate dominance (suppression) of nival (glacial) runoff regime, altering substantially the overall hydrology of UIB in future. These findings largely contribute to address the hydroclimatic explanation of the "Karakoram Anomaly".

  4. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  5. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution.

    PubMed

    Bajwa, Anam; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-06-01

    Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g(-1) in soil and 375.1-1975 pg m-(3) in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04-0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil-air exchange of OCPs. PMID:26978705

  6. Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Pakistan.

    PubMed

    Ali, Usman; Bajwa, Anam; Iqbal Chaudhry, Muhammad Jamshed; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-04-01

    This study was conducted with the aim of assessing the levels and black carbon mediated sediment-water partitioning of organochlorine pesticides (OCPs) from the Indus River. ∑OCPs ranged between 52-285ngL(-1) and 5.6-29.2ngg(-1) in water and sediment samples respectively. However, the ranges of sedimentary fraction of total organic carbon (fTOC) and black carbon (fBC) were 0.82-2.26% and 0.04-0.5% respectively. Spatially, OCPs concentrations were higher at upstream sites as compared to downstream sites. Source diagnostic ratios indicated the technical usage of HCH (α-HCH/γ-HCH>4) and significant presence of DDT metabolites with fresh inputs into the Indus River as indicated by the ratios of (DDE+DDD)/∑DDTs (0.27-0.96). The partitioning of OCPs between the sediments and water can be explained by two carbon Freundlich adsorption model which included both organic carbon and black carbon pools as partitioning media. PMID:26761782

  7. Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Naz, Bibi S.; Bowling, Laura C.

    2015-02-01

    The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier cover areas, despite the fact that snow, clean ice and debris covered ice have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-cover on steep slopes, perennial snow-covered ice, clean and debris covered ice) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-covered ice, clean and debris covered ice zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier cover is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier cover (excluding steep slope snow-cover). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range between ∼ 5500 and 6200 m in various watersheds. These outputs can be used as input to hydrological models, to estimate spatially-variable degree day factors for hydrological modeling, to separate glacier and snow-melt contributions in river flows, and to study glacier mass balance, and glacier responses to changing climate.

  8. Central Nebraska river basins Nebraska

    USGS Publications Warehouse

    Huntzinger, Thomas L.; Ellis, Michael J.

    1993-01-01

    The Central Nebraska Basins (NAWQA) study unit includes the Platte River and two major tributaries, the Loup and Elkhorn Rivers. Platte River flows are variable of diversions, but the Loup and Elkhorn Rivers originate in an area of dune sand covered by grassland that generates consistent base flows. Ground water has no regional confining units and the system is a water table aquifer throughout. Macroinvertebrate and fish taxa were related to stream flow. One of the four wetland complexes includes habitat for threatened and endangered bird species. A water quality assessments will be based on the differences in environmental setting in each of four subunits within the study unit.

  9. Modelling runoff response from Hindukush-Karakoram-Himalaya, Upper Indus Basin under prevailing and projected climate change scenarios

    NASA Astrophysics Data System (ADS)

    Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio

    2015-04-01

    We, analyzing observations from high altitude automated weather stations from the Hindukush-Karakoram-Himalaya (HKH) within upper Indus basin (UIB), assess prevailing state of climatic changes over the UIB and whether such state is consistently represented by the latest generation climate model simulations. We further assess impacts of future climate change on the hydrology of the UIB, and changes in its snow and glacier melt regimes, separately. For this, a semi-distributed watershed model (UBC - University of British Columbia) has been calibrated/validated for UIB at Besham Qila (just above the Tarbela reservoir) using daily historical climate (Tmax, Tmin and Precipitation) and river flow data for the period 1995-2012. Our results show that the UIB stands out the anthropogenic climate change signal, featuring a significant cooling (warming) during the mid-to-late (early) melt season and an enhanced influence of the westerly and monsoonal precipitation regimes. We also show that such phenomena, particularly the summer cooling is largely absent from the latest generation climate model simulations, suggesting their irrelevance for at least near-future assessment of climate change impacts on the hydrology of UIB. Therefore, we construct a hypothetical but more relevant near-future climate change scenario till 2030 based on prevailing state of climate change over UIB. We additionally obtain climate change scenario as projected by five high-resolution CMIP5 climate models under an extreme representative concentration pathway RCP8.5 for the period 2085-2100, assuming that such a scenario may only be realized in the far-future, if at all. Under the hypothetical near-future scenario, our modelling results show that the glacier melt (snowmelt) contribution will decrease (increase) due to cooling (warming) in mid-to-late (early) melt season, though the overall flows will drop. Consequently, the overall hydrological regime will experience an early snow- but a delayed glacier melt, with both the regimes shifting apart. The reduced glacier melt in conjunction with enhanced precipitation regimes, further implies an overall positive mass balance of the UIB glaciers, consistent with recent findings of non-negative geodetic mass balance and related investigations. On the other hand, in case the UIB starts following the global climate change signal, it will result in short-term increase in the water availability mainly due to an increased glacier melt, which will be followed by an abrupt decrease when the glaciers will disappear in the far-future. Based on our results, we caution the impact assessment communities focusing on the water resources of UIB and the policy makers to consider the relevance of the climate change scenarios while planning of the water resources of Pakistan, as it is not clear when the global warming scenario will unfold.

  10. River Modeling in Large and Ungauged Basins: Experience of Setting up the HEC RAS Model over the Ganges-Brahmaputra-Meghna Basins

    NASA Astrophysics Data System (ADS)

    Hossain, F.; Maswood, M.

    2014-12-01

    River modeling is the processing of setting up a physically-based hydrodynamic model that can simulate the water flow dynamics of a stream network against time varying boundary conditions. Such river models are an important component of any flood forecasting system that forecasts river levels in flood prone regions. However, many large river basins in the developing world such as the Ganges, Brahmaputra, Meghna (GBM), Indus, Irrawaddy, Salween, Mekong and Niger are mostly ungauged. Such large basins lack the necessary in-situ measurements of river bed depth/slope, bathymetry (river cross section), floodplain mapping and boundary condition flows for forcing a river model. For such basins, proxy approaches relying mostly on remote sensing data from space platforms are the only alternative. In this study, we share our experience of setting up the widely-used 1-D river model over the entire GBM basin and its stream network. Good quality in-situ measurements of river hydraulics (cross section, slope, flow) was available only for the downstream and flood prone region of the basin, which comprises only 7% of the basin area. For the remaining 93% of the basin area, we resorted to the use of data from the following satellite sensors to build a workable river model: a) Shuttle Radar Topography Mission (SRTM) for deriving bed slope; b) LANDSAT/MODIS for updating river network and flow direction generated by elevation data; c) radar altimetry data to build depth versus width relationship at river locations; d) satellite precipitation based hydrologic modeling of lateral flows into main stem rivers. In addition, we referred to an extensive body of literature to estimate the prevailing baseline hydraulics of rivers in the ungauged region. We measured success of our approach by systematically testing how well the basin-wide river model could simulate river level dynamics at two measured locations inside Bangladesh. Our experience of river modeling was replete with numerous hurdles that we did not anticipate, and often required a change in plan. In this study we summarize these key hurdles faced and offer a step by step approach to setting up river models for large ungauged river basins. Such a guide can be useful for the community wishing to set up RAS type models in basins such as Niger, Mekong, Irrawaddy, Indus etc.

  11. Pb isotopic variability in the modern-Pleistocene Indus River system measured by ion microprobe in detrital K-feldspar grains

    NASA Astrophysics Data System (ADS)

    Alizai, Anwar; Clift, Peter D.; Giosan, Liviu; VanLaningham, Sam; Hinton, Richard; Tabrez, Ali R.; Danish, Muhammad; Edinburgh Ion Microprobe Facility (EIMF)

    2011-09-01

    The western Himalaya, Karakoram and Tibet are known to be heterogeneous with regard to Pb isotope compositions in K-feldspars, which allows this system to be used as a sediment provenance tool. We used secondary ion mass spectrometry to measure the isotopic character of silt and sand-sized grains from the modern Sutlej and Chenab Rivers, together with Thar Desert sands, in order to constrain their origin. The rivers show a clear Himalayan provenance, contrasting with grains from the Indus Suture Zone, but with overlap to known Karakoram compositions. The desert dunes commonly show 207Pb/ 204Pb and 206Pb/ 204Pb values that are much higher than those seen in the rivers, most consistent with erosion from Nanga Parbat. This implies at least some origin from the trunk Indus, probably reworked by summer monsoon winds from the SW, a hypothesis supported by bulk Nd and U-Pb zircon dating. Further data collected from Holocene and Pleistocene sands shows that filled and abandoned channels on the western edge of the Thar Desert were sourced from Himalayan rivers before and at 6-8 ka, but that after that time the proportion of high isotopic ratio grains rose, indicating increased contribution from the Thar Desert dunes prior to 4.5 ka when flow ceased entirely. This may be linked to climatic drying, northward expansion of the Thar Desert, or changes in drainage style including regional capture, channel abandonment, or active local Thar tributaries. Our data further show a Himalayan river channel east of the present Indus, close to the delta, in the Nara River valley during the middle Holocene. While this cannot be distinguished from the Indus it is not heavily contaminated by reworking from the desert. The Pb system shows some use as a provenance tool, but is not effective at demonstrating whether these Nara sediments represent a Ghaggar-Hakra stream independent from the Indus. Our study highlights an important role for eolian reworking of floodplain sediments in arid rivers such as the Indus.

  12. Ecological River Basin Management.

    ERIC Educational Resources Information Center

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  13. River basin flood potential inferred using GRACE gravity observations at several months lead time

    NASA Astrophysics Data System (ADS)

    Reager, J. T.; Thomas, B. F.; Famiglietti, J. S.

    2014-08-01

    The wetness of a watershed determines its response to precipitation, leading to variability in flood generation. The importance of total water storage--which includes snow, surface water, soil moisture and groundwater--for the predisposition of a region to flooding is less clear, in part because such comprehensive observations are rarely available. Here we demonstrate that basin-scale estimates of water storage derived from satellite observations of time-variable gravity can be used to characterize regional flood potential and may ultimately result in longer lead times in flood warnings. We use a case study of the catastrophic 2011 Missouri River floods to establish a relationship between river discharge, as measured by gauge stations, and basin-wide water storage, as measured remotely by NASA's Gravity Recovery and Climate Experiment (GRACE) mission. Applying a time-lagged autoregressive model of river discharge, we show that the inclusion of GRACE-based total water storage information allows us to assess the predisposition of a river basin to flooding as much as 5-11 months in advance. Additional case studies of flood events in the Columbia River and Indus River basins further illustrate that longer lead-time flood prediction requires accurate information on the complete hydrologic state of a river basin.

  14. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G. M.; Cheema, M. J. M.; Immerzeel, W. W.; Miltenburg, I. J.; Pelgrum, H.

    2012-11-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from combined optical and passive microwave sensors, which can observe the land-surface even under persistent overcast conditions. A two-layer Penman-Monteith equation was applied for quantifying soil and canopy evaporation. The novelty of the paper is the computation of E and T across a vast area (116.2 million ha) by using public domain microwave data that can be applied under all weather conditions, and for which no advanced input data are required. The average net radiation for the basin was estimated as being 112 Wm-2. The basin average sensible, latent and soil heat fluxes were estimated to be 80, 32, and 0 Wm-2, respectively. The average evapotranspiration (ET) and evaporative fraction were 1.2 mm d-1 and 0.28, respectively. The basin wide ET was 496 16.8 km3 yr-1. Monte Carlo analysis have indicated 3.4% error at 95% confidence interval for a dominant land use class. Results compared well with previously conducted soil moisture, lysimeter and Bowen ratio measurements at field scale (R2 = 0.70; RMSE = 0.45 mm d-1; RE = -11.5% for annual ET). ET results were also compared against earlier remote sensing and modeling studies for various regions and provinces in Pakistan (R2 = 0.76; RMSE = 0.29 mmd-1; RE = 6.5% for annual ET). The water balance for all irrigated areas together as one total system in Pakistan and India (26.02 million ha) show a total ET value that is congruent with the ET value from the ETLook surface energy balance computations. An unpublished validation of the same ETLook model for 23 jurisdictional areas covering the entire Australian continent showed satisfactory results given the quality of the watershed data and the diverging physiographic and climatic conditions (R2 = 0.70; RMSE = 0.31 mmd-1; RE = -2.8% for annual ET). Eight day values of latent heat fluxes in Heibei (China) showed a good resemblance (R2 = 0.92; RMSE = 0.04 mm d-1; RE = 9.5% for annual ET). It is concluded that ETLook is a novel model that can be operationalized furtherespecially after improving the preprocessing of spaceborne soil moisture data. This preprocessing includes (1) downscaling of topsoil moisture from 25 to 1 km pixels, and (2) translation of topsoil moisture into subsoil moisture values.

  15. Examining pyrethroids, carbamates and neonicotenoids in fish, water and sediments from the Indus River for potential health risks.

    PubMed

    Jabeen, Farhat; Chaudhry, Abdul Shakoor; Manzoor, Sadia; Shaheen, Tayybah

    2015-02-01

    This 3 × 3 factorial study assessed pyrethroids, carbamates and neonicotenoids groups of pesticides in replicated samples of three fish species from low (S1, reference), medium (S2) and heavy (S3) polluted sites receiving agricultural run-offs around the Indus River. Water and sediment samples from the same sites were also analysed for these pesticides by using high-performance liquid chromatography. Out of nine investigated pesticides, only three pesticides (deltamethrin, carbofuran and cypermethrin) were detected in fish and sediment samples. Deltamethrin in Cyprinus carpio ranged from 0.490 to 0.839 μg/g, mostly exceeding 0.5 μg/g as the maximum residual limit suggested by FAO-WHO, whereas it ranged from 0.214 to 0.318 μg/g in the sampled sediments. The carbofuran concentrations were 0.0425-0.066 and 0.613-0.946 μg/g in Labeo rohita and Channa marulius muscles respectively and 0.069-0.081 μg/g in the corresponding sediment samples. These values were either higher or lower than the maximum limit (0.1 μg/g) as suggested by FAO-WHO. Conversely, the cypermethrin concentration ranged from 0.141 to 0.174 in Ch. marulius and 0.183-0.197 μg/g in sediments which were both below the FAO-WHO maximum limit of 2 μg/g. No pesticide residues were detected in water from these sampling sites. Most selected physicochemical variables were within the acceptable range of World Health Organization for the water quality for aquatic life. The detected pesticide contents were mostly higher in fish muscles from heavily polluted sites. This is worrying because these pesticides may pose health risks for the fish and people of the study area. However, a preliminary risk assessment indicated that the calculated daily intake of detected pesticides by people consuming fish from the Indus River was low and did not present an immediate risk to the fish-consuming people. This study may be used as a benchmark to determine the safety of fish meat in order to develop intervention strategies to maintain the water quality and to protect the health of fish and fish-consuming people. PMID:25632902

  16. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Zhuang, Guangsheng; Najman, Yani; Guillot, Stéphane; Roddaz, Martin; Antoine, Pierre-Olivier; Métais, Grégoire; Carter, Andrew; Marivaux, Laurent; Solangi, Sarfraz H.

    2015-12-01

    Knowledge of the timing of India-Asia collision is a fundamental prerequisite for understanding the evolution of the Himalayan-Tibetan orogen and its role in global climate, oceanic chemistry, and ecological evolution. Despite much active research, the basic pre-collision tectonic configuration and the timing of terminal India-Asia suturing remain debated. For example, debates regarding when and how the intervening Kohistan-Ladakh arc was sutured with India and Asia still remain elusive; some models propose the arc collided with Asia at about 100 Ma, with India-Asia collision at ca. 55 Ma, whilst a newer model proposed the arc's collision with India at 50 Ma and subsequently with Asia at 40 Ma. Another example is the recent proposition that an oceanic Greater India Basin separated the Tethyan Himalaya microcontinent from the remaining Indian plate until 20- 25 Ma with the consumption of this oceanic basin marking the final collision at this time. These controversies relate to whether the commonly documented 50 Ma contact represents the terminal India-Asia suturing or the amalgamation between various arcs or microcontinents with India or Asia. Here we present an integrated provenance study of geochronology, thermochronology, and geochemistry on the late Cretaceous-Pleistocene sediments from the lower Indus basin on the Indian plate. The detrital zircon U-Pb and fission track data show a reversal in sediment source from a pure Indian signature to increasing inputs from the suture zone and the Asian plate between the middle Paleocene and early Oligocene. The Nd and Sr isotopes narrow down this change to 50 Ma by revealing input of Asian detritus and the establishment of a Nd & Sr isotopic pattern similar to the present-day Indus Fan by 50 Ma, with no significant variations up section, contrary to what might be expected if later major collisions had occurred. Our isotopic data indicate that Greater India was occupied by a fluvial-deltaic system, analogous to the present-day Indus and named as the Paleo-Indus, which has been transporting Asian detritus southward across the suture zone and Kohistan-Ladakh arc since 50 Ma, suggesting no other ocean basins intervened between India and Asia after this time in this region. Our data require that in the west the India-Asia collision were accomplished by ˜50 Ma.

  17. [Health assessment of river ecosystem in Haihe River Basin, China].

    PubMed

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method. PMID:25693371

  18. Large rivers in sedimentary basins: Morphology and form observed from satellite imagery

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Davidson, S. K.

    2010-12-01

    Preservation of the deposits of big rivers, like any other river, can only occur where the river crosses an area of net aggradation in a sedimentary basin. Many of the world’s big rivers are systems that transfer sediment load from erosional realms to the sea, depositing fluvial successions only where there is accommodation on the coastal plain. However, many of the big rivers (e.g., Parana, Paraguay, Brahmaputra, Ganges, Indus, and Yukon Rivers) also cross continental sedimentary basins (e.g., sedimentary basins with minimal marine influence that lie inside continents) on their way to the oceans. We use satellite imagery to observe the large-scale morphology of big rivers in these continental sedimentary basins. As with other rivers, big rivers lose confinement of their valleys and form distributive fluvial systems (DFS) as they enter the continental sedimentary basins. Commonly, channel size decreases down-DFS, either through infiltration, bifurcation, or evaporation. Several active and/or old channels radiate outward from a DFS apex, and where the river is incised into its DFS, several paleochannel deposits are visible radiating outward from the DFS apex. Between and adjacent to channels, a significant amount of fine-grained sediment is deposited across the DFS surface, leaving high potential for preservation of floodplain deposits, even on large river DFS dominated by braided river systems. Commonly, the big rivers become the axial river in the sedimentary basin, continuing along strike of the basin. In this position, the river becomes confined between opposing DFS or between transverse DFS and the basin edge. In several examples, the river morphology changes upon reaching the sedimentary basin and across the DFS and this morphology may change once again at the toe of the DFS where the river takes the axial position in the basin. For example, the Brahamaputra River upstream from the sedimentary basin is a relatively narrow, single thread channel that is confined in its valley. Upon entering the sedimentary basin, the Brahmaputra River develops a DFS and becomes broadly braided in form. Distally on the DFS, the braided system bifurcates, leaving relatively large areas where floodplain deposits may be preserved. At the toe of the DFS, the Brahmaputra River becomes the axial system for this portion of the foreland basin. In this axial position, it is held between opposing DFS, thus the channel system migrates back and forth between these DFS and fills this portion of the basin with coarse-grained material. Other large rivers show similar change as they enter a continental sedimentary basin. In areal extent, DFS from smaller rivers occupy more of the modern continental sedimentary basins than the big rivers (either in axial or DFS position), therefore deposits of all rivers in sedimentary basins must be considered in order to fully interpret the rock record.

  19. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution.

    PubMed

    Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z

    2016-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003-0.708; cobalt 0.002-0.768 and zinc 47.4-1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals. PMID:26858541

  20. Concentrations and patterns of organochlorines (OCs) in various fish species from the Indus River, Pakistan: A human health risk assessment.

    PubMed

    Robinson, Timmer; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-01-15

    The present study was conducted to reveal the concentrations and patterns of organochlorines [i.e., organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs)] in freshwater fish species collected from four ecologically important sites of the Indus River i.e., Taunsa (TAU), Rahim Yar Khan (RYK), Guddu (GUD) and Sukkur (SUK). In the fish muscle tissues, concentrations of 15 OCPs (∑15OCPs) and 29 PCBs (∑29PCBs) varied between 1.93-61.9 and 0.81-44.2 ng/g wet weight (ww), respectively. Overall, the rank order of OCs was DDTs>PCBs>hexachlorocyclohexanes (HCHs)>chlordanes (CHLs). The patterns of PCBs showed maximum contribution of tri-CBs (59%). Ratios of individual HCH and DDT analytes contributing to the summed values indicated both recent and past use of these chemicals in the region, depending upon fish species. To assess the associated health risks, carcinogenic and non-carcinogenic risks were calculated through hazard ratios (HRs). For carcinogenic risk, HR was >1 at both 50th and 95th percentile concentrations, suggesting that the daily exposure to OCPs and PCBs yields a lifetime cancer risk of 1 in a million. HR for non-cancerous risk was <1 at both the percentiles, signifying no adverse effect by OCs exposure in native population. PMID:26476063

  1. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution

    PubMed Central

    Al-Ghanim, K.A.; Mahboob, Shahid; Seemab, Sadia; Sultana, S.; Sultana, T.; Al-Misned, Fahad; Ahmed, Z.

    2015-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003–0.708; cobalt 0.002–0.768 and zinc 47.4–1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals. PMID:26858541

  2. Measurement of natural radioactivity in sand samples collected along the bank of rivers Indus and Kabul in northern Pakistan.

    PubMed

    Malik, F; Matiullah; Akram, M; Rajput, M U

    2011-01-01

    Radioactivity is a part of the natural environment. The presence of natural radioactivity in sand and other building materials results in internal and external exposure to the general public. Therefore, it is desirable to determine the concentration of naturally occurring radionuclides, namely (232)Th, (226)Ra and (40)K in sand, bricks and cement which are commonly used as building materials in Pakistan. In this context, sand samples were collected from 18 different locations covering an area of ?1000 km(2) along the banks of river Indus (Ghazi to Jabba) and river Kabul (Nowshera to Kund) in the northern part of Pakistan, whereas bricks and cement samples were collected from local suppliers of the studied area. In order to measure the specific activities in these samples, a P-type coaxial high-purity germanium-based gamma-ray spectrometer was used. In sand samples, the average specific activities of (226)Ra, (232)Th, and (40)K were found to be 30.511.4, 53.219.5 and 53149 Bq kg(-1), whereas in brick samples, specific activities of 3014, 4121 and 525183 Bq kg(-1) were observed, respectively. In cement samples, measured specific activity values were 215, 143 and 23130 Bq kg(-1), respectively. Radium equivalent activities were calculated and found to be 143.838.6, 12449.8 and 56.697 Bq kg(-1) for sand, brick and cement samples, respectively. The annual mean effective dose for the studied sand samples was found to be 0.40 mSv. External and internal hazard indices were less than unity for all the studied samples. The present results have been compared with those reported in the literature. PMID:21062802

  3. Hydrological applications of Landsat imagery used in the study of the 1973 Indues River floor, Pakistand

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, F.H., Jr.

    1978-01-01

    During August and September 1973, the Indus River Valley of Pakistan experienced one of the largest floods on record, resulting in damages to homes, businesses, public works, and crops amounting to millions of rupees. Tremendous areas of lowlands were inundated along the Indus River and major tributaries. Landsat data made it possible to easily measure the extent of flooding, totaling about 20,000 km2 within an area of about 400,000 km2 south from the Punjab to the Arabian Sea. The Indus River data were used to continue experimentation in the development of rapid, accurate, and inexpensive optical techniques of flood mapping by satellite begun in 1973 for the Mississippi River floods. The research work on the Indus River not resulted in the development of more effective procedures for optical processing of flood data and synoptically depicting flooding, but also provided potentially valuable ancillary information concerning the hydrology of much of the Indus River Basin.

  4. Lithosphere, crust and basement ridges across Ganga and Indus basins and seismicity along the Himalayan front, India and Western Fold Belt, Pakistan

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, M.; Mishra, D. C.; Singh, B.

    2013-10-01

    Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere-asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy's root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ˜126-134 and ˜32-35 km under the Central Ganga basin to ˜132 and ˜38 km towards the south and 163 and ˜40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy's root model and modeling along a profile (SE-NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported. The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi-Lahore-Sargodha, (ii) Jaisalmer-Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh-Karachi arc-Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE-SW that are as follows (i) Jaisalmer-Ganganagar and Jodhpur-Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi-Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada-Son lineament. (v) The Munghyr-Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar-Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW-SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.

  5. Tritium hydrology of the Mississippi River basin

    USGS Publications Warehouse

    Michel, R.L.

    2004-01-01

    In the early 1960s, the US Geological Survey began routinely analysing river water samples for tritium concentrations at locations within the Mississippi River basin. The sites included the main stem of the Mississippi River (at Luling Ferry, Louisiana), and three of its major tributaries, the Ohio River (at Markland Dam, Kentucky), the upper Missouri River (at Nebraska City, Nebraska) and the Arkansas River (near Van Buren, Arkansas). The measurements cover the period during the peak of the bomb-produced tritium transient when tritium concentrations in precipitation rose above natural levels by two to three orders of magnitude. Using measurements of tritium concentrations in precipitation, a tritium input function was established for the river basins above the Ohio River, Missouri River and Arkansas River sampling locations. Owing to the extent of the basin above the Luling Ferry site, no input function was developed for that location. The input functions for the Ohio and Missouri Rivers were then used in a two-component mixing model to estimate residence times of water within these two basins. (The Arkansas River was not modelled because of extremely large yearly variations in flow during the peak of the tritium transient.) The two components used were: (i) recent precipitation (prompt outflow) and (ii) waters derived from the long-term groundwater reservoir of the basin. The tritium concentration of the second component is a function of the atmospheric input and the residence times of the groundwaters within the basin. Using yearly time periods, the parameters of the model were varied until a best fit was obtained between modelled and measured tritium data. The results from the model indicate that about 40% of the flow in the Ohio River was from prompt outflow, as compared with 10% for the Missouri River. Mean residence times of 10 years were calculated for the groundwater component of the Ohio River versus 4 years for the Missouri River. The mass flux of tritium through the Mississippi Basin and its tributaries was calculated during the years that tritium measurements were made. The cumulative fluxes, calculated in grams of 3II were: (i) 160 g for the Ohio (1961-1986), (ii) 98 g for the upper Missouri (1963-1997), (iii) 30 g for the Arkansas (1961-1997) and (iv) 780 g for the Mississippi (1961-1997). Published in 2004 by John Wiley and Sons, Ltd.

  6. Metabolic principles of river basin organization.

    PubMed

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

    2011-07-19

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics. PMID:21670259

  7. Metabolic principles of river basin organization

    NASA Astrophysics Data System (ADS)

    Rodriguez-Iturbe, I.; Caylor, K. K.; Rinaldo, A.

    2011-12-01

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.

  8. Metabolic principles of river basin organization

    PubMed Central

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K.; Rinaldo, Andrea

    2011-01-01

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber’s law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics. PMID:21670259

  9. Water scarcity in the Jordan River basin.

    PubMed

    Civic, M A

    1999-03-01

    This article reports the problem on water scarcity in the Jordan River basin. In the Jordan River basin, freshwater scarcity results from multiple factors and most severely affects Israel, Jordan, the West Bank, and the Gaza Strip. One of these multiple factors is the duration of rainfall in the region that only occurs in a small area of highlands in the northwest section. The varying method of water use parallels that of Israel that utilizes an estimated 2000 million cu. m. The national patterns of water usage and politically charged territorial assertions compound the competition over freshwater resources in the region. The combination of political strife, resource overuse, and contaminated sources means that freshwater scarcity in the Jordan River basin will reach a critical level in the near future. History revealed that the misallocation/mismanagement of freshwater from the Jordan River basin was the result of centuries of distinct local cultural and religious practices combined with historical influences. Each state occupying near the river basin form their respective national water development schemes. It was not until the mid-1990s that a shared-use approach was considered. Therefore, the critical nature of water resource, the ever-dwindling supply of freshwater in the Jordan River basin, and the irrevocability of inappropriate policy measures requires unified, definitive, and ecologically sound changes to the existing policies and practices to insure an adequate water supply for all people in the region. PMID:12290383

  10. Drainage divides, Massachusetts; Connecticut River lowlands and Chicopee River basin

    USGS Publications Warehouse

    Krejmas, Bruce E.; Wandle, S. William, Jr.

    1982-01-01

    Drainage boundaries for selected subbasins of the Connecticut River lowlands and Chicopee River basin in southern Franklin, eastern Hampshire, and western Worcester Counties, Massachusetts , are delineated on 18 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 square miles on tributary streams or 10 square miles along the Chicopee River, or 20 square miles along the Connecticut River. (USGS)

  11. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  12. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and

  13. RED RIVER BASIN BIOLOGICAL MONITORING WORKGROUP

    EPA Science Inventory

    The goal of this project is to improve coordination of biological monitoring efforts in the Red River Basin. This is to be accomplished through coordination of a study to develop sampling protocols for macroinvertebrates in the main stream and lower tributaries of the Red River....

  14. Drainage divides, Massachusetts-Hudson River basin

    USGS Publications Warehouse

    Wandle, S. William, Jr.

    1982-01-01

    Drainage boundaries for selected subbasins in northern Berkshire County, Massachusetts, are delineated on five topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for rivers where the drainage area is greater than 3 square miles. Successive sites are indicated where the intervening area is at least 6 square miles on tributary streams and 10 square miles along the Hoosic or North Branch Noosic Rivers. (USGS)

  15. Paraguay river basin response to seasonal rainfall

    NASA Astrophysics Data System (ADS)

    Krepper, Carlos M.; García, Norberto O.; Jones, Phil D.

    2006-07-01

    The use of river flow as a surrogate to study climatic variability implies the assumption that changes in rainfall are mirrored and likely amplified in streamflow. This is probably not completely true in large basins, particularly those that encompass different climatic regions, like the Paraguay river basin. Not all the signals present in precipitation are reflected in river flow and vice versa. The complex relationship between precipitation and streamflow could filter some signals and introduce new oscillatory modes in the discharge series. In this study the whole basin (1 095 000 km2) was divided into two sub-basins. The upper basin is upstream of the confluence with the River Apa and the lower basin is between the Apa river confluence and the Puerto Bermejo measuring station. The rainfall contribution shows a clear wet season from October to March and a dry season from April to September. A singular spectrum analysis (SSA) shows that there are trends in rainfall contributions over the upper and lower basins. Meanwhile, the lower basin only presents a near-decadal cycle (T 10 years). To determine the flow response to seasonal rainfall contributions, an SSA was applied to seasonal flow discharges at Puerto Bermejo. The seasonal flows, Q(t)O-M and Q(t)A-S, present high significant modes in the low-frequency band, like positive trends. In addition, Q(t)O-M presents a near-decadal mode, but only significant at the 77% level for short window lengths (M ≤ 15 years). Really, the Paraguay river flow is not a good surrogate to study precipitation variation. The low-frequency signals play an important role in the flow behaviour, especially during extreme events from the second half of the last century onwards.

  16. South Fork Holston River basin 1988 biomonitoring

    SciTech Connect

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  17. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems. Hot spot assessment included 100 gauge stations in the river basin with discharge measurement by ADCP, turbidity (T) and suspended sediment concentration (SSC), bed load by bed load traps, composition of salt, biochemical oxidation, nitrogen and phosphorous content in water, pH, redox and conductivity values, and also content of heavy metals in water, suspended matter and sediments. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu, and Mo in the Selenga River water which often are higher than MPC for water fishery. Most contrast distribution is characteristic for W and Mo, which is caused by mineral deposits in the Selenga basin. The most severe pollution of aquatic systems in the basin caused by mining activities is characteristic for a small river Modonkul, which flows into Dzhida River (left tributary of Selenga).

  18. Establishing river basin organisations inVietnam: Red River, Dong Nai River and Lower Mekong Delta.

    PubMed

    Taylor, P; Wright, G

    2001-01-01

    River basin management is receiving considerable attention at present. Part of the debate, now occurring worldwide, concerns the nature of the organisations that are required to manage river basins successfully, and whether special-purpose river basin organisations (RBOs) are always necessary and in what circumstance they are likely to (i) add to the management of the water resources and (ii) be successful. The development of river basin management requires a number of important elements to be developed to a point where the river basin can be managed successfully. These include the relevant laws, the public and non-government institutions, the technical capabilities of the people, the understanding and motivation of people, and the technical capacity and systems, including information. A river basin organisation (or RBO) is taken to mean a special-purpose organisation charged with some part of the management of the water resources of a particular river basin. Generally speaking, such organisations are responsible for various functions related to the supply, distribution, protection and allocation of water, and their boundaries follow the watershed of the river in question. However, the same functions can be carried out by various organisations, which are not configured on the geographical boundaries of a river basin. This paper outlines recent work on river basin organisation in Vietnam, and makes some comparisons with the situation in Australia. PMID:11419135

  19. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  20. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

  1. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  2. The "normal" elongation of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  3. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of... Committee Act, the Bureau of Reclamation announces that the Colorado River Basin Salinity Control Advisory...) 524-3826; e-mail at: kjacobson@usbr.gov . SUPPLEMENTARY INFORMATION: The Colorado River Basin...

  4. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  5. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control ] Act of 1974...

  6. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  7. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  8. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  9. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  10. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974...

  11. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  12. River basins of the United States: the Hudson

    USGS Publications Warehouse

    U.S. Geological Survey

    1981-01-01

    This leaflet, one of a series on the river basins of the United States, contains information on the Hudson River Basin, including a brief early history, a description of the physical characteristics, and other statistical data. At present, other river basins included in the series are The Colorado, The Columbia, The Delaware, The Potomac, and The Wabash.

  13. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush-Karakoram-Himalaya region, Pakistan)

    NASA Astrophysics Data System (ADS)

    Tahir, Adnan Ahmad; Adamowski, Jan Franklin; Chevallier, Pierre; Haq, Ayaz Ul; Terzago, Silvia

    2016-03-01

    The Upper Indus Basin (UIB), situated in the Himalaya-Karakoram-Hindukush (HKH) mountain ranges, is the major contributor to the supply of water for irrigation in Pakistan. Improved management of downstream water resources requires studying and comparing spatiotemporal changes in the snow cover and hydrological behavior of the river basins located in the HKH region. This study explored in detail the recent changes that have occurred in the Gilgit River basin (12,656 km2; western sub-basin of UIB), which is characterized by a mean catchment elevation of 4250 m above sea level (m ASL). The basin's snow cover was monitored through the snow products provided by the MODIS satellite sensor, while analysis of its hydrological regime was supported by hydrological and climatic data recorded at different altitudes. The Gilgit basin findings were compared to those previously obtained for the lower-altitude Astore basin (mean catchment elevation = 4100 m ASL) and the higher-altitude Hunza basin (mean catchment elevation = 4650 m ASL). These three catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. Almost 7, 5 and 33 % of the area of the Gilgit, Astore and Hunza basins, respectively, are situated above 5000 m ASL, and approximately 8, 6 and 25 %, respectively, are covered by glaciers. The UIB region was found to follow a stable or slightly increasing trend in snow coverage and had a discharge dominated by snow and glacier melt in its western (Hindukush-Karakoram), southern (Western-Himalaya) and northern (Central-Karakoram) sub-basins.

  14. Landsat Mosaic of the Yukon River Basin

    Michelle A. Bouchard, John L. Dwyer and Brian Granneman. American Geophysical Union, Fall Meeting 2009, abstract #GC51A-0708 Landsat data from the Global Land Survey (GLS) dataset for year 2000 was mosaicked to form a Yukon River Basin image map that is referenced to a geodetic base. It was produc...

  15. Central Mississippi River Basin LTAR site overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Mississippi River Basin (CMRB) member of the Long-Term Agro-ecosystem Research (LTAR) network is representative of the southern Corn Belt, where subsoil clay content makes tile drainage challenging and make surface runoff and associated erosion problematic. Substantial research infrastru...

  16. OHIO RIVER BASIN ENERGY STUDY: HEALTH ASPECTS

    EPA Science Inventory

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multi-disciplinary program supported by the Environmental Protection Agency. It attempts to establish health damage functions for energy resource extraction, conversion (i.e., burning of coal to prod...

  17. Nutrient levels in the Yazoo River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High nitrogen (N) and phosphorus (P) loadings to aquatic ecosystems are linked to environmental problems including harmful algal blooms and hypoxia. Presented is an assessment of accessible data on nutrient sources, sinks and inputs to streams within the Yazoo River Basin of northern Mississippi. Ac...

  18. Sediment fluxes in transboundary Selenga river basin

    NASA Astrophysics Data System (ADS)

    Belozerova, Ekaterina

    2013-04-01

    Gathering reliable information on transboundary river systems remains a crucial task for international water management and environmental pollution control. Countries located in the lower parts of the river basins depend on water use and management strategies in adjacent upstream countries. One important issue in this context is sediment transport and associated contaminant fluxes across the state borders. The mass flows of dissolved ions, biogens, heavy metal concentrations, as far as suspended sediment concentration (SSC, mg/l) along upper Selenga river and its tributaries based on the literature review and results of field campaigns 2011-2012 were estimated. Based on the water discharges measurements Q, suspended load WR (t/day) and dissolved loads WL were calculated. In the Selenga basin the minimal WR (1,34-3,74 t/day) were found at small rivers. Maximal sediment loads (WR = 15 000 t/day) were found at the upper Orkhon river during flood event. The downstream point (Mongolia-Russia border) was characterized 2 220 t/day in 2011. Generally the prevalence of the accumulation is found through calculating sediment budget for all rivers (ΔW = WR (downstream) - WR (upstream) < 0). Downstream of Orkhon river (below confluence with Tuul) ΔW = - 1145 t/day. Below Selenga-Orkhon confluence sediment yield reached 2515 t/day, which is corresponded to transboundary sediment flux. Silt sediments (0,001 - 0,05 mm) form the main portion of the transported material. The maximal value of sand flux (302 t/day) was reported for middle stream station of Selenga river (upstream from confluence with Orkhon). The increase of human activities (mining and pastures) increases the portion of clay particles in total sediment load (e.g. at the downstream point of most polluted Orkhon river it reached 207,8 t/day). The existed estimates are compared with distribution of the main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga river where Mongolia capital Ulaanbaator, gold mine Zaamar and few other mines). The results provide evidence on a connection between increased heavy metal concentrations in water-sediment systems of transboundary rivers and pollutant source zones at industrial and mining centers, both as in-channel erosion and land use.

  19. SOURCE AREAS IN THE LOWER MISSISSIPPI RIVER BASIN: ILLS AND CURES IN THE YAZOO RIVER BASIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mississippi River drains two thirds of the continental United States. This basin contains the largest amount of concentrated livestock and crop agriculture in the United States. Because of size and land use, the river transports enough nutrients produce plankton blooms. The dying plankton neg...

  20. Strengthening river basin institutions: The Global Environment Facility and the Danube River Basin

    NASA Astrophysics Data System (ADS)

    Gerlak, Andrea K.

    2004-08-01

    Increased international attention to water resource management has resulted in the creation of new institutional arrangements and funding mechanisms as well as international initiatives designed to strengthen river basin institutions. The Global Environment Facility's (GEF) International Waters Program is at the heart of such novel collaborative regional approaches to the management of transboundary water resources. This paper assesses GEF-led efforts in the Danube River Basin, GEF's most mature and ambitious projects to date. It finds that GEF has been quite successful in building scientific knowledge and strengthening regional governance bodies. However, challenges of coordinating across expanding participants and demonstrating clear ecological improvements remain. GEF-led collaborative activities in the Danube River Basin reveal three critical lessons that can inform future river basin institution building and decision making, including the importance of appropriately creating and disseminating scientific data pertaining to the river system, the need for regional governance bodies for integrated river basin management, and the necessity to address coordination issues throughout project planning and implementation.

  1. Flood tracking chart, Amite River basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence; McCallum, Brian E.; Brazelton, Sebastian R.

    1996-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  2. Flood tracking chart, Amite River Basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence E.; McCallum, Brian E.; Brazelton, Sebastian R.; Anderson, Mary L.; Ensminger, Paul A.

    1998-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  3. Nutrient mitigation in a temporary river basin.

    PubMed

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Cooper, David; Kassotaki, Elissavet

    2014-04-01

    We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The 'total daily maximum load' approach is used to estimate the nutrient flux status by flow class, indicating that almost 60% of the river network fails to meet nitrogen criteria and 50% phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs. PMID:24306442

  4. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested system of observations, will intersect the important landforms, climate zones, ecology, and human activities of the basin. Characterizing how humans and climate impact the sustainability of water resources in the Susquehanna River Basin will require an evolutionary approach, involving coordination of historical information and a phased-design for the new observing system. Detecting change (past and present) requires that the atmosphere, vegetation, geochemistry, and hydrology of the Susquehanna, are all observed coherently from the headwaters to the Chesapeake, from the boundary layer to the water table. The River Basin Adaptive Monitoring and Modeling Plan (RAMP) represents the design strategy to coherently select and assess core monitoring sites as well as new sites targeted for both short-term and long term scientific campaigns. Rich in historical research and infrastructure, SRBHOS will serve as a fundamental resource for the hydrologic science community into the future, while providing a "characteristic" hydrologic node in the national network.

  5. Sprague River geomorphology studies, Klamath Basin, Oregon

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.; O'Connor, J. E.; Lind, P.

    2005-12-01

    The Sprague River drains 4050 square kilometers with a mean annual discharge of 16.3 m3/s before emptying into the Williamson River and then upper Klamath Lake in southcentral Oregon. The alternating wide alluvial segments and narrow canyon reaches of this 135-km-long westward flowing river provide for a variety of valued ecologic conditions and human uses along the river corridor, notably fisheries (including two endangered species of suckers, and formerly salmon), timber harvest, agriculture, and livestock grazing. The complex history of land ownership and landuse, water control and diversion structures, and fishery alterations, provides several targets for attributing historic changes to channel and floodplain conditions. Recently, evolving societal values (as well as much outside money) are inspiring efforts by many entities to 'restore' the Sprague River watershed. In cooperation with the U.S. Fish and Wildlife Service, the Klamath Tribes, and many local landowners, we are launching an analysis of Sprague River channel and floodplain processes. The overall objective is to guide restoration activities by providing sound understanding of local geomorphic processes and conditions. To do this we are identifying key floodplain and channel processes, and investigating how they have been affected by historic floodplain activites and changes to the watershed. This is being accomplished by analysis of historic aerial photographs and maps, stratigraphic analysis of floodplain soils and geologic units, mapping of riparian vegetation conditions and changes, and quantitative analysis of high resolution LiDAR topography acquired for the entire river course in December 2004. Preliminary results indicate (1) much of the coarser (and more erodible) floodplain soils are largely composed of pumice deposited in the basin by the 7700 year BP eruption of Mount Mazama; and (2) the LiDAR digital elevation models provide a ready means of subdividing the river into segments with quantifiably different characteristics of channel width, sinuosity, slope, and incision (relative to adjacent floodplain elevations).

  6. Scaling issues in sustainable river basin management

    NASA Astrophysics Data System (ADS)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting (national and international laws and agreements), the institutional setting (the formal networks), information management (the information collection and dissemination system), and financing systems (the public and private sources that cover the water management costs). These elements are usually designed for a specific level and are ideally aligned with the other levels. The presentation will go into detail on connecting the different elements of the water management regime between different levels as well as on the overarching governance issues that play a role and will present opportunities and limitations of the linking options.

  7. Spatial and altitudinal variation of precipitation and the correction of gridded precipitation datasets for the Upper Indus Basin and the Hindukush-Karakoram-Himalaya

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Booij, Martijn J.; Duan, Zheng; Naz, Bibi S.; Lee, Junhak; Khan, Mujahid

    2015-04-01

    Precise and accurate precipitation data (of both snow and rain) are a vital input for hydrological modeling, climatic studies and glacier mass balance analysis. This study investigates the accuracy of eight widely used gridded datasets, based on mass balance assessments, for the Upper Indus Basin (UIB) in the Himalayas-Karakoram-Hindukush (HKH) mountain region. The eight datasets are: 1) Global Precipitation Climatology Project (GPCP) v 2.2, 2) Climate Prediction Centre (CPC) Merged Analysis of Precipitation (CMAP), 3) National Centers for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR), 4) Global Precipitation Climatology Centre (GPCC), 5) Climatic Research Unit (CRU) v 3.2.2, 6) Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), 7) Tropical Rainfall Measuring Mission (TRMM) 3B33 v 7, and 8) European Reanalysis (ERA) interim data. Precipitation derived from these datasets has been compared with the sum of flow, MODIS ETact (Actual Evapo-transpiration), and glacier imbalance contribution to flows. All these datasets significantly underestimate precipitation, being 40-80% less than the measured flows, except for the NCEP/NCAR and ERA interim datasets, which only slightly underestimate precipitation. This is the case for almost all watersheds in the UIB, particularly the Gilgit, Hunza, Shigar and Astore watersheds. To provide alternative, more physically-reasonable precipitation estimates, annual and seasonal (October-May and June-September) precipitation values have been derived for the entire UIB using multiple regressions relating precipitation for 46 climate stations to the local altitude, slope, aspect, latitude and longitude. The results are distributed across the whole basin on a 1km grid, with an estimated uncertainty of 5-10%. The spatial pattern shows good agreement with the Randolph Glacier Inventory (RGI) v 3.2 data, and with previous local studies that have measured and or modelled precipitation for various altitudes and watersheds. For the entire UIB (at Tarbela Dam), the revised annual average precipitation is 794±79 mm/yr compared to the sum of flow and ETact of 877±77 mm/yr, and a glacier melt contribution of about 20-40 mm/yr (6 ± 2% of annual average flows). This provides the best precipitation estimate currently available. This study therefore cautions against use of the gridded data products listed above without substantial effort in bias correction; and argues that previous hydro-climatic studies for the UIB and its region, based on these datasets, need significant re-evaluation,. The precipitation distribution estimated here can, however, be used in the future to correct existing gridded data products and to improve hydro-climatic studies in the Himalayan region.

  8. Powder River Basin: new energy frontier

    SciTech Connect

    Richards, B.

    1981-02-01

    The Powder River Basin in Wyoming represents a new energy frontier, where traditional ranch styles are giving way to boomtown development around new coal mines. Plans for extensive strip mining, coal trains and pipelines, and synthetic fuels plants will transform a 12,000 square mile area. The environmental and social impacts of trailer villages and the influx of new mores and life styles are already following traditional patterns for newcomers and long-time residents alike. Some local residents, however, are optimistic about the opportunities energy development will have. (DCK)

  9. COLUMBIA RIVER BASIN CONTAMINANT AQUATIC BIOTA AND SEDIMENT DATA

    EPA Science Inventory

    Numerous studies have been done to determine the levels of chemical contaminants in fish and sediment in the Columbia River Basin. These studies were done because of concern that releases of toxic Chemicals into the Columbia River Basin may be impacting health and the environment...

  10. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  11. Long lasting dynamic disequilibrium in river basins

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Willett, Sean D.; McCoy, Scott W.; Perron, J. Taylor; Chen, Chia-Yu

    2014-05-01

    The river basins of ancient landscapes such as the southeastern United States exhibit disequilibrium in the form of migrating divides and stream capture. This observation is surprising in light of the relatively short theoretical fluvial response time, which is controlled by the celerity of the erosional wave that propagates upstream the fluvial channels. The response time is believed to determine the time required for fluvial landscapes to adjust to tectonic, climatic, and base-level perturbations, and its global estimations range between 0.1 Myr and 10s Myr. To address this discrepancy, we develop a framework for mapping continuous dynamic reorganization of natural river basins, and demonstrate the longevity of disequilibrium along the river basins in the southeastern United States that are reorganizing in response to escarpment retreat and coastal advance. The mapping of disequilibrium is based on a proxy for steady-state elevation, Ξ, that can be easily calculated from digital elevation models. Disequilibrium is inferred from differences in the value of Ξ across water divides. These differences indicate that with the present day drainage area distribution and river topology the steady-state channels elevation across the divides differs, and therefore divides are expected to migrate in the direction of the higher Ξ value. We further use the landscape evolution model DAC to explore the source of the longevity of disequilibrium in fluvial landscapes. DAC solves accurately for the location of water divides, using a combination of an analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC simulations demonstrate topological, geometrical, and topographical adjustments that persist much longer than the theoretical response time, and consequently, extend the time needed to diminish disequilibrium in the landscape and to reach topological and topographical steady-state. This behavior is interpreted as resulting from a positive feedback between divide migration, which causes topological modifications and area change, on the one hand, and channel slope adjustments, which change the erosion rates on opposing sides of water divides and promote their migration, on the other hand. Furthermore, the constantly shifting drainage area and the changing topology of the drainage network are shown to be a possible source for autogenic sediment flux variations.

  12. Combination of remote sensing data products to derive spatial climatologies of "degree days" and downscale meteorological reanalyses: application to the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Rutter, N.; Brock, B. W.; Fowler, H. J.; Blenkinsop, S.

    2014-12-01

    Lack of observations for the full range of required variables is a critical reason why many cryosphere-dominated hydrological modelling studies adopt a temperature index (degree day) approach to meltwater simulation rather than resolving the full surface energy balance. Thus spatial observations of "degree days" would be extremely useful in constraining model parameterisations. Even for models implementing a full energy balance, "degree day" observations provide a characterisation of the spatial distribution of climate inputs to the cryosphere-hydrological system. This study derives "degree days" for the Upper Indus Basin by merging remote sensing data products: snow cover duration (SCD), from MOD10A1 and land surface temperature (LST), from MOD11A1 and MYD11A1. Pixel-wise "degree days" are calculated, at imagery-dependent spatial resolution, by multiplying SCD by (above-freezing) daily LST. This is coherent with the snowpack-energy-to-runoff conversion used in temperature index algorithms. This allows assessment of the spatial variability of mass inputs (accumulated snowpack) because in nival regime areas - where complete ablation is regularly achieved - mass is the limiting constraint. The GLIMS Randolph Glacier Inventory is used to compare annual totals and seasonal timings of "degree days" over glaciated and nival zones. Terrain-classified statistics (by elevation and aspect) for the MODIS "degree-day" hybrid product are calculated to characterise of spatial precipitation distribution. While MODIS data products provide detailed spatial resolution relative to tributary catchment areas, the limited instrument record length is inadequate for assessing climatic trends and greatly limits use for hydrological model calibration and validation. While multi-decadal MODIS equivalent data products may be developed in the coming years, at present alternative methods are required for "degree day" trend analysis. This study thus investigates the use of the hybrid MODIS "degree day" product to downscale an ensemble of modern global meteorological reanalyses including ERA-Interim, NCEP CFSR, NASA MERRA and JRA-55 which overlap MODIS instrument record. This downscaling feasibility assessment is a prerequisite to applying the method to regional climate projections.

  13. Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.

    2014-09-01

    Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region.

  14. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  15. South Platte River Basin - Colorado, Nebraska, and Wyoming

    USGS Publications Warehouse

    Dennehy, Keuin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.

    1993-01-01

    The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.

  16. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  17. Examination of elevation dependency in observed and projected temperature change in the Upper Indus Basin and Western Himalaya

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Forsythe, N. D.; Blenkinsop, S.; Archer, D.; Hardy, A.; Janes, T.; Jones, R. G.; Holderness, T.

    2013-12-01

    We present results of two distinct, complementary analyses to assess evidence of elevation dependency in temperature change in the UIB (Karakoram, Eastern Hindu Kush) and wider WH. The first analysis component examines historical remotely-sensed land surface temperature (LST) from the second and third generation of the Advanced Very High Resolution Radiometer (AVHRR/2, AVHRR/3) instrument flown on NOAA satellite platforms since the mid-1980s through present day. The high spatial resolution (<4km) from AVHRR instrument enables precise consideration of the relationship between estimated LST and surface topography. The LST data product was developed as part of initiative to produce continuous time-series for key remotely sensed spatial products (LST, snow covered area, cloud cover, NDVI) extending as far back into the historical record as feasible. Context for the AVHRR LST data product is provided by results of bias assessment and validation procedures against both available local observations, both manned and automatic weather stations. Local observations provide meaningful validation and bias assessment of the vertical gradients found in the AVHRR LST as the elevation range from the lowest manned meteorological station (at 1460m asl) to the highest automatic weather station (4733m asl) covers much of the key range yielding runoff from seasonal snowmelt. Furthermore the common available record period of these stations (1995 to 2007) enables assessment not only of the AVHRR LST but also performance comparisons with the more recent MODIS LST data product. A range of spatial aggregations (from minor tributary catchments to primary basin headwaters) is performed to assess regional homogeneity and identify potential latitudinal or longitudinal gradients in elevation dependency. The second analysis component investigates elevation dependency, including its uncertainty, in projected temperature change trajectories in the downscaling of a seventeen member Global Climate Model (GCM) perturbed physics ensemble (PPE) of transient (130-year) simulations using a moderate resolution (25km) regional climate model (RCM). The GCM ensemble is the17-member QUMP (Quantifying Uncertainty in Model Projections) ensemble and the downscaling is done using HadRM3P, part of the PRECIS regional climate modelling system. Both the RCM and GCMs are models developed the UK Met Office Hadley Centre and are based on the HadCM3 GCM. Use of the multi-member PPE enables quantification of uncertainty in projected temperature change while the spatial resolution of RCM improves insight into the role of elevation in projected rates of change. Furthermore comparison with the results of the remote sensing analysis component - considered to provide an 'observed climatology' - permits evaluation of individual ensemble members with regards to biases in spatial gradients in temperature as well timing and magnitude of annual cycles.

  18. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  19. Climate sensitivity of major river basins in Africa

    NASA Astrophysics Data System (ADS)

    Beyene, T.; Lettenmaier, D. P.; Kabat, P.; Ludwig, F.

    2011-12-01

    We simulate the land surface water balance of five major African river basins using the Variable Infiltration Capacity (VIC) land surface hydrologic model forced by gridded climate data of precipitation and temperature for the period 1979-1999. The seasonality and inter-annual variability of the water balance terms vary across the continent and at each river basin. The long-term mean vapor flux convergence P-E agrees well with observed runoff for the eastern and north western basins, whereas there is a relatively large imbalance (28%) for the Oranje River basin possibly because of its small size. The Zambezi and Oranje River basins act as a net source of moisture in dry seasons (strong negative P-E). Both the Nile and Zambezi basins have a low runoff efficiency and a high dryness index, indicating a high sensitivity to climate change in the case of the Nile, and moderate sensitivity in the case of the Zambezi. Although the severity of climate change impacts depends primarily on the magnitude of change, the different hydrological sensitivities of the basins are also important. Precipitation elasticities range from 2.2 to 3.1 for 10% increase and -2.1 to -2.7 for 10% decrease in precipitation respectively over the five river basins, whereas the sensitivity of runoff to temperature ranges (absolute value) from a high of -5%/degC for the Niger basin to a low of -1% for the Orange basin.

  20. Modelling sediment input in large river basins

    NASA Astrophysics Data System (ADS)

    Scherer, U.

    2012-04-01

    Erosion and sediment redistribution play a pivotal role in the terrestrial ecosystem as they directly influence soil functions and water quality. In particular surface waters are threatened by emissions of nutrients and contaminants via erosion. The sustainable management of sediments is thus a key challenge in river basin management. Beside the planning and implementation of mitigation measures typically focusing on small and mesoscale catchments, the knowledge of sediment emissions and associated substances in large drainage basins is of utmost importance for water quality protection of large rivers and the seas. The objective of this study was thus to quantify the sediment input into the large drainage basins of Germany (Rhine, Elbe, Odra, Weser, Ems, Danube) as a basis for nutrient and contaminant emissions via erosion. The sediment input was quantified for all watersheds of Germany and added up along the flow paths of the river systems. Due to the large scale, sediment production within the watersheds was estimated based on the USLE for cultivated land and naturally covered areas and on specific erosion rates for mountainous areas without vegetation cover. To quantify the sediment delivery ratio a model approach was developed using data on calculated sediment production rates and long term sediment loads observed at monitoring stations of 13 watersheds located in different landscape regions of Germany. A variety of morphological parameters and catchment properties such as slope, drainage density, share of morphological sinks, hypsometric integral, flow distance between sediment source areas and the next stream as well as soil and land use properties were tested to explain the variation in the sediment delivery ratios for the 13 watersheds. The sediment input into streams is mainly controlled by the location of sediment source areas and the morphology along the flow pathways to surface waters. Thus, this complex interaction of spatially distributed catchment properties cannot be characterized using only spatially lumped parameters for watersheds located in very different landscape regions. From all parameters tested, the mean slope of the watersheds and the share of arable land located in a distance of 500 m revealed a significant relation to the sediment delivery ratio. Using both parameters the sediment input was quantified for all other watersheds of Germany showing a good agreement with observed long term sediment loads at monitoring stations.

  1. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  2. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and management. In the past, shared and unclear responsibilities, a spatial mismatch between administrative and river basin boundaries, the lack of relevant information, financial resources and implementation capacity resulted in an uncoordinated and partially uncontrolled exploitation of water resources (Livingstone et al. 2009; Horlemann et al. 2012). The recent decision of the Mongolian government to develop river basin management plans and to provide for their implementation through river basin councils and administrations, and the comparatively good data availability resulting from the R&D project, resulted in the decision to jointly develop a science-based river basin management plan for the KRB as a model region for other river basins of the country. References: Hartwig, M.; Theuring, P.; Rode, M. & Borchardt, D. (2012): Suspended sediments in the Kharaa River catchment (Mongolia) and its impact on hyporheic zone functions. Environmental Earth Sciences 65(5):1535-1546. Hofmann, J.; Venohr, M.; Behrendt, H. & Opitz, D. (2010): Integrated Water Resources Management in Central Asia: Nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Science and Technology 62(2):353-363. Horlemann, L. & Dombrowsky, I. (2012): Institutionalising IWRM in developing and transition countries: the case of Mongolia. Environmental Earth Sciences 65(5):1547-1559. Karthe, D.; Borchardt, D. & Hufert, F. (2012a): Implementing IWRM: Experiences from a Central Asian Model Region. In: Pandya, A.B. (Ed.) (2012): India Water Week 2012. Water, Energy and Food Security: Call for Solutions, Part A3, pp. 1-15. Delhi: Ministry of Water Resources, Government of India. Karthe, D.; Sigel, K.; Scharaw, B. et al. (2012b): Towards an integrated concept for monitoring and improvements in water supply, sanitation and hygiene (WASH) in urban Mongolia. Water & Risk 20:1-5. Karthe, D.; Malsy, M.; Kopp, B. & Minderlein, S. (2013): Assessing Water Availibility and its Drivers in the Context of an Integrated Water Resources Management (IWRM): A Case Study from the Kharaa River Basin, Mongolia. GeoÖko (submitted). Livingstone, A.J.; Erdenechimeg, C. & Oyunsuvd, A. (2009): Needs assessment on institutional capacity for water governance in Mongolia. Ulaan Baatar: Government of Mongolia & UNDP Mongolia. Malsy, M.; aus der Beek, T.; Eisner, S. & Flörke, M. (2012): Climate Change impacts on Central Asian water resources. Advances in Geosciences 32:77-83. Menzel, L.; Hofmann, J. & Ibisch, R. (2011): Untersuchung von Wasser- und Stoffflüssen als Grundlage für ein Integriertes Wasserressourcen - Management im Kharaa-Einzugsgebiet (Mongolei). Hydrologie und Wasserbewirtschaftung 55(2):88-103. MoMo Consortium (2009): Integrated Water Resources Management for Central Asia: Model Region Mongolia (MoMo). Case Study in the Kharaa River Basin. Final Project Report. Mun, Y.; Ko, I.H.; Janchivdorj, L. et al. (2008): Integrated Water Management Model on the Selenge River Basin: Status Survey and Investigation (Phase I). Seoul: KEI Publications. Scharaw, B. & T. Westerhoff (2011): A Leak Detection in Drinking Water Distribution Network of Darkhan in Framework of the Project Integrated Water Resources Management in Central Asia, Model Region Mongolia. Proceedings of the IWA 1st Central Asian Regional Young and Senior Water Professionals Conference, Almaty/Kazakhstan, pp. 275-282.

  3. Zinc and Its Isotopes in the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  4. Resistivity sections, upper Arkansas River basin, Colorado

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Hershey, Lloyd A.; Emery, Philip A.; Stanley, William D.

    1971-01-01

    A reconnaissance investigation of ground-water resources in the upper Arkansas River basin from Pueblo to Leadville is being made by the U.S. Geological Survey in cooperation with the Southeastern Colorado Water Conservancy District, and the Colorado Division of Water Resources, Colorado State Engineer. As part of the investigation, surface geophysical electrical resistivity surveys were made during the summer and fall of 1970 near Buena Vista and Westcliffe, Colo. (p1.1). The resistivity surveys were made to verify a previous gravity survey and to help locate areas where ground-water supplies might be developed. This report presents the results of the surveys in the form of two resistivity sections.

  5. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  6. Evaluating Damage Assessment of Breaches Along the Embankments of Indus River during Flood 2010 Using Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Daniyal, D.

    2013-09-01

    Natural disasters cause human sufferings and property loss, if not managed properly. It cannot be prevented but their adverse impacts can be reduced through proper planning and disaster mitigation measures. The floods triggered by heavy rains during July 2010 in Pakistan caused swallowing of rivers causing human, agriculture, livestock and property losses in almost all over the country. The heavy rains in upper part of country were attributed to El-Nina effect. Accumulated water in the rivers floodplain overtopped and breached flood protective infrastructure. Flood damage particularly in Sindh province was caused by breaches in the embankments and even after months of flood recession in rivers, flood water affected settled areas in the province. This study evaluates the role of satellite remote sensing particularly in assessment of breaches and consequential damages as well as measures leading to minimize the effects of floods caused by breaches in flood protective infrastructure. More than 50 SPOT-5 imageries had been used for this purpose and breached areas were delineated using pre and post flood imageries, later on rehabilitation work were also monitored. A total 136 breaches were delineated out of which 60 were in the Punjab and 76 in Sindh province. The study demonstrates the potentials of satellite remote sensing for mapping and monitoring natural disasters and devising mitigation strategies.

  7. Flexural analysis of two broken foreland basins; Late Cenozoic Bermejo basin and Early Cenozoic Green River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.; Reynolds, S.

    1986-05-01

    Lithospheric flexure that generates basin in a broke foreland setting (e.g., the Laramide foreland of Wyoming) is a three-dimensional system related to shortening along basin-bounding faults. The authors modeled the elastic flexure in three dimensions for two broken foreland basins: the early Cenozoic Green River basin and the analogous late Cenozoic Bermejo basin of Argentina. Each basin is located between a thrust belt and a reverse-fault-bounded basement uplift. Both basins are asymmetric toward the basement uplifts and have a central basement high: the Rock Springs uplift and the Pie de Palo uplift, respectively. The model applies loads generated by crustal thickening to an elastic lithosphere overlying a fluid mantle. Using the loading conditions of the Bermejo basin based on topography, limited drilling, and reflection and earthquake seismology, the model predicts the current Bermejo basin geometry. Similarly, flexure under the loading conditions in the Green River basin, which are constrained by stratigraphy, well logs, and seismic profiling and summed for Late Cretaceous (Lance Formation) through Eocene (Wasatch Formation), successfully models the observed geometry of the pre-Lance surface. Basin depocenters (> 4 km for the Green River basin; > 7 km for the Bermejo basin) and central uplifts are predicted to result from constructive interference of the nonparallel applied loads. Their Bermejo model implies that instantaneous basin geometry is successfully modeled by crustal loading, whereas the Green River basin analysis suggests that basin evolution can be modeled over large time steps (e.g., 20 Ma). This result links instantaneous basin geometry to overall basin evolution and is a first step in predicting stratigraphic development.

  8. An Operational Flood Forecast System for the Indus Valley

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Webster, P. J.

    2012-12-01

    The Indus River is central to agriculture, hydroelectric power, and the potable water supply in Pakistan. The ever-present risk of drought - leading to poor soil conditions, conservative dam practices, and higher flood risk - amplifies the consequences of abnormally large precipitation events during the monsoon season. Preparation for the 2010 and 2011 floods could have been improved by coupling quantitative precipitation forecasts to a distributed hydrological model. The nature of slow-rise discharge on the Indus and overtopping of riverbanks in this basin indicate that medium-range (1-10 day) probabilistic weather forecasts can be used to assess flood risk at critical points in the basin. We describe a process for transforming these probabilities into an alert system for supporting flood mitigation and response decisions on a daily basis. We present a fully automated two-dimensional flood forecast methodology based on meteorological variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) Variable Ensemble Prediction System (VarEPS). Energy and water fluxes are calculated in 25km grid cells using macroscale hydrologic parameterizations from the UW Variable Infiltration Capacity (VIC) model. A linear routing model transports grid cell surface runoff and baseflow within each grid cell to the outlet and into the stream network. The overflow points are estimated using flow directions, flow velocities, and maximum discharge thresholds from each grid cell. Flood waves are then deconvolved from the in-channel discharge time series and propagated into adjacent cells until a storage criterion based on average grid cell elevation is met. Floodwaters are drained back into channels as a continuous process, thus simulating spatial extent, depth, and persistence on the plains as the ensemble forecast evolves with time.

  9. 19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ENGINEER AT DATA COLLECTION COMPUTER ROOM. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  10. UPPER SNAKE RIVER BASIN WATER QUALITY ASSESSMENT, 1976

    EPA Science Inventory

    This package contains information for the Upper Snake River Basin, Idaho (170402, 17040104). The report contains a water quality assessment approach which will assist EPA planners, land agencies, and state and local agencies in identifying probably nonpoint sources and determini...

  11. 16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL AND HYDRAULIC ENGINEERS EXAMINING MODEL PUMPS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  12. Atmospheric circulation and snowpack in the Gunnison River Basin

    USGS Publications Warehouse

    McCabe, Gregory J.

    1994-01-01

    Winter mean 700-millibar height anomalies over the eastern North Pacific Ocean and the western United States are related to variability in snowpack accumulations measured on or about April 1 in the Gunnison River Basin in Colorado. Higher-than-average snowpack accumulations are associated with negative 700-millibar height anomalies (anomalous cyclonic circulation) over the western United States and over most of the eastern North Pacific Ocean. The anomalous cyclonic circulation enhances the movement of moisture from the eastern North Pacific Ocean into the southwestern United States. Variability in winter mean 700-millibar height anomalies explain over 50 percent of the variability in snowpack accumulations in the Gunnison River Basin. The statistically significant linear relations between 700-millibar height anomalies and snowpack accumulations in the Gunnison River Basin can be used with general-circulation-model simulations of future 700-millibar height anomalies to estimate changes in snowpack accumulations in the Gunnison River Basin for future climatic conditions.

  13. ALTERNATIVE FUTURES FOR THE WILLAMETTE RIVER BASIN, OREGON

    EPA Science Inventory

    Alternative futures analysis is an assessment approach designed to inform community decisions regarding land and water use. We conducted an alternative futures analysis in the Willamette River Basin in western Oregon. Based on detailed input from local stakeholders, three alter...

  14. Pesticides in Surface Water in the Bighorn River and North Platte River Basins, Wyoming, 2006

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Boughton, Gregory K.; Woodruff, R.E.

    2007-01-01

    Introduction In 2006, the U.S. Geological Survey (USGS), in cooperation with the Wyoming Department of Agriculture, sampled five surface-water sites in Wyoming-three in the Bighorn River Basin (BRB) and two in the North Platte River Basin (NPRB) (fig. 1). The purpose of the sampling was to describe the occurrence of pesticides in these basins during three different times of the year. This fact sheet presents the results of the sampling.

  15. Representation by Global Climate Models of the Seasonal Cycle of Precipitation in Major Asian River Basins: Present Climate and Future Climate Projections

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Hasson, Shabeh Ul; Pascale, Salvatore

    2013-04-01

    The assessment of the performance of global climate models in representing the hydrological cycle at basin scale is a crucial aspect of climate models auditing and is a necessary step before attempting any statistical or dynamical downscaling of the models output. For reasons of both basic relevance in hydroclimatological terms and of practical importance in terms of water management and water related-hazards, South and South East Asian river basis represent extremely interesting target areas. We present the results of an extensive investigation of how about 20 state-of-the-art climate models represent the hydrological cycle in the Indus, Gange, Brahmaputra, and Mekong basins for present and future projected climate conditions. We shall focus here on the seasonal cycle of precipitation (and evaporation) and shall present the serious inconsistencies among models in the representation of the phase and intensity of monsoonal precipitation and resulting runoff. The obtained results agree with recent findings obtained when looking at atmospheric indicators of the monsoonal circulation. Moreover, in the especially interesting case of the Indus, we shall also analyze how models represent the secondary precipitation peak corresponding to the winter-spring precipitations resulting from the southern flank of the storm track. We also discuss discrepancies and points of agreements among models in the projected future changes in the seasonal cycle of the precipitation and of other hydrologically-relevant quantities.

  16. Water resources of Wisconsin, Pecatonica-Sugar River basin

    USGS Publications Warehouse

    Hindall, S.M.; Skinner, Earl L.

    1973-01-01

    The purpose of this report is to describe the physical environment, availability, characteristics, distribution, movement, and quailty of water in the Pecatonica-Sugar River basin.  In addition, water use and water problems are summarized to give an understanding of man's management of water within the basin.

  17. Contributions of small river basins to large-scale hydrology

    NASA Astrophysics Data System (ADS)

    Gong, Lebing

    2015-04-01

    Data from small river basins can provide useful information to improve our understanding of hydrology of large regions. For instance, climate and hydrology of a large river basin can be well resembled by a number of small river basins. Those small river basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large region. Extrapolation of annual discharge was first tested in the Baltic Sea drainage basin (Gong 2014). Result showed that selected sub-basins that cover 2-4% of the gauged area gave the best resemblance of discharge of the gauged basin area. 200 ensemble estimations from the extrapolation method estimates annual discharge for gauged area consistently well with on average 6% error. Further tests using Mopex dataset in Australia and the U.S., as well as a global-scale application using the GRDC dataset also showed promising results. There are strong correlation of climatic and land surface data between the small basins and large area which share similar discharge dynamic as the small basins. This would help to develop a systematic way to identify those small basins and their link to large-scale hydrological variability. Discharge data all around the world collected from basins of various scales are inter-connected because of the similarities of climate and land surface across scales. This inter-connectivity is evolving over time as a result of the change of climate. Understanding it will not only help with filling data gap in un-gauged regions, but also help to improve our understanding of the change of the hydrological system. Gong, L.: Data-driven scale extrapolation: estimating yearly discharge for a large region by small sub-basins, Hydrol. Earth Syst. Sci., 18, 343-352, doi:10.5194/hess-18-343-2014, 2014.

  18. Greater Green River Basin Production Improvement Project

    SciTech Connect

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  19. Drainage areas of the Kanawha River basin, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.; Payne, D.D., Jr.; Shultz, R.A.; Kirby, J.R.

    1982-01-01

    Drainage areas for 1,493 drainage area divisions for the Kanawha River basin, West Virginia, are listed in the report. Also tabulated for each site are river miles, plus location identifiers: County, latitude and longitude, and the West Virginia District map number. (USGS)

  20. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  1. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  2. Water loss in the Potomac River basin during droughts

    USGS Publications Warehouse

    Hagen, E.R.; Kiang, J.E.; Dillow, J.J.A.

    2004-01-01

    The water loss phenomena in the Washington DC metropoliton area's (WMA) Potomac River water supply basin during droughts was analyzed. Gage errors, permitted withdrawals, evaporation, and transpiration by trees along the river were investigated to account for loss. The Interstate Commission on the Potomac River Basin (ICPRB) calculated potential gage error and examined permits to determine permitted levels of consumption withdrawals from the Potomac. The result of a single slug test indicated that the soil transmissivity may not be adequate to allow passage of enough water to account for all of the calculated water loss.

  3. Implication of drainage basin parameters of a tropical river basin of South India

    NASA Astrophysics Data System (ADS)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2014-07-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  4. Implication of drainage basin parameters of a tropical river basin of South India

    NASA Astrophysics Data System (ADS)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  5. Operational river discharge forecasting in poorly gauged basins: the Kavango River Basin case study

    NASA Astrophysics Data System (ADS)

    Bauer-Gottwein, P.; Jensen, I. H.; Guzinski, R.; Bredtoft, G. K. T.; Hansen, S.; Michailovsky, C. I.

    2014-10-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically-based and distributed modelling schemes employing data assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. This study is funded by the European Space Agency under the TIGER-NET project. The objective of TIGER-NET is to develop open-source software tools to support integrated water resources management in Africa and to facilitate the use of satellite earth observation data in water management. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic-hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators. The forecasting system delivers competitive forecasts for the Kavango River, which are reliable and sharp. Results indicate that the value of the forecasts is greatest for intermediate lead times between 4 and 7 days.

  6. Chemical and Strontium, Oxygen, and Carbon Isotopic Compositions of Carbonates from the Lesser Himalaya: Implications to the Strontium Isotope Composition of the Source Waters of the Ganga, Ghaghara, and the Indus Rivers

    NASA Astrophysics Data System (ADS)

    Singh, Sunil K.; Trivedi, J. R.; Pande, K.; Ramesh, R.; Krishnaswami, S.

    1998-03-01

    Samples of Precambrian carbonate (mostly dolomite) outcrops collected across the Lesser Himalaya have been analysed for their mineralogy, chemical composition, and isotope ratios of Sr, O, and C to assess the extent of their preservation and their role in contributing to the high radiogenic strontium isotope composition of the source waters of the Ganga, Ghaghara, and the Indus. Their Sr concentrations range from 20 to 363 ppm, ? 18O PDB -1.4 to -12.8 and Mn 11-2036 ppm. The petrography of the samples, their low Sr concentrations, and wide range of ? 18O values are suggestive of their postdepositional alteration. The 87Sr/ 86Sr of the bulk samples and their carbonate fractions are similar to one another with values ranging from 0.7064 to 0.8935 and are generally more radiogenic than that of contemporaneous seawater. Comparison of the 87Sr/ 86Sr and Sr/Ca ratios among the carbonates and silicates from the Lesser Himalaya and the source waters of the Ganga, Ghaghara, and the Indus shows that the values for the source waters overlap with those of the silicates but are much higher than those in carbonates. An upper limit of carbonate Sr in the various source waters is calculated to be between 6% and 43%, assuming that all the Ca in the rivers is of carbonate origin. The results show that on the average, weathering of the Precambrian carbonates is unlikely to be a major contributor to the highly radiogenic strontium isotope composition of these source waters; however, they can be a dominant supplier of radiogenic Sr to some rivers on a regional scale. The silicate Sr component in some of the source waters of the Ganga (Bhagirathi, Bhilangna, Alaknanda, and Ganga), Ghaghara (Kali and Sarju), and the Indus (Sutlej) was calculated from the Ca/Na, Sr/Na ratios, and strontium isotope compositions of these rivers and the silicate endmember. These calculations suggest that 33-89% of Sr in the Bhagirathi, Bhilangna, Alaknanda, Ganga, and Sarju rivers is of silicate origin, whereas in the Kali and the Sutlej it is much lower, only 8%. The remaining Sr to all these waters has to be supplied from other sources such as weathering of carbonates and evaporites. This study underscores the importance of weathering of silicates, carbonates, and evaporites in contributing to the Sr mass balance and 87Sr/ 86Sr of the source waters of the Ganga, Ghaghara, and the Indus. The present day silicate and carbonate Sr contributions to the Sr budget of the rivers vary considerably, but among the major source waters of the Ganga, silicate Sr exerts a more dominant control on their Sr abundance and 87Sr/ 86Sr.

  7. Spatio-temporal snow cover change and hydrological characteristics of the Astore, Gilgit and Hunza river basins (western Himalayas, Hindukush and Karakoram region) - Northern Pakistan

    NASA Astrophysics Data System (ADS)

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Lane, Stuart; Terzago, Silvia; Adamowski, Jan Franklin

    2015-04-01

    A large proportion of Pakistan's irrigation water supply is drawn from the Upper Indus River Basin (UIB) situated in the Himalaya-Karakoram-Hindukush (HKH) ranges. More than half of the annual flow in the UIB is contributed by five of its high-altitude snow and glacier-fed sub-basins including the Astore (Western Himalaya - southern part of the UIB), Gilgit (Hindukush - western part of the UIB) and Hunza (Central Karakoram - northern part of the UIB) River basins. Studying the snow cover, its spatio-temporal evolution and the hydrological response of these sub-basins is important so as to better manage water resources. This study compares data from the Astore, Gilgit and Hunza River basins (mean catchment elevation, 4100, 4250 and 4650 m ASL, respectively), obtained using MODIS satellite snow cover images. The hydrological regime of these sub-catchments was analyzed using hydrological and climate data available at different altitudes from the basin areas. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas), western (Hindukush) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff in the southern part, but snow and glacier melt is dominant in the northern and western parts of the catchment. Despite similar snow cover trends (stable or slightly increasing), different river flow trends (increasing in Astore and Gilgit, decreasing in Hunza) suggest that a sub-catchment level study of the UIB is needed to understand thoroughly its hydrological behavior for better flood forecasting and water resources management and to quantify how the system is being forced by changing climate.

  8. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiqui River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, C.M.; Freeman, Mary C.

    2008-01-01

    1. Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiqui River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (< 15 m tall) and operate as water diversion projects. 2. While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiqui River Basin. 3. Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiqui River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9km) and Lower Montane Rain Forest (168.2km). 4. Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiqui River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  9. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  10. Floods in the English River basin, Iowa

    USGS Publications Warehouse

    Heinitz, A.J.; Riddle, D.E.

    1981-01-01

    Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers

  11. Drought in the Klamath River Basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground aquifers to compensate for the lack of water from Upper Klamath Lake. As the water table drops, clean water stops flowing from the springs and wells, and dirty water from fields flows into the water beneath Bonanza. Area farmers, many of them entirely dependent on irrigation, immediately launched protests when the court's decision to stop irrigation flows was announced, leading to national media coverage. On July 24 the Department of the Interior approved the release of some irrigation water from Upper Klamath Lake, but the flow lasted only until August 23. The water was enough to save some fields growing winter feed for livestock, but some other crops were unsalvageable, and water didn't reach every farmer who needed it. The Klamath Project dates back to 1903, when the Reclamation Service (now the Bureau of Reclamation, a branch of the U.S. Department of the Interior) investigated the possibility of converting rangeland, wetlands, and natural lakes into irrigated farmland. Construction began in 1906, the first water deliveries were made in 1907, and the project was completed in 1924. The Bureau of Reclamation supplies water to the farmers at the cost of delivery, without charging for the water. Fodder, barley, oats, potatoes, and wheat are the principal crops on the 225,000 acres of irrigated land. In addition, the irrigation dams control floodwaters, and the Link River Dam supplies hydroelectric power. The images above show the northeast portion of the Klamath Basin in 2000 (top) and 2001 (lower). These true-color images were acquired by the Enhanced Thematic Mapper Plus sensor aboard the Landsat 7 satellite, launched by NASA and operated by the U.S. Geological Survey. Upper Klamath Lake, with its endangered sucker fish, is at the upper left, with the town of Klamath falls immediately below it. Bonanza is to the right of Klamath Falls. Tule Lake, which has been partially converted to farmland, is at the lower right and is surrounded by the Tule Lake National Wildlife Refuge. To the left of Tule Lake are the remains of Lower Klamath Lake and the marshes of the Lower Klamath National Wildlife Refuge. Farms left dry by the water shortage appear brown in this year's image. Most of the farms without irrigation water are between Upper Klamath Lake and Tule Lake. The land immediately surrounding Tule Lake did receive irrigation water this year, and as a result is greener than the fields to the north. Some farms rely on wells and not Klamath Project water, and many of these remained green, as well. Images courtesy USGS EROS Data Center and the Landsat 7 Science Team

  12. Hydrogeologic reconnaissance of the Republican River basin, Nebraska

    USGS Publications Warehouse

    Ellis, M.J.

    1981-01-01

    The Republican River basin in Nebraska includes about 9,710 square miles in the southwestern and south-central parts of the State. The principal sources of ground water in the basin are sand and gravel deposits overlying the Cretaceous bedrock. In the upland parts of the basin, these sands and gravels occur in both Pleistocene deposits and the Ogallala Formation. Along the Republican River valley the sands and gravels occur in undifferentiated Holocene and Pleistocene deposits. Information mapped includes: configuration of the Cretaceous bedrock surface and the configuration of the spring 1977 water table (scale, 1:250,000); and approximate outcrop of Cretaceous bedrock and approximate extent of White River Group (scale 1:1,000,000). (USGS)

  13. Hydrologic investigation of the north Canadian river basin

    SciTech Connect

    Ghermazien, T.; Zipser, R.A.

    1980-05-01

    This study gies a hydrologic appraisal of surface water resources in the North Canadian River stream system. Its main objective is to determine the source, extent and dependability of water supply for four different segments of the stream. This study was based on existing data. For streamflow, gages of the US Geological Survey were used. Precipitation and Class A pan evaporation were obtained from publications of climatological data, US Department of Commerce. Other data was obtained from previous reports, water departments of cities and from records of the Oklahoma Water Resources Board. The content includes a general description of the North Canadian River basin and its sub-basins, climatogical data, streamflow, appropriated and unappropriated water, monthly water consumption, and determination of the irrigation requirement for the four sub-basins of the North Canadian River.

  14. Hydrologic investigation of the North Canadian River basin

    SciTech Connect

    Ghermazien, T.; Zipser, R.A.

    1980-05-01

    This study gives a hydrologic appraisal of surface water resources in the North Canadian River stream system. Its main objective is to determine the source, extent and dependability of water supply for four different segments of the stream. This study was based on existing data. For streamflow, gages of the US Geological Survey were used. Precipitation and Class A pan evaporation were obtained from publications of climatological data, US Department of Commerce. Other data was obtained from previous reports, water departments of cities and from records of the Oklahoma Water Resources Board. The content includes a general description of the North Canadian River basin and its sub-basins, climatological data, streamflow, appropriated and unappropriated water, monthly water consumption, and determination of the irrigation requirement for the four sub-basins of the North Canadian River.

  15. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge exchange and knowledge transfer within the basin to reach the goal of integrated basin management. PMID:26589137

  16. The Geography of Conflict in International River Basins

    NASA Astrophysics Data System (ADS)

    Beck, L.; Siegfried, T. U.

    2010-12-01

    In most transboundary surface water sharing problems, allocation outcomes are not primarily determined by economic considerations but by the distribution of political and bargaining power. For this reason, we present a hydro--political model to formalize the notion that upstream countries are using water to gain more power whereas downstream countries use power to gain more water. The model incorporates hydrological, political and economic asymmetries between basin stakeholders. We show that equilibrium outcomes are biased towards the more powerful riparian coalition and that absolute upstream or downstream basin dominance emerge as limiting case of the general model. In contrast to obvious situations with a dominating riparian country as for the case of the Nile or Euphrates/Tigris rivers, the model is illustrated in an ambiguous hydro--political environment with a case study on the Zambezi River Basin. The model quantifies negative basin welfare outcomes in function of particular upstream/downstream configurations.

  17. Water resources inventory of Connecticut Part 1: Quinebaug River basin

    USGS Publications Warehouse

    Randall, Allan D.; Thomas, Mendall P.; Thomas, Chester E., Jr.; Baker, John A.

    1966-01-01

    The Quinebaug River basin is blessed with a relatively abundant supply of water of generally good quality which is derived from precipitation that has fallen on the basin. Annual precipitation has ranged from about 30 to 67 inches and has averaged about 45 inches over a 44-year period. Approximately 21 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the basin in the Quinebaug River. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the basin, whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced streamflow and lowered ground-water levels.

  18. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  19. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  20. Drainage areas of the Guyandotte River basin, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.

    1977-01-01

    This report, prepared in cooperation with the West Virginia Office of Federal-State Relations (now the Office of Economic and Community Development), lists in tabular form 435 drainage areas for basins within the Guyandotte River basin of West Virginia. Drainage areas are compiled for sites at the mouths of all streams having drainage areas of approximately five square miles or greater, for sites at U.S. Geological Survey gaging stations (past and present), and for other miscellaneous sites. (Woodard-USGS)

  1. Monitoring the Water Quality of the Nation's Large Rivers: Mississippi River Basin NASQAN Program

    USGS Publications Warehouse

    Coupe, Richard H.; Goolsby, Donald A.

    1999-01-01

    The U.S. Geological Survey (USGS) has monitored water quality in the Mississippi River Basin as part of the National Stream Quality Accounting Network (NASQAN) since 1995, applying a basinwide perspective to understanding water quality on a regional scale (Hooper and others, 1997). The objectives of the Mississippi River Basin NASQAN Program are to provide an ongoing characterization of the concentrations and mass fluxes of sediment and chemicals at key locations in the basin, to determine regional source areas for these materials, and to assess the effect of human influences on observed concentrations and fluxes. NASQAN complements the ongoing USGS National Water-Quality Assessment (NAWQA) Program, which is performing a detailed assessment in 23 subbasins within the Mississippi River Basin (Hirsch and others, 1988). NASQAN monitors the large rivers in the Mississippi River Basin, downstream of NAWQA study units. NASQAN, in conjunction with NAWQA, can provide the data and information needed by other USGS programs, Federal and State agencies, other segments of the scientific community, and by the public to address the present and future status of water quality in the Mississippi River Basin.

  2. Drainage divides, Massachusetts; Westfield and Farmington River basins

    USGS Publications Warehouse

    Gadoury, Russell A.; Wandle, S. William, Jr.

    1983-01-01

    Drainage boundaries for selected subbasins in western Hampshire, western Hampden, and southeastern Berkshire Counties, Massachusetts, are delineated on 15 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 square miles on tributary streams or 10 square miles along the Westfield or Farmington Rivers. (USGS)

  3. Assessing the utility of passive microwave data for Snow Water Equivalent (SWE) estimation in the Sutlej River Basin of the northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Bookhagen, B.; Dozier, J.

    2014-12-01

    Since 1978, space based passive microwave (PM) radiometers have been used to comprehensively measure Snow Water Equivalent (SWE) on a global basis. The ability of PM radiometers to directly measure SWE at high temporal frequencies offers some distinct advantages over optical remote sensors. Nevertheless, in mountainous terrain PM radiometers often struggle to accurately measure SWE because of wet snow, saturation in deep snow, forests, depth hoar and stratigraphy, variable relief, and subpixel heterogeneity inherent in large pixel sizes. The Himalaya, because of their high elevation and high relief—much above tree line—offer an opportunity to examine PM products in the mountains without the added complication of trees. The upper Sutlej River basin— the third largest Himalayan catchment—lies in the western Himalaya. The river is a tributary of the Indus River and seasonal snow constitutes a substantial part of the basin's hydrologic budget. The basin has a few surface stations and river gauges, which is unique for the region. As such, the Sutlej River basin is a good location to analyze the accuracy and effectiveness of the current National Snow and Ice Data Center's (NSIDC) standard AMSR-E/Aqua Daily SWE product in mountainous terrain. So far, we have observed that individual pixels can "flicker", i.e. fluctuate from day to day, over large parts of the basin. We consider whether this is an artifact of the algorithm or whether this is embedded in the raw brightness temperatures themselves. In addition, we examine how well the standard product registers winter storms, and how it varies over heavily glaciated pixels. Finally, we use a few common measures of algorithm performance (precision, recall and accuracy) to test how well the standard product detects the presence of snow, using optical imagery for validation. An improved understanding of the effectiveness of PM imagery in the mountains will help to clarify the technology's limits.

  4. Nitrogen Removal by Streams and Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    Our study, based on chemistry and channel dimensions data collected at 893 randomly-selected stream and river sites in the Mississippi River basin, demonstrated the interaction of stream chemistry, stream size, and NO3-N uptake metrics across a range of stream sizes and across re...

  5. An environmental streamflow assessment for the Santiam River basin, Oregon

    USGS Publications Warehouse

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual framework for assessing possible geomorphic and ecological changes in response to river-flow modifications. Suggestions for future biomonitoring and investigations are also provided. This study was one in a series of similar tributary streamflow and geomorphic studies conducted for the Willamette Sustainable Rivers Project. The Sustainable Rivers Project is a national effort by the USACE and The Nature Conservancy to develop environmental flow requirements in regulated river systems.

  6. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  7. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  8. 75 FR 64752 - Amended Columbia River Basin Fish and Wildlife Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  9. 76 FR 13676 - Amended Columbia River Basin Fish and Wildlife Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  10. 76 FR 13438 - Amended Columbia River Basin Fish and Wildlife Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  11. 77 FR 16558 - Yakima River Basin Conservation Advisory Group Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... Yakima River Basin Water Conservation Program. The basin conservation program is structured to provide... implementation of structural and nonstructural cost-effective water conservation measures in the Yakima River... Bureau of Reclamation Yakima River Basin Conservation Advisory Group Charter Renewal AGENCY: Bureau...

  12. Long-term tritium monitoring to study river basin dynamics: case of the Danube River basin

    NASA Astrophysics Data System (ADS)

    Aggarwal, Pradeep; Araguas, Luis; Groening, Manfred; Newman, Brent; Kurttas, Turker; Papesch, Wolfgang; Rank, Dieter; Suckow, Axel; Vitvar, Tomas

    2010-05-01

    During the last five decades, isotope concentrations (O-18, D, tritium) have been extensively measured in precipitation, surface- and ground-waters to derive information on residence times of water in aquifers and rivers, recharge processes, and groundwater dynamics. The unique properties of the isotopes of the water molecule as tracers are especially useful for understanding the retention of water in river basins, which is a key parameter for assessing water resources availability, addressing quality issues, investigating interconnections between surface- and ground-waters, and for predicting possible hydrological shifts related to human activities and climate change. Detailed information of the spatial and temporal changes of isotope contents in precipitation at a global scale was one of the initial aims of the Global Network of Isotopes in Precipitation (GNIP), which has provided a detailed chronicle of tritium and stable isotope contents in precipitation since the 1960s. Accurate information of tritium contents resulting of the thermonuclear atmospheric tests in the 1950s and 1960s is available in GNIP for stations distributed world-wide. Use of this dataset for hydrological dating or as an indicator of recent recharge has been extensive in shallow groundwaters. However, its use has been more limited in surface waters, due to the absence of specific monitoring programmes of tritium and stable isotopes in rivers, lakes and other surface water bodies. The IAEA has recently been compiling new and archival isotope data measured in groundwaters, rivers, lakes and other water bodies as part of its web based Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Recent additions to the Global Network of Isotopes in Rivers (GNIR) contained within WISER now make detailed studies in rivers possible. For this study, we are re-examining residence time estimates for the Danube in central Europe. Tritium data are available in GNIR from 15 Danube monitoring sites in Germany, Austria, Slovakia, Hungary, Slovenia and Serbia. Most of these sites have continuous stable isotope and tritium records of over 10 years. The longest and most complete record of isotopes in precipitation and the Danube is from Vienna, which contains continuous tritium and stable isotope records since the 1960s. Previous estimates of residence time using tritium in the upper Danube are about 3-5 years (Rank et al., 1998, Yurtsever, 1999). However, these estimates were based on a tritium record up to 1995 and some of the parts of the observed time series were not represented well by the models. We are now re-evaluating the upper Danube residence time using a complete record covering the entire tritium transient created by atmospheric nuclear weapons testing (1964-2005). Several combinations of lumped parameter models are being tested using MULTIS and LUMPY. The models assume two main water components in parallel; a "fast" component that represents water with a short residence time (less than one year), resulting from recent precipitation and fast runoff, and a "slow" or "old" component representing discharge of older groundwaters to the river. Preliminary results obtained during this exercise, as well as those determined using other environmental tracers, are providing new insights into the age distribution of water in the upper Danube. Initial calculations with the complete tritium record for Vienna suggest that the mean residence time is substantially older than previous estimates. This study also demonstrates the value of the GNIP/GNIR/WISER dataset for examining dynamics of surface water systems.

  13. Floods in the Skunk River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.; Wiitala, Sulo Werner

    1978-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains require information on floods. This report provides information on flood stages and discharges, flood magnitudes and frequency, and flood profiles for the Skunk River and some of its tributaries. It covers the Skunk -- South Skunk Rivers to Ames, and the lower reaches of tributaries as flows: Squaw Creek, 8.2 miles; Indian Creek, 11.6 miles; North Skunk River, 83.2 miles; Cedar Creek, 55.8 miles; and Big Creek, 21.7 miles.

  14. COAL MINE SITING FOR THE OHIO RIVER BASIN ENERGY STUDY

    EPA Science Inventory

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. In part 1, an overview of the ORBES-region coal industry is presented. (The region consists of all of Kentu...

  15. BEAR RIVER BASIN, IDAHO - WATER QUALITY INVESTIGATION, 1974

    EPA Science Inventory

    The quality of the waters in the Bear River Basin, Idaho (160102) was surveyed from August 27 to August 29, 1974. The purposes of the survey were to determine point and non-point source loading, to determine whether water quality has improved since the adoption of the 1958 Enfor...

  16. COLUMBIA BASIN SALMON POPULATIONS AND RIVER ENVIRONMENT DATA

    EPA Science Inventory

    Data Access in Real Time (DART) provides an interactive data resource designed for research and management purposes relating to the Columbia Basin salmon populations and river environment. Currently, daily data plus historic information dating back to 1962 is accessible online. D...

  17. BIG SIOUX RIVER DRAINAGE BASIN INFORMATION OUTREACH PROJECT

    EPA Science Inventory

    The main goal of the proposed project is to raise public awareness about the importance of protecting the Big Sioux River drainage basin. To accomplish this goal, the City and its partnering agencies are seeking to expand and improve public accessibility to a wide variety of r...

  18. OHIO RIVER BASIN ENERGY STUDY: LAND USE AND TERRESTRIAL ECOLOGY

    EPA Science Inventory

    The report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. It represents the final technical report summarizing land use and terrestrial ecology data and analyses conducted for the study. The ORBES region consists of...

  19. WATERSHED NITROGEN AND PHOSPHOROUS BALANCE: THE UPPER POTOMAC RIVER BASIN

    EPA Science Inventory

    Nitrogen and phosphorus mass balances were estimated for the portion of the Potomac River basin watershed located above Washington, D.C. he total nitrogen (N) balance included seven input source terms, six sinks, and one "change-in-storage" term, but was simplified to five input ...

  20. Summary of Seepage Investigations in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Magirl, C.S.; Julich, R.J.; Welch, W.B.; Curran, C.R.; Mastin, M.C.; Vaccaro, J.J.

    2009-01-01

    Discharge data collected by the U.S. Geological Survey, Washington State Department of Ecology, and Yakama Nation for seepage investigations in the Yakima River basin are made available as downloadable Microsoft Excel files. These data were collected for more than a century at various times for several different studies and are now available in one location to facilitate future analysis by interested parties.

  1. Water Temperature changes in the Mississippi River Basin

    EPA Science Inventory

    In this study, we demonstrate the transfer of a physically based semi-Lagrangian water temperature model (RBM) to EPA, its linkage with the Variable Infiltration Capacity (VIC) hydrology model, and its calibration to and demonstration for the Mississippi River Basin (MRB). The r...

  2. FISH ASSEMBLAGE GROUPS IN THE UPPER TENNESSEE RIVER BASIN

    EPA Science Inventory

    A hierarchical clustering technique was used to classify sites in the upper Tennessee River basin based on relative abundance of fish species. Five site groups were identified. These groups differed mainly by the occurrence of minnow and darter species. Drainage area and ecore...

  3. Nitrogen and Phosphorus Levels in the Yazoo River Basin, Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) and phosphorus (P) loadings to aquatic ecosystems are linked to environmental problems such as hypoxia. Presented is an assessment of accessible data on nutrient sources, sinks and inputs to streams within the Yazoo River Basin of northern Mississippi. Spatial trends were examined by p...

  4. AEROBIC DENITRIFICATION: IMPLICATIONS FOR THE MOM RIVER BASIN

    EPA Science Inventory

    Each year about 1.6 million metric tons of nitrogen, mostly from agriculture, is discharged from the lower Mississippi/Atchafalaya River Basin into the Gulf of Mexico, and each spring this excess nitrogen fuels the formation of a huge hypoxic zone in the Gulf. In the Mississippi...

  5. The Delaware River Basin Landsat-Data Collection System Experiment

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. This experiment successfully demonstrated that standard U.S. Geological Survey field instrumentation could be easily interfaced with the LANDSAT-DCS and the data made to flow smoothly to water resources management agencies. The experiment was conducted in the Delaware River basin. A truly operational system could not be deployed.

  6. Geothermal resources of the Southern Powder River Basin, Wyoming

    SciTech Connect

    Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

    1985-06-13

    This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

  7. Digital Atlas of the Upper Washita River Basin, Southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  8. OHIO RIVER BASIN ENERGY STUDY: SOCIAL VALUES AND ENERGY POLICY

    EPA Science Inventory

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. The objectives of the analysis are to identify American social values and to examine their relationship to ...

  9. Impacts of urbanization on river system structure: a case study on Qinhuai River Basin, Yangtze River Delta.

    PubMed

    Ji, Xiaomin; Xu, Youpeng; Han, Longfei; Yang, Liu

    2014-01-01

    Stream structure is usually dominated by various human activities over a short term. An analysis of variation in stream structure from 1979 to 2009 in the Qinhuai River Basin, China, was performed based on remote sensing images and topographic maps by using ArcGIS. A series of river parameters derived from river geomorphology are listed to describe the status of river structure in the past and present. Results showed that urbanization caused a huge increase in the impervious area. The number of rivers in the study area has decreased and length of rivers has shortened. Over the 30 years, there was a 41.03% decrease in river length. Complexity and stability of streams have also changed and consequently the storage capacities of river channels in intensively urbanized areas are much lower than in moderately urbanized areas, indicating a greater risk of floods. Therefore, more attention should be paid to the urban disturbance to rivers. PMID:25116497

  10. Priority targets for environmental research in the Sinos River basin.

    PubMed

    Spilki, F R; Tundisi, J G

    2010-12-01

    The Sinos River Basin is often mentioned as a highly degraded watershed. A series of impacts on water quality, soil and air has been reported in this environment on a recurring basis over the years. This situation of environmental degradation has its origins in a process of huge economic development uncoupled from environmental conservation concerns. The intense consequent urbanization observed for the municipalities within the watershed was not preceded by urban planning proper zoning. The time has arrived for initiatives in scientific research in the Sinos River basin that are applicable to a more efficient and integrated management and recovery of the basin. In this article, a set of targets for research is suggested which the authors consider as the main priorities for the next few years, aiming for better knowledge and better management of the watershed. Some are still in course, while others have to be initiated as soon as possible. PMID:21225166

  11. Hydrogeologic data in the Quinebaug River basin, Connecticut

    USGS Publications Warehouse

    Thomas, Chester E., Jr.; Randall, Allan D.; Thomas, Mendall P.

    1966-01-01

    This report presents hydrologic and geologic data collected by the U.S. Geological Survey during an investigation of water resources in the Quinebaug River basin of Connecticut in cooperation with the Connecticut Water Resources Commission. The Quinebaug River basin occupies about 425 square miles in the northeastern part of the State, including the towns of Brooklyn, Griswold, Killingly, Plainfield, Pomfret, Putnam, Sterling, and Thompson, and parts of Canterbury, Hampton, Lisbon, North Stonington, Preston, Voluntown, and Woodstock. A companion interpretive report evaluating the water resources of the basin will be published as Connecticut Water Resources Bulletin 8. The data on the following pages serve to document and supplement that report, and should be especially useful in planning the development of water resources at specific localities.

  12. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  13. Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978

    USGS Publications Warehouse

    Childers, Joseph M.; Kernodle, Donald R.

    1981-01-01

    Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)

  14. Water Balance Change in Xia Ying River Basin, Qinghai Province, China

    NASA Astrophysics Data System (ADS)

    Cuo, L.; Zhou, B.; Li, J.

    2010-12-01

    Yellow River, Yangtze River and Lan Cang River are major river systems supporting billions of people in South East Asia and China. Source region of Yellow River, Yangtze River and Lan Cang River (Three Rivers) is located in Qinghai Province, China. Recently, Chinese government started a conservation project in the source region of the Three Rivers called “Convert Agricultural Field to Forest and Grassland”. Xia Ying River Basin is a sub-basin located in the source region of the Three River Basin. The upper Xia Ying River Basin has experienced dramatic land cover change since 2006. Before 2006, upper Xia Ying River Basin hill slope was agricultural field. Coniferous trees and bush vegetation were planted on the slope greater than 70 degree in the upper Xia Ying River Basin in 2006. The objective of the study is to investigate the water balance term change in the Xia Ying River Basin because of the conservation project. This study will use Landsat and MODIS imagery to classify and quantify land cover classes before and after land cover conversion. Water balance terms including runoff and evaportranspiration will be simulated using a land surface model to investigate water balance term change due to land cover change. The study serves as a pilot study for the investigation of hydrological change in the entire source region of the Three River Basin during the past 50 years.

  15. Drainage areas of the Monogahela River Basin, West Virginia

    USGS Publications Warehouse

    Stewart, D.K.; Mathes, M.V.

    1995-01-01

    This report contains data for 1,127 drainage-area divisions of the Monongahela River Basin, from the headwaters to the confluence of the Monongahela River and Dunkard Creek. Data, compiled in down- stream order, are listed for streams with a drainage area of approximately 2 square miels or larger, and for U.S. Geological Survey streamflow- gaging stations. The data presented are the stream name, the geographical limits, the latitude and longitude of the point, the name of the county and the 7-1/2 minute quadrangle in which the site lies, and the drainage area of that site. The total drainage area of the Monongahela River Basin, West Virginia, is 4,374.94 square miles.

  16. Fishes of the Taquari-Antas river basin (Patos Lagoon basin), southern Brazil.

    PubMed

    Becker, F G; De Fries, L C C; Ferrer, J; Bertaco, V A; Luz-Agostinho, K D G; Silva, J F P; Cardoso, A R; Lucena, Z M S; Lucena, C A S

    2013-02-01

    The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil) are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis), as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado). Although there is only one officially endangered species in the basin (S. brasiliensis), restricted range species (21.7% of total species) should be considered in conservation efforts. PMID:23644791

  17. Understanding Socio-Hydrology System in the Kissimmee River Basin

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards wetland restoration has more weight than the rural population's towards flood protection.

  18. Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins.

    PubMed

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-09-01

    To meet good chemical and ecological status, Member States are required to monitor priority substances and chemicals identified as substances of concern at European Union and local/river-basin/national level, respectively, in surface water bodies, and to report exceedances of the environmental quality standards (EQSs). Therefore, standards have to be set at national level for river basin specific pollutants. Pesticides used in dominant crops of several agricultural areas within the catchment of Mediterranean river basins ('Mondego', 'Sado' and 'Tejo', Portugal) were selected for monitoring, in addition to the pesticides included in priority lists defined in Europe. From the 29 pesticides and metabolites selected for the study, 20 were detected in surface waters of the river basins, seven of which were priority substances: alachlor, atrazine, chlorfenvinphos, chlorpyrifos, endosulfan, simazine and terbutryn, all of which exceeded their respective EQS values. QSs for other specific pollutants were calculated using different extrapolation techniques (i.e. deterministic or probabilistic) largely based on the method described in view of the Water Framework Directive. Non-acceptable aquatic risks were revealed for molinate, oxadiazon, pendimethalin, propanil, terbuthylazine, and the metabolite desethylatrazine. Implications of these findings for the classification of the ecological status of surface water bodies in Portugal and at the European level are discussed. PMID:26002046

  19. The Portland Basin: A (big) river runs through it

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  20. Chemical analyses of surface water in Illinois, 1975-77; Volume 2, Illinois River basin and Mississippi River tributaries north of Illinois River basin

    USGS Publications Warehouse

    Grason, David; Healy, R.W.

    1979-01-01

    Samples of surface water were collected and analyzed by the Illinois Environmental Protection Agency. The results from water years 1975 to 1977 are presented in three volumes. The history of sampling and analytical methods used during that period are summarized. Stream discharge data from records of the U.S. Geological Survey are included for all sites where samples were collected at gaging stations or near enough that reliable discharge estimates could be made. Volume II includes the Illinois River basin and Mississippi River tributaries north of Illinois River basin. (Woodard-USGS)

  1. Chemical analyses of surface water in Illinois, 1958-74; Volume II, Illinois River basin and Mississippi River tributaries north of Illinois River basin

    USGS Publications Warehouse

    Healy, R.W.; Toler, L.G.

    1978-01-01

    Samples of surface water were collected and analyzed by the Illinois Environmental Protection Agency and its predecessor, the Stream Pollution Control Bureau of the Illinois Department of Public Health. The results for the period 1958 to 1974 are presented in tabular form and the history of sampling and analytical methods are included for all sites where samples were collected at gaging stations or near enough that reliable discharge estimates could be made. The report is contained in three volumes. This volume (Volume II) includes Illinois River basin and Mississippi River tributaries north of Illinois River basin. (See also W78-10034 and W78-10036) (Woodard-USGS)

  2. Policy, politics, and water management in the Guadalquivir River Basin, Spain

    NASA Astrophysics Data System (ADS)

    Bhat, Anjali; Blomquist, William

    2004-08-01

    Among countries with river basin organizations to manage their water resources, Spain's experience is one of the longest. One of the first basin agencies established in Spain was for the Guadalquivir River in the south. A case study of that river basin and its management indicates how basin management is shaped by political economy factors such as the historical path of the agency's evolution, the basin agency's relationships with central government and with regional or local governments, the patterns of water user representation within the agency, and developments in water law and policy external to the basin agency. The case raises questions about whether and how integrated water resources management at the river basin scale is implemented, even in locations where basin agencies already exist. It also suggests that the politics of management at the river basin level will affect the implementation of national water policies intended to promote integrated management.

  3. Estimation of the Water Budget for Major Canadian River Basins

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, J.; Li, J.; Rivera, A.; Russell, H.

    2012-12-01

    Understanding regional water budgets is essential in water resources management, particularly for irrigation planning, drought, flood and pollution control, drainage system design, and climate modelling. A water budget for a drainage basin is needed to determine the magnitude of the impacts of climate change and anthropogenic disturbances on terrestrial water cycle and to evaluate possible mitigation actions. In this study, the monthly and 30-year (1979-2008) average water budgets were calculated for large Canadian river basins with an area > 90,000 km2. The total area studied takes about 58% of the entire Canadian landmass. The datasets used include two gridded precipitation products based on measurement, the land surface evapotranspiration product derived from the EALCO model, the river discharge measured from hydrometric stations, and the total water (surface water+groundwater) storage anomaly derived from GRACE satellite observations. These datasets are deemed as the best-available long-term national scale datasets that meet the requirement of this study. Our objectives are to characterise the spatial and temporal variations of water budget across the vast Canadian landmass and to answer the questions of (1) how well can we close the water budget at both long-term and monthly time scales for the major Canadian river basins and (2) which component(s) of the water budget (i.e., precipitation, evapotranspiration, river discharge, or total water storage change) and in which season and which region contribute the main error source to the water budget imbalance? We also examined the decadal change in total water storage in the major Canadian river basins and quantified the bias in evapotranspiration estimation by using the widely-accepted surface water budget approach. Our results show that the national scale water budget imbalance is very close to 0 (-0.2 mm year-1) due to the offset of positive and negative imbalances among the studies basins. Basins with positive imbalances were located mostly in the south and basins with negative imbalances were more commonly located in the north. The mean absolute annual water budget imbalance of river basins studied is 49.1 mm year-1, or 9.7% of the mean annual precipitation. The mean absolute monthly water budget imbalance is 12.1 mm month-1, or 2.5% of the mean annual precipitation. The basins of the Cordillera showed large negative trend in the total water storage over the past decade, consistent with the observations of glacier and snow cover shrinkage, permafrost degradation, and river discharge increase. Different error source was identified with different river basins in different seasons. The results will contribute to a reduction in uncertainties and a better understanding of the water cycles and water resources across the country.

  4. Uranium transport in the Walker River Basin, California and Nevada

    USGS Publications Warehouse

    Benson, L.V.; Leach, D.L.

    1979-01-01

    During the summer of 1976 waters from tributaries, rivers, springs and wells were sampled in the Walker River Basin. Snow and sediments from selected sites were also sampled. All samples were analyzed for uranium and other elements. The resulting data provide an understanding of the transport of uranium within a closed hydrologic basin as well as providing a basis for the design of geochemical reconnaissance studies for the Basin and Range Province of the Western United States. Spring and tributary data are useful in locating areas containing anomalous concentrations of uranium. However, agricultural practices obscure the presence of known uranium deposits and render impossible the detection of other known deposits. Uranium is extremely mobile in stream waters and does not appear to sorb or precipitate. Uranium has a long residence time (2500 years) in the open waters of Walker Lake; however, once it crosses the sediment-water interface, it is reduced to the U(IV) state and is lost from solution. Over the past two million years the amount of uranium transported to the terminal point of the Walker River system may have been on the order of 4 ?? 108 kg. This suggests that closed basin termini are sites for significant uranium accumulations and are, therefore, potential sites of uranium ore deposits. ?? 1979.

  5. Geothermal resources of the Wind River Basin, Wyoming

    SciTech Connect

    Hinckley, B.S.; Heasler, H.P.

    1985-01-01

    The geothermal resources of the Wind River Basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth for each basin, is tabulated. Background heat flow in the Wind River Basin is generally insufficient to produce high conductive gradients. Only where hydrologic systems re-distribute heat through mass movement of water will high temperatures occur at shallow depths. Aquifers which may have the confinement and structural characteristics necessary to create such geothermal systems are the Lance/Fort Union, Mesa Verde, Frontier, Muddy, Cloverly, Sundance, Nugget, Park City, Tensleep, Amsden, Madison, Bighorn, and Flathead Formations. Of these the Tensleep Sandstone and Madison Limestone are the most attractive in terms of both productivity and water quality. Most of the identified geothermal anomalies in the Wind River Basin occur along complex structures in the southwest and south. The most attractive geothermal prospects identified are anomalous Areas 2 and 3 north of Lander, Sweetwater Station Springs west of Jeffrey City, and the thermal springs southwest of Dubois. Even in these areas, it is unlikely temperatures in excess of 130 to 150/sup 0/F can be developed. 16 refs., 7 figs., 7 tabs. (ACR)

  6. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  7. Information technology and decision support tools for stakeholder-driven river basin salinity management

    SciTech Connect

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  8. Water resources planning for a river basin with recurrent wildfires.

    PubMed

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-09-01

    Situated in the north of Portugal, the Beça River basin is subject to recurrent wildfires, which produce serious consequences on soil erosion and nutrient exports, namely by deteriorating the water quality in the basin. In the present study, the ECO Lab tool embedded in the Mike Hydro Basin software was used for the evaluation of river water quality, in particular the dissolved concentration of phosphorus in the period 1990-2013. The phosphorus concentrations are influenced by the burned area and the river flow discharge, but the hydrologic conditions prevail: in a wet year (2000, 16.3 km(2) of burned area) with an average flow of 16.4 m(3)·s(-1) the maximum phosphorus concentration was as low as 0.02 mg·L(-1), while in a dry year (2005, 24.4 km(2) of burned area) with an average flow of 2 m(3)·s(-1) the maximum concentration was as high as 0.57 mg·L(-1). Phosphorus concentrations in the water bodies exceeded the bounds of good ecological status in 2005 and between 2009 and 2012, water for human consumption in 2009 and water for multiple uses in 2010. The River Covas, a right margin tributary of Beça River, is the most appropriate stream as regards the use of water for human consumption, because it presents the biggest water potential with the best water quality. Since wildfires in the basin result essentially from natural causes and climate change forecasts indicate an increase in their frequency and intensity in the near future, forestry measures are proposed to include as a priority the conversion of stands of maritime pine in mixed stands of conifer and hardwood species. PMID:25918888

  9. Development of river flood model in lower reach of urbanized river basin

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in the region.

  10. Coho Salmon Master Plan, Clearwater River Basin.

    SciTech Connect

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation facilities. This increase in survival is expected to provide the opportunity for the establishment of a localized broodstock in the near-term, and provide the opportunity to establish natural production over the long-term. Phase II information is presented in this document to clearly articulate the long-term intent and vision of the coho salmon reintroduction program. Phase II would be proposed only if Phase I meets several indicators of success. If Phase I meets all identified indicators of success, authorization for Phase II funding would be pursued via a supplement to this Master Plan.

  11. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France) (in prep)

  12. People and water in the Assabet River basin, eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.

    2005-01-01

    An accounting of the inflows, outflows, and uses of water in the rapidly developing Assabet River Basin, along Interstate 495 in eastern Massachusetts, was done to quantify how people's activities alter the hydrologic system. The study identified subbasins and seasons in which outflows resulting from people's activities were relatively large percentages of total flows, and quantified the fraction of streamflow in the Assabet River that is treated wastewater. Computer models of ground-water flow were also used to test how the components of the hydrologic system, particularly streamflow, would change with future development and increased water use. Computer simulations showed that, when water use was increased to currently permitted levels, streamflows in tributaries would decrease, particularly during the low-flow period. In the Assabet River, increased wastewater discharges resulted in a slight increase in total streamflow and an increase in the fraction of streamflow in the river that is wastewater, relative to existing conditions.

  13. Updated streamflow reconstructions for the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Gray, Stephen T.; Meko, David M.

    2006-05-01

    Updated proxy reconstructions of water year (October-September) streamflow for four key gauges in the Upper Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in previous efforts. Reconstructed gauges include the Green River at Green River, Utah; Colorado near Cisco, Utah; San Juan near Bluff, Utah; and Colorado at Lees Ferry, Arizona. The reconstructions explain 72-81% of the variance in the gauge records, and results are robust across several reconstruction approaches. Time series plots as well as results of cross-spectral analysis indicate strong spatial coherence in runoff variations across the subbasins. The Lees Ferry reconstruction suggests a higher long-term mean than previous reconstructions but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in the past 5 centuries and that droughts more severe than any 20th to 21st century event occurred in the past.

  14. River Sinuosity Classification - Case study in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Petrovszki, J.; Székely, B.; Timár, G.

    2012-04-01

    A new evaluation method is proposed to classify the multiple window-size based sinuosity spectrum, in order to minimize the possible human interpretation error. If the river is long enough for the analysis, the classification could be similarly useful as the sinuosity spectrum is, but sometimes it is more straightforward. Furthermore, for the classification, we did not need the main parameters of the river, e.g. the bankfull discharge. The river sinuosity values were studied in the Pannonian Basin in order to reveal neotectonic influence on their abrupt changes. The map sheets of the Second Military Survey of the Habsburg Empire were used to digitize the natural, pre-regulation meandering river thalwegs. 28 rivers were studied, and the connection between the known fault lines and the river sinuosity changes was detected in 36 points, along 26 structural lines. An unsupervised ISOCLASS classification was carried out on these data, and the sinuosity values were divided into 5 classes. Because of the sinuosity calculation method, 25 kilometer-long river sections are missing at the two endpoints of the channel. So sometimes the displayed section of the river does not cross to the faults represented on the neotectonic map. In the other cases, where the faults are crossing the rivers, the results are corresponding with the results of the sinuosity spectrum: the river-points on the two sides of the faults belong to different classes. The connection between these fault lines and the change of river sinuosity classes was detected in 23 points, along 16 structural lines The research is made in the frame of project OTKA-NK83400 (SourceSink Hungary). The European Union and the European Social Fund also have provided financial support to the project under the grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003.

  15. Water balance of the Drini i Bardh River Basin, Kosova

    NASA Astrophysics Data System (ADS)

    Avdullahi, Sabri; Fejza, Isalm

    2010-05-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. In the present day world, the problems of too much, too little or too polluted water are increasing at a rapid rate. These problems have become particularly severe for the developing countries, adversely affecting their agriculture, drinking water supply and sanitation. Water recourse management is no more just a challenger it is a declared crises. Water resources in Kosova are relatively small, total amount of water in our country is small around 1600 m3/inhabitant /year Drini i Bardhë river basin is in the western part of Kosova, it is the biggest river basin with surface of 4.289 km2. Drini i Bardhë discharges its water to Albania and finally to the Adriatic Sea. The area consist of several small stream from the mountains, water flows into tributaries and Drini i Bardhë River. In this river basin are based 12 hydrometric stations, 27 manual and 5 automatic rainfall measurements Drini i Bardhe River main basin contain a big number of sub basins from which the most important are: Lumëbardhi i Pejës (503.5km2), Lumëbardhi i Deçanit (278.3km2), Erenikut (515.5km2), Burimi (446.7km2), Klinës (439.0km2), Mirushes (334.5km2), Toplluges (498.2km2), Bistrica e Prizrenit (266.0 km2) and Plava (309 km2) fig 2. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. Protecting from pollution is a very important issue having in consideration that this river discharges its water and outside the territory. Hydrometeorology Institute of Kosova is in charge for monitoring of water quality. Key works: rainfall, flow, evaporation, river, evaporation coefficient (Ke) and feeding coefficient from underground waters (Ku).

  16. Drought Analysis for River Basins, Using the Hydrological Model SIMGRO

    NASA Astrophysics Data System (ADS)

    Querner, E.; van Lanen, H.; Rhebergen, W.

    2009-05-01

    Drought is a recurring and worldwide phenomenon, with spatial and temporal characteristics that vary significantly from one region to another. Drought has major impacts on society and affects among others the environment and the economy. Impacts are likely to increase with time as societies demands higher services for water and the environment. This will even be more pronounced in the coming decades with the projected climate change, i.e. droughts are becoming more severe in large parts of the world. The prediction of droughts is an essential part of impact assessment for current and future conditions, as part of integrated land and water management. An important question is how changes in meteorological drought will propagate into hydrological droughts in terms of changes in the groundwater system or in the river flow. The objective of our study is to develop and test tools that quantify the space-time development of droughts in a river basin. The spatial aspect of a hydrological drought (spatially-distributed recharge and groundwater heads), in a river basin brings different challenges with respect to describing the characteristics of a drought, such as: onset, duration, severity and extend. We used the regional hydrological model SIMGRO as a basis to generate the necessary data for the drought analysis. SIMGRO is a distributed physically-based model that simulates regional transient saturated groundwater flow, unsaturated flow, actual evapotranspiration, sprinkler irrigation, stream flow, groundwater and surface water levels as a response to rainfall, reference evapotranspiration, and groundwater abstraction. The model is used within the GIS environment Arc-View, which enables the use of digital data, such as soil map, land use, watercourses, as input data for the model. It is also a tool for analysis, because interactively data and results can be presented, as will be shown. Droughts in different hydrological variables (recharge, groundwater heads, river flow) are identified by applying the fixed threshold concept to spatially-distributed simulated time series. The method captures the development of both the duration and the severity for the area in a drought. For the analysis we applied the model to the Taquari river basin (about 106.000 km2), which is situated in the Pantanal region, the upper part of the Paraguay River Basin, Brazil. The question we will address is: how does a hydrological drought develop and what are the spatial characteristics and what are the underlying mechanisms. Examples of the analysis will be shown that aim at a better understanding of the process involved which are essential; to assess the vulnerability of river basins for hydrological droughts.

  17. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    USGS Publications Warehouse

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  18. Incentive compatibility and conflict resolution in international river basins: A case study of the Nile Basin

    NASA Astrophysics Data System (ADS)

    Wu, Xun; Whittington, Dale

    2006-02-01

    Nation-states rarely go to war over water, but it is equally rare that water conflicts in an international river basin are resolved through cooperation among the riparian countries that use the shared resources. Gains from cooperation will mean little to individual riparians unless the required cooperative behaviors are incentive compatible. Cooperative game theory offers useful insights for assessing cooperative solutions for water conflicts in international river basins. Applying cooperative game theory concepts such as core, nucleolus, and Shapley value to Nile water conflicts, we examine the incentive structure of both cooperative and noncooperative strategies for different riparian countries and establish some baseline conditions for incentive-compatible cooperation in the Nile basin.

  19. Occurrence and sources of perfluoroalkyl acids in Italian river basins.

    PubMed

    Valsecchi, Sara; Rusconi, Marianna; Mazzoni, Michela; Viviano, Gaetano; Pagnotta, Romano; Zaghi, Carlo; Serrini, Giuliana; Polesello, Stefano

    2015-06-01

    This paper presents a survey on the occurrence and sources of 11 perfluoroalkyl acids (PFAA) in the main river basins in Italy, covering about 40% of the Italian surface area and 45% of the Italian population. Total concentrations of PFAA ranged fromrivers impacted by industrial discharges. Among the rivers directly flowing into the sea, Brenta, Po and Arno present significant concentrations, while concentrations in Tevere and Adige, which are not impacted by relevant industrial activities, are almost all below the detection limits. The total estimated PFAA load of the five rivers was 7.5ty(-1) with the following percentage distribution: 39% PFBS, 32% PFOA, 22% short chain perfluorocarboxylic acids (PFCA), 6% PFOS and 1% long chain PFCA. PFOA and PFOS loads, evaluated in the present work, represent 10% and 2% of the estimated European loads, respectively. In Italy the most important sources of PFAA are two chemical plants which produce fluorinated polymers and intermediates, sited in the basin of rivers Po and Brenta, respectively, whose overall emission represents 57% of the total estimated PFAA load. Both rivers flow into the Adriatic Sea, raising concern for the marine ecosystem also because a significant PFOS load (0.3ty(-1)) is still present. Among the remaining activities, tanneries and textile industries are relevant sources of respectively PFBS and PFOA, together with short chain PFCA. As an example, the total PFAA load (0.12ty(-1)) from the textile district of Prato is equivalent to the estimated domestic emission of the whole population in all the studied basins. PMID:25108894

  20. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    NASA Astrophysics Data System (ADS)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at reducing system vulnerabilities and the improving the resiliency of the Basin to vulnerable conditions. The Study is the most comprehensive long-term assessment to date of the Basin and it confirmed that without action, the Colorado River system will become increasingly challenged to sustain the communities and resources that rely on its water supply. The Study was conducted by the Bureau of Reclamation and its consultant team (CH2M Hill, Black & Veatch, and the RAND Corporation) and the seven Colorado River Basin States, in collaboration with a broad range of stakeholders throughout the Basin. The Study's strong technical foundation forms a basis from which important discussions can begin regarding possible actions to resolve future supply and demand imbalances in order to help ensure the sustainability of the Colorado River system. This talk will provide an overview of the Study's approach and findings, with a focus on the Study's assessment and characterization of vulnerability under uncertainty.

  1. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake/ reservoir and river operations including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. In addition to the operations and streamflow-routing modules, the modeling system is structured to allow integration of other modules, such as water-quality and precipitation-runoff modules. The USGS Truckee River Basin operations model was designed to provide simulations that allow comparison of the effects of alternative management practices or allocations on streamflow or reservoir storages in the Truckee River Basin over long periods of time. Because the model was not intended to reproduce historical streamflow or reservoir storage values, a traditional calibration that includes statistical comparisons of observed and simulated values would be problematic with this model and database. This report describes a chronology and background of decrees, agreements, and laws that affect Truckee River operational practices; the construction of the Truckee River daily operations model; the simulation of Truckee River Basin operations, both current and proposed under the draft TROA and WQSA; and suggested model improvements and limitations. The daily operations model uses Hydrological Simulation Program?FORTRAN (HSPF) to simulate flow-routing and reservoir and river operations. The operations model simulates reservoir and river operations that govern streamflow in the Truckee River from Lake Tahoe to Pyramid Lake, including diversions through the Truckee Canal to Lahontan Reservoir in the Carson River Basin. A general overview is provided of daily operations and their simulation. Supplemental information that documents the extremely complex operating rules simulated by the model is available.

  2. Morphometric analysis of the Marmara Sea river basins, Turkey

    NASA Astrophysics Data System (ADS)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems (GIS). This study shows that morphometric analysis of the basins in regional level are very important to understand general morphological characteristics of the basins. In this case, tectonic and lithological conditions of the basins have greatly affected the morphometric characteristics of the north and south basins of the Marmara Sea. References Abrahams, AD. 1984. Channel Networks: A Geomorphological Perspective. Water Resources Research, Volume 20, Issue 2, pages 161-188. Horton, R.E. 1932. Drainage basin characteristics. Trans Am Geophys Union 13:350-361. Keller, E.A., Pinter, N. 2002. Active Tectonics Earthquakes, Uplift, and Landscape, Second Edition, Prentice Hall, New Jersey. Ozdemir H., Bird D. 2009. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods, Environmental Geology, vol.56, pp.1405-1415. Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597-646. Strahler, A.N. 1957. Quantitative geomorphology of drainage and channel networks. In: Chow YT (ed) Handbook of appliecl hydrology. Me Graw Hill Book Company, New York. Verstappen, H.Th. 1983. Applied geomorphology. ITC, Enschede.

  3. Current and future water resources of the Congo River basin

    NASA Astrophysics Data System (ADS)

    Sonessa, M.; Beyene, T.; Lettenmaier, D. P.; Kabat, P.; Fulco, L.; Franssen, W.

    2011-12-01

    The water resources of the Congo Basin are under enormous pressure due to decreases in the Oubangui River discharge for the last three decades and the shrinking of Lake Chad. We report on a systematic analysis of the hydrology and water resources of the entire Congo Basin, and that part of the basin within the geographical boundaries of each of the countries across which it flows. We used hydrological models, data from global data bases, and future climate scenarios. We address both historical and future state of water resources management (availability, flood and drought occurrence, dams/reservoirs, and water infrastructure) using the on-going development of a basin scale climate change impact assessment within the Wageningen Universiy -Congo Basin project frame work. Detailed analysis of potential impacts of climate change on the basin's water availability are assessed using two hydrological and water resources models (VIC, Variable Infiltration Capacity and LPJ, Lund-Potsdam-Jena). We use EU-WATCH historical data, three global climate models with two emissions scenarios downscaled and bias corrected using the statistical bias correction procedure described in EU-WATCH project.

  4. DOM in recharge waters of the Santa Ana River Basin

    USGS Publications Warehouse

    Leenheer, J.A.; Aiken, G.R.; Woodside, G.; O'Connor-Patel, K.

    2007-01-01

    The urban Santa Ana River in California is the primary source of recharge water for Orange County's groundwater basin, which provides water to more than two million residents. This study was undertaken to determine the unidentified portion of dissolved organic matter (DOM) in various natural surface and reclaimed waters of the Santa Ana River Basin and to assess the potential health risk of this material. The most abundant organic contaminants were anionic detergent degradation products (constituting about 12% of the DOM), which have no known adverse health effects. In addition, high percentages of dissolved colloids from bacterial cell walls were found during storm flows; these colloids foul membranes used in water treatment. Although no significant health risks were ascribed to the newly characterized DOM, the authors note that even the small amounts of humic substances deposited during storm flow periods were responsible for significant increases in disinfection by_product formation potential in these waters.

  5. Multi-Decadal Variability of Colorado River Basin Streamflow

    NASA Astrophysics Data System (ADS)

    Nowak, K. C.; Rajagopalan, B.; Hoerling, M.; Zagona, E. A.

    2010-12-01

    Conventional water resource planning and management are based upon the assumption that past run-off records are indicative of future hydrologic conditions. The severe and sustained nature of the recent drought in the Southwestern United States has underscored the limitation of this planning approach. Furthermore, a growing collection of scientific literature indicates that anthropogenic climate change may further dry the region and strain its water resources. Thus, developing tools and strategies to address streamflow variability, is critical for effective water management in regions such as the Colorado River Basin. A crucial first step toward this end is the understanding of streamflow variability at multi-decadal time scales, driven by large scale climate features such as El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO), etc. Here, a systematic analysis of basin-wide natural streamflow and paleo-reconstructed flows in the Colorado River Basin is presented, using time domain principal component analysis (PCA) and spectral methods based on wavelets and a multi-taper method. The dominant patterns of variability are related to global sea surface temperatures (SSTs) to identify potential large scale climate features that drive the variability. Results indicate that the first two PCs explain approximately 60% of the total streamflow variance in the Basin. The first PC, which is a predominantly Upper Basin signal, correlates strongly with Atlantic Ocean SSTs and shows an AMO pattern, while the second PC has distinct ties to the Pacific Ocean, reminiscent of PDO and ENSO patterns. The spectral analyses of the leading PCs indicate strong coherence with the corresponding indices of the aforementioned climate forcings. The spectrum of the first PC displays a strong signal at 10-15 year and 60-70 year periodicities. Spectral analysis of paleo-reconstructed Upper Basin streamflow indicates that these periodicities are modulated, especially the decadal signal being modulated at a 75-year time scale. These results provide insight into the multi-decadal variability of Colorado River streamflow. Furthermore, they will have considerable utility in realistic simulation of near-term streamflows and consequently, efficient planning and management of water resources in the Colorado River Basin.

  6. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Zuliziana, S.; Tanuma, K.; Yoshimura, C.; Saavedra, O. C.

    2015-07-01

    Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash-Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  7. The Pennsylvanian and Permian Oquirrh-Wood River basin

    SciTech Connect

    Geslin, J.K. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    Strata of the Middle Pennsylvanian to Lower Permian Oquirrh-Wood River Basin (OWRB) lie unconformably above the Antler orogenic belt and flysch trough/starved basin in NW Utah, NE Nevada, and SC Idaho. Strata of the basin, now separated geographically by the Neogene Snake River Plain, show similar subsidence histories, identical mixed carbonate-siliciclastic sedimentary fill, and identical chert pebble conglomerate beds supplied by one or more DesMoinesian uplifts containing Lower Paleozoic strata. This conglomerate, of the lower Sun Valley Group, Snaky Canyon Formation, and parts of the Oquirrh Formation, was reworked progressively southward, to at least the Idaho-Utah border. It is present in strata as young as Virgilian. Virgilian to Leonardian rocks are ubiquitously fine-grained mixed carbonate-siliciclastic turbidites. These rocks contain cratonal, well-sorbed subarkosic and quartzose sand and silt in part derived from the Canadian Shield. This siliciclastic fraction is intimately mixed with arenaceous micritized skeletal material and peloids derived from an eastern carbonate platform represented by the Snaky Canyon Formation in east-central Idaho, an eastern facies of the Eagle Creek Member, Wood River Formation in the Boulder Mountains, and the Oquirrh Formation in the Deep Creek Mountains. Subsidence of the OWRB may have been caused by two phases (DesMoinesian and Wolfcampian to Leonardian) of crustal loading by continental margin tectonism to the west. An elevated rim separated the OWRB from coeval volcanogenic basins to the west. Earlier, Antler-age structures may have been reactivated. A new pulse of tectonism occurred in Leonardian to Guadalupian time as in most places carbonatic and phosphatic strata of the Leonardian to Guadalupian Park City and Phosphoria Formation overlie OWRB strata, with different geographic arrangement of basinal, slope, and shelf depocenters.

  8. Hydrogeologic data for the lower Connecticut River basin, Connecticut

    USGS Publications Warehouse

    Bingham, J.W.; Paine, F.D.; Weiss, L.A.

    1975-01-01

    This report contains geologic, ground-water, and miscellaneous data on the quality of surface water collected for a water-resources inventory of the lower Connecticut River basin, Connecticut. The study was made by the U.S. Geological Survey in fiscal cooperation with the Connecticut Department of Environmental Protection. A companion report (Connecticut Water Resources Bulletin No. 31, in preparation) interprets the factual information presented here or otherwise collected for the study.

  9. Hydrogeologic data for the lower Connecticut River basin, Connecticut

    USGS Publications Warehouse

    Bingham, J.W.; Paine, F.D.; Weiss, L.A.

    1980-01-01

    This report contains geologic, ground-water, and miscellaneous data on the quality of surface water collected for a water-resources inventory of the lower Connecticut River basin, Connecticut. The study was made by the U.S. Geological Survey in fiscal cooperation with the Connecticut Department of Environmental Protection. A companion report (Connecticut Water Resources Bulletin No. 31, in preparation) interprets the factual information presented here or otherwise collected for the study.

  10. Miscellaneous surface-water data, Pecos River basin, New Mexico

    USGS Publications Warehouse

    Cranston, C. Clare; Kues, Georgianna E.; Welder, G.E.

    1981-01-01

    Miscellaneous surface-water data from the Pecos River basin of New Mexico are assembled into one table. Measurements and estimates of the discharge of streams, springs, and diversion canals and pumps that are not readily available to the public are given. The principal sources of information are published and unpublished reports and various records of the U.S. Geological Survey and the New Mexico State Engineer Office. Many thousands of surface-water discharge values are given. (USGS)

  11. Flood discharges in the upper Mississippi River basin, 1993

    USGS Publications Warehouse

    Parrett, Charles; Melcher, Nick B.; James, Robert W., Jr.

    1993-01-01

    Flood-peak discharges that equaled or exceeded the 10-year recurrence interval were recorded at 154 streamflow-gaging stations in the upper Mississippi River Basin. At 41 streamflowgaging stations, the peak discharge was greater than the previous maximumknown discharge. At 15 additional gaging stations, peak discharges exceeded the previous maximum regulated peak discharge. At 45 gaging stations, peak discharges exceeded 100-year recurrence intervals.

  12. UV filters bioaccumulation in fish from Iberian river basins.

    PubMed

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. PMID:25777957

  13. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0~28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  14. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  15. 78 FR 72860 - White River National Forest; Summit County, CO; 2013 Arapahoe Basin Improvements EIS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... Forest Service White River National Forest; Summit County, CO; 2013 Arapahoe Basin Improvements EIS.... SUMMARY: Arapahoe Basin Ski Area (A-Basin) has submitted a proposal to the White River National Forest... statements made in the 2002 WRNF Forest Plan FEIS; accommodate existing and future demand for high Alpine...

  16. Characterization of Stream Morphology and Sediment Yield for the Big Black and Tombigbee River Basins, Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three segments within the Big Black River Basin, and nine within the Tombigbee River Basin are on the Mississippi 303d list of water bodies as having impaired conditions for aquatic life due to sediment. An additional 56 reaches of channel are listed for biologic impairment between the two basins. ...

  17. Water resources: the prerequisite for ecological restoration of rivers in the Hai River Basin, northern China.

    PubMed

    Tang, Wenzhong; Mao, Zhanpo; Zhang, Hong; Shan, Baoqing; Zhao, Yu; Ding, Yuekui

    2015-01-01

    The competition for water resources between humans and river ecosystems is becoming ever more intense worldwide, especially in developing countries. In China, with rapid socioeconomic development, water resources to maintain river ecosystems are progressively decreasing, especially in the Hai River Basin (HRB), which has attracted much attention from the Chinese government. In the past 56 years, water resources have continuously decreased in the basin, such that there is 54.2 % less surface water now compared with then. Water shortages, mainly due to local anthropogenic activities, have emerged as the main limiting factor to river ecological restoration in the HRB. However, the South-to-North Water Diversion Project, the largest such project in the world, presents a good opportunity for ecological restoration of rivers in this basin. Water diverted from the Danjiangkou Reservoir will restore surface water resources in the HRB to levels of 30 years ago and will amount to more than 20 billion m(3). Our findings highlight the fact that water resources are crucial for river ecological restoration. PMID:25142344

  18. Floodplain Organic Carbon Storage in the Central Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.

    2014-12-01

    Floodplain storage of organic carbon is an important aspect of the global carbon cycle that is not well understood or quantified. Although it is understood that rivers transport organic carbon to the ocean, little is known about the quantity of stored carbon in boreal floodplains and the influence of fluvial processes on this storage. We present results on total organic carbon (TOC) content within the floodplains of two rivers, the Dall River and Preacher Creek, in the central Yukon River Basin in the Yukon Flats National Wildlife Refuge of Alaska. The results indicate that organic carbon storage is influenced by fluvial disturbance and grain size. The Dall River, which contains a large amount of floodplain carbon, is meandering and incised, with well-developed floodplain soils, a greater percentage of relatively old floodplain surfaces and a slower floodplain turnover time, and finer grain sizes. Preacher Creek stores less TOC, transports coarser grain sizes, and has higher rates of avulsion and floodplain turnover time. Within the floodplain of a particular river, large spatial heterogeneity in TOC content also exists as a function of depositional environment and age and vegetation community of the site. In addition, saturated regions of the floodplains, such as abandoned channels and oxbow lakes, contain more TOC compared to drier floodplain environments. Frozen alluvial soils likely contain carbon that could be released into the environment with melting permafrost, and thus quantifying the organic carbon content in the active layer of floodplain soils could provide insight into the characteristics of the permafrost beneath. The hydrology in these regions is changing due to permafrost melt, and floodplain areas usually saturated could be dried out, causing breakdown and outgassing of carbon stored in previously saturated soils. Ongoing work will result in a first-order estimate of active-layer floodplain carbon storage for the central Yukon River Basin.

  19. Detecting runoff variation in Weihe River basin, China

    NASA Astrophysics Data System (ADS)

    Jingjing, F.; Qiang, H.; Shen, C.; Aijun, G.

    2015-05-01

    Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  20. Can the Gila River reduce risk in the Colorado River Basin?

    NASA Astrophysics Data System (ADS)

    Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.

    2012-12-01

    The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation guidelines, and climate change scenario assumptions. This potential risk mitigation could be at least partly realized through enhancements to current management practices, possibly in the Gila River, that could improve the water supply reliability for all stakeholders in the Colorado River Basin.

  1. [Epidemiology of diphyllobothriasis in the Valdivia river basin, Chile].

    PubMed

    Torres, P; Franjola, R; Pérez, J; Auad, S; Uherek, F; Miranda, J C; Flores, L; Riquelme, J; Salazar, S; Hermosilla, C

    1989-02-01

    In the Valdivia (Chile) river basin 1,295 inhabitants of 6 riverside districts were examined between March and October 1987 and showed a 1.2% of prevalence by Diphyllobothrium in the districts of Riñihue and Las Huellas. Prevalence of 5.3% and 9.8% respectively were registered in dogs of the districts of Riñihue and Malihue. No cat or pig infection was observed in the different districts. The parasites recovered after the treatment were identified as Diphyllobothrium latum. Human infection by D. latum in the districts affected results from the consumption of smoked or insufficiently cooked fish. The investigation of 1,450 fish (4 exotic species and 11 autochthonous ones), caught in the Valdivia river basin in 1986 and 1987, showed the existence of plerocercoids of D. latum and/or Diphyllobothrium dendriticum in Salmo gairdneri and Salmo trutta among exotic fish and in some autochthonous species. Prevalence and mean intensity in the infection of fish as well as the degree of aggregation in the infrapopulations varied in the different districts. Some species of fish would act as intermediary hosts and others as paratenic hosts in the life cycles of Diphyllobothrium spp. in the Valdivia river basin. An improvement in the conditions of basic sanitation, in sanitary education and in the treatment of infected persons is proposed as a means for the control of diphyllobothriasis in the districts affected. PMID:2814310

  2. Flood tracking chart for the Illinois River basin

    USGS Publications Warehouse

    Avery, Charles F.; Holmes, Jr., Robert R.; Sharpe, Jennifer B.

    1998-01-01

    This Flood Tracking Chart for the Illinois River Basin in Illinois can be used to record and compare the predicted or current flood-crest stage to past flood-crest information. This information can then be used by residents and emergency-response personnel to make informed decisions concerning the threat of flooding to life and property. The chart shows a map of the Illinois River Basin (see below), the location of real-time streamflow-gaging stations in the basin, graphs of selected historical recorded flood-crest stages at each of the stations, and sea-level conversion (SLC) factors that allow conversion of the current or predicted flood-crest stage to elevation above sea level. Each graph represents a streamflow-gaging station and has a space to record the most current river stage reported for that station by the U.S. Geological Survey (USGS). The National Weather Service (NWS) predicts flood crests for many of the stations shown on this chart.

  3. Suspended sediment dynamics in the Mississippi River basin

    NASA Astrophysics Data System (ADS)

    Ali, K.; Cullis, J. D.; Xu, X.; More, M.; Hassan, M. A.; Simon, A.; Donner, S. D.; Sivapalan, M.

    2010-12-01

    This study investigated sediment trends in a heavily managed basin influenced by substantial human impacts. Spatial and temporal patterns of suspended sediment dynamics were examined in the Mississippi River basin by utilizing all available USGS suspended-sediment data with a minimum of 30 matching samples of suspended-sediment concentration and water discharge. These spatial trends were related to the land use change which has occurred over the last century and this includes dams, soil conservation measures and channelization. Sediment sources and sinks along the main stem of the Mississippi River and its main tributaries were identified and mapped. Three main trends were identified. 1) Sediment yields decreasing with increasing drainage area imply systematically increasing sediment storage downstream the landscape. 2) Sediment yields increasing with drainage area indicate net recruitment of sediment along the main valleys from banks and floodplain erosion. 3) Sediment yields showing no relationship with drainage area are attributed to the complexity arising from diverse climate, geology and land use of the basin. Based on the results, regional scale sediment yield maps were prepared and linked to the land use and the history of the basin.

  4. Hydrogeologic reconnaissance of the San Miguel River basin, southwestern Colorado

    SciTech Connect

    Ackerman, D.J.; Rush, F.E.

    1984-01-01

    The San Miguel River basin is an area of 4130 square kilometers, of which about two-thirds is in the southeastern part of the Paradox basin. The Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Evaporite beds consisting mostly of salt are both overlain and underlain by confining beds. Aquifers are present above and below the confining-bed sequence. The principal element of ground-water outflow from the upper aquifer is flow to the San Miguel River and its tributaries; this averages about 90 million cubic meters per year. The aquifers generally are isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little, if any, contact with the evaporites. No natural brine flows have been identified in the basin. Salt water has been reported in petroleum-exploration wells, but no active salt solution has been located. 23 references, 8 figures, 4 tables.

  5. Assessment of Hydroclimatic Trends Over the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Piechota, T. C.

    2007-12-01

    Recent studies by a broad range of governmental agencies, universities, and experts in the scientific community have begun to acknowledge and address issues regarding climate change and trends. Most of these studies have focused on global scale trends in hydroclimatic variables and long-term impacts of climate change. The impacts of climate change are particularly important in the Colorado River Basin to resource managers, and water users who depend upon the Colorado River to provide water for flood control, consumptive use, irrigation, environmental, recreational, and energy demands. In this study, trends in hydroclimatic variables such as temperature, precipitation, streamflow and snowpack over the Colorado River Basin are considered and their interdependency discussed. Impacts of observed trends on the operation of the Colorado River and affects on water users are assessed. In this study, early peak runoff corresponds to persistent increasing trends in temperature. Observed monthly streamflow rates are consistently decreasing between April and July, traditionally when peak flow is observed. The potential for incorporation of hydroclimatic trends into the improvement of forecasts is explored.

  6. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water resources are redistributed by very developed and extensive irrigation system. Irrigation water balance is complex because of strong interactions among surface, ground, river and irrigation water. Lower reaches is an extremely arid environment. Water availability in lower reaches has a great impact on the evolution of natural ecosystem and vice versa the landscape change reshapes the hydrological cycle. After the water resource reallocation project implemented in 2000, the water delivered to lower reaches has increased by 36%. Of all the available water resource, about 10% is used to sustain a terminal lake and other water bodies, 20% is used for irrigation to support very rapidly increased farmlands, 40-50% is used to nurture the natural oasis, and other water is lost due to evaporation. The features of hydrological cycle in the HRB is very typical for inland river basins in China's arid region. In this region, air temperature is rising and precipitation is most likely to increase. Accelerating glacier retreat will also produce more water. However, water demand increases more rapidly due to quickly developing economy and growing population. Therefore, how to turn our understanding of hydrological cycle in this environmental fragile region into more rational water resource management is a grand challenge.

  7. Integrated Basin Scale Hydropower and Environmental Opportunity Assessment in the Deschutes River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Geerlofs, S. H.; Vail, L. W.; Ham, K. D.; Tagestad, J. D.; Hanrahan, T. P.; Seiple, T. E.; Coleman, A. M.; Stewart, K.

    2012-04-01

    The Deschutes River Basin in Oregon, USA, is home to a number of diverse groups of stakeholders that rely upon the complex snowmelt and groundwater-dominated river system to support their needs, livelihoods, and interests. Basin system operations that vary across various temporal and spatial scales often must balance an array of competing demands including maintaining adequate municipal water supply, recreation, hydropower generation, regulations related to environmental flows, mitigation programs for salmon returns, and in-stream and storage rights for irrigation water supplied by surface water diversions and groundwater pumping. The U.S. Department of Energy's Integrated Basin-scale Opportunity Assessment initiative is taking a system-wide approach to identifying opportunities and actions to increase hydropower and enhance environmental conditions while sustaining reliable supply for other uses. Opportunity scenarios are analyzed in collaboration with stakeholders, through nested integrated modeling and visualization software to assess tradeoffs and system-scale effects. Opportunity assessments are not intended to produce decisional documents or substitute for basin planning processes; assessments are instead intended to provide tools, information, and a forum for catalyzing conversation about scenarios where both environmental and hydropower gains can be realized within a given basin. We present the results of the nested integrated modeling approach and the modeling scenarios in order to identify and explore opportunities for the system.

  8. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Piechota, T. C.; Gangopadhyay, S.; Pruitt, T.

    2011-07-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting System (RFS) hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6 % to 13 % average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10 % to 15 % average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5 % to 8 % increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins.

  9. Rivers at Risk: An Activity Based Study Guide for the Colorado River Basin.

    ERIC Educational Resources Information Center

    Samples, Bob, Ed.

    This activity guide is intended to increase student awareness and understanding about the Colorado River Basin. Each activity includes objectives, procedures, materials list, related activities, questions for students, and related information. The activities are varied to appeal to a wide range of learning styles and modalities and are…

  10. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  11. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and indicators to use in the analytical evaluation. A software template guides users through this process. For demonstration, the RBAF-C template has been applied to address competing irrigation demand-anadromous fish flow requirements in the Lemhi Basin, Idaho, and the increase in municipal and industrial demand in the Upper Bhima River Basin, India, which affects water supply to downstream irrigation command areas. The RBAF-A is for quantitatively evaluating the current conditions of water resources in a river basin and testing potential scenarios with respect to the sustainability criterion. The primary foundation for quantifying water movement is a river basin model. Upon this, the RBAF-A Interface organizes input data, collects output data from each discipline, and reports the HWB. Within the RBAF-A Interface, the EGS-HWB Calculator collects output time series data, processes the data with respect to space and time, and computes the ecologic, economic, and social well-being. The Reporting Tool presents the scenario output as values and trends in well-being. To demonstrate the technology, the RBAF-A was applied to the Lemhi Basin, Idaho. The RBAF supports the IWRM process by providing a structured and transparent means to understand the water related issues, analyses to conduct, and indicators to select in assessing the sustainability of water programs and policies in river basins.

  12. [Comprehensive assessment on environmental quality in vulnerable ecotone of Tarim River Basin].

    PubMed

    Wang, R; Song, Y; Fan, Z; You, X

    2001-03-01

    Tarim River Basin (TRB) is one of ecological environment vulnerable areas. Due to the matching of material and energy existed in some problems, the different fragility characteristics occurred obviously. According to related principles of ecological environment quality assessment, combined with ecological environment situation of Tarim River Basin, 20 indexes were selected, and the indicator system for synthetically ecological environment assessment was built. Moreover, ecological fragility index was set up, which can be used to indicate the degree of ecological environment quality in Tarim River Basin. The results were as follows: Aksu River Basin belongs to improved area. Yerkart River Basin and the upper reaches of TRB belongs to balance areas and Hetian River Basin and the middle reaches of TRB belongs to maladjustment areas. The lower reaches of TRB belongs to severe damage area. The assessment results are consonant with actual situation, which play an important function in ecological environment construction. PMID:11432072

  13. Long Term Discharge Estimation for Ogoué River Basin

    NASA Astrophysics Data System (ADS)

    Seyler, F.; Linguet, L.; Calmant, S.

    2014-12-01

    Ogoué river basin is one the last preserved tropical rain forest basin in the world. The river basin covers about 75% of Gabon. Results of a study conducted on wall-to wall forest cover map using Landsat images (Fichet et al., 2014) gave a net forest loss of 0,38% from 1990 and 2000 and sensibly the same loss rate between 2000 and 2010. However, the country launched recently an ambitious development plan, with communication infrastructure, agriculture and forestry as well as mining projects. Hydrological cycle response to changes may be expected, in both quantitative and qualitative aspects. Unfortunately monitoring gauging stations have stopped functioning in the seventies, and Gabon will then be unable to evaluate, mitigate and adapt adequately to these environmental challenges. Historical data were registered during 42 years at Lambaréné (from 1929 to 1974) and during 10 to 20 years at 17 other ground stations. The quantile function approach (Tourian et al., 2013) has been tested to estimate discharge from J2 and ERS/Envisat/AltiKa virtual stations. This is an opportunity to assess long term discharge patterns in order to monitor land use change effects and eventual disturbance in runoff. Figure 1: Ogoué River basin: J2 (red) and ERS/ENVISAT/ALTIKa (purple) virtual stations Fichet, L. V., Sannier, C., Massard Makaga, E. K., Seyler, F. (2013) Assessing the accuracy of forest cover map for 1990, 2000 and 2010 at national scale in Gabon. In press IEEE Journal of Selected Topics in Applied Earth Observations and Remote SensingTourian, M. J., Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resources Research, 49(7), 4174-4186. doi:10.1002/wrcr.20348

  14. Episodic Emplacement of Sediment + Carbon within Large Tropical River Basins

    NASA Astrophysics Data System (ADS)

    Aalto, R.; Aufdenkampe, A.

    2012-04-01

    Application of advanced methods for imaging (sub-bottom sonar and ERGI), dating (high resolution 210-Pb and 14-C from deep cores), and biogeochemical analysis have facilitated the characterization and inter-comparison of floodplain sedimentation rates, styles, and carbon loading across disparate large river basins. Two examples explored here are the near-pristine 72,000 km2 Beni River basin in northern Bolivia and the similarly natural 36,000 km2 Strickland River basin in Papua New Guinea - that are located on either side of the Equatorial Pacific warm pool that drives the ENSO phenomenon. Our published research suggests that large, rapid-rise, cold-phase ENSO floods account for the preponderance of sediment accumulation within these two tropical systems. New results to be presented at EGU further clarify the extent of modern deposits (~100 yrs) within both systems and add a deeper perspective into how these extensive floodplains developed over the Holocene, both in response to external forcing (climate and base level) and internal system morphodynamics. The vast scale of these temporally discrete deposits (typically 100s of millions of tonnes over relatively short time periods) involved equate to high burial rates, which in turn support the high carbon loadings sequestered within the resulting sedimentary deposits. We have identified the principal source of this carbon and sedimentary material to be extensive landslides throughout the high-relief headwaters - failures that deliver huge charges of pulverized rock and soil directly into canyons (in both the Bolivian Andes and the PNG Highlands), where raging floodwaters provide efficient transport to lowland depocentres. We present recent results from our research in these basins, providing insight into the details of such enormous mass budgets that result in a signicant carbon sink within the floodplains. Processes, timing, and rates are compared between the two systems, providing insight into the nature of geomorphic hillslope-channel coupling within tropical dispersal systems.

  15. Energy development and water options in the Yellowstone River Basin

    SciTech Connect

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  16. Occurrence and distribution of hexabromocyclododecane in sediments from seven major river drainage basins in China.

    PubMed

    Li, Honghua; Shang, Hongtao; Wang, Pu; Wang, Yawei; Zhang, Haidong; Zhang, Qinghua; Jiang, Guibin

    2013-01-01

    The concentrations and geographical distribution of hexabromocyclododecane (HBCD) were investigated in 37 composite surface sediments from seven major river drainage basins in China, including Yangtze River, Yellow River, Pearl River, Liaohe River, Haihe River, Tarim River and Ertix River. The detection frequency of HBCD was 54%, with the concentrations ranged from below limit of detection (LOD) to 206 ng/g dry weight. In general, the geographical distribution showed increasing trends from the upper reaches to the lower reaches of the rivers and from North China to Southeast China. Compared to other regions in the world, the average concentration of HBCD in sediments from Yangtze River drainage basin was at relatively high level, whereas those from other six river drainage basins were at lower or similar level. The highest HBCD concentration in sediment from Yangtze River Delta and the highest detection frequency of HBCD in Pearl River drainage basins suggested that the industrial and urban activities could evidently affect the HBCD distribution. HBCD diastereoisomer profiles showed that gamma-HBCD dominated in most of the sediment samples, followed by alpha- and beta-HBCD, which was consistent with those in the commercial HBCD mixtures. Further risk assessment reflected that the average inventories of HBCD were 18.3, 5.87, 3.92, 2.50, 1.77 ng/cm2 in sediments from Pearl River, Haihe River, Tarim River, Yellow River and Yangtze River, respectively. PMID:23586301

  17. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    USGS Publications Warehouse

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-01-01

    The Lower Hudson River Basin study area covers 5,607 square miles and encompasses the part of the Lower Hudson River Basin that lies within New York plus the parts of the Housatonic, Hackensack, Bronx, and Saugatuck River Basins that are in New York. Twelve of the wells sampled in the Lower Hudson River Basin are completed in sand-and-gravel deposits, and 13 are completed in bedrock. Groundwater in the Lower Hudson River Basin was generally of good quality, although properties and concentrations of some constituents—pH, sodium, chloride, dissolved solids, arsenic, aluminum, iron, manganese, radon-222, total coliform bacteria, fecal coliform bacteria, Escherichia coli bacteria, and heterotrophic plate count—equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (20 of 25 samples) was radon-222.

  18. Perfluoroalkyl substances in the Ebro and Guadalquivir river basins (Spain).

    PubMed

    Lorenzo, María; Campo, Julián; Farré, Marinella; Pérez, Francisca; Picó, Yolanda; Barceló, Damià

    2016-01-01

    Mediterranean rivers are characteristically irregular with changes in flow and located in high population density areas. This affects the concentration of pollutants in the aquatic environments. In this study, the occurrence and sources of 21 perfluoroalkyl substances (PFASs) were determined in water, sediment and biota of the Ebro and Guadalquivir river basins (Spain). In water samples, of 21 analytes screened, 11 were found in Ebro and 9 in Guadalquivir. In both basins, the most frequents were PFBA, PFPeA and PFOA. Maximum concentration was detected for PFBA, up to 251.3 ng L(-1) in Ebro and 742.9 ng L(-1) in Guadalquivir. Regarding the sediments, 8 PFASs were detected in the samples from Ebro and 9 in those from Guadalquivir. The PFASs most frequently detected were PFBA, PFPeA, PFOA and PFOS. Maximum concentration in Ebro samples was, in dry weight, for PFOA (32.3 ng g(-1)) and in Guadalquivir samples for PFBA (63.8 ng g(-1)). For biota, 12 PFASs were detected in fish from the Ebro River and only one (PFOS) in that from Guadalquivir. In the Ebro basin, the most frequents were PFBA, PFHxA, PFOA, PFBS, PFOS and PFOSA. Maximum concentration in Ebro samples was, in wet weight, for PFHxA with 1280.2 ng g(-1), and in Guadalquivir samples for PFOS with 79.8 ng g(-1). These compounds were detected in the whole course of the rivers including the upper parts. In some points contamination was due to point sources mostly related to human activities (e.g. ski resorts, military camps, urban areas.). However, there are also some areas clearly affected by diffuse sources as atmospheric deposition. PMID:26250865

  19. Summary of the river-quality assessment of the upper Chattahoochee River basin, Georgia

    USGS Publications Warehouse

    Cherry, R.N.; Faye, R.E.; Stamer, J.K.; Kleckner, R.L.

    1980-01-01

    The river-quality assessment of the Upper Chattahoochee River Basin included studies of (1) the impact of heat loads on river quality, (2) sediment transport and deposition, (3) magnitude and nature of point and nonpoint discharges, and (4) phytoplankton growth in the river and reservoirs. The combined thermal effects of flow regulation and powerplants effluents resulted in mean daily river temperature downstream of the powerplants about equal to or less than computed natural temperatures. The average annual river temperature in 1976 was 14.0 ? Celsius just upstream of the Atkinson-McDonough thermoelectric powerplants and 16.0 ? Celsius just downstream from the powerplants. During a low-flow period in June 1977 the heat load from the two powerplants caused an increase in river temperatures of about 7 ? Celsius and a subsequent decrease in the dissolved-oxygen concentration of about 0.2 milligrams per liter. During the June low-flow period, point sources contributed 63 percent of the ultimate biochemical oxygen demand and 97 percent of ammonium as nitrogen at the Franklin station. Oxidation of ultimate biochemical demand and ammonium caused dissolved-oxygen concentrations to decrease from about 8.0 milligrams per liter at river mile 299 to about 4.5 milligrams per liter at river mile 271. Dissolved orthophosphate is the nutrient presently limiting phytoplankton growth in the West Point Lake when water temperatures are greater than about 26 ? Celsius.

  20. Development of streamflow projections under changing climate conditions over Colorado River Basin headwaters

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Piechota, T. C.; Gangopadhyay, S.; Pruitt, T.

    2010-08-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by forecasts determined by the Colorado Basin River Forecast Center (CBRFC). While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force a hydrologic model utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the CBRFC hydrologic model is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands over the Gunnison resulted in a 6% to 13% average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the CBRFC's hydrologic model resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10% to 15% average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5% to 8% increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins.

  1. Emergy-based energy and material metabolism of the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chen, G. Q.

    2009-03-01

    The Yellow River basin is an opening ecosystem exchanging energy and materials with the surrounding environment. Based on emergy as embodied solar energy, the social energy and materials metabolism of the Yellow River basin is aggregated into emergetic equivalent to assess the level of resource depletion, environmental impact and local sustainability. A set of emergy indices are also established to manifest the ecological status of the total river basin ecosystem.

  2. Human impacts on river ice regime in the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected examples from the Carpathian Basin represent some of the most common human impacts (engineering regulation, hydropower usage, water pollution), disturbing natural river ice regimes of mid-latitude rivers with densely populated or dynamically growing urban areas along their courses. In addition simple tests are also introduced to detect not only the climatic, but also the effect of anthropogenic impacts on river ice regime. As a result of river regulation on River Danube at Budapest a vanishing trend in river ice phenomena could be detected in the Danube records. The average ice-affected season shortened from 40 to 27 days, the average ice-covered season reduced greatly, from 27 to 7 days. In historical times the ice jams on the River Danube caused many times ice floods. The relative frequency of the break-up jam also decreased; moreover no ice flood occurred over the past 50 years. The changes due to hydropower usage are different upstream and downstream to the damming along the river. On Raba River upstream of the Nick dam at Ragyogóhíd, the ice-affected and ice-covered seasons were lengthened by 4 and 9 days, in contrast, downstream of the dam, the length of the ice-covered season was shortened by 7 days, and the number of ice-affected days decreased by 8 days at Árpás. During the observation period at Budapest on Danube River, the temperature requirements for river ice phenomena occurrence changed. Nowadays, much lower temperatures are needed to create the same ice phenomena compared to the start of the observations. For ice appearance, the mean winter air temperature requirements decreased from +2.39 °C to +1.71 °C. This investigation focused on anthropogenic effects on river ice regime, eliminating the impact of climatic conditions. Different forms of anthropogenic effects cause in most cases, a shorter length of ice-affected seasons and decreasing frequency of ice phenomena occurrence. Rising winter temperatures result the same changes in river ice regime. Climate change and river ice regime research should also take into account these anthropogenic impacts. Reference: Ashton, W.D. 1986. River and lake ice engineering. Water Resources Publication, USA 485 p. Starosolszky, Ö., 1990. Effect of river barrages on ice regime. Journal of Hydraulic Research 28/6, 711-718. Williams, G.P., 1970. A note on the break-up of lakes and rivers as indicators of climate change. Atmosphere 8 (1), 23-24.

  3. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  4. Greater Green River basin well-site selection

    SciTech Connect

    Frohne, K.H.; Boswell, R.

    1993-12-31

    Recent estimates of the natural gas resources of Cretaceous low-permeability reservoirs of the Greater Green River basin indicate that as much as 5000 trillion cubic feet (Tcf) of gas may be in place (Law and others 1989). Of this total, Law and others (1989) attributed approximately 80 percent to the Upper Cretaceous Mesaverde Group and Lewis Shale. Unfortunately, present economic conditions render the drilling of many vertical wells unprofitable. Consequently, a three-well demonstration program, jointly sponsored by the US DOE/METC and the Gas Research Institute, was designed to test the profitability of this resource using state-of-the-art directional drilling and completion techniques. DOE/METC studied the geologic and engineering characteristics of ``tight`` gas reservoirs in the eastern portion of the Greater Green River basin in order to identify specific locations that displayed the greatest potential for a successful field demonstration. This area encompasses the Rocks Springs Uplift, Wamsutter Arch, and the Washakie and Red Desert (or Great Divide) basins of southwestern Wyoming. The work was divided into three phases. Phase 1 consisted of a regional geologic reconnaissance of 14 gas-producing areas encompassing 98 separate gas fields. In Phase 2, the top four areas were analyzed in greater detail, and the area containing the most favorable conditions was selected for the identification of specific test sites. In Phase 3, target horizons were selected for each project area, and specific placement locations were selected and prioritized.

  5. Pesticide transport in the San Joaquin River Basin

    USGS Publications Warehouse

    Dubrovsky, N.M.; Kratzer, C.R.; Panshin, S.Y.; Gronberg, J.A.M.; Kuivila, K.M.

    2000-01-01

    Pesticide occurrence and concentrations were evaluated in the San Joaquin River Basin to determine potential sources and mode of transport. Land use in the basin is mainly agricultural. Spatial variations in pesticide occurrence were evaluated in relation to pesticide application and cropping patterns in three contrasting subbasins and at the mouth of the basin. Temporal variability in pesticide occurrence was evaluated by fixed interval sampling and by sampling across the Hydrograph during winter storms. Four herbicides (simazine, metolachlor, dacthal, and EPTC) and two insecticides (diazinon and chlorpyrifos) were detected in more than 50 percent of the samples. Temporal, and to a lesser extent spatial, variation in pesticide occurrence is usually consistent with pesticide application and cropping patterns. Diazinon concentrations changed rapidly during winter storms, and both eastern and western tributaries contributed diazinon to the San Joaquin River at concentrations toxic to the water flea Ceriodaphnia dubia at different times during the hydrograph. During these storms, toxic concentrations resulted from the transport of only a very small portion of the applied diazinon.

  6. The hydrochemistry of groundwater in the Densu River Basin, Ghana.

    PubMed

    Fianko, Joseph Richmond; Adomako, Dickson; Osae, Shiloh; Ganyaglo, Samuel; Kortatsi, Benony K; Tay, Collins K; Glover, Eric T

    2010-08-01

    Hydrochemical analyses of groundwater samples were used to establish the hydrochemistry of groundwater in the Densu River Basin. The groundwater was weakly acidic, moderately mineralized, fresh to brackish with conductivity ranging from of 96.6 microS cm(-1) in the North to 10,070 microS cm( - 1) in the South. Densu River basin have special economic significance, representing the countries greatest hydrostructure with freshwater. Chemical constituents are generally low in the North and high in the South. The order of relative abundance of major cations in the groundwater is Na+>Ca2+>Mg2+>K+ while that of anions is Cl->HCO3->SO4(2-)>NO3-. Four main chemical water types were delineated in the Basin. These include Ca-Mg-HCO3, Mg-Ca-Cl, Na-Cl, and mixed waters in which neither a particular cation nor anion dominates. Silicate weathering and ion exchange are probably the main processes through which major ions enter the groundwater system. Anthropogenic activities were found to have greatly impacted negatively on the quality of the groundwater. PMID:19629737

  7. Nutrient mobility within river basins: a European perspective

    NASA Astrophysics Data System (ADS)

    Neal, Colin; Heathwaite, A. L.

    2005-03-01

    The research presented in this special issue of the Journal of Hydrology is brought together with associated information of relevance to the thematic area in this concluding paper. Some of the important gaps in our current knowledge are outlined with a view to identifying future research needs for the development of an integrated analysis of nutrients in river basins and their management. Identification of these needs is important if we are to meet the defined set of catchment management objectives specified under the EU Water Framework Directive that must be delivered against a specified timetable. The Directive raises wider concerns such as how to define 'good ecological status' and pertinent to this special issue: what role nutrients have in framing this definition. In this paper, the importance of nutrient pressures on receiving waters is evaluated in the context of the key scientific uncertainties and options for characterising the biological, physico-chemical and hydro-morphological parameters necessary to meet the science needs of the Directive. An assessment of the significance of nutrient mobility within river basins for current understanding of freshwater systems functioning on a catchment and basin scale is made together with an evaluation of where research on nutrient pressures should be focussed in order underpin effective management.

  8. On the geographic range of freshwater fish in river basins

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Muneepeerakul, R.; Lynch, H. J.; Fagan, W. F.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-11-01

    We study the observed geographic distribution of freshwater fish species in the Mississippi-Missouri river system, focusing on the size and spatial distribution of geographic ranges. We use a particular metric of geographic distribution known as environmental resistance, a biogeographic index that quantifies the pointwise average spatial loss of community similarity to identify biogeographic regions of the river basin. Empirical patterns are compared with the results of a neutral metacommunity model in which local fish communities are interconnected through the ecological corridors provided by the river networks. Because neutral theory assumes that all individuals across all the species are functionally equivalent, the comparison is aimed to quantify how much of the geographic range patterns are the result of species' similarity rather than species differences, thus searching for an ecological null model for the analysis of biogeographic range. We also analyze how river network topology affects the spatial arrangement of species. Our results suggest that broad patterns of geographic range of freshwater fish in the Mississippi-Missouri can be explained simply by neutral dynamics engaged in river topology and competition for resources among species without invoking mechanisms that involve asymmetric interspecific interactions.

  9. Collaboration in River Basin Management: The Great Rivers Project

    NASA Astrophysics Data System (ADS)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or chosen from a predefined tag taxonomy. These comments and tag clouds may be used by the community to filter results and identify models or simulations of interest, e.g, by region, modeling approach, spatiotemporal resolution, etc. Users may discuss methods or results in real-time with a built-in chat feature. Separate user groups may be defined for logical groups of collaboration partners, e.g., expert modelers, land managers, policy makers, school children, or the general public, to optimize the collaboration signal-to-noise ratio for all.

  10. Scenarios of long-term river runoff changes within Russian large river basins

    NASA Astrophysics Data System (ADS)

    Georgiadi, A. G.; Koronkevich, N. I.; Milyukova, I. P.; Kislov, A. V.; Barabanova, E. A.

    2010-12-01

    The approach for long-term scenario projection of river runoff changes for Russian large river basins in XXI century includes method for scenario estimations for range of probable climatic changes, based on generalization of results of the calculations executed on ensemble of global climatic models and physical-statistical downscaling of their results are developed for mountain regions; hydrological model; method of alternative scenario estimations for water management complex transformation and GIS technologies. The suggested methodology allows to develop long-term scenario projection for: (1) changes of river runoff in large river basins as a result of climate changes and (2) transformations of the water management complex caused by social-economic changes, occurring in the country and their influence on river runoff. As one of the bases of methodology is used model of monthly water balance of RAS Institute of Geography (Georgiadi, Milyukova, 2000, 2002, 2006, 2009). As the climatic scenario the range of probable climatic changes which is estimated by results of calculations for deviations of climatic elements from their recent values which have been carried out on ensemble of global climatic models based on the two most contrasting scenario globally averaged air temperature changes is used. As ensemble of climatic scenarios results of the calculations executed on 10 global climatic models, included in the program of last experiment 20C3M-20th Century Climate in Coupled Models (Meehl et al., 2007), is used. The method for long-term scenario projection for transformation of water management complex characteristics and water consumption was developed. The method includes several blocks (Koronkevich, 1990, Koronkevich et al., 2009): growth of the population and development of an economy; different ways of use and protection of waters, in view of different technologies of prevention and decreasing of pollution of water resources. Development of scenarios assumes pre-projection and actually projection stages. On pre-projection stage the algorithm of calculation is developed; the choice of operational units for the projection is carried out; the modern condition of water resources and its connection with use of water in examined river basins is considered; tendencies in development of an economy and use of water resources during last decades are revealed. On actually projection stages are analyzed available forecasts concerning an expected population and indexes of development for the economy basic branches, and also specific water consumption, taking into account radical methods on prevention of water resources quality deterioration. Results of development of integrated scenarios are submitted by the examples for the largest river basins of Russian plain and Siberia (Volga, Don and Lena river basins).

  11. Hydroclimatological Aspects of the Extreme 2011 Assiniboine River Basin Flood

    NASA Astrophysics Data System (ADS)

    Brimelow, J.; Szeto, K.; Bonsal, B. R.; Hanesiak, J.; Kochtubajda, B.; Stewart, R. E.

    2014-12-01

    In the spring and early summer of 2011, the Assiniboine River Basin in Canada experienced an extreme flood that was unprecedented in terms of duration and volume of water. The flood had significant socioeconomic impacts and caused over one billion dollars in damage. Contrary to what one might expect for such an extreme flood, individual precipitation events before and during the 2011 flood were not extreme; instead, it was the cumulative impact and timing of precipitation events going back to the summer of 2010 that played a key role in the 2011 flood. The summer and fall of 2010 were exceptionally wet, resulting in soil moisture levels being much above normal at the time of freeze up. This was followed by above-average precipitation during the winter of 2010-2011, and record-breaking basin-averaged snow-water equivalent values in March and April 2011. Abnormally cold temperatures in March delayed the spring melt by about two weeks, with the result that the above-average seasonal melt freshet occurred close to the onset of abnormally heavy rains in May and June. The large-scale atmospheric flow during May and June 2011 favoured increased cyclone activity over the central and northern U.S., which produced an anomalously large number of heavy rainfall events over the basin. All of these factors combined to generate extreme surface runoff and flooding. We used JRA-55 reanalysis data to quantify the relative importance of snowmelt, soil moisture and spring precipitation in contributing to the unprecedented flood and to demonstrate how the 2011 flood was unique compared to previous floods in the basin. Data and research from this study can be used to validate and improve flood forecasting techniques over this important basin; our findings also raise important questions regarding the impact of climate change on basins that experience pluvial and nival flooding.

  12. Hydrologic effects of climate change in the Delaware River basin

    SciTech Connect

    McCabe, G.J., Jr.; Ayers, M.A. )

    1989-12-01

    The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2C; a 15 percent increase for a warming of 4C. A warming of 2 to 4C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from {minus}39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.

  13. Climatic Variation and River Flows in Himalayan Basins Upstream of Large Dams

    NASA Astrophysics Data System (ADS)

    Eaton, D.; Collins, D. N.

    2014-12-01

    High specific discharges from Himalayan headwater basins feed major reservoirs generating hydropower and supplying water to irrigation schemes across the Punjab plains of north-west India and Pakistan. Flow arises from seasonal winter snow cover, summer monsoon precipitation and melting glacier ice in varying proportions and differing absolute quantities along west -east axes of the Karakoram and western Himalaya. Discharge records for stations above Tarbela (Indus), Mangla (Jhelum), Marala (Chenab) and Bhakra (Sutlej) dams have been examined for periods between 1920 and 2009, together with precipitation and air temperature data for stations with long records (within the period 1893 to 2013) at elevations between 234 and 3015 m a.s.l. Ice-cover age in the basins above the dams was between 1 and 12 %. Flows in the Sutlej, Chenab and Jhelum reached maxima in the 1950s before declining to the 1970s. Flow in the Chenab and Jhelum increased to 1950s levels in the 1990s, before falling steeply into the 2000s mimicking variations in winter and monsoon precipitation. Discharge in the Indus at Tarbela increased from the 1970s, reaching a maximum in the late 1980s/early 1990s, before declining back to 1970s levels in the 2000s, flow being influenced not only by precipitation fluctuations but also by changes in air temperature affecting glacier melt in headwater basins. Runoff at Bhakra was augmented by flow from the Beas-Sutlej link canal after 1977, but natural flow in the Sutlej above Luhri reduced considerably from the 1990s influenced by declining flows in the relatively dry but large Tibetan portion of the basin area. Large year-to-year fluctuations of reservoir inflows are nonetheless based on significant sustained underlying discharge levels at all four reservoirs.

  14. Erosion in the juniata river drainage basin, Pennsylvania

    USGS Publications Warehouse

    Sevon, W.D.

    1989-01-01

    Previously calculated erosion rates througouth the Appalachians range from 1.2 to 203 m Myr-1. Calculation of erosion rates has been accomplished by: (1) evaluation of riverine solute and sediment load in either large or small drainage basins; (2) estimation from the volume of derived sediments; and (3) methods involving either 10Be or fission-track dating. Values of specific conductance and suspended sediment collected at the Juniata River gauging station at Newport, Pennsylvania are used, with corrections, along with a bedload estimate to determine the total amount eroded from the 8687 km2 drainage basin during the water years 1965-1986. The amount eroded is used to calculate a present erosion rate of 27 m Myr-1. ?? 1989.

  15. Analysis of the Tanana River Basin using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.; Carson-Henry, C.

    1981-01-01

    Digital image classification techniques were used to classify land cover/resource information in the Tanana River Basin of Alaska. Portions of four scenes of LANDSAT digital data were analyzed using computer systems at Ames Research Center in an unsupervised approach to derive cluster statistics. The spectral classes were identified using the IDIMS display and color infrared photography. Classification errors were corrected using stratification procedures. The classification scheme resulted in the following eleven categories; sedimented/shallow water, clear/deep water, coniferous forest, mixed forest, deciduous forest, shrub and grass, bog, alpine tundra, barrens, snow and ice, and cultural features. Color coded maps and acreage summaries of the major land cover categories were generated for selected USGS quadrangles (1:250,000) which lie within the drainage basin. The project was completed within six months.

  16. Hydrologic effects of climate change in the Delaware River basin

    USGS Publications Warehouse

    McCabe, Gregory J.; Ayers, Mark A.

    1989-01-01

    The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2??C; a 15 percent increase for a warming of 4??C. A warming of 2?? to 4??C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from -39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. Additional aspects of the subject are discussed.

  17. Medieval drought in the upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Meko, David M.; Woodhouse, Connie A.; Baisan, Christopher A.; Knight, Troy; Lukas, Jeffrey J.; Hughes, Malcolm K.; Salzer, Matthew W.

    2007-05-01

    New tree-ring records of ring-width from remnant preserved wood are analyzed to extend the record of reconstructed annual flows of the Colorado River at Lee Ferry into the Medieval Climate Anomaly, when epic droughts are hypothesized from other paleoclimatic evidence to have affected various parts of western North America. The most extreme low-frequency feature of the new reconstruction, covering A.D. 762-2005, is a hydrologic drought in the mid-1100s. The drought is characterized by a decrease of more than 15% in mean annual flow averaged over 25 years, and by the absence of high annual flows over a longer period of about six decades. The drought is consistent in timing with dry conditions inferred from tree-ring data in the Great Basin and Colorado Plateau, but regional differences in intensity emphasize the importance of basin-specific paleoclimatic data in quantifying likely effects of drought on water supply.

  18. On the occurrence of Anaecypris hispanica, an extremely endangered Iberian endemism, in the Guadalquivir River basin.

    PubMed

    De Miguel, R; Pino, E; Ramiro, A; Aranda, F; Pea, J P; Doadrio, I; Fernndez-Delgado, C

    2010-04-01

    The jarabugo Anaecypris hispanica, considered endemic to the Guadiana River basin, has been found in the Guadalquivir River. First genetic data showed a high degree of similarity to those of the Guadiana River populations. The genetic study recovered five different groups of haplotypes, the Guadalquivir River specimens belong to the largest and most widely extended group. PMID:20537024

  19. Denitrification in cypress swamp within the Atchafalaya River Basin, Louisiana.

    PubMed

    Lindau, C W; Delaune, R D; Scaroni, A E; Nyman, J A

    2008-01-01

    Nitrogen has been implicated as a major cause of hypoxia in shallow water along the Louisiana/Texas, USA coasts. Excess nitrogen (mainly nitrate) from Mississippi and Atchafalaya River drainage basins may drive the onset and duration of hypoxia in the northern Gulf of Mexico. Restoring and enhancing denitrification have been proposed to reduce and control coastal hypoxia and improve water quality in the Mississippi River Basin. Sediments were collected from six baldcypress restoration sites within the Atchafalaya River Basin, Louisiana, USA. The acetylene blockage technique was used to measure background and potential sediment denitrification rates. Denitrification fluxes were measured before nitrate addition (background rates) and after nitrate addition of 100mgNl(-1) (potential denitrification) at three seasonal temperatures. Background denitrification was low across all cypress swamp sites ranging from 0.9 to 8.8, 0.6 to 28.5 and 8.8 to 47.5g N evolved ha(-1)d(-1) at water/sediment column temperatures of 8, 22 and 30 degrees C, respectively. After nitrate addition, temperature had a significant effect on sediment denitrification potential. Maximum rates measured at 8, 22 and 30 degrees C were approximately 250-260, 550 and 970gNha(-1)d(-1), respectively. Most of the added nitrate in water columns, incubated at 8 degrees C, was removed after 65d compared to 32d and 17d at 22 and 30 degrees C, respectively. These results indicate cypress swamps have the potential to assimilate and process elevated levels of floodwater nitrate with denitrification being a major removal mechanism. PMID:17707455

  20. The cost of noncooperation in international river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  1. Water resources evolution and social development in Hai River basin, China

    NASA Astrophysics Data System (ADS)

    Peng, Dingzhi; You, Jinjun

    2010-05-01

    The Hai River basin is one of the three important bread baskets in China. As the rapid economy development in the basin, surface water reduction, groundwater overexploitation and water pollution had caused serious deterioration of the ecological environment. The rainfall, evaporation, surface water, groundwater, water quality, pollution sources, supply and demand of water resources were analyzed and the characteristic of water resources evolution was summarized in Hai River basin. Furthermore, the social and economic development and the relationship between water resources evolution and social development were discussed in the basin. It was found that the human activity is the first impact factor of water cycle in Hai River basin, and the climate change is the second. Finally, the attenuation of water resources in the basin was induced by the two factors together. For sustainable utilization of water resources in the Hai River basin, the unified management and optimal allocation of water resources should be strengthened and promoted.

  2. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  3. Assessment of River Habitat Quality in the Hai River Basin, Northern China.

    PubMed

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-09-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10⁴ km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10⁴ km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  4. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    PubMed Central

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-01-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  5. Flooding in the Mississippi River Basin in Minnesota, spring 2001

    USGS Publications Warehouse

    Mitton, Gregory B.

    2001-01-01

    During spring 2001 there was much flooding in the Mississippi River Basin in Minnesota. Greater than normal precipitation starting with late fall rains in 2000, greater than normal snowfalls, a delayed snowmelt, and record rains in April, all contributed to the flooding. Parts of the southern one-half of Minnesota had streamflows of magnitudes not seen in more than 30 years. Approximately 50 counties were declared disaster areas with greater than 34 million dollars in total reported flood damage (S. Neudahl, Department of Public Safety, Division of Emergency Management, oral commun. July 9, 2001).

  6. Simulation of upper Kuantan River basin streamflow using SWAT model

    NASA Astrophysics Data System (ADS)

    Mohd, Mohd Syazwan Faisal; Juneng, Liew; Tangang, Fredolin; Rahman, Nor Faiza Abd; Khalid, Khairi; Haron, Siti Humaira

    2015-09-01

    This paper examines the capabilities of Soil and Water Assessment Tools (SWAT) in simulating streamflow in a tropical watershed - upper Kuantan river basin. Two statistical metrics were used for model evaluation; i) coefficient of determination (R2) and ii) Nash-Sutcliffe efficiency index (NSI). The calibration result shows that there is a good agreement between the observed and simulated monthly streamflow with R2=0.84 and NSI=0.82. For validation the result is acceptable which the value of R2=0.59 and NSI=0.57. The results suggest that SWAT model is able to simulate the hydrologic characteristics of the tropical watershed well.

  7. Environmental state of aquatic systems in the Selenga River basin

    NASA Astrophysics Data System (ADS)

    Shinkareva, Galina; Lychagin, Mikhail

    2013-04-01

    The transboundary river system of Selenga is the biggest tributary of Lake Baikal (about 50 % of the total inflow) which is the largest freshwater reservoir in the world. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the environmental state of the river aquatic system. The main source of industrial waste in the Republic of Buryatia (Russia) is mining and in Mongolia it is mainly gold mining. Our study aimed to determine the present pollutant levels and main features of their spatial distribution in water, suspended matter, bottom sediments and water plants in the Selenga basin. The results are based on materials of the 2011 (July-August) field campaign carried out both in Russian and Mongolian part of the basin. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu and Mo in the Selenga River water which often are higher than maximum permissible concentrations for water fishery in Russia. In Russian part of the basin most contrast distribution is found for W and Mo, which is caused by mineral deposits in this area. The study showed that Mo and Zn migrate mainly in dissolved form, since more than 70% of Fe, Al, and Mn are bound to the suspended solids. Suspended sediments in general are enriched by As, Cd and Pb in relation to the lithosphere averages. Compared to the background values rather high contents of Mo, Cd, and Mn were found in suspended matter of Selenga lower Ulan-Ude town. Transboundary transport of heavy metals from Mongolia is going both in dissolved and suspended forms. From Mongolia in diluted form Selenga brings a significant amount of Al, Fe, Mn, Zn, Cu and Mo. Suspended solids are slightly enriched with Pb, Cu, and Mn, in higher concentration - Mo. The study of the Selenga River delta allowed determining biogeochemical specialization of the region: aquatic plants accumulate Mn, Fe, Cu, Cd, and to a lesser extent Zn. Plant species which are the most important for the biomonitoring were identified: Phragmites australis, Ceratophyllum demersum, different pondweeds (Potamogeton pectinatus, Potamogeton crispus, Potamogeton friesii), Myriophyllum spicatum, Batrachium trichophyllum. Among them some species are characterized by a group concentration of heavy metals: pondweeds (Mn, Fe, Cu), Myriophyllum spicatum (Fe, Mn, Cu), Batrachium trichophyllum (Cu, Fe, Mn, Zn). Hornwort (Ceratophyllum demersum) is a concentrator of Mn.

  8. A History of Flooding in the Red River Basin

    USGS Publications Warehouse

    Ryberg, Karen R.; Macek-Rowland, Kathleen M.; Banse, Tara A.; Wiche, Gregg J.

    2007-01-01

    The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, local, tribal, and academic entities to ensure that accurate and timely data are available for making decisions regarding public welfare and property during natural disasters and to increase public awareness of the hazards that occur with such disasters. The Red River of the North Basin has a history of flooding and this poster is designed to increase public awareness of that history and of the factors that contribute to flooding.

  9. Assessing the Effects of Climate Change on Tropical River Basins

    NASA Astrophysics Data System (ADS)

    Abad, Jorge D.; Montoro, Hugo; Latrubesse, Edgardo

    2013-01-01

    The Tropical Rivers 2012 international conference (http://www.crearamazonia.org/tropicalrivers2012/) was part of the International Geoscience Programme 582 project of The United Nations Educational, Scientific and Cultural Organization's International Union for Geological Sciences (UNESCO-IUGS). The aim of the IGCP 582 is to provide an integrated assessment of long-term direct effects of climate variability and human-induced change and management of tropical river basins. This assessment is to be achieved by identification, quantification, and modeling of key hydro-geomorphologic indicators during the past and present times, and assessment of the potential influences of global change on fluvial systems and the socio-economic implications of these changes.

  10. Environmental information document: Savannah River Laboratory Seepage Basins

    SciTech Connect

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  11. Water resources of the Penobscot River basin, Maine

    USGS Publications Warehouse

    Barrows, Harold Kilbrith; Babb, Cyrus Cates

    1912-01-01

    This report on the Penobscot River drainage system, the largest and one of the most important in Maine, has been compiled chiefly from the records, reports, and maps of the United States Geological Survey and from the results of surveys made in cooperation with the Maine State Survey Commission. The report includes all data on precipitation, stream flow, water storage, and water power that were available at the end of the calendar year 1909 and is accompanied by plans and profiles of the principal rivers, lakes, and ponds in the basin (Pis. XIII-XIX, at end of volume). Stream-flow data for 1910 and 1911 will be published in Water-Supply Papers 281 and 301, respectively.

  12. Development of Streamflow Projections under Changing Climate Conditions over Colorado River Basin Headwaters

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Piechota, T. C.; Gangopadhyay, S.; Pruitt, T.

    2010-12-01

    The current drought over the Colorado River Basin has raised concerns that the U.S. Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are impacted by forecasts developed by the Colorado Basin River Forecast Center (CBRFC). While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. Here, a bias-corrected, statistically downscaled dataset of projected climate is used to force the National Weather Service (NWS) River Forecasting System (RFS) utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. The NWS RFS is modified to evaluate the impact of changing climate to evapotranspiration rates. Adjusting evapotranspiration demands over the Gunnison resulted in a 6% to 13% average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10% to 15% average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5% to 8% increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins.

  13. Residence times in river basins as determined by analysis of long-term tritium records

    USGS Publications Warehouse

    Michel, R.L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources-prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of the fitted regression lines ranged from 0.95 to 1.01 (correlation coefficient > 0.96) for the basins studied. Values for the residence time of waters within the basins and average relative contributions of the within-year and long-term reservoirs to outflow were obtained. Values for river basin residence times ranged from 2 years for the Kissimmee River basin to 20 years for the Potomac River basin. The residence times indicate the time scale in which the basin responds to anthropogenic inputs. The modeled tritium concentrations for the basins also furnish input data for urban and agricultural settings where these river waters are used. ?? 1992.

  14. Residence times in river basins as determined by analysis of long-term tritium records

    NASA Astrophysics Data System (ADS)

    Michel, Robert L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km 2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources—prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of the fitted regression lines ranged from 0.95 to 1.01 (correlation coefficient > 0.96) for the basins studied. Values for the residence time of waters within the basins and average relative contributions of the within-year and long-term reservoirs to outflow were obtained. Values for river basin residence times ranged from 2 years for the Kissimmee River basin to 20 years for the Potomac River basin. The residence times indicate the time scale in which the basin responds to anthropogenic inputs. The modeled tritium concentrations for the basins also furnish input data for urban and agricultural settings where these river waters are used.

  15. Stream habitat and water-quality information for sites in the Buffalo River Basin and nearby basins of Arkansas, 2001-2002

    USGS Publications Warehouse

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Stream-habitat and water-quality information are presented for 52 sites in the Buffalo River Basin and adjacent areas of the White River Basin. The information was collected during the summers of 2001 and 2002 to supplement fish community sampling during the same time period.

  16. Wetlands Response to Climate Change across Susquehanna River Basin

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Yu, X.; Bhatt, G.; Kumar, M.

    2011-12-01

    The Susquehanna River Basin (SRB) lies in the northeastern United States and contains a mosaic of wetlands that range from permanently wet to temporary embedded in a landscape matrix of natural deciduous forest and agriculture. This study explores the prospects for SRB wetlands under modified hydrologic processes induced due to climatic change. Five mesoscale watersheds: Little Juniata River (560 sq. km.), Mahantango Creek (420 sq. km.), Young Womans Creek (120 sq. km.), Muddy Creek (344 sq. km.), and Lackawanna River (860 sq. km.) were selected as representative watersheds to include variability in climate, topography, soil, geomorphology, and land cover across SRB. We explored the broad spatial and temporal patterns across these watersheds between climate and wetland health using groundwater predictions from Penn State Integrated Hydrologic Modeling System (PIHM) -- a spatially distributed fully-coupled physics-based model. Near present (2004-2010) hourly climate data (precipitation, temperature, relative humidity, vapor pressure, wind velocity and solar radiation) were obtained from Phase 2 of the North American Land Data Assimilation System (NLDAS-2), climate reanalysis product. The predicted wetland locations were validated against the National Wetland Inventory. We analyzed the effect of spatial and temporal variability in hydrologic states such as streams, groundwater, and evaporative and hydrologic fluxes on the wetland hydrology. To predict the impacts of climate change on the health of the wetland, meteorological data for two 20 year climate periods (History: 1979-1998 and Scenario: 2046-2065) from Meteorological Research Institute's GCM were used as model forcing. The scenarios output showed different responses across the wetlands in the river basin. The key to this study is that a high resolution spatial and temporal model can resolve the coupled effects of wetlands in the context of complete mesoscale watershed simulations.

  17. An approach for assessing cumulative effects in a model river, the Athabasca River basin.

    PubMed

    Squires, Allison J; Westbrook, Cherie J; Dubé, Monique G

    2010-01-01

    Novel approaches addressing aquatic cumulative effects over broad temporal and spatial scales are required to track changes and assist with sustainable watershed management. Cumulative effects assessment (CEA) requires the assessment of changes due to multiple stressors both spatially and temporally. The province of Alberta, Canada, is currently experiencing significant economic growth as well as increasing awareness of water dependencies. There has been an increasing level of industrial, urban, and other land-use related development (pulp and paper mills, oil sands developments, agriculture, and urban development) within the Athabasca River basin. Much of the historical water quantity and quality data for this basin have not been integrated or analyzed from headwaters to mouth, which affects development of a holistic, watershed-scale CEA. The main objectives of this study were 1) to quantify spatial and temporal changes in water quantity and quality over the entire Athabasca River mainstem across historical (1966–1976) and current day (1996–2006) time periods and 2) to evaluate the significance of any changes relative to existing benchmarks (e.g., water quality guidelines). Data were collected from several federal, provincial, and nongovernment sources. A 14% to 30% decrease in discharge was observed during the low flow period in the second time period in the lower 3 river reaches with the greatest decrease occurring at the mouth of the river. Dissolved Na, sulfate, chloride, and total P concentrations in the second time period were greater than, and in some cases double, the 90th percentiles calculated from the first time period in the lower part of the river. Our results show that significant changes have occurred in both water quantity and quality between the historical and current day Athabasca River basin. It is known that, in addition to climatic changes, rivers which undergo increased agricultural, urban, and industrial development can experience significant changes in water quantity and quality due to increased water use, discharge of effluents, and surface run-off. Using the results from this study, we can begin to quantify dominant natural and man-made stressors affecting the Athabasca River basin as well as place the magnitude of any local changes into an appropriate context relative to trends in temporal and spatial variability. PMID:19558197

  18. Umatilla River Basin Fish Habitat Enhancement : FY 1991 Annual Report.

    SciTech Connect

    Northrop, Michael

    1992-01-01

    During the summer of 1991, construction continued on the Bonneville Power Administration funded anadromous fish habitat enhancement project in the Umatilla River sub-basin, Umatilla County, State of Oregon. 1991 was the final year of this five year project. Work started in May 1 and ended on November 31. Preconstruction activity consisted of final layout and design of the project, movement of approximately 600 cubic yards of large boulders and 12 log trucks loads of woody material to the construction site. A total of five rock weirs, five rock deflectors, 20 woody debris placements and 79 individual boulder placements were constructed in the South Fork and the main stem of the Umatilla River. A total of twelve log weirs, four rock weirs, two rock deflectors, and ten woody debris placements were placed in Meacham Creek. In addition, 47 weirs in Thomas Creek and the upper portion of the South Fork of the Umatilla River were repaired. Project monitoring consisted of sediment sampling above and below the Umatilla River construction project area, and mapping and photographing all structures.

  19. Artisanal fisheries of the Xingu River basin in Brazilian Amazon.

    PubMed

    Isaac, V J; Almeida, M C; Cruz, R E A; Nunes, L G

    2015-08-01

    The present study characterises the commercial fisheries of the basin of the Xingu River, a major tributary of the Amazon River, between the towns of Gurupá (at the mouth of the Amazon) and São Félix do Xingu. Between April, 2012, and March, 2014, a total of 23,939 fishing trips were recorded, yielding a total production of 1,484 tons of fish, harvested by almost three thousand fishers. The analysis of the catches emphasizes the small-scale and artisanal nature of the region's fisheries, with emphasis on the contribution of the motorised canoes powered by "long-tail" outboard motors. Larger motorboats operate only at the mouth of the Xingu and on the Amazon. Peacock bass (Cichla spp.), croakers (Plagioscion spp.), pacu (a group containing numerous serrasalmid species), aracu (various anostomids), and curimatã (Prochilodus nigricans) together contributed more than 60% of the total catch. Mean catch per unit effort was 18 kg/fisher-1.day-1, which varied among fishing methods (type of vessel and fishing equipment used), river sections, and time of the year. In most cases, yields varied little between years (2012 and 2013). The technical database provided by this study constitutes an important resource for the regulation of the region's fisheries, as well as for the evaluation of future changes resulting from the construction of the Belo Monte dam on the Xingu River. PMID:26691085

  20. ANOMALOUSLY PRESSURED GAS DISTRIBUTION IN THE WIND RIVER BASIN, WYOMING

    SciTech Connect

    Dr. Ronald C. Surdam

    2003-03-31

    Anomalously pressured gas (APG) assets, typically called ''basin-center'' gas accumulations, represent either an underdeveloped or undeveloped energy resource in the Rocky Mountain Laramide Basins (RMLB). Historically, the exploitation of these gas resources has proven to be very difficult and costly. In this topical report, an improved exploration strategy is outlined in conjunction with a more detailed description of new diagnostic techniques that more efficiently detect anomalously pressured, gas-charged domains. The ability to delineate gas-charged domains occurring below a regional velocity inversion surface allows operators to significantly reduce risk in the search for APG resources. The Wind River Basin was chosen for this demonstration because of the convergence of public data availability (i.e., thousands of mud logs and DSTs and 2400 mi of 2-D seismic lines); the evolution of new diagnostic techniques; a 175 digital sonic log suite; a regional stratigraphic framework; and corporate interest. In the exploration scheme discussed in this topical report, the basinwide gas distribution is determined in the following steps: (1) A detailed velocity model is established from sonic logs, 2-D seismic lines, and, if available, 3-D seismic data. In constructing the seismic interval velocity field, automatic picking technology using continuous, statistically-derived interval velocity selection, as well as conventional graphical interactive methodologies are utilized. (2) Next, the ideal regional velocity/depth function is removed from the observed sonic or seismic velocity/depth profile. The constructed ideal regional velocity/depth function is the velocity/depth trend resulting from the progressive burial of a rock/fluid system of constant rock/fluid composition, with all other factors remaining constant. (3) The removal of the ideal regional velocity/depth function isolates the anomalously slow velocities and allows the evaluation of (a) the regional velocity inversion surface (i.e., pressure surface boundary); (b) detection and delineation of gas-charged domains beneath the velocity inversion surface (i.e., volumes characterized by anomalously slow velocities); and (c) variations within the internal fabric of the velocity anomaly (i.e., variations in gas charge). Using these procedures, it is possible to construct an anomalous velocity profile for an area, or in the case of the Wind River Basin, an anomalous velocity volume for the whole basin. Such an anomalous velocity volume has been constructed for the Wind River Basin based on 1600 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. The technology was tested by constructing six cross sections through the anomalous velocity volume coincident with known gas fields. In each of the cross sections, a strong and intense anomalously slow velocity domain coincided with the gas productive rock/fluid interval; there were no exceptions. To illustrate the applicability of the technology, six target areas were chosen from a series of cross sections through the anomalous velocity volume. The criteria for selection of these undrilled target areas were (1) they were characterized by anomalous velocity domains comparable to known gas fields; (2) they had structural, stratigraphic, and temporal elements analogous to one of the known fields; and (3) they were located at least six sonic miles from the nearest known gas field. The next step in the exploration evolution would be to determine if the detected gas-charged domains are intersected by reservoir intervals characterized by enhanced porosity and permeability. If, in any of these targeted areas, the gas-charged domains are penetrated by reservoir intervals with enhanced storage and deliverability, the gas-charged domains could be elevated to drillable prospects. Hopefully, the work described in this report (the detection and delineation of gas-charged domains) will enable operators in the Wind River Basin and elsewhere to reduce risk significantly and increase the rate and magnitude of converting APG resources to energy reserves.

  1. Mercury in the Carson and Truckee River basins of Nevada

    USGS Publications Warehouse

    Van Denburgh, A.S.

    1973-01-01

    Upstream from major pre-1900 ore milling in the Carson and Truckee River basins, "background" concentrations of total mercury in the upper 1 to 3 inches of sand- to clay-sized stream-bottom sediment are less than 0.1 ug/g (microgram per gram). Downstream, measured concentrations were as much as 200 times the background level. Greatest concentrations were encountered in the Carson River basin within and immediately upstream from Lahontan Reservoir. Data from for the Carson River near Fort Churchill suggest that most of the mercury in the sampled bottom sediment may be present as mercuric sulfide or as a component of one of more non-methyl organic compounds or complexes, rather than existing in the metallic state. Regardless of state, this reservoir of mercury is of concern because of its possible availability to the aquatic food chain and, ultimately, to man. Among 48 samples of surface water from 29 sites in the two basins, the maximum measured total-mercury concentration was 6.3 ug/1 (micrograms per liter), for a sample from the Carson River near Fort Churchill. Except downstream from Lahontan Reservoir, most other measured values were less than 1 ug/1. (The U.S> Environmental Protection Agency interim limit for drinking water is 5 ug/1.) The total-mercury content of stream water is related to the mercury content of bottom sediments and the rate of streamflow, because the latter affects the suspended-sediment transporting capability of the stream,. Near Fort Churchill, total-mercury concentrations that might be expected at streamflows greater than those of 1971-72 are: as much as 10-15 ug/1 or more at 2,000 cfs (cubic feet per second), and as much as 10-20 ug/1 or more at 3,000 cfs. Elsewhere, expectable concentrations are much less because the bottom sediment contains much less mercury. The mercury contents of water samples from 36 wells in the Carson and Truckee basins were all less than 1 ug/1, indicating that mercury is not a problem in ground water, even adjacent to areas where stream-bottom sediment is enriched in mercury. Limited data indicate that the Carson River above Lahontan Reservoir and the reservoir itself contain only trace amounts of dissolved arsenic, cyanide, selenium, and silver. Among 17 additional trace metals analysed for on four unfiltered samples from the river above the reservoir, only six of the metals were consistently present in concentrations exceeding detection limits. Maximum measured concentrations for the six metals were: aluminum, >670 ug/1; iron, 2,500 ug/1; manganese, 1,100 ug/1; molybdenum, 15 ug/1; titanium, 110 ug/1; and vanadium, 15 ug/1. Presumably, the detected metals were associated largely or almost entirely with the suspended-sediment phase of the water samples. Selenium and silver concentrations in sampled well waters from the Carson and Truckee basins were uniformly low, with one exception--as elenium concentration of 18 ug/1 for the water of a shallow well southwest of Fallon (Public Health Service limit, 10 ug/1). The arsenic content of 15 sampled well waters ranged from 0 to 1,500 ug/1 (0 to 1.5 ppm), with seven of the values greater than 50 ug/1 (the Public Health Service limit).

  2. Historical trends and extremes in boreal Alaska river basins

    SciTech Connect

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flow events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.

  3. Historical trends and extremes in boreal Alaska river basins

    DOE PAGESBeta

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flowmore » events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.« less

  4. Historical trends and extremes in boreal Alaska river basins

    SciTech Connect

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/642013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flow events during the post-snowmelt period (late May and into the summer). The AprilMayJune seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<50%) and glacially influenced basins (24% to 33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.

  5. The Pine-Popple River basin--Hydrology of a wild river area, northeastern Wisconsin

    USGS Publications Warehouse

    Oakes, Edward L.; Field, Stephen J.; Seeger, Lawrence P.

    1973-01-01

    The Pine and Popple Rivers, virtually unaltered by man, flow through a semiprimitive area of forests, lakes, and glacial hills. White-water streams, natural lakes, fish and animal life, and abundant vegetation contribute to the unique recreational and aesthetic characteristics of the area. Resource planning or development should recognize the interrelationships within the hydrologic system and the possible effects of water and land-use changes upon the wild nature of the area. The basin covers about 563 square miles in northeastern Wisconsin. Swamps and wetlands cover nearly 110 square miles, and the 70 lakes cover about 11 square miles. The undulating topography is formed by glacial deposits overlying an irregular, resistant surface of bedrock. An annual average of 30 inches of precipitation, highest from late spring to early autumn, falls on the basin. Of this amount, evapotranspiration, highest in mid summer and late summer, averages 19 inches; the remaining 11 inches is runoff, which is highest in spring and early summer. Ground water from the glacial drift is the source of water for the minor withdrawal use in the basin. Ground-water movement is to streams and lakes and regionally follows the slope of topography and the bedrock surface, which is generally west to east. Ground water is of good quality, although locally high in iron. The major uses of water are for recreation and power generation. Domestic use is slight. No water is withdrawn from lakes or streams, and no sewage or industrial wastes are added to lakes or streams. Most of the flow of the Pine River is used for power generation. The main stems of the Pine and Popple Rivers contain 114 canoeable miles, of which 95 percent is without such major obstructions as falls or large rapids. In general streams support cold-water fish, and lakes support warm-water fish. Trout is the principal stream and game fish in the basin. The basin has no significant water problems. Future development between the Pine River power plant and the mouth of the Pine River should have little effect on the western two-thirds of the basin, already largely protected by public ownership or development planning agreements.

  6. Iron cycling in the Amazon River Basin: the isotopic perspective

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Vieira, Lucieth; Mulholland, Daniel; Seyler, Patrick; Sondag, Francis; Allard, Thierry

    2014-05-01

    With the global climate change and increasing anthropic pressure on nature, it is important to find new indicators of the response of complex systems like the Amazon River Basin. In particular, new tracers like iron isotopes may tell us much on processes such as the chemical exchanges between rivers, soils and the biosphere. Pioneering studies revealed that for some river waters, large δ57Fe fractionations are observed between the suspended and dissolved load (Bergquist and Boyle, 2006), and isotopic variations were also recognized on the suspended matter along the hydrological cycle (Ingri et al., 2006). On land, soil studies from various locations have shown that δ57Fe signatures depend mostly on the weathering regime (Fantle and DePaolo, 2004; Emmanuel et al., 2005; Wiederhold et al., 2007; Poitrasson et al., 2008). It thus seems that Fe isotopes could become an interesting new tracer of the exchanges between soils, rivers and the biosphere. We therefore conducted Fe isotope surveys through multidisciplinary field missions on rivers from the Amazon Basin. It was confirmed that acidic, organic-rich black waters show strong Fe isotope fractionation between particulate and dissolved loads. Furthermore, this isotopic fractionation varies along the hydrological cycle, like previously uncovered in boreal waters suspended matter. In contrast, unfiltered waters show very little variation with time. It was also found that Fe isotopes remain a conservative tracer even in the case of massive iron loss during the mixing of chemically contrasted waters such as the Negro and Solimões tributaries of the Amazon River. Given that >95% of the Fe from the Amazon River is carried as detrital materials, our results lead to the conclusion that the Fe isotope signature delivered to the Atlantic Ocean is undistinguishable from the continental crust value, in contrast to previous inferences. The results indicate that Fe isotopes in rivers represent a promising indicator of the interaction between organic matter and iron in rivers, and ultimately the nature of their source in soils. As such, they may become a powerfull tracer of changes occurring on the continents in response to both weathering context and human activities. References: Bergquist, B.A., Boyle, E.A., 2006. Iron isotopes in the Amazon River system: Weathering and transport signatures. Earth and Planetary Science Letters, 248: 54-68. Emmanuel, S., Erel, Y., Matthews, A., Teutsch, N., 2005. A preliminary mixing model for Fe isotopes in soils. Chemical Geology, 222: 23-34. Fantle, M.S., DePaolo, D.J., 2004. Iron isotopic fractionation during continental weathering. Earth and Planetary Science Letters, 228: 547-562. Ingri, J., Malinovsky, D., Rodushkin, I., Baxter, D.C., Widerlund, A., Andersson, P., Gustafsson, O., Forsling, W., Ohlander, B., 2006. Iron isotope fractionation in river colloidal matter. Earth and Planetary Science Letters, 245: 792-798. Poitrasson, F., Viers, J., Martin, F., Braun, J.J., 2008. Limited iron isotope variations in recent lateritic soils from Nsimi, Cameroon: Implications for the global Fe geochemical cycle. Chemical Geology, 253: 54-63. Wiederhold, J.G., Teutsch, N., Kraemer, S.M., Halliday, A.N., Kretzchmar, R., 2007. Iron isotope fractionation in oxic soils by mineral weathering and podzolization. Geochimica et Cosmochimica Acta, 71: 5821-5833.

  7. Water resources inventory of Connecticut Part 9: Farmington River basin

    USGS Publications Warehouse

    Handman, Elinor H.; Haeni, F. Peter; Thomas, Mendall P.

    1986-01-01

    The Farmington River basin covers 435 square miles in north-central Connecticut upstream from Tariffville and downstream of the Massachusetts state line. Most water in the basin is derived from precipitation, which averages 48 inches (366 billion gallons) per year. An additional 67 billion gallons of water per year enters the basin from Massachusetts in the West Branch of the Farmington River, Hubbard River, Valley Brook and some smaller streams. Of the total 433 billion gallons, 174 billion gallons returns to the atmosphere through evaporation and transpiration. 239 billion gallons flows out of the study area in the Farmington River at Tariffville, and 20 billion gallons is diverted for Hartford water supply. Variations in streamflow at 23 continuous-record gaging stations are summarized in standardized graphs and tables that can be used to estimate streamflow characteristics at other sites. For example, mean flow and low-flow characteristics such as the 7-day annual minimum flow for 2-year and 10-year recurrence intervals, have been determined for many partial-record stations from the data for the 23 continuous-record stations. Of the 31 principal lakes, ponds, and reservoirs in the basin, eight have usable storage capacities of more than 1 billion gallons. Two of the largest, Colebrook River Lake and Barkhamsted Reservoir, have more than 30 billion gallons usable storage. Floods have occurred in the area in every month of the year. The greatest known flood on the Farmington River was in August 1955, which had a peak flow of 140,000 cubic feet per second at Collinsville. Since then, three major floodcontrol reservoirs have been constructed to reduce the hazards of high streamflow. The major aquifers underlying the basin are composed of unconsolidated materials (stratified drift and till) and bedrock (sedimentary, igneous, and metamorphic). Stratified drift overlies till and bedrock in valleys and lowlands; it averages about 90 feet in thickness, and is capable of large sustained yields of water to individual wells. Based on hydrologic characteristics and available recharge, sixteen stratified-drift areas are selected as the most favorable for large-scale development. Potential yields can be estimated by several methods. Small water supplies can be obtained from all aquifers. Wells in bedrock yield at least one to two gallons per minute at most sites. The probability of adequate yields for domestic supply is greater from sedimentary than from crystalline bedrock and is also greater from stratified-drift overburden than from till. The quality of water from all sources in the basin is good except where adversely affected by swamp drainage, aquifer composition or human activities. The water is generally low in dissolved-solids concentration and is soft to moderately hard. Surface water is less mineralized than ground water, especially during high-flow conditions when it is primarily direct runoff. Samples of water collected from 20 streams during high flow had 34 mg/L median dissolved-solids concentration and 16 mg/L median hardness. Samples collected from the same sites at low flow had 52 mg/L median dissolved solids and 28 mg/L median hardness. In contrast, water from wells had 112 mg/L median dissolved-solids concentration and 60 mg/L median hardness. Iron and manganese occur in objectionable concentrations ~n a few parts of the basin where streams drain swamps and aquifers are rich in iron- and manganese-bearing minerals. Five percent of streams at high flow, 21 percent at low flow, and 7 percent of ground-water samples contained iron in sufficient concentration to cause stains on plumbing fixtures and laundry. Human activities have modified the quality of water in parts of the basin. The high bacterial content of the Pequabuck River. and the high nitrate and chloride concentrations in some ground-water samples, are evidence of man’s influence. The quantity and quality of water in the basin’s streams and aquifers are satisfactory for a wide variety of uses. and, with suitable treatment, may be used for most purposes. The total amount of water used by 21 principal public supplies within the basin was 29 billion gallons in 1970. About 70 percent of this was used for domestic and commercial purposes, and nearly 30 percent was used by industry. Analyses of water from these systems show good quality.

  8. Basin analysis studies of lower Paleozoic rocks, Powder River basin, Wyoming and Montana

    SciTech Connect

    Macke, D.L.

    1988-07-01

    The lower Paleozoic (Cambrian through Mississippian) sedimentary rocks of the Powder River basin represent nearly half of Phanerozoic time, yet they remain virtually unexplored in the subsurface. Rocks of the same age in the Big Horn and Williston basins and in the Central Montana trough have produced much oil and gas, as have the overlying Pennsylvanian strata of the Powder River basin. A synthesis of published stratigraphic information, together with a regional analysis of sedimentary sequences, has been undertaken to evaluate the economic potential of the lower Paleozoic formations. The lack of an economic impetus to study these rocks has hampered the development of precise depositional models for these sequences. Furthermore, the depths of prospective beds, as well as long-standing misconceptions about the regional stratigraphy, have also served to restrain exploration. Stratigraphic studies have documented a succession of marine transgressions and regressions on the flanks of a highland in southeastern Wyoming. The highland persisted as a subdued geographic feature through most of early Paleozoic time, until it rose at the end of the Mississippian. Erosion during the Late Silurian and Devonian removed much of the depositional record in the area, but onlap can be demonstrated with relative certainty for Ordovician and Mississippian rocks. The repetition of sedimentologic features indicates persistent geologic controls in the region and suggests that these paleoenvironments might provide good targets for exploration.

  9. Ecosystem-based river basin management: its approach and policy-level application

    NASA Astrophysics Data System (ADS)

    Nakamura, Takehiro

    2003-10-01

    Integrated Water Resources Management is an approach aimed at achieving sustainable development with a focus on water resources. This management concept is characterized by its catchment approach, inter-sectoral and interdisciplinary approach and multiple management objectives. There is an effort to widen the management scope to include multiple resources and environmental considerations in the river basin management schemes. In order to achieve river basin management objectives and multiple global environmental benefits, an ecosystem approach to river basin management is promoted. The Ecosystem-based River Basin Management aims to maximize and optimize the total value of the ecosystem functions relevant to classified ecosystems within a river basin by conserving and even enhancing these functions for the next generations. A procedure to incorporate such ecosystem functions into policy framework is presented in this paper. Based on this policy framework of the Ecosystem-based River Basin Management, a case study is introduced to apply the concept to the Yangtze River basin. According to the United Nations Environment Programme (UNEP) assessment report, this basin suffers from frequent floods of large magnitudes, which are due to the degradation of ecosystem functions in the basin. In this case, the government of the People's Republic of China introduced Ecosystem Function Conservation Areas to conserve ecosystem functions related to flood events and magnitude, such as soil conservation, agricultural practices and forestry, while producing economic benefits for the local population. Copyright

  10. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  11. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  12. 75 FR 11554 - Yakima River Basin Conservation Advisory Group Charter Renewal; Notice of Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... Washington on the structure and implementation of the Yakima River Basin Water Conservation Program. In... identification and implementation of structural and nonstructural cost-effective water conservation measures in... Bureau of Reclamation Yakima River Basin Conservation Advisory Group Charter Renewal; Notice of...

  13. Power-law tail probabilities of drainage areas in river basins

    USGS Publications Warehouse

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  14. An Exploration, for the Upper Indus Basin, of Elevation Dependency in the Relationships Between Locally Observed Near Surface Air Temperature (SAT) and Remotely-Sensed Land Surface Temperature (LST)

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Fowler, H. J.; Blenkinsop, S.; Kilsby, C. G.; Archer, D. R.; Hardy, A. J.; Holderness, T. D. C.

    2014-12-01

    The distribution of ground-based observations of near-surface air temperature (SAT) is extremely skewed toward low elevation areas. Land surface temperature (LST) remote sensing data products -- from thermal and infrared wavelength satellite imagery -- provide spatial coverage independent of elevation, although they only provide values for "clear sky" conditions, the prevalence of which may be influenced by elevation-dependent factors. It is thus imperative for researchers studying EDW to characterise the relationship between observations of "all-sky" SAT and "clear-sky" thermal/infrared (TIR) LST in order to overcome the extreme sparseness of SAT observations at high elevations. Drawing on local SAT observation data from both manned meteorological stations and AWS units covering an elevation range from 1500 to 4700m asl in the Upper Indus Basin, coupled with cloud climatologies from MODIS and global reanalyses, this study develops "clear-sky" and "all-sky" comparative, site-based climatologies of: [a] ground-observed SAT [b] reanalysis SAT and LST (skin surface temperature) Relationships between these climatologies and corresponding clear-sky/TIR satellite-retrieved LST are quantitatively assessed in the context of elevation-dependency and cloud cover prevalence. The implications of these relationships are discussed in the context of efforts to develop a multi-decadal TIR LST data product. While multi-decadal and even centennial trends are calculated from station-based observations of SAT, the relatively short record lengths of satellite-borne instruments used to produce currently available TIR LST data products better lend themselves to characterisation of interannual variability than trend calculation. Thus progress is detailed on EDW-driven efforts to validate such an LST product for the Himalayan region using historical imagery from the second and third generation of the Advanced Very High Resolution Radiometer (AVHRR/2, AVHRR/3) instrument flown on NOAA satellite platforms since the mid-1980s through present day. Progress and remaining challenges are quantified in terms of skill and bias of AVHRR LST with respect to MODIS LST as well the intrinsically coupled AVHRR cloud product with respect to its MODIS analogue.

  15. FUTURE WATER ALLOCATION AND IN-STREAM VALUES IN THE WILLAMETTE RIVER BASIN: A BASIN-WIDE ANALYSIS

    EPA Science Inventory

    Our research investigated the impact on surface water resources of three different scenarios for the future development of the Willamette River Basin in Oregon (USA). Water rights in the basin, and in the western United States in general, are based on a system of law that binds ...

  16. Modelling hydrological responses of Nerbioi River Basin to Climate Change

    NASA Astrophysics Data System (ADS)

    Mendizabal, Maddalen; Moncho, Roberto; Chust, Guillem; Torp, Peter

    2010-05-01

    Future climate change will affect aquatic systems on various pathways. Regarding the hydrological cycle, which is a very important pathway, changes in hydrometeorological variables (air temperature, precipitation, evapotranspiration) in first order impact discharges. The fourth report assessment of the Intergovernmental Panel for Climate Change indicates there is evidence that the recent warming of the climate system would result in more frequent extreme precipitation events, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. Available research and climate model outputs indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99%). For example, it is likely that up to 20% of the world population will live in areas where river flood potential could increase by the 2080s. In Spain, within the Atlantic basin, the hydrological variability will increase in the future due to the intensification of the positive phase of the North Atlantic Oscillation (NAO) index. This might cause flood frequency decreases, but its magnitude does not decrease. The generation of flood, its duration and magnitude are closely linked to changes in winter precipitation. The climatic conditions and relief of the Iberian Peninsula favour the generation of floods. In Spain, floods had historically strong socio-economic impacts, with more than 1525 victims in the past five decades. This upward trend of hydrological variability is expected to remain in the coming decades (medium uncertainty) when the intensification of the positive phase of the NAO index (MMA, 2006) is considered. In order to adapt or minimize climate change impacts in water resources, it is necessary to use climate projections as well as hydrological modelling tools. The main objective of this paper is to evaluate and assess the hydrological response to climate changes in flow conditions in Nerbioi river basin (Basque Country, North of Spain). So that adaptation strategies can be defined. In order to fulfil this objective four subobjectives are defined: (1)selection of the future climate projections for the case study area from a wide spectrum of possibilities; (2) model the hydrological processes of the basin with a physically distributed complex hydrological model; (3) validation of the hydrological model with observation data; and (4) runoff simulation introducing regional climate model data selected. The analysis of climate models suggests that extreme precipitation in the Basque Country increased by about 10% during the twenty-first century. This increase of extreme precipitations raised discharge and water level in Nerbioi river basin. That is why in the 21st century it is expected that the flood-prone area will expand for precipitation with a return period of 50 years. In this context, it is necessary to define and evaluate different adaptation options which are already in practice or conceivable according to the current scientific knowledge. As well as evaluate the adaptation measures in terms of their ability to lower the vulnerability of water resources to climate change. For example, land use change could be a useful tool to adapt our basin systems. The land use plays an important role on the water balance of a river by varying the proportion of precipitation that runs off and the fraction that is lost by evapotranspiration. Therefore, both climate change and adaptation strategies will have an impact on the hydrodynamic conditions of rivers; particularly the changes in flow conditions will have a severe ecological, economical and social impact. As future work, adaptation measures will introduce in the future runoff simulation in order to evaluate the effectiveness and as a decision-making tool to operational organisations.

  17. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-11-01

    Total nitrogen (TN), which consists of total particulate nitrogen (TPN) and total dissolved nitrogen (TDN), is transported with not only in river channels but also across the entire river basin, including via ground water and migratory animals. In general, TPN export from an entire river basin to the ocean is larger than TDN in a mountainous region. Since marine derived nutrients (MDN) are hypothesized to be mainly transported as suspended matters from the ground surface, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated TN export from an entire river basin, and also we estimated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen input across a river basin. The maximum potential contribution of TN entering the river basin by salmon was found to be 23.8 % relative to the total amount of TN exported from the river basin. The contribution of particulate nitrogen based on suspended sediment from the ocean to the river basin soils was 22.9 % with SD of 3.6 % by using stable isotope analysis (SIA) of nitrogen (δ15N).

  18. [Spatiotemporal characteristics of reference crop evapotranspiration in inland river basins of Hexi region].

    PubMed

    Lü, Xiao-Dong; Wang, He-ling; Ma, Zhong-ming

    2010-12-01

    Based on the 1961-2008 daily observation data from 17 meteorological stations in the inland river basins in Hexi region, the daily reference crop evapotranspiration (ET0) in the basins was computed by Penman-Monteith equation, and the spatiotemporal characteristics of seasonal and annual ET0 were studied by GIS and IDW inverse-distance spatial interpolation. In 1961-2008, the mean annual ET0 (700-1330 mm) increased gradually from southeast to northwest across the basins. The high value of mean annual ET0 in Shule River basin and Heihe River basin declined significantly (P < 0.05), with the climatic trend rate ranged from -53 to -10 mm (10 a)(-1), while the low value of mean annual ET0 in Shiyang River basin ascended slightly. The ET0 in the basins had a significant annual fluctuation, which centralized in Linze and decreased toward northwest and southeast. The ET0 in summer and autumn contributed most of a year, and the highest value of ET0 all the year round always appeared in Shule River basin. The climatic trend rate was in the order of summer > spring > autumn > winter. Wind speed and maximum temperature were the primary factors affecting the ET0 in the basins. Furthermore, wind speed was the predominant factor of downward trend of ET0 in Shule and Heihe basins, while maximum temperature and sunshine hours played an important role in the upward trend of ET0 in Shiyang basin. PMID:21443004

  19. Yakima River Basin Phase II Fish Screen Evaluations, 2001.

    SciTech Connect

    Carter, J.A.; McMichael, Geoffrey A.; Chamness, M.A.

    2002-01-01

    In the summer and fall of 2001 the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year study for the Bonneville Power Administration (BPA) on the effectiveness of fish screening devices. Data were collected to determine if velocities in front of the screens and in the bypasses met current National Marine Fisheries Service (NMFS) criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. Based on our studies in 2001, we concluded that: in general, water velocity conditions at the screen sites met fish passage criteria set forth by the NMFS; most facilities efficiently protected juvenile fish from entrainment, impingement, or migration delay; automated cleaning brushes generally functioned properly; chains and other moving parts were well greased and operative; and removal of sediment build-up and accumulated leafy and woody debris are areas that continue to improve. Continued periodic screen evaluations will increase the effectiveness of screen operation and maintenance practices by confirming the effectiveness (or ineffectiveness) of screen operating procedures at individual sites. Where procedures are being followed and problems still occur, evaluation results can be used to suggest means to better protect fish at screening facilities. There has been a progressive improvement in the maintenance and effectiveness of fish screen facilities in the Yakima River Basin during the last several years, in part, as a result of regular screen evaluations and the rapid feedback of information necessary to improve operations and design of these important fish protection devices. Continued periodic screen evaluations will increase the effectiveness of screen operation and maintenance practices by confirming the effectiveness (or ineffectiveness) of screen operating procedures at individual sites. Where procedures are being followed and problems still occur, evaluation results can be used to suggest means to better protect fish at screening facilities. There has been a progressive improvement in the maintenance and effectiveness of fish screen facilities in the Yakima River Basin during the last several years, in part, as a result of regular screen evaluations and the rapid feedback of information necessary to improve operations and design of these important fish protection devices.

  20. Glacial stratigraphy of Stough Creek Basin, Wind River Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Dahms, Dennis E.

    2002-01-01

    Multiparameter relative-age (RA) techniques identify four post-Pinedale morphostratigraphic units in each of three cirque valleys tributary to Stough Creek Basin, Wind River Range, WY. Soil development, lichenometry, boulder weathering characteristics, and the geomorphic relations among morphostratigraphic units indicate glacial deposits here correspond to the sequence previously described in the Temple Lake valley [Arct. Alp. Res. 6 (1974) 301]. Cirque deposits in Stough Creek Basin correspond to the Temple Lake, Alice Lake, Black Joe, and Gannett Peak alloformations [GSA Abs. Prog. 32 (2000) A-16]. 10Be ages from moraine boulders and polished-striated bedrock [Assoc. Am. Geogr. Annu. Mtg. Abs. (2000) 155] support recent numeric age estimates from Temple Lake and Titcomb Basin that indicate the Temple Lake Alloformation corresponds to the Younger Dryas climate episode [Geogr. Phys. Quat. 41 (1987) 397; Geology 23 (1995) 877; Science 268 (1995) 1329; GSA Abs. Prog. 31 (1999) A-56]. Soils described from Pinedale recessional deposits here represent the first systematic description of Pinedale alpine deposits in the WRR.

  1. Colorado River Basin Terrestrial Water Storage Dynamics and Vegetation Response

    NASA Astrophysics Data System (ADS)

    Durcik, M.; Troch, P. A.; Gupta, H. V.

    2009-12-01

    Terrestrial water storage (TWS) is an important hydrologic variable that defines the state of a river basin (e.g. floods and droughts) and vegetation response to the water availability and incoming energy. Direct determination of TWS is difficult due to insufficient in-situ data on space-time variability of hydrologic stores (snow, soil moisture, and groundwater) and fluxes (precipitation, evapotranspiration). To better understand intra and inter annual variability of TWS and vegetation response to waters storage changes we implemented three alternative methods to estimate TWS changes: (1) the Basin-Scale Water Balance (BSWB) using North American Regional Reanalysis (NARR) dataset; (2) the Variable Infiltration Capacity (VIC) forced with gridded meteorological data; and (3) new remotely sensed gravity field data from the Gravity Recovery and Climate Experiment (GRACE). Vegetation is represented by the normalized difference vegetation index (NDVI) obtained from MODIS and AVHRR estimates. Preliminary results show strong correlations between TWS data and its components (precipitation, modeled shallow, deep soil moisture, etc.) and vegetation greenness and different vegetation response times to available water in upper and lower basins. TWS data are generated in near-real time, stored in the SAHRA Geodatabase and available at http://voda.hwr.arizona.edu/twsc/sahra/.

  2. Operational Hydrologic Forecasts in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Shrestha, K. Y.; Curry, J. A.; Webster, P. J.; Toma, V. E.; Jelinek, M.

    2013-12-01

    The Columbia River Basin (CRB) covers an area of ~670,000 km2 and stretches across parts of seven U.S. states and one Canadian province. The basin is subject to a variable climate, and moisture stored in snowpack during the winter is typically released in spring and early summer. These releases contribute to rapid increases in flow. A number of impoundments have been constructed on the Columbia River main stem and its tributaries for the purposes of flood control, navigation, irrigation, recreation, and hydropower. Storage reservoirs allow water managers to adjust natural flow patterns to benefit water and energy demands. In the past decade, the complexity of water resource management issues in the basin has amplified the importance of streamflow forecasting. Medium-range (1-10 day) numerical weather forecasts of precipitation and temperature can be used to drive hydrological models. In this work, probabilistic meteorological variables from the European Center for Medium Range Weather Forecasting (ECMWF) are used to force the Variable Infiltration Capacity (VIC) model. Soil textures were obtained from FAO data; vegetation types / land cover information from UMD land cover data; stream networks from USGS HYDRO1k; and elevations from CGIAR version 4 SRTM data. The surface energy balance in 0.25° (~25 km) cells is closed through an iterative process operating at a 6 hour timestep. Output fluxes from a number of cells in the basin are combined through one-dimensional flow routing predicated on assumptions of linearity and time invariance. These combinations lead to daily mean streamflow estimates at key locations throughout the basin. This framework is suitable for ingesting daily numerical weather prediction data, and was calibrated using USGS mean daily streamflow data at the Dalles Dam (TDA). Operational streamflow forecasts in the CRB have been active since October 2012. These are 'naturalized' or unregulated forecasts. In 2013, increases of ~2600 m3/s (~48% of average discharge for water years 1879-2012) or greater were observed at TDA during the following periods: 29 March to 12 April, 5 May to 11 May, and 19 June to 29 June. Precipitation and temperature forecasts during these periods are shown along with changes in the model simulated snowpack. We evaluate the performance of the ensemble mean 10 days in advance of each of these three events, and comment on how the distribution of ensemble members affected forecast confidence in each situation.

  3. Performance of dynamical downscaling for Colorado River basin

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Zhu, C.; Lettenmaier, D. P.

    2009-12-01

    The ongoing 2000s western U.S. drought has focused attention on drought susceptibility of the Colorado River basin. There is a concern that many climate models predict permanently drier conditions for the next century over the Colorado basin, however interpretation of these projections is complicated by their coarse spatial resolution which does not resolve the role of the relatively small mountain headwaters area that is the source of much of the basin’s runoff. Regional climate models (RCMs) are able to resolve these spatial scales, and for this reason arguably should be a preferred source of information about the future hydrology of the Colorado basin. We use the Advanced Research version of the Weather Research and Forecasting (WRF/ARW) regional climate model to explore the effects of climate change on the hydrology of the basin. Initially, we selected three years -- 1993 (wet), 2002 (dry), and 1980 (normal) as test cases, with boundary conditions from the NCEP/DOE reanalysis. For these years, we evaluated the impact of domain size through comparison with WRF runs performed for the North American Regional Climate Change Assessment Program (NARCCAP) Phase I, with particular attention to the Colorado River basin. We also tested spatial resolutions of 16 km and 25 km in addition to the NARCCAP 50 km spatial resolution. We then performed an 11-year current climate run for the period 1980-1990 with boundary conditions from the NCEP/DOE reanalysis at 50 km spatial resolution and compared spatial patterns of simulated winter precipitation and snow water equivalent (SWE) with the 1/8-degree historical North American Land Data Assimilation System (NLDAS) data set. Subsequently, we evaluated the impacts of projected future climate change on changes in the spatial distribution of winter precipitation and SWE using 10-year runs with boundary conditions taken from the CCSM General Circulation Model for current and mid-21st century boundary conditions. We also compared the RCM results for current and future climate with inferred changes taken directly from the GCM via statistical downscaling.

  4. ECOLOGICAL ENVIRONMENT ASSESSMENT OF AQUATIC ORGANISMS THROUGH FOOD CHAIN IN RIVER BASIN UNDER CHEMICAL EXPOSURE

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Tomoya; Suzuki, Atsunori; Kojiri, Toshiharu

    Since the traditional river basin assessment has not been employed from the ecological viewpoint, the sound river basin management was not completed. In this paper, introducing the concepts of food chain, benthic organisms, and fishes for ecological system, the river basin simulation model based on physical dynamics of discharge and toxic-chemical is proposed. The sustainability of aquatic organisms and the accumulation impacts of toxic-chemicals in fish bodies are considered through CASM and PBPK. Finally, the Kamo River in Kyoto, Japan, is applied for verification.

  5. Planning status report: water resources appraisal for hydroelectric licensing, Penobscot River basin, Maine

    SciTech Connect

    Not Available

    1980-08-01

    The physical, demographic, and economic characteristics of the Penobscot River basin in central Maine are described. Data are presented on existing and potential water resource developments and on water use by the single thermal power plant in the basin. The statistics on potential and retired hydro power projects in the basin are tabulated. (LCL)

  6. Calibration and application of TRMM precipitation data in Irrawaddy River Basin

    NASA Astrophysics Data System (ADS)

    Qu, W.; Lu, J. X.; Zhang, T. T.; Tan, Y. N.; Song, W. L.; Pang, Z. G.

    2015-08-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite rainfall data were assessed and calibrated using limited ground meteorological and hydrological data in Irrawaddy River basin, a watershed with complex terrain conditions but lack of data. A correction factor was determined to adjust TRMM data, taking basin water balance and terrain slopes into consideration. A distributed hydrological model SWAT was established and used to simulate the basin rainfall-runoff processes from 2001 to 2011, driven by the calibrated TRMM rainfall data series. Results show that, in a data scarce basin like Irrawaddy River basin, such a water balanced based TRMM data calibration method is suitable and reliable.

  7. [Variation characteristics of runoff coefficient of Taizi River basin in 1967-2006].

    PubMed

    Deng, Jun-Li; Zhang, Yong-Fang; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Wu, Jia-Bing

    2011-06-01

    Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River. All the embranchments except Xihe River had an obvious abrupt change in the annual runoff coefficient, and the beginning year of the abrupt change differed with embranchment. Annual precipitation had significant effects on the annual runoff coefficient. PMID:21941759

  8. Drainage basin security of hazardous chemical fluxe in the Yodo River basin.

    PubMed

    Matsui, S

    2004-01-01

    The Yodo River basin consists of three major tributary basins (and other small river basins) namely Uji, Katsura and Kizu, which overlap respectively Shiga, Kvoto and Nara prefectures' administrative areas. Lake Biwa, the largest lake in Japan, drains water through the Uji river. The water quality of the lake, in terms of BOD, continuously improved over the last decade. However, the quality in terms of COD did not show any improvement in spite of a large amount of infrastructure finance being introduced. Eutrophication of the lake still continues, showing no improvement in the nitrogen concentration level. Non-point as well as point source control is not strong enough. There is a gap between BOD and COD evaluations of the lake water quality. Hazardous chemical fluxes are estimated based upon PRTR reports of Japan (2001). PCBs are still discharged into the lake, although the report of Shiga Prefecture showed zero discharge. Dace fish monitoring clearly showed that PCB contamination of the fish had not changed since the 1980s in spite of a ban on use and production of PCBs in the 1970s. There is still leakage of PCBs into the lake. The major exposure of dioxins to Japanese is fish rather than meat and eggs. The risk of water contamination must take into consideration not only drinking water safety but also ecological magnification of food chains in water. The ecological health aspect of hazardous chemicals is also important, such as organotins with imposex of sea snails. Finally, public participation in hazardous chemical management is very important using the method of risk communication based upon the annual report of PRTR in Japan. PMID:15195438

  9. Intercomparison of CMIP5 simulations of summer precipitation, evaporation, and water vapor transport over Yellow and Yangtze River basins

    NASA Astrophysics Data System (ADS)

    Bao, Jiawei; Feng, Jinming

    2016-02-01

    Precipitation and other hydrologic variables play important roles in river basins. In this study, summer precipitation, evaporation, and water vapor transport from 16 models that have participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the Yellow River basin (a water-limited basin) and the Yangtze River basin (an energy-limited basin) over the period 1986-2005 are analyzed and evaluated. The results suggest that most models tend to overestimate precipitation in the Yellow River basin, whereas precipitation in the Yangtze River basin is generally well simulated. Models that overestimate precipitation in the Yellow River basin also simulate evaporation with large positive biases. For water vapor transport, models and reanalysis data concur that both basins are moisture sinks in summer. In addition, models that strongly overestimate precipitation in the Yellow River basin tend to produce strong water vapor convergence in that region, which is likely to be related to the situation that the western Pacific subtropical high (WPSH) simulated by these models strengthens and advances further westward and northward, resulting in stronger water vapor convergence in the Yellow River basin. Moreover, convective precipitation biases simulated by the models are also partially responsible for their total precipitation biases. Finally, summer precipitation and evaporation are negatively correlated in the Yangtze River basin, whereas the relation between these variables is weak in the Yellow River basin. In both basins, precipitation and water vapor convergence are positively correlated, which is well simulated by all models.

  10. Umatilla River Basin Fish Habitat Enhancement : FY 1990 Annual Report.

    SciTech Connect

    Northrop, Michael

    1990-01-01

    During the summer of 1990, construction continued on the Bonneville Power Administration funded anadromous fish habitat enhancement project in the Umatilla River sub-basin, Umatilla County, State of Oregon. Work started on 5/1/90 and ended 10/30/90. A total of five large log weirs, eight large rock weirs, 17 associated weir structures, 19 small to medium rock deflectors, four bank and island reinforcements, three rock flow controls, 19 woody debris placements, and 85 individual boulders were constructed in the South Fork of the Umatilla River. In addition, one large rock weir was constructed at the confluence of the North and South Forks of the Umatilla River, and repair work was completed on 33 structures in Thomas Creek. Also, 300 cubic yards of rock and some logs and woody material were moved on site for use in 1991. Preconstruction activity consisted of moving approximately 1,500 cubic yards of large boulders, and dive log truck loads of woody material to the construction site. Project monitoring consisted of sediment sampling above and below the project area and, mapping and photographing and structures. 7 figs.

  11. River monitoring from satellite radar altimetry in the Zambezi River basin

    NASA Astrophysics Data System (ADS)

    Michailovsky, C. I.; McEnnis, S.; Berry, P. A. M.; Smith, R.; Bauer-Gottwein, P.

    2012-07-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  12. Chloride control and monitoring program in the Wichita River Basin, Texas, 1996-2009

    USGS Publications Warehouse

    Haynie, M.M.; Burke, G.F.; Baldys, Stanley

    2011-01-01

    Water resources of the Wichita River Basin in north-central Texas are vital to the water users in Wichita Falls, Tex., and surrounding areas. The Wichita River Basin includes three major forks of the Wichita River upstream from Lake Kemp, approximately 50 miles southwest of Wichita Falls, Tex. The main stem of the Wichita River is formed by the confluence of the North Wichita River and Middle Fork Wichita River upstream from Truscott Brine Lake. The confluence of the South Wichita River with the Wichita River is northwest of Seymour, Tex. (fig. 1). Waters from the Wichita River Basin, which is part of the Red River Basin, are characterized by high concentrations of chloride and other salinity-related constituents from salt springs and seeps (hereinafter salt springs) in the upper reaches of the basin. These salt springs have their origins in the Permian Period when the Texas Panhandle and western Oklahoma areas were covered by a broad shallow sea. Over geologic time, evaporation of the shallow seas resulted in the formation of salt deposits, which today are part of the geologic formations underlying the area. Groundwater in these formations is characterized by high chloride concentrations from these salt deposits, and some of this groundwater is discharged by the salt springs into the Wichita River.

  13. A large-scale model for simulating the fate & transport of organic contaminants in river basins.

    PubMed

    Lindim, C; van Gils, J; Cousins, I T

    2016-02-01

    We present STREAM-EU (Spatially and Temporally Resolved Exposure Assessment Model for EUropean basins), a novel dynamic mass balance model for predicting the environmental fate of organic contaminants in river basins. STREAM-EU goes beyond the current state-of-the-science in that it can simulate spatially and temporally-resolved contaminant concentrations in all relevant environmental media (surface water, groundwater, snow, soil and sediments) at the river basin scale. The model can currently be applied to multiple organic contaminants in any river basin in Europe, but the model framework is adaptable to any river basin in any continent. We simulate the environmental fate of perfluoroctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in the Danube River basin and compare model predictions to recent monitoring data. The model predicts PFOS and PFOA concentrations that agree well with measured concentrations for large stretches of the river. Disagreements between the model predictions and measurements in some river sections are shown to be useful indicators of unknown contamination sources to the river basin. PMID:26414740

  14. Nutrient Sources Within the Upper Mississippi River Basin, Minnesota and Wisconsin, 1991-93

    USGS Publications Warehouse

    Kroening, Sharon E.

    1998-01-01

    The amount of nutrients contained in fertilizer, livestock manure, municipal wastewater, atmospheric deposition, and legume residues were quantified in each of the major drainage basins within the Upper Mississippi River Basin study unit (fig. 1) as part of the U.S. Geological Survey's National Water-Quality Assessment Program. These sources of nutrients may potentially affect surface- and ground-water quality, so knowledge about the relative importance of each source may assist in the management of surface and ground waters within the study unit. The relative importance of each nutrient source was expected to vary among each of the four drainage basins due to differences in land use across the study unit. [go to fig. 1] Fertilizer and livestock manure were potentially large sources of nitrogen and phosphorus in each of the four drainage basins. However, nitrogen in legume residues was a more important source in the Upper Mississippi, St. Croix, and Lower Mississippi River Basins because hay comprised a larger part of the total acreage of crops grown in these basins. Atmospheric deposition comprised a larger percentage of the nitrogen sources in the St. Croix River Basin compared to the other three drainage basins probably because amounts of the other sources are relatively low. Nitrogen and phosphorus yields in streams were greatest in the Lower Mississippi River Basin and the Minnesota River Basin, where amounts of nonpoint sources of these constituents also were the greatest per square mile.

  15. Challenging Futures Studies To Enhance Participatory River Basin Management

    NASA Astrophysics Data System (ADS)

    van der Helm, R.

    Can the field of futures research help advance participatory management of river basins? This question is supposed to be answered by the present study of which this paper will mainly address the theoretical and conceptual point of view. The 2000 EU Framework directive on water emphasises at least two aspects that will mark the future management of river basins: the need for long-term planning, and a demand for participation. Neither the former nor the latter are new concepts as such, but its combination is in some sense revolutionary. Can long-term plans be made (and implemented) in a participative way, what tools could be useful in this respect, and does this lead to a satisfactory situation in terms of both reaching physical targets and enhancing social-institutional manageability? A possibly rich way to enter the discussion is to challenge futures research as a concept and a practice for enabling multiple stakeholders to design appropriate policies. Futures research is the overall field in which several methods and techniques (like scenario analysis) are mobilised to systematically think through and/or design the future. As such they have proven to be rich exercises to trigger ideas, stimulate debate and design desirable futures (and how to get there). More importantly these exercises have the capability to reconstitute actor relations, and by nature go beyond the institutional boundaries. Arguably the relation between futures research and the planning process is rather distant. Understandably commitments on the direct implementation of the results are hardly ever made, but its impact on changes in the capabilities of the network of actors involved may be large. As a hypothesis we consider that the distant link between an image of the future and the implementation in policy creates sufficient distance for actors to participate (in terms of responsibilities, legal constraints, etc.) and generate potentials, and enough degrees of freedom needed for a successful implementation. However, critical conceptual and design requirements have to be met in order to realise futures research potentials. Since the beginning of the 1990s futures studies are becoming (again) more and more widespread in many different domains (technology, education, urban development, agriculture, environment, etc.). Recently, experiences have been launched and are currently being launched in the water sector (of which the World Water Vision is a well -known - but not necessarily the most representative - example). Although futures studies on a river basin level are still scarce, they will offer already sufficient material for empirical analysis. The research, effectuated within a larger framework study on the implications of futures studies for environmental research, offers at this stage initially a conceptual understanding.

  16. Isotope composition of iron delivered to the oceans by intertropical rivers: The Amazon River Basin case

    NASA Astrophysics Data System (ADS)

    Poitrasson, F.; Vieira, L. C.; Seyler, P.; dos Santos Pinheiro, G. M.; Mulholland, D. S.; Ferreira Lima, B. A.; Bonnet, M.; Martinez, J.; Prunier, J.

    2011-12-01

    Riverborne iron is a notable source for this biogeochemically key element to the oceans. Recent investigations have shown that its isotopic composition may vary significantly in oceanic waters. Hence, a proper understanding of the Fe cycle at the surface of the Earth requires a good characterization of the isotopic composition of its various reservoirs. However, as the database growths, it appears that the isotope composition of the riverborne Fe delivered to the oceans may be more varied than initially thought, in agreement with inferences from soil studies from different climatic contexts. It is therefore important to compare major rivers from different latitudes. We focused our attention on the Amazon River and its tributaries that represent ca. 20% of the freshwater delivered to the oceans by world rivers. Preliminary experiments suggest that water filtration may induce biases in stable Fe isotope composition. Therefore, we worked first on bulk waters, sampled during multidisciplinary field campaigns on the Amazon River and its tributaries, including the Solimoes, Negro, Madeira and Tapajos Rivers. Besides a complete sample physical-chemical characterization, Fe isotope determinations were conduced after water sample mineralization, iron purification and MC-ICP-MS analysis. Our first results reveal that most bulk water samples cluster close to the continental crust value (0.1% δ57FeIRMM-14) with an overall range of 0.2%. This is consistent with the restricted range found in lateritic soils elsewhere that represent 80% of the Amazon basin surface. Only black water rivers flowing over the podzols of the northern portion of the Amazon basin tend to show lighter isotopic compositions, down to -0.18%. However, sediment analyses suggest that this light Fe isotopic is lost through sedimentation on the river bed, thereby leading the waters to have Fe isotope compositions remaining close to that of the continental crust. This constant isotopic signature holds whatever the relative proportion of dissolved Fe in the bulk waters budget, that ranges from 5 to 50% in these waters, whatever the sample depth and whenever the samples were taken in the river cycle. Hence, given that several studies have shown that Fe loss through flocculation in estuaries does not affect Fe isotope signatures, we conclude that the bulk waters from the Amazon River delivered to the ocean should have an isotopic composition close to that of the continental crust.

  17. Geohydrologic reconnaissance of the upper Potomac River basin

    USGS Publications Warehouse

    Trainer, Frank W.; Watkins, Frank A.

    1975-01-01

    The upper Potomac River basin, in the central Appalachian region in Pennsylvania, Maryland, Virginia, and West Virginia, is a humid temperate region of diverse fractured rocks. Three geohydrologic terranes, which underlie large parts of the basin, are described in terms of their aquifer characteristics and of the magnitude and duration of their base runoff: (1) fractured rock having a thin regolith, (2) fractured rock having a thick regolith, and (3) carbonate rock. Crystalline rock in the mountainous part of the Blue Ridge province and shale with tight sandstone in the folded Appalachians are covered with thin regolith. Water is stored in and moves through fairly unmodified fractures. Average transmissivity (T) is estimated to be 150 feet squared per day, and average storage coefficient (S), 0.005. Base runoff declines rapidly from its high levels during spring and is poorly sustained during the summer season of high evapotranspiration. The rocks in this geohydrologic terrane are the least effective in the basin for the development of water supplies and as a source of dry-weather streamflow. Crystalline and sedimentary rocks in the Piedmont province and in the lowland part of the Blue Ridge province are covered with thick regolith. Water is stored in and moves through both the regolith and the underlying fractured rock. Estimated average values for aquifer characteristics are T, 200 feet squared per day, and S, 0.01. Base runoff is better sustained in this terrane than in the thin-regolith terrane and on the average .is about twice as great. Carbonate rock, in which fractures have been widened selectively by solution, especially near streams, has estimated average aquifer characteristics of T, 500 feet squared per day, and S, 0.03-0.04. This rock is the most effective in the basin in terms of water supply and base runoff. Where its fractures have not been widened by solution, the carbonate rock is a fractured-rock aquifer much like the noncarbonate rock. At low values the frequency of specific capacities of wells is much the same in all rocks in the basin, but high values of specific capacity are as much as 10 times more frequent in carbonate rock than in noncarbonate rock. Nearly all the large springs and high-capacity wells in the basin are in carbonate rock. Base runoff from the carbonate rock is better sustained during dry weather and on the average is about three times as great as base runoff from fractured rock having a thin regolith. The potential role of these water-bearing terranes in water management probably lies in the local development of large water supplies from the carbonate rock and in the possible manipulation of underground storage for such purposes as providing space for artificial recharge of ground water and providing ground water to be used for the augmentation of low streamflow. The chief water-quality problems in the basin--acidic mine-drainage water in the western part of the basin, local highly mineralized ground water, and the high nitrate content of ground water in some of the densely populated parts of the basin--would probably have little adverse affect on the use of ground water for low-flow augmentation.

  18. Drainage areas of the Twelvepole Creek basin, West Virginia; Big Sandy River basin, West Virginia; Tug Fork basin, Virginia, Kentucky, West Virginia

    USGS Publications Warehouse

    Wilson, M.W.

    1979-01-01

    Drainage areas were determined for 61 basins in the Twelvepole Creek basin, West Virginia; 11 basins of the Big Sandy River Basin, West Virginia; and 210 basins in the Tug Fork basin of Virginia, Kentucky, and West Virginia. Most basins with areas greater than 5 square miles were included. Drainage areas were measured with electronic digitizing equipment, and supplementary measurements were made with a hand planimeter. Stream mileages were determined by measuring, with a graduated plastic strip, distances from the mouth of each stream to the measuring point on that stream. Mileages were reported to the nearest one-hundredth of a mile in all cases. The latitude and longitude of each measuring point was determined with electronic digitizing equipment and is reported to the nearest second. The information is listed in tabular form in downstream order. Measuring points for the basins are located in the tables by intersecting tributaries, by counties, by map quadrangles, or by latitude and longitude. (Woodard-USGS)

  19. Paleoenvironmental reconstruction of the Early Eocene Wind River Formation in the Wind River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Hyland, E.; Fan, M.; Sheldon, N. D.

    2011-12-01

    Terrestrial basin systems provide important information on paleoclimatic, paleoecological, and paleoenvironmental factors and how they control and respond to global changes and spatio-temporal heterogeneity. Examining these dynamics is crucial for times of major global change like the broad-scale climatic trends (warm/wet/high-CO2 conditions) of the Early Eocene Climatic Optimum (EECO). As most climatic records of such events are derived from global marine datasets, regional terrestrial studies such as these provide a better model for understanding ecological responses and the localized effects of events like the EECO. The formation of the Wind River Basin (northwestern Wyoming) has been studied for decades, but its regional climatic, environmental, and ecological dynamics have been largely overlooked. Recent work in other contemporaneous sites in the Green River Basin has suggested that the dynamics and rapidity of climate change in terrestrial interiors during the EECO may have been significantly different than what is indicated by the marine record, so to address these issues on a more regional scale we examined paleosols preserved in the fluvial, basin-margin Wind River Formation preserved near Dubois, Wyoming. Field identification of the paleosols indicated a suite that includes primarily Inceptisols and Alfisols; most exhibited significant redoximorphic features and Bg horizons that indicate a ponded floodplain paleoenvironment, while others contained deep Bk horizons (>100 cm) consistent with more well-drained, but still sub-humid to humid conditions. Based on the identification of these well-developed soil features, along with distinct horizonation and root development, paleosols were robustly correlated and sampled throughout the Formation, and environmental descriptors were assigned. To further examine the question of regional terrestrial climate/environmental change, whole rock geochemistry (XRF) samples from paleosol depth profiles were analyzed for use in quantitative paleoclimatic proxies (mean annual temperature, mean annual precipitation, ΔW). Samples were also collected for occluded carbon and phytolith (taxonomically diagnostic plant silica bodies) extractions, for the purpose of detailing local vegetation change throughout the EECO event. By combining these botanical and climatic proxies, we will reconstruct an integrated environmental history of the Early Eocene in the Wind River Basin that can be compared both to other regional paleoenvironmental records and to global paleoclimatic trends.

  20. Future water resources for food production in five South Asian river basins and potential for adaptation--a modeling study.

    PubMed

    Biemans, H; Speelman, L H; Ludwig, F; Moors, E J; Wiltshire, A J; Kumar, P; Gerten, D; Kabat, P

    2013-12-01

    The Indian subcontinent faces a population increase from 1.6 billion in 2000 towards 2 billion around 2050. Therefore, expansion of agricultural area combined with increases in productivity will be necessary to produce the food needed in the future. However, with pressure on water resources already being high, and potential effects of climate change still uncertain, the question rises whether there will be enough water resources available to sustain this production. The objective of this study is to make a spatially explicit quantitative analysis of water requirements and availability for current and future food production in five South Asian basins (Indus, Ganges, Brahmaputra, Godavari and Krishna), in the absence or presence of two different adaptation strategies: an overall improvement in irrigation efficiency, and an increase of reservoir storage capacity. The analysis is performed by using the coupled hydrology and crop production model LPJmL. It is found that the Godavari and Krishna basins will benefit most from an increased storage capacity, whereas in the Ganges and the Indus water scarcity mainly takes place in areas where this additional storage would not provide additional utility. Increasing the irrigation efficiency will be beneficial in all basins, but most in the Indus and Ganges, as it decreases the pressure on groundwater resources and decreases the fraction of food production that would become at risk because of water shortage. A combination of both options seems to be the best strategy in all basins. The large-scale model used in this study is suitable to identify hotspot areas and support the first step in the policy process, but the final design and implementation of adaptation options requires supporting studies at finer scales. PMID:23928370

  1. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the San Joaquin River near Vernalis was 0.17 percent of dormant application; total January and February chlorpyrifos load was 0.16 percent of dormant application.

  2. Glof Study in Tawang River Basin, Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Panda, R.; Padhee, S. K.; Dutta, S.

    2014-11-01

    Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a lead for the qualitative approximation of the amount of bed load transported along the river reach and thus hydropower project sites.

  3. Hydrologic and land-cover features of the Loxahatchee River Basin, Florida

    USGS Publications Warehouse

    McPherson, Benjamin F.; Sabanska, Maryann

    1980-01-01

    Historically the Loxahatchee River basin covered about 270 square miles in southeast Florida. Today the basin covers about 210 square miles and is defined by both topography, manmade features, and water-management policies. About 50% of the basin is wetlands. Urban and agricultural lands cover 17 and 18% of the basin, respectively. Soils are predominantly sandy and poorly drained. Water drains into the estuary, a shallow water body of about 2 square miles. (USGS)

  4. How important are glaciers for Indus water resources?

    NASA Astrophysics Data System (ADS)

    Sorteberg, A.

    2013-12-01

    How important are glaciers for Indus water resources? Looking into the literature reveals a wide range of estimates to this question. They partly diverge because of different definitions of a 'water resource' and partly due to the different estimates of the contribution from the glaciers. Defining the Indus water resources as precipitation (rain and snowfall) minus the loss of water due to evapotranspiration and sublimation for non-glaciated regions and the total runoff from the glaciated regions (sum of seasonal snowmelt on top of the glacier, percolating rainfall and loss of glacier ice), we have attempted to estimate the fraction of the total water resource that is coming from the glaciated regions and the fraction due to loss of glacier ice alone (which is the part that may be lost if a glacier disappears). Here we present estimates of water resources from non-glaciated regions using a wide range of estimates from observationally based, reanalysis and land data assimilation systems. Our results indicate large differences between the different estimates even for the annual values averaged over the whole basin. The implication of this finding is that the large uncertainties in the water resources of the non-glaciated regions will prevent us from making narrow estimates of the importance of the glaciers. For estimating the contribution from the glaciers we use an energy balance model with snow metamorphosis forced with 3 hourly reanalysis data (including perturbed precipitation and temperature runs based on the uncertainties in temperature and precipitation found from 10 different datasets). As there is over 10 000 glaciers in Indus it is not possible to model individual glaciers. Instead we model ';representative' glaciers where we get the average elevation of terminus and top, avg. glacier depth etc. from the Extended World Glacier Inventory in a given sub basin (using the FAO HydroSHEDS dataset to divide the Indus basin into subbasins). The mass balance and glacier runoff is then calculated for every 50 m elevation of the ';representative' glacier and the results scale up with total glacier area of that subbasin to get the total mass balance and glacier runoff for the subbasin. This is done for all subbasins that have glaciers. Our results using the above approach indicate that runoff from glaciated areas contributes to 8-24% of the Indus water resources, but ice melt alone only accounts for 2-10% the rest is seasonal snowmelt on top of the glacier and percolation of rain through the glacier. Thus if all glaciers are lost the effect on the water resources of the Indus basin will probably be less than 10%. We found the key uncertainties in estimating Indus water resources to be the lack of observations of precipitation. While the rate of sublimation from the glacier is a key factor in estimating how much of the glacier loss that actually becomes runoff. A factor often ignored or just prescribed as a constant factor when simple degree day models are used.

  5. Clayey materials in river basin enhancing microbial contamination of river water

    NASA Astrophysics Data System (ADS)

    Fosso-Kankeu, E.; Mulaba-Bafubiandi, A. F.; Barnard, T. G.

    Mineral constituents of clay materials may promote interaction, adsorption and attachment of microorganisms, often resulting in biofilms' formation. In this study investigation is made to determine how littoral clayey materials on the shores of a river promote accumulation of bacteria and increase contamination of river water. Clayey samples were collected at various points along the shore of a river around Mondeor in Johannesburg and the mineralogical composition was determined using XRD and XRF. Microorganisms in clay-biofilm and river water were identified by DNA sequencing and plate count. Results showed that total coliforms, Escherichia coli, Pseudomonas sp. and presumptive indigenous microorganisms attached to littoral clayey materials containing the mineral muscovite (characterising argillaceous soils). Bacteria number on clayey materials was significantly higher than on overlying water especially before rainy season. However a decrease of the number of bacteria in clayey materials concurrent with an increase in the number of suspended bacteria after rain events, was the result of the action of high and fast flows in the basin, eroding the biofilms. Attachment of microorganisms in clayey material as observed in this study could be ascribed to the glue-like aspect of soil (due to muscovite) that facilitates adhesion. It therefore demonstrates the potential of clayey materials to encourage biofilm formation and enhance microbial contamination of river water as shown here.

  6. Effects of reservoirs on flood discharges in the Kansas and the Missouri River basins, 1993

    USGS Publications Warehouse

    Perry, Charles A.

    1994-01-01

    The floods of 1993 were of historic magnitude as water in the Missouri and the Mississippi Rivers reached levels that exceeded many of the previous observed maximums. Although large parts of the flood plains of both rivers upstream from St. Louis, Missouri, were inundated, water levels would have been even higher had it not been for the large volume of runoff retained in flood-control reservoirs. Most of the total flood-control storage available upstream from St. Louis is located along the main stem and tributaries of the Missouri River; the largest concentration of reservoirs is located within the Kansas River Basin. The Kansas River Basin accounts for about l0 percent (60,000 square miles) of the drainage area of the Missouri River Basin, and reservoirs control streamflow from 85 percent (50,840 square miles) of the drainage area of the Kansas River Basin. Analyses of flood discharges in the Kansas River indicate that reservoirs reduced flooding along the Kansas and the lower Missouri Rivers. Results of analyses of the 1993 flooding, which include total basin rainfall, peak discharge, and total flood volume on the Kansas River, are compared with analyses of the 1951 flood, which had a similar total volume but a substantially larger peak discharge.

  7. Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2006-01-01

    Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.

  8. [Ecological safety assessment of Manas River Basin oasis, Xinjiang].

    PubMed

    Ling, Hong-bo; Xu, Hai-liang; Shi, Wei; Zhang, Qing-qing

    2009-09-01

    By using analytic hierarchy process and fuzzy comprehensive evaluation, an index system for ecological safety assessment was built, and 18 indices in the aspects of water resource, environment, and social economy were selected to assess the ecological safety of Manas River Basin oasis in 2006. In the study area, the ecological situation in 2006 was basically safe, with the membership degree being 0. 3347 and the integrated evaluation score being 0. 551. The water resource safety index, social economy index, and environmental safety index were in the levels of relatively safe, extremely safe, and unsafe, respectively. Water resource index could represent the sustainable development degree of oasis, while social economy index and environment safety index could indicate the oasis development level and environment situation, respectively. These three indices could most reflect the ecological safety level of the oasis. PMID:20030146

  9. Andean Basins Morphometry: Assesing South American Large Rivers' Source Areas

    NASA Astrophysics Data System (ADS)

    Bean, R. A.; Latrubesse, E. M.

    2014-12-01

    Presently there are no regional-scale morphometric analyses of Andean fluvial basins. Therefore, we created a continental-scale database of these basins. Our data covers over an area 1,000,000 km2 of the Andes, from Venezuela to Argentina. These basins are the source of some of the largest rivers in the world including the Amazon, Orinoco, Parana, and Magdalena. Morphometric parameters including shape factor, relief ratio, longitudinal profiles and different indices of basin elevation were calculated based on the CGIAR SRTM 4.1 DEM (~90 m resolution). FAO Hydrosheds were used to segment the DEM by major catchment and then manually cut at the Andean zone. In the North and Central Andes, this produced over 500,000 subcatchments, which we reduced to 619 by setting minimum catchment area to 100 km2. We then integrate lithologic data from DNPM geologic data. Our results indicate that sedimentary lithologies dominate Central Andean catchments (n=268,k=4), which cover an area 767,00 km2, while the Northern Andean catchments (covering 350,000 km2) are more varied, dominated by volcanics in the Pacific (n=78), a sedimentary (48%) dominant mix in the Caribbean (n=138) and 60% sedimentary in the Amazon-Orinoco subregion catchments (n=138). Elevation averages are smallest in the north Andes and average maximum elevations (6,026 m) in the Argentinian catchments (n=65) of the Central Andes are the highest. Shape factors range from 0.49 to 0.58 in the North and 0.52 to 0.58 in the Central Andes. There are clear differences in all categories between region and subregion, but that difference does not hinge on a single morphometric or geologic parameter. Morphometric parameters at a watershed scale (listed in Table) are analyzed and hydrologic data from gauging stations throughout the Andes (n=100) are used to compare morphometric parameters with lithology and characteristics from the basin hydrograph (peak discharge timing, minimum and maximum discharge, and runoff).

  10. Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhi, Y.; Yang, Z. F.; Yin, X. A.

    2013-12-01

    Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. However, conventional studies focus on WF from the perspective of administrative region rather than river basin. Decomposition analysis of WF changes from the perspective of the river basin is more scientific. To address this perspective, we built a framework in which the input-output (IO) model and the Structural Decomposition Analysis (SDA) model for WF could be implemented in a river basin by computing IO data for the river basin with the Generating Regional IO Tables (GRIT) method. This framework is illustrated in the Haihe River Basin (HRB), which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1% to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF; however, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy making in other water-limited river basins.

  11. Evaluation of satellite rainfall estimates over Ethiopian river basins

    NASA Astrophysics Data System (ADS)

    Romilly, T. G.; Gebremichael, M.

    2011-05-01

    High resolution satellite-based rainfall estimates (SREs) have enormous potential for use in hydrological applications, particularly in the developing world as an alternative to conventional rain gauges which are typically sparse. In this study, three SREs have been evaluated against collocated rain gauge measurements in Ethiopia across six river basins that represent different rainfall regimes and topography. The comparison is made using five-year (2003-2007) averages, and results are stratified by river basin, elevation and season. The SREs considered are: the Climate Prediction Center morphing method (CMORPH), Precipitation Estimation from Remotely Sensed Information Using Neural Networks (PERSIANN) and the real-time version of the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT. Overall, the microwave-based products TMPA 3B42RT and CMORPH outperform the infrared-based product PERSIANN: PERSIANN tends to underestimate rainfall by 43 %, while CMORPH tends to underestimate by 11 % and TMPA 3B42RT tends to overestimate by 5 %. The bias in the satellite rainfall estimates depends on the rainfall regime, and, in some regimes, the elevation. In the northwest region, which is characterized mainly by highland topography, a humid climate and a strong Intertropical Convergence Zone (ITCZ) effect, elevation has a strong influence on the accuracy of the SREs: TMPA 3B42RT and CMORPH tend to overestimate at low elevations but give reasonably accurate results at high elevations, whereas PERSIANN gives reasonably accurate values at low elevations but underestimates at high elevations. In the southeast region, which is characterized mainly by lowland topography, a semi-arid climate and southerly winds, elevation does not have a significant influence on the accuracy of the SREs, and all the SREs underestimate rainfall across almost all elevations.

  12. Estimates of sublimation in the Upper Colorado River basin

    NASA Astrophysics Data System (ADS)

    Phillips, Morgan

    Snowpack stored in mountain environments is the primary source of water for the population of much of the western United States, and the loss of water through direct evaporation (sublimation) is a significant factor in the amount of runoff realized from snow melt. A land surface modeling study was carried out in order to quantify the temporal and spatial variability of sublimation over the Upper Colorado River basin through the use of a spatially distributed snow-evolution model known as SnowModel. Simulations relied on forcing from high resolution atmospheric analysis data from the North American Land Data Assimilation System (NLDAS). These data were used to simulate snow sublimation for several years over a 400 by 400 km domain in the Upper Colorado River Basin at a horizontal resolution of 250 m and hourly time-steps. Results show that total volume of sublimated water from snow varies 68% or between 0.95 x 107 acre feet in WY 2002 to the maximum of 1.37 x 107 acre feet in WY 2005 within the ten years of the study period. On daily timescales sublimation was found to be episodic in nature, with short periods of enhanced sublimation followed by several days of relatively low snowpack water loss. The greatest sublimation rates of approximately 3 mm/day were found to occur in high elevation regions generally above tree line in conjunction with frequent windblown snow, while considerable contributions from canopy sublimation occurred at mid-elevations. Additional sensitivity runs accounting for reduced canopy leaf area index as a result of western pine beetle induced tree mortality were also carried out to test the models sensitivity to land surface characteristics. Results from this comparison show a near linear decrease in domain total sublimation with reduced LAI. Model performance was somewhat satisfactory, with simulations underestimating precipitation and accumulated SWE, most likely due to biases in the precipitation forcing and errors in determining precipitation phase.

  13. Frequency and Intensity of drought events over Ebro River basin

    NASA Astrophysics Data System (ADS)

    Valencia, J. L.; Saa-Requejo, A.; Gascó, J. M.; Tarquis, A. M.

    2012-04-01

    Lately, several researchers have pointed out that climate change is expected to increase temperatures and lower rainfall in Mediterranean regions, simultaneously increasing the intensity of extreme rainfall events. These changes could have consequences regarding rainfall regime, erosion, sediment transport and water quality, soil management, and new designs in diversion ditches. Climate change is expected to result in increasingly unpredictable and variable rainfall, in amount and timing, changing seasonal patterns and increasing the frequency of extreme weather events. Consequently, the evolution of frequency and intensity of drought periods is of most important as in agro-ecosystems many processes will be affected by them. Realising the complex and important consequences of an increasing frequency of extreme droughts at the Ebro River basin, our aim is to study the evolution of drought events at this site statistically, with emphasis on the occurrence and intensity of them. For this purpose, fourteen meteorological stations were selected based on the length of the rainfall series and the climatic classification to obtain a representative untreated dataset from the river basin. Daily rainfall series from 1957 to 2002 were obtained from each meteorological station and no-rain period frequency as the consecutive numbers of days were extracted. Based on this data, we study changes in the probability distribution in several sub-periods. Moreover we used the Standardized Precipitation Index (SPI) for identification of drought events in a year scale and then we use this index to fit log-linear models to the contingency tables between the SPI index and the sub-periods, this adjusted is carried out with the help of ANOVA inference. Funding provided by ENESA, under projects P030225764 and P070225564, and by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  14. Factors affecting pesticide occurrence and transport in a large Midwestern River Basin

    USGS Publications Warehouse

    Crawford, C.G.

    2001-01-01

    Several factors affect the occurrence and transport of pesticides in surface waters of the 29,400 km2 White River Basin in Indiana. A relationship was found between pesticide use and the average annual concentration of that pesticide in the White River, although this relationship varies for different classes of pesticides. About one percent of the mass applied of each of the commonly used agricultural herbicides was transported from the basin via the White River. Peak pesticide concentrations were typically highest in late spring or early summer and were associated with periods of runoff following application. Concentrations of diazinon were higher in an urban basin than in two agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas. Concentrations of atrazine, a corn herbicide widely used in the White River Basin, were higher in an agricultural basin with permeable, well-drained soils, than in an agricultural basin with less permeable, more poorly drained soils. Although use of butylate and cyanazine was comparable in the White River Basin between 1992 and 1994, concentrations in the White River of butylate, which is incorporated into soil, were substantially less than for cyanazine, which is typically applied to the soil surface.

  15. Climatology of extreme rainfall and flooding from orographic thunderstorm systems in the upper Arkansas River basin

    NASA Astrophysics Data System (ADS)

    Javier, Julie Rose N.; Smith, James A.; England, John; Baeck, Mary Lynn; Steiner, Matthias; Ntelekos, Alexandros A.

    2007-10-01

    Analyses of the spatial and temporal distribution of extreme rainfall in the Arkansas River basin above Pueblo, Colorado, are based on volume scan reflectivity observations from the Pueblo WSR-88D radar during the period 1995-2003. A storm catalog of 66 rainfall events during the 9-year period has been developed. Climatological analyses of extreme rainfall are carried out both from an Eulerian perspective, in which distributional aspects of rainfall at fixed locations are examined, and from a Lagrangian perspective, in which distributional aspects of rainfall are based on storm-tracking algorithms. Of particular interest is the spatial heterogeneity of extreme rainfall in the complex terrain of the upper Arkansas River basin. Lagrangian analyses are used to characterize the spatially varying distribution of storm initiation, storm motion, and storm structure. Climatological analyses indicate that convective rainfall in the Arkansas River basin above Canon City (drainage area of 8070 km2) does not contribute to the extreme flood response of the Arkansas River at Pueblo (drainage area of 12,140 km2). There is pronounced diurnal variation in warm season rainfall in the Arkansas River basin, and this feature of extreme rainfall is a key element of flood response in the upper Arkansas River basin. Climatological analyses of extreme rainfall in the upper Arkansas River basin are examined relative to the spatial and temporal properties of rainfall for extreme flood events that have occurred in the basin, including major flood episodes in June 1921 and June 1965.

  16. THE EFFECT OF VARYING ELECTROFISHING DESIGN ON BIOASSESSMENT RESULTS OF FOUR LARGE RIVERS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    In 1999, the effect of electrofishing design (single bank or paired banks) and sampling distance on bioassessment results was studied in four boatable rivers in the Ohio River basin. The relationship between the number of species collected and the total distance electrofished wa...

  17. Changes in precipitation and temperature in Xiangjiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Ma, Chong; Pan, Suli; Wang, Guoqing; Liao, Yufang; Xu, Yue-Ping

    2016-02-01

    Global warming brings a huge challenge to society and human being. Understanding historic and future potential climate change will be beneficial to regional crop, forest, and water management. This study aims to analyze the precipitation and temperature changes in the historic period and future period 2021-2050 in the Xiangjiang River Basin, China. The Mann-Kendall rank test for trend and change point analysis was used to analyze the changes in trend and magnitude based on historic precipitation and temperature time series. Four global climate models (GCMs) and a statistical downscaling approach, LARS-WG, were used to estimate future precipitation and temperature under RCP4.5. The results show that annual precipitation in the basin is increasing, although not significant, and will probably continue to increase in the future on the basis of ensemble projections of four GCMs. Temperature is increasing in a significant way and all GCMs projected continuous temperature increase in the future. There will be more extreme events in the future, including both extreme precipitation and temperature.

  18. Hydrologic investigations in the Araguaia-Tocantins River basin (Brazil)

    USGS Publications Warehouse

    Snell, Leonard J.

    1979-01-01

    The Araguaia-Tocantins River basin system of central and northern Brazil drains an area of about 770,000 square kilometers and has the potential for supporting large-scale developments. During a short visit to the headquarters of the Interstate Commission for the Araguaia-Tocantins Valley and to several stream-gaging stations in June 1964, the author reviewed the status of the streamflow and meteorological data-collection programs in relation to the streamflow and meteorological data-collection programs in relation to the pressing needs of development project studies. To provide data for areal and project-site studies and for main-stream sites, an initial network of 33 stream gaging stations was proposed, including the 7 stations then in operation. Suggestions were made in regard to operations, staffing and equipment. Organizational responsibilities for operations were found to be divided uncertainly. The Brazilian Meteorological Service had 15 synoptic stations in operation in and near the basin, some in need of reconditioning. Plans were at hand for the addition of 15 sites to the synoptic network and for limited data collection at 27 other sites. The author proposed collection of precipitation data at about 50 other locations to achieve a more representative areal distribution. Temperature, evaporation, and upper-air data sites were suggested to enhance the prospective hydrometeorological studies. (USGS)

  19. Water quality assessment of the Sacramento River Basin, California; environmental setting and study design

    USGS Publications Warehouse

    Domagalski, Joseph L.; Knifong, Donna L.; MacCoy, Dorene E.; Dileanis, Peter D.; Dawson, Barbara J.; Majewski, Michael S.

    1998-01-01

    This report describes the environmental setting and investigative activities of the Sacramento River Basin study unit of the National Water-Quality Assessment Program. The Sacramento River Basin is one of 60 study units located throughout the United States that has been scheduled for study as part of the National Water-Quality Assessment Program. The Sacramento River Basin is the most important source of freshwater in California. Water quality studies in the Sacramento River Basin study unit focus on the Sacramento Valley because it is here that the principal uses of water and potential impacts on water quality occur. Investigative activities include a network of surface water sites, where water chemistry and aquatic biological sampling are done, and a variety of ground water studies. In addition, investigations of the cycling and distribution of volatile organic compounds in the urban environment and the distribution of total and methyl mercury in the Sacramento River and tributaries will be completed.

  20. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-04-01

    Since marine derived nutrients (MDN) are transported not only in river channels but also across the entire river basin, including via ground water and migratory animals, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen (TN) input across a river basin using stable isotope analysis (SIA) of nitrogen (δ15N). The contribution of TN entering the river basin by salmon was 23.8 % relative to the total amount of TN exported from the river basin, providing a first estimate of MDN export for a river basin. The contribution of nitrogen from the ocean to the river basin soils was between 22.9 and 23.8 %. Furthermore, SIA showed that the transport of oceanic TN by sea eagles (Haliaeetus spp.) was greater than that by bears (Ursus arctos), which had previously been that bears are thought to be the major animal transporter of nutrients in the northern part of Japan.

  1. Guidebook to the coal geology of the Powder River coal basin, Wyoming

    SciTech Connect

    Glass, G.B.

    1980-01-01

    This survey of Wyoming's Powder River Coal Basin was done in June 1980, with emphasis on coal geology and specifically environments of coal deposition. A geologic map explanation was included. The survey included: (1) the regional depositional framework of the uranium- and coal-bearing Wasatch (Eocene) and Fort Union (Paleocene) Formations, Powder River Basin; (2) the Lake De Smet Coal Seam: the product of active basin-margin sedimentation and tectonics in the Lake De Smet Area, Johnson County, Wyoming, during Eocene Wasatch time; (3) fluvial coal settings of the Tongue River Member of the Fort Union Formation in the Powder River Clear Creek Area; (4) coal resources of the Powder River Coal basin; (5) survey of chemical and petrographic characteristics of Powder River Basin coals; and (6) the Rawhide Coal Mine, Campbell County, Wyoming. The depositional framework of the Fort Union and Wasach formations is characterized by a northward-flowing intermountain basinal fluvial system. The paleogeographic reconstruction of the fluvial settings of the Tongue River Member deposits in the Powder River-Clear Creek area sugges two important subenvironments of coal accumulation. The thickest and most important coals are found in the Paleocene Fort Union Formation and the Eocene Wasatch Formation. Each section was discussed in detail. (DP)

  2. Seismic exploration for oil and gas traps in Wind River Basin: a Laramide example

    SciTech Connect

    Ray, R.R.; Keefer, W.R.

    1985-05-01

    The Wind River Basin in central Wyoming is typical of the large sedimentary and structural basins that formed in the Rocky Mountain region during the Laramide deformation in latest Cretaceous and early Tertiary times. Northeast-southwest-oriented seismic profiles across the Wind River basin and flanking Owl Creek and Bighorn Mountains illustrate the structural configuration and correspondent stratigraphic development of a typical Laramide intermontane basin. Understanding the geometry of the basin margin and the timing of structural movement aids in prospecting for mountain-front subthrust structures, like Tepee Flats field, and stratigraphic traps, like Haybarn field, in fluvial and lacustrine basin-fill sequences. The Wind River basin is structurally asymmetric with the basin axis close to the Owl Creek Mountains and Casper Arch thrusts, which form the north and east basin boundaries. Major Laramide deformation began in latest Cretaceous time (beginning of Lance Formation deposition) with pronounced downwarping of the basin trough and broad doming of parts of the peripheral areas. The intensity of movement increased through the Paleocene and culminated in early Eocene time as high mountains were uplifted along thrust faults. Clastic debris, stripped from the surrounding rising mountain arches, was shed basinward, resulting in a pronounced wedge-shaped accumulation of fluvial and lacustrine sediments now representing the Lance, Fort Union, Indian Meadows, and Wind River Formations.

  3. Temporal and spatial variability of drought in Huang-Huai-Hai River Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Zhe; Yan, Deng-Hua; Yang, Zhi-Yong; Yin, Jun; Yuan, Yong

    2015-11-01

    Drought is a kind of extreme hydrological event. With the penetration of climate change impact, severity, areal extent, and frequency of drought are increasing, especially in Huang-Huai-Hai River Basin, which plays a key role in China's agriculture production. Analyzing the regional temporal and spatial variability in the context of climate change could provide a basis for the evasion of disasters and risk. The maximum number of consecutive dry days was selected as the indicator to analyze the decadal variability of drought severity, areal extent, and spatial variability of drought frequency in different seasons in Huang-Huai-Hai River Basin. Based on these, temporal and spatial variability of two kinds of special extreme events—consecutive drought and heavy rain after drought—were studied. The results showed that: (1) Huang-Huai-Hai River Basin mainly experienced moderate drought and severe drought. Moderate drought mainly occurs in autumn. High-frequency region of moderate drought is located in the plain of Huang-Huai-Hai River Basin, and its area is approximately 22.7 % of Huang-Huai-Hai River Basin. Severe drought often occurs in spring with high-frequency region in the upstream of the Yellow River. The area of this high-frequency region is about 6 % of Huang-Huai-Hai River Basin. (2) During 1961~2011, the areal extent of summer severe drought, autumn severe drought, and extreme drought all showed increasing trend, in which the increasing trend of the autumn severe drought area in the Yellow River has reached the significance level α = 0.05. (3) Consecutive drought of several seasons often took place in Ningxia plain and Hetao plain which lie in the northwest of the Yellow River Basin. In the recent 20 years, consecutive drought from spring to summer and consecutive drought from summer to autumn occurred frequently. Drought-flood abrupt alternation such as heavy rain after drought often occurred in summer temporally and Huaihe River Basin spatially.

  4. Arsenic mobility in sediments from Paracatu River Basin, MG, Brazil.

    PubMed

    Rezende, Patrícia Sueli; Costa, Letícia Malta; Windmöller, Cláudia Carvalhinho

    2015-04-01

    Paracatu River Basin, Minas Gerais, Brazil, houses long areas of irrigated agriculture and gold-, lead-, and zinc-mining activities. This region has a prevalence of sulfide minerals and a natural occurrence of high levels of arsenopyrite. In this work, surface water, groundwater, sediments and local vegetable samples were collected in October 2010 and November 2011 and were analyzed to evaluate arsenic (As) distribution, mobility, and transport in these environmental compartments. All sediment samples (738-2,750 mg kg(-1)) and 37 % of the water samples [less than the limit of detection (LOD) to 110 µg L(-1)] from the rivers and streams of Paracatu had As concentrations greater than the quality standards established by national and international environmental organizations (5.9 mg kg(-1) for sediments and 10 µg L(-1) for water). Most vegetable samples had As concentrations within the normal range for plants (lower than the LOD to 120 mg kg(-1)). A correlation among As concentrations in water, sediment, and vegetable samples was verified. PMID:25672271

  5. Observed low flow trends in major US river basins

    NASA Astrophysics Data System (ADS)

    Pournasiri Poshtiri, M.; Pal, I.

    2014-12-01

    Changes in global climate would likely be associated with impacts on regional hydrological cycle, such as changes in variability of precipitation and stream flow. Hence, to formulate and implement climate risk management strategies, it is essential to detect where and when hydrological extremes have been changing and to what extent. This scientific research presents where and how low flow characteristics, particularly the occurrence, intensity and severity of hydrological extremes, have been changing in fourteen major river basins within the continental U.S. Of particular interest is to detect if monotonic trends in low flow characteristics shifted with decades, reflecting the known climatic shifts, particularly before and after 1980. Persistent low flow conditions in a river can directly influence water supply for domestic, agricultural, industrial, ecological, and other needs; and a monotonic trend in such persistent low flow condition can lead to chronic water scarcity—a main driver of societal and cross-boundary conflicts around the world. Thus, outcomes from this research are instrumental for the water managers to develop suitable adaptive management measures at the locations and times of need.

  6. Exposure of the Main Italian River Basin to Pharmaceuticals

    PubMed Central

    Ferrari, Federico; Gallipoli, Agata; Balderacchi, Matteo; Ulaszewska, Maria M.; Capri, Ettore; Trevisan, Marco

    2011-01-01

    This study give a preliminary survey of pharmaceutical contamination and accumulation in surface waters and sediments along the river Po basin (74,000?km2, the largest in Italy), a strategic region for the Italian economy: it collects sewage from a vast industrialized area of Italy (Autorit di Baciono del fiume Po, 2006, 2009). 10 pharmaceuticals (atenolol, propanolol, metoprolol, nimesulide, furosemide, carbamazepine, ranitidine, metronidazole, paracetamol, and atorvastatin) from several therapeutic classes were searched in 54 sampling points along the river Po from the source to the delta, and at the mouth of its major effluents. In water samples were found pharmaceuticals in the range of 0.380.001??g/L, except for furosemide (max conc. 0.605??g/L), paracetamol (max conc. 3.59??g/L), metoprolol (never detected) and for atenolol (not analysed). In sediment samples, only paracetamol was not detected, while the others were generally found in the range of 0.40.02??g/kg ww with high concentrations for atenolol (max conc. 284 ?g/kg ww) and furosemide (max conc. 98.4 ?g/kg ww). The findings confirm also STPs as point sources of contamination. Despite of the much evidence for the adverse effects of pharmaceuticals in the aquatic environment, the observed low levels cannot be considered to pose a serious risk to human health; further studies are necessary for a comprehensive risk assessment. PMID:21941542

  7. Herbicide and degradate flux in the Yazoo River Basin

    USGS Publications Warehouse

    Coupe, R.H.; Welch, H.L.; Pell, A.B.; Thurman, E.M.

    2005-01-01

    During 1996-1997, water samples were collected from five sites in the Yazoo River Basin and analysed for 14 herbicides and nine degradates. These included acetochlor, alachlor, atrazine, cyanazine, fluometuron, metolachlor, metribuzin, molinate, norflurazon, prometryn, propanil, propazine, simazine, trifluralin, three degradates of fluometuron, two degradates of atrazine, one degradate of cyanazine, norflurazon, prometryn, and propanil. Fluxes generally were higher in 1997 than in 1996 due to a greater rainfall in 1997 than 1996. Fluxes were much larger from streams in the alluvial plain (an area of very productive farmland) than from the Skuna River in the bluff hills (an area of small farms, pasture, and forest). Adding the flux of the atrazine degradates to the atrazine flux increased the total atrazine flux by an average of 14.5%. The fluometuron degradates added about 10% to the total fluometuron flux, and adding the norflurazon degradate flux to the norflurazon flux increased the flux by 82% in 1996 and by 171% in 1997. ?? 2005 Taylor & Francis.

  8. Enhanced Drought Monitoring in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Doesken, N.; Smith, R.; Ryan, W.; Schwalbe, Z.; Verdin, J. P.

    2012-12-01

    As a part of the National Integrated Drought Information System's Upper Colorado River Basin pilot project, an aggressive collaborative drought monitoring and communication process was initiated in 2010. Weekly climate, drought and water supply assessments were begun which included webinars during critical times of the year -- primarily late January through mid summer. A diverse set of stakeholders ranging from ski area operators, river commissioners, state and federal agency representatives, public land managers, municipal water providers, agricultural interests and media from a 3-state area were invited to participate along with National Weather Service forecast office personal, state climate office representatives and other information providers. The process evolved to become a weekly drought monitoring "committee" providing detailed input to the U.S. Drought Monitor national author. In 2012 this new system was put to the test as dry winter conditions exploded into extreme and widespread drought as the normal spring storms failed to materialize and instead long-duration above average temperatures added evaporative stress to the already limited water supplies. This presentation examines this effort with an emphasis on stakeholder engagement. The overall impact of the 2012 drought appears, so far, to be less than what was experienced in 2002 although measured stream flow appears tp be similar. To what extent this could be attributed to the enhanced drought monitoring and communication will be discussed. The sustainability of this aggressive monitoring effort will also be assessed.

  9. Yakima River Basin Phase II Fish Screen Evaluations, 2002

    SciTech Connect

    Carter, Jessica A.; McMichael, Geoffrey A.; Chamness, Mickie A.

    2003-03-01

    In 2002, the Pacific Northwest National Laboratory evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. Pacific Northwest National Laboratory collected data to determine whether velocities in front of the screens and in the bypasses met National Marine Fisheries Service criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. In addition, Pacific Northwest National Laboratory conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2002, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Marine Fisheries Service. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to increase safe juvenile fish passage. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris should be improved at some sites.

  10. Taconic foreland basin evolution: Sedimentology and cement stratigraphy of the Black River Group limestones in the Champlain Basin

    SciTech Connect

    Bechtel, S.C.; Mehrtens, C.J. . Geology Dept.)

    1993-03-01

    The Black River Group (Middle Ordovician, Mohawkian Series) limestones in the Champlain Basin record the transition between the shallow deposits of the underlying Chazy Group limestones and the shale-limestone couplets of the overlying Trenton Group which record rapid deepening of the foreland basin. The Black River Group was deposited in a subsiding foreland basin during the early stages of the Taconic Orogeny. Syn-depositional block faulting as a result of thrust loading has been demonstrated to affect Chazy and Trenton Group deposition. Abrupt lithofacies changes within the Black River Group record the dynamic bathymetry present in the Champlain Basin during its deposition. The Black River Group helps refine the timing of extensional block faulting during the Taconic Orogeny. The Black River Group in the Champlain Basin is a relatively thin unit, approximately 80 feet thick at Crown Point, New York. Exposures between Crown Point, NY and South Hero Island, VT record deposition of the Black River Group limestones in a protected lagoonal environment, with an evolving fringing pellet shoal barrier complex. Eight lithofacies are defined, grading from a basal sandstone and/or a sandy dolomite, to a micrite to biomicrite, to an intra-pelsparite of a shoal environment. Intraclast horizons and broken, rounded marine allochems suggest the influence of storm activity as a modifier of depositional history. Rapid deepenings into the normal marine subtidal environment, as well as micro-karst textures and fossil beach rock exposures are interpreted to represent sudden bas level changes, possibly from syndepositional block fault movement. Although dynamic bathymetry influences the stratigraphy within the Black River Group, a macro-scale deepening upwards on a formation scale is present, representing subsidence of the foreland basin.

  11. UPPER SNAKE RIVER PRIORITY BASIN ACCOMPLISHMENT PLAN, APRIL 1973

    EPA Science Inventory

    The Upper Snake Accomplishment Basin (17040104, 170402, 170501) is defined as the Idaho and Oregon portions of 2 STORET Basins, the Upper Snake Basin and the Central Snake Basin. The Basin drains approximately 62,100 square miles in Southern Idaho and Southeastern Oregon. Four ...

  12. A hydrochemical reconnaissance study of the Walker River basin, California and Nevada

    USGS Publications Warehouse

    Benson, L.V.; Spencer, R.J.

    1983-01-01

    During 1975 and 1976, a large number of water and sediment samples were collected from the Walker River Basin. Additional surface water samples were collected during 1980 and 1981. Data are given herein for chemical analyses of snowmelt, tributary, river, spring, well, lake, reservoir, lake sediment pore fluid, tufa, lake and river sediment samples. These data provide the basis for consideration of processes which govern the chemical evolution of large closed basin hydrologic systems in the Basin and Range Province of the Southwestern United States.

  13. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  14. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed Central

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-01-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9703496

  15. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington

    USGS Publications Warehouse

    Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E.

    2009-01-01

    The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet. Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4x10-7 to 4 ft/d. Variations in the concentrations of geochemical solutes and the concentrations and ratios of the isotopes of hydrogen, oxygen, and carbon in groundwater provided information on the hydrogeologic framework and groundwater movement. Stable isotope ratios of water (deuterium and oxygen-18) indicated dispersed sources of groundwater recharge to the CRBG and basin-fill units and that the source of surface and groundwater is derived from atmospheric precipitation. The concentrations of dissolved methane were larger than could be attributable to atmospheric sources in more than 80 percent of wells with measured methane concentrations. The concentrations of the stable isotope of carbon-13 of methane were indicative of a thermogenic source of methane. Most of the occurrences of methane were at locations several miles distant from mapped structural fault features, suggesting the upward vertical movement of thermogenic methane from the underlying bedrock may be more widespread than previously assumed or there may be a more general occurrence of unmapped (buried) fault structures. Carbon and tritium isotope data and the concentrations of dissolved constituents indicate a complex groundwater flow system with multiple contributing zones to groundwater wells and relative groundwater residence time on the order of a few tens to many thousands of years. Potential mean annual recharge for water years 1950-2003 was estimated to be about 15.6 in. or 7,149 ft3/s (5.2 million acre-ft) and includes affects of human activities such as irrigation of croplands. If there had been no human activities (predevelopment conditions) during that time period, estimated recharge would have been about 11.9 in. or 5,450 ft3/s (3.9 million acre-ft). Estimated mean annual recharge ranges from virtually zero in the dry parts of the lower basin to more than 100 in. in the humid uplands, where annual precipitation is more than 120 in. Groundwater in the different hydrogeologic units occurs under perched, unconfined, semiconfined, and confined conditions. Groundwater moves from topographic highs in the uplands to topographic low areas along the streams. The flow system in the basin-fill units is compartmentalized due to topography and geologic structure. The flow system also is compartmentalized for the CRBG units but not to as large

  16. River monitoring from satellite radar altimetry in the Zambezi River Basin

    NASA Astrophysics Data System (ADS)

    Michailovsky, C. I.; McEnnis, S.; Berry, P. A. M.; Smith, R.; Bauer-Gottwein, P.

    2012-03-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. In this study, retracked Envisat altimetry data was extracted over the Zambezi River Basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied the accuracies of the different methods were found to be comparable, with RMSE values ranging from 5.5 to 7.4 % terms of high flow estimation relative to in situ gauge measurements. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 8.2 and 25.8 % of the high flow estimates.

  17. Nutrient limitation of a thermokarst lake and large river ecosystem in the Kolyma River basin (Russia)

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Heslop, J.; Sobczak, W. V.; Schade, J. D.; Spektor, V.; Holmes, R. M.; Bunn, A. G.; Bulygina, E. B.; Walter Anthony, K. M.; Frey, K. E.; Zimov, N.; Zimov, S. A.

    2010-12-01

    Productivity (autotrophic phytoplankton and heterotrophic bacteria) are important food web components that govern the carbon cycling dynamics in aquatic ecosystems. Productivity is often regulated by macro- and micro micronutrient availability which can vary across the globe (polar, temperate, tropical, continents, latitude, etc.) and ecosystem (lake, river, estuary). Until recentely, very little research has been conducted in Polar aquatic ecosystems, particularly continuous permafrost regions, to understand nutrient limitation of lake productivity even though large scale disturbances from permafrost thaw may be changing the nutrient availability to these ecosystems. The objective of this study was to evaluate the nutrient limitation to surface productivity of a river and lake in the Kolyma River Basin, an area where observed methane and dissolved organic carbon transport from upland sources to the ocean has been observed. After 4 days and elevating nutrients to 10 times the background concentrations in a 75 L volume mesocosms, we determined autochthonous production in the Panteleja river was colimited by nitrogen and phosphorus before and during an algal bloom. In contrast, Suchi Lake, a thermokarst ecosystem, exhibited no response to nutrient additions indicating that other factors may limit production.

  18. Influence of natural and human factors on pesticide concentrations in surface waters of the White River Basin, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.

    1996-01-01

    Pesticide concentrations in surface waters of the White River Basin are affected by natural and human factors. For example, concentrations of atrazine, a herbicide widely used on corn in the White River Basin, tended to be higher in an agricultural basin with permeable, welldrained soils, than in an agricultural basin with less permeable, more poorly drained soils. Concentrations of butylate, another herbicide used on corn, were substantially higher in an agricultural basin in the southern part of the White River Basin than in an agricultural basin in the central part of the White River Basin, corresponding to the higher use of this compound in southern Indiana. Concentrations of diazinon were substantially higher in a predominantly urban basin than in two predominantly agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas.

  19. Analysis of present IWRM in the Upper Brahmaputra and the Upper Danube River Basins

    NASA Astrophysics Data System (ADS)

    Flügel, W.-A.; Bartosch, A.

    2011-04-01

    Integrated Water Resources Management (IWRM) is a process which strives towards the sustainable management of water resources in river basins. The approach integrates insights and knowledge from various scientific disciplines comprising natural, socio-economic, and engineering sciences. These three pillars of sustainability are important components of this approach integrating the environmental, economic and social dimension. In the ideal IWRM case planning is based on the river basin scale and therefore is comparatively discussed herein for the two twinning BRAHMATWINN river basins, i.e. the Upper Danube River Basin (UDRB) in Europe and the Upper Brahmaputra River Basin (UBRB) in South Asia. In this chapter major challenges for the implementation of the IWRM process towards a sustainable management of water resources in the two UDRB and UBRB twinning river basins of the BRAHMATWINN project are analysed. The study revealed that in the UDRB the IWRM approach is already part of water management planning and the implementation of the EU Water Framework Directive (WFD) is a good example in this regard. Contrary in the UBRB the implementation of IWRM is just at the beginning phase, only recently is being discussed in the riparian states but has not been implemented in any way so far on the basin scale.

  20. Predicting River Discharge Rates in California Watersheds of the Russian River and Other North Coast River Basins

    NASA Astrophysics Data System (ADS)

    Shupe, J.; Potter, C. S.; Gross, P. M.; Genovese, V. B.; Klooster, S. A.

    2010-12-01

    This study describes applications of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model coupled with a surface hydrologic routing scheme previously called the Hydrological Routing Algorithm (HYDRA) to model river discharge rates across selected California watersheds in the North Coast region of the state. For mountainous areas, CASA-HYDRA snowmelt algorithms have been modified with equations from the USDA Snowmelt Runoff Model (SRM), which has been refined to predict daily stream flow in mountain basins where snowmelt is a notable runoff factor. Results show that, based on CASA-HYDRA model predictions of monthly flow rates across the ten complete stream gauges in the Russian River basin from 2000 to 2007, the typical model-to-measurement correlation between monthly river flow rates was R squared = 0.76 (with E = 0.61). Similar validation results for seasonal and annual flow predictions have been developed for numerous coastal redwood forest watersheds where streams support critical wild fisheries habitat. Future model applications for land cover and climate change in northern California’s coastal watersheds are outlined, with emphasis on impacts of municipal and agricultural water demands.

  1. Li-Zn-Pb multi isotopic characterization of the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A.; Widory, D.; Bourrain, X.

    2013-12-01

    The Loire River in France is approximately 1010 km long and drains an area of 117 800 km2. Upstream, the Loire River flows following a south to north direction from the Massif Central down to the city of Orléans, 650 km from its source. The Loire River is one of the main European riverine inputs to the Atlantic Ocean. Over time, its basin has been exposed to numerous sources of anthropogenic metal pollutions, such as metal mining, industry, agriculture and domestic inputs. The Loire River basin is thus an excellent study site to develop new isotope systematics for tracking anthropogenic sources of metal pollutions (Zn and Pb) and also to investigate Li isotope tracing that can provide key information on the nature of weathering processes at the Loire River Basin scale. Preliminary data show that Li-Zn-Pb concentrations and isotopic compositions span a wide range in river waters of the Loire River main stream and the main tributaries. There is a clear contrast between the headwaters upstream and rivers located downstream in the lowlands. In addition, one of the major tributaries within the Massif Central (the Allier River) is clearly influenced by inputs resulting from mineralizations and thermomineral waters. The results showed that, on their own, each of these isotope systematics reveals important information about the geogenic or anthropogenic origin Li-Zn-Pb. Considered together, they are however providing a more integrated understanding of the overall budgets of these elements at the scale of the Loire River Basin.

  2. Predicting Future Regime Shifts in Flow of the Gunnison River Basin

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; DeRosa, G.

    2011-12-01

    Previous research and paleo-reconstructions of past streamflow note persistent dry and wet regimes over the Colorado River Basin. These persistent dry and wet periods may impact water supply and management conditions for Colorado River stakeholders and the U.S. Bureau of Reclamation (Reclamation). Streamflow projections by Reclamation and other water management agencies have traditionally been based upon historical streamflow records and have assumed that past observations of streamflow are characteristic of future conditions. Under changing climate conditions, the assumption that past hydrology is representative of future conditions may no longer be valid. The Gunnsion River Basin contributes approximately 16% of the annual natural streamflow to the Upper Colorado River Basin. Current studies indicate that under projections of future climate, streamflow over the Gunnison River Basin may decrease on the order of 10% through 2099. In this study, past regime change characteristics over the Gunnison River Basin are compared to projections of future regime change in an attempt to understand how the frequency and duration of persistent dry and wet periods may change as the impacts of climate change are realized over the Gunnison River Basin.

  3. Turbidity and suspended-sediment transport in the Russian River Basin, California

    USGS Publications Warehouse

    Ritter, John R.; Brown, William M., III

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  4. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  5. Scale-dependent controls on the metabolic organization of river basins

    NASA Astrophysics Data System (ADS)

    Caylor, K.; Rodriguez-Iturbe, I.

    2012-04-01

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. Recently, a principle of equal metabolic rate per unit area throughout the basin structure has been developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. While the empirical evidence suggests that river basin metabolic activity is linked with the fractal geometry of the network, a challenge remains in understanding how and when such organization plays a determining role in governing basin hydrological dynamics. In this presentation, I will review prior work seeking to understand the role of vegetation in governing basin response and propose use of geomorphological scaling laws as means for determining the potential for surface pattern (i.e. vegetation structure) to impact the dynamical behavior of river basin metabolism.

  6. Water resources inventory of Connecticut Part 8: Quinnipiac River basin

    USGS Publications Warehouse

    Mazzaferro, David L.; Handman, Elinor H.; Thomas, Mendall P.

    1978-01-01

    The Quinnipiac River basin area in southcentral Connecticut covers 363 square miles, and includes all drainage basins that enter Long Island Sound from the Branford to the Wepawaug Rivers. Its population in 1970 was estimated at 535,000. Precipitation averages 47 inches per year and provides an abundant supply of water. Twenty-one inches returns to the atmosphere as evapotranspiration; the remainder flows directly to streams or percolates to the water table and discharges to Long Island Sound. Small amounts of water are exported from the basin by the New Britain Water Department, and small amounts are imported to the basin by the New Haven Water Company. The amount of water that can be developed at a given place depends upon precipitation, variability of streamflow, hydraulic properties and areal extent of the aquifers, and hydraulic connection between the aquifers and major streams. The quality of the water is determined by the physical environment and the effects of man. Stratified drift is the only aquifer capable of large sustained yields of water to individual wells. Yields of 64 screened wells tapping stratified drift range from 17 to 2,000 gpm (gallons per minute); their median yield is 500 gpm. Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and commonly are inadequate during dry periods. Till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire report area and include sedimentary, igneous, and metamorphic rock types. These aquifers supply small but reliable quantities of water to wells throughout the basin and are the chief source for many nonurban homes and farms. About 90 percent of the wells tapping bedrock yield at least 2 pgm, and much larger yields are occasionally reported. Maximum well yields of 305 gpm for sedimentary, 75 gpm for igneous, and 200 gpm for metamorphic bedrock have been reported. Water potentially available from stratified drift was estimated on the basis of hydraulic characteristics of the aquifers and evaluation of natural and induced recharge. Long-term yields estimated for 14 favorable areas of stratified drift range from 0.8 to 16.1 mgd (million gallons per day), but detailed verification studies are needed before development. The natural quality of water in the report area is good. The water is generally low in dissolved solid and is soft to moderately hard. Surface water is less mineralized than ground water, especially during high flow when it is primarily surface runoff. A median dissolved-solids concentration of 117 mg/l (milligrams per liter) and a median hardness of 58 mg/l was determined for water samples collected at 20 sites on 16 streams during high flow. A median dissolved-solids concentration of 146 mg/l and a median hardness of 82 mg/l was determined for samples collected at the same sites during low flow. In contrast water from 130 wells had a median dissolved-solids concentration of 188 mg/l and a median hardness of 110 mg/l. Iron and manganese occur in objectionable concentrations in parts of the report area, particularly in water from streams draining swamps and in water from aquifers rich in iron- and manganese-bearing minerals. Concentrations of iron in excess of 0.3 mg/l were found in 40 percent of the high-streamflow samples, 59 percent of the low-streamflow samples and 20 percent of the ground-water samples. Human activities have modified the quality of water in much of the basin. Wide and erratic fluctuations in concentration of dissolved solids in streams, high bacterial content of the Quinnipiac River, and locally high nitrate and chloride concentrations in ground water are evidence of man's influence. Streams, wetlands, and some aquifers along the southern boundary of the basin contain salty water. Overpumping has caused extensive saltwater intrusion in aquifers in the southern and eastern parts of New Haven. The total amount of fresh water used in the area during 1970 is estimated at 35,710 million gallons, or 183 gallons per day per capita. Public water-supply systems met the domestic requirements of about 90 percent of the population; all the systems supplied water that met the drinking water standards of the Connecticut Department of Health.

  7. Chemical weathering and associated carbon-dioxide consumption in a tropical river basin (Swarna River), Southwestern India

    NASA Astrophysics Data System (ADS)

    Muguli, T.; Gurumurthy, G. P.; Balakrishna, K.; Audry, S.; Riotte, J.; Braun, J.; Chadaga, M.; Shankar HN, U.

    2013-12-01

    Chemical weathering in river basins forms the key process to study the global climate change on a long term scale due to its association with the carbon sequestration. Water samples from a west flowing tropical river (Swarna River) of Southern India were collected for a period of two years to study the chemical weathering process and to quantify the weathering and associated carbon-dioxide consumption rates in the river basin. In addition, the major ion chemistry of Swarna River is studied for the first time on a spatial and temporal (monthly) scale to decipher the factors (lithology, precipitation/ discharge, temperature, slope and physical weathering) controlling the chemical weathering process. Swarna River originates in Western Ghats at an altitude of 1100 m above mean sea level and flows westwards draining Peninsular Gneiss and Dharwar Schist to join the Arabian Sea near Udupi. The river basin receives annual rainfall of 4500 mm and experiences warm climate with average temperature of 30°C. Major ion composition and radiogenic strontium isotopic composition measured in the Swarna river water reflects the influence of silicate rocks in the basin. The river water chemistry is found to be least affected by anthropogenic impact; however, the effect of evaporation is observed on few samples during the peak dry season. The atmospheric inputs and carbonate contributions to the river water are corrected to estimate the silicate weathering rate (SWR) and the associated carbon-dioxide consumption rate (CCR) using local rainwater and bed rock composition respectively. The SWR and CCR in the Swarna river basin are estimated to be 46 tons/km2/yr and 4.4 x 10^5 mol/km2/yr respectively. This estimation is observed to be relatively higher than the recently reported SWR and CCR in the adjacent larger Nethravati river basin (Gurumurthy et al., 2012). The increased rate could be attributed to the relatively higher precipitation in the Swarna river basin than the lithological variation between the two basins. The weathering process is largely controlled by the higher run-off accompanied by warm temperature in the Swarna river basin. The intense silicate weathering is also supported by the highly radiogenic strontium isotope composition (87Sr/86Sr) ranging between 0.7195 and 0.7304 in the Swarna river water. The average 87Sr/86Sr = 0.7249 in the river water is found to be higher than the global river average. Keywords: Major ion, Radiogenic strontium isotope, Silicate weathering rate, Carbon-dioxide consumption rate, Tropical river, Southwestern India. Reference: Gurumurthy GP, Balakrishna K, Riotte J, Braun J-J, Audry S, Udayashankar HN, Manjunatha BR (2012), Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300-301, 61-69.

  8. Coupled Teleconnections and River Dynamics for Enhanced Hydrologic Forecasting in the Upper Colorado River Basin USA

    NASA Astrophysics Data System (ADS)

    Matter, M. A.; Garcia, L. A.; Fontane, D. G.

    2005-12-01

    Accuracy of water supply forecasts has improved for some river basins in the western U.S.A. by integrating knowledge of climate teleconnections, such as El Niño/Southern Oscillation (ENSO), into forecasting routines, but in other basins, such as the Colorado River Basin (CRB), forecast accuracy has declined (Pagano et al. 2004). Longer lead time and more accurate seasonal forecasts, particularly during floods or drought, could help reduce uncertainty and risk in decision-making and lengthen the period for planning more efficient and effective strategies for water use and ecosystem management. The goal of this research is to extend the lead time for snowmelt hydrograph estimation by 4-6 months (from spring to the preceding fall), and at the same time increase the accuracy of snowmelt runoff estimates in the Upper CRB (UCRB). We hypothesize that: (1) UCRB snowpack accumulation and melt are driven by large scale climate modes, including ENSO, PDO and AMO, that establish by fall and persist into early spring; (2) forecast analysis may begin in the fall prior to the start of the primary snow accumulation period and when energy to change the climate system is decreasing; and (3) between fall and early spring, streamflow hydrographs will amplify precipitation and temperature signals, and thus will evolve characteristically in response to wet, dry or average hydroclimatic conditions. Historical in situ records from largely unregulated river reaches and undeveloped time periods of the UCRB are used to test this hypothesis. Preliminary results show that, beginning in the fall (e.g., October or November) streamflow characteristics, including magnitude, rate of change and variability, as well as timing and magnitude of fall/early winter and late winter/early spring season flow volumes, are directly correlated with the magnitude of the upcoming snowmelt runoff (or annual basin yield). The use of climate teleconnections to determine characteristic streamflow responses in the UCRB advances understanding of atmosphere/land surface processes and interactions in complex terrain and subsequent effects on snowpack development and runoff (i.e., water supply), and may be used to improve seasonal forecast accuracy and extend lead time to develop more efficient and effective management strategies for water resources and ecosystems.

  9. Introduction to special section on River Basin Management: Economics, Management, and Policy

    NASA Astrophysics Data System (ADS)

    Saleth, R. Maria

    2004-08-01

    The literature on river basin management is growing with an expanding coverage of issues and basins and an increasing refinement of approaches and methods. Still, many old questions remain unresolved, while new concerns are emerging, especially on the economic, managerial, and policy dimensions of river basin management. This special section brings together a set of papers that addresses some of these issues in the context of different basins around the world by adopting varying perspectives and approaches. This introductory paper prepares the stage and context for the special section with a brief review of existing literature and a quick overview of the papers included in the special section. Since the review indicates the major focus and coverage as well as the weak spots and gaps in present research, it provides context both to gauge the significance of the selected papers and to indicate the key areas requiring attention in future research on the subject of river basin management.

  10. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  11. HENRY'S FORK AND SNAKE RIVER BASIN, IDAHO - WATER QUALITY REPORT, 1973

    EPA Science Inventory

    Reported problems in the Henrys Fork and Snake River Basin (17040202, 17040203, 17040201) include bacteria levels exceeding water quality standards, dissolved oxygen standards violations, and excessive algal blooms resulting in aesthetic problems and contributing to DO depression...

  12. A BASELINE ASSESSMENT OF COAL INDUSTRY STRUCTURE IN THE OHIO RIVER BASIN ENERGY STUDY REGION

    EPA Science Inventory

    This analysis is in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. Detailed information is provided on coal production and employment by county, the consumption and distribution o...

  13. AN ECONOMIC ANALYSIS OF THE ELECTRIC UTILITY SECTOR IN THE OHIO RIVER BASIN REGION

    EPA Science Inventory

    This report was prepared in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. The potential effects of these different pricing mechanisms on capacity requirements, load factors, and ...

  14. A history of early geologic research in the Deep River Triassic Basin, North Carolina

    USGS Publications Warehouse

    Clark, T.W.

    1998-01-01

    The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.

  15. RELATION OF ENVIRONMENTAL CHARACTERISTICS TO FISH ASSEMBLAGES IN THE UPPER FRENCH BROAD RIVER BASIN, NORTH CAROLINA

    EPA Science Inventory

    Fish assemblages at 16 sites in the upper French Broad River basin, North Carolina were related to environmental variables using detrended correspondence analysis (DCA) and linear regression. This study was conducted at the landscape scale because regional variables are controlle...

  16. Climatic Variation And Runoff From Himalayan Mountain Basins

    NASA Astrophysics Data System (ADS)

    Bolton, L.; Collins, D. N.; Davenport, J.; Entwistle, N. S.

    2012-12-01

    Both precipitation and runoff usually increase with elevation in high mountain basins but Himalayan tributaries of both Indus and Ganges often rise in relatively dry interior areas, before flow downstream is modified on passing through areas receiving winter snowfall and summer monsoon snow and rain. Through time variations in tributary contributions to the major rivers, the upper Indus, Jhelum, Sutlej and Ganges therefore respond to differing climatic signals. Long term measurements of discharge upstream of large dams are available for the Jhelum and Sutlej since the 1920s, but show differing patterns of variation. Runoff in the Jhelum declined to the 1960s before recovering whereas flow in the Sutlej continued to decline. Highly glacierised areas south-east of Nanga Parbat receive considerable amounts of precipitation distributed throughout the year whereas other Jhelum headwaters and those of the Sutlej are summer monsoon dominated. Precipitation measurements exist for dry areas of the upper Indus basin since the early 1900s, but other measurements in the Kaghan valley and upstream of the Mangla dam only start in the 1960s. Correlation between year-to-year variations in precipitation across these headwater regions and between precipitation and runoff in headwater and main-stem basins suggest that runoff declines with summer snowfall on glaciers in areas of the Upper Indus where valleys at elevations below glaciers are dry, but runoff increases with summer precipitation south of the main Himalaya range in the Jhelum and Sutlej. Considerable differences arise therefore in water resources availability from year to year in the various basins downstream.

  17. Laramide basin subsidence and fluvial architecture of the Fort Union and Wasatch Formations in the southern greater Green River basin

    SciTech Connect

    Johnson, P.L. )

    1990-05-01

    The late Paleocene Fort Union Formation and early Eocene Wasatch Formation exposed around the Rock Springs uplift demonstrate subsidence variations in the southern greater Green River basin. Total unit thickness and distribution of channel sandstones within overbank deposits record differences in subsidence rate across the basin. On the west flank of the Rock springs uplift, west of the bounding fault, channels have close spacing and thickness is low. On the south flank within the uplift, the thickness values are intermediary but channels are very closely spaced. Away from the uplift on the southeast flank, the thickness is greatest and channels are very widely spaced. Paleocurrents indicate that rivers flowed southward across the central basin to an eastward-flowing axis trunk river at the southern end of the basin. Both the south and southeast flank area were within the basin axis, but the west flank areas was within the central basin. Thickness trends represent subsidence variations across the basin. Subsidence was slowest at the west flank area. On the south flank, subsidence was greater, and the highest subsidence rate was on the southeast flank. Generally, thickness indicates increasing subsidence toward the Uinta uplift, but the south flank area is an exception. Basin subsidence occurred by flexure of the lithosphere under a tectonic load from the Uinta uplift to the south. Thickened lithosphere at the Rock springs uplift bounding fault was resistant to flexure. Thus, on the south flank near the fault, subsidence was slower than on the southeast flank where the lithosphere was not thickened. The closely spaced fluvial architecture on the south flank resulted from a narrow basin axis flood plain. A narrow flood plain possibly resulted from the subsidence resistance of thickened lithosphere at the Rock Springs uplift bounding fault or from topographic expression of the uplift itself.

  18. Bibliography of selected water-resources information for the Arkansas River basin in Colorado through 1985

    USGS Publications Warehouse

    Kuzmiak, John M.; Strickland, Hyla H.

    1994-01-01

    The Arkansas River basin composes most of southeastern Colorado, and the numerous population centers and vast areas of agricultural development are located primarily in the semiarid part of the basin east of the Continental Divide. Because effective management and development of water resources in this semiarid area are essential to the viability of the basin, many hydrologic data- collection programs and investigations have been done. This report contains a bibliography of selected water-resources information about the basin, including regularly published information and special investigations, from Federal, State, and other organizations. To aid the reader, the infor- mation is indexed by author, subject, county, and hydrologic unit (drainage basin).

  19. Limnological characteristics of Cypress Lake, Upper Kissimmee River Basin, Florida

    USGS Publications Warehouse

    Gaggiani, Neville G.; McPherson, Benjamin F.

    1977-01-01

    Cypress Lake is in the upper Kissimmee River basin in Florida between Lake Tohopekaliga and Lake Hatchineha. It is remote from urban development and extensive agriculture. Nevertheless, most of the inflow to the lake, about 302,000 acre-ft per year, comes from 2 canals and a creek that drain the upper part of the basin which receives effluent from about 35 percent of the Orlando metropolitan area. With this inflow and a lake volume of 26,100 acre-ft, water in the lake is renewed about every 0.1 year. Cypress Lake has a surface area of 6.4 sq mi, a mean depth of 6.4 ft, an immediate overland drainage area of 29 sq mi and with Lake Hatchineha, receives drainage from 1,162 sq mi. From 1950 to 1964, before locks and dams at the outlets of Lakes Kissimmee and Tohopekaliga regulated water levels at Cypress Lake, water levels fluctuated from 57 ft msl to 48 ft msl, periodically flooding the surrounding area. After regulation from 1964 to 1975, the maximum water level at Cypress Lake was slightly more than 54 ft msl. Specific conductance of the water increased in Cypress Lake from an average of 76 micromho/cm in 1954-65 before regulations to 130 micromho/cm in 1964-75 after regulation. Cypress Lake is classified as a colored alkaline lake with an average color of 79 platinum cobalt units. Emergent marsh vegetation covers almost all the shoreline of the lake. (Woodard-USGS)

  20. Compilation of references on geology and hydrology of the Snake River drainage basin above Weiser, Idaho

    USGS Publications Warehouse

    Bassick, M.D.

    1986-01-01

    More than 1,100 references concerning geology and hydrology of the Snake River drainage basin above Weiser, Idaho, are compiled as part of the U.S. Geological Survey 's RASA (Regional Aquifer-System Analysis) study of the Snake River Plain. The list of references is intended as a primary source of information for investigators concerned with previous studies in the basin. Reference numbers correlate with a key-word index to help the user select and locate desired references. (USGS)

  1. An inundation study of the Lower Magdalena-Cauca River Basin

    NASA Technical Reports Server (NTRS)

    Vanes, E.; Gomez, H.; Soeters, R.

    1975-01-01

    Annual floodings affect about 35,000 sq km of the Lower Magdalena-Cauca River Basin in the northern part of Colombia. Efforts made to determine the effects of inundation extension and complex factors involved in the flooding problem are reported. An integrated survey was made of the entire river basin with the object of land reclamation in the lower part and determining the effects of inundation extension and other complex factors on flooding. Modern remote sensing techniques were for the study.

  2. Hypothesis of historical effects from selenium on endangered fish in the Colorado River basin

    USGS Publications Warehouse

    Hamilton, S.J.

    1999-01-01

    Anthropogenic selenium contamination of aquatic ecosystems was first associated with cooling reservoirs of coal-fired power plants in the late 1970s, and later with drainage water from agricultural irrigation activities in the 1980s. In the 1990s, selenium contamination has been raised as a concern in the recovery of currently endangered fish in the Colorado River system. Widespread contamination from seleniferous drain waters from agriculture has been documented in the upper and lower Colorado River basins. Historically, irrigation started in the upper Colorado River basin in the late 1880s. In the 1930s, selenium concentrations in various drains, tributaries, and major rivers in the upper and lower Colorado River basins were in the 100s and 1000s of ??g/L. Native fish inhabiting large rivers such as the Colorado pikeminnow and razorback sucker were abundant before 1890, but became rare after 1910 to 1920, before the influence of mainstem reservoirs in the upper and lower Colorado River. A hypothesis is presented that selenium contamination of the tributaries and major rivers of the Colorado River basin in the 1890 to 1910 period caused the decline of the endangered fish and continues to inhibit their recovery. ?? 1999 by ASP.

  3. Temporal variations in river-ice break-up over the Mackenzie River Basin, Canada

    NASA Astrophysics Data System (ADS)

    de Rham, Laurent P.; Prowse, Terry D.; Bonsal, Barrie R.

    2008-02-01

    SummaryFor northern and arctic regions, the spring break-up period has important socio-economic, ecological and morphological effects. While these impacts are reasonably well understood, spatial and temporal assessments of break-up timing and duration remain limited due to the lack of readily available hydrometric data. For this study, the Mackenzie River Basin (MRB) of Canada is selected as a test watershed in which the spatial and temporal aspects of observed (1913-2002) spring river-ice break-up are characterized. Data from 29 Water Survey of Canada gauging sites are used including the commonly assessed 'Last B date' (last ice effect) and two hydrometric variables extracted directly from original water-level recording charts (the timing of initiation of break-up and peak water-level during break-up). It is found that the extracted variables provide a more physically based quantitative description of the break-up season in the MRB compared to the 'Last B date' method. On average, the northwards progressing ice break-up season within the MRB lasts ∼8 weeks but historically has varied within a window representative of ∼3 months of the year. The break-up period at specific locations varies from 4 days to 4 weeks. Results also indicate an anomalous zone of earlier spring break-up in the upper Peace and Athabasca region that may be partially related to the effects of flow regulation. In addition, the Mann-Kendall test reveals significantly earlier trends in the timing of spring break-up (∼1 day/decade) in upstream portions of the major tributaries of the MRB over the period 1970-2002. While similar trends have been found for other hydroclimatic variables in the basin, this study highlights the temporal patterns and variability of the spring break-up period in the Mackenzie River system.

  4. Causes of Variations in Water Quality and Aquatic Ecology in Rivers of the Upper Mississippi River Basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Stark, James R.

    1996-01-01

    Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.

  5. Causes of variations in water quality and aquatic ecology in rivers of the Upper Mississippi River Basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Stark, James R.

    1996-01-01

    Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.

  6. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  7. Geological remote sensing of Palaeogene rocks in the Wind River Basin, Wyoming, USA

    NASA Technical Reports Server (NTRS)

    Krishtalka, L.; Stucky, R. K.; Redline, A. D.

    1988-01-01

    Remote sensing studies of Palaeogene sediments in the Wind River Basin (Wyoming) were used for mapping stratigraphic units, sedimentary features and facies, and structural patterns. Thematic Mapper principal component images for the central and eastern Wind River Basin along with geological investigations and spectral analyses allowed: mapping of the Fort Union, Wind River, and Wagon Bed formations (Fm) and their subunits; recognition of two subunits in the Wind River Fm, one of which can be traced for 75 km; determination of sediment source and depositional environment of units within the Wind River Fm; correlation of the Wagon Bed Fm across the basin; and apparent confirmation of different sources of volcanic debris in the western and southeastern exposures of the Wagon Bed Fm.

  8. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling. Earth Surface Processes and Landforms, 36(1), 20-38.

  9. Framework design for remote sensing monitoring and data service system of regional river basins

    NASA Astrophysics Data System (ADS)

    Fu, Jun'e.; Lu, Jingxuan; Pang, Zhiguo

    2015-08-01

    Regional river basins, transboundary rivers in particular, are shared water resources among multiple users. The tempo-spatial distribution and utilization potentials of water resources in these river basins have a great influence on the economic layout and the social development of all the interested parties in these basins. However, due to the characteristics of cross borders and multi-users in these regions, especially across border regions, basic data is relatively scarce and inconsistent, which bring difficulties in basin water resources management. Facing the basic data requirements in regional river management, the overall technical framework for remote sensing monitoring and data service system in China's regional river basins was designed in the paper, with a remote sensing driven distributed basin hydrologic model developed and integrated within the frame. This prototype system is able to extract most of the model required land surface data by multi-sources and multi-temporal remote sensing images, to run a distributed basin hydrological simulation model, to carry out various scenario analysis, and to provide data services to decision makers.

  10. Long-term accumulation and transport of anthropogenic phosphorus in three river basins

    NASA Astrophysics Data System (ADS)

    Powers, Stephen M.; Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.; Haygarth, Philip M.; Howden, Nicholas J. K.; Jarvie, Helen P.; Lyu, Yang; Peterson, Heidi M.; Sharpley, Andrew N.; Shen, Jianbo; Worrall, Fred; Zhang, Fusuo

    2016-05-01

    Global food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30-70 years in mixed agricultural-urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.

  11. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquok