Science.gov

Sample records for indus river basin

  1. Water Availability in Indus River at the Upper Indus Basin under Different Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2015-04-01

    . The analyses show that there will be much more water available in future under the considered emission scenarios but in some months there will be scarcity of water. However, by proper management and optimum utilization of the available water, the scarcity of water can be minimized considerably. Finally, a meta-analysis has been performed to present a combined picture of all scenarios considered in this study. One way to avoid water scarcity is to upgrade and install new reservoirs and water storage capacities to reserve the extra water during high river flow in Indus River, which will then be utilized during low river flow. __________________________________________________________________________________ KEY WORDS: Agriculture, Climate Change, Hydro-power, Indus River, Tarbela Reservoir, Upper Indus Basin, Meta-analysis, Hydrological model.

  2. Water governance and adaptation to climate change in the Indus River Basin

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Chen E.; Brown, Casey; Yu, Winston; Wescoat, James; Ringler, Claudia

    2014-11-01

    Conflicting approaches to water governance at multiple scales within large international river basins may have detrimental effects on the productivity of water resources and consequently the economic activities of the basin. In the Indus River Basin, local scale water productivity decisions are affected by international and intra-national scale water governance. Water availability and productivity is modulated by the Indus Waters Treaty between India and Pakistan, and within Pakistan by the agreements governing water allocation between and within provinces. Much of the literature on governance at multiple scales in the Indus basin, and others, has employed qualitative methods of institutional analysis. This paper extends that approach with quantitative modeling of surface water allocation rules at multiple scales and the consequent economic impact on water use and productivity in the Indus River of Pakistan. The effects of the existing water allocation mechanisms on the ability to adapt to possible future climate conditions are examined. The study is conducted using the Indus Basin Model Revised - Multi-Year (IBMR-MY), a hydro-agro-economic model of the Indus River within Pakistan that simulates river and canal flows, groundwater pumping, water use and economic activities with a distributed, partial equilibrium model of the local scale agro-economic activities in the basin. Results suggest that without changes in response to changing conditions, the current governance mechanisms impede the provinces' ability to adapt to changing climate conditions, in ways that are significant, inflicting economic costs under both high and low flow conditions. However surface water allocation between the provinces does not appear to hinder adaptation. The greatest gains for economic water allocation are achieved at the sub-provincial level. The results imply that adaptive mechanisms for water allocation that allow response to changing climate conditions within provinces may be a

  3. Drought Characteristics Based on the Retrieved Paleoprecipitation in Indus and Ganges River Basins

    NASA Astrophysics Data System (ADS)

    Davtalabsabet, R.; Wang, D.; Zhu, T.; Ringler, C.

    2014-12-01

    Indus and Ganges River basins (IGRB), which cover the major parts of India, Nepal, Bangladesh and Pakistan, are considered as the most important socio-economic regions in South Asia. IGRB support the food security of hundreds of millions people in South Asia. The food production in IGRB strictly relies on the magnitude and spatiotemporal pattern of monsoon precipitation. Due to severe drought during the last decades and food production failure in IGRB, several studies have focused on understanding the main drivers for south Asia monsoon failures and drought characteristics based on the historical data. However, the period of available historical data is not enough to address the full characteristic of drought under a changing climate. In this study, an inverse Palmer Drought Severity Index (PDSI) model is developed to retrieve the paleoprecipitation back to 700 years in the region, taking the inputs of available soil water capacity, temperature, and previous reconstructed PDSI based on tree-ring analysis at 2.5 degree resolution. Based on the retrieved paleoprecipitation, drought frequency and intensity are quantified for two periods of 1300-1899 (the reconstruction period) and 1900-2010 (the instrumental period). Previous studies have shown that in IGRB, a severe drought occurs when the annual precipitation deficit, compared with the long-term average precipitation, is greater than 10%. Climatic drought frequency is calculated as the percentage of years with predefined severe droughts. Drought intensity is defined as the average precipitation deficit during all of the years identified as severe droughts. Results show that the drought frequency, as well as the spatial extent, has significantly increased from the reconstruction period to the instrumental period. The drought frequency in the Indus River basin is higher than that in the Ganges River basin. Several mega-droughts are identified during the reconstruction period.

  4. Land surface hydrological investigation in Upper Indus River Basin (UIB), North Pakistan under the Framework of TPE Program

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2012-12-01

    The Upper Indus Basin (UIB) is home to three of the world's mightiest mountain ranges. The Karakoram in north and the Himalaya in northeast while the Hindukush in the northwest of Pakistan. The Indus River emerges from the Tibetan Plateau and flows toward northern areas of Pakistan where it changes its direction toward the south and flows into the Arabian Sea. The catchment area of Indus River is located in Pakistan, China and India, but most part covered in Pakistan. The Upper Indus Basin lies within the variable influence of three major weather systems: the sub-Mediterranean regime of mainly winter, westerly storms; the summer monsoon; and the Tibetan anticyclone. The Upper Indus River Basin has a total catchment area of approx. 206,000 km2. The UIB includes the Hunza, Gilgit, Astore, Shigar and Shyok sub-basins. Nearly 11.5% (22,000 km2) of the total area of the UIB is covered by perennial glacial ice (including most of the largest valley glaciers) making it the largest area outside the polar and Greenland regions (Hewitt, 2007). UIB has a mean elevation of 4750 m with almost 60% of its total area above an elevation of 4500 m and 12% of its area (almost the same area is glacier covered) above 5500 m. Glacial melt is one of the major sources of inflow in the Upper Indus Basin, 44.8% of its river flow depends upon glacial melting. Its mean discharge at Tarbela dam is 5533 m3/s (IUCN, IWMI). Most of the annual precipitation in the UIB falls in the winter and spring and originates from the west (Young and Hewitt, 1990). Several researchers reported that 80% of the flow of the Upper Indus River is contributed by less than 20% of its area, essentially from the zones of heavy snowfall and glaciated basins above 3500m in elevation. Under the Framework of TPE Program, observational researches have been lunched since last year. The project aim to the objective of hydrological consequence of snow cover in UIB; impact of glacier dynamic to basin drainage and response of

  5. Early 21st century climatology of snow cover for the western river basins of the Indus River System

    NASA Astrophysics Data System (ADS)

    Hasson, S.; Lucarini, V.; Khan, M. R.; Petitta, M.; Bolch, T.; Gioli, G.

    2013-11-01

    In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River System (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001-2012. Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow products from Terra (MOD) and Aqua (MYD) have been first improved and then analysed on seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our applied cloud filtering technique has reduced the cloud cover from 37% (MOD) and 43% (MYD) to 7%, thus improving snow cover estimates from 7% (MOD) and 5% (MYD) to 14% for the area of interest (AOI) during the validation period (2004). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (Upper Indus Basin, Astore, Hunza, Shigar, Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Regarding the seasonal snow cover, decrease during winter and autumn and increase during spring and summer has been found, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitude/altitude show higher variability than basins at lower latitude/mid-altitude. Northeastern and northwestern aspects feature larger snow cover. The mean regional snow line altitude (SLA) zones range between 3000 and 5000 m a.s.l. for all basins. Our analysis provides an indication of a decrease in the regional SLA zone, thus indicating a change in the water resources of the studied basins, particularly for the Upper Indus Basin (UIB). Such results are consistent with the observed hydro-climate data, recently collected local perceptions and glacier mass balances for the investigated period. Moreover, our analysis suggests some potential for the seasonal stream flow forecast as a significant negative correlation has been detected for the inter-annual variability of winter

  6. Holocene Evolution of the Indus River Basin: the effect of climate and drainage reorganization on the Harappan

    NASA Astrophysics Data System (ADS)

    Alizai, A. H.; Clift, P. D.; Vanlaningham, S.; Giosan, L.; Carter, A.; Hillier, S.; Macklin, M. G.; Duller, G. A.; Durcan, J.

    2009-12-01

    The Indus River basin has evolved significantly during the Holocene and may have affected the Harappan Civilization which is believed to have collapsed around 2000 BC. We aim to understand the links between drainage evolution, the intensity of the South Asian Monsoon and the development of this early human society. Sediment was sampled from modern rivers, pits and shallow boreholes in the alluvial plains of the Indus and the inactive Ghaggar-Hakra tributary. A suite of techniques are used to resolve sediment source changes during, the Holocene, including bulk and clay mineralogy (XRD), garnet geochemistry, U-Pb dating of zircon grains, Ar-Ar dating of mica, and bulk Nd isotopic analyses. We report preliminary 14C and optically-stimulated luminescence (OSL) ages, U-Pb dating of zircon and mineralogical data from a delta core site (Keti Bandar), as well as two core sites and two shallow pits from the eastern upper Indus flood plain. Sediments from the delta show that the mineralogical changes are coherent with the regional climate changes in the Early Holocene. XRD mineralogy shows that illite concentrations peak around 14% in Early Holocene and decrease to 4% around 8 ka, while plagioclase feldspar ranges from 9% in the Early Holocene to 17% at the peak of the monsoon. The mineralogy in general shows a coherent trend when plotted against oxygen isotope measurements from speleothems. 14C and OSL age results from the eastern Indus flood plain cluster around 5-6 ka suggesting an active river at and before this time, and coincide with when the Harappan flourished. This eastern palaeo-tributary (Ghaggar-Hakra) of Indus drains the Lesser and the Higher Himalayas and is different from the trunk Indus stream which has sediment derived mainly from the Karakoram, Transhimalayas, Hindu Kush and Kohistan ranges. U-Pb zircon ages from Mid-Holocene sands along the path of the Ghaggar-Hakra River are very similar to the Indus and Thar Desert sands. We suggest that the Ghaggar

  7. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken L.; Mitrovica, Jerry X.; Giosan, Liviu; Clift, Peter D.

    2015-04-01

    Changes in sea level are of wide interest because they shape the sedimentary geologic record, modulate flood-related hazards, and reflect Earth's climate. One driver of sea-level change is the erosion and deposition of sediment, which induces changes in sea level by perturbing Earth's crust, gravity field, and rotation axis. Here we use a gravitationally self-consistent global model to explore how sediment erosion and deposition affected sea level during the most recent glacial-interglacial cycle in the northeastern Arabian Sea and the Indus River basin, where fluvial sediment fluxes are among the highest on Earth. We drive the model with a widely used reconstruction of ice mass variations over the last glacial cycle and a sediment loading history that we constructed from published erosion and deposition rate measurements. Our modeling suggests that sediment fluxes from the Indus River are large enough to produce meter-scale changes in sea level near the Indus delta in as little as a few thousand years. These sea-level perturbations are largest closest to the center of the Indus delta, and they grow larger over time as sediment deposition increases. This implies that the elevation of sea-level markers near the Indus delta will be significantly altered by sediment transfer over millennial timescales, and that such deformation should be accounted for in studies that use paleo-sea-level markers to infer past ice sheet volume or explore local processes such as sediment compaction. Our analysis highlights the role that massive fluvial sediment fluxes play in driving sea-level changes over >1000-yr timescales from the Indus River, and, by implication, from other rivers with large sediment fluxes.

  8. Early 21st century snow cover state over the western river basins of the Indus River system

    NASA Astrophysics Data System (ADS)

    Hasson, S.; Lucarini, V.; Khan, M. R.; Petitta, M.; Bolch, T.; Gioli, G.

    2014-10-01

    In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River system (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001-2012. First, we validate the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products from Terra (MOD10A1) and Aqua (MYD10A1) against the Landsat Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) data set, and then improve them for clouds by applying a validated non-spectral cloud removal technique. The improved snow product has been analysed on a seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (upper Indus basin (UIB), Astore, Hunza, Shigar and Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Seasonal average snow cover decreases during winter and autumn, and increases during spring and summer, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitudes/altitudes show higher variability than basins at lower latitudes/middle altitudes. Northeastern and northwestern aspects feature greater snow cover. The mean end-of-summer regional snow line altitude (SLA) zones range from 3000 to 5000 m a.s.l. for all basins. Our analysis provides an indication of a descending end-of-summer regional SLA zone for most of the studied basins, which is significant for the Shyok and Kabul basins, thus indicating a change in their water resources. Such results are consistent with the observed hydro-climatic data, recently collected local perceptions and glacier mass balances for the investigated period within the UIB. Moreover, our analysis shows a significant correlation between winter season snow cover and the North Atlantic Oscillation (NAO) index of the previous autumn

  9. Hydrologic Sensitivities of Upper Indus Basin (North Pakistan) Rivers to Multi-Decadal Climatic Variability

    NASA Astrophysics Data System (ADS)

    Farhan, S. B.; Zhang, Y.; Ma, Y.; Haifeng, G.; Jilani, R.; Hashmi, D.; Rasul, G.

    2014-12-01

    Thermal inputs play a vital role in the management and seasonal distribution of stream-flows particularly in snow and glacier fed basins, therefore the signatures of the recent climate trends can also be observed in various hydrological variables in those basins. Upper Indus Basin (UIB) is located in the western part of Tibetan Plateau, and most of its flows are dependent on snow- and glacier-melt produced water, thus the analyses of historical stream-flows and climatic indicators in the snow-melt dominated rivers of UIB was carried out, which points towards an advance in the spring flow onset time over the past few decades. Trend results reveal that warm temperature spells in spring have occurred much earlier in recent years, which explains in part the trend in the timing of spring peak stream-flows owing to earlier occurrence of snow melt onset. The observed increase in spring stream-flows and decrease in summer stream-flows suggests a broad shift of snow-melt yield and spring peak flows. These trends are found to be strongest at lower elevations basins where winter temperatures are closer to the melting point, even modest variation in temperatures are capable to enforce large shifts in the basin hydrologic feedback. In addition, it appears that in recent years due to winter and spring warming, more of the precipitation is falling as rain rather than snow particularly in late winter and early spring seasons, consequently it is speculated that this shift in precipitation ratio (snow vs rain) and early warming spells might also affect local (basin-scale) Albedo via early recession and systematic decrease of snow cover area, which tends in lowering Albedo from an increased fraction of snow-free area, which instigate positive feedback on radiative balance that can perhaps causes local-scale heat redistribution, which collectively in turn augmented winter and early spring stream-flows in those basins. These observed hydro-climatological trends over UIB can have

  10. Hydrocarbon prospects of southern Indus basin, Pakistan

    SciTech Connect

    Quadri, V.U.N.; Shuaib, S.M.

    1986-06-01

    The Southern Indus basin extends approximately between lat. 23/sup 0/ and 28/sup 0/31'N, and from long. 66/sup 0/E to the eastern boundary of Pakistan. Of the 55 exploratory wells drilled (1955-1984), 27 were based on results of multifold seismic surveys. Five commercial oil discoveries and one gas discovery in Cretaceous sands, three gas discoveries in Paleocene limestone or sandstone, and one gas-condensate discovery from lower Eocene limestone prove that hydrocarbons are present. The main hydrocarbon fairways are Mesozoic tilted fault blocks. Tertiary reefal banks, and drape and compressional anticlines. Older reservoirs are accessible toward the east and northeast, and younger mature source rocks are to the west, including offshore, of the Badin block oil field area. The Indus offshore basin reflects sedimentation associated with Mesozoic rifting of the Pakistan-Indian margin, superimposed by a terrigenous clastic depositional system comprised of deltas, shelves, and deep-sea fans of the Indus River.

  11. Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalayas: Implications from hydrogen and oxygen isotopes in river water

    NASA Astrophysics Data System (ADS)

    Karim, Ajaz; Veizer, Jan

    2002-09-01

    Stable isotope measurements of hydrogen and oxygen for surface waters from the Indus River Basin (IRB), together with historical records for river discharge, annual precipitation, and groundwater levels, are used to assess water balance for the basin. The Indus River presently drains 53 km3 yr-1 or roughly one-eighth of the 398-km3 water that annually falls on the basin in the form of rain and snow, with the remainder returned to the atmosphere by evapotranspiration. Monthly samples for the Indus River close to its mouth, for the water year March 1994 to February 1995, show a tight correlation in δD and δ18O space. The slope of the linear regression is 7.5, which is not significantly different from the slopes of the Local Meteoric Water Lines (LMWL; 7.3 and 7.1). This observation argues against significant loss of water by direct evaporation from river surfaces or from soils in hydrologic continuum with surface waters. An upper limit for evaporation from poorly drained soils is calculated to be ˜10 km3 yr-1 or only 2.5% of the annual precipitation flux. Groundwater storage in the entire Canal Command Area received a maximum of 23 km3 yr-1 or 5.8% of the annual precipitation during the early stages of irrigation, but modern recharge is probably balanced by discharge to rivers and well exploitation. Transpiration by natural vegetation and crops annually returns 83% of the precipitation flux and constitutes the largest pathway for the loss of water from the basin. Deuterium excess (d-excess) in the IRB ranges between 4‰ and 28‰, with values for 95% of the sample population exceeding 10‰. The Indus main channel close to its mouth varies in d-excess between 12‰ and 20‰ during low and high water stands, respectively, with a discharge weighted average of 18‰. These values are distinctly higher than the long-term average for the Indian monsoon (˜8‰) and reflect contributions from water vapor originating in the Mediterranean (22‰) or other inland seas

  12. Indus Basin sediment provenance constrained using garnet geochemistry

    NASA Astrophysics Data System (ADS)

    Alizai, Anwar; Clift, Peter D.; Still, John

    2016-08-01

    The chemical and mineralogical diversity of western Himalayan rivers is the result of each of them draining different tectonic and lithologic units, whose character is partly transferred to the sediments carried by those rivers. Garnet geochemistry was employed to discriminate provenance in the Indus River system. We characterized the geochemistry of garnet sediment grains from the modern Indus and all its major tributaries, as well as the related but ephemeral Ghaggar-Hakra River and dune sand from the Thar Desert. Garnet geochemistry displays a unique signature for the Himalayan rivers on the east of the Indus drainage compared to those in the western drainage. The trunk Indus remains distinct because of the dominant arc-type pyrope-garnet derived from Kohistan and the Karakoram. The Jhellum, which lies just east of the modern Indus has modest concentrations of arc-type pyrope garnets, which are more depleted in the other eastern tributaries. Their presence in the Jhellum reflects recycling of trunk Indus garnets through the Miocene Siwalik Group foreland sedimentary rocks. The Thar Desert dune sample contains significant numbers of grains similar to those in the trunk Indus, likely reworked by monsoon winds from the SW. Our data further indicate the presence of a Himalayan river channel east of the present Indus, close to the delta, in the Nara River valley during the middle Holocene. Sands from this channel cannot be distinguished from the Indus on the basis of their garnet geochemistry alone but we favour their sedimentation from an Indus channel rather than reworking of desert sands by another stream. The garnet geochemistry shows some potential as a provenance tool, but cannot be used alone to uniquely discriminate Indus Basin provenance.

  13. Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin

    NASA Astrophysics Data System (ADS)

    Su, Buda; Huang, Jinlong; Gemmer, Marco; Jian, Dongnan; Tao, Hui; Jiang, Tong; Zhao, Chengyi

    2016-09-01

    The simulation results of CMIP5 (Coupled Model Inter-comparison Project phase 5) multi-model ensemble in the Indus River Basin (IRB) are compared with the CRU (Climatic Research Unit) and APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation) datasets. The systematic bias between simulations and observations is corrected by applying the equidistant Cumulative Distribution Functions matching method (EDCDFm) and high-resolution simulations are statistically downscaled. Then precipitation and temperature are projected for the IRB for the mid-21st century (2046-2065) and late 21st century (2081-2100). The results show that the CMIP5 ensemble captures the dominant features of annual and monthly mean temperature and precipitation in the IRB. Based on the downscaling results, it is projected that the annual mean temperature will increase over the entire basin, relative to the 1986-2005 reference period, with greatest changes in the Upper Indus Basin (UIB). Heat waves are more likely to occur. An increase in summer temperature is projected, particularly for regions of higher altitudes in the UIB. The persistent increase of summer temperature might accelerate the melting of glaciers, and has negative impact on the local freshwater availability. Projections under all RCP scenarios show an increase in monsoon precipitation, which will increase the possibility of flood disaster. A decreasing trend in winter and spring precipitation in the IRB is projected except for the RCP2.6 scenario which will cause a lower contribution of winter and spring precipitation to water resources in the mid and high altitude areas of the IRB.

  14. Early 21st century climatology of snow cover for the western river basins of the Indus River System: effects of changes on hydrological balance and society.

    NASA Astrophysics Data System (ADS)

    Hasson, Shabeh; Lucarini, Valerio; Riaz Khan, Mobushir; Petitta, Marcello; Bolch, Tobias; Gioli, Giovanna

    2014-05-01

    In this study we assess the snow cover and its dynamics for the western river basins of the Indus River System (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001-2012. Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow products from Terra (MOD) and Aqua (MYD) have been first improved and then analysed on seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our applied cloud filtering technique has reduced the cloud cover from 37% (MOD) and 43% (MYD) to 7%, thus improving snow cover estimates from 7% (MOD) and 5% (MYD) to 14% for the area of interest (AOI) during the validation period (2004). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (Upper Indus Basin, Astore, Hunza, Shigar, Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Regarding the seasonal snow cover, decrease during winter and autumn and increase during spring and summer has been found, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitude/altitude show higher variability than basins at lower latitude/mid-altitude. Northeastern and northwestern aspects feature larger snow cover. The mean regional snow line altitude (SLA) zones range between 3000 and 5000 m a.s.l. for all basins. Our analysis provides an indication of a decrease in the regional SLA zone, thus indicating a change in the water resources of the studied basins, particularly for the Upper Indus Basin (UIB). Such results are consistent with the observed hydro-climate data, recently collected local perceptions and glacier mass balances for the investigated period. Moreover, our analysis suggests some potential for the seasonal stream flow forecast as a significant negative correlation has been detected for the inter-annual variability of winter

  15. Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin: Implications for the composition of the Archean atmosphere

    SciTech Connect

    Maynard, J.B.; Ritger, S.D. ); Sutton, S.J. )

    1991-03-01

    Both the Indus River and the Witwatersrand basin contain sand with grains of detrital uraninite. Because this mineral is easily oxidized, its presence in Archean strata as a detrital particle has been used as evidence for a low-oxygen atmosphere before 2.5 Ga. However, its presence in modern sand from the Indus River system has been used to argue that detrital uraninite does not provide information about the oxygen concentration of Earth's early atmosphere. Petrographic and chemical study of sand from these two sources reveals differences that suggest the modern Indus sand cannot be used as an analog for the Archean Witwatersrand occurrences. The Witwatersrand quartzites are depleted in Ca, Mg, and Na, indicating that the original sand from which they formed had been subjected to intense weathering. The chemical index of alteration (CIA), a commonly used indicator of degree of weathering, yields an average value of about 0.80 for Witwatersrand quartzites, comparable to modern tropical streams such as the Orinoco that drain deeply weathered terrains under tropical conditions (CIA=0.75). In contrast, the CIA for Indus sand is 0.45, indicating virtually no chemical weathering. The significance of Archean quartz-pebble conglomerates is not just that they contain unstable detrital phases like uraninite and pyrite, but that these particles are associated with rocks whose compositions suggest intense weathering. These conglomerates must have been subjected to intense weathering under tropical conditions, either in their source area or at the site of deposition, and the preservation of minerals like uraninite such conditions is indeed strong evidence for a low-oxygen atmosphere.

  16. Assessing the combined influence of TOC and black carbon in soil-air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan.

    PubMed

    Ali, Usman; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Katsoyiannis, Athanasios; Jones, Kevin C; Malik, Riffat Naseem

    2015-06-01

    Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002-0.53 ng g(-1) in the surface soils while 1.43-22.1 and 0.19-7.59 pg m(-3) in the passive air samples, respectively. Black carbon (fBC) and total organic carbon (fTOC) fractions were also measured and ranged between 0.73 and 1.75 and 0.04-0.2%, respectively. The statistical analysis revealed strong influence of fBC than fTOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta-bromodiphenylether (DE-71) commercial formulation in the study area. Soil-air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. PMID:25795070

  17. Tracking the fingerprints and combined TOC-black carbon mediated soil-air partitioning of polychlorinated naphthalenes (PCNs) in the Indus River Basin of Pakistan.

    PubMed

    Ali, Usman; Sánchez-García, Laura; Rehman, Muhammad Yasir Abdur; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-01-01

    This study reports the first investigation of polychlorinated naphthalenes (PCNs) in air and soil samples from ecologically important sites of the Indus River Basin, Pakistan. The concentrations of ∑39-PCNs in air and soil were found in a range between 1-1588 pg m(-3) and 0.02-23 ng g(-1) while the mean TEQ values were calculated to be 5.4E(-04) pg TEQ m(-3) and 1.6E(+01) pg TEQ g(-1), respectively. Spatially, air and soil PCN concentrations were found to be high at Rahim Yar Khan (agricultural region). Lower-medium chlorinated PCNs (sum of tri-, tetra- and penta-CNs) predominated in both air and soil, altogether constituting 87 and 86% of total PCNs in the two environmental matrices, respectively. According to the data, soil-air partitioning of PCNs was interpreted to be similarly controlled by the combined effect of black carbon and organic matter in the Indus River Basin, with no preferential implication of the recalcitrant organic form. PMID:26613673

  18. Satellite surveillance of evaporative depletion across the Indus Basin

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, Wim G. M.; Ahmad, Mobin-Ud-Din; Chemin, Yann

    2002-12-01

    The irrigated Indus Basin in Pakistan has insufficient water resources to supply all its stakeholders. Information on evaporative depletion across the Basin is an important requirement if the water resources are to be managed efficiently. This paper presents the Surface Energy Balance Algorithm for Land (SEBAL) method used to compute actual evapotranspiration for large areas based on public domain National Oceanic and Atmospheric Administration (NOAA) satellite data. Computational procedures for retrieving actual evapotranspiration from satellites have been developed over the last 20 years. The current work is among the first applications used to estimate actual evapotranspiration on an annual scale across a vast river basin system with a minimum of ground data. Only sunshine duration and wind speed are required as input data for the remote sensing flux algorithm. The results were validated in the Indus Basin by comparing results from a field-scale transient moisture flow model, in situ Bowen ratio measurements, and residual water balance analyses for an area of 3 million ha. The accuracy of assessing time-integrated actual annual evapotranspiration varied from 0% to 10% on a field scale to 5% at the regional level. Spatiotemporal information on actual evapotranspiration helps to evaluate water distribution and water use between large irrigation project areas. Wide variations in evaporative depletion between project areas and crop types were found. Satellite-based measurements can provide such information and avoid the need to rely on field databases.

  19. Influential role of black carbon in the soil-air partitioning of polychlorinated biphenyls (PCBs) in the Indus River Basin, Pakistan.

    PubMed

    Ali, Usman; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2015-09-01

    Levels of polychlorinated biphenyls (PCBs) were assessed in surface soils and passive air samples from the Indus River Basin, and the influential role of black carbon (BC) in the soil-air partitioning process was examined. ∑26-PCBs ranged between 0.002-3.03 pg m(-3) and 0.26-1.89 ng g(-1) for passive air and soil samples, respectively. Lower chlorinated (tri- and tetra-) PCBs were abundant in both air (83.9%) and soil (92.1%) samples. Soil-air partitioning of PCBs was investigated through octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of the paired-t test revealed that both models showed statistically significant agreement between measured and predicted model values for the PCB congeners. Ratios of fBCKBC-AδOCT/fOMKOA>5 explicitly suggested the influential role of black carbon in the retention and soil-air partitioning of PCBs. Lower chlorinated PCBs were strongly adsorbed and retained by black carbon during soil-air partitioning because of their dominance at the sampling sites and planarity effect. PMID:25933089

  20. Five centuries of Upper Indus River flow from tree rings

    NASA Astrophysics Data System (ADS)

    Cook, Edward R.; Palmer, Jonathan G.; Ahmed, Moinuddin; Woodhouse, Connie A.; Fenwick, Pavla; Zafar, Muhammad Usama; Wahab, Muhammad; Khan, Nasrullah

    2013-04-01

    SummaryWater wars are a prospect in coming years as nations struggle with the effects of climate change, growing water demand, and declining resources. The Indus River supplies water to the world's largest contiguous irrigation system generating 90% of the food production in Pakistan as well as 13 gigawatts of hydroelectricity. Because any gap between water supply and demand has major and far-reaching ramifications, an understanding of natural flow variability is vital - especially when only 47 years of instrumental record is available. A network of tree-ring sites from the Upper Indus Basin (UIB) was used to reconstruct river discharge levels covering the period AD 1452-2008. Novel methods tree-ring detrending based on the 'signal free' method and estimation of reconstruction uncertainty based on the 'maximum entropy bootstrap' are used. This 557-year record displays strong inter-decadal fluctuations that could not have been deduced from the short gauged record. Recent discharge levels are high but not statistically unprecedented and are likely to be associated with increased meltwater from unusually heavy prior winter snowfall. A period of prolonged below-average discharge is indicated during AD 1572-1683. This unprecedented low-flow period may have been a time of persistently below-average winter snowfall and provides a warning for future water resource planning. Our reconstruction thus helps fill the hydrological information vacuum for modeling the Hindu Kush-Karakoram-Himalayan region and is useful for planning future development of UIB water resources in an effort to close Pakistan's "water gap". Finally, the river discharge reconstruction provides the basis for comparing past, present, and future hydrologic changes, which will be crucial for detection and attribution of hydroclimate change in the Upper Indus Basin.

  1. Climate Risks on Water and Agriculture in the Indus Basin of Pakistan

    NASA Astrophysics Data System (ADS)

    Yang, Y. E.; Brown, C. M.; Yu, W.

    2012-12-01

    Pakistan relies on the largest contiguous irrigation system in the world, known as the Indus Basin Irrigation System (IBIS) for its basic food security and water supply for all sectors of the economy. The basin that supports this irrigation system consists of the Indus River mainsteam and its major tributaries. The integrated systems framework used in this analysis provides a broad and unique approach to estimating the hydrologic and crop impacts of climate change risks, the macro-economic and household-level responses and an effective method for assessing a variety of adaptation investments and policies. In assessing the impacts, several different modeling environments must be integrated to provide a more nuanced and complete picture of how water and agriculture inter-relate. Moreover, such a framework allows for extensive scenario analysis to identify and understand key sensitivities. This is critical to making decisions in a highly uncertain future. Finally, through this integration of multiple disciplines, a richer and more robust set of adaptation investment options and policies for the agriculture and water sectors can be identified and tested. Continued refinements to the assessment approach developed in this volume will further help to sharpen critical policies and interventions by the Pakistan government. Fig 2. Impacts of climate change on GDP, Ag-GDP and Household income in the Indus Basin Fig1. The Indus River Basin

  2. Indus basin off Pakistan contains few wells

    SciTech Connect

    Quadri, V.N.; Quadri, S.M.G.J.

    1997-06-16

    The U.N. Conference on the Law of the Sea reaffirmed sovereignty of nations over 22 km of territorial sea, a 370 km Exclusive Economic Zone (EEZ), and rights over the continental shelf to at least 370 km and out to 648 km or beyond under specified conditions. With a coast line of about 990 km, the EEZ for Pakistan extends over an area almost 240,000 sq km, or 40% of the land sedimentary area, in which two distinct geological provinces, and the Indus Offshore and the Makran offshore, have been defined. The paper discusses the tectonics, structure, exploration history, and play types offshore Pakistan. Data show a potential for both oil and gas.

  3. On the control of climate- and human-modulated fluvial sediment delivery on river delta development: The Indus

    NASA Astrophysics Data System (ADS)

    Giosan, L.; Clift, P. D.; Blusztajn, J.; Tabrez, A.; Constantinescu, S.; Filip, F.

    2006-12-01

    -affected Himalayas. This early inception of the Indus delta was probably controlled by an augmented sediment delivery from the Indus basin occurring between 13000 and 9500 years BP during a period of abrupt increase in the intensity of the summer monsoon. Subsequently, a centuries-long phase of reduced precipitations in the Indus basin resulted in an abrupt decrease of the Indus discharge sometimes between 9000 and 8000 years. During this phase, almost the entire early Indus delta was flooded as marine waters penetrated deep inland, providing a grim analog for the future of currently sediment starved river deltas. Furthermore, it will be discussed that this complex evolution of the Indus delta points toward a fundamental change in paradigm for the dynamics deltas at centennial to millennial time scales and for interpreting the sedimentary architecture of transgressive and highstand deltaic deposits.

  4. Makran Mountain Range, Indus River Valley, Pakistan, India

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  5. Quaternary Indus River Terraces as Archives of Summer Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Jonell, Tara N.; Clift, Peter D.

    2013-04-01

    If we are to interpret the marine stratigraphic record in terms of evolving continental environmental conditions or tectonics, it is essential to understand the transport processes that bring sediment from mountain sources to its final marine depocenter. We investigate the role that climate plays in modulating this flux by looking at the Indus River system, which is dominated by the strong forcing of the Asian monsoon and the erosion of the western Himalaya. Lake, paleoceanographic, and speleothem records offer high-resolution reconstructions of monsoon intensity over millennial timescales. These proxies suggest the monsoon reached peak intensity at ~9-10 ka in central India, followed by a steady decline after ~7 ka, with a steep decline after 4 ka. New lake core records (Tso Kar and Tso Moriri), however, suggest a more complex pattern of monsoon weakening between 7-8 ka in the Greater Himalayan region, which contrasts with a time of strong monsoon in central India. This indicates that the floodplains of the major river systems may not experience the same climatic conditions as their mountain sources, resulting in different geomorphologic responses to climate change. Earlier research has established that the northern part of the Indus floodplain adjacent to the mountains experienced incision after ~10 ka. Incision and reworking is even more intense in the Himalayas but its timing is not well-constrained. High altitude river valleys, at least north of the Greater Himalaya, appear to be sensitive to monsoon strength because they lie on the periphery of the Himalayan rain shadow. These valleys may be affected by landslide damming during periods of strong monsoonal precipitation, such as slightly after the monsoon maximum from 9-10 ka. Damming of these river valleys provides sediment storage through valley-filling and later sediment release through gradual incision or dam-bursting. Terraces of a major tributary to the Indus, the Zanskar River, indicate valley

  6. Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination

    NASA Astrophysics Data System (ADS)

    Hamidullah, S.; Tariq, S.; Shah, M. T.; Bishop, M. P.; Kamp, U.; Olsenholler, J.

    2002-05-01

    Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination Terrorism has temporarily constrained the dynamism of the world it was enjoying before September 11, 2001, but also has opened avenues for people of all ethnicities, creeds, and professions to join hands in combating it. Scientific efforts to combat terrorism are likely to lead to better use of existing scientific knowledge as well as to discoveries that will increase world organization, interconnectivity, and peace promotion. Afghanistan and surrounding regions are major focal points for current anti-terrorist activities of the USA and its allies, including Pakistan. The United States, Pakistan, and Afghanistan have shared many similar political objectives, as well as differences, in cold war and post-cold-war eras, reflected by variable provisions of material aid. It is well recognized that understanding Afghanistan requires comprehension of the Pakistan situation as well, especially for common resources. Water is paramount because it is absolutely vital, but can be contaminated by internal or cross-border terrorism. The Kabul and Indus rivers originate in the Hindu Kush - Himalaya ranges. The Kabul River flows from Afghanistan into Pakistan, and after irrigating Peshawar basin, joins the Indus. The Indus, after its origin in Tibet and flow through the Indian Himalaya, enters Pakistan and flows south as the irrigation lifeblood of the country. Any terroristic addition of radioactive nuclides or contaminants to either river could dramatically impact the dependent riverine ecologies. Monitoring cells thus need to be established at locations in Afghanistan and Pakistan to assess base-line river variances for possible future contamination by terrorists. This paper presents a general view and the physical and chemical parameters of parts of the two rivers, and of the surrounding underground water in Peshawar Basin, including pH, conductivity, total

  7. Changing Pattern of Heavy Rainstorms in Indus Basin of India Under Global Warming Scenario

    NASA Astrophysics Data System (ADS)

    Deshpande, N. R.; Kulakarni, B. D.

    2012-12-01

    A major concern of the hydraulic design engineers is to determine a practical value for the design storm where maximum protection against structural failure is required. Design of such structures is based on the extremely large values such as 'Probable Maximum Precipitation (PMP)'. The estimation of PMP involves selection of heavy rainstorm, its areal rainfall distribution and maximization of areal rainfall for moisture content. The study attempts to examine the characteristics of heavy rainstorms of Indus basin located in northern parts of India under changing climate and to provide information on heavy rainfall over a large area which serves as a guide in hydrologic design projects in the basin. The Indus river originates in the northern slopes of the Kailash ranges in the Himalaya and flows through India and Pakistan where it meets Arabian sea. Heavy rainstorms occurred in the Indus basin during 1971-2009 are selected and analyzed. Future scenarios of such heavy rainstorms occurring in this basin are projected using regional climate model, PRECIS (Providing REgional Climate for Impact Studies) scenarios for the period 2071-2100. Baseline simulations (1961-1990) generated by this model used to assess the efficiency of the model to generate widespread heavy rainfall in the basin. Primary emphasis is given on the areal distribution of rainfall during severe rainstorms having durations of 24 hours and producing excessive amount of rainfall over an area of at least 25000 square kilometers with rainfall intensity at the centre of rainstorm more than 30cm. Information is also provided on other important storm factors such as its shape, orientation and movement. Fig.1 shows the spatial patterns of severe-most rainstorms from observational data sets, baseline and future simulated datasets from PRECIS. Table gives the average shape factor (ratio of major to minor axis) and average orientation of these rainstorms. In general it is observed that common shape of the

  8. Future hydrological regimes of the upper Indus basin: results from the PAPRIKA project.

    NASA Astrophysics Data System (ADS)

    Bocchiola, Daniele; Soncini, Andrea; Confortola, Gabriele; Nana, Ester; Bianchi, Alberto; Rosso, Renzo; Diolaiuti, Guglielmina; Smiraglia, Claudio; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello; Giorgi, Filippo; Solmon, Fabien; Vuillermoz, Elisa

    2013-04-01

    The mountain regions of the Hindu Kush, Karakoram and Himalaya (HKKH) are the "third pole" of our planet, and the glaciers in this area play the role of "water towers", delivering significant amounts of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. The recent dynamics of glaciers in the Karakoram area is also called the "Karakoram anomaly", characterized by substantially unchanged ice cover during the last decade, against noticeable area loss worldwide, possibly leading to slightly decreasing stream fluxes. Yet, recent major floods occurring in Pakistan and the Karakoram area, may represent an effect of modified climate in the area, carrying heavier precipitation in the Monsoon season. Therefore, and notwithstanding the uncertainty embedded in measuring and modelling the hydrological behaviour of this area, there is a great need for assessment of future water resources and hydrological variability in this area. We present here results obtained at year two of the SHARE-Paprika project of the EvK2CNR Committee of Italy, aiming at evaluating the impact of recent and prospective climate change on the hydrology of the upper Indus river. We focus here on a particular watershed, the Shigar river close to Shigar, with an area of about 7000 km2, nested within the upper Indus basin, and fed by seasonal melt from two major glaciers (Baltoro and Biafo), at the toe of the K2 peak. We illustrate data gathered during three field campaigns during 2011-2012, aimed at investigating ice ablation dynamics, seasonal accumulation, and hydrological fluxes from the Baltoro-Biafo glaciers area and Shigar river. Based upon these data, topographic information, historical climate data and remote sensing data of ice and snow cover, we set up a semi-distributed, altitude belt based hydrological model, providing acceptable depiction of in stream flows, and snow and ice cover dynamics. We then project the future (until 2050

  9. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  10. Predictable Equilibrium Multichannel Network Characteristizes The Indus River, Pakistan

    NASA Astrophysics Data System (ADS)

    Carling, Paul

    2015-04-01

    PREDICTABLE EQUILIBRIUM MULTICHANNEL NETWORK CHARACTERIZES THE INDUS RIVER, PAKISTAN Carling, P.A.1, Trieu, H.1, Hornby, D.2, Darby, S.E.1, Sear, D.A.1, Hutton, C.2, Ali, Z.3, Iqbal, I.3 1Geography & Environment, University of Southampton, Southampton, UK; 2GeoData, University of Southampton, Southampton, UK; 3SUPARCO, Karachi, Pakistan The Indus River in Pakistan between Chasma and Taunsa is a 304 river km reach characterised by islands dividing multiple channels. Previously, the behaviour of such channel networks has been considered unpredictable. Crosato & Mosselman (2009) argue that physics-based predictors of channel splitting developed for braided-river bars apply poorly to island-divided rivers and recommend the application of regime theory (Bettess & White, 1983) to predict the number (n) of channels in rivers such as the Indus. The Indus is characterized by two to 11 channels at each cross section with, on average, about four channels being active during the dry season and five during the monsoon. Thus the expansion of the network during the monsoon is slight and is due to reoccupation of channels that are dry during low flows. The network evolves on an annual basis primarily due to bendway progression, whilst avulsions to form major new channels are relatively rare (one or two in the reach per year) and are matched by a similar number of closures. Thus the network structure, if not its shape, is relatively stable year to year. The standard deviation of channel numbers comparing sections throughout the reach is practically identical at c. two channels and there is no significant variation between years. Theory indicates that stable networks have three to four channels, thus the stability in the number of active channels through the annual monsoon and between years accords with the presence of a near-equilibrium reach-scale channel network that demonstrates local disequilibrium when 3 > n > 4, being perturbed by the annual monsoon. Application of the

  11. Impact of altitudinal variability on streamflows in mountainous catchments under changing climate (Upper Indus Basin), Himalayas Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, K. M.; Yaseen, M.

    2014-12-01

    Pakistan's economy is based on agriculture that is highly dependent on water resources originating in the mountain sources of the Upper Indus Basin (UIB). Various rivers i.e. Chitral, Swat, Kabul, Hunza, Gilgit, Astore, Shigar, Shyok & tributaries contribute water to main Indus River. The elevation of UIB ranges from 254 m to 8570 m a.m.s.l. Changes in climate and related hydrological impacts vary in space and time as affected by local climatic and topographic settings. So, the objective of this study was to assess the climate change and related hydrological impacts resulting from altitudinal variability. Trend analyses were performed by applying Mann-Kendall and Sen's method was applied to estimate slope time series that indicates changes in river flows. The results of this study indicate that maximum temperature in annual, winter, spring and autumn seasons has increased with increased in altitude while annual, winter and autumn minimum temperature has decreased with increased in altitude for the period (1961-2011). Moreover, annual, winter, summer and autumn precipitation has been decreased. The impact of altitudinal variability under changing climate yields that annual and seasonal streamflows in River Indus (at Kharmong, Alam Br. and Khairabad), Sawat (at Kalam) and Kabul (at Nowshera) have decreased whereas in River Shoyk (9%), Shigar (7%) and Indus at Kachura (5%) have been increased. However, annual runoff in Gilgit (1%) and Hunza River (18%) has increased by increasing 2 % annual temperature. A seasonal correlation coefficient between temperature and streamflow has the positive correlation in most of the sub-basins of UIB for both spring and summer. With increased 1 oC temperature in spring yields increased streamflow for rives Gilgit, Chitral, Astore, Shoyk, Shigar, Indus at Kachura & Kharmong and Hunza with percentage of 19, 5, 11, 15, 9, 7, 1 and 12 respectively. The prevailing trends and variability, caused by climate change, have an effect on the flows

  12. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin

    NASA Astrophysics Data System (ADS)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2013-07-01

    The paper demonstrates the application of a new water accounting plus (WA+) framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in addition to measured basin outflow, for water accounting with WA+. It is demonstrated how the accounting results can be interpreted to identify existing issues and examine solutions for the future. The results for one selected year (2007) showed that total annual water depletion in the basin (501 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The water storage systems that were effected are groundwater storage (30 km3), surface water storage (9 km3), and glaciers and snow storage (2 km3). Evapotranspiration of rainfall or "landscape ET" was 344 km3 (69 % of total depletion). "Incremental ET" due to utilized flow was 157 km3 (31% of total depletion). Agriculture depleted 297 km3, or 59% of the total depletion, of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. Due to excessive soil evaporation in agricultural areas, half of all water depletion in the basin was non-beneficial. Based on the results of this accounting exercise loss of storage, low beneficial depletion, and low land and water productivity were identified as the main water resources management issues. Future scenarios to address these issues were chosen and their impacts on the Indus Basin water accounts were tested using the new WA+ framework.

  13. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    NASA Astrophysics Data System (ADS)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  14. Reconciling high altitude precipitation in the upper Indus Basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Wanders, N.; Lutz, A. F.; Shea, J. M.; Bierkens, M. F. P.

    2015-05-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high altitude precipitation. Yet direct observations of high altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high altitude precipitation in the upper Indus Basin and show that the amount of precipitation required to sustain the observed mass balances of the large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation is up to a factor ten higher than previously thought. We conclude that these findings alter the present understanding of high altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs and the regional geopolitical situation in general.

  15. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, Walter; Wanders, Niko; Lutz, Arthur; Shea, Joseph; Bierkens, Marc

    2016-04-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  16. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Wanders, N.; Lutz, A. F.; Shea, J. M.; Bierkens, M. F. P.

    2015-11-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high-altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  17. Changing pattern of heavy rainstorms in the Indus basin of India under global warming scenarios

    NASA Astrophysics Data System (ADS)

    Deshpande, N. R.; Kulkarni, B. D.

    2015-06-01

    Estimation of extremely high rainfall (point or areal) is one of the major components of design storm derivation. The estimation of Probable Maximum Precipitation (PMP) involves selection of heavy rainstorms and its maximization for the moisture content during the rainstorm period. These heavy rainstorms are nothing but the widespread heavy rainfall exceeding a certain threshold value. The present study examines the characteristics of heavy rainstorms in the Indus basin selected from present climate and future scenarios simulated by the regional climate model. Such information on heavy rainfall forms the basis for the hydrologic design projects and also for the water management of a river basin. Emphasis is given to severe rainstorms of 1-day duration covering an area of at least 40,000 km 2 with spatial average rainfall of at least 5cm. This analysis also provides the information on the temporal changes in the storm factors such as shape, orientation, and movement, and shows that the model can well simulate the rainstorm pattern in terms of its intensity, orientation, and shape of the rainstorm, but overestimates the frequency of such heavy rainstorms. The future scenario indicates increase in rainfall intensity at the center of the rainstorm with decreasing areal spread. Decrease in the frequency of rainstorms is projected under the global warming conditions.

  18. The Indus basin in the framework of current and future water resources management

    NASA Astrophysics Data System (ADS)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2011-03-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options.

  19. Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan

    NASA Astrophysics Data System (ADS)

    Ali, Shaukat; Li, Dan; Congbin, Fu; Khan, Firdos

    2015-01-01

    This study is based on both the recent and the predicted twenty first century climatic and hydrological changes over the mountainous Upper Indus Basin (UIB), which are influenced by snow and glacier melting. Conformal-Cubic Atmospheric Model (CCAM) data for the periods 1976-2005, 2006-2035, 2041-2070, and 2071-2100 with RCP4.5 and RCP8.5; and Regional Climate Model (RegCM) data for the periods of 2041-2050 and 2071-2080 with RCP8.5 are used for climatic projection and, after bias correction, the same data are used as an input to the University of British Columbia (UBC) hydrological model for river flow projections. The projections of all of the future periods were compared with the results of 1976-2005 and with each other. Projections of future changes show a consistent increase in air temperature and precipitation. However, temperature and precipitation increase is relatively slow during 2071-2100 in contrast with 2041-2070. Northern parts are more likely to experience an increase in precipitation and temperature in comparison to the southern parts. A higher increase in temperature is projected during spring and winter over southern parts and during summer over northern parts. Moreover, the increase in minimum temperature is larger in both scenarios for all future periods. Future river flow is projected by both models to increase in the twenty first century (CCAM and RegCM) in both scenarios. However, the rate of increase is larger during the first half while it is relatively small in the second half of the twenty first century in RCP4.5. The possible reason for high river flow during the first half of the twenty first century is the large increase in temperature, which may cause faster melting of snow, while in the last half of the century there is a decreasing trend in river flow, precipitation, and temperature (2071-2100) in comparison to 2041-2070 for RCP4.5. Generally, for all future periods, the percentage of increased river flow is larger in winter than in

  20. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    PubMed

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area. PMID

  1. The hydrologic sensitivity of the upper Indus River to glacier changes in the western Karakoram Himalayas

    NASA Astrophysics Data System (ADS)

    Naz, Bibi S.

    2011-12-01

    Recent controversy regarding the rates of disappearance of glaciers in the Himalayas, the world's highest mountain chain, has primarily been focused on the eastern Himalayas. Studies carried out in the Central Karakoram Himalayan region suggest an expansion of glaciers. Little information exists about long-term glacier changes and their impact on streamflow in the Karakoram Himalayas where field surveys are difficult due to complex terrain and long term measurements have not been collected. The availability of global remotely sensed and climate datasets in the public domain provides an opportunity for studying large data sparse drainage basins. Following this approach, here I use remotely sensed datasets in combination with observational-based and simulated climate data to estimate glacier changes and their impact on streamflow variability in the Upper Indus Basin (UIB) located in the Karakoram Himalayas. Using Landsat images acquired between 1977 and 2006 and climate data from the Climate Research Unit (CRU), change detection analysis shows that the extent of perennial snow cover at higher elevations in the Central Karakoram has increased coinciding with a significant increase in winter precipitation and a decrease in summer temperature. Similarly, analysis of glacier thickness change estimated from the Ice, Cloud and Land Elevation Satellite (ICESat) altimeter data available between 2003 and 2008 with respect to the Shuttle Radar Topography Mission (SRTM) elevation data acquired in year 2000 identifies two clear patterns of change in the UIB. Strong thickening rates are observed within highly glacierized northern sub-watersheds (i.e. the Hunza and Shyok River basins), while thinning glaciers are identified in southern sub-watersheds. Statistically significant decreasing streamflow trends identified in all seasons for the Hunza River basin and increasing trends identified in other sub-basins of UIB for the period of 1974 -- 2000 illustrate that observed streamflow

  2. Employment of satellite snowcover observations for improving seasonal runoff estimates. [Indus River and Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Rango, A.; Salomonson, V. V.; Foster, J. L.

    1975-01-01

    Low resolution meteorological satellite and high resolution earth resources satellite data were used to map snowcovered area over the upper Indus River and the Wind River Mountains of Wyoming, respectively. For the Indus River, early Spring snowcovered area was extracted and related to April through June streamflow from 1967-1971 using a regression equation. Composited results from two years of data over seven Wind River Mountain watersheds indicated that LANDSAT-1 snowcover observations, separated on the basis of watershed elevation, could also be related to runoff in significant regression equations. It appears that earth resources satellite data will be useful in assisting in the prediction of seasonal streamflow for various water resources applications, nonhazardous collection of snow data from restricted-access areas, and in hydrologic modeling of snowmelt runoff.

  3. River basin management

    SciTech Connect

    Newsome, D.H.; Edwards, A.M.C.

    1984-01-01

    The quality of water is of paramount importance in the management of water resources - including marine waters. A quantitative knowledge of water quality and the factors governing it is required to formulate and implement strategies requiring an inter-disciplinary approach. The overall purpose of this conference was to bring together the latest work on water quality aspects of river basin management. These proceedings are structured on the basis of five themes: problems in international river basins; the contribution of river systems to estuarial and marine pollution; the setting of standards; monitoring; and practical water quality management including use of mathematical models. They are followed by papers from the workshop on advances in the application of mathematical modelling to water quality management, which represent some of the current thinking on the problems and concepts of river basin management.

  4. Human induced flooding of the Indus River in 2010: How it changed the landscape

    NASA Astrophysics Data System (ADS)

    Kettner, A.; Syvitski, J. P.; Overeem, I.; Brakenridge, G. R.

    2012-12-01

    Major rivers in densely populated areas are typically heavily engineered to fulfill. water needs and importantly to ensure protection for citizens and structures. The Indus River forms no exception to this. The river has been dammed and engineered for centuries, comprising one of the largest irrigation networks in the world. The engineered river system results in a reduction of its outflow to 10% of its historical value, with commonly no flow at the outlet for several months of the year. During July 2010, extensive flooding occurred causing ~2,000 fatalities and ~20 million people were displaced for weeks to months due to a peak discharge that was not exceptional in any sense (~10 year reoccurrence interval). The northern breach was located near the Sukkur Barrage and likely caused by undercapacity of the engineered channel. We analyzed AMSR-E, ASTER-A1 and MODIS satellite data to map the propagation of the Indus flood wave in the main channel and through the major breaches. The flood wave traveled through the main channel in ~20 days and much slower through newly-formed avulsion pathway onwards from the breach at Sukkur Barrage (~42 days).Analysis of MODIS reflectance changes between pre- and post-flood imagery allowed analysis of the extent of sandy flood deposition as well as quantification of channel migration patterns. The river channel migrates over 100's of meters during the July 2010 flood event controlled by massive pointbar accretion and river cutbank erosion and slumping. Lateral migration averaged ~340m in just 52 days along a 1000km stretch of the Indus River. Crevasse splaying is widespread and appears to occur as a flow stripping process both upon the point bars as well as in river outer bends. Crevasse deposits extend generally less than 2 km from the main channel axis. The mapped flood deposits are analyzed for different river stretches and quantitatively related to river gradient and sinuosity. The 2010 Indus flood shows an example of a heavily

  5. CHARIS - The Contribution to High Asian Runoff from Ice and Snow, Preliminary results from the Upper Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Barrett, A. P.; Brodzik, M.; Fetterer, F. M.; Hashmey, D.; Horodyskyj, U. N.; Khalsa, S.; Racoviteanu, A.; Raup, B. H.; Williams, M. W.; Wilson, A.

    2013-12-01

    results with local sub-basin studies based on energy balance modeling approaches. We are also evaluating the accuracy of the melt model results using isotopic and geochemical tracers to identify and quantify the sources of water (ice melt, snow melt, rainfall and ground water) flowing into selected rivers representing the major hydro-climates of the study area. Preliminary results are presented for the Upper Indus Basin, and the Hunza sub-basin, for the period 2000-2012.

  6. Impact of warming climate on the monsoon and water resources of a western Himalayan watershed in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Booij, Martijn J.

    2015-04-01

    This study discusses the impact of a warming climate on the monsoon and on water resources in the Astore watershed, a major tributary of the Upper Indus Basin (UIB). It uses precipitation and temperature time series data from climatic stations, European Reanalysis (ERA) interim precipitation data, and monthly river flow data, all for the 1984-2009 period. Monthly average temperature data show statistically significant increasing trends for November-June through this period, while June and July, which experience episodic and intense precipitation, show statistically significant but opposing trends between the first and second halves of the period. To examine precipitation and flow data in more detail, two equal sub-periods were defined; 1984-1996 (T1) and 1997-2009 (T2). Basin-wide average annual precipitation (based on ERA data) declined by ~29% from 1481 mm/yr in T1 to 1148 inT2, whereas during the same periods flows declined by only ~17% (1245 to 1061 mm/yr), suggesting an increase in glacier melt in the T2 period. Spring to early summer flows increased during the T2 period concomitant with shift in the streamflow peak from July to June. Increasing spring discharge, the shift in timing of annual peak discharge, and an increase in the glacial melt component in river flows have been accompanied by a depletion of glacial storage within the Astore watershed, especially in the T2 period. If recent trends in climate and river flow continue in the future, then river flows will eventually decrease more sharply once the glacial reserves can no longer provide sustained nourishment to the river waters. Thus, there is a vital need to prepare and adopt policies for water resource management and reservoir operation that support sustainable development, agricultural expansion, and increased hydro-power generation.

  7. Genetic variability analysis of Giant river catfish (Sperata seenghala) populations from Indus river system by RAPD-PCR.

    PubMed

    Saini, A; Dua, A; Mohindra, V

    2010-08-01

    The Giant river catfish, Sperata seenghala (Sykes) is commercially very important fish species of South Asia. Genetic variability between its populations collected from two rivers i.e. river Sutlej and river Beas of Indus river system in India were examined using randomly amplified polymorphic DNA analysis. Total 38 fish samples were collected from river Sutlej whereas 46 fish samples were collected from river Beas. Total 40 primers were screened, out of these 7 were selected for studying polymorphism which produced a total of 64 RAPD loci in two populations. Percentage polymorphic loci calculated following 95% criterion was 89.06% for Beas population as compared to 95.31% for Sutlej population. Moderate level of genetic divergence (genetic distance of 0.0486) between both the populations suggests distinct population substructure of giant river catfish in both the rivers. PMID:20873207

  8. Sustainability Within the Great Monsoon River Basins

    NASA Astrophysics Data System (ADS)

    Webster, P. J.

    2014-12-01

    For over five millenia, the great monsoon river basins of the Ganges, Brahmaputra and Indus have provided for great and flourishing agrarian civilizations. However, rapid population growth and urbanization have placed stress on the rural sector causing the use of land that is more prone for flood and drought. In addition, increased population and farming have stressed the availability of fresh water both from rivers and aquifers. Additionally, rapid urbanization has severely reduced water quality within the great rivers. Added to these problems is delta subsidence from water withdrawal that, at the moment far surpasses sea level rise from both natural and anthropogenic effects. Finally, there appear to be great plans for river diversion that may reduce fresh water inflow into the Brahmaputra delta. All of these factors fall against a background of climate change, both anthropogenic and natural, of which there is great uncertainty. We an attempt a frank assessment assessment of the sustainability of society in the great basins and make some suggestions of factors that require attention in the short term.

  9. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Mukhopadhyay, Biswajit

    2014-02-01

    Extraction of watershed areas from Digital Elevation Models (DEMs) is increasingly required in a variety of environmental analyses. It is facilitated by the availability of DEMs based on remotely sensed data, and by Geographical Information System (GIS) software. However, accurate delineation depends on the quality of the DEM and the methodology adopted. This paper considers automated and supervised delineation in a case study of the Upper Indus Basin (UIB), Pakistan, for which published estimates of the basin area show significant disagreement, ranging from 166,000 to 266,000 km2. Automated delineation used ArcGIS Archydro and hydrology tools applied to three good quality DEMs (two from SRTM data with 90m resolution, and one from 30m resolution ASTER data). Automatic delineation defined a basin area of c.440,000 km2 for the UIB, but included a large area of internal drainage in the western Tibetan Plateau. It is shown that discrepancies between different estimates reflect differences in the initial extent of the DEM used for watershed delineation, and the unchecked effect of iterative pit-filling of the DEM (going beyond the filling of erroneous pixels to filling entire closed basins). For the UIB we have identified critical points where spurious addition of catchment area has arisen, and use Google Earth to examine the geomorphology adjacent to these points, and also examine the basin boundary data provided by the HydroSHEDS database. We show that the Pangong Tso watershed and some other areas in the western Tibetan plateau are not part of the UIB, but are areas of internal drainage. Our best estimate of the area of the Upper Indus Basin (at Besham Qila) is 164,867 km2 based on the SRTM DEM, and 164,853 km2 using the ASTER DEM). This matches the catchment area measured by WAPDA SWHP. An important lesson from this investigation is that one should not rely on automated delineation, as iterative pit-filling can produce spurious drainage networks and basins, when

  10. Trinity river basin, Texas

    USGS Publications Warehouse

    Ulery, Randy L.; Van Metre, Peter C.; Crossfield, Allison S.

    1993-01-01

    In 1991 the Trinity River Basin National Water-Quality Assessment (NAWQA) will include assessments of surface-water and ground-water quality. Initial efforts have focused on identifying water-quality issues in the basin and on the environmental factors underlying those issues. Physical characteristics described include climate, geology, soils, vegetation, physiography, and hydrology. Cultural characteristics discussed include population distribution, land use and land cover, agricultural practices, water use, an reservoir operations. Major water-quality categories are identified and some of the implications of the environmental factors for water quality are presented.

  11. The Indus basin in the framework of current and future water resources management

    NASA Astrophysics Data System (ADS)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2012-04-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use

  12. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.

    2011-04-01

    In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in facts typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of

  13. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.

    2011-07-01

    In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the

  14. Timing of Indian-Eurasian collision from the Indus Basin in Ladakh, northwestern Indian Himalaya: An interdisciplinary approach

    NASA Astrophysics Data System (ADS)

    Tripathy, A.; Hodges, K.; Edwards, C. S.; Gordon, G. W.; Wartho, J.

    2012-12-01

    The early Cenozoic Indus Basin of northwest India straddles the Indus suture zone and has long been regarded as having the potential to yield important constraints on the timing of collision between India and Eurasia and final closure of the intervening Neo-Tethys ocean basin. Unfortunately, three issues have frustrated previous attempts to capitalize on that potential. First, outcrops in the Indus Basin are deformed, making accurate reconstructions of basin stratigraphy difficult. As a consequence, published maps of the basin are discrepant - in some cases significantly so. Second, previously published detrital zircon U-Pb data for Pre-Oligocene sandstone units point to a distinctive Eurasian source, with scant evidence for Indian detritus, leaving open the possibility that deposition could have been prior to the docking of India. Finally, much of the succession does not contain age-diagnostic fossils and datable volcanic units (e.g., tuffs) have not been found. We report here the results of an interdisciplinary study that has permitted us to overcome these obstacles and better constrain the timing of collision at this sector of the orogen. Detailed photogeologic analysis of most of the Indus Basin using all bands (visible to thermal infrared) of ASTER satellite imagery, coupled with topical ground-truthing in the field, has allowed for both improved mapping of the macroscopic structure and improved resolution of key stratigraphic characteristics. Based upon our map, we present both isotopic and trace element geochemical data from various, carefully selected samples. First, the distribution of U-Pb dates for detrital zircons from quartzite cobbles within the oldest Indus Basin unit are comparable to those found in Indian passive margin units. Trace element geochemistry of mafic pebbles from throughout the older Indus Basin units appear to demonstrate derivation from the Shyok suture zone, situated north of the local Eurasian source area. However, several clasts

  15. Nimbus hydrological observations over the watersheds of the Niger and Indus rivers

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Macleod, N. H.

    1972-01-01

    As a result of studying the Nimbus imagery over these two watersheds, it is felt that a perspective and understanding of the large scale hydrological processes and their interrelationship has been obtained which could be obtained by no other means in so short a time. In the case of the Niger River a much better appreciation of the flooding process has been obtained along with the role of the Inland Delta in this process. Obviously a knowledge of the spatial and temporal distribution of the snow-melt process in the Indus River watershed is now available that was obtained with minimal effort, as compared to the effort and time that would be required using conventional methods. It seems clear that even the low resolution data easily available from meteorological satellites can be a valuable source of information in the better management of the water resources in these regions.

  16. Habitat Fragmentation and Species Extirpation in Freshwater Ecosystems; Causes of Range Decline of the Indus River Dolphin (Platanista gangetica minor)

    PubMed Central

    Braulik, Gill T.; Arshad, Masood; Noureen, Uzma; Northridge, Simon P.

    2014-01-01

    Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world’s most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world’s most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin’s range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin. PMID:25029270

  17. Habitat fragmentation and species extirpation in freshwater ecosystems; causes of range decline of the Indus river dolphin (Platanista gangetica minor).

    PubMed

    Braulik, Gill T; Arshad, Masood; Noureen, Uzma; Northridge, Simon P

    2014-01-01

    Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world's most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world's most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin's range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin. PMID:25029270

  18. Environmental impacts of anthropogenic activities on the mineral uptake in Oreochromis mossambicus from Indus River in Pakistan.

    PubMed

    Jabeen, Farhat; Chaudhry, Abdul Shakoor

    2010-07-01

    We examined the extent of mineral uptake in different tissues of Oreochromis mossambicus from Indus River which is claimed to be polluted by human activities. Samples of water and fish tissues were analysed from two sites (SK = upstream and CH = downstream) of Indus River. Whilst the water quality appeared to be suitable for aquatic life, significant differences between fish tissues and sampling sites were observed for different mineral concentrations. Fins generally had the highest metal load followed by muscles, gills, scales and skin. Na, Mg, Mn and Zn concentrations in different fish tissues were greater for CH than SK, whereas K, Ca, Pb, Cu, Fe, Hg and Cr were higher at SK than CH (P < 0.001). This variation in metal profiles of different locations of the Indus River was a reflection of relevant mineral pollutions at these sites. It appeared that the pattern of metal uptake in fish tissues can be utilised as an indicator of environmental contamination of river water systems. These studies may help us plan strategies to alleviate the ecotoxicological impacts of heavy metals in freshwaters on fish and human populations. PMID:19533396

  19. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  20. Adaptation of a pattern-scaling approach for assessment of local (village/valley) scale water resources and related vulnerabilities in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.

    2010-05-01

    The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential

  1. Greenhouse gas emissions from agro-ecosystems and their contribution to environmental change in the Indus Basin of Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, M. Mohsin; Goheer, M. Arif

    2008-11-01

    There is growing concern that increasing concentrations of greenhouse gases in the atmosphere have been responsible for global warming through their effect on radiation balance and temperature. The magnitude of emissions and the relative importance of different sources vary widely, regionally and locally. The Indus Basin of Pakistan is the food basket of the country and agricultural activities are vulnerable to the effects of global warming due to accelerated emissions of GHGs. Many developments have taken place in the agricultural sector of Pakistan in recent decades in the background of the changing role of the government and the encouragement of the private sector for investment in new ventures. These interventions have considerable GHG emission potential. Unfortunately, no published information is currently available on GHG concentrations in the Indus Basin to assess their magnitude and emission trends. The present study is an attempt to estimate GHG (CO2, CH4 and N2O) emissions arising from different agro-ecosystems of Indus Basin. The GHGs were estimated mostly using the IPCC Guidelines and data from the published literature. The results showed that CH4 emissions were the highest (4.126 Tg yr-1) followed by N2O (0.265 Tg yr-1) and CO2 (52.6 Tg yr-1). The sources of CH4 are enteric fermentation, rice cultivation and cultivation of other crops. N2O is formed by microbial denitrification of NO3 produced from applied fertilizer-N on cropped soils or by mineralization of native organic matter on fallow soils. CO2 is formed by the burning of plant residue and by soil respiration due to the decomposition of soil organic matter.

  2. Sediment provenance, reworking and transport processes in the Indus River by U-Pb dating of detrital zircon grains

    NASA Astrophysics Data System (ADS)

    Alizai, Anwar; Carter, Andrew; Clift, Peter D.; VanLaningham, Sam; Williams, Jeremy C.; Kumar, Ravindra

    2011-03-01

    We present new major and trace element data, together with U-Pb ages for zircon sand grains from the major tributaries of the Indus River, as well as the adjacent Ghaggar and Yamuna Rivers and from bedrocks within the Sutlej Valley, in order to constrain the origin of the sediment reaching the Arabian Sea. Zircon grains from the upper Indus are generally younger than 200 Ma and contrast with those from the eastern tributaries eroded from Himalayan sources. Grains younger than 15 Ma, which typify the Nanga Parbat Massif, comprise no more than 1-2% of the total, even in the upper Indus, showing that this terrain is not a major sediment producer, in contrast with the Namche Barwe Massif in the eastern Himalayan syntaxis. The Sutlej and Yamuna Rivers in particular are very rich in Lesser Himalayan-derived 1500-2300 Ma zircons, while the Chenab is dominated by 750-1250 Ma zircons, mostly eroded from the Greater Himalaya. The upper Indus, Chenab and Ravi yield zircon populations broadly consistent with the outcrop areas, but the Jhelum and the Sutlej contain many more 1500-2300 Ma zircons than would be predicted from the area of Lesser Himalayan rock within their drainages. A significant population of grains younger than 200 Ma in the sands of the Thar Desert indicates preferential eolian, monsoon-related transport from the Indus lower reaches, rather than reworking from the local rivers. Modelling of observed zircon ages close to the delta contrasts with modern water discharge. The delta is rich in zircons dating 1500-2300 Ma, while discharge from modern rivers carrying such grains is low. The modest size of the Sutlej, the richest source of these materials in the modern system, raises the possibility that the compositionally similar Yamuna used to flow westwards in the recent past. Our data indicate a non-steady state river with zircon transport times of 5-10 k.y. inferred from earlier zircon dating of delta sands. The modern delta zircons image an earlier, likely

  3. The extent of waterlogging in the lower Indus Basin (Pakistan) - A modeling study of groundwater levels

    NASA Astrophysics Data System (ADS)

    Chandio, A. S.; Lee, T. S.; Mirjat, M. S.

    2012-03-01

    SummaryA three dimensional finite element model, based on Galerkin weighted residual techniques, is presented for groundwater simulation in the lower Indus Basin, Pakistan. The model was calibrated against field data collected at different agricultural farms located in the Khairpur district. Twenty six observation wells were installed to monitor the groundwater levels for model calibration. The values of the statistical performance parameters adjusted R2, mean absolute error (MAE), root mean square error (RMSE), Nash-Sutcliffe efficiency or model efficiency (ME), BIAS, and index of agreement (d) showed that the overall model performance for steady and transient groundwater flow is good. The calibrated model was used to assess the impacts of different well pumping rates, well screen lengths, and canals head boundaries on the extent of waterlogging. The model results suggest that well pumping rate is a prominent factor to control waterlogging. An increase in well pumping rate by 25% decreased the water logged area by 16%, while an increase in pumping rate by 50% decreased the water logged area by 25%. The waterlogging in the study area was attributed to the variations in canal water levels. It was further observed that waterlogged area with a watertable depth less than 0.8 m is increased by 5.8% when the water level in the Khaipur Feeder East (KFE) canal was increased by 0.6 m while the water level at the Rohri canal was kept constant, at the pumping rate of 1728 m3 d-1. Similarly, when the water level at the Rohri canal was increased by 1 m whilst that at the KFE was kept constant, the area under waterlogging had increased by 10.5%. If water levels in both canals were to be increased simultaneously (0.6 m in KFE and 1.0 m in Rohri canal) the waterlogged area will increase by 18.1% for the given well discharge.

  4. Computer aided graphics simulation modelling using seismogeologic approach in sequence stratigraphy of Early Cretaceous Punjab platform, Central Indus Basin, Pakistan

    SciTech Connect

    Qureshi, T.M.; Khan, K.A.

    1996-08-01

    Modelling stratigraphic sequence by using seismo-geologic approach, integrated with cyclic transgressive-regressive deposits, helps to identify a number of non-structural subtle traps. Most of the hydrocarbons found in Early Cretaceous of Central Indus Basin pertain to structural entrapments of upper transgressive sands. A few wells are producing from middle and basal regressive sands, but the massive regressive sands have not been tested so far. The possibility of stratigraphic traps like wedging or pinch-out, a lateral gradation, an uplift, truncation and overlapping of reservoir rocks is quite promising. The natural basin physiography at times has been modified by extensional episodic events into tectono-morphic terrain. Thus, seismo scanning of tectonically controlled sedimentation might delineate some subtle stratigraphic traps. Amplitude maps representing stratigraphic sequences are generated to identify the traps. Seismic expressions indicate the reservoir quality in terms of amplitude increase or decrease. The data is modelled on computer using graphics simulation techniques.

  5. River Modeling in Large and Ungauged Basins: Experience of Setting up the HEC RAS Model over the Ganges-Brahmaputra-Meghna Basins

    NASA Astrophysics Data System (ADS)

    Hossain, F.; Maswood, M.

    2014-12-01

    River modeling is the processing of setting up a physically-based hydrodynamic model that can simulate the water flow dynamics of a stream network against time varying boundary conditions. Such river models are an important component of any flood forecasting system that forecasts river levels in flood prone regions. However, many large river basins in the developing world such as the Ganges, Brahmaputra, Meghna (GBM), Indus, Irrawaddy, Salween, Mekong and Niger are mostly ungauged. Such large basins lack the necessary in-situ measurements of river bed depth/slope, bathymetry (river cross section), floodplain mapping and boundary condition flows for forcing a river model. For such basins, proxy approaches relying mostly on remote sensing data from space platforms are the only alternative. In this study, we share our experience of setting up the widely-used 1-D river model over the entire GBM basin and its stream network. Good quality in-situ measurements of river hydraulics (cross section, slope, flow) was available only for the downstream and flood prone region of the basin, which comprises only 7% of the basin area. For the remaining 93% of the basin area, we resorted to the use of data from the following satellite sensors to build a workable river model: a) Shuttle Radar Topography Mission (SRTM) for deriving bed slope; b) LANDSAT/MODIS for updating river network and flow direction generated by elevation data; c) radar altimetry data to build depth versus width relationship at river locations; d) satellite precipitation based hydrologic modeling of lateral flows into main stem rivers. In addition, we referred to an extensive body of literature to estimate the prevailing baseline hydraulics of rivers in the ungauged region. We measured success of our approach by systematically testing how well the basin-wide river model could simulate river level dynamics at two measured locations inside Bangladesh. Our experience of river modeling was replete with numerous

  6. Ecological River Basin Management.

    ERIC Educational Resources Information Center

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  7. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus basin

    NASA Astrophysics Data System (ADS)

    Hasson, S.; Böhner, J.; Lucarini, V.

    2015-03-01

    Largely depending on meltwater from the Hindukush-Karakoram-Himalaya, withdrawals from the upper Indus basin (UIB) contribute to half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, we present a comprehensive hydro-climatic trend analysis over the UIB, including for the first time observations from high-altitude automated weather stations. We analyze trends in maximum, minimum and mean temperatures (Tx, Tn, and Tavg, respectively), diurnal temperature range (DTR) and precipitation from 18 stations (1250-4500 m a.s.l.) for their overlapping period of record (1995-2012), and separately, from six stations of their long term record (1961-2012). We apply Mann-Kendall test on serially independent time series to assess existence of a trend while true slope is estimated using Sen's slope method. Further, we statistically assess the spatial scale (field) significance of local climatic trends within ten identified sub-regions of UIB and analyze whether the spatially significant (field significant) climatic trends qualitatively agree with a trend in discharge out of corresponding sub-region. Over the recent period (1995-2012), we find a well agreed and mostly field significant cooling (warming) during monsoon season i.e. July-October (March-May and November), which is higher in magnitude relative to long term trends (1961-2012). We also find general cooling in Tx and a mixed response in Tavg during the winter season and a year round decrease in DTR, which are in direct contrast to their long term trends. The observed decrease in DTR is stronger and more significant at high altitude stations (above 2200 m a.s.l.), and mostly due to higher cooling in Tx than in Tn. Moreover, we find a field

  8. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Zhuang, Guangsheng; Najman, Yani; Guillot, Stephane; Roddaz, Martin; Antoine, Pierre-Olivier; Metais, Gregoire; Carter, Andrew; Marivaux, Laurent; Solangi, Sarfraz

    2016-04-01

    The timing of India-Asia suturing in the Western Himalaya is complex, with the relative timings of collision between the Indian plate and Asian plate with the Kohistan Island arc and a proposed Tethyan Himalayan microcontinent, debated. Here we present an integrated provenance study of geochronology, thermochronology, and geochemistry on the late Cretaceous-Pleistocene sediments from the lower Indus basin on the Indian plate. The detrital zircon U-Pb and fission track data show a reversal in sediment source from a pure Indian signature to increasing inputs from the suture zone and the Asian plate between the middle Paleocene and early Oligocene. The Nd and Sr isotopes narrow down this change to 50 Ma by revealing input of Asian detritus and the establishment of a Nd & Sr isotopic pattern similar to that of the present-day Indus Fan by 50 Ma, with no significant variations up section, contrary to what might be expected if later major collisions had occurred. Our isotopic data indicate that since 50 Ma, Greater India was occupied by a fluvial-deltaic system, analogous to the present-day Indus and named as the Paleo-Indus, which has been transporting Asian detritus southward across the suture zone and Kohistan-Ladakh arc. This suggests that no other ocean basins were located between India and Asia after this time in this region. Our data require that in the west, the India-Asia collision was accomplished by ˜50 Ma.

  9. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution.

    PubMed

    Bajwa, Anam; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-06-01

    Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g(-1) in soil and 375.1-1975 pg m-(3) in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04-0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil-air exchange of OCPs. PMID:26978705

  10. Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Pakistan.

    PubMed

    Ali, Usman; Bajwa, Anam; Chaudhry, Muhammad Jamshed Iqbal; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-04-01

    This study was conducted with the aim of assessing the levels and black carbon mediated sediment-water partitioning of organochlorine pesticides (OCPs) from the Indus River. ∑OCPs ranged between 52-285 ng L(-1) and 5.6-29.2 ng g(-1) in water and sediment samples respectively. However, the ranges of sedimentary fraction of total organic carbon (f(TOC)) and black carbon (f(BC)) were 0.82-2.26% and 0.04-0.5% respectively. Spatially, OCPs concentrations were higher at upstream sites as compared to downstream sites. Source diagnostic ratios indicated the technical usage of HCH (α-HCH/γ-HCH>4) and significant presence of DDT metabolites with fresh inputs into the Indus River as indicated by the ratios of (DDE+DDD)/∑DDTs (0.27-0.96). The partitioning of OCPs between the sediments and water can be explained by two carbon Freundlich adsorption model which included both organic carbon and black carbon pools as partitioning media. PMID:26761782

  11. Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Naz, Bibi S.; Bowling, Laura C.

    2015-02-01

    The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier cover areas, despite the fact that snow, clean ice and debris covered ice have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-cover on steep slopes, perennial snow-covered ice, clean and debris covered ice) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-covered ice, clean and debris covered ice zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier cover is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier cover (excluding steep slope snow-cover). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range

  12. River basin flood potential inferred using GRACE gravity observations at several months lead time

    NASA Astrophysics Data System (ADS)

    Reager, J. T.; Thomas, B. F.; Famiglietti, J. S.

    2014-08-01

    The wetness of a watershed determines its response to precipitation, leading to variability in flood generation. The importance of total water storage--which includes snow, surface water, soil moisture and groundwater--for the predisposition of a region to flooding is less clear, in part because such comprehensive observations are rarely available. Here we demonstrate that basin-scale estimates of water storage derived from satellite observations of time-variable gravity can be used to characterize regional flood potential and may ultimately result in longer lead times in flood warnings. We use a case study of the catastrophic 2011 Missouri River floods to establish a relationship between river discharge, as measured by gauge stations, and basin-wide water storage, as measured remotely by NASA's Gravity Recovery and Climate Experiment (GRACE) mission. Applying a time-lagged autoregressive model of river discharge, we show that the inclusion of GRACE-based total water storage information allows us to assess the predisposition of a river basin to flooding as much as 5-11 months in advance. Additional case studies of flood events in the Columbia River and Indus River basins further illustrate that longer lead-time flood prediction requires accurate information on the complete hydrologic state of a river basin.

  13. Recycling of Pleistocene valley fills dominates 125 ka of sediment flux, upper Indus River

    NASA Astrophysics Data System (ADS)

    Munack, Henry; Blöthe, Jan Henrik; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.; Fink, David; Korup, Oliver

    2016-04-01

    Rivers draining the semiarid Transhimalayan Ranges along the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The imprints of these cut-and-fill cycles on long-term sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, which taps the vast More Plains valley fill that currently impedes drainage of the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses indicate that a phase of valley infill gave way to net dissection of the >250-m thick sedimentary stacks ˜125 ka ago, i.e. during the last interglacial (MIS 5e). Rivers eroded >14.7 km3 of sediment from the Zanskar headwaters since then, fashioning specific sediment yields that surpass 10Be-derived denudation rates from neighbouring catchments by factors of two to ten. We conclude that recycling of Pleistocene valley fills has provided Transhimalayan headwater rivers with more sediment than bedrock denudation, at least since the beginning of the last glacial cycle. This protracted liberation of sediment stored in thick valley fills could bias rate estimates of current sediment loads and long-term bedrock denudation.

  14. Modelling runoff response from Hindukush-Karakoram-Himalaya, Upper Indus Basin under prevailing and projected climate change scenarios

    NASA Astrophysics Data System (ADS)

    Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio

    2015-04-01

    We, analyzing observations from high altitude automated weather stations from the Hindukush-Karakoram-Himalaya (HKH) within upper Indus basin (UIB), assess prevailing state of climatic changes over the UIB and whether such state is consistently represented by the latest generation climate model simulations. We further assess impacts of future climate change on the hydrology of the UIB, and changes in its snow and glacier melt regimes, separately. For this, a semi-distributed watershed model (UBC - University of British Columbia) has been calibrated/validated for UIB at Besham Qila (just above the Tarbela reservoir) using daily historical climate (Tmax, Tmin and Precipitation) and river flow data for the period 1995-2012. Our results show that the UIB stands out the anthropogenic climate change signal, featuring a significant cooling (warming) during the mid-to-late (early) melt season and an enhanced influence of the westerly and monsoonal precipitation regimes. We also show that such phenomena, particularly the summer cooling is largely absent from the latest generation climate model simulations, suggesting their irrelevance for at least near-future assessment of climate change impacts on the hydrology of UIB. Therefore, we construct a hypothetical but more relevant near-future climate change scenario till 2030 based on prevailing state of climate change over UIB. We additionally obtain climate change scenario as projected by five high-resolution CMIP5 climate models under an extreme representative concentration pathway RCP8.5 for the period 2085-2100, assuming that such a scenario may only be realized in the far-future, if at all. Under the hypothetical near-future scenario, our modelling results show that the glacier melt (snowmelt) contribution will decrease (increase) due to cooling (warming) in mid-to-late (early) melt season, though the overall flows will drop. Consequently, the overall hydrological regime will experience an early snow- but a delayed glacier

  15. Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Romshoo, Shakil Ahmad; Bhat, Shakeel Ahmad; Rashid, Irfan

    2012-06-01

    Five watersheds (W1, W2, W3, W4 and W5) in the upper Indus basin were chosen for detailed studies to understand the influences of geomorphology, drainage basin morphometry and vegetation patterns on hydrology. From the morphometric analysis, it is evident that the hydrologic response of these watersheds changes significantly in response to spatial variations in morphometric parameters. Results indicate that W1, W2 and W5 contribute higher surface runoff than W3 and W4. Further, the topographic and land cover analyses reveal that W1, W2 and W5 generate quick runoff that may result in flooding over prolonged rainy spells. A physically based semi-distributed hydrologic model (soil and water assessment tool, SWAT) was used for simulating the hydrological response from the watersheds. As per the simulations, W5 watershed produces the highest runoff of 11.17 mm/year followed by W1 (7.9 mm/year), W2 (6.6 mm/year), W4 (5.33 mm/year) and W3 (4.29 mm/year). Thus, W5 is particularly more vulnerable to flooding during high rain spells followed by W1, W2, W4 and W3, respectively. Synthetic unit hydrograph analysis of the five watersheds also reveals high peak discharge for W5. The simulated results on the hydrological response from the five watersheds are quite in agreement with those of the morphometric, topographic, vegetation and unit hydrograph analyses. Therefore, it is quite evident that these factors have significant impact on the hydrological response from the watersheds and can be used to predict flood peaks, sediment yield and water discharge from the ungauged watersheds.

  16. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G. M.; Cheema, M. J. M.; Immerzeel, W. W.; Miltenburg, I. J.; Pelgrum, H.

    2012-11-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from combined optical and passive microwave sensors, which can observe the land-surface even under persistent overcast conditions. A two-layer Penman-Monteith equation was applied for quantifying soil and canopy evaporation. The novelty of the paper is the computation of E and T across a vast area (116.2 million ha) by using public domain microwave data that can be applied under all weather conditions, and for which no advanced input data are required. The average net radiation for the basin was estimated as being 112 Wm-2. The basin average sensible, latent and soil heat fluxes were estimated to be 80, 32, and 0 Wm-2, respectively. The average evapotranspiration (ET) and evaporative fraction were 1.2 mm d-1 and 0.28, respectively. The basin wide ET was 496 ± 16.8 km3 yr-1. Monte Carlo analysis have indicated 3.4% error at 95% confidence interval for a dominant land use class. Results compared well with previously conducted soil moisture, lysimeter and Bowen ratio measurements at field scale (R2 = 0.70; RMSE = 0.45 mm d-1; RE = -11.5% for annual ET). ET results were also compared against earlier remote sensing and modeling studies for various regions and provinces in Pakistan (R2 = 0.76; RMSE = 0.29 mmd-1; RE = 6.5% for annual ET). The water balance for all irrigated areas together as one total system in Pakistan and India (26.02 million ha) show a total ET value that is congruent with the ET value from the ETLook surface energy balance computations. An unpublished validation of the same ETLook model for 23 jurisdictional areas covering the entire Australian continent showed satisfactory results given the quality of the watershed data and the diverging physiographic and climatic

  17. River Basin Standards Interoperability Pilot

    NASA Astrophysics Data System (ADS)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  18. Examining pyrethroids, carbamates and neonicotenoids in fish, water and sediments from the Indus River for potential health risks.

    PubMed

    Jabeen, Farhat; Chaudhry, Abdul Shakoor; Manzoor, Sadia; Shaheen, Tayybah

    2015-02-01

    This 3 × 3 factorial study assessed pyrethroids, carbamates and neonicotenoids groups of pesticides in replicated samples of three fish species from low (S1, reference), medium (S2) and heavy (S3) polluted sites receiving agricultural run-offs around the Indus River. Water and sediment samples from the same sites were also analysed for these pesticides by using high-performance liquid chromatography. Out of nine investigated pesticides, only three pesticides (deltamethrin, carbofuran and cypermethrin) were detected in fish and sediment samples. Deltamethrin in Cyprinus carpio ranged from 0.490 to 0.839 μg/g, mostly exceeding 0.5 μg/g as the maximum residual limit suggested by FAO-WHO, whereas it ranged from 0.214 to 0.318 μg/g in the sampled sediments. The carbofuran concentrations were 0.0425-0.066 and 0.613-0.946 μg/g in Labeo rohita and Channa marulius muscles respectively and 0.069-0.081 μg/g in the corresponding sediment samples. These values were either higher or lower than the maximum limit (0.1 μg/g) as suggested by FAO-WHO. Conversely, the cypermethrin concentration ranged from 0.141 to 0.174 in Ch. marulius and 0.183-0.197 μg/g in sediments which were both below the FAO-WHO maximum limit of 2 μg/g. No pesticide residues were detected in water from these sampling sites. Most selected physicochemical variables were within the acceptable range of World Health Organization for the water quality for aquatic life. The detected pesticide contents were mostly higher in fish muscles from heavily polluted sites. This is worrying because these pesticides may pose health risks for the fish and people of the study area. However, a preliminary risk assessment indicated that the calculated daily intake of detected pesticides by people consuming fish from the Indus River was low and did not present an immediate risk to the fish-consuming people. This study may be used as a benchmark to determine the safety of fish meat in order to develop intervention

  19. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Zhuang, Guangsheng; Najman, Yani; Guillot, Stéphane; Roddaz, Martin; Antoine, Pierre-Olivier; Métais, Grégoire; Carter, Andrew; Marivaux, Laurent; Solangi, Sarfraz H.

    2015-12-01

    Knowledge of the timing of India-Asia collision is a fundamental prerequisite for understanding the evolution of the Himalayan-Tibetan orogen and its role in global climate, oceanic chemistry, and ecological evolution. Despite much active research, the basic pre-collision tectonic configuration and the timing of terminal India-Asia suturing remain debated. For example, debates regarding when and how the intervening Kohistan-Ladakh arc was sutured with India and Asia still remain elusive; some models propose the arc collided with Asia at about 100 Ma, with India-Asia collision at ca. 55 Ma, whilst a newer model proposed the arc's collision with India at 50 Ma and subsequently with Asia at 40 Ma. Another example is the recent proposition that an oceanic Greater India Basin separated the Tethyan Himalaya microcontinent from the remaining Indian plate until 20- 25 Ma with the consumption of this oceanic basin marking the final collision at this time. These controversies relate to whether the commonly documented 50 Ma contact represents the terminal India-Asia suturing or the amalgamation between various arcs or microcontinents with India or Asia. Here we present an integrated provenance study of geochronology, thermochronology, and geochemistry on the late Cretaceous-Pleistocene sediments from the lower Indus basin on the Indian plate. The detrital zircon U-Pb and fission track data show a reversal in sediment source from a pure Indian signature to increasing inputs from the suture zone and the Asian plate between the middle Paleocene and early Oligocene. The Nd and Sr isotopes narrow down this change to 50 Ma by revealing input of Asian detritus and the establishment of a Nd & Sr isotopic pattern similar to the present-day Indus Fan by 50 Ma, with no significant variations up section, contrary to what might be expected if later major collisions had occurred. Our isotopic data indicate that Greater India was occupied by a fluvial-deltaic system, analogous to the

  20. Tritium hydrology of the Mississippi River basin

    USGS Publications Warehouse

    Michel, R.L.

    2004-01-01

    In the early 1960s, the US Geological Survey began routinely analysing river water samples for tritium concentrations at locations within the Mississippi River basin. The sites included the main stem of the Mississippi River (at Luling Ferry, Louisiana), and three of its major tributaries, the Ohio River (at Markland Dam, Kentucky), the upper Missouri River (at Nebraska City, Nebraska) and the Arkansas River (near Van Buren, Arkansas). The measurements cover the period during the peak of the bomb-produced tritium transient when tritium concentrations in precipitation rose above natural levels by two to three orders of magnitude. Using measurements of tritium concentrations in precipitation, a tritium input function was established for the river basins above the Ohio River, Missouri River and Arkansas River sampling locations. Owing to the extent of the basin above the Luling Ferry site, no input function was developed for that location. The input functions for the Ohio and Missouri Rivers were then used in a two-component mixing model to estimate residence times of water within these two basins. (The Arkansas River was not modelled because of extremely large yearly variations in flow during the peak of the tritium transient.) The two components used were: (i) recent precipitation (prompt outflow) and (ii) waters derived from the long-term groundwater reservoir of the basin. The tritium concentration of the second component is a function of the atmospheric input and the residence times of the groundwaters within the basin. Using yearly time periods, the parameters of the model were varied until a best fit was obtained between modelled and measured tritium data. The results from the model indicate that about 40% of the flow in the Ohio River was from prompt outflow, as compared with 10% for the Missouri River. Mean residence times of 10 years were calculated for the groundwater component of the Ohio River versus 4 years for the Missouri River. The mass flux of

  1. Metabolic principles of river basin organization

    NASA Astrophysics Data System (ADS)

    Rodriguez-Iturbe, I.; Caylor, K. K.; Rinaldo, A.

    2011-12-01

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.

  2. Metabolic principles of river basin organization.

    PubMed

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

    2011-07-19

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics. PMID:21670259

  3. Hydrological applications of Landsat imagery used in the study of the 1973 Indues River floor, Pakistand

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, F.H., Jr.

    1978-01-01

    During August and September 1973, the Indus River Valley of Pakistan experienced one of the largest floods on record, resulting in damages to homes, businesses, public works, and crops amounting to millions of rupees. Tremendous areas of lowlands were inundated along the Indus River and major tributaries. Landsat data made it possible to easily measure the extent of flooding, totaling about 20,000 km2 within an area of about 400,000 km2 south from the Punjab to the Arabian Sea. The Indus River data were used to continue experimentation in the development of rapid, accurate, and inexpensive optical techniques of flood mapping by satellite begun in 1973 for the Mississippi River floods. The research work on the Indus River not resulted in the development of more effective procedures for optical processing of flood data and synoptically depicting flooding, but also provided potentially valuable ancillary information concerning the hydrology of much of the Indus River Basin.

  4. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  5. RED RIVER BASIN BIOLOGICAL MONITORING WORKGROUP

    EPA Science Inventory

    The goal of this project is to improve coordination of biological monitoring efforts in the Red River Basin. This is to be accomplished through coordination of a study to develop sampling protocols for macroinvertebrates in the main stream and lower tributaries of the Red River....

  6. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution

    PubMed Central

    Al-Ghanim, K.A.; Mahboob, Shahid; Seemab, Sadia; Sultana, S.; Sultana, T.; Al-Misned, Fahad; Ahmed, Z.

    2015-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003–0.708; cobalt 0.002–0.768 and zinc 47.4–1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals. PMID:26858541

  7. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution.

    PubMed

    Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z

    2016-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003-0.708; cobalt 0.002-0.768 and zinc 47.4-1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals. PMID:26858541

  8. Concentrations and patterns of organochlorines (OCs) in various fish species from the Indus River, Pakistan: A human health risk assessment.

    PubMed

    Robinson, Timmer; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-01-15

    The present study was conducted to reveal the concentrations and patterns of organochlorines [i.e., organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs)] in freshwater fish species collected from four ecologically important sites of the Indus River i.e., Taunsa (TAU), Rahim Yar Khan (RYK), Guddu (GUD) and Sukkur (SUK). In the fish muscle tissues, concentrations of 15 OCPs (∑15OCPs) and 29 PCBs (∑29PCBs) varied between 1.93-61.9 and 0.81-44.2 ng/g wet weight (ww), respectively. Overall, the rank order of OCs was DDTs>PCBs>hexachlorocyclohexanes (HCHs)>chlordanes (CHLs). The patterns of PCBs showed maximum contribution of tri-CBs (59%). Ratios of individual HCH and DDT analytes contributing to the summed values indicated both recent and past use of these chemicals in the region, depending upon fish species. To assess the associated health risks, carcinogenic and non-carcinogenic risks were calculated through hazard ratios (HRs). For carcinogenic risk, HR was >1 at both 50th and 95th percentile concentrations, suggesting that the daily exposure to OCPs and PCBs yields a lifetime cancer risk of 1 in a million. HR for non-cancerous risk was <1 at both the percentiles, signifying no adverse effect by OCs exposure in native population. PMID:26476063

  9. Drainage divides, Massachusetts-Hudson River basin

    USGS Publications Warehouse

    Wandle, S. William, Jr.

    1982-01-01

    Drainage boundaries for selected subbasins in northern Berkshire County, Massachusetts, are delineated on five topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for rivers where the drainage area is greater than 3 square miles. Successive sites are indicated where the intervening area is at least 6 square miles on tributary streams and 10 square miles along the Hoosic or North Branch Noosic Rivers. (USGS)

  10. Paraguay river basin response to seasonal rainfall

    NASA Astrophysics Data System (ADS)

    Krepper, Carlos M.; García, Norberto O.; Jones, Phil D.

    2006-07-01

    The use of river flow as a surrogate to study climatic variability implies the assumption that changes in rainfall are mirrored and likely amplified in streamflow. This is probably not completely true in large basins, particularly those that encompass different climatic regions, like the Paraguay river basin. Not all the signals present in precipitation are reflected in river flow and vice versa. The complex relationship between precipitation and streamflow could filter some signals and introduce new oscillatory modes in the discharge series. In this study the whole basin (1 095 000 km2) was divided into two sub-basins. The upper basin is upstream of the confluence with the River Apa and the lower basin is between the Apa river confluence and the Puerto Bermejo measuring station. The rainfall contribution shows a clear wet season from October to March and a dry season from April to September. A singular spectrum analysis (SSA) shows that there are trends in rainfall contributions over the upper and lower basins. Meanwhile, the lower basin only presents a near-decadal cycle (T 10 years). To determine the flow response to seasonal rainfall contributions, an SSA was applied to seasonal flow discharges at Puerto Bermejo. The seasonal flows, Q(t)O-M and Q(t)A-S, present high significant modes in the low-frequency band, like positive trends. In addition, Q(t)O-M presents a near-decadal mode, but only significant at the 77% level for short window lengths (M ≤ 15 years). Really, the Paraguay river flow is not a good surrogate to study precipitation variation. The low-frequency signals play an important role in the flow behaviour, especially during extreme events from the second half of the last century onwards.

  11. IAHS Symposium on Large River Basins

    NASA Astrophysics Data System (ADS)

    Frick, David M.

    The flow regime of large rivers is significantly influenced by man's activities, such as land use or river development. In other cases, there is evidence that climate change is the reason for modified flow regime. When basins are shared by a number of countries, the problems of hydrologic change become even more critical. Therefore, the social and economic consequences of changes in the flow regime of large river basins is far reaching,To improve the understanding of hydrologic processes and to investigate the availability of tools and methods that can be used to analyze the hydrological impacts of changes in flow, the International Association of Hydrologic Sciences (IAHS) and International Commission on Surface Water (ICSW) devoted its symposium, held at the August 1991 XXth General Assembly of the International Union of Geodesy and Geophysics (IUGG) in Vienna, Austria, to the theme “Hydrology for Water Management of Large River Basins.” The theme was divided into the four subtopics of water management and cooperation in large and/or international river basin: flow regimes and water management in relation to changes in climate, river development, and land use; water quality and sediment transport management in a large river environment; and operational flow and water quality forecasting. Both the general problem and organizational and operational aspects were investigated.

  12. Lithosphere, crust and basement ridges across Ganga and Indus basins and seismicity along the Himalayan front, India and Western Fold Belt, Pakistan

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, M.; Mishra, D. C.; Singh, B.

    2013-10-01

    Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere-asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy's root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ˜126-134 and ˜32-35 km under the Central Ganga basin to ˜132 and ˜38 km towards the south and 163 and ˜40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy's root model and modeling along a profile (SE-NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported. The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi-Lahore-Sargodha, (ii) Jaisalmer-Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh-Karachi arc-Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE-SW that are as follows (i) Jaisalmer-Ganganagar and Jodhpur-Chandigarh ridges across the Ganga basin intersect

  13. Water utilization in the White River Basin

    USGS Publications Warehouse

    Helland, R.O.

    1946-01-01

    This report presents briefly the results of an investigation of the water and power resources of the White river made in 1943 primarily for the purpose of classification of lands adjacent to the stream that have been withdrawn for power purposes. About three days were spent by the writer in field examination of the river basin during August and September. A survey of the river from its confluence with the Deschutes River to the Mt. Hood Loop Highway is published by the Survey. Nearly all of this map was surveyed in 1932. The entire basin is shown on quadrangle sheets. A record of discharge is available for the period 1917-43 at a station near the mouth of the river, and several short records are available at points upstream and on tributary streams.

  14. South Fork Holston River basin 1988 biomonitoring

    SciTech Connect

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  15. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  16. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  17. He Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies

    NASA Astrophysics Data System (ADS)

    Campbell, Ian H.; Reiners, Peter W.; Allen, Charlotte M.; Nicolescu, Stefan; Upadhyay, Rajeev

    2005-09-01

    He-Pb double dating of detrital zircons is more reliable than conventional U-Pb dating for tracing the source of detritus in sediments and can be used to constrain the percentage of recycled material in sediments. Conventional U-Pb dating can be used to constrain the provenance of sediments if the U-Pb zircon age pattern for potential source regions is known but can only be used to trace the source of individual zircons if they are first-cycle grains. The advantages of He-Pb double dating are demonstrated using examples from the Indus and Ganges rivers, and previously published data from the Navajo sandstone. Conventional U-Pb dating can unambiguously identify only 2.5% of the Ganges zircons, and 18% of the Indus zircons as coming from the Himalayan Mountains or Tibet Plateau and only 23% of the Navajo zircons as coming from the Appalachian Mountains. The correct figure, as determined from double dating, is over 95% from the Himalayan Mountains or Tibet Plateau in the case of the Indus and Ganges rivers and at least 70% from the Appalachian Mountains in the case of the Navajo Sandstone. This result casts doubt on the reliability of the U-Pb method when used in the absence of other techniques, such as He dating, to identify the true provenance of sediments, as opposed to the ultimate source of the zircons. Double dating also shows that at least 60% of the Indus and 70% of the Ganges and Navajo sandstone zircons have been recycled from earlier sediments. Exhumation rates, estimated from the He dates, reveal that ˜ 75% of the Indus and Ganges zircons were derived from areas where the exhumation rate exceeds 1.5 km/Myr. These rates are higher and more varied than those calculated from detrital muscovites. These results imply that ˜ 75% of the eroded material in the Himalayan Mountains is derived from areas of anomalously high erosion where the short-term exhumation rate exceeds the long-term average.

  18. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to

  19. Flood Deposition Patterns and Channel Migration due to a 10-year flood event: the case of the Indus River flood 2010

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Syvitski, J. P.; Overeem, I.; Brakenridge, G. R.

    2013-12-01

    Fluvial geomorphological processes evolve the landscape and are often referred to as processes that act for hundred to thousands of years before making a noticeable change in landforms. For the Indus River, landscape evolution has been intensified due to human interference. Failure in repairing its levees from previous floods led in July 2010 during a not exceptional discharge event (~10 year recurrence interval) to a large avulsion and flooding disaster that caused ~2,000 fatalities. Examining pre- and post flood maps by analyzing MODIS and ASTER-A1 data allowed us to determine the extent of sandy flood deposits and to quantify channel migration patterns. The typical pattern of inner bend deposition (due to helical flow) and outer bend erosion were less pronounced. We hypothesize that when flow exceeds bankfull conditions, deposition is more uniform and no longer constrained by the streambed geometry. We observe that the inner and the outer river bend receive similar amounts of sandy deposits (43% versus 57% respectively). Crevasse splaying was widespread and appeared to occur as a flow stripping process again both upon the point bars as well as in river outer bends. Channel activity (defined as the areal shift of the pre- and post river centerline), sinuosity, slope and lateral sediment deposition were determined for 50km river stretches. Analyzes reveal that flood deposits extend generally less than 2 km from the main channel axis. Furthermore, channel activity correlates negatively with channel sinuosity and lateral distance of sediment deposition and positively with slope. The river channel migrated over 100's of meters during the July 2010 flood event. Lateral migration averaged ~340m along a 1000km stretch of the Indus River over a period of just 52 days. Although this discharge event was not exceptional, lateral migration was significant and deposition impacts the active river floodplain. Remarkably, most sediments are deposited downstream the large

  20. The "normal" elongation of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  1. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  2. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control ] Act of 1974...

  3. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  4. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  5. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  6. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of... Committee Act, the Bureau of Reclamation announces that the Colorado River Basin Salinity Control Advisory...) 524-3826; e-mail at: kjacobson@usbr.gov . SUPPLEMENTARY INFORMATION: The Colorado River Basin...

  7. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974...

  8. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  9. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  10. OHIO RIVER BASIN ENERGY STUDY: HEALTH ASPECTS

    EPA Science Inventory

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multi-disciplinary program supported by the Environmental Protection Agency. It attempts to establish health damage functions for energy resource extraction, conversion (i.e., burning of coal to prod...

  11. Central Mississippi River Basin LTAR site overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Mississippi River Basin (CMRB) member of the Long-Term Agro-ecosystem Research (LTAR) network is representative of the southern Corn Belt, where subsoil clay content makes tile drainage challenging and make surface runoff and associated erosion problematic. Substantial research infrastru...

  12. Nutrient levels in the Yazoo River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High nitrogen (N) and phosphorus (P) loadings to aquatic ecosystems are linked to environmental problems including harmful algal blooms and hypoxia. Presented is an assessment of accessible data on nutrient sources, sinks and inputs to streams within the Yazoo River Basin of northern Mississippi. Ac...

  13. Hydrological Modelling of Ganga River basin.

    NASA Astrophysics Data System (ADS)

    Anand, J.; Gosain, A. K.; Khosa, R.

    2015-12-01

    Application of a hydrological model, Soil and Water Assessment Tool (SWAT) to the Ganga basin having a total drainage area of around 1.08 M sq. km extending over Tibet, Nepal, India and Bangladesh has been made. The model is calibrated to determine the spatial deviations in runoff at sub-basin level, and to capture the water balance of the river basin. Manual calibration approach was used for calibrating the SWAT model by following multi-step procedure to get to the realistic present situation as close as possible. Simulations were then further made with and without proposed future projects to obtain various scenarios. The various statistical parameters used for the evaluation of the monthly runoff simulation showed that SWAT performed well in mimicking the monthly stream flow for Ganga River basin. The model under predicted the flows in the non-perennial region during non-monsoon season, due to low rainfall and regulated flows and seepage taking place from the reservoirs. The impacts of the interventions, both existing as well as proposed, on the water balance of the basin were evaluated and quantified. The derived results suggest that there is a substantial reduction in overall water resources availability in the study basin on account of the current level of development and further, future developments, as are being proposed, may require a careful study of their potential impact on currently sanctioned water use. The present study showcases that efficacy of the model for simulating the stream flow is admirable.

  14. Sediment fluxes in transboundary Selenga river basin

    NASA Astrophysics Data System (ADS)

    Belozerova, Ekaterina

    2013-04-01

    Gathering reliable information on transboundary river systems remains a crucial task for international water management and environmental pollution control. Countries located in the lower parts of the river basins depend on water use and management strategies in adjacent upstream countries. One important issue in this context is sediment transport and associated contaminant fluxes across the state borders. The mass flows of dissolved ions, biogens, heavy metal concentrations, as far as suspended sediment concentration (SSC, mg/l) along upper Selenga river and its tributaries based on the literature review and results of field campaigns 2011-2012 were estimated. Based on the water discharges measurements Q, suspended load WR (t/day) and dissolved loads WL were calculated. In the Selenga basin the minimal WR (1,34-3,74 t/day) were found at small rivers. Maximal sediment loads (WR = 15 000 t/day) were found at the upper Orkhon river during flood event. The downstream point (Mongolia-Russia border) was characterized 2 220 t/day in 2011. Generally the prevalence of the accumulation is found through calculating sediment budget for all rivers (ΔW = WR (downstream) - WR (upstream) < 0). Downstream of Orkhon river (below confluence with Tuul) ΔW = - 1145 t/day. Below Selenga-Orkhon confluence sediment yield reached 2515 t/day, which is corresponded to transboundary sediment flux. Silt sediments (0,001 - 0,05 mm) form the main portion of the transported material. The maximal value of sand flux (302 t/day) was reported for middle stream station of Selenga river (upstream from confluence with Orkhon). The increase of human activities (mining and pastures) increases the portion of clay particles in total sediment load (e.g. at the downstream point of most polluted Orkhon river it reached 207,8 t/day). The existed estimates are compared with distribution of the main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of

  15. Yazoo River Basin (Lower Mississippi River) Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Davidson, G.; Altinakar, M.; Holt, R.

    2004-12-01

    The proposed Yazoo River Basin Hydrologic Observatory consists of the 34,000 square km Yazoo River watershed in northwestern Mississippi and a 320 km segment of the Mississippi River separated from the watershed by a manmade levee. Discharge from the basin flows from the Yazoo River into the Mississippi River north of Vicksburg, MS. Major streams within the basin include the Yazoo, Tallahatchie, Yalobusha, Coldwater, Yocona, and Big Sunflower Rivers. Four large flood control reservoirs (Arkabutla, Enid, Sardis, and Grenada) and two national forests (Delta and Holly Springs) are also located within the basin. The watershed is divided between upland forested hills and intensively cultivated lowlands. The lowland area, locally known as the "Delta", lies on the ancestral floodplain of the Mississippi River. Flooding by the Mississippi River was once a common event, but is now limited by the levee system. Abundant wetlands occupy abandoned stream channels throughout the Delta. The Yazoo River Basin has many unique features that make it an attractive site for an Hydrologic Observatory. Example features and issues of scientific interest include: 1) Extensive system of levees which have altered recharge to the regional aquifer, shifted population centers, and created backwater flooding areas. 2) Abundant wetlands with a century-long history of response to agricultural sediment and chemical fluxes. 3) Erosion of upland streams, and stream sediment loads that are the highest in the nation. 4) Groundwater mining in spite of abundant precipitation due to a regional surface clay layer that limits infiltration. 5) A history of agricultural Best Management Practices enabling evaluation of the effectiveness of such measures. 6) Large scale catfish farming with heavy reliance on groundwater. 7) Near enough to the Gulf coast to be impacted by hurricane events. 8) Already existing network of monitoring stations for stream flow, sediment-load, and weather, including complete coverage

  16. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush-Karakoram-Himalaya region, Pakistan)

    NASA Astrophysics Data System (ADS)

    Tahir, Adnan Ahmad; Adamowski, Jan Franklin; Chevallier, Pierre; Haq, Ayaz Ul; Terzago, Silvia

    2016-03-01

    The Upper Indus Basin (UIB), situated in the Himalaya-Karakoram-Hindukush (HKH) mountain ranges, is the major contributor to the supply of water for irrigation in Pakistan. Improved management of downstream water resources requires studying and comparing spatiotemporal changes in the snow cover and hydrological behavior of the river basins located in the HKH region. This study explored in detail the recent changes that have occurred in the Gilgit River basin (12,656 km2; western sub-basin of UIB), which is characterized by a mean catchment elevation of 4250 m above sea level (m ASL). The basin's snow cover was monitored through the snow products provided by the MODIS satellite sensor, while analysis of its hydrological regime was supported by hydrological and climatic data recorded at different altitudes. The Gilgit basin findings were compared to those previously obtained for the lower-altitude Astore basin (mean catchment elevation = 4100 m ASL) and the higher-altitude Hunza basin (mean catchment elevation = 4650 m ASL). These three catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. Almost 7, 5 and 33 % of the area of the Gilgit, Astore and Hunza basins, respectively, are situated above 5000 m ASL, and approximately 8, 6 and 25 %, respectively, are covered by glaciers. The UIB region was found to follow a stable or slightly increasing trend in snow coverage and had a discharge dominated by snow and glacier melt in its western (Hindukush-Karakoram), southern (Western-Himalaya) and northern (Central-Karakoram) sub-basins.

  17. Flood tracking chart, Amite River basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence; McCallum, Brian E.; Brazelton, Sebastian R.

    1996-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  18. Flood tracking chart, Amite River Basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence E.; McCallum, Brian E.; Brazelton, Sebastian R.; Anderson, Mary L.; Ensminger, Paul A.

    1998-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  19. Mississippi River, Yazoo Basin, Memphis, TN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This section of the lower Mississippi River (34.0N, 90.0W) known as the Yazoo Basin, is characterized by a wide expanse of rich river bottomland with many oxbow lakes, the remains of the many changes in the riverbed over the course of many thousands of years. This soil is very fertile and productive but the region is prone to flooding. In this view, some of the back areas around the Delta National Forest show the effects of heavy spring rains.

  20. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region).

    PubMed

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif

    2015-02-01

    A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. PMID:25461078

  1. Beryllium isotope geochemistry in tropical river basins

    SciTech Connect

    Brown, E.T.; Edmond, J.M. ); Raisbeck, G.M.; Bourles, D.L.; Yiou, F. ); Measures, C.I. )

    1992-04-01

    The distributions of beryllium-9 and beryllium-10 in rivers within the Orinoco and Amazon basins have been examined to extend the understanding of their geochemical cycles and to develop their use both in geochronometry, and in studying erosional processes. Analyses of {sup 9}Be in dissolved and suspended material from rivers with a wide range of chemical compositions indicate that its geochemistry is primarily controlled by two major factors: (1) its abundance in the rocks of the watershed and (2) the extent of its adsorption onto particle surfaces. The relative importance of these parameters in individual rivers is determined by the extent of interaction with flood-plain sediments and the riverine pH. This understanding of {sup 9}Be geochemistry forms a basis for examination of the geochemical cycling of {sup 10}Be. In rivers which are dominated by interaction with sediments, the riverine concentration of dissolved {sup 10}Be is far lower than that in the incoming rainwater, indicating that a substantial proportion of it is retained within the soils of the basin or is adsorbed onto riverine particles. However, in acidic rivers in which the stable dissolved Be concentration is determined by the Be level in the rocks of the drainage basin, dissolved {sup 10}Be has essentially the same concentration as in precipitation. These observations imply that the soil column in such regions must be saturated with respect to {sup 10}Be, and that the ratio of the inventory to the flux does not represent an age, as may be the case in temperate latitudes, but rather a residence time.

  2. Analysis of long term meteorological trends in the middle and lower Indus Basin of Pakistan-A non-parametric statistical approach

    NASA Astrophysics Data System (ADS)

    Ahmad, Waqas; Fatima, Aamira; Awan, Usman Khalid; Anwar, Arif

    2014-11-01

    The Indus basin of Pakistan is vulnerable to climate change which would directly affect the livelihoods of poor people engaged in irrigated agriculture. The situation could be worse in middle and lower part of this basin which occupies 90% of the irrigated area. The objective of this research is to analyze the long term meteorological trends in the middle and lower parts of Indus basin of Pakistan. We used monthly data from 1971 to 2010 and applied non-parametric seasonal Kendal test for trend detection in combination with seasonal Kendall slope estimator to quantify the magnitude of trends. The meteorological parameters considered were mean maximum and mean minimum air temperature, and rainfall from 12 meteorological stations located in the study region. We examined the reliability and spatial integrity of data by mass-curve analysis and spatial correlation matrices, respectively. Analysis was performed for four seasons (spring-March to May, summer-June to August, fall-September to November and winter-December to February). The results show that max. temperature has an average increasing trend of magnitude + 0.16, + 0.03, 0.0 and + 0.04 °C/decade during all the four seasons, respectively. The average trend of min. temperature during the four seasons also increases with magnitude of + 0.29, + 0.12, + 0.36 and + 0.36 °C/decade, respectively. Persistence of the increasing trend is more pronounced in the min. temperature as compared to the max. temperature on annual basis. Analysis of rainfall data has not shown any noteworthy trend during winter, fall and on annual basis. However during spring and summer season, the rainfall trends vary from - 1.15 to + 0.93 and - 3.86 to + 2.46 mm/decade, respectively. It is further revealed that rainfall trends during all seasons are statistically non-significant. Overall the study area is under a significant warming trend with no changes in rainfall.

  3. Sprague River geomorphology studies, Klamath Basin, Oregon

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.; O'Connor, J. E.; Lind, P.

    2005-12-01

    The Sprague River drains 4050 square kilometers with a mean annual discharge of 16.3 m3/s before emptying into the Williamson River and then upper Klamath Lake in southcentral Oregon. The alternating wide alluvial segments and narrow canyon reaches of this 135-km-long westward flowing river provide for a variety of valued ecologic conditions and human uses along the river corridor, notably fisheries (including two endangered species of suckers, and formerly salmon), timber harvest, agriculture, and livestock grazing. The complex history of land ownership and landuse, water control and diversion structures, and fishery alterations, provides several targets for attributing historic changes to channel and floodplain conditions. Recently, evolving societal values (as well as much outside money) are inspiring efforts by many entities to 'restore' the Sprague River watershed. In cooperation with the U.S. Fish and Wildlife Service, the Klamath Tribes, and many local landowners, we are launching an analysis of Sprague River channel and floodplain processes. The overall objective is to guide restoration activities by providing sound understanding of local geomorphic processes and conditions. To do this we are identifying key floodplain and channel processes, and investigating how they have been affected by historic floodplain activites and changes to the watershed. This is being accomplished by analysis of historic aerial photographs and maps, stratigraphic analysis of floodplain soils and geologic units, mapping of riparian vegetation conditions and changes, and quantitative analysis of high resolution LiDAR topography acquired for the entire river course in December 2004. Preliminary results indicate (1) much of the coarser (and more erodible) floodplain soils are largely composed of pumice deposited in the basin by the 7700 year BP eruption of Mount Mazama; and (2) the LiDAR digital elevation models provide a ready means of subdividing the river into segments with

  4. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  5. Scaling issues in sustainable river basin management

    NASA Astrophysics Data System (ADS)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  6. Outlet Works, from foreground: Deschutes River, Stilling Basin, Outlet Opening, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Outlet Works, from foreground: Deschutes River, Stilling Basin, Outlet Opening, Valve House, dam embankment, and Emergency Gates Control Tower, view to southwest - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  7. Valve House, Stilling Basin, and Deschutes River with toe drain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Valve House, Stilling Basin, and Deschutes River with toe drain visible as water fall on left bank, from top of dam embankment, view to north - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  8. ANCIENT EARTHWORK IMPLEMENTS AND LAND DEVELOPMENT ON ONGA RIVER BASIN

    NASA Astrophysics Data System (ADS)

    Matsuki, Hirotada; Esaki, Tetsuro; Mitani, Yasuhiro; Ikemi, Hiroaki

    Present land use in a river basin is consequence of all land development in the past. This study is an attempt to recognize land development of a river basin, focusing on Onga river basin in ancient days (until 6th century). After confirming geological and topographical characteristics, the study pays attention to earthwork capability in Jomon, Yayo i and Kofun era. Leading-edge impl ements in each era support us to make an interpretation of ancient monuments' location and archaeological findings. Especially wooden how/spades in Yayoi era and iron blade edges in Kofu n era had typical impact to expand ricefield towards uncultivated area. The conclution indicates that the a dvanced earthwork implements enabled people shift main paddy field from lower lagoon area to upper alluvial terrains on Onga river basin through ancient days. This ancient land development history has much suggestions for today's river/river basin management.

  9. Powder River Basin: new energy frontier

    SciTech Connect

    Richards, B.

    1981-02-01

    The Powder River Basin in Wyoming represents a new energy frontier, where traditional ranch styles are giving way to boomtown development around new coal mines. Plans for extensive strip mining, coal trains and pipelines, and synthetic fuels plants will transform a 12,000 square mile area. The environmental and social impacts of trailer villages and the influx of new mores and life styles are already following traditional patterns for newcomers and long-time residents alike. Some local residents, however, are optimistic about the opportunities energy development will have. (DCK)

  10. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  11. Controlling erosion in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The most pervasive conservation concern in the vast 510,000 square mile Missouri River basin in the western United States is excessive rates of wind erosion during dry periods, though conservation efforts can help control erosion, according to a 30 August report by the U.S. Department of Agriculture's (USDA) Conservation Effects Assessment Project. During some dry years, rates of wind erosion—which include nitrogen and phosphorus losses—can be higher than 4 tons per acre on 12% and higher than 2 tons per acre on 20% of the approximately 148,000 square miles of cultivated cropland, notes the report Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Missouri River Basin. Between 2003 and 2006, conservation practices, including reducing tillage and building terraces, yielded about a 75% reduction in sediment runoff and phosphorus loss and a 68% reduction in nitrogen loss, according to the report. About 15 million acres in the region—18% of cultivated cropland—are considered to have either a high or moderate level of need for conservation treatment, and efforts in those areas in particular could result in additional reductions in sediment, phosphorus, and nitrogen loss, the report states.

  12. Drainage areas of streams in Arkansas, Ouachita River basin

    USGS Publications Warehouse

    Yanchosek, John J.; Hines, Marion S.

    1979-01-01

    Drainage areas, determined in accordance with procedure recommended by the Subcommittee on Hydrology of the Federal Inter-Agency River Basin Committee, are listed for points on streams in the Ouachita River basin in Arkansas. Points on the streams are identified by some topographic feature and by latitude and longitude. (USGS).

  13. COLUMBIA RIVER BASIN CONTAMINANT AQUATIC BIOTA AND SEDIMENT DATA

    EPA Science Inventory

    Numerous studies have been done to determine the levels of chemical contaminants in fish and sediment in the Columbia River Basin. These studies were done because of concern that releases of toxic Chemicals into the Columbia River Basin may be impacting health and the environment...

  14. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  15. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  16. Quality of water, Quillayute River basin, Washington

    SciTech Connect

    Fretwell, M.O.

    1984-01-01

    Ground water in the Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses, with the exception of water in two wells which had iron concentrations that potentially could be tasted in beverages and could cause staining of laundry and porcelain fixtures. A comparison of the chemical compositions of ground and surface waters showed a strong similarity over a wide geographic area. Proportions of the major chemical constituents in the rivers of the basin were nearly constant despite concentration fluctuations in response to dilution from precipitation and snowmelt. River-water quality was generally excellent, as evaluated against Washington State water use and water-quality criteria. Fecal-coliform bacteria counts generally were much lower than the total-coliform bacteria counts, indicating that most of the coliform bacteria were of nonfecal origin and probably originated in soils. Fecal coliform concentrations in all the major tributaries met State water-quality criteria. Water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow; dissolved-oxygen concentrations were occasionally less than criteria minimum because of increased water temperature. Both conditions occurred naturally. Nutrient concentrations were generally low to very low and about the same as in streams from virgin forestland in the Olympic National Park. However, some slight increases in nutrient concentrations were observed, particularly in the vicinity of Mill Creek and the town of Forks; due to dilution and biological assimilation, these slightly elevated concentrations decreased as the water moved downstream. 35 refs., 24 figs., 16 tabs.

  17. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  18. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  19. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  20. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  1. Floods in the Skagit River basin, Washington

    USGS Publications Warehouse

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  2. Zinc and Its Isotopes in the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  3. Resistivity sections, upper Arkansas River basin, Colorado

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Hershey, Lloyd A.; Emery, Philip A.; Stanley, William D.

    1971-01-01

    A reconnaissance investigation of ground-water resources in the upper Arkansas River basin from Pueblo to Leadville is being made by the U.S. Geological Survey in cooperation with the Southeastern Colorado Water Conservancy District, and the Colorado Division of Water Resources, Colorado State Engineer. As part of the investigation, surface geophysical electrical resistivity surveys were made during the summer and fall of 1970 near Buena Vista and Westcliffe, Colo. (p1.1). The resistivity surveys were made to verify a previous gravity survey and to help locate areas where ground-water supplies might be developed. This report presents the results of the surveys in the form of two resistivity sections.

  4. Paleogeography of Paleocene Wind River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.

    1986-08-01

    The Paleocene Fort Union Formation in the Wind River basin was deposited in response to Laramide deformation between south-verging faults to the north (Owl Creek and Casper thrusts) and south (Wind River and Granite thrusts). Exposures in this asymmetric basin include a lower fluvial member overlain by the Waltman (lacustrine) and time-equivalent Shotgun (fluvial) members in the northeast and a single fluvial unit in the southeast. In the northeast, low sinuosity, ribbon channel sandstones (northwest paleoflow, about 40 m thick) are overlain by sheet-sand deposits interspersed with channel sandstones (southwest paleoflow, about 700 m thick), which are in turn overlain by the Waltman Member. The basal channel sands are wide (about 100 m perpendicular to flow), thick (5 to 10 m), and trough cross-bedded. The sheet-sand deposits consist of upward-fixing cycles 1 to 10 m thick. These facies are interpreted to be the product of longitudinal drainage flowing parallel to the Casper thrust, overlain by fan-delta sediments prograding perpendicular to the thrust. Palynology suggests a nearly complete Paleocene record for this sequence. To the south along the Rattlesnake Hills, trough cross-bedded sheet sandstones and gravel channel deposits (northward, 140 m thick) are overlain by layered mudstones and siltstones (180 m thick). The top of these high-energy braided-stream deposits and overlying low-energy delta-plain sediments are equivalent in age to the Waltman Member. A topographic low paralleled the Casper arch thrust during the earliest Paleocene. Prograding alluvial-fan sedimentation gradually shifted this topographic low away from the Casper thrust. Southern exposures record drainage toward, and ponding in, the topographic low.

  5. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  6. Flexural analysis of two broken foreland basins; Late Cenozoic Bermejo basin and Early Cenozoic Green River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.; Reynolds, S.

    1986-05-01

    Lithospheric flexure that generates basin in a broke foreland setting (e.g., the Laramide foreland of Wyoming) is a three-dimensional system related to shortening along basin-bounding faults. The authors modeled the elastic flexure in three dimensions for two broken foreland basins: the early Cenozoic Green River basin and the analogous late Cenozoic Bermejo basin of Argentina. Each basin is located between a thrust belt and a reverse-fault-bounded basement uplift. Both basins are asymmetric toward the basement uplifts and have a central basement high: the Rock Springs uplift and the Pie de Palo uplift, respectively. The model applies loads generated by crustal thickening to an elastic lithosphere overlying a fluid mantle. Using the loading conditions of the Bermejo basin based on topography, limited drilling, and reflection and earthquake seismology, the model predicts the current Bermejo basin geometry. Similarly, flexure under the loading conditions in the Green River basin, which are constrained by stratigraphy, well logs, and seismic profiling and summed for Late Cretaceous (Lance Formation) through Eocene (Wasatch Formation), successfully models the observed geometry of the pre-Lance surface. Basin depocenters (> 4 km for the Green River basin; > 7 km for the Bermejo basin) and central uplifts are predicted to result from constructive interference of the nonparallel applied loads. Their Bermejo model implies that instantaneous basin geometry is successfully modeled by crustal loading, whereas the Green River basin analysis suggests that basin evolution can be modeled over large time steps (e.g., 20 Ma). This result links instantaneous basin geometry to overall basin evolution and is a first step in predicting stratigraphic development.

  7. Spatial design principles for sustainable hydropower development in river basins

    SciTech Connect

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; Kelly, Michael R.

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatial decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.

  8. Spatial design principles for sustainable hydropower development in river basins

    DOE PAGESBeta

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; Kelly, Michael R.

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatialmore » decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.« less

  9. LANDSCAPE ECOLOGY ASSESSMENT OF THE TENSAS RIVER BASIN, MISSISSIPPI RIVER DELTA REGION, AND GULF OF MEXICO

    EPA Science Inventory

    A group of landscape ecological indicators were applied to biophysical data masked to the Tensas River Basin. The indicators were use to identify and prioritize sources of nutrients in a
    Mississippi River System sub-basin. Remotely sensed data were used for change detection a...

  10. UPPER SNAKE RIVER BASIN WATER QUALITY ASSESSMENT, 1976

    EPA Science Inventory

    This package contains information for the Upper Snake River Basin, Idaho (170402, 17040104). The report contains a water quality assessment approach which will assist EPA planners, land agencies, and state and local agencies in identifying probably nonpoint sources and determini...

  11. 15. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN (MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN (MODEL SCALE: 1' = 26'). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  12. 17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS EXAMINING MODEL PUMPS, VIEW FROM MODEL BED. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  13. 16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL AND HYDRAULIC ENGINEERS EXAMINING MODEL PUMPS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  14. ALTERNATIVE FUTURES FOR THE WILLAMETTE RIVER BASIN, OREGON

    EPA Science Inventory

    Alternative futures analysis is an assessment approach designed to inform community decisions regarding land and water use. We conducted an alternative futures analysis in the Willamette River Basin in western Oregon. Based on detailed input from local stakeholders, three alter...

  15. 19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ENGINEER AT DATA COLLECTION COMPUTER ROOM. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  16. Atmospheric circulation and snowpack in the Gunnison River Basin

    USGS Publications Warehouse

    McCabe, Gregory J.

    1994-01-01

    Winter mean 700-millibar height anomalies over the eastern North Pacific Ocean and the western United States are related to variability in snowpack accumulations measured on or about April 1 in the Gunnison River Basin in Colorado. Higher-than-average snowpack accumulations are associated with negative 700-millibar height anomalies (anomalous cyclonic circulation) over the western United States and over most of the eastern North Pacific Ocean. The anomalous cyclonic circulation enhances the movement of moisture from the eastern North Pacific Ocean into the southwestern United States. Variability in winter mean 700-millibar height anomalies explain over 50 percent of the variability in snowpack accumulations in the Gunnison River Basin. The statistically significant linear relations between 700-millibar height anomalies and snowpack accumulations in the Gunnison River Basin can be used with general-circulation-model simulations of future 700-millibar height anomalies to estimate changes in snowpack accumulations in the Gunnison River Basin for future climatic conditions.

  17. 18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ENGINEERING AIDE AT CONTROL BOX. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  18. Spatial and altitudinal variation of precipitation and the correction of gridded precipitation datasets for the Upper Indus Basin and the Hindukush-Karakoram-Himalaya

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Booij, Martijn J.; Duan, Zheng; Naz, Bibi S.; Lee, Junhak; Khan, Mujahid

    2015-04-01

    Precise and accurate precipitation data (of both snow and rain) are a vital input for hydrological modeling, climatic studies and glacier mass balance analysis. This study investigates the accuracy of eight widely used gridded datasets, based on mass balance assessments, for the Upper Indus Basin (UIB) in the Himalayas-Karakoram-Hindukush (HKH) mountain region. The eight datasets are: 1) Global Precipitation Climatology Project (GPCP) v 2.2, 2) Climate Prediction Centre (CPC) Merged Analysis of Precipitation (CMAP), 3) National Centers for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR), 4) Global Precipitation Climatology Centre (GPCC), 5) Climatic Research Unit (CRU) v 3.2.2, 6) Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), 7) Tropical Rainfall Measuring Mission (TRMM) 3B33 v 7, and 8) European Reanalysis (ERA) interim data. Precipitation derived from these datasets has been compared with the sum of flow, MODIS ETact (Actual Evapo-transpiration), and glacier imbalance contribution to flows. All these datasets significantly underestimate precipitation, being 40-80% less than the measured flows, except for the NCEP/NCAR and ERA interim datasets, which only slightly underestimate precipitation. This is the case for almost all watersheds in the UIB, particularly the Gilgit, Hunza, Shigar and Astore watersheds. To provide alternative, more physically-reasonable precipitation estimates, annual and seasonal (October-May and June-September) precipitation values have been derived for the entire UIB using multiple regressions relating precipitation for 46 climate stations to the local altitude, slope, aspect, latitude and longitude. The results are distributed across the whole basin on a 1km grid, with an estimated uncertainty of 5-10%. The spatial pattern shows good agreement with the Randolph Glacier Inventory (RGI) v 3.2 data, and with previous local studies that

  19. Drainage divides, Massachusetts; Blackstone and Thames River basins

    USGS Publications Warehouse

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  20. Water resources of Wisconsin, Pecatonica-Sugar River basin

    USGS Publications Warehouse

    Hindall, S.M.; Skinner, Earl L.

    1973-01-01

    The purpose of this report is to describe the physical environment, availability, characteristics, distribution, movement, and quailty of water in the Pecatonica-Sugar River basin.  In addition, water use and water problems are summarized to give an understanding of man's management of water within the basin.

  1. Groundwater issues in the Potomac River Basin

    NASA Astrophysics Data System (ADS)

    Lehr, Jay

    Great strides have been made by the states of Maryland and Pennsylvania, along with the Commonwealth of Virginia and the District of Columbia, in protecting water quality in the Chesapeake Bay and its tributaries. Since these entities joined forces in a renewed effort to protect water quality in the Chesapeake Bay area, a number of useful programs have been established and public awareness has been raised.The Association of Ground Water Scientists and Engineers and several regional co-sponsors presented Ground Water Issues and Solutions in the Potomac River Basin/Chesapeake Bay Region Conference March 14 at George Washington University, Washington, D.C., to provide insight into groundwater-related issues. Attendance at the conference included 150 groundwater professionals from state, county and private agencies, along with a significant number of students from area universities. More than 30 papers were presented dealing with research projects and field studies. Topics included geohydrologic relationships, groundwater quality impacts, impact of industrial processes on groundwater quality, saltwater intrusion, groundwater protection in the Chesapeake Bay area, land-use impacts on groundwater quality, groundwater modeling, groundwater withdrawals, and policy issues. In addition to the technical sessions, a debate of “How clean is clean?” was held.

  2. Greater Green River Basin Production Improvement Project

    SciTech Connect

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  3. Part I: Integrated water quality management: river basin approach. Geochemical techniques on contaminated sediments--river basin view.

    PubMed

    Förstner, Ulrich

    2003-01-01

    The big flood in the upper Elbe River catchment area has revealed a wide spectrum of problems with contaminated sediments. So far, an effective strategy for managing contaminated sediments on a river basin scale is still missing and it seems that not much has been learned from the lessons received during the last decade. In the following overview, special emphasis is given to the utilization of geochemically-based techniques for sediment remediation, which can be applied in different parts of a river basin. The examples presented here are mostly from the Elbe River catchment area. In general, new technical problem solutions need a set of practical process knowledge that uses a wide range of simulation techniques, as well as models in different spatial and temporal scales. The evaluation of recent flood events clearly demonstrates the importance of chemical expertise in the decision-making process for the sustainable development in river basins. PMID:12635960

  4. Drainage areas of the Kanawha River basin, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.; Payne, D.D., Jr.; Shultz, R.A.; Kirby, J.R.

    1982-01-01

    Drainage areas for 1,493 drainage area divisions for the Kanawha River basin, West Virginia, are listed in the report. Also tabulated for each site are river miles, plus location identifiers: County, latitude and longitude, and the West Virginia District map number. (USGS)

  5. Drainage areas of the Potomac River basin, West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.

    1996-01-01

    This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.

  6. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  7. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  8. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  9. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  10. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  11. Water loss in the Potomac River basin during droughts

    USGS Publications Warehouse

    Hagen, E.R.; Kiang, J.E.; Dillow, J.J.A.

    2004-01-01

    The water loss phenomena in the Washington DC metropoliton area's (WMA) Potomac River water supply basin during droughts was analyzed. Gage errors, permitted withdrawals, evaporation, and transpiration by trees along the river were investigated to account for loss. The Interstate Commission on the Potomac River Basin (ICPRB) calculated potential gage error and examined permits to determine permitted levels of consumption withdrawals from the Potomac. The result of a single slug test indicated that the soil transmissivity may not be adequate to allow passage of enough water to account for all of the calculated water loss.

  12. Combination of remote sensing data products to derive spatial climatologies of "degree days" and downscale meteorological reanalyses: application to the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Rutter, N.; Brock, B. W.; Fowler, H. J.; Blenkinsop, S.

    2014-12-01

    Lack of observations for the full range of required variables is a critical reason why many cryosphere-dominated hydrological modelling studies adopt a temperature index (degree day) approach to meltwater simulation rather than resolving the full surface energy balance. Thus spatial observations of "degree days" would be extremely useful in constraining model parameterisations. Even for models implementing a full energy balance, "degree day" observations provide a characterisation of the spatial distribution of climate inputs to the cryosphere-hydrological system. This study derives "degree days" for the Upper Indus Basin by merging remote sensing data products: snow cover duration (SCD), from MOD10A1 and land surface temperature (LST), from MOD11A1 and MYD11A1. Pixel-wise "degree days" are calculated, at imagery-dependent spatial resolution, by multiplying SCD by (above-freezing) daily LST. This is coherent with the snowpack-energy-to-runoff conversion used in temperature index algorithms. This allows assessment of the spatial variability of mass inputs (accumulated snowpack) because in nival regime areas - where complete ablation is regularly achieved - mass is the limiting constraint. The GLIMS Randolph Glacier Inventory is used to compare annual totals and seasonal timings of "degree days" over glaciated and nival zones. Terrain-classified statistics (by elevation and aspect) for the MODIS "degree-day" hybrid product are calculated to characterise of spatial precipitation distribution. While MODIS data products provide detailed spatial resolution relative to tributary catchment areas, the limited instrument record length is inadequate for assessing climatic trends and greatly limits use for hydrological model calibration and validation. While multi-decadal MODIS equivalent data products may be developed in the coming years, at present alternative methods are required for "degree day" trend analysis. This study thus investigates the use of the hybrid MODIS

  13. Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.

    2014-09-01

    Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that

  14. Water Allocation Modeling of Awash River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Asfaw, D. H.; Berhe, F.; Melesse, A. M.

    2012-12-01

    Awash River basin is one of the twelve basins of Ethiopia which is highly utilized and the first basin to be introduced to modern agriculture. A study was conducted on water allocation modeling of Awash River basin, Ethiopia using MODSIM, a river basin management decision support system (DSS) designed as a computer-aided tool for developing improved basin wide planning. This study was conducted to analyze the water balance of the Awash basin under different levels of irrigation development and also determine the water allocation in the Upper, Middle and Lower Valleys in the basin. Awash basin includes Koka Dam and two dams under completion: Kessem and Tendaho Reservoirs. Four scenarios were set: Scenario I-present withdrawal rate in the basin; Scenario II-Scenario I plus Downstream Tendaho Dam Operational; Scenario III-Scenario II plus expansion of middle valley farms and Kessem Dam Operational; and Scenario IV-Scenario III plus additional expansion in the middle valley. Analysis of flow records within the basin was done for a period of 1963-2003. Estimation of system losses, runoff from ungauged tributaries, and Gedebessa Swamp model parameters were considered in the flow process study. Simulation was conducted based on four scenarios. Consumptive and non-consumptive uses were considered in allocation modeling. The results of MODSIM model depict that there will be incremental release from Koka Dam from 2.8% to 5.7% in years 2018 and 2038, respectively. Due to increased diversions in Scenario III when compared to scenario I, losses in to Gedebessa Swamp will significantly decrease by an average of 27.6%. In the year 2038, owing to less capacity of upstream reservoirs due to sedimentation, water will be lost in the swamp complex causing slight decrease of inflow to Tendaho Dam. Additional storage at or upstream of Koka Dam will be mandatory in the future. Unaccounted water diversions upstream of Koka and water losses in Gedebessa Swamp should be considered in the

  15. Water and Benefit Sharing in Transboundary River Basins

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  16. M-Area basin closure, Savannah River Site

    SciTech Connect

    McMullin, S.R.; Horvath, J.G.

    1991-12-31

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  17. M-Area basin closure, Savannah River Site

    SciTech Connect

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  18. Implication of drainage basin parameters of a tropical river basin of South India

    NASA Astrophysics Data System (ADS)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  19. Operational river discharge forecasting in poorly gauged basins: the Kavango River Basin case study

    NASA Astrophysics Data System (ADS)

    Bauer-Gottwein, P.; Jensen, I. H.; Guzinski, R.; Bredtoft, G. K. T.; Hansen, S.; Michailovsky, C. I.

    2014-10-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically-based and distributed modelling schemes employing data assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. This study is funded by the European Space Agency under the TIGER-NET project. The objective of TIGER-NET is to develop open-source software tools to support integrated water resources management in Africa and to facilitate the use of satellite earth observation data in water management. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic-hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators. The forecasting system delivers competitive forecasts for the Kavango River, which are reliable and sharp. Results indicate that the value of the forecasts is greatest for intermediate lead times between 4 and 7 days.

  20. Assessment of Anthropogenic Impacts in La Plata River Basin

    NASA Astrophysics Data System (ADS)

    Garcia, N. O.; Venencio, M.

    2006-12-01

    An assessment of the variability of the streamflows in La Plata Basin (LPB), particularly in its major tributaries Paraná and Uruguay, is presented in this work. The La Plata Basin, the fifth largest basin in the world and second only to the Amazon in South America, is 3.6 million km2 and covers portions of 5 countries: Argentina, Brazil, Bolivia, Paraguay, and Uruguay. Sub-basins include the Bermejo, Paraná, Paraguay, Pilcomayo, and Uruguay. Major rivers of the basin are the Paraguay, the Uruguay and the Paraná. Streamflows in the LPB have been above normal in the last decades, e.g. the mean flow in the Paraná river during the 1971-1994 period was 34% higher than the mean flow during the 1931-1970 period. A similar analysis carried out on the precipitation records for the La Plata basin showed only a 14% increase during the same periods for the Upper Paraná basin and a 20% increase for the Uruguay basin. In this paper it is postulated that the increase in the streamflows, not explained by precipitation increases, is due to the changes in cultivation patterns in the upper basins of the Paraná and Uruguay. Particularly, the substitution of coffee plantations for annual crops, mainly soybeans, has produced a change in the infiltration patterns that influenced the discharges.

  1. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiqui River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, C.M.; Freeman, Mary C.

    2008-01-01

    1. Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiqui River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (< 15 m tall) and operate as water diversion projects. 2. While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiqui River Basin. 3. Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiqui River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9km) and Lower Montane Rain Forest (168.2km). 4. Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiqui River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  2. River stage tomography: A new approach for characterizing groundwater basins

    NASA Astrophysics Data System (ADS)

    Yeh, Tian-Chyi J.; Xiang, Jianwei; Suribhatla, Raghavendra M.; Hsu, Kuo-Chin; Lee, Cheng-Haw; Wen, Jet-Chau

    2009-05-01

    Data from tomographic surveys make an inverse problem better posed in comparison to the data from a single excitation source. A tomographic survey provides different coverages and perspectives of subsurface heterogeneity: nonfully redundant information of the subsurface. Fusion of these pieces of information expands and enhances the capability of a conventional survey, provides cross validation of inverse solutions, and constrains inherently ill posed field-scale inverse problems. Basin-scale tomography requires energy sources of great strengths. Spatially and temporally varying natural stimuli are ideal energy sources for this purpose. In this study, we explore the possibility of using river stage variations for basin-scale subsurface tomographic surveys. Specifically, we use numerical models to simulate groundwater level changes in response to temporal and spatial variations of the river stage in a hypothetical groundwater basin. We then exploit the relation between temporal and spatial variations of well hydrographs and river stage to image subsurface heterogeneity of the basin. Results of the numerical exercises are encouraging and provide insights into the proposed river stage tomography. Using naturally recurrent stimuli such as river stage variations for characterizing groundwater basins could be the future of geohydrology. However, it calls for implementation of sensor networks that provide long-term and spatially distributed monitoring of excitation as well as response signals on the land surface and in the subsurface.

  3. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  4. Feasible optimality of vegetation patterns in river basins

    NASA Astrophysics Data System (ADS)

    Caylor, K. K.; Scanlon, T. M.; Rodriguez-Iturbe, I.

    2004-05-01

    We examine the mechanisms leading to the maintenance of organized vegetation patterns within the network structure of a semiarid New Mexico river basin due to the controlling influence of water stress. A recently formulated analytical framework for the water balance at the daily level is used to link the distribution of climate, soils and vegetation within the basin to patterns growing season water stress. We compare the actual patterns of water stress within the basin to the distribution of water stress that results from vegetation patterns distributed according to two algorithms of local optimization. We demonstrate that a model which maintains local optimization within the network flow path exhibits a better agreement with the patterns of actual basin water stress than a model that allows for neutral local interactions that ignore the network structure of the river basin. These results suggest that the pattern of actual vegetation observed within the basin may correspond to a condition of feasible optimality in which large-scale organization is constrained by the stochastic nature of local interactions mediated by the network configuration. The principles of such organization have important consequences regarding the impact of land cover change on hydrological dynamics in river basins, as well as the geomorphological and biogeographical evolution of landscapes under varying climate and disturbance regimes.

  5. Floods in the English River basin, Iowa

    USGS Publications Warehouse

    Heinitz, A.J.; Riddle, D.E.

    1981-01-01

    Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers

  6. Drought in the Klamath River Basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  7. Drought in the Klamath River Basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  8. Evaluating Damage Assessment of Breaches Along the Embankments of Indus River during Flood 2010 Using Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Daniyal, D.

    2013-09-01

    Natural disasters cause human sufferings and property loss, if not managed properly. It cannot be prevented but their adverse impacts can be reduced through proper planning and disaster mitigation measures. The floods triggered by heavy rains during July 2010 in Pakistan caused swallowing of rivers causing human, agriculture, livestock and property losses in almost all over the country. The heavy rains in upper part of country were attributed to El-Nina effect. Accumulated water in the rivers floodplain overtopped and breached flood protective infrastructure. Flood damage particularly in Sindh province was caused by breaches in the embankments and even after months of flood recession in rivers, flood water affected settled areas in the province. This study evaluates the role of satellite remote sensing particularly in assessment of breaches and consequential damages as well as measures leading to minimize the effects of floods caused by breaches in flood protective infrastructure. More than 50 SPOT-5 imageries had been used for this purpose and breached areas were delineated using pre and post flood imageries, later on rehabilitation work were also monitored. A total 136 breaches were delineated out of which 60 were in the Punjab and 76 in Sindh province. The study demonstrates the potentials of satellite remote sensing for mapping and monitoring natural disasters and devising mitigation strategies.

  9. Resolving the scale incompatibility dilemma in river basin management

    NASA Astrophysics Data System (ADS)

    Perry, Jim; Easter, K. William

    2004-08-01

    This study illustrates how integrated river basin management can conflict with our increased emphasis on decentralizing water resources decision making. For over a decade, water and environmental decision making in many countries has been shifting from national levels to state/province and local levels. At the same time we have increasingly found that it is critical to consider how individual water resource decisions impact the river basin. We provide detailed examples of this incompatibility dilemma from the United States and Turkey as well as smaller examples from Japan and Macedonia. We argue that new institutional models are required for effective river basin management and that implementation of such models can be evaluated through the use of transaction costs. This study concludes with examples of institutional arrangements that can help bridge the incompatibility gap.

  10. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  11. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  12. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  13. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  14. Impact of GRACE signal leakage over the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Lee, H.; Beighley, R. E.; Duan, J.; Shum, C.; Alsdorf, D. E.; Andreadis, K.

    2013-05-01

    The Congo Basin is the world's third largest in size, and second only to the Amazon River in discharge. The impact and connections of this hydrologic flux with the region's climate, biogeochemical cycling, and terrestrial water storage (TWS), especially in wetlands, is clearly of great importance. Yet, there is a great lack of published research documenting the Congo Basin terrestrial water balance. This lack of research is related in part to the limited amount of in-situ data; however, the abundance of spaceborne data suggests an opportunity for discovery. The Congo River is the only major river to cross the equator twice. In doing so, the basin lies in both the Northern and Southern Hemisphere such that it receives year-round rainfall from the migration of Inter-Tropical Convergence Zone (ITCZ). After the north has its wet season in the spring and summer, the ITCZ moves south and the remainder of the basin receives large amounts of rain. Consequently, the movement of ITCZ can also be observed from the Gravity Recovery and Climate Experiment (GRACE) TWS changes over the northern and southern boundaries over the Congo. This spatial pattern of the TWS variations are different from that over the Amazon Basin, where the strongest positive or negative annual water storage anomalies are observed to be centered inside the basin. In this study, we examine individual monthly geographical distribution of GRACE TWS changes from various RL05 products, and determine the leakage-contaminated monthly solutions by comparison with reproduced TWS variations from Hillslope River Routing (HRR) model in sub-basin scale. We also present a methodology to empirically remove the signal leakage, and consequently improve the GRACE TWS estimates over the entire Congo Basin.

  15. Drainage areas of the Guyandotte River basin, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.

    1977-01-01

    This report, prepared in cooperation with the West Virginia Office of Federal-State Relations (now the Office of Economic and Community Development), lists in tabular form 435 drainage areas for basins within the Guyandotte River basin of West Virginia. Drainage areas are compiled for sites at the mouths of all streams having drainage areas of approximately five square miles or greater, for sites at U.S. Geological Survey gaging stations (past and present), and for other miscellaneous sites. (Woodard-USGS)

  16. Spatio-temporal snow cover change and hydrological characteristics of the Astore, Gilgit and Hunza river basins (western Himalayas, Hindukush and Karakoram region) - Northern Pakistan

    NASA Astrophysics Data System (ADS)

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Lane, Stuart; Terzago, Silvia; Adamowski, Jan Franklin

    2015-04-01

    A large proportion of Pakistan's irrigation water supply is drawn from the Upper Indus River Basin (UIB) situated in the Himalaya-Karakoram-Hindukush (HKH) ranges. More than half of the annual flow in the UIB is contributed by five of its high-altitude snow and glacier-fed sub-basins including the Astore (Western Himalaya - southern part of the UIB), Gilgit (Hindukush - western part of the UIB) and Hunza (Central Karakoram - northern part of the UIB) River basins. Studying the snow cover, its spatio-temporal evolution and the hydrological response of these sub-basins is important so as to better manage water resources. This study compares data from the Astore, Gilgit and Hunza River basins (mean catchment elevation, 4100, 4250 and 4650 m ASL, respectively), obtained using MODIS satellite snow cover images. The hydrological regime of these sub-catchments was analyzed using hydrological and climate data available at different altitudes from the basin areas. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas), western (Hindukush) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff in the southern part, but snow and glacier melt is dominant in the northern and western parts of the catchment. Despite similar snow cover trends (stable or slightly increasing), different river flow trends (increasing in Astore and Gilgit, decreasing in Hunza) suggest that a sub-catchment level study of the UIB is needed to understand thoroughly its hydrological behavior for better flood forecasting and water resources management and to quantify how the system is being forced by changing climate.

  17. Drainage divides, Massachusetts; Westfield and Farmington River basins

    USGS Publications Warehouse

    Gadoury, Russell A.; Wandle, S. William, Jr.

    1983-01-01

    Drainage boundaries for selected subbasins in western Hampshire, western Hampden, and southeastern Berkshire Counties, Massachusetts, are delineated on 15 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 square miles on tributary streams or 10 square miles along the Westfield or Farmington Rivers. (USGS)

  18. Sediment Transport in Streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Onions, C. A.

    1969-01-01

    This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.

  19. N Budgets of the Piracicaba River Basin, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Filoso, S.; Williams, M.; Martinelli, L.

    2001-05-01

    Nitrogen budgets and the importance of the principal types of land use and other human activities as sources and sinks of N were determined for a meso-scale river basin (12 400 km2) in one of the most developed and economically important regions of South America. The Piracicaba River basin is located in southeastern Brazil and drains into a tributary of the Parana River. The basin supports about 2% of the population of Brazil with intensive agricultural and industrial activities. During two years from 1995 to 1997, biweekly samples were collected at 10 points along the Piracicaba River and its tributaries for analyses of dissolved and particulate N. The annual flux of N increased by a factor of about 20 times from the headwaters to the lower reaches of the main channel. Mass balances calculated for six linked sectors of the river system and for the entire basin had inputs that were generally slightly lower than outputs. These results are different from those observed in temperate regions, where low outputs in relation to inputs are common.

  20. Regionalization of flood hydrograph parameters in the Kolubara River Basin

    NASA Astrophysics Data System (ADS)

    Drobnjak, Aleksandar; Zlatanovic, Nikola; Bozovic, Nikola; Stojkovic, Milan; Orlic Momcilovic, Aleksandra; Jelovac, Milena; Prohaska, Stevan

    2016-04-01

    The Kolubara River basin is located in the western part of Serbia. There are several hydrological and rainfall gauging stations in the basin, while a large part of the basin is ungauged. In recent years in this area floods have been a common occurrence, so it is necessary to improve the system of flood protection. The research that is presented in this study represents a hydrological aspect to strengthening flood protection. This study presents the procedure of regionalization of basic flood hydrograph parameters in the Kolubara river basin. All significant observed flood waves in the basin over the past 50 years were collected, assimilated and analyzed. In this research, the method applied was based on the separation of flood hydrograph parameters, for each hydrological station: time to peak (time from the beginning of the hydrograph to its peak) (Tp), time of recession (time from the peak to the end of the recession limb) (Tr), retention time of rainfall in the catchment (tp) and time of concentration (Tc). Using these parameters and morphological characteristics of the basin, such as catchment area, the distance weighted channel slope, length of the main stream, the distance of the center of basin to the profile of each hydrological stations, regional dependencies were established. Parameters of flood hydrograph were analyzed as dependent variables, while the morphological characteristics of the basin represent independent variables. The final goal of this work is to use the obtained regional dependence for flood hydrograph parameter estimation at ungauged locations, with the end goal of improving flood protection in the Kolubara river basin.

  1. Selected streamflow data for the Delaware River basin

    USGS Publications Warehouse

    Schopp, Robert D.; Gillespie, Brian D.

    1979-01-01

    Selected streamflow data for the Delaware River basin include runoff-precipitation relationships for 28 selected subbasins for the period 1941-70; low-flow frequency curves for four mainstem Delaware River sites; monthly comparative duration curves and twenty year hydrographs at Montague and Trenton, New Jersey; and flow duration tables based on observed daily streamflow for gaging stations near 21 proposed dam sites. (Woodard-USGS)

  2. Nitrogen Removal by Streams and Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    Our study, based on chemistry and channel dimensions data collected at 893 randomly-selected stream and river sites in the Mississippi River basin, demonstrated the interaction of stream chemistry, stream size, and NO3-N uptake metrics across a range of stream sizes and across re...

  3. An environmental streamflow assessment for the Santiam River basin, Oregon

    USGS Publications Warehouse

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  4. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  5. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  6. Effects of livestock wastes on small illinois streams: Lower Kaskaskia river basin and upper little wabash river basins, summer 1991

    SciTech Connect

    Hite, R.L.; Bickers, C.A.; King, M.M.; Brockamp, D.W.

    1992-07-01

    In early 1991, the Illinois Environmental Protection Agency (IEPA) initiated an investigation to evaluate livestock waste runoff in southern Illinois. The primary objectives of this survey were to document stream quality impairments caused by livestock waste runoff, and ultimately, the need for better waste management practices, waste management systems, and funding for such systems. Information provided by Soil Conservation Service (SCS) and IEPA Agricultural staff identified an area in Clinton and Bond Counties in the Kaskaskia River basin and several upper Little Wabash River basin tributaries in Effingham and Cumberland Counties as candidate project areas.

  7. 18 CFR 706.413 - Submission of statements by River Basin Commission Chairmen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... statements by River Basin Commission Chairmen. 706.413 Section 706.413 Conservation of Power and Water... Financial Interests § 706.413 Submission of statements by River Basin Commission Chairmen. A statement of employment and financial interest is not required under this part from Chairmen of River Basin...

  8. 76 FR 13676 - Amended Columbia River Basin Fish and Wildlife Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  9. 75 FR 64752 - Amended Columbia River Basin Fish and Wildlife Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  10. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Box 908, Vancouver, Washington 98660; Upper Mississippi River Basin Commission, Federal Office... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false River basin commissions... RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.209 River basin commissions...

  11. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Box 908, Vancouver, Washington 98660; Upper Mississippi River Basin Commission, Federal Office... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true River basin commissions... RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.209 River basin commissions...

  12. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Box 908, Vancouver, Washington 98660; Upper Mississippi River Basin Commission, Federal Office... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false River basin commissions... RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.209 River basin commissions...

  13. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Box 908, Vancouver, Washington 98660; Upper Mississippi River Basin Commission, Federal Office... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false River basin commissions... RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.209 River basin commissions...

  14. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Box 908, Vancouver, Washington 98660; Upper Mississippi River Basin Commission, Federal Office... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false River basin commissions... RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.209 River basin commissions...

  15. 77 FR 16558 - Yakima River Basin Conservation Advisory Group Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... Yakima River Basin Water Conservation Program. The basin conservation program is structured to provide... implementation of structural and nonstructural cost-effective water conservation measures in the Yakima River... Bureau of Reclamation Yakima River Basin Conservation Advisory Group Charter Renewal AGENCY: Bureau...

  16. 18 CFR 706.413 - Submission of statements by River Basin Commission Chairmen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... statements by River Basin Commission Chairmen. 706.413 Section 706.413 Conservation of Power and Water... Financial Interests § 706.413 Submission of statements by River Basin Commission Chairmen. A statement of employment and financial interest is not required under this part from Chairmen of River Basin...

  17. An Operational Flood Forecast System for the Indus Valley

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Webster, P. J.

    2012-12-01

    The Indus River is central to agriculture, hydroelectric power, and the potable water supply in Pakistan. The ever-present risk of drought - leading to poor soil conditions, conservative dam practices, and higher flood risk - amplifies the consequences of abnormally large precipitation events during the monsoon season. Preparation for the 2010 and 2011 floods could have been improved by coupling quantitative precipitation forecasts to a distributed hydrological model. The nature of slow-rise discharge on the Indus and overtopping of riverbanks in this basin indicate that medium-range (1-10 day) probabilistic weather forecasts can be used to assess flood risk at critical points in the basin. We describe a process for transforming these probabilities into an alert system for supporting flood mitigation and response decisions on a daily basis. We present a fully automated two-dimensional flood forecast methodology based on meteorological variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) Variable Ensemble Prediction System (VarEPS). Energy and water fluxes are calculated in 25km grid cells using macroscale hydrologic parameterizations from the UW Variable Infiltration Capacity (VIC) model. A linear routing model transports grid cell surface runoff and baseflow within each grid cell to the outlet and into the stream network. The overflow points are estimated using flow directions, flow velocities, and maximum discharge thresholds from each grid cell. Flood waves are then deconvolved from the in-channel discharge time series and propagated into adjacent cells until a storage criterion based on average grid cell elevation is met. Floodwaters are drained back into channels as a continuous process, thus simulating spatial extent, depth, and persistence on the plains as the ensemble forecast evolves with time.

  18. Floods in the Skunk River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.; Wiitala, Sulo Werner

    1978-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains require information on floods. This report provides information on flood stages and discharges, flood magnitudes and frequency, and flood profiles for the Skunk River and some of its tributaries. It covers the Skunk -- South Skunk Rivers to Ames, and the lower reaches of tributaries as flows: Squaw Creek, 8.2 miles; Indian Creek, 11.6 miles; North Skunk River, 83.2 miles; Cedar Creek, 55.8 miles; and Big Creek, 21.7 miles.

  19. COMMENTS ON THE OHIO RIVER BASIN ENERGY STUDY

    EPA Science Inventory

    The Ohio River Basin Energy Study (ORBES) has been conducted by university researchers over a four-year period. During this time an Advisory Committee, which numbered up to 50 members, was active in critiquing and commenting on the research work. The committee included representa...

  20. COLUMBIA BASIN SALMON POPULATIONS AND RIVER ENVIRONMENT DATA

    EPA Science Inventory

    Data Access in Real Time (DART) provides an interactive data resource designed for research and management purposes relating to the Columbia Basin salmon populations and river environment. Currently, daily data plus historic information dating back to 1962 is accessible online. D...

  1. Nitrogen and Phosphorus Levels in the Yazoo River Basin, Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) and phosphorus (P) loadings to aquatic ecosystems are linked to environmental problems such as hypoxia. Presented is an assessment of accessible data on nutrient sources, sinks and inputs to streams within the Yazoo River Basin of northern Mississippi. Spatial trends were examined by p...

  2. BIG SIOUX RIVER DRAINAGE BASIN INFORMATION OUTREACH PROJECT

    EPA Science Inventory

    The main goal of the proposed project is to raise public awareness about the importance of protecting the Big Sioux River drainage basin. To accomplish this goal, the City and its partnering agencies are seeking to expand and improve public accessibility to a wide variety of r...

  3. BEAR RIVER BASIN, IDAHO - WATER QUALITY INVESTIGATION, 1974

    EPA Science Inventory

    The quality of the waters in the Bear River Basin, Idaho (160102) was surveyed from August 27 to August 29, 1974. The purposes of the survey were to determine point and non-point source loading, to determine whether water quality has improved since the adoption of the 1958 Enfor...

  4. Digital Atlas of the Upper Washita River Basin, Southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  5. WATERSHED NITROGEN AND PHOSPHOROUS BALANCE: THE UPPER POTOMAC RIVER BASIN

    EPA Science Inventory

    Nitrogen and phosphorus mass balances were estimated for the portion of the Potomac River basin watershed located above Washington, D.C. he total nitrogen (N) balance included seven input source terms, six sinks, and one "change-in-storage" term, but was simplified to five input ...

  6. Colorado River Basin Development Its Potential Impact on Tribal Life

    ERIC Educational Resources Information Center

    Hackenberg, Robert A.

    1976-01-01

    Since no mechanism presently exists for the effective distribution of tribal income to tribal members, the wealth created by development of natural resources on the American Indian reservations of the Colorado River Basin will not substantially alter the quality of Indian life. (JC)

  7. OHIO RIVER BASIN ENERGY STUDY: SOCIAL VALUES AND ENERGY POLICY

    EPA Science Inventory

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. The objectives of the analysis are to identify American social values and to examine their relationship to ...

  8. Flood peaks and discharge summaries in the Delaware River basin

    USGS Publications Warehouse

    Vickers, A.A.; Farsett, Harry A.; Green, J. Wayne

    1981-01-01

    This report contains streamflow data from 299 continuous and partial-record gaging stations in the Delaware River basin. The location, drainage area, period of record, type of gage, and average flow (discharge) is given for each continuous station. Also included, are annual flood peak discharges and discharges above a selected base, annual and monthly mean discharges, and annual and monthly runoff. (USGS)

  9. Geothermal resources of the Southern Powder River Basin, Wyoming

    SciTech Connect

    Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

    1985-06-13

    This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

  10. The Delaware River Basin Landsat-Data Collection System Experiment

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. This experiment successfully demonstrated that standard U.S. Geological Survey field instrumentation could be easily interfaced with the LANDSAT-DCS and the data made to flow smoothly to water resources management agencies. The experiment was conducted in the Delaware River basin. A truly operational system could not be deployed.

  11. FISH ASSEMBLAGE GROUPS IN THE UPPER TENNESSEE RIVER BASIN

    EPA Science Inventory

    A hierarchical clustering technique was used to classify sites in the upper Tennessee River basin based on relative abundance of fish species. Five site groups were identified. These groups differed mainly by the occurrence of minnow and darter species. Drainage area and ecore...

  12. AEROBIC DENITRIFICATION: IMPLICATIONS FOR THE MOM RIVER BASIN

    EPA Science Inventory

    Each year about 1.6 million metric tons of nitrogen, mostly from agriculture, is discharged from the lower Mississippi/Atchafalaya River Basin into the Gulf of Mexico, and each spring this excess nitrogen fuels the formation of a huge hypoxic zone in the Gulf. In the Mississippi...

  13. Water Temperature changes in the Mississippi River Basin

    EPA Science Inventory

    In this study, we demonstrate the transfer of a physically based semi-Lagrangian water temperature model (RBM) to EPA, its linkage with the Variable Infiltration Capacity (VIC) hydrology model, and its calibration to and demonstration for the Mississippi River Basin (MRB). The r...

  14. Impacts of urbanization on river system structure: a case study on Qinhuai River Basin, Yangtze River Delta.

    PubMed

    Ji, Xiaomin; Xu, Youpeng; Han, Longfei; Yang, Liu

    2014-01-01

    Stream structure is usually dominated by various human activities over a short term. An analysis of variation in stream structure from 1979 to 2009 in the Qinhuai River Basin, China, was performed based on remote sensing images and topographic maps by using ArcGIS. A series of river parameters derived from river geomorphology are listed to describe the status of river structure in the past and present. Results showed that urbanization caused a huge increase in the impervious area. The number of rivers in the study area has decreased and length of rivers has shortened. Over the 30 years, there was a 41.03% decrease in river length. Complexity and stability of streams have also changed and consequently the storage capacities of river channels in intensively urbanized areas are much lower than in moderately urbanized areas, indicating a greater risk of floods. Therefore, more attention should be paid to the urban disturbance to rivers. PMID:25116497

  15. Sharing water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  16. Isotopic fingerprint of the middle Olt River basin, Romania.

    PubMed

    Popescu, Raluca; Costinel, Diana; Ionete, Roxana Elena; Axente, Damian

    2014-01-01

    One of the most important tributaries of the Danube River in Romania, the Olt River, was characterized in its middle catchment in terms of the isotopic composition using continuous flow-isotope ratio mass spectrometry (CF-IRMS). Throughout a period of 10 months, from November 2010 to August 2011, water samples from the Olt River and its more important tributaries were collected in order to investigate the seasonal and spatial isotope patterns of the basin waters. The results revealed a significant difference between the Olt River and its tributaries, by the fact that the Olt River waters show smaller seasonal variations in the stable isotopic composition and are more depleted in (18)O and (2)H. The waters present an overall enrichment in heavy isotopes during the warm seasons. PMID:25299076

  17. Contaminants in suspended sediment from the Fraser River basin

    SciTech Connect

    Sekela, M.; Baldazzi, C.; Moyle, G.; Brewer, R.

    1995-12-31

    The concentrations of trace organic contaminants were measured in suspended sediment samples collected upstream and downstream of six pulp mills located in the Fraser River basin. Sampling occurred at three hydrological periods; fall low flow, winter base flow (under ice) and spring freshet. Suspended sediments were analyzed for dioxins, furans, chlorinated phenolics and polycyclic aromatic hydrocarbons. Initial results indicate that (i) trace organic contaminants are detectable in suspended sediments collected over 265 river kilometers downstream of the nearest pulp mill; (ii) the 1992 to 1994 levels of 2,3,7,8-TCD-dioxin and 2,3,7,8-TCD-furan in Fraser river suspended sediments are lower than the levels measured in 1990; (iii) there is a measurable increase in trace organic contaminant levels in Fraser River suspended sediments associated with the initial rise in the Fraser River hydrograph at freshet.

  18. Feasible optimality of vegetation patterns in river basins

    NASA Astrophysics Data System (ADS)

    Caylor, Kelly K.; Scanlon, Todd M.; Rodriguez-Iturbe, Ignacio

    2004-07-01

    We examine mechanisms leading to organization of vegetation patterns within the channel network structure of a semi-arid New Mexico river basin under the controlling influence of water stress. We compare the actual pattern of water stress within the basin to patterns resulting from two algorithms of local stress optimization which proceed from an initial fully random vegetation distribution. Here we show that the distribution of vegetation and basin water stress derived from an algorithm that maintains local optimization within the network flow path exhibits considerably better agreement with the actual distribution than one that ignores the network structure of the basin. These results suggest the pattern of actual vegetation observed within the basin corresponds to a condition of feasible optimality in which organization is constrained by the stochastic nature of local interactions mediated by the network configuration. The principles of such organization have important consequences regarding the interaction between land cover change and hydrological dynamics in river basins, as well as the biogeographical evolution of landscapes.

  19. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  20. Water Balance Change in Xia Ying River Basin, Qinghai Province, China

    NASA Astrophysics Data System (ADS)

    Cuo, L.; Zhou, B.; Li, J.

    2010-12-01

    Yellow River, Yangtze River and Lan Cang River are major river systems supporting billions of people in South East Asia and China. Source region of Yellow River, Yangtze River and Lan Cang River (Three Rivers) is located in Qinghai Province, China. Recently, Chinese government started a conservation project in the source region of the Three Rivers called “Convert Agricultural Field to Forest and Grassland”. Xia Ying River Basin is a sub-basin located in the source region of the Three River Basin. The upper Xia Ying River Basin has experienced dramatic land cover change since 2006. Before 2006, upper Xia Ying River Basin hill slope was agricultural field. Coniferous trees and bush vegetation were planted on the slope greater than 70 degree in the upper Xia Ying River Basin in 2006. The objective of the study is to investigate the water balance term change in the Xia Ying River Basin because of the conservation project. This study will use Landsat and MODIS imagery to classify and quantify land cover classes before and after land cover conversion. Water balance terms including runoff and evaportranspiration will be simulated using a land surface model to investigate water balance term change due to land cover change. The study serves as a pilot study for the investigation of hydrological change in the entire source region of the Three River Basin during the past 50 years.

  1. Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978

    USGS Publications Warehouse

    Childers, Joseph M.; Kernodle, Donald R.

    1981-01-01

    Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)

  2. On the coupled geomorphological and ecohydrological organization of river basins

    NASA Astrophysics Data System (ADS)

    Caylor, Kelly K.; Manfreda, Salvatore; Rodriguez-Iturbe, Ignacio

    2005-01-01

    This paper examines the linkage between the drainage network and the patterns of soil water balance components determined by the organization of vegetation, soils and climate in a semiarid river basin. Research during the last 10 years has conclusively shown an increasing degree of organization and unifying principles behind the structure of the drainage network and the three-dimensional geometry of river basins. This cohesion exists despite the infinite variety of shapes and forms one observes in natural watersheds. What has been relatively unexplored in a quantitative and general manner is the question of whether or not the interaction of vegetation, soils, and climate also display a similar set of unifying characteristics among the very different patterns they presents in river basins. A recently formulated framework for the water balance at the daily level links the observed patterns of basin organization to the soil moisture dynamics. Using available geospatial data, we assign soil, climate, and vegetation properties across the basin and analyze the probabilistic characteristics of steady-state soil moisture distribution. We investigate the presence of organization through the analysis of the spatial patterns of the steady-state soil moisture distribution, as well as in the distribution of observed vegetation patterns, simulated vegetation dynamic water stress and hydrological fluxes such as transpiration. Here we show that the drainage network acts as a template for the organization of both vegetation and hydrological patterns, which exhibit self-affine characteristics in their distribution across the river basin. Our analyses suggest the existence of a balance between the large-scale determinants of vegetation pattern reflecting optimality in the response to water stress and the random small-scale patterns that arise from local factors and ecological legacies such as those caused by dispersal, disturbance, and founder effects.

  3. Colorado River Basin Water Supply and Demand Study

    NASA Astrophysics Data System (ADS)

    Prairie, J. R.; Jerla, C.

    2012-12-01

    The Colorado River Basin Water Supply & Demand Study (Study), part of the Basin Study Program under the Department of the Interior's WaterSMART Program, is being conducted by the Bureau of Reclamation and agencies representing the seven Colorado River Basin States. The purpose of the Study is to assess future water supply and demand imbalances in the Colorado River Basin over the next 50 years and develop and evaluate options and strategies to resolve those imbalances. The Study is being conducted over the period from January 2010 to September 2012 and contains four major phases: Water Supply Assessment, Water Demand Assessment, System Reliability Analysis, and Development and Evaluation of Opportunities for balancing supply and demand. To address the considerable amount of uncertainty in projecting the future state of the Colorado River system, the Study has adopted a scenario planning approach that has resulted in four water supply scenarios and up to six water demand scenarios. The water supply scenarios consider hydrologic futures derived from the observed historical and paleo-reconstructed records as well as downscaled global climate model (GCM) projections. The water demand scenarios contain differing projections of parameters such as population growth, water use efficiency, irrigated acreage, and water use for energy that result in varying projections of future demand. Demand for outdoor municipal uses as well as agricultural uses were adjusted based on changing rates of evapotranspiration derived from downscaled GCM projections. Water supply and demand scenarios are combined through Reclamation's long-term planning model to project the effects of future supply and demand imbalances on Colorado River Basin resources. These projections lend to an assessment of the effectiveness of a broad range of options and strategies to address future imbalances.

  4. Balancing hydropower development in the Ohio River basin

    SciTech Connect

    Sale, M.J.; Railsback, S.F.; Chang, S.Y.; Coutant, C.C.; Spath, R.E.; Taylor, G.H.

    1989-01-01

    A large number of retrofit hydroelectric projects have been proposed at existing navigation dams in the Ohio River basin. These proposals involve potentially adverse environmental impacts, including reduced dissolved oxygen concentrations from decreased aeration at dams. The Federal Energy Regulatory Commission completed an environmental impact statement for 24 proposed projects at 19 dams on the Ohio, Monongahela, Allegheny, and Muskingum rivers, evaluating the cumulative impacts of hydropower development on more than 500 miles (800 km) of river. The use of models in this assessment proved extremely valuable for understanding the cumulative impacts of hydropower development on water quality in the basin and for balancing power and environmental quality considerations in the licensing process. 9 refs., 4 figs.

  5. Understanding Socio-Hydrology System in the Kissimmee River Basin

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  6. Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins.

    PubMed

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-09-01

    To meet good chemical and ecological status, Member States are required to monitor priority substances and chemicals identified as substances of concern at European Union and local/river-basin/national level, respectively, in surface water bodies, and to report exceedances of the environmental quality standards (EQSs). Therefore, standards have to be set at national level for river basin specific pollutants. Pesticides used in dominant crops of several agricultural areas within the catchment of Mediterranean river basins ('Mondego', 'Sado' and 'Tejo', Portugal) were selected for monitoring, in addition to the pesticides included in priority lists defined in Europe. From the 29 pesticides and metabolites selected for the study, 20 were detected in surface waters of the river basins, seven of which were priority substances: alachlor, atrazine, chlorfenvinphos, chlorpyrifos, endosulfan, simazine and terbutryn, all of which exceeded their respective EQS values. QSs for other specific pollutants were calculated using different extrapolation techniques (i.e. deterministic or probabilistic) largely based on the method described in view of the Water Framework Directive. Non-acceptable aquatic risks were revealed for molinate, oxadiazon, pendimethalin, propanil, terbuthylazine, and the metabolite desethylatrazine. Implications of these findings for the classification of the ecological status of surface water bodies in Portugal and at the European level are discussed. PMID:26002046

  7. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    USGS Publications Warehouse

    Lang, Joseph W.

    1972-01-01

    Fresh water in abundance is contained in large artesian reservoirs in sand and gravel deposits of Tertiary and Quaternary ages in the Pearl River basin, a watershed of 8,760 square miles. Shallow, water-table reservoirs occur in Quarternary deposits (Pleistocene and Holocene) that blanket most of the uplands in .the southern half of the basin and that are present in smaller upland areas and along streams elsewhere. The shallow reservoirs contribute substantially to dry-weather flow of the Strong River and Bogue Chitto and of Holiday, Lower Little, Silver, and Whitesand Creeks, among others. About 3 billion acre-feet of ground water is in storage in the fresh-water section, which extends from the surface to depths ranging from about sea level in the extreme northern part of the basin to more than 3,000 feet below sea level in the southern part of the basin. Variations in low flow for different parts of the river basin are closely related to geologic terrane and occurrence of ground water. The upland terrace belt that crosses the south-central part of the basin is underlain by permeable sand and gravel deposits and yields more than 0.20 cubic feet per second per square mile of drainage area to streamflow, whereas the northern part of the basin, underlain by clay, marl, and fine to medium sand, yields less than 0.05 cubic feet per second per square mile of drainage area (based on 7-day Q2 minimum flow computed from records). Overall, the potential surface-water supplies are large. Because water is available at shallow depths, most of the deeper aquifers have not been developed anywhere in the basin. At many places in the south, seven or more aquifers could be developed either by tapping one sand in each well or by screening two or more sands in a single well. Well fields each capable, of producing several million gallons of water a day are feasible nearly anywhere in the Pearl River basin. Water in nearly all the aquifers is of good to excellent quality and requires

  8. Chemical analyses of surface water in Illinois, 1975-77; Volume 2, Illinois River basin and Mississippi River tributaries north of Illinois River basin

    USGS Publications Warehouse

    Grason, David; Healy, R.W.

    1979-01-01

    Samples of surface water were collected and analyzed by the Illinois Environmental Protection Agency. The results from water years 1975 to 1977 are presented in three volumes. The history of sampling and analytical methods used during that period are summarized. Stream discharge data from records of the U.S. Geological Survey are included for all sites where samples were collected at gaging stations or near enough that reliable discharge estimates could be made. Volume II includes the Illinois River basin and Mississippi River tributaries north of Illinois River basin. (Woodard-USGS)

  9. Chemical analyses of surface water in Illinois, 1958-74; Volume II, Illinois River basin and Mississippi River tributaries north of Illinois River basin

    USGS Publications Warehouse

    Healy, R.W.; Toler, L.G.

    1978-01-01

    Samples of surface water were collected and analyzed by the Illinois Environmental Protection Agency and its predecessor, the Stream Pollution Control Bureau of the Illinois Department of Public Health. The results for the period 1958 to 1974 are presented in tabular form and the history of sampling and analytical methods are included for all sites where samples were collected at gaging stations or near enough that reliable discharge estimates could be made. The report is contained in three volumes. This volume (Volume II) includes Illinois River basin and Mississippi River tributaries north of Illinois River basin. (See also W78-10034 and W78-10036) (Woodard-USGS)

  10. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  11. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  12. Geothermal resources of the Wind River Basin, Wyoming

    SciTech Connect

    Hinckley, B.S.; Heasler, H.P.

    1985-01-01

    The geothermal resources of the Wind River Basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth for each basin, is tabulated. Background heat flow in the Wind River Basin is generally insufficient to produce high conductive gradients. Only where hydrologic systems re-distribute heat through mass movement of water will high temperatures occur at shallow depths. Aquifers which may have the confinement and structural characteristics necessary to create such geothermal systems are the Lance/Fort Union, Mesa Verde, Frontier, Muddy, Cloverly, Sundance, Nugget, Park City, Tensleep, Amsden, Madison, Bighorn, and Flathead Formations. Of these the Tensleep Sandstone and Madison Limestone are the most attractive in terms of both productivity and water quality. Most of the identified geothermal anomalies in the Wind River Basin occur along complex structures in the southwest and south. The most attractive geothermal prospects identified are anomalous Areas 2 and 3 north of Lander, Sweetwater Station Springs west of Jeffrey City, and the thermal springs southwest of Dubois. Even in these areas, it is unlikely temperatures in excess of 130 to 150/sup 0/F can be developed. 16 refs., 7 figs., 7 tabs. (ACR)

  13. Environmental Setting of the Lower Merced River Basin, California

    USGS Publications Warehouse

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.

  14. Information technology and decision support tools for stakeholder-driven river basin salinity management

    SciTech Connect

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  15. Integrated Watershed Assessment: The Northern River Basins Study

    NASA Astrophysics Data System (ADS)

    Wrona, F. J.; Gummer, W. D.

    2001-05-01

    Begun in 1991 and completed in 1996, the Northern River Basins Study (NRBS) was a \\$12 M initiative established by the governments of Canada, Alberta, and the Northwest Territories to assess the cumulative impacts of development, particularly pulp mill related effluent discharges, on the health of the Peace, Athabasca and Slave river basins. The NRBS was launched in response to concerns expressed by northern residents following the 1991 approval of the Alberta Pacific Pulp Mill in Athabasca. Although initiated by governments, the NRBS was set-up to be `arms-length' and was managed by a 25 member Study Board that represented the many interests in the basins, including industry, environmental groups, aboriginal peoples, health, agriculture, education, municipalities, and the federal, territorial and provincial governments. Overseen by an independent Science Advisory Committee, an integrated research program was designed covering eight scientific components: fate and distribution of contaminants, food chain impacts, nutrients, hydrology/hydraulics and sediment transport, uses of the water resources, drinking water quality, traditional knowledge, and synthesis/modeling. Using a 'weight of evidence' approach with a range of ecological and sociological indicators, cumulative impacts from pulp and paper-related discharges and other point and non-point sources of pollution were determined in relation to the health and contaminant levels of aquatic biota, nutrient and dissolved oxygen-related stress, hydrology and climate related changes, and human health and use of the river basins. Based on this assessment and Study Board deliberations, site-specific and basin-wide scientific and management-related recommendations were made to Ministers regarding regulatory and policy changes, basin management and monitoring options, and future research. The Study reinforces the importance of conducting ecosystem-based , interdisciplinary science and the need for public involvement in

  16. Development of river flood model in lower reach of urbanized river basin

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  17. Water resources planning for a river basin with recurrent wildfires.

    PubMed

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-09-01

    Situated in the north of Portugal, the Beça River basin is subject to recurrent wildfires, which produce serious consequences on soil erosion and nutrient exports, namely by deteriorating the water quality in the basin. In the present study, the ECO Lab tool embedded in the Mike Hydro Basin software was used for the evaluation of river water quality, in particular the dissolved concentration of phosphorus in the period 1990-2013. The phosphorus concentrations are influenced by the burned area and the river flow discharge, but the hydrologic conditions prevail: in a wet year (2000, 16.3 km(2) of burned area) with an average flow of 16.4 m(3)·s(-1) the maximum phosphorus concentration was as low as 0.02 mg·L(-1), while in a dry year (2005, 24.4 km(2) of burned area) with an average flow of 2 m(3)·s(-1) the maximum concentration was as high as 0.57 mg·L(-1). Phosphorus concentrations in the water bodies exceeded the bounds of good ecological status in 2005 and between 2009 and 2012, water for human consumption in 2009 and water for multiple uses in 2010. The River Covas, a right margin tributary of Beça River, is the most appropriate stream as regards the use of water for human consumption, because it presents the biggest water potential with the best water quality. Since wildfires in the basin result essentially from natural causes and climate change forecasts indicate an increase in their frequency and intensity in the near future, forestry measures are proposed to include as a priority the conversion of stands of maritime pine in mixed stands of conifer and hardwood species. PMID:25918888

  18. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France

  19. Groundwater quality in the Mohawk River Basin, New York, 2011

    USGS Publications Warehouse

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  20. Coho Salmon Master Plan, Clearwater River Basin.

    SciTech Connect

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  1. Water Quality of the upper Litani River Basin, Lebanon

    NASA Astrophysics Data System (ADS)

    Haydar, Chaden Moussa; Nehme, Nada; Awad, Sadek; Koubaissy, Bachar; Fakih, Mohamad; Yaacoub, Ali; Toufaily, Joumana; Villeras, Frederic; Hamieh, Tayssir

    Water pollution is a major problem in Lebanon, which is has been exacerbated lately. However, surface water sources are most exploited, and more certainly the water from rivers. The Litani River has been lately subjected to several aspects of deterioration in its quality. This includes the major physiochemical characteristics. The aims of this study are to assess the seasonal variations in water quality in the Upper Litani River Basin, including the Qaraaoun Lake. The collected samples were from representative sites along the river, and this was carried out at several dates during 2010 and 2011. The carried analysis implies the physical (pH, T°, TDS, EC), chemicals (Na+, Ca2+, Mg2+, Cl-, SO2-4, NH3+, NO-3, PO2-4, K+, Heavy metals. This resulted numeric data are being compared with WHO guidelines. In addition, PCA was applied to evaluate the data accuracy. It can be conclude that the measured variables used are creditable for the assessment.

  2. Channeling in Paleocene coals, northern Powder River basin, Montana

    SciTech Connect

    Hansen, W.B.

    1983-08-01

    Interpretation of 1,200 geophysical logs in the northern Powder River basin, Montana, reveals the paleodrainages influencing coal deposition during the deposition of the Tongue River member (Paleocene, Fort Union Formation). Four channels with associated crevasse splay deposits are recognized: (1) an east-west rosebud drainage near Colstrip, (2) a north-south wall channel near Birney, (3) a north-south Dietz drainage near Tongue River Reservoir, and (4) a north-south Anderson channel in the vicinity of Moorhead. These channels support the concept of a major northeast-flowing drainage system during deposition of the Tongue River Member. Identification of these channels serves as a guide to future coal exploration.

  3. People and water in the Assabet River basin, eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.

    2005-01-01

    An accounting of the inflows, outflows, and uses of water in the rapidly developing Assabet River Basin, along Interstate 495 in eastern Massachusetts, was done to quantify how people's activities alter the hydrologic system. The study identified subbasins and seasons in which outflows resulting from people's activities were relatively large percentages of total flows, and quantified the fraction of streamflow in the Assabet River that is treated wastewater. Computer models of ground-water flow were also used to test how the components of the hydrologic system, particularly streamflow, would change with future development and increased water use. Computer simulations showed that, when water use was increased to currently permitted levels, streamflows in tributaries would decrease, particularly during the low-flow period. In the Assabet River, increased wastewater discharges resulted in a slight increase in total streamflow and an increase in the fraction of streamflow in the river that is wastewater, relative to existing conditions.

  4. River Sinuosity Classification - Case study in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Petrovszki, J.; Székely, B.; Timár, G.

    2012-04-01

    A new evaluation method is proposed to classify the multiple window-size based sinuosity spectrum, in order to minimize the possible human interpretation error. If the river is long enough for the analysis, the classification could be similarly useful as the sinuosity spectrum is, but sometimes it is more straightforward. Furthermore, for the classification, we did not need the main parameters of the river, e.g. the bankfull discharge. The river sinuosity values were studied in the Pannonian Basin in order to reveal neotectonic influence on their abrupt changes. The map sheets of the Second Military Survey of the Habsburg Empire were used to digitize the natural, pre-regulation meandering river thalwegs. 28 rivers were studied, and the connection between the known fault lines and the river sinuosity changes was detected in 36 points, along 26 structural lines. An unsupervised ISOCLASS classification was carried out on these data, and the sinuosity values were divided into 5 classes. Because of the sinuosity calculation method, 25 kilometer-long river sections are missing at the two endpoints of the channel. So sometimes the displayed section of the river does not cross to the faults represented on the neotectonic map. In the other cases, where the faults are crossing the rivers, the results are corresponding with the results of the sinuosity spectrum: the river-points on the two sides of the faults belong to different classes. The connection between these fault lines and the change of river sinuosity classes was detected in 23 points, along 16 structural lines The research is made in the frame of project OTKA-NK83400 (SourceSink Hungary). The European Union and the European Social Fund also have provided financial support to the project under the grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003.

  5. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    USGS Publications Warehouse

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  6. Occurrence and sources of perfluoroalkyl acids in Italian river basins.

    PubMed

    Valsecchi, Sara; Rusconi, Marianna; Mazzoni, Michela; Viviano, Gaetano; Pagnotta, Romano; Zaghi, Carlo; Serrini, Giuliana; Polesello, Stefano

    2015-06-01

    This paper presents a survey on the occurrence and sources of 11 perfluoroalkyl acids (PFAA) in the main river basins in Italy, covering about 40% of the Italian surface area and 45% of the Italian population. Total concentrations of PFAA ranged fromrivers impacted by industrial discharges. Among the rivers directly flowing into the sea, Brenta, Po and Arno present significant concentrations, while concentrations in Tevere and Adige, which are not impacted by relevant industrial activities, are almost all below the detection limits. The total estimated PFAA load of the five rivers was 7.5ty(-1) with the following percentage distribution: 39% PFBS, 32% PFOA, 22% short chain perfluorocarboxylic acids (PFCA), 6% PFOS and 1% long chain PFCA. PFOA and PFOS loads, evaluated in the present work, represent 10% and 2% of the estimated European loads, respectively. In Italy the most important sources of PFAA are two chemical plants which produce fluorinated polymers and intermediates, sited in the basin of rivers Po and Brenta, respectively, whose overall emission represents 57% of the total estimated PFAA load. Both rivers flow into the Adriatic Sea, raising concern for the marine ecosystem also because a significant PFOS load (0.3ty(-1)) is still present. Among the remaining activities, tanneries and textile industries are relevant sources of respectively PFBS and PFOA, together with short chain PFCA. As an example, the total PFAA load (0.12ty(-1)) from the textile district of Prato is equivalent to the estimated domestic emission of the whole population in all the studied basins. PMID:25108894

  7. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    NASA Astrophysics Data System (ADS)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  8. Morphometric analysis of the Marmara Sea river basins, Turkey

    NASA Astrophysics Data System (ADS)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  9. Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado

    USGS Publications Warehouse

    Parker, R.S.; Norris, J.M.

    1989-01-01

    Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)

  10. The biogeochemistry of lipids in rivers of the Orinoco Basin

    SciTech Connect

    Jaffe, R.; Wolff, G.A.; Cabrera, A.C.

    1995-11-01

    Water samples from rivers in the Orinoco Basin were examined in order to assess the biogeochemistry of particle-associated and dissolved lipids. Lipid fractions were characterized so as to determine their origin, speciation, variability in individual rivers, and their flux to the lower Orinoco River. Aliphatic hydrocarbons, ketones, alcohols, triterpenoids, and fatty acids were ubiquitous in the rivers, and a large proportion of these compounds were found to be autochthonous in origin. The relative loadings of particle-associated and dissolved lipids were of the same order of magnitude in most of the rivers, indicating the importance of the dissolved phase. Apparently, true equilibria between water and particulate phases were not reached, probably as a result of the high amounts of colloidal and humic materials associated with the dissolved phase in most of the rivers. Preliminary data indicate that there were considerable seasonal variabilities in the distributions and concentrations of lipids in some of the rivers, but that each of these showed different behavior. 76 refs., 6 figs., 3 tabs.

  11. Generation of synthetic seasonal hydrographs for a large river basin

    NASA Astrophysics Data System (ADS)

    Karmaker, Tapas; Dutta, Subashisa

    2010-02-01

    SummaryThis paper describes a methodology for the generation of synthetic seasonal stage hydrographs with a number of flood waves for a large braided river basin based on statistical analysis of the historical stage records. The synthetic seasonal hydrographs in a river is required for different purposes such as assessing the hydraulic performances of various river training structures, morphological predictions, environmental impact analysis. The typical stage hydrograph of such a river has two components: flood waves and seasonal (monsoonal) response. Using historical stage records, flood waves in a seasonal stage record were identified and their characteristics were approximated using Maxwell distribution. The extracted characteristics of flood waves such as time of occurrence and successive flood lifts were analysed with various probability distribution function to find out their best distribution. The frequency analysis of the annual maximum flood lift was carried out. Beside this, seasonal responses were also approximated using Maxwell distribution. A relationship between the seasonal lift and total monsoonal rainfall was established. For a given total seasonal rainfall and return period of annual maximum flood wave lift, synthetic seasonal hydrograph is generated by superimposing both seasonal response and flood waves. The generated hydrographs are evaluated by comparing the cumulative frequency function of river stage and relative frequency of daily stage changes (rise/fall) for three seasons with different flood wave return periods, at two river gauging stations for the river Brahmaputra, India.

  12. The biogeochemistry of lipids in rivers of the Orinoco Basin

    NASA Astrophysics Data System (ADS)

    Jaffé, Rudolf; Wolff, George A.; Cabrera, AivléC.; Carvajal Chitty, Humberto

    1995-11-01

    Water samples from rivers in the Orinoco Basin were examined in order to assess the biogeochemistry of particle-associated and dissolved lipids. Lipid fractions were characterised so as to determine their origin, speciation, variability in individual rivers, and their flux to the lower Orinoco River. Aliphatic hydrocarbons, ketones, alcohols, triterpenoids, and fatty acids were ubiquitous in the rivers, and a large proportion of these compounds were found to be autochthonous in origin. The relative loadings of particle-associated and dissolved lipids were of the same order of magnitude in most of the rivers, indicating the importance of the dissolved phase. Apparently, true equilibria between water and particulate phases were not reached, probably as a result of the high amounts of colloidal and humic materials associated with the dissolved phase in most of the rivers. Preliminary data indicate that there were considerable seasonal variabilities in the distributions and concentrations of lipids in some of the rivers, but that each of these showed different behaviour.

  13. DOM in recharge waters of the Santa Ana River Basin

    USGS Publications Warehouse

    Leenheer, J.A.; Aiken, G.R.; Woodside, G.; O'Connor-Patel, K.

    2007-01-01

    The urban Santa Ana River in California is the primary source of recharge water for Orange County's groundwater basin, which provides water to more than two million residents. This study was undertaken to determine the unidentified portion of dissolved organic matter (DOM) in various natural surface and reclaimed waters of the Santa Ana River Basin and to assess the potential health risk of this material. The most abundant organic contaminants were anionic detergent degradation products (constituting about 12% of the DOM), which have no known adverse health effects. In addition, high percentages of dissolved colloids from bacterial cell walls were found during storm flows; these colloids foul membranes used in water treatment. Although no significant health risks were ascribed to the newly characterized DOM, the authors note that even the small amounts of humic substances deposited during storm flow periods were responsible for significant increases in disinfection by_product formation potential in these waters.

  14. Characterization of Stream Morphology and Sediment Yield for the Big Black and Tombigbee River Basins, Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three segments within the Big Black River Basin, and nine within the Tombigbee River Basin are on the Mississippi 303d list of water bodies as having impaired conditions for aquatic life due to sediment. An additional 56 reaches of channel are listed for biologic impairment between the two basins. ...

  15. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  16. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0~28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  17. UV filters bioaccumulation in fish from Iberian river basins.

    PubMed

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. PMID:25777957

  18. Hydrogeologic data for the lower Connecticut River basin, Connecticut

    USGS Publications Warehouse

    Bingham, J.W.; Paine, F.D.; Weiss, L.A.

    1980-01-01

    This report contains geologic, ground-water, and miscellaneous data on the quality of surface water collected for a water-resources inventory of the lower Connecticut River basin, Connecticut. The study was made by the U.S. Geological Survey in fiscal cooperation with the Connecticut Department of Environmental Protection. A companion report (Connecticut Water Resources Bulletin No. 31, in preparation) interprets the factual information presented here or otherwise collected for the study.

  19. Hydrogeologic data for the lower Connecticut River basin, Connecticut

    USGS Publications Warehouse

    Bingham, J.W.; Paine, F.D.; Weiss, L.A.

    1975-01-01

    This report contains geologic, ground-water, and miscellaneous data on the quality of surface water collected for a water-resources inventory of the lower Connecticut River basin, Connecticut. The study was made by the U.S. Geological Survey in fiscal cooperation with the Connecticut Department of Environmental Protection. A companion report (Connecticut Water Resources Bulletin No. 31, in preparation) interprets the factual information presented here or otherwise collected for the study.

  20. Flood discharges in the upper Mississippi River basin, 1993

    USGS Publications Warehouse

    Parrett, Charles; Melcher, Nick B.; James, Robert W., Jr.

    1993-01-01

    Flood-peak discharges that equaled or exceeded the 10-year recurrence interval were recorded at 154 streamflow-gaging stations in the upper Mississippi River Basin. At 41 streamflowgaging stations, the peak discharge was greater than the previous maximumknown discharge. At 15 additional gaging stations, peak discharges exceeded the previous maximum regulated peak discharge. At 45 gaging stations, peak discharges exceeded 100-year recurrence intervals.

  1. The Pennsylvanian and Permian Oquirrh-Wood River basin

    SciTech Connect

    Geslin, J.K. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    Strata of the Middle Pennsylvanian to Lower Permian Oquirrh-Wood River Basin (OWRB) lie unconformably above the Antler orogenic belt and flysch trough/starved basin in NW Utah, NE Nevada, and SC Idaho. Strata of the basin, now separated geographically by the Neogene Snake River Plain, show similar subsidence histories, identical mixed carbonate-siliciclastic sedimentary fill, and identical chert pebble conglomerate beds supplied by one or more DesMoinesian uplifts containing Lower Paleozoic strata. This conglomerate, of the lower Sun Valley Group, Snaky Canyon Formation, and parts of the Oquirrh Formation, was reworked progressively southward, to at least the Idaho-Utah border. It is present in strata as young as Virgilian. Virgilian to Leonardian rocks are ubiquitously fine-grained mixed carbonate-siliciclastic turbidites. These rocks contain cratonal, well-sorbed subarkosic and quartzose sand and silt in part derived from the Canadian Shield. This siliciclastic fraction is intimately mixed with arenaceous micritized skeletal material and peloids derived from an eastern carbonate platform represented by the Snaky Canyon Formation in east-central Idaho, an eastern facies of the Eagle Creek Member, Wood River Formation in the Boulder Mountains, and the Oquirrh Formation in the Deep Creek Mountains. Subsidence of the OWRB may have been caused by two phases (DesMoinesian and Wolfcampian to Leonardian) of crustal loading by continental margin tectonism to the west. An elevated rim separated the OWRB from coeval volcanogenic basins to the west. Earlier, Antler-age structures may have been reactivated. A new pulse of tectonism occurred in Leonardian to Guadalupian time as in most places carbonatic and phosphatic strata of the Leonardian to Guadalupian Park City and Phosphoria Formation overlie OWRB strata, with different geographic arrangement of basinal, slope, and shelf depocenters.

  2. Water resources: the prerequisite for ecological restoration of rivers in the Hai River Basin, northern China.

    PubMed

    Tang, Wenzhong; Mao, Zhanpo; Zhang, Hong; Shan, Baoqing; Zhao, Yu; Ding, Yuekui

    2015-01-01

    The competition for water resources between humans and river ecosystems is becoming ever more intense worldwide, especially in developing countries. In China, with rapid socioeconomic development, water resources to maintain river ecosystems are progressively decreasing, especially in the Hai River Basin (HRB), which has attracted much attention from the Chinese government. In the past 56 years, water resources have continuously decreased in the basin, such that there is 54.2 % less surface water now compared with then. Water shortages, mainly due to local anthropogenic activities, have emerged as the main limiting factor to river ecological restoration in the HRB. However, the South-to-North Water Diversion Project, the largest such project in the world, presents a good opportunity for ecological restoration of rivers in this basin. Water diverted from the Danjiangkou Reservoir will restore surface water resources in the HRB to levels of 30 years ago and will amount to more than 20 billion m(3). Our findings highlight the fact that water resources are crucial for river ecological restoration. PMID:25142344

  3. Floodplain Organic Carbon Storage in the Central Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.

    2014-12-01

    Floodplain storage of organic carbon is an important aspect of the global carbon cycle that is not well understood or quantified. Although it is understood that rivers transport organic carbon to the ocean, little is known about the quantity of stored carbon in boreal floodplains and the influence of fluvial processes on this storage. We present results on total organic carbon (TOC) content within the floodplains of two rivers, the Dall River and Preacher Creek, in the central Yukon River Basin in the Yukon Flats National Wildlife Refuge of Alaska. The results indicate that organic carbon storage is influenced by fluvial disturbance and grain size. The Dall River, which contains a large amount of floodplain carbon, is meandering and incised, with well-developed floodplain soils, a greater percentage of relatively old floodplain surfaces and a slower floodplain turnover time, and finer grain sizes. Preacher Creek stores less TOC, transports coarser grain sizes, and has higher rates of avulsion and floodplain turnover time. Within the floodplain of a particular river, large spatial heterogeneity in TOC content also exists as a function of depositional environment and age and vegetation community of the site. In addition, saturated regions of the floodplains, such as abandoned channels and oxbow lakes, contain more TOC compared to drier floodplain environments. Frozen alluvial soils likely contain carbon that could be released into the environment with melting permafrost, and thus quantifying the organic carbon content in the active layer of floodplain soils could provide insight into the characteristics of the permafrost beneath. The hydrology in these regions is changing due to permafrost melt, and floodplain areas usually saturated could be dried out, causing breakdown and outgassing of carbon stored in previously saturated soils. Ongoing work will result in a first-order estimate of active-layer floodplain carbon storage for the central Yukon River Basin.

  4. Can the Gila River reduce risk in the Colorado River Basin?

    NASA Astrophysics Data System (ADS)

    Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.

    2012-12-01

    The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation

  5. Detecting runoff variation in Weihe River basin, China

    NASA Astrophysics Data System (ADS)

    Jingjing, F.; Qiang, H.; Shen, C.; Aijun, G.

    2015-05-01

    Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  6. Integrated Regional Assessment of Climate Change for Korean River Basins

    NASA Astrophysics Data System (ADS)

    Chang, H.; Franczyk, J.; Bae, D.; Jung, I.; Kwon, W.; Im, E.

    2006-12-01

    As the first national assessment, we investigated the potential impacts of climate change on water resources in the Korean peninsula that has varying climates and complex topography. Together with the precipitation runoff modeling system model, we used high resolution climate change scenarios and population and industrial growth scenarios for 2030. Climate change alone is projected to decrease mean annual runoff by 10% in four major river basins located in southern Korea. Summer floods and spring droughts are likely to occur more frequently at the sub-basin scale, suggesting the increasing vulnerability of regional water resources to climate change. When climate change scenarios are combined with population and industrial growth scenarios, the geographical variations of water stress increased. This necessitates the need for water allocation among different water users under the changing environment. A tool is being developed to address optimizing water allocation under changes in water availability for a selected basin of Korea.

  7. Flood tracking chart for the Illinois River basin

    USGS Publications Warehouse

    Avery, Charles F.; Holmes, Jr., Robert R.; Sharpe, Jennifer B.

    1998-01-01

    This Flood Tracking Chart for the Illinois River Basin in Illinois can be used to record and compare the predicted or current flood-crest stage to past flood-crest information. This information can then be used by residents and emergency-response personnel to make informed decisions concerning the threat of flooding to life and property. The chart shows a map of the Illinois River Basin (see below), the location of real-time streamflow-gaging stations in the basin, graphs of selected historical recorded flood-crest stages at each of the stations, and sea-level conversion (SLC) factors that allow conversion of the current or predicted flood-crest stage to elevation above sea level. Each graph represents a streamflow-gaging station and has a space to record the most current river stage reported for that station by the U.S. Geological Survey (USGS). The National Weather Service (NWS) predicts flood crests for many of the stations shown on this chart.

  8. Suspended sediment dynamics in the Mississippi River basin

    NASA Astrophysics Data System (ADS)

    Ali, K.; Cullis, J. D.; Xu, X.; More, M.; Hassan, M. A.; Simon, A.; Donner, S. D.; Sivapalan, M.

    2010-12-01

    This study investigated sediment trends in a heavily managed basin influenced by substantial human impacts. Spatial and temporal patterns of suspended sediment dynamics were examined in the Mississippi River basin by utilizing all available USGS suspended-sediment data with a minimum of 30 matching samples of suspended-sediment concentration and water discharge. These spatial trends were related to the land use change which has occurred over the last century and this includes dams, soil conservation measures and channelization. Sediment sources and sinks along the main stem of the Mississippi River and its main tributaries were identified and mapped. Three main trends were identified. 1) Sediment yields decreasing with increasing drainage area imply systematically increasing sediment storage downstream the landscape. 2) Sediment yields increasing with drainage area indicate net recruitment of sediment along the main valleys from banks and floodplain erosion. 3) Sediment yields showing no relationship with drainage area are attributed to the complexity arising from diverse climate, geology and land use of the basin. Based on the results, regional scale sediment yield maps were prepared and linked to the land use and the history of the basin.

  9. Streamflow Simulations for Major River Basins in China

    NASA Astrophysics Data System (ADS)

    Su, F.; Xie, Z.; Liang, X.

    2002-12-01

    In this study, the land surface scheme (LSS) of VIC (Variable Infiltration Capacity) model is used to simulate streamflows of major river basins in China where the new surface runoff parameterization of VIC that represents both Horton and Dunne runoff generation mechanisms with the framework of considering subgrid spatial scale soil heterogeneity is applied. The entire area of China is represented by 2604 cells with a resolution of 60km­A60km for each cell. The VIC model is applied to each grid cell over each basin. A routing scheme is run offline which takes daily VIC surface and subsurface runoff as input to obtain model simulated streamflows at the outlets of study basins. Preparation of the forcing data, and soil and vegetation parameters needed by the VIC model for the entire area of China will be described, and some of the data issues will be addressed and discussed. The VIC streamflow simulations over a few river basins will be presented and compared with the observations.

  10. Anacostia River Basin: Large, Medium, and Small Lumps

    NASA Astrophysics Data System (ADS)

    Feldman, A. D.; Dufour, A.; Dotson, H. W.

    2001-05-01

    The Hydrologic Engineering Center, HEC, is performing a hydrologic analysis of the Anacostia River Basin in support of flood-damage-reduction studies there by the U.S. Army Corps of Engineers' Baltimore District. The main objective is to determine the best estimate of flow-exceedance-probability functions at several flood-damage-index locations in the basin. Thus, a generalized methodology for determining flow-frequency curves anywhere in the basin was developed. Three methodologies were used to make best estimates of the flow-frequency curves: watershed-runoff computer simulation modeling, statistical analysis of stream-gauge records, and application of USGS regional regression equations. This paper addresses the watershed-modeling portion of the study. The Anacostia River Basin originates in Maryland and consists of two primary tributaries: the Northwest Branch, 128 sq km at the Hyattsville gauge, and the Northeast Branch, 188 sq km at the Riverdale gauge. After the confluence a short distance downstream, it flows south into eastern Washington, D.C., and the Potomac River. The basins were mostly rural until the 1960's when the D.C.-area urbanization spread from west to east. The streamflow gauges have been in operation since 1939 and precipitation gauges since 1948. The hydrologic model is key to several aspects of such an investigation. Calibrating a hydrologic model helps the engineer understand the precipitation-runoff processes in the basin. Simulating frequency-based storm runoff, e.g., NWS TP-40 with commensurate initial moisture conditions, is an estimate of a like-frequency flow. Simulating key historical storms with current land-use conditions can be used to adjust non-stationary (due to urbanization) gauged annual peak flows. Simulating frequency-based storms, with a model calibrated to a best-estimate flow-frequency curve, can be used to estimate flow frequencies anywhere in the basin for existing and future land-use conditions. The watershed model was

  11. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water

  12. Basin-wide architecture of sandstone reservoirs in the Fort Union Formation, Wind River basin, Wyoming

    SciTech Connect

    Flores, R.M.; Keighin, C.W.; Keefer, W.R. )

    1991-06-01

    Architecture of hydrocarbon-bearing sandstone reservoirs of the Paleocene Fort Union Formation in the Wind River basin, Wyoming, was studied using lithofacies, grain size, bounding surfaces, sedimentary structures, internal organization, and geometry. Two principal groups of reservoirs, both erosionally based and fining upward, consist of either conglomeratic sandstone or sandstone lithofacies. Two types of architecture were recognized in conglomeratic sandstone reservoirs: (1) heterogeneous, multistacked, lenticular and (2) homogeneous, multiscoured, wedge-sheet bodies. Three types of architecture were recognized in sandstone reservoirs: (3) heterogeneous, multistacked, elongate; (4) homogeneous, multilateral, lenticular; and (5) homogeneous, ribbon-lensoid bodies. Conglomeratic sandstone reservoirs in the southern and southwestern parts of the basin suggest deposition in gravel-bedload fluvial systems influenced by provenance uplift of the Granite and southern Wind River mountains. Type 2 reservoirs represent deposits of eastward-flowing braided streams aggrading an alluvial valley in response to base level rise. Thus, to determine basin-wide architecture of reservoirs requires understanding the interplay between base level conditions, basin subsidence, and provenance uplift. These interrelated factors, in turn, control differences in hierarchies of fluvial systems throughout the basin.

  13. Integrated Basin Scale Hydropower and Environmental Opportunity Assessment in the Deschutes River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Geerlofs, S. H.; Vail, L. W.; Ham, K. D.; Tagestad, J. D.; Hanrahan, T. P.; Seiple, T. E.; Coleman, A. M.; Stewart, K.

    2012-04-01

    The Deschutes River Basin in Oregon, USA, is home to a number of diverse groups of stakeholders that rely upon the complex snowmelt and groundwater-dominated river system to support their needs, livelihoods, and interests. Basin system operations that vary across various temporal and spatial scales often must balance an array of competing demands including maintaining adequate municipal water supply, recreation, hydropower generation, regulations related to environmental flows, mitigation programs for salmon returns, and in-stream and storage rights for irrigation water supplied by surface water diversions and groundwater pumping. The U.S. Department of Energy's Integrated Basin-scale Opportunity Assessment initiative is taking a system-wide approach to identifying opportunities and actions to increase hydropower and enhance environmental conditions while sustaining reliable supply for other uses. Opportunity scenarios are analyzed in collaboration with stakeholders, through nested integrated modeling and visualization software to assess tradeoffs and system-scale effects. Opportunity assessments are not intended to produce decisional documents or substitute for basin planning processes; assessments are instead intended to provide tools, information, and a forum for catalyzing conversation about scenarios where both environmental and hydropower gains can be realized within a given basin. We present the results of the nested integrated modeling approach and the modeling scenarios in order to identify and explore opportunities for the system.

  14. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Piechota, T. C.; Gangopadhyay, S.; Pruitt, T.

    2011-07-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting System (RFS) hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6 % to 13 % average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10 % to 15 % average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5 % to 8 % increase in basin

  15. Rivers at Risk: An Activity Based Study Guide for the Colorado River Basin.

    ERIC Educational Resources Information Center

    Samples, Bob, Ed.

    This activity guide is intended to increase student awareness and understanding about the Colorado River Basin. Each activity includes objectives, procedures, materials list, related activities, questions for students, and related information. The activities are varied to appeal to a wide range of learning styles and modalities and are…

  16. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  17. Sediment budget in the Ucayali River basin, an Andean tributary of the Amazon River

    NASA Astrophysics Data System (ADS)

    Santini, W.; Martinez, J.-M.; Espinoza-Villar, R.; Cochonneau, G.; Vauchel, P.; Moquet, J.-S.; Baby, P.; Espinoza, J.-C.; Lavado, W.; Carranza, J.; Guyot, J.-L.

    2015-03-01

    Formation of mountain ranges results from complex coupling between lithospheric deformation, mechanisms linked to subduction and surface processes: weathering, erosion, and climate. Today, erosion of the eastern Andean cordillera and sub-Andean foothills supplies over 99% of the sediment load passing through the Amazon Basin. Denudation rates in the upper Ucayali basin are rapid, favoured by a marked seasonality in this region and extreme precipitation cells above sedimentary strata, uplifted during Neogene times by a still active sub-Andean tectonic thrust. Around 40% of those sediments are trapped in the Ucayali retro-foreland basin system. Recent advances in remote sensing for Amazonian large rivers now allow us to complete the ground hydrological data. In this work, we propose a first estimation of the erosion and sedimentation budget of the Ucayali River catchment, based on spatial and conventional HYBAM Observatory network.

  18. Sources of nitrate yields in the Mississippi River Basin.

    PubMed

    David, Mark B; Drinkwater, Laurie E; McIsaac, Gregory F

    2010-01-01

    Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by rivers. The average fraction of annual riverine nitrate N export/NNI ranged from 0.05 for the lower Mississippi subbasin to 0.3 for the upper Mississippi River basin and as high as 1.4 (4.2 in a wet year) for the Embarras River watershed, a mostly tile-drained basin. Intensive corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] watersheds on Mollisols had low NNI values and when combined with riverine N losses suggest a net depletion of soil organic N. We used county-level data to develop a nonlinear model ofN inputs and landscape factors that were related to winter-spring riverine nitrate yields for 153 watersheds within the basin. We found that river runoff times fertilizer N input was the major predictive term, explaining 76% of the variation in the model. Fertilizer inputs were highly correlated with fraction of land area in row crops. Tile drainage explained 17% of the spatial variation in winter-spring nitrate yield, whereas human consumption of N (i.e., sewage effluent) accounted for 7%. Net N inputs were not a good predictor of riverine nitrate N yields, nor were other N balances. We used this model to predict the expected nitrate N yield from each county in the Mississippi River basin; the greatest nitrate N yields corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This analysis can be used to guide decisions about where efforts to reduce nitrate N losses can be most effectively targeted to improve local water quality and reduce export to the Gulf of Mexico. PMID:21043271

  19. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  20. Soil erosion in river basins of Georgia

    NASA Astrophysics Data System (ADS)

    Gogichaishvili, G. P.

    2016-06-01

    The area of cultivated lands in western and eastern Georgia comprises 28-40 and 29-33% of the total catchment areas, respectively. Eroded arable soils in Georgia occupy 205700 ha, i.e. 30.5% of the total plowland area, including 110500 ha (16.4%) of slightly eroded soils, 74400 ha (11%) of moderately eroded soils, and 20800 ha (3.1%) of strongly eroded soils. The maximum denudation rate in catchments of western Georgia reaches 1.0 mm/yr. The minimum denudation (0.01 mm/yr.) is typical of river catchments in southern Georgia. The mean annual soil loss from plowed fields in western Georgia reaches 17.4 t/ha and exceeds the soil loss tolerance by nearly four times. In eastern Georgia, it is equal to 10.46 t/ha and exceeds the soil loss tolerance by 2.5 times. In southern Georgia, the mean annual soil loss from plowed fields is as low as 3.08 t per ha, i.e., much lower than the soil loss tolerance.

  1. Episodic Emplacement of Sediment + Carbon within Large Tropical River Basins

    NASA Astrophysics Data System (ADS)

    Aalto, R.; Aufdenkampe, A.

    2012-04-01

    Application of advanced methods for imaging (sub-bottom sonar and ERGI), dating (high resolution 210-Pb and 14-C from deep cores), and biogeochemical analysis have facilitated the characterization and inter-comparison of floodplain sedimentation rates, styles, and carbon loading across disparate large river basins. Two examples explored here are the near-pristine 72,000 km2 Beni River basin in northern Bolivia and the similarly natural 36,000 km2 Strickland River basin in Papua New Guinea - that are located on either side of the Equatorial Pacific warm pool that drives the ENSO phenomenon. Our published research suggests that large, rapid-rise, cold-phase ENSO floods account for the preponderance of sediment accumulation within these two tropical systems. New results to be presented at EGU further clarify the extent of modern deposits (~100 yrs) within both systems and add a deeper perspective into how these extensive floodplains developed over the Holocene, both in response to external forcing (climate and base level) and internal system morphodynamics. The vast scale of these temporally discrete deposits (typically 100s of millions of tonnes over relatively short time periods) involved equate to high burial rates, which in turn support the high carbon loadings sequestered within the resulting sedimentary deposits. We have identified the principal source of this carbon and sedimentary material to be extensive landslides throughout the high-relief headwaters - failures that deliver huge charges of pulverized rock and soil directly into canyons (in both the Bolivian Andes and the PNG Highlands), where raging floodwaters provide efficient transport to lowland depocentres. We present recent results from our research in these basins, providing insight into the details of such enormous mass budgets that result in a signicant carbon sink within the floodplains. Processes, timing, and rates are compared between the two systems, providing insight into the nature of

  2. Energy development and water options in the Yellowstone River Basin

    SciTech Connect

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  3. Long Term Discharge Estimation for Ogoué River Basin

    NASA Astrophysics Data System (ADS)

    Seyler, F.; Linguet, L.; Calmant, S.

    2014-12-01

    Ogoué river basin is one the last preserved tropical rain forest basin in the world. The river basin covers about 75% of Gabon. Results of a study conducted on wall-to wall forest cover map using Landsat images (Fichet et al., 2014) gave a net forest loss of 0,38% from 1990 and 2000 and sensibly the same loss rate between 2000 and 2010. However, the country launched recently an ambitious development plan, with communication infrastructure, agriculture and forestry as well as mining projects. Hydrological cycle response to changes may be expected, in both quantitative and qualitative aspects. Unfortunately monitoring gauging stations have stopped functioning in the seventies, and Gabon will then be unable to evaluate, mitigate and adapt adequately to these environmental challenges. Historical data were registered during 42 years at Lambaréné (from 1929 to 1974) and during 10 to 20 years at 17 other ground stations. The quantile function approach (Tourian et al., 2013) has been tested to estimate discharge from J2 and ERS/Envisat/AltiKa virtual stations. This is an opportunity to assess long term discharge patterns in order to monitor land use change effects and eventual disturbance in runoff. Figure 1: Ogoué River basin: J2 (red) and ERS/ENVISAT/ALTIKa (purple) virtual stations Fichet, L. V., Sannier, C., Massard Makaga, E. K., Seyler, F. (2013) Assessing the accuracy of forest cover map for 1990, 2000 and 2010 at national scale in Gabon. In press IEEE Journal of Selected Topics in Applied Earth Observations and Remote SensingTourian, M. J., Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resources Research, 49(7), 4174-4186. doi:10.1002/wrcr.20348

  4. Occurrence and distribution of hexabromocyclododecane in sediments from seven major river drainage basins in China.

    PubMed

    Li, Honghua; Shang, Hongtao; Wang, Pu; Wang, Yawei; Zhang, Haidong; Zhang, Qinghua; Jiang, Guibin

    2013-01-01

    The concentrations and geographical distribution of hexabromocyclododecane (HBCD) were investigated in 37 composite surface sediments from seven major river drainage basins in China, including Yangtze River, Yellow River, Pearl River, Liaohe River, Haihe River, Tarim River and Ertix River. The detection frequency of HBCD was 54%, with the concentrations ranged from below limit of detection (LOD) to 206 ng/g dry weight. In general, the geographical distribution showed increasing trends from the upper reaches to the lower reaches of the rivers and from North China to Southeast China. Compared to other regions in the world, the average concentration of HBCD in sediments from Yangtze River drainage basin was at relatively high level, whereas those from other six river drainage basins were at lower or similar level. The highest HBCD concentration in sediment from Yangtze River Delta and the highest detection frequency of HBCD in Pearl River drainage basins suggested that the industrial and urban activities could evidently affect the HBCD distribution. HBCD diastereoisomer profiles showed that gamma-HBCD dominated in most of the sediment samples, followed by alpha- and beta-HBCD, which was consistent with those in the commercial HBCD mixtures. Further risk assessment reflected that the average inventories of HBCD were 18.3, 5.87, 3.92, 2.50, 1.77 ng/cm2 in sediments from Pearl River, Haihe River, Tarim River, Yellow River and Yangtze River, respectively. PMID:23586301

  5. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    USGS Publications Warehouse

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-01-01

    The Lower Hudson River Basin study area covers 5,607 square miles and encompasses the part of the Lower Hudson River Basin that lies within New York plus the parts of the Housatonic, Hackensack, Bronx, and Saugatuck River Basins that are in New York. Twelve of the wells sampled in the Lower Hudson River Basin are completed in sand-and-gravel deposits, and 13 are completed in bedrock. Groundwater in the Lower Hudson River Basin was generally of good quality, although properties and concentrations of some constituents—pH, sodium, chloride, dissolved solids, arsenic, aluminum, iron, manganese, radon-222, total coliform bacteria, fecal coliform bacteria, Escherichia coli bacteria, and heterotrophic plate count—equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (20 of 25 samples) was radon-222.

  6. Perfluoroalkyl substances in the Ebro and Guadalquivir river basins (Spain).

    PubMed

    Lorenzo, María; Campo, Julián; Farré, Marinella; Pérez, Francisca; Picó, Yolanda; Barceló, Damià

    2016-01-01

    Mediterranean rivers are characteristically irregular with changes in flow and located in high population density areas. This affects the concentration of pollutants in the aquatic environments. In this study, the occurrence and sources of 21 perfluoroalkyl substances (PFASs) were determined in water, sediment and biota of the Ebro and Guadalquivir river basins (Spain). In water samples, of 21 analytes screened, 11 were found in Ebro and 9 in Guadalquivir. In both basins, the most frequents were PFBA, PFPeA and PFOA. Maximum concentration was detected for PFBA, up to 251.3 ng L(-1) in Ebro and 742.9 ng L(-1) in Guadalquivir. Regarding the sediments, 8 PFASs were detected in the samples from Ebro and 9 in those from Guadalquivir. The PFASs most frequently detected were PFBA, PFPeA, PFOA and PFOS. Maximum concentration in Ebro samples was, in dry weight, for PFOA (32.3 ng g(-1)) and in Guadalquivir samples for PFBA (63.8 ng g(-1)). For biota, 12 PFASs were detected in fish from the Ebro River and only one (PFOS) in that from Guadalquivir. In the Ebro basin, the most frequents were PFBA, PFHxA, PFOA, PFBS, PFOS and PFOSA. Maximum concentration in Ebro samples was, in wet weight, for PFHxA with 1280.2 ng g(-1), and in Guadalquivir samples for PFOS with 79.8 ng g(-1). These compounds were detected in the whole course of the rivers including the upper parts. In some points contamination was due to point sources mostly related to human activities (e.g. ski resorts, military camps, urban areas.). However, there are also some areas clearly affected by diffuse sources as atmospheric deposition. PMID:26250865

  7. Estimating flows in ungauged river basins in northern Mozambique

    NASA Astrophysics Data System (ADS)

    Minihane, M.

    2011-12-01

    In many regions across the globe, there are limited streamflow observations and therefore limited knowledge of availability of surface water resources. In many cases, these rivers lie in countries that would benefit from economic development and improved access to water and sanitation services, both of which are linked to water resources. Additional information about streamflow in these watersheds is critical to water resources planning and economic development strategies. In southeastern Africa, the remote Rovuma River lies on the border between Mozambique and Tanzania. There are limited historic measurements in the main tributary and no recent observations. Improved knowledge of the water resource availability and inter-annual variability of the Rovuma River will enhance transboundary river basin management discussions for this river basin. While major rivers farther south in the country are more closely monitored, those in the north have gauging stations with only scattered observations and have not been active since the early 1980's. Reliable estimates of historic conditions are fundamental to water resources planning. This work aims to provide estimates in these rivers and to quantify uncertainty and bounds on those estimates. A combination of methods is used to estimate historic flows: simple index gauge methods such as the drainage area ratio method and mean flow ratio method, a statistical regression method, a combination of an index gauge method and global gridded runoff data, and a hydrological model. These results are compared to in-situ streamflow estimates based on stage measurements and rating curves for the basins and time frames for which data is available. The evaluation of the methods is based on an efficiency ratio, bias, and representation of seasonality and inter-annual variability. Use of gridded global datasets, either with the mean flow ratio method or a hydrological model, appears to provide improved estimates over use of local observations

  8. Summary of the river-quality assessment of the upper Chattahoochee River basin, Georgia

    USGS Publications Warehouse

    Cherry, R.N.; Faye, R.E.; Stamer, J.K.; Kleckner, R.L.

    1980-01-01

    The river-quality assessment of the Upper Chattahoochee River Basin included studies of (1) the impact of heat loads on river quality, (2) sediment transport and deposition, (3) magnitude and nature of point and nonpoint discharges, and (4) phytoplankton growth in the river and reservoirs. The combined thermal effects of flow regulation and powerplants effluents resulted in mean daily river temperature downstream of the powerplants about equal to or less than computed natural temperatures. The average annual river temperature in 1976 was 14.0 ? Celsius just upstream of the Atkinson-McDonough thermoelectric powerplants and 16.0 ? Celsius just downstream from the powerplants. During a low-flow period in June 1977 the heat load from the two powerplants caused an increase in river temperatures of about 7 ? Celsius and a subsequent decrease in the dissolved-oxygen concentration of about 0.2 milligrams per liter. During the June low-flow period, point sources contributed 63 percent of the ultimate biochemical oxygen demand and 97 percent of ammonium as nitrogen at the Franklin station. Oxidation of ultimate biochemical demand and ammonium caused dissolved-oxygen concentrations to decrease from about 8.0 milligrams per liter at river mile 299 to about 4.5 milligrams per liter at river mile 271. Dissolved orthophosphate is the nutrient presently limiting phytoplankton growth in the West Point Lake when water temperatures are greater than about 26 ? Celsius.

  9. Development of streamflow projections under changing climate conditions over Colorado River Basin headwaters

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Piechota, T. C.; Gangopadhyay, S.; Pruitt, T.

    2010-08-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by forecasts determined by the Colorado Basin River Forecast Center (CBRFC). While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force a hydrologic model utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the CBRFC hydrologic model is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands over the Gunnison resulted in a 6% to 13% average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the CBRFC's hydrologic model resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10% to 15% average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5% to 8% increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins.

  10. Water resources of the Big Black River basin, Mississippi

    USGS Publications Warehouse

    Wasson, B.E.

    1971-01-01

    Abundant supplies of water of good quality are available in the Big Black River basin from either ground-water or surface-water sources. For 90 percent of the time flow in the lower part of the Big Black River below Pickens is not less than 85 cfs (cubic feet per second), and low flows of more than 5 cfs are available in five of the eastern tributary streams in the upper half of the basin. Chemical quality of water in the streams is excellent, except for impairment caused by pollution at several places. The Big Black River basin is underlain by several thousand feet of clay, silt, sand, gravel, and limestone. This sedimentary material is mostly loose to semiconsolidated and is stratified. The beds dip to the southwest at the rate of 20 to 50 feet per mile. The Big Black River flows southwestward but at a lower gradient; therefore, any specific formation is at a greater depth below the river the farther one goes down stream. The formations crop out in northwest-southeast trending belts. Most of the available ground water is contained in six geologic units; thickness of these individual units ranges from 100 to 1,000 feet. The aquifers overlap to the extent that a well drilled to the base of fresh water will, in most places, penetrate two or more aquifers. Well depths range from less than 10 to 2,400 feet. Water suitable for most needs can be obtained from the aquifers available at most localities. Dissolved-solids content of water within an aquifer increases down the dip. Also, generally the deeper a well is the higher will be the dissolved-solids content of the water. Shallow ground water (less than 200 ft deep) in the basin usually contains about 100 mg/l (milligrams per liter) of dissolved solids. Most water in the basin from more than 2,500 feet below land surface contains m ore than 1,000 mg/l of dissolved solids. In several areas fresh water is deeper than 2,500 feet, but near the mouth of the Big Black River brackish water is only about 300 feet below land

  11. Human impacts on river ice regime in the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    examples from the Carpathian Basin represent some of the most common human impacts (engineering regulation, hydropower usage, water pollution), disturbing natural river ice regimes of mid-latitude rivers with densely populated or dynamically growing urban areas along their courses. In addition simple tests are also introduced to detect not only the climatic, but also the effect of anthropogenic impacts on river ice regime. As a result of river regulation on River Danube at Budapest a vanishing trend in river ice phenomena could be detected in the Danube records. The average ice-affected season shortened from 40 to 27 days, the average ice-covered season reduced greatly, from 27 to 7 days. In historical times the ice jams on the River Danube caused many times ice floods. The relative frequency of the break-up jam also decreased; moreover no ice flood occurred over the past 50 years. The changes due to hydropower usage are different upstream and downstream to the damming along the river. On Raba River upstream of the Nick dam at Ragyogóhíd, the ice-affected and ice-covered seasons were lengthened by 4 and 9 days, in contrast, downstream of the dam, the length of the ice-covered season was shortened by 7 days, and the number of ice-affected days decreased by 8 days at Árpás. During the observation period at Budapest on Danube River, the temperature requirements for river ice phenomena occurrence changed. Nowadays, much lower temperatures are needed to create the same ice phenomena compared to the start of the observations. For ice appearance, the mean winter air temperature requirements decreased from +2.39 °C to +1.71 °C. This investigation focused on anthropogenic effects on river ice regime, eliminating the impact of climatic conditions. Different forms of anthropogenic effects cause in most cases, a shorter length of ice-affected seasons and decreasing frequency of ice phenomena occurrence. Rising winter temperatures result the same changes in river ice regime

  12. Assessing water deprivation at the sub-river basin scale in LCA integrating downstream cascade effects.

    PubMed

    Loubet, Philippe; Roux, Philippe; Núñez, Montserrat; Belaud, Gilles; Bellon-Maurel, Véronique

    2013-12-17

    Physical water deprivation at the midpoint level is assessed in water-related LCIA methods using water scarcity indicators (e.g., withdrawal-to-availability and consumption-to-availability) at the river basin scale. Although these indicators represent a great step forward in the assessment of water-use-related impacts in LCA, significant challenges still remain in improving their accuracy and relevance. This paper presents a methodology that can be used to derive midpoint characterization factors for water deprivation taking into account downstream cascade effects within a single river basin. This effect is considered at a finer scale because a river basin must be split into different subunits. The proposed framework is based on a two-step approach. First, water scarcity is defined at the sub-river basin scale with the consumption-to-availability (CTA) ratio, and second, characterization factors for water deprivation (CFWD) are calculated, integrating the effects on downstream sub-river basins. The sub-river basin CTA and CFWD were computed based on runoff data, water consumption data and a water balance for two different river basins. The results show significant differences between the CFWD in a given river basin, depending on the upstream or downstream position. Finally, an illustrative example is presented, in which different land planning scenarios, taking into account additional water consumption in a city, are assessed. Our work demonstrates how crucial it is to localize the withdrawal and release positions within a river basin. PMID:24256030

  13. The hydrochemistry of groundwater in the Densu River Basin, Ghana.

    PubMed

    Fianko, Joseph Richmond; Adomako, Dickson; Osae, Shiloh; Ganyaglo, Samuel; Kortatsi, Benony K; Tay, Collins K; Glover, Eric T

    2010-08-01

    Hydrochemical analyses of groundwater samples were used to establish the hydrochemistry of groundwater in the Densu River Basin. The groundwater was weakly acidic, moderately mineralized, fresh to brackish with conductivity ranging from of 96.6 microS cm(-1) in the North to 10,070 microS cm( - 1) in the South. Densu River basin have special economic significance, representing the countries greatest hydrostructure with freshwater. Chemical constituents are generally low in the North and high in the South. The order of relative abundance of major cations in the groundwater is Na+>Ca2+>Mg2+>K+ while that of anions is Cl->HCO3->SO4(2-)>NO3-. Four main chemical water types were delineated in the Basin. These include Ca-Mg-HCO3, Mg-Ca-Cl, Na-Cl, and mixed waters in which neither a particular cation nor anion dominates. Silicate weathering and ion exchange are probably the main processes through which major ions enter the groundwater system. Anthropogenic activities were found to have greatly impacted negatively on the quality of the groundwater. PMID:19629737

  14. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  15. Greater Green River basin well-site selection

    SciTech Connect

    Frohne, K.H.; Boswell, R.

    1993-12-31

    Recent estimates of the natural gas resources of Cretaceous low-permeability reservoirs of the Greater Green River basin indicate that as much as 5000 trillion cubic feet (Tcf) of gas may be in place (Law and others 1989). Of this total, Law and others (1989) attributed approximately 80 percent to the Upper Cretaceous Mesaverde Group and Lewis Shale. Unfortunately, present economic conditions render the drilling of many vertical wells unprofitable. Consequently, a three-well demonstration program, jointly sponsored by the US DOE/METC and the Gas Research Institute, was designed to test the profitability of this resource using state-of-the-art directional drilling and completion techniques. DOE/METC studied the geologic and engineering characteristics of ``tight`` gas reservoirs in the eastern portion of the Greater Green River basin in order to identify specific locations that displayed the greatest potential for a successful field demonstration. This area encompasses the Rocks Springs Uplift, Wamsutter Arch, and the Washakie and Red Desert (or Great Divide) basins of southwestern Wyoming. The work was divided into three phases. Phase 1 consisted of a regional geologic reconnaissance of 14 gas-producing areas encompassing 98 separate gas fields. In Phase 2, the top four areas were analyzed in greater detail, and the area containing the most favorable conditions was selected for the identification of specific test sites. In Phase 3, target horizons were selected for each project area, and specific placement locations were selected and prioritized.

  16. Nutrient mobility within river basins: a European perspective

    NASA Astrophysics Data System (ADS)

    Neal, Colin; Heathwaite, A. L.

    2005-03-01

    The research presented in this special issue of the Journal of Hydrology is brought together with associated information of relevance to the thematic area in this concluding paper. Some of the important gaps in our current knowledge are outlined with a view to identifying future research needs for the development of an integrated analysis of nutrients in river basins and their management. Identification of these needs is important if we are to meet the defined set of catchment management objectives specified under the EU Water Framework Directive that must be delivered against a specified timetable. The Directive raises wider concerns such as how to define 'good ecological status' and pertinent to this special issue: what role nutrients have in framing this definition. In this paper, the importance of nutrient pressures on receiving waters is evaluated in the context of the key scientific uncertainties and options for characterising the biological, physico-chemical and hydro-morphological parameters necessary to meet the science needs of the Directive. An assessment of the significance of nutrient mobility within river basins for current understanding of freshwater systems functioning on a catchment and basin scale is made together with an evaluation of where research on nutrient pressures should be focussed in order underpin effective management.

  17. Pesticide transport in the San Joaquin River Basin

    USGS Publications Warehouse

    Dubrovsky, N.M.; Kratzer, C.R.; Panshin, S.Y.; Gronberg, J.A.M.; Kuivila, K.M.

    2000-01-01

    Pesticide occurrence and concentrations were evaluated in the San Joaquin River Basin to determine potential sources and mode of transport. Land use in the basin is mainly agricultural. Spatial variations in pesticide occurrence were evaluated in relation to pesticide application and cropping patterns in three contrasting subbasins and at the mouth of the basin. Temporal variability in pesticide occurrence was evaluated by fixed interval sampling and by sampling across the Hydrograph during winter storms. Four herbicides (simazine, metolachlor, dacthal, and EPTC) and two insecticides (diazinon and chlorpyrifos) were detected in more than 50 percent of the samples. Temporal, and to a lesser extent spatial, variation in pesticide occurrence is usually consistent with pesticide application and cropping patterns. Diazinon concentrations changed rapidly during winter storms, and both eastern and western tributaries contributed diazinon to the San Joaquin River at concentrations toxic to the water flea Ceriodaphnia dubia at different times during the hydrograph. During these storms, toxic concentrations resulted from the transport of only a very small portion of the applied diazinon.

  18. Detecting Recent Atmospheric River Induced Flood Events over the Russian River Basin

    NASA Astrophysics Data System (ADS)

    Mehran, A.; Lettenmaier, D. P.; Ralph, F. M.; Lavers, D. A.

    2015-12-01

    Almost all major flood events in the coastal Western U.S. occur as a result of multi-day extreme precipitation during the winter and late fall, and most such events are now known to be Atmospheric Rivers (ARs). AR events are defined as having integrated water vapor (IWV) exceeding 2 cm in an area at least 2000 km long and no more than 1000 km wide. The dominant moisture source in many AR events, including those associated with most floods in the Russian River basin in Northern California, is the tropics. We report on a hydrological analysis of selected floods in the Russian River basin using the Distributed Hydrology Soil Vegetation Model (DHSVM), forced alternately by gridded station data, NWS WSR-88D radar data, and output from a regional atmospheric model. We also report results of river state forecasts using a river hydrodynamics model to reconstruct flood inundation from selected AR events. We diagnose errors in both the hydrological and river stage predictions, and discuss alternatives for future error reduction.

  19. Collaboration in River Basin Management: The Great Rivers Project

    NASA Astrophysics Data System (ADS)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or

  20. Scenarios of long-term river runoff changes within Russian large river basins

    NASA Astrophysics Data System (ADS)

    Georgiadi, A. G.; Koronkevich, N. I.; Milyukova, I. P.; Kislov, A. V.; Barabanova, E. A.

    2010-12-01

    The approach for long-term scenario projection of river runoff changes for Russian large river basins in XXI century includes method for scenario estimations for range of probable climatic changes, based on generalization of results of the calculations executed on ensemble of global climatic models and physical-statistical downscaling of their results are developed for mountain regions; hydrological model; method of alternative scenario estimations for water management complex transformation and GIS technologies. The suggested methodology allows to develop long-term scenario projection for: (1) changes of river runoff in large river basins as a result of climate changes and (2) transformations of the water management complex caused by social-economic changes, occurring in the country and their influence on river runoff. As one of the bases of methodology is used model of monthly water balance of RAS Institute of Geography (Georgiadi, Milyukova, 2000, 2002, 2006, 2009). As the climatic scenario the range of probable climatic changes which is estimated by results of calculations for deviations of climatic elements from their recent values which have been carried out on ensemble of global climatic models based on the two most contrasting scenario globally averaged air temperature changes is used. As ensemble of climatic scenarios results of the calculations executed on 10 global climatic models, included in the program of last experiment 20C3M-20th Century Climate in Coupled Models (Meehl et al., 2007), is used. The method for long-term scenario projection for transformation of water management complex characteristics and water consumption was developed. The method includes several blocks (Koronkevich, 1990, Koronkevich et al., 2009): growth of the population and development of an economy; different ways of use and protection of waters, in view of different technologies of prevention and decreasing of pollution of water resources. Development of scenarios assumes pre

  1. Dissolved Organic Carbon in the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Striegl, R.; Schuster, P.

    2003-12-01

    A critical question in carbon cycling is how climate change could alter the fate and chemical nature of dissolved organic carbon (DOC) released from watersheds and transported to rivers, lakes, estuaries and coastal waters. The spatial and temporal variability of DOC in surface waters associated with the Yukon River Basin is being studied to better define the processes controlling DOC in this system. The Yukon River Basin, a large and diverse ecosystem in northwestern Canada and central Alaska, is experiencing increasing temperatures, partial melting of permafrost, drying of upland soils and changing wetland environments. However, little is known about DOC transported in the system. Specific ultraviolet absorbance (SUVA) measurements, in combination with DOC and DOC fractionation analyses, were used to determine both the amount and nature of DOC in the Yukon River and major tributaries. DOC transported in the Yukon River and its tributaries was seasonally dependent. For example, DOC concentrations in the Yukon River at Steven's Village ranged from 2 to 17 mg C/L during 2003, and SUVA ranged from 2.0 to 3.5 L/mg C m, indicating a large variation in amount and nature of organic matter in the river. Lowest DOC concentrations and SUVA values were observed in winter under low flow conditions. Greatest DOC concentrations were measured on samples collected during the spring on the leading part of the hydrograph. These samples were also found to have the greatest SUVA values indicating that the organic matter transported during this period was more aromatic than DOC transported under low flow conditions. High SUVA values are indicative of greater amounts of organic material originating in soils and wetlands of the watershed. The amount and nature of organic matter transported by the tributaries appeared to be related to relief and wetland contribution to the watershed of the tributary. Based on DOC and SUVA data, the Yukon River tributaries can be classified as dark water

  2. A regional study of landslide hazards and related features in the upper indus river basin, northern Pakistan

    NASA Astrophysics Data System (ADS)

    Ahmed, Muhammad Farooq

    Maximum entropy models are increasingly being used to describe the collective activity of neural populations with measured mean neural activities and pairwise correlations, but the full space of probability distributions consistent with these constraints has not been explored. In this dissertation, I provide lower and upper bounds on the entropy for both the minimum and maximum entropy distributions over binary units with any fixed set of mean values and pairwise correlations, and we construct distributions for several relevant cases. Surprisingly, the minimum entropy solution has entropy scaling logarithmically with system size, unlike the possible linear behavior of the maximum entropy solution, for any set of first- and second-order statistics consistent with arbitrarily large systems. I find the following bounds on the maximum and minimum entropies for fixed values of {mui} and {nu ij}. For the maximum entropy: xN-Olog 2N≤S 2≤N. In the case of uniform constraints, x = 4(mu - nu) if nu ≥ ½ mu and nu ≥ 32 mu - ½; otherwise x=n-m21 4-m-n . For the minimum entropy: log2 N1+N-1 ā ≤S2˜≤N. where ā is the average of alphaij = (4nu ij - 2mui - 2mu j + 1)2 over all i, j ∈ {1,..., N}, i ≠ j. Perhaps surprisingly, the scaling behavior of the minimum entropy does not depend on the details of the sets of constraint values--for large systems the entropy floor does not contain tall peaks or deep valleys comparable to the scale of the maximum entropy. I also demonstrate that some sets of low-order statistics can only be realized by small systems. My results show how only small amounts of randomness are needed to mimic low-order statistical properties of highly entropic distributions, and I discuss some applications for engineered and biological information transmission systems.

  3. Medieval drought in the upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Meko, David M.; Woodhouse, Connie A.; Baisan, Christopher A.; Knight, Troy; Lukas, Jeffrey J.; Hughes, Malcolm K.; Salzer, Matthew W.

    2007-05-01

    New tree-ring records of ring-width from remnant preserved wood are analyzed to extend the record of reconstructed annual flows of the Colorado River at Lee Ferry into the Medieval Climate Anomaly, when epic droughts are hypothesized from other paleoclimatic evidence to have affected various parts of western North America. The most extreme low-frequency feature of the new reconstruction, covering A.D. 762-2005, is a hydrologic drought in the mid-1100s. The drought is characterized by a decrease of more than 15% in mean annual flow averaged over 25 years, and by the absence of high annual flows over a longer period of about six decades. The drought is consistent in timing with dry conditions inferred from tree-ring data in the Great Basin and Colorado Plateau, but regional differences in intensity emphasize the importance of basin-specific paleoclimatic data in quantifying likely effects of drought on water supply.

  4. Hydrologic effects of climate change in the Delaware River basin

    USGS Publications Warehouse

    McCabe, Gregory J.; Ayers, Mark A.

    1989-01-01

    The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2??C; a 15 percent increase for a warming of 4??C. A warming of 2?? to 4??C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from -39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. Additional aspects of the subject are discussed.

  5. Analysis of the Tanana River Basin using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.; Carson-Henry, C.

    1981-01-01

    Digital image classification techniques were used to classify land cover/resource information in the Tanana River Basin of Alaska. Portions of four scenes of LANDSAT digital data were analyzed using computer systems at Ames Research Center in an unsupervised approach to derive cluster statistics. The spectral classes were identified using the IDIMS display and color infrared photography. Classification errors were corrected using stratification procedures. The classification scheme resulted in the following eleven categories; sedimented/shallow water, clear/deep water, coniferous forest, mixed forest, deciduous forest, shrub and grass, bog, alpine tundra, barrens, snow and ice, and cultural features. Color coded maps and acreage summaries of the major land cover categories were generated for selected USGS quadrangles (1:250,000) which lie within the drainage basin. The project was completed within six months.

  6. Erosion in the juniata river drainage basin, Pennsylvania

    USGS Publications Warehouse

    Sevon, W.D.

    1989-01-01

    Previously calculated erosion rates througouth the Appalachians range from 1.2 to 203 m Myr-1. Calculation of erosion rates has been accomplished by: (1) evaluation of riverine solute and sediment load in either large or small drainage basins; (2) estimation from the volume of derived sediments; and (3) methods involving either 10Be or fission-track dating. Values of specific conductance and suspended sediment collected at the Juniata River gauging station at Newport, Pennsylvania are used, with corrections, along with a bedload estimate to determine the total amount eroded from the 8687 km2 drainage basin during the water years 1965-1986. The amount eroded is used to calculate a present erosion rate of 27 m Myr-1. ?? 1989.

  7. The cost of noncooperation in international river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  8. Geoenvironmental Investigations of the Humboldt River Basin, Northern Nevada

    USGS Publications Warehouse

    Stillings, Lisa L.

    2003-01-01

    Northern Nevada is one of the world's foremost regions of gold production. The Humboldt River Basin (HRB) covers 43,500 km2 in northern Nevada (Crompton, 1995), and it is home to approximately 18 active gold and silver mines (Driesner and Coyner, 2001) among at least 55 significant metallic mineral deposits (Long and others, 1998). Many of the gold mines are along the Carlin trend in the east-central portion of the HRB, and together they have produced 50 million ounces of gold from 1962 (when the Carlin mine first opened) through April 2002 (Nevada Mining Association, 2002). Mining is not new to the region, however. Beginning in 1849, mining has taken place in numerous districts that cover 39 percent of the land area in the HRB (Tingley, 1998). In addition to gold and silver, As, Ba, Cu, Fe, Hg, Li, Mn, Mo, Pb, S, Sb, V, W, Zn, and industrial commodities such as barite, limestone, fluorite, sand and gravel, gypsum, gemstones, pumice, zeolites, and building stone, have been extracted from the HRB (McFaul and others, 2000). All papers within this series of investigations can be found as lettered chapters of USGS Bulletin 2210, Geoenvironmental Investigations of the Humboldt River Basin, Northern Nevada. Each chapter is available separately online. The data and software utilized in this product (Chapter F) permit the user to view and analyze the geographic relationships among chemistry of stream sediments and surface waters, geology, and various cartographic base information such as but not limited to cities, county boundaries, and land ownership. Data for this product were compiled and or produced as part of a mineral and environmental assessment of the Humboldt River basin conducted by the U.S. Geological Survey between 1995 - 2000.

  9. Water resources evolution and social development in Hai River basin, China

    NASA Astrophysics Data System (ADS)

    Peng, Dingzhi; You, Jinjun

    2010-05-01

    The Hai River basin is one of the three important bread baskets in China. As the rapid economy development in the basin, surface water reduction, groundwater overexploitation and water pollution had caused serious deterioration of the ecological environment. The rainfall, evaporation, surface water, groundwater, water quality, pollution sources, supply and demand of water resources were analyzed and the characteristic of water resources evolution was summarized in Hai River basin. Furthermore, the social and economic development and the relationship between water resources evolution and social development were discussed in the basin. It was found that the human activity is the first impact factor of water cycle in Hai River basin, and the climate change is the second. Finally, the attenuation of water resources in the basin was induced by the two factors together. For sustainable utilization of water resources in the Hai River basin, the unified management and optimal allocation of water resources should be strengthened and promoted.

  10. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    PubMed Central

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-01-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  11. Assessment of River Habitat Quality in the Hai River Basin, Northern China.

    PubMed

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-09-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10⁴ km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10⁴ km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  12. Environmental state of aquatic systems in the Selenga River basin

    NASA Astrophysics Data System (ADS)

    Shinkareva, Galina; Lychagin, Mikhail

    2013-04-01

    The transboundary river system of Selenga is the biggest tributary of Lake Baikal (about 50 % of the total inflow) which is the largest freshwater reservoir in the world. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the environmental state of the river aquatic system. The main source of industrial waste in the Republic of Buryatia (Russia) is mining and in Mongolia it is mainly gold mining. Our study aimed to determine the present pollutant levels and main features of their spatial distribution in water, suspended matter, bottom sediments and water plants in the Selenga basin. The results are based on materials of the 2011 (July-August) field campaign carried out both in Russian and Mongolian part of the basin. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu and Mo in the Selenga River water which often are higher than maximum permissible concentrations for water fishery in Russia. In Russian part of the basin most contrast distribution is found for W and Mo, which is caused by mineral deposits in this area. The study showed that Mo and Zn migrate mainly in dissolved form, since more than 70% of Fe, Al, and Mn are bound to the suspended solids. Suspended sediments in general are enriched by As, Cd and Pb in relation to the lithosphere averages. Compared to the background values rather high contents of Mo, Cd, and Mn were found in suspended matter of Selenga lower Ulan-Ude town. Transboundary transport of heavy metals from Mongolia is going both in dissolved and suspended forms. From Mongolia in diluted form Selenga brings a significant amount of Al, Fe, Mn, Zn, Cu and Mo. Suspended solids are slightly enriched with Pb, Cu, and Mn, in higher concentration - Mo. The study of the Selenga River delta allowed determining biogeochemical specialization of the region: aquatic plants accumulate Mn, Fe, Cu, Cd, and to

  13. A History of Flooding in the Red River Basin

    USGS Publications Warehouse

    Ryberg, Karen R.; Macek-Rowland, Kathleen M.; Banse, Tara A.; Wiche, Gregg J.

    2007-01-01

    The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, local, tribal, and academic entities to ensure that accurate and timely data are available for making decisions regarding public welfare and property during natural disasters and to increase public awareness of the hazards that occur with such disasters. The Red River of the North Basin has a history of flooding and this poster is designed to increase public awareness of that history and of the factors that contribute to flooding.

  14. Drainage areas in the Big Sioux River basin in eastern South Dakota

    USGS Publications Warehouse

    Amundson, Frank D.; Koch, Neil C.

    1985-01-01

    The Big Sioux River basin of eastern South Dakota contains an important surface water supply and a sizeable aquifer system of major importance to the economy of South Dakota. The aquifers are complex, consisting of many small aquifers that are hydrologically associated with several large aquifers and the Big Sioux River. The complexity and interrelation of the surface water/groundwater systems has already created management problems. As development continues and increases, the problems will increase in number and complexity. To aid in planning for future development, an accurate determination of drainage areas for all basins, sub-basins, and noncontributing areas in the Big Sioux River basin is needed. All named stream basins, and all unnamed basins > 10 sq mi within the Big Sioux River basin in South Dakota are shown and are listed by stream name. Stream drainage basins in South Dakota were delineated by visual interpretation of contour information shown on U.S. Geological Survey 77-1/2 minute topographic maps. One table lists the drainage areas of major drainage basins in the Big Sioux River basin that do not have a total drainage area value > 10 sq mi. Another shows the drainage area above stream gaging stations in the Big Sioux River basin. (Lantz-PTT)

  15. Environmental information document: Savannah River Laboratory Seepage Basins

    SciTech Connect

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  16. Organic and inorganic pollution of the Vistula River basin.

    PubMed

    Kowalkowski, T; Gadzała-Kopciuch, M; Kosobucki, P; Krupczyńska, K; Ligor, T; Buszewski, B

    2007-03-01

    The main aim of this work is focused therefore on water quality assessment of the Vistula river and its primary tributaries. The study presents the analytical results of the contamination level of different organic and inorganic pollutants as well as the chemometric evaluation of the entire data set. A broad spectrum of compounds have been determined, including pesticides, polichlorinated biphenyls (PCBs), phenols, polycyclic aromatic hydrocarbons (PAHs), heavy metals, inorganic ions and some aggregate parameters like BOD. Majority of the organic xenobiotics have been analyzed for first time in the Vistula region on a large, long-term scale. Chemometric evaluation allowed the determination of natural clusters and groups of monitoring locations with similar pollution character. Chemometric analysis confirmed the classification of water purity of the Vistula River basin is related to the land utilization character in this region. PMID:17365311

  17. Assessing the Effects of Climate Change on Tropical River Basins

    NASA Astrophysics Data System (ADS)

    Abad, Jorge D.; Montoro, Hugo; Latrubesse, Edgardo

    2013-01-01

    The Tropical Rivers 2012 international conference (http://www.crearamazonia.org/tropicalrivers2012/) was part of the International Geoscience Programme 582 project of The United Nations Educational, Scientific and Cultural Organization's International Union for Geological Sciences (UNESCO-IUGS). The aim of the IGCP 582 is to provide an integrated assessment of long-term direct effects of climate variability and human-induced change and management of tropical river basins. This assessment is to be achieved by identification, quantification, and modeling of key hydro-geomorphologic indicators during the past and present times, and assessment of the potential influences of global change on fluvial systems and the socio-economic implications of these changes.

  18. Precipitation and river water chemistry of the Piracicaba River basin, southeast Brazil.

    PubMed

    Williams, M R; Filoso, S; Martinelli, L A; Lara, L B; Camargo, P B

    2001-01-01

    Annual precipitation and river water volumes and chemistry were measured from 1995 to 1998 in a mesoscale agricultural area of southeast Brazil. Precipitation was mildly acidic and solute concentrations were higher in the west than in the east of the basin. Combustion products from biomass burning, automobile exhaust, and industry typically accumulate in the atmosphere from March until October and are responsible for seasonal differences observed in precipitation chemistry. In river waters, the volume-weighted mean (VWM) concentrations of major solutes at 10 sites across the basin were generally lower at upriver than at downriver sampling sites for most solutes. Mass balances for major solutes indicate that, as a regional entity, the Piracicaba River basin was a net sink of H+, PO4(3-), and NH4+, and a net source of other solutes. The main stem of the Piracicaba River had a general increase in solute concentrations from upriver to downriver sampling sites. In contrast, NO3- and NH4+ concentrations increased in the mid-reach sampling sites and decreased due to immobilization or utilization in the mid-reach reservoir, and there was denitrification immediately downriver of this reservoir. Compared with tributaries of the Chesapeake Bay estuary, the Piracicaba River is affected more by point-source inputs of raw sewage and industrial wastes than nonpoint agricultural runoff high in N and P. Inputs of N and C are responsible for a degradation of water quality at downriver sampling sites of the Piracicaba River drainage, and water quality could be considerably improved by augmenting sewage treatment. PMID:11401288

  19. Development of Streamflow Projections under Changing Climate Conditions over Colorado River Basin Headwaters

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Piechota, T. C.; Gangopadhyay, S.; Pruitt, T.

    2010-12-01

    The current drought over the Colorado River Basin has raised concerns that the U.S. Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are impacted by forecasts developed by the Colorado Basin River Forecast Center (CBRFC). While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. Here, a bias-corrected, statistically downscaled dataset of projected climate is used to force the National Weather Service (NWS) River Forecasting System (RFS) utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. The NWS RFS is modified to evaluate the impact of changing climate to evapotranspiration rates. Adjusting evapotranspiration demands over the Gunnison resulted in a 6% to 13% average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10% to 15% average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5% to 8% increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins.

  20. Residence times in river basins as determined by analysis of long-term tritium records

    NASA Astrophysics Data System (ADS)

    Michel, Robert L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km 2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources—prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of

  1. Residence times in river basins as determined by analysis of long-term tritium records

    USGS Publications Warehouse

    Michel, R.L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources-prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of the

  2. Stream habitat and water-quality information for sites in the Buffalo River Basin and nearby basins of Arkansas, 2001-2002

    USGS Publications Warehouse

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Stream-habitat and water-quality information are presented for 52 sites in the Buffalo River Basin and adjacent areas of the White River Basin. The information was collected during the summers of 2001 and 2002 to supplement fish community sampling during the same time period.

  3. Artisanal fisheries of the Xingu River basin in Brazilian Amazon.

    PubMed

    Isaac, V J; Almeida, M C; Cruz, R E A; Nunes, L G

    2015-08-01

    The present study characterises the commercial fisheries of the basin of the Xingu River, a major tributary of the Amazon River, between the towns of Gurupá (at the mouth of the Amazon) and São Félix do Xingu. Between April, 2012, and March, 2014, a total of 23,939 fishing trips were recorded, yielding a total production of 1,484 tons of fish, harvested by almost three thousand fishers. The analysis of the catches emphasizes the small-scale and artisanal nature of the region's fisheries, with emphasis on the contribution of the motorised canoes powered by "long-tail" outboard motors. Larger motorboats operate only at the mouth of the Xingu and on the Amazon. Peacock bass (Cichla spp.), croakers (Plagioscion spp.), pacu (a group containing numerous serrasalmid species), aracu (various anostomids), and curimatã (Prochilodus nigricans) together contributed more than 60% of the total catch. Mean catch per unit effort was 18 kg/fisher-1.day-1, which varied among fishing methods (type of vessel and fishing equipment used), river sections, and time of the year. In most cases, yields varied little between years (2012 and 2013). The technical database provided by this study constitutes an important resource for the regulation of the region's fisheries, as well as for the evaluation of future changes resulting from the construction of the Belo Monte dam on the Xingu River. PMID:26691085

  4. Phenolic water pollutants in a Malaysian River basin.

    PubMed

    Abdullah, P; Nainggolan, H

    1991-10-01

    Phenolic chemicals with their very low taste and odour thresholds, high persistence and toxicity, are of growing concern as water pollutants. The compounds are known to exist in raw water as well as in treated water. The level of phenolic priority pollutants in water within the catchment area of the Linggi River Treatment Plant in Negeri Sembilan, Malaysia, which includes the Linggi river basin, was monitored. The 4-aminoantipyrin colourimetric method was used to determine total phenols whereas capillary column gas chromatography was used to determine the individual compounds. The results show that at most sampling stations, particularly those within the Seremban municipality, the level of phenols was found to exceed the recommended Malaysian standard of 2.0 μg/L(-1) for raw water. This is seen as the direct impact of industrial and urbanization of the area and clearly indicates the unhealthy state of the Linggi river. The results also indicate the need to improve the water quality if the river is going to be used as a source of raw water. PMID:24233958

  5. ANOMALOUSLY PRESSURED GAS DISTRIBUTION IN THE WIND RIVER BASIN, WYOMING

    SciTech Connect

    Dr. Ronald C. Surdam

    2003-03-31

    Anomalously pressured gas (APG) assets, typically called ''basin-center'' gas accumulations, represent either an underdeveloped or undeveloped energy resource in the Rocky Mountain Laramide Basins (RMLB). Historically, the exploitation of these gas resources has proven to be very difficult and costly. In this topical report, an improved exploration strategy is outlined in conjunction with a more detailed description of new diagnostic techniques that more efficiently detect anomalously pressured, gas-charged domains. The ability to delineate gas-charged domains occurring below a regional velocity inversion surface allows operators to significantly reduce risk in the search for APG resources. The Wind River Basin was chosen for this demonstration because of the convergence of public data availability (i.e., thousands of mud logs and DSTs and 2400 mi of 2-D seismic lines); the evolution of new diagnostic techniques; a 175 digital sonic log suite; a regional stratigraphic framework; and corporate interest. In the exploration scheme discussed in this topical report, the basinwide gas distribution is determined in the following steps: (1) A detailed velocity model is established from sonic logs, 2-D seismic lines, and, if available, 3-D seismic data. In constructing the seismic interval velocity field, automatic picking technology using continuous, statistically-derived interval velocity selection, as well as conventional graphical interactive methodologies are utilized. (2) Next, the ideal regional velocity/depth function is removed from the observed sonic or seismic velocity/depth profile. The constructed ideal regional velocity/depth function is the velocity/depth trend resulting from the progressive burial of a rock/fluid system of constant rock/fluid composition, with all other factors remaining constant. (3) The removal of the ideal regional velocity/depth function isolates the anomalously slow velocities and allows the evaluation of (a) the regional velocity

  6. Historical trends and extremes in boreal Alaska river basins

    DOE PAGESBeta

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flowmore » events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.« less

  7. Historical trends and extremes in boreal Alaska river basins

    SciTech Connect

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flow events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.

  8. Potamodromous migrations in the Magdalena River basin: bimodal reproductive patterns in neotropical rivers.

    PubMed

    López-Casas, S; Jiménez-Segura, L F; Agostinho, A A; Pérez, C M

    2016-07-01

    Magdalena River basin potamodromous fishes have two annual reproductive seasons: the subienda in the first half of the year and the mitaca in the second. Both upstream migrations are c. 30-45 days long; after that, with the onset of the rainy season, fishes spawn and remain in the river (resident individuals) or start a downstream movement (the bajanza) to return to the Magdalena floodplain lakes (nursery, shelter and feeding grounds). Due to their particular gonad development the bocachico Prochilodus magdalenae and probably the comelón Leporinus muyscorum are physiologically able to undertake two annual basin migrations. In the presence of dams or hydropower structures, fishes are able to find alternative migration routes. Some species should be re-classified in their migratory behaviour. PMID:27073186

  9. Iron cycling in the Amazon River Basin: the isotopic perspective

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Vieira, Lucieth; Mulholland, Daniel; Seyler, Patrick; Sondag, Francis; Allard, Thierry

    2014-05-01

    With the global climate change and increasing anthropic pressure on nature, it is important to find new indicators of the response of complex systems like the Amazon River Basin. In particular, new tracers like iron isotopes may tell us much on processes such as the chemical exchanges between rivers, soils and the biosphere. Pioneering studies revealed that for some river waters, large δ57Fe fractionations are observed between the suspended and dissolved load (Bergquist and Boyle, 2006), and isotopic variations were also recognized on the suspended matter along the hydrological cycle (Ingri et al., 2006). On land, soil studies from various locations have shown that δ57Fe signatures depend mostly on the weathering regime (Fantle and DePaolo, 2004; Emmanuel et al., 2005; Wiederhold et al., 2007; Poitrasson et al., 2008). It thus seems that Fe isotopes could become an interesting new tracer of the exchanges between soils, rivers and the biosphere. We therefore conducted Fe isotope surveys through multidisciplinary field missions on rivers from the Amazon Basin. It was confirmed that acidic, organic-rich black waters show strong Fe isotope fractionation between particulate and dissolved loads. Furthermore, this isotopic fractionation varies along the hydrological cycle, like previously uncovered in boreal waters suspended matter. In contrast, unfiltered waters show very little variation with time. It was also found that Fe isotopes remain a conservative tracer even in the case of massive iron loss during the mixing of chemically contrasted waters such as the Negro and Solimões tributaries of the Amazon River. Given that >95% of the Fe from the Amazon River is carried as detrital materials, our results lead to the conclusion that the Fe isotope signature delivered to the Atlantic Ocean is undistinguishable from the continental crust value, in contrast to previous inferences. The results indicate that Fe isotopes in rivers represent a promising indicator of the

  10. Sulfur Isotopes in the Rivers of the Mackenzie River Basin: Implication for CO2 Consumption

    NASA Astrophysics Data System (ADS)

    Calmels, D.; Gaillardet, J.; Brenot, A.; France-Lanord, C.

    2004-12-01

    Mass budgets of chemical weathering in hydro-systems usually assume that the dissolution of CO2 in rain and soil waters provides most of the protons that attack rock minerals. However, the oxidative weathering of reduced species containing sulfur, such as pyrite, can be a significant source of protons. On a global scale, the origin of sulfate in rivers is still unclear. At least three possibilities can be envisaged: sulfate from sedimentary gypsum, atmospheric pollution and oxidative weathering of sulfide. As shown by previous studies, S and O isotopes of the sulfate molecule can allow deciphering between the different sources. In the aim of constraining the origin of sulfate delivered to the ocean by rivers and to refine CO2 consumption budgets for chemical weathering reactions, we have started to measure S and O isotopes in the largest river systems. Among them, the Mackenzie River basin is an ideal case, because it has been recognized by geologists to contain both gypsum and reduced sediments, mainly black-shales, rich in pyrite. The O and S isotopes of the sulfate molecule do show large discrepancies between the two main geomorphic units of the Mackenzie River basin: the Rocky-Mackenzie Mountains to the West and the interior platform to the East. For example, river samples from the lowlands are characterized by values of δ 34S ranging from \\ -3.25‰ to \\ -18.47‰ and those from the mountains varying between 2.06\\permil and 9.87\\permil. We interpret these values and the relationships between isotopic composition of sulfate and major elements as showing the dominant contribution of sulfide oxidation in the lowlands and gypsum dissolution in the mountains. The details of our mixing model, e.g. end-member choices, will be discussed in detail; but based on our data we calculate that 54 to 96% and 18 to 40% of dissolved sulfate come from sulfide oxidation in lowland rivers and mountain rivers, respectively. The mean value obtained for the Mackenzie River Basin

  11. Recent morphodynamics of the Indus delta shore and shelf

    NASA Astrophysics Data System (ADS)

    Giosan, Liviu; Constantinescu, Stefan; Clift, Peter D.; Tabrez, Ali R.; Danish, Muhammed; Inam, Asif

    2006-09-01

    In natural conditions, the Indus River had one of the largest sediment loads in the world, building an extensive delta on the high-energy coast of the Arabian Sea. However, water and sediment discharge have been drastically altered in the Indus since the early 1960s, when several barrages were built along the river to feed the world's largest irrigation system. A digital terrain model based on detailed 19th century surveys has been constructed to assess the morphology of the Indus shelf. Comparison of the digital terrain model to a 1950s Pakistani bathymetric survey allowed an estimation of the natural sedimentation regime before extensive human-induced changes. Digital analysis of the Indus delta coastline based on satellite imagery was used to explore the effects of the drastic decrease in sediment delivery following extensive dam building. The Indus Canyon is a dominant feature of the region dissecting the shelf to within 20 m water depth and 3.5 km of the coast. Theoretical considerations based on estimates of the relative importance of wave energy vs. fluvial sediment delivery suggest that the Indus delta should develop a mid-shelf subaqueous clinoform. Instead, the Indus shelf exhibits a compound clinoform morphology. A shallow delta front clinoform extends along the entire delta coast from the shoreline to the 10-25 m water depth. A mid-shelf clinoform developed probably as a prodelta clinoform between ˜30 and 90 m water depth. The advanced position of the mid-shelf clinoform east of the Indus Canyon might reflect either a prolonged sediment delivery from the Indus River in that area compared to the shelf west of the canyon or the presence of a relict pre-Holocene mid-shelf delta. A distinct lobe of the mid-shelf clinoform developed along the Kutch (Kachchh) coast probably as sediment advected alongshore was redeposited on the mid-shelf by strong offshore-directed tidal currents at the Gulf of Kutch mouth. Accumulation and erosion between 1895/96 and 1952

  12. Climatic Variation and River Flows in Himalayan Basins Upstream of Large Dams

    NASA Astrophysics Data System (ADS)

    Eaton, D.; Collins, D. N.

    2014-12-01

    High specific discharges from Himalayan headwater basins feed major reservoirs generating hydropower and supplying water to irrigation schemes across the Punjab plains of north-west India and Pakistan. Flow arises from seasonal winter snow cover, summer monsoon precipitation and melting glacier ice in varying proportions and differing absolute quantities along west -east axes of the Karakoram and western Himalaya. Discharge records for stations above Tarbela (Indus), Mangla (Jhelum), Marala (Chenab) and Bhakra (Sutlej) dams have been examined for periods between 1920 and 2009, together with precipitation and air temperature data for stations with long records (within the period 1893 to 2013) at elevations between 234 and 3015 m a.s.l. Ice-cover age in the basins above the dams was between 1 and 12 %. Flows in the Sutlej, Chenab and Jhelum reached maxima in the 1950s before declining to the 1970s. Flow in the Chenab and Jhelum increased to 1950s levels in the 1990s, before falling steeply into the 2000s mimicking variations in winter and monsoon precipitation. Discharge in the Indus at Tarbela increased from the 1970s, reaching a maximum in the late 1980s/early 1990s, before declining back to 1970s levels in the 2000s, flow being influenced not only by precipitation fluctuations but also by changes in air temperature affecting glacier melt in headwater basins. Runoff at Bhakra was augmented by flow from the Beas-Sutlej link canal after 1977, but natural flow in the Sutlej above Luhri reduced considerably from the 1990s influenced by declining flows in the relatively dry but large Tibetan portion of the basin area. Large year-to-year fluctuations of reservoir inflows are nonetheless based on significant sustained underlying discharge levels at all four reservoirs.

  13. The influence of frozen soil change on water balance in the upper Yellow River Basin, China

    NASA Astrophysics Data System (ADS)

    Cuo, L.; Zhao, L.; Zhou, B.

    2013-12-01

    Yellow River supports 30% of China's population and 13% of China's total cultivated area. About 35% of the Yellow River discharge comes from the upper Yellow River Basin. Seasonally frozen, continuous and isolated permafrost soils coexist and cover the entire upper Yellow River Basin. The spatial distribution of various frozen soisl is primarily determined by the elevation in the basin. Since the past five decades, air temperature has increased by a rate of 0.03 C/year in the upper Yellow River Basin. Many studies reported the conversions of continuous to isolated permafrost soil, permafrost soil to seasonally frozen soil and the thickening of the active layer due to rising temperature in the basin. However, very few studies reported the impact of the change of frozen soil on the water balance in the basin. In this study, the Variable Infiltration Capacity (VIC) model is applied in the upper Yellow River Basin to study the change of frozen soil and its impact on the water balance. Soil temperature and soil liquid content measured up to 3 m below ground surface at a number of sites in the upper Yellow River Basin and the surroundings are used to evaluate the model simulation. Streamflow is also calibrated and validated using historical streamflow records. The validated VIC model is then used to investigate the frozen soil change and the impact of the change on water balance terms including surface runoff, baseflow, evapotranspiration, soil water content, and streamflow in the basin.

  14. Ecosystem-based river basin management: its approach and policy-level application

    NASA Astrophysics Data System (ADS)

    Nakamura, Takehiro

    2003-10-01

    Integrated Water Resources Management is an approach aimed at achieving sustainable development with a focus on water resources. This management concept is characterized by its catchment approach, inter-sectoral and interdisciplinary approach and multiple management objectives. There is an effort to widen the management scope to include multiple resources and environmental considerations in the river basin management schemes. In order to achieve river basin management objectives and multiple global environmental benefits, an ecosystem approach to river basin management is promoted. The Ecosystem-based River Basin Management aims to maximize and optimize the total value of the ecosystem functions relevant to classified ecosystems within a river basin by conserving and even enhancing these functions for the next generations. A procedure to incorporate such ecosystem functions into policy framework is presented in this paper. Based on this policy framework of the Ecosystem-based River Basin Management, a case study is introduced to apply the concept to the Yangtze River basin. According to the United Nations Environment Programme (UNEP) assessment report, this basin suffers from frequent floods of large magnitudes, which are due to the degradation of ecosystem functions in the basin. In this case, the government of the People's Republic of China introduced Ecosystem Function Conservation Areas to conserve ecosystem functions related to flood events and magnitude, such as soil conservation, agricultural practices and forestry, while producing economic benefits for the local population. Copyright

  15. Ground water in the Verdigris River basin, Kansas and Oklahoma

    USGS Publications Warehouse

    Fader, Stuart Wesley; Morton, Robert B.

    1975-01-01

    Ground water in the Verdigris River basin occurs in consolidated rocks and unconsolidated deposits ranging in age from Mississippian to Quaternary. Water for municipal, industrial, and irrigation supplies generally can be obtained in limited quantities from the alluvial deposits in the stream valleys. Except for water in the alluvial deposits in the stream valleys and in the outcrop areas of the bedrock aquifers, the groundwater is generally of poor chemical quality. Owing to the generally poor chemical quality of water and low yields to wells, an increase in the use of ground water from the consolidated rocks is improbable. The unconsolidated rocks in the Verdigris River basin receive about 166,000 acre-feet of recharge annually, and about 1 million acre-fee of water is in temporary storage in the deposits. In 1968 about 4,200 acre-feet of ground was withdrawn for all uses. About 800 acre-feet of ground and 5,000 acre-feet of surface water were pumped for irrigation of 5,300 acres of cropland. The total annual withdrawal of ground water for irrigation may be 2,000 acre-feet by the year 2000.

  16. Remote Sensing of Water Quality in the Niger River Basin

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  17. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  18. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  19. Power-law tail probabilities of drainage areas in river basins

    USGS Publications Warehouse

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  20. 75 FR 11554 - Yakima River Basin Conservation Advisory Group Charter Renewal; Notice of Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... Washington on the structure and implementation of the Yakima River Basin Water Conservation Program. In... identification and implementation of structural and nonstructural cost-effective water conservation measures in... Bureau of Reclamation Yakima River Basin Conservation Advisory Group Charter Renewal; Notice of...

  1. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate. PMID:21922685

  2. Hack's relation and optimal channel networks: The elongation of river basins as a consequence of energy minimization

    NASA Astrophysics Data System (ADS)

    Ijjasz-Vasquez, Ede J.; Bras, Rafael L.; Rodriguez-Iturbe, Ignacio

    1993-08-01

    As pointed by Hack (1957), river basins tend to become longer and narrower as their size increases. This work shows that this property may be partially regarded as the consequence of competition and minimization of energy expenditure in river basins.

  3. FUTURE WATER ALLOCATION AND IN-STREAM VALUES IN THE WILLAMETTE RIVER BASIN: A BASIN-WIDE ANALYSIS

    EPA Science Inventory

    Our research investigated the impact on surface water resources of three different scenarios for the future development of the Willamette River Basin in Oregon (USA). Water rights in the basin, and in the western United States in general, are based on a system of law that binds ...

  4. Spatial and temporal variations of river nitrogen exports from major basins in China.

    PubMed

    Ti, Chaopu; Yan, Xiaoyuan

    2013-09-01

    Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario. PMID:23608986

  5. Hydrometeorology Testbed in the American River Basin of Northern California

    NASA Astrophysics Data System (ADS)

    Kingsmill, D.; Lundquist, J.; Jorgensen, D.; McGinley, J.; Werner, K.

    2006-12-01

    In California, most precipitation occurs in the winter, as a mixture of rain at lower elevations and snow in the higher mountains. Storms from the Pacific carry large amounts of moisture, and put people and property at risk from flooding because of the vast urban development and infrastructure in low-lying areas of the central valley of California. Improved flood prediction at finer spatial and temporal resolutions can help minimize these risks. The first step is to accurately measure and predict spatially-distributed precipitation. This is particularly true for river basins with complex orography where the processes that lead to the development of precipitation and determine its distribution and fate on the ground are not well understood. To make progress in this important area, the U.S. National Oceanic and Atmospheric Administration (NOAA) is leading a Hydrometeorology Testbed (HMT) effort designed to accelerate the testing and infusion of new technologies, models, and scientific results from the research community into daily forecasting operations. HMT is a national effort (http://hmt.noaa.gov) that will be implemented in different regions of the U.S. over the next decade. In each region, the focus will be on individual experimental test basins. The first full-scale implementation of HMT, called HMT-West, targets northern California's flood-vulnerable American River Basin (4740 km2) on the west slopes of the Sierra Nevada between Sacramento and Lake Tahoe. The deployment strategy is focused on the North Fork of the basin (875 km2), which is the least- controlled portion of the entire catchment. This basin was selected as a test basin because it has reliable streamflow records dating back to 1941 and has been well characterized by prior field studies (e.g. the Sierra Cooperative Pilot Project) and modeling efforts, focusing on both short-term operations and long-term climate scenarios. Intensive field activities in the North Fork of the American River started in

  6. Modelling hydrological responses of Nerbioi River Basin to Climate Change

    NASA Astrophysics Data System (ADS)

    Mendizabal, Maddalen; Moncho, Roberto; Chust, Guillem; Torp, Peter

    2010-05-01

    Future climate change will affect aquatic systems on various pathways. Regarding the hydrological cycle, which is a very important pathway, changes in hydrometeorological variables (air temperature, precipitation, evapotranspiration) in first order impact discharges. The fourth report assessment of the Intergovernmental Panel for Climate Change indicates there is evidence that the recent warming of the climate system would result in more frequent extreme precipitation events, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. Available research and climate model outputs indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99%). For example, it is likely that up to 20% of the world population will live in areas where river flood potential could increase by the 2080s. In Spain, within the Atlantic basin, the hydrological variability will increase in the future due to the intensification of the positive phase of the North Atlantic Oscillation (NAO) index. This might cause flood frequency decreases, but its magnitude does not decrease. The generation of flood, its duration and magnitude are closely linked to changes in winter precipitation. The climatic conditions and relief of the Iberian Peninsula favour the generation of floods. In Spain, floods had historically strong socio-economic impacts, with more than 1525 victims in the past five decades. This upward trend of hydrological variability is expected to remain in the coming decades (medium uncertainty) when the intensification of the positive phase of the NAO index (MMA, 2006) is considered. In order to adapt or minimize climate change impacts in water resources, it is necessary to use climate projections as well as hydrological modelling tools. The main objective of this paper is to evaluate and assess the hydrological response to climate changes in flow conditions in Nerbioi river

  7. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-11-01

    Total nitrogen (TN), which consists of total particulate nitrogen (TPN) and total dissolved nitrogen (TDN), is transported with not only in river channels but also across the entire river basin, including via ground water and migratory animals. In general, TPN export from an entire river basin to the ocean is larger than TDN in a mountainous region. Since marine derived nutrients (MDN) are hypothesized to be mainly transported as suspended matters from the ground surface, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated TN export from an entire river basin, and also we estimated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen input across a river basin. The maximum potential contribution of TN entering the river basin by salmon was found to be 23.8 % relative to the total amount of TN exported from the river basin. The contribution of particulate nitrogen based on suspended sediment from the ocean to the river basin soils was 22.9 % with SD of 3.6 % by using stable isotope analysis (SIA) of nitrogen (δ15N).

  8. [Spatiotemporal characteristics of reference crop evapotranspiration in inland river basins of Hexi region].

    PubMed

    Lü, Xiao-Dong; Wang, He-ling; Ma, Zhong-ming

    2010-12-01

    Based on the 1961-2008 daily observation data from 17 meteorological stations in the inland river basins in Hexi region, the daily reference crop evapotranspiration (ET0) in the basins was computed by Penman-Monteith equation, and the spatiotemporal characteristics of seasonal and annual ET0 were studied by GIS and IDW inverse-distance spatial interpolation. In 1961-2008, the mean annual ET0 (700-1330 mm) increased gradually from southeast to northwest across the basins. The high value of mean annual ET0 in Shule River basin and Heihe River basin declined significantly (P < 0.05), with the climatic trend rate ranged from -53 to -10 mm (10 a)(-1), while the low value of mean annual ET0 in Shiyang River basin ascended slightly. The ET0 in the basins had a significant annual fluctuation, which centralized in Linze and decreased toward northwest and southeast. The ET0 in summer and autumn contributed most of a year, and the highest value of ET0 all the year round always appeared in Shule River basin. The climatic trend rate was in the order of summer > spring > autumn > winter. Wind speed and maximum temperature were the primary factors affecting the ET0 in the basins. Furthermore, wind speed was the predominant factor of downward trend of ET0 in Shule and Heihe basins, while maximum temperature and sunshine hours played an important role in the upward trend of ET0 in Shiyang basin. PMID:21443004

  9. Anthropogenic impacts on hydrology of Karkheh River Basin

    NASA Astrophysics Data System (ADS)

    Ashraf, B.; Aghakouchak, A.; Alizadeh, A.; Mousavi Baygi, M.

    2015-12-01

    The Karkheh River Basin (KRB) in southwest Iran is a key region for agriculture and energy production. KRB has high human-induced water demand and suffers from low water productivity. The future of the KRB and its growth clearly relies on sustainable water resources and hence, requires a holistic, basin-wide management and monitoring of natural resources (water, soil, vegetation, livestock, etc.). The KRB has dry regions in which water scarcity is a major challenge. In this study, we investigate changes in the hydrology of the basin during the past three decades including human-induced alterations of the system. We evaluate climatic variability, agricultural water use, land cover change and agriculture production. In this reaserch, we have developed a simple indicator for quantifying human influence on the hydrologic cycle. The results show that KRB's hydrology is significantly dominated by human activities. The anthropogenic water demand has increased substantially caused by growth in agriculture industry. In fact, the main reason for water scarcity in the region appears to be due to the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades. Our results show that continued growth in the region is not sustainable without considering major changes in water use efficiency, land cover management and water productivity.

  10. A Yukon River Basin Landsat Mosaic for Assessing Environmental Change

    NASA Astrophysics Data System (ADS)

    Bouchard, M. A.; Dwyer, J. L.; Granneman, B.

    2009-12-01

    Landsat data from the Global Land Survey (GLS) dataset for year 2000 was mosaicked to form a Yukon River Basin image map that is referenced to a geodetic base. It was produced from 66 Landsat-7 Enhanced Thematic Mapper Plus (ETM+) images collected from 1999-2002. Two products were created: (1) a geographically referenced database containing all seven of the spectral bands for the individual scenes and (2) a 3-band (shortwave infrared, near-infrared, and green - 7,4,2) radiometrically normalized shaded relief image map using the U.S. Geological Survey National Elevation Dataset and Canadian Digital Elevation Data from Natural Resources Canada. The science data product will facilitate studies to map the extent of snow, ice and surface water at a basin-wide scale. Focused studies on snow/ice transitions for selected glaciers will be conducted in order to establish accumulation ratios for use in future monitoring. The mosaic also shows the complex patterns of wildfires in the interior forests and the diversity of ecosystems throughout the basin. The shaded relief product image mosaic is a reference map for reconnaissance studies as well as a geographic framework within which to spatially integrate project-wide data and information.

  11. Thermal springs in the Salmon River basin, central Idaho

    SciTech Connect

    Young, H.W.; Lewis, R.E.

    1982-02-01

    The Salmon River basin within the study area occupies an area of approximately 13,000 square miles in central Idaho. Geologic units in the basin are igneous, sedimentary, and metamorphic rocks; however, granitic rocks of the Idaho batholith are predominant. Water from thermal springs ranges in temperature from 20.5/sup 0/ to 94.0/sup 0/ Celsius. The waters are slightly alkaline and are generally a sodium carbonate or bicarbonate type. Dissolved-solids concentrations are variable and range from 103 to 839 milligrams per liter. Estimated reservoir temperatures determined from the silicic acid-corrected silica, sodium-potassium-calcium, and sulfate-water isotope geothermometers range from 30/sup 0/ to 184/sup 0/ Celsius. Tritium concentrations in sampled thermal waters are near zero and indicate the waters are at least 100 years old. Stable-isotope data indicate it is unlikely that a single hot-water reservoir supplies hot springs in the basin. Thermal springs discharged at least 15,800 acre-feet of water in 1980. Associated convective heat flux is 2.7 x 10/sup 7/ calories per second.

  12. Performance of dynamical downscaling for Colorado River basin

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Zhu, C.; Lettenmaier, D. P.

    2009-12-01

    The ongoing 2000s western U.S. drought has focused attention on drought susceptibility of the Colorado River basin. There is a concern that many climate models predict permanently drier conditions for the next century over the Colorado basin, however interpretation of these projections is complicated by their coarse spatial resolution which does not resolve the role of the relatively small mountain headwaters area that is the source of much of the basin’s runoff. Regional climate models (RCMs) are able to resolve these spatial scales, and for this reason arguably should be a preferred source of information about the future hydrology of the Colorado basin. We use the Advanced Research version of the Weather Research and Forecasting (WRF/ARW) regional climate model to explore the effects of climate change on the hydrology of the basin. Initially, we selected three years -- 1993 (wet), 2002 (dry), and 1980 (normal) as test cases, with boundary conditions from the NCEP/DOE reanalysis. For these years, we evaluated the impact of domain size through comparison with WRF runs performed for the North American Regional Climate Change Assessment Program (NARCCAP) Phase I, with particular attention to the Colorado River basin. We also tested spatial resolutions of 16 km and 25 km in addition to the NARCCAP 50 km spatial resolution. We then performed an 11-year current climate run for the period 1980-1990 with boundary conditions from the NCEP/DOE reanalysis at 50 km spatial resolution and compared spatial patterns of simulated winter precipitation and snow water equivalent (SWE) with the 1/8-degree historical North American Land Data Assimilation System (NLDAS) data set. Subsequently, we evaluated the impacts of projected future climate change on changes in the spatial distribution of winter precipitation and SWE using 10-year runs with boundary conditions taken from the CCSM General Circulation Model for current and mid-21st century boundary conditions. We also compared the

  13. Operational Hydrologic Forecasts in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Shrestha, K. Y.; Curry, J. A.; Webster, P. J.; Toma, V. E.; Jelinek, M.

    2013-12-01

    The Columbia River Basin (CRB) covers an area of ~670,000 km2 and stretches across parts of seven U.S. states and one Canadian province. The basin is subject to a variable climate, and moisture stored in snowpack during the winter is typically released in spring and early summer. These releases contribute to rapid increases in flow. A number of impoundments have been constructed on the Columbia River main stem and its tributaries for the purposes of flood control, navigation, irrigation, recreation, and hydropower. Storage reservoirs allow water managers to adjust natural flow patterns to benefit water and energy demands. In the past decade, the complexity of water resource management issues in the basin has amplified the importance of streamflow forecasting. Medium-range (1-10 day) numerical weather forecasts of precipitation and temperature can be used to drive hydrological models. In this work, probabilistic meteorological variables from the European Center for Medium Range Weather Forecasting (ECMWF) are used to force the Variable Infiltration Capacity (VIC) model. Soil textures were obtained from FAO data; vegetation types / land cover information from UMD land cover data; stream networks from USGS HYDRO1k; and elevations from CGIAR version 4 SRTM data. The surface energy balance in 0.25° (~25 km) cells is closed through an iterative process operating at a 6 hour timestep. Output fluxes from a number of cells in the basin are combined through one-dimensional flow routing predicated on assumptions of linearity and time invariance. These combinations lead to daily mean streamflow estimates at key locations throughout the basin. This framework is suitable for ingesting daily numerical weather prediction data, and was calibrated using USGS mean daily streamflow data at the Dalles Dam (TDA). Operational streamflow forecasts in the CRB have been active since October 2012. These are 'naturalized' or unregulated forecasts. In 2013, increases of ~2600 m3/s (~48% of

  14. Groundwater quality in the Genesee River Basin, New York, 2010

    USGS Publications Warehouse

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  15. [Spatiotemporal variation analysis and identification of water pollution sources in the Zhangweinan River basin].

    PubMed

    Xu, Hua-Shan; Xu, Zong-Xue; Tang, Fang-Fang; Yu, Wei-Dong; Cheng, Yan-Ping

    2012-02-01

    In this study, several statistical methods including cluster analysis, seasonal Kendall test, factor analysis/principal component analysis and principal component regression were used to evaluate the spatiotemporal variation of water quality and identify the sources of water pollution in the Zhangweinan River basin. Results of spatial cluster analysis and principal component analysis indicated that the Zhangweinan River basin can be classified into two regions. One is the Zhang River upstream located in the northwest of the Zhangweinan River basin where water quality is good. The other one covers the Wei River and eastern plain of the Zhangweinan River basin, where water is seriously polluted. In this region, pollutants from point sources flow into the river and the water quality changes greatly. Results of temporal cluster analysis and seasonal Kendall test indicated that the study periods may be classified into three periods and two different trends were detected during the period of 2002-2009. The first period was the year of 2002-2003, during which water quality had deteriorated and serious pollution was observed in the Wei river basin and eastern plain of the Zhangweinan River basin. The second period was the year of 2004-2006, during which water quality became better. The year of 2007-2009 is the third period, during which water quality had been improved greatly. Despite that water quality in the Zhangweinan River basin had been improved during the period of 2004-2009, the water quality in the Wei River (southwestern part of the basin), the Wei Canal River and the Zhangweixin River (eastern plain of the basin) is still poor. Principal component analysis and multi-linear regression of the absolute principal component scores showed that the main pollutants of the Zhangweinan River basin came from point source discharge such as heavy industrial wastewater, municipal sewage, chemical industries wasterwater and mine drainage in upstream. Non-point source pollution

  16. A spatial analysis of phosphorus in the Mississippi river basin.

    PubMed

    Jacobson, Linda M; David, Mark B; Drinkwater, Laurie E

    2011-01-01

    Phosphorus (P) in rivers in the Mississippi River basin (MRB) contributes to hypoxia in the Gulf of Mexico and impairs local water quality. We analyzed the spatial pattern of P in the MRB to determine the counties with the greatest January to June P riverine yields and the most critical factors related to this P loss. Using a database of P inputs and landscape characteristics from 1997 through 2006 for each county in the MRB, we created regression models relating riverine total P (TP), dissolved reactive P (DRP), and particulate P (PP) yields for watersheds within the MRB to these factors. Riverine yields of P were estimated from the average concentration of each form of P during January to June for the 10-yr period, multiplied by the average daily flow, and then summed for the 6-mo period. The fraction of land planted in crops, human consumption of P, and precipitation were found to best predict TP yields with a spatial error regression model ( = 0.48, = 101). Dissolved reactive P yields were predicted by fertilizer P inputs, human consumption of P, and precipitation in a multiple regression model ( = 0.42, = 73), whereas PP yields were explained by crop fraction, human consumption of P, and soil bulk density in a spatial error regression model ( = 0.49, = 61). Overall, the Upper Midwest's Cornbelt region and lower Mississippi basin had the counties with the greatest P yields. These results help to point out specific areas where agricultural conservation practices that reduce losses to streams and rivers and point source P removal might limit the intensity or spatial occurrence of Gulf of Mexico hypoxia and improve local water quality. PMID:21546679

  17. Geologic control of rivers in the perimeter of Somes River Drainage Basin, Romania

    NASA Astrophysics Data System (ADS)

    Perşoiu, I.; Rǎdoane, N.; Rusu, S.

    2012-04-01

    The present study highlights the role of geology (structure and neotectonics) on channel typology in the median and inferior parts of Someş River Drainage Basin (15.470 kmp, 124mc/s), NV Romania, based on channel morphology back in 1860 AD, channel planform dynamics between 1860 and 1977, and geological maps of the area. The geological heterogeneity of the area is responsible for abrupt alternation of different channel types, resulting in a mixture of alluvial and mixed sinuous - meandering - sinuous anabranched - meandering anabranched reaches. Additionally, along some tributaries with reduced flow discharges, lakes are reported behind natural dams imposed by resistant rocks occurred in the river's bed. This behavior is complicated by general slopes of graded profiles, superimposed on local structural and tectonic controls, which enforce the rivers to function on different energy levels. Based on channel typology and planform dynamic prior to large scale hydrotechnical intervention, river position in the floodplain perimeter, the type of rivers (main rivers vs. tributaries with less discharge), a general model of channel adjustment to lithology and neotectonic movements in the NV part of Romania is proposed.

  18. [Variation characteristics of runoff coefficient of Taizi River basin in 1967-2006].

    PubMed

    Deng, Jun-Li; Zhang, Yong-Fang; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Wu, Jia-Bing

    2011-06-01

    Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River. All the embranchments except Xihe River had an obvious abrupt change in the annual runoff coefficient, and the beginning year of the abrupt change differed with embranchment. Annual precipitation had significant effects on the annual runoff coefficient. PMID:21941759

  19. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  20. Intercomparison of CMIP5 simulations of summer precipitation, evaporation, and water vapor transport over Yellow and Yangtze River basins

    NASA Astrophysics Data System (ADS)

    Bao, Jiawei; Feng, Jinming

    2016-02-01

    Precipitation and other hydrologic variables play important roles in river basins. In this study, summer precipitation, evaporation, and water vapor transport from 16 models that have participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the Yellow River basin (a water-limited basin) and the Yangtze River basin (an energy-limited basin) over the period 1986-2005 are analyzed and evaluated. The results suggest that most models tend to overestimate precipitation in the Yellow River basin, whereas precipitation in the Yangtze River basin is generally well simulated. Models that overestimate precipitation in the Yellow River basin also simulate evaporation with large positive biases. For water vapor transport, models and reanalysis data concur that both basins are moisture sinks in summer. In addition, models that strongly overestimate precipitation in the Yellow River basin tend to produce strong water vapor convergence in that region, which is likely to be related to the situation that the western Pacific subtropical high (WPSH) simulated by these models strengthens and advances further westward and northward, resulting in stronger water vapor convergence in the Yellow River basin. Moreover, convective precipitation biases simulated by the models are also partially responsible for their total precipitation biases. Finally, summer precipitation and evaporation are negatively correlated in the Yangtze River basin, whereas the relation between these variables is weak in the Yellow River basin. In both basins, precipitation and water vapor convergence are positively correlated, which is well simulated by all models.

  1. Umatilla River Basin Fish Habitat Enhancement : FY 1990 Annual Report.

    SciTech Connect

    Northrop, Michael

    1990-01-01

    During the summer of 1990, construction continued on the Bonneville Power Administration funded anadromous fish habitat enhancement project in the Umatilla River sub-basin, Umatilla County, State of Oregon. Work started on 5/1/90 and ended 10/30/90. A total of five large log weirs, eight large rock weirs, 17 associated weir structures, 19 small to medium rock deflectors, four bank and island reinforcements, three rock flow controls, 19 woody debris placements, and 85 individual boulders were constructed in the South Fork of the Umatilla River. In addition, one large rock weir was constructed at the confluence of the North and South Forks of the Umatilla River, and repair work was completed on 33 structures in Thomas Creek. Also, 300 cubic yards of rock and some logs and woody material were moved on site for use in 1991. Preconstruction activity consisted of moving approximately 1,500 cubic yards of large boulders, and dive log truck loads of woody material to the construction site. Project monitoring consisted of sediment sampling above and below the project area and, mapping and photographing and structures. 7 figs.

  2. A large-scale model for simulating the fate & transport of organic contaminants in river basins.

    PubMed

    Lindim, C; van Gils, J; Cousins, I T

    2016-02-01

    We present STREAM-EU (Spatially and Temporally Resolved Exposure Assessment Model for EUropean basins), a novel dynamic mass balance model for predicting the environmental fate of organic contaminants in river basins. STREAM-EU goes beyond the current state-of-the-science in that it can simulate spatially and temporally-resolved contaminant concentrations in all relevant environmental media (surface water, groundwater, snow, soil and sediments) at the river basin scale. The model can currently be applied to multiple organic contaminants in any river basin in Europe, but the model framework is adaptable to any river basin in any continent. We simulate the environmental fate of perfluoroctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in the Danube River basin and compare model predictions to recent monitoring data. The model predicts PFOS and PFOA concentrations that agree well with measured concentrations for large stretches of the river. Disagreements between the model predictions and measurements in some river sections are shown to be useful indicators of unknown contamination sources to the river basin. PMID:26414740

  3. Isotope composition of iron delivered to the oceans by intertropical rivers: The Amazon River Basin case

    NASA Astrophysics Data System (ADS)

    Poitrasson, F.; Vieira, L. C.; Seyler, P.; dos Santos Pinheiro, G. M.; Mulholland, D. S.; Ferreira Lima, B. A.; Bonnet, M.; Martinez, J.; Prunier, J.

    2011-12-01

    Riverborne iron is a notable source for this biogeochemically key element to the oceans. Recent investigations have shown that its isotopic composition may vary significantly in oceanic waters. Hence, a proper understanding of the Fe cycle at the surface of the Earth requires a good characterization of the isotopic composition of its various reservoirs. However, as the database growths, it appears that the isotope composition of the riverborne Fe delivered to the oceans may be more varied than initially thought, in agreement with inferences from soil studies from different climatic contexts. It is therefore important to compare major rivers from different latitudes. We focused our attention on the Amazon River and its tributaries that represent ca. 20% of the freshwater delivered to the oceans by world rivers. Preliminary experiments suggest that water filtration may induce biases in stable Fe isotope composition. Therefore, we worked first on bulk waters, sampled during multidisciplinary field campaigns on the Amazon River and its tributaries, including the Solimoes, Negro, Madeira and Tapajos Rivers. Besides a complete sample physical-chemical characterization, Fe isotope determinations were conduced after water sample mineralization, iron purification and MC-ICP-MS analysis. Our first results reveal that most bulk water samples cluster close to the continental crust value (0.1% δ57FeIRMM-14) with an overall range of 0.2%. This is consistent with the restricted range found in lateritic soils elsewhere that represent 80% of the Amazon basin surface. Only black water rivers flowing over the podzols of the northern portion of the Amazon basin tend to show lighter isotopic compositions, down to -0.18%. However, sediment analyses suggest that this light Fe isotopic is lost through sedimentation on the river bed, thereby leading the waters to have Fe isotope compositions remaining close to that of the continental crust. This constant isotopic signature holds whatever

  4. Challenging Futures Studies To Enhance Participatory River Basin Management

    NASA Astrophysics Data System (ADS)

    van der Helm, R.

    Can the field of futures research help advance participatory management of river basins? This question is supposed to be answered by the present study of which this paper will mainly address the theoretical and conceptual point of view. The 2000 EU Framework directive on water emphasises at least two aspects that will mark the future management of river basins: the need for long-term planning, and a demand for participation. Neither the former nor the latter are new concepts as such, but its combination is in some sense revolutionary. Can long-term plans be made (and implemented) in a participative way, what tools could be useful in this respect, and does this lead to a satisfactory situation in terms of both reaching physical targets and enhancing social-institutional manageability? A possibly rich way to enter the discussion is to challenge futures research as a concept and a practice for enabling multiple stakeholders to design appropriate policies. Futures research is the overall field in which several methods and techniques (like scenario analysis) are mobilised to systematically think through and/or design the future. As such they have proven to be rich exercises to trigger ideas, stimulate debate and design desirable futures (and how to get there). More importantly these exercises have the capability to reconstitute actor relations, and by nature go beyond the institutional boundaries. Arguably the relation between futures research and the planning process is rather distant. Understandably commitments on the direct implementation of the results are hardly ever made, but its impact on changes in the capabilities of the network of actors involved may be large. As a hypothesis we consider that the distant link between an image of the future and the implementation in policy creates sufficient distance for actors to participate (in terms of responsibilities, legal constraints, etc.) and generate potentials, and enough degrees of freedom needed for a successful

  5. Streamflow analysis of the Apalachicola, Pearl, Trinity, and Nueces River basins, southeastern United States

    USGS Publications Warehouse

    Greene, K.E.; Slade, R.M., Jr.

    1995-01-01

    Annual mean and annual minimum and maximum daily mean streamflow were compared with associated annual index precipitation for sites on the main channel and tributaries of the Apalachicola, Pearl, Trinity, and Nueces Rivers in the Gulf of Mexico Basin. Precipitation and annual minimum streamflow at the downstream station on each river increased over the available periods of record. No long-term changes were identified in mean and maximum streamflow to the Gulf from the Apalachicola River Basin. Annual mean and maximum streamflow to the Gulf increased with time from the Pearl River Basin and decreased from the Trinity River Basin. Annual mean streamflow showed varied trends and annual maximum streamflow decreased for the Nueces River Basin. Short-term trends in streamflow and precipitation generally corresponded at most stations. Total reported surface-water withdrawals from the Trinity River Basin increased more than fourfold since 1940 and currently represent about one-fourth of the mean streamflow near the mouth of the river. Total reported withdrawals from the Nueces River Basin increased more than eightfold since 1940 and currently represent about one-third of the annual mean streamflow near the mouth. Predicted peak streamflow into the Gulf from the Apalachicola River was 23 percent less for the 50-year peak streamflow after reservoirs were constructed. Annual mean streamflow to the Gulf was reduced following construction of the downstream reservoirs on the Apalachicola and Trinity Rivers. Peak streamflows from the Pearl and Trinity Rivers have not been affected. The annual mean streamflow from the Nueces River was reduced by about 24 percent as a result of filling and evaporation at Choke Canyon Reservoir.

  6. Geohydrologic reconnaissance of the upper Potomac River basin

    USGS Publications Warehouse

    Trainer, Frank W.; Watkins, Frank A.

    1975-01-01

    The upper Potomac River basin, in the central Appalachian region in Pennsylvania, Maryland, Virginia, and West Virginia, is a humid temperate region of diverse fractured rocks. Three geohydrologic terranes, which underlie large parts of the basin, are described in terms of their aquifer characteristics and of the magnitude and duration of their base runoff: (1) fractured rock having a thin regolith, (2) fractured rock having a thick regolith, and (3) carbonate rock. Crystalline rock in the mountainous part of the Blue Ridge province and shale with tight sandstone in the folded Appalachians are covered with thin regolith. Water is stored in and moves through fairly unmodified fractures. Average transmissivity (T) is estimated to be 150 feet squared per day, and average storage coefficient (S), 0.005. Base runoff declines rapidly from its high levels during spring and is poorly sustained during the summer season of high evapotranspiration. The rocks in this geohydrologic terrane are the least effective in the basin for the development of water supplies and as a source of dry-weather streamflow. Crystalline and sedimentary rocks in the Piedmont province and in the lowland part of the Blue Ridge province are covered with thick regolith. Water is stored in and moves through both the regolith and the underlying fractured rock. Estimated average values for aquifer characteristics are T, 200 feet squared per day, and S, 0.01. Base runoff is better sustained in this terrane than in the thin-regolith terrane and on the average .is about twice as great. Carbonate rock, in which fractures have been widened selectively by solution, especially near streams, has estimated average aquifer characteristics of T, 500 feet squared per day, and S, 0.03-0.04. This rock is the most effective in the basin in terms of water supply and base runoff. Where its fractures have not been widened by solution, the carbonate rock is a fractured-rock aquifer much like the noncarbonate rock. At low

  7. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the

  8. Glof Study in Tawang River Basin, Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Panda, R.; Padhee, S. K.; Dutta, S.

    2014-11-01

    Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a

  9. Variations of hydrological characteristics at the rivers of different size in the Lena river basin

    NASA Astrophysics Data System (ADS)

    Semenova, Olga; Tananaev, Nikita; Lebedeva, Luidmila; Popova, Evdokiya

    2016-04-01

    There are many speculations about possible impact of climate change at hydrological regime of Northern Eurasia, and permafrost basins in particular. Though the changes of flow of large rivers are relatively well described, the trends for small and middle-size watersheds are unknown. After the papers by Shiklomanov et al. (2007) and Smith et al. (2007) examining the variations of maximum and minimum flow in Northern Russia by 2001 there was no much update in this issue. In this study we compiled the database of continuous daily runoff for about 110 gauges within the Lena River basin with the order of basin area from 10 to 100000 sq.km. All currently functioning flow gauges with continuous observations not less than 35 years were selected for the database which contains the data up to 2013. For chosen gauges the parameters of row-correlation, cyclic recurrence and the stationarity of main runoff characteristics (mean, maximum and minimum flow) were estimated. The conclusions are drawn about the evidence of unsteadiness and/or internal correlation in runoff series; the robust indicators of the intensity of detected changes are evaluated; the duration of water cycles and evaluation the spatial correlation between water cycles are explored. The study is supported by Russian Foundation for Basic Research (project 15-35-21146 mol_a).

  10. Hydrologic and land-cover features of the Loxahatchee River Basin, Florida

    USGS Publications Warehouse

    McPherson, Benjamin F.; Sabanska, Maryann

    1980-01-01

    Historically the Loxahatchee River basin covered about 270 square miles in southeast Florida. Today the basin covers about 210 square miles and is defined by both topography, manmade features, and water-management policies. About 50% of the basin is wetlands. Urban and agricultural lands cover 17 and 18% of the basin, respectively. Soils are predominantly sandy and poorly drained. Water drains into the estuary, a shallow water body of about 2 square miles. (USGS)

  11. Using GRACE Total Water Storage Changes to constrain River Routing Models in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    de Linage, C.; Lo, M.; Famiglietti, J. S.; Ray, R. L.; Beighley, R. E.

    2010-12-01

    The GRACE mission provides monthly to 10-day maps of Total Water Storage Anomalies corresponding to the vertically integrated land water storage (soil moisture and groundwater) as well as storage in river channels and floodplains (surface waters). The surface water component is an important contributor to total water storage in the Amazon River basin as shown by improved agreement between GRACE observations and model simulations when runoff is routed through the river network as compared to no river routing. We use the Community Land Model version 3.5 to model land water storage along with runoff by accounting for a simple ground water model. Surface and subsurface runoff predictions are then routed using two different routing models: a simple cell-to-cell routing scheme (e.g. Branstetter and Famiglietti, 1999) and the Hillslope River Routing (Beighley et al. 2010). We evaluate model performances against the spatio-temporal variations of GRACE data by carrying out a Singular Value Decomposition of the cross-covariance matrix. We also compare the two models in the light of their respective intrinsic capabilities. We finally investigate the impact of the precipitation data on model outputs by using TRMM products instead of GLDAS (CMAP) products.

  12. Effects of reservoirs on flood discharges in the Kansas and the Missouri River basins, 1993

    USGS Publications Warehouse

    Perry, Charles A.

    1994-01-01

    The floods of 1993 were of historic magnitude as water in the Missouri and the Mississippi Rivers reached levels that exceeded many of the previous observed maximums. Although large parts of the flood plains of both rivers upstream from St. Louis, Missouri, were inundated, water levels would have been even higher had it not been for the large volume of runoff retained in flood-control reservoirs. Most of the total flood-control storage available upstream from St. Louis is located along the main stem and tributaries of the Missouri River; the largest concentration of reservoirs is located within the Kansas River Basin. The Kansas River Basin accounts for about l0 percent (60,000 square miles) of the drainage area of the Missouri River Basin, and reservoirs control streamflow from 85 percent (50,840 square miles) of the drainage area of the Kansas River Basin. Analyses of flood discharges in the Kansas River indicate that reservoirs reduced flooding along the Kansas and the lower Missouri Rivers. Results of analyses of the 1993 flooding, which include total basin rainfall, peak discharge, and total flood volume on the Kansas River, are compared with analyses of the 1951 flood, which had a similar total volume but a substantially larger peak discharge.

  13. Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2006-01-01

    Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.

  14. Ground-water data, Green River basin, Wyoming

    USGS Publications Warehouse

    Zimmerman, Everett Alfred; Collier, K.R.

    1985-01-01

    Hydrologic and geologic data collected by the U.S. Geological Survey as part of energy-related projects in the Green River basin of Wyoming are compiled from the files of the Geological Survey and the Wyoming State Engineer as of 1977. The data include well and spring location, well depth, casing diameter, type of lifts, type of power, use of water, rock type of producing zone, owner, and discharge for more than 1,600 sites. Analyses for common chemical constituents, trace elements, and radioactive chemicals are tabulated as well as water temperature and specific conductance measurement data. Lithologic logs of more than 300 wells, test holes, and measured sections constitute much of this report. County maps at a scale of 1:500 ,000 show the locations. (USGS)

  15. Incorporating safety into surface haulage in the Powder River basin

    SciTech Connect

    Jeffery, W.; Jennings, C.

    1996-12-31

    The Powder River Basin (PRB) coal deposit extends from southeast Montana to northeast Wyoming. This paper describes a number of haulage practices and tools in use at several mines of the southern PRB and the way in which safety has been designed into and implemented for surface haulage of coal and overburden. Experiences described herein focus on the northeastern corner of Wyoming. All the mines in this area rely on safe and efficient movement of enormous volumes of material, and the results achieved in safety underscore the planning and attention to detail present in the PRB. There are currently 12 large surface mines (those greater than 10.0MM tons/year) operating in this area. In 1995, these mines produced over 230.0MM tons of coal.

  16. [Ecological safety assessment of Manas River Basin oasis, Xinjiang].

    PubMed

    Ling, Hong-bo; Xu, Hai-liang; Shi, Wei; Zhang, Qing-qing

    2009-09-01

    By using analytic hierarchy process and fuzzy comprehensive evaluation, an index system for ecological safety assessment was built, and 18 indices in the aspects of water resource, environment, and social economy were selected to assess the ecological safety of Manas River Basin oasis in 2006. In the study area, the ecological situation in 2006 was basically safe, with the membership degree being 0. 3347 and the integrated evaluation score being 0. 551. The water resource safety index, social economy index, and environmental safety index were in the levels of relatively safe, extremely safe, and unsafe, respectively. Water resource index could represent the sustainable development degree of oasis, while social economy index and environment safety index could indicate the oasis development level and environment situation, respectively. These three indices could most reflect the ecological safety level of the oasis. PMID:20030146

  17. Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhi, Y.; Yang, Z. F.; Yin, X. A.

    2013-12-01

    Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. However, conventional studies focus on WF from the perspective of administrative region rather than river basin. Decomposition analysis of WF changes from the perspective of the river basin is more scientific. To address this perspective, we built a framework in which the input-output (IO) model and the Structural Decomposition Analysis (SDA) model for WF could be implemented in a river basin by computing IO data for the river basin with the Generating Regional IO Tables (GRIT) method. This framework is illustrated in the Haihe River Basin (HRB), which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1% to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF; however, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy making in other water-limited river basins.

  18. Andean Basins Morphometry: Assesing South American Large Rivers' Source Areas

    NASA Astrophysics Data System (ADS)

    Bean, R. A.; Latrubesse, E. M.

    2014-12-01

    Presently there are no regional-scale morphometric analyses of Andean fluvial basins. Therefore, we created a continental-scale database of these basins. Our data covers over an area 1,000,000 km2 of the Andes, from Venezuela to Argentina. These basins are the source of some of the largest rivers in the world including the Amazon, Orinoco, Parana, and Magdalena. Morphometric parameters including shape factor, relief ratio, longitudinal profiles and different indices of basin elevation were calculated based on the CGIAR SRTM 4.1 DEM (~90 m resolution). FAO Hydrosheds were used to segment the DEM by major catchment and then manually cut at the Andean zone. In the North and Central Andes, this produced over 500,000 subcatchments, which we reduced to 619 by setting minimum catchment area to 100 km2. We then integrate lithologic data from DNPM geologic data. Our results indicate that sedimentary lithologies dominate Central Andean catchments (n=268,k=4), which cover an area 767,00 km2, while the Northern Andean catchments (covering 350,000 km2) are more varied, dominated by volcanics in the Pacific (n=78), a sedimentary (48%) dominant mix in the Caribbean (n=138) and 60% sedimentary in the Amazon-Orinoco subregion catchments (n=138). Elevation averages are smallest in the north Andes and average maximum elevations (6,026 m) in the Argentinian catchments (n=65) of the Central Andes are the highest. Shape factors range from 0.49 to 0.58 in the North and 0.52 to 0.58 in the Central Andes. There are clear differences in all categories between region and subregion, but that difference does not hinge on a single morphometric or geologic parameter. Morphometric parameters at a watershed scale (listed in Table) are analyzed and hydrologic data from gauging stations throughout the Andes (n=100) are used to compare morphometric parameters with lithology and characteristics from the basin hydrograph (peak discharge timing, minimum and maximum discharge, and runoff).

  19. Frequency and Intensity of drought events over Ebro River basin

    NASA Astrophysics Data System (ADS)

    Valencia, J. L.; Saa-Requejo, A.; Gascó, J. M.; Tarquis, A. M.

    2012-04-01

    Lately, several researchers have pointed out that climate change is expected to increase temperatures and lower rainfall in Mediterranean regions, simultaneously increasing the intensity of extreme rainfall events. These changes could have consequences regarding rainfall regime, erosion, sediment transport and water quality, soil management, and new designs in diversion ditches. Climate change is expected to result in increasingly unpredictable and variable rainfall, in amount and timing, changing seasonal patterns and increasing the frequency of extreme weather events. Consequently, the evolution of frequency and intensity of drought periods is of most important as in agro-ecosystems many processes will be affected by them. Realising the complex and important consequences of an increasing frequency of extreme droughts at the Ebro River basin, our aim is to study the evolution of drought events at this site statistically, with emphasis on the occurrence and intensity of them. For this purpose, fourteen meteorological stations were selected based on the length of the rainfall series and the climatic classification to obtain a representative untreated dataset from the river basin. Daily rainfall series from 1957 to 2002 were obtained from each meteorological station and no-rain period frequency as the consecutive numbers of days were extracted. Based on this data, we study changes in the probability distribution in several sub-periods. Moreover we used the Standardized Precipitation Index (SPI) for identification of drought events in a year scale and then we use this index to fit log-linear models to the contingency tables between the SPI index and the sub-periods, this adjusted is carried out with the help of ANOVA inference. Funding provided by ENESA, under projects P030225764 and P070225564, and by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  20. Future high flows in Jinhua River Basin, east China

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tian, Y.; Zhang, X.

    2012-12-01

    The extreme high flows in Jinhua River basin under the impact of climate change for the future period 2011-2040 is analyzed in this study. The future projections are obtained through the PRECIS model with a resolution of 50km×50km under emission scenario A1B. The daily precipitation from the regional climate model PRECIS is bias corrected by distribution based scaling method. Afterwards, three lumped hydrological models (GR4J, HBV and Xinanjiang) are used to simulate the daily discharge, driven with both bias corrected and raw precipitation from the PRECIS model for 2011-2040. It is found that for the three hydrological models, the simulated annual maximum discharges are higher by using the raw precipitation from PRECIS than by bias corrected precipitation at any return period. The largest difference reaches 8000 m3/s. Meanwhile, there are differences in the annual maximum discharge derived from hydrological models (see Figure 1). The largest difference between three models is about 3200 m3/s. In most of the time, the GR4J model predicts the highest annual maximum discharge; the lowest is for Xinanjiang and HBV is in between. Compared to date, the flood risk in the future under scenario A1B tends to be larger estimated by GR4J and smaller by Xinanjiang. The HBV model predicts petty much similar results as the present. With different models, the changing range of design discharge for 100 years return period is six times as much as that for 3 years return period, indicating large uncertainty from hydrological models. design discharge versus return periods from the observation, the GR4J model, the HBV model and the Xinanjiang model for the Jinhua River Basin

  1. Impact of climate change on river discharge in the Teteriv River basin (Ukraine)

    NASA Astrophysics Data System (ADS)

    Didovets, Iulii; Lobanova, Anastasia; Krysanova, Valentina; Snizhko, Sergiy; Bronstert, Axel

    2016-04-01

    The problem of water resources availability in the climate change context arises now in many countries. Ukraine is characterized by a relatively low availability of water resources compared to other countries. It is the 111th among 152 countries by the amount of domestic water resources available per capita. To ensure socio-economic development of the region and to adapt to climate change, a comprehensive assessment of potential changes in qualitative and quantitative characteristics of water resources in the region is needed. The focus of our study is the Teteriv River basin located in northern Ukraine within three administrative districts covering the area of 15,300 km2. The Teteriv is the right largest tributary of the Dnipro River, which is the fourth longest river in Europe. The water resources in the region are intensively used in industry, communal infrastructure, and agriculture. This is evidenced by a large number of dams and industrial objects which have been constructed from the early 20th century. For success of the study, it was necessary to apply a comprehensive hydrological model, tested in similar natural conditions. Therefore, an eco-hydrological model SWIM with the daily time step was applied, as this model was used previously for climate impact assessment in many similar river basins on the European territory. The model was set up, calibrated and validated for the gauge Ivankiv located close to the outlet of the Teteriv River. The Nash-Sutcliffe efficiency coefficient for the calibration period is 0.79 (0.86), and percent bias is 4,9% (-3.6%) with the daily (monthly) time step. The future climate scenarios were selected from the IMPRESSIONS (Impacts and Risks from High-End Scenarios: Strategies for Innovative Solutions, www.impressions-project.eu) project, which developed 7 climate scenarios under RCP4.5 and RCP8.5 based on GCMs and downscaled using RCMs. The results of climate impact assessment for the Teteriv River basin will be presented.

  2. A Synoptic Survey of Nitrogen and Phosphorus in Tributary Streams and Great Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    We combined stream chemistry and hydrology data from surveys of 467 tributary stream sites and 447 great river sites in the Upper Mississippi River basin to provide a regional snapshot of baseflow total nitrogen (TN) and total phosphorus (TP) concentrations, and to investigate th...

  3. THE EFFECT OF VARYING ELECTROFISHING DESIGN ON BIOASSESSMENT RESULTS OF FOUR LARGE RIVERS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    In 1999, the effect of electrofishing design (single bank or paired banks) and sampling distance on bioassessment results was studied in four boatable rivers in the Ohio River basin. The relationship between the number of species collected and the total distance electrofished wa...

  4. Water quality assessment of the Sacramento River Basin, California; environmental setting and study design

    USGS Publications Warehouse

    Domagalski, Joseph L.; Knifong, Donna L.; MacCoy, Dorene E.; Dileanis, Peter D.; Dawson, Barbara J.; Majewski, Michael S.

    1998-01-01

    This report describes the environmental setting and investigative activities of the Sacramento River Basin study unit of the National Water-Quality Assessment Program. The Sacramento River Basin is one of 60 study units located throughout the United States that has been scheduled for study as part of the National Water-Quality Assessment Program. The Sacramento River Basin is the most important source of freshwater in California. Water quality studies in the Sacramento River Basin study unit focus on the Sacramento Valley because it is here that the principal uses of water and potential impacts on water quality occur. Investigative activities include a network of surface water sites, where water chemistry and aquatic biological sampling are done, and a variety of ground water studies. In addition, investigations of the cycling and distribution of volatile organic compounds in the urban environment and the distribution of total and methyl mercury in the Sacramento River and tributaries will be completed.

  5. Hydrologic investigations in the Araguaia-Tocantins River basin (Brazil)

    USGS Publications Warehouse

    Snell, Leonard J.

    1979-01-01

    The Araguaia-Tocantins River basin system of central and northern Brazil drains an area of about 770,000 square kilometers and has the potential for supporting large-scale developments. During a short visit to the headquarters of the Interstate Commission for the Araguaia-Tocantins Valley and to several stream-gaging stations in June 1964, the author reviewed the status of the streamflow and meteorological data-collection programs in relation to the streamflow and meteorological data-collection programs in relation to the pressing needs of development project studies. To provide data for areal and project-site studies and for main-stream sites, an initial network of 33 stream gaging stations was proposed, including the 7 stations then in operation. Suggestions were made in regard to operations, staffing and equipment. Organizational responsibilities for operations were found to be divided uncertainly. The Brazilian Meteorological Service had 15 synoptic stations in operation in and near the basin, some in need of reconditioning. Plans were at hand for the addition of 15 sites to the synoptic network and for limited data collection at 27 other sites. The author proposed collection of precipitation data at about 50 other locations to achieve a more representative areal distribution. Temperature, evaporation, and upper-air data sites were suggested to enhance the prospective hydrometeorological studies. (USGS)

  6. Changes in precipitation and temperature in Xiangjiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Ma, Chong; Pan, Suli; Wang, Guoqing; Liao, Yufang; Xu, Yue-Ping

    2016-02-01

    Global warming brings a huge challenge to society and human being. Understanding historic and future potential climate change will be beneficial to regional crop, forest, and water management. This study aims to analyze the precipitation and temperature changes in the historic period and future period 2021-2050 in the Xiangjiang River Basin, China. The Mann-Kendall rank test for trend and change point analysis was used to analyze the changes in trend and magnitude based on historic precipitation and temperature time series. Four global climate models (GCMs) and a statistical downscaling approach, LARS-WG, were used to estimate future precipitation and temperature under RCP4.5. The results show that annual precipitation in the basin is increasing, although not significant, and will probably continue to increase in the future on the basis of ensemble projections of four GCMs. Temperature is increasing in a significant way and all GCMs projected continuous temperature increase in the future. There will be more extreme events in the future, including both extreme precipitation and temperature.

  7. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-04-01

    Since marine derived nutrients (MDN) are transported not only in river channels but also across the entire river basin, including via ground water and migratory animals, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen (TN) input across a river basin using stable isotope analysis (SIA) of nitrogen (δ15N). The contribution of TN entering the river basin by salmon was 23.8 % relative to the total amount of TN exported from the river basin, providing a first estimate of MDN export for a river basin. The contribution of nitrogen from the ocean to the river basin soils was between 22.9 and 23.8 %. Furthermore, SIA showed that the transport of oceanic TN by sea eagles (Haliaeetus spp.) was greater than that by bears (Ursus arctos), which had previously been that bears are thought to be the major animal transporter of nutrients in the northern part of Japan.

  8. Guidebook to the coal geology of the Powder River coal basin, Wyoming

    SciTech Connect

    Glass, G.B.

    1980-01-01

    This survey of Wyoming's Powder River Coal Basin was done in June 1980, with emphasis on coal geology and specifically environments of coal deposition. A geologic map explanation was included. The survey included: (1) the regional depositional framework of the uranium- and coal-bearing Wasatch (Eocene) and Fort Union (Paleocene) Formations, Powder River Basin; (2) the Lake De Smet Coal Seam: the product of active basin-margin sedimentation and tectonics in the Lake De Smet Area, Johnson County, Wyoming, during Eocene Wasatch time; (3) fluvial coal settings of the Tongue River Member of the Fort Union Formation in the Powder River Clear Creek Area; (4) coal resources of the Powder River Coal basin; (5) survey of chemical and petrographic characteristics of Powder River Basin coals; and (6) the Rawhide Coal Mine, Campbell County, Wyoming. The depositional framework of the Fort Union and Wasach formations is characterized by a northward-flowing intermountain basinal fluvial system. The paleogeographic reconstruction of the fluvial settings of the Tongue River Member deposits in the Powder River-Clear Creek area sugges two important subenvironments of coal accumulation. The thickest and most important coals are found in the Paleocene Fort Union Formation and the Eocene Wasatch Formation. Each section was discussed in detail. (DP)

  9. Seismic exploration for oil and gas traps in Wind River Basin: a Laramide example

    SciTech Connect

    Ray, R.R.; Keefer, W.R.

    1985-05-01

    The Wind River Basin in central Wyoming is typical of the large sedimentary and structural basins that formed in the Rocky Mountain region during the Laramide deformation in latest Cretaceous and early Tertiary times. Northeast-southwest-oriented seismic profiles across the Wind River basin and flanking Owl Creek and Bighorn Mountains illustrate the structural configuration and correspondent stratigraphic development of a typical Laramide intermontane basin. Understanding the geometry of the basin margin and the timing of structural movement aids in prospecting for mountain-front subthrust structures, like Tepee Flats field, and stratigraphic traps, like Haybarn field, in fluvial and lacustrine basin-fill sequences. The Wind River basin is structurally asymmetric with the basin axis close to the Owl Creek Mountains and Casper Arch thrusts, which form the north and east basin boundaries. Major Laramide deformation began in latest Cretaceous time (beginning of Lance Formation deposition) with pronounced downwarping of the basin trough and broad doming of parts of the peripheral areas. The intensity of movement increased through the Paleocene and culminated in early Eocene time as high mountains were uplifted along thrust faults. Clastic debris, stripped from the surrounding rising mountain arches, was shed basinward, resulting in a pronounced wedge-shaped accumulation of fluvial and lacustrine sediments now representing the Lance, Fort Union, Indian Meadows, and Wind River Formations.

  10. Temporal and spatial variability of drought in Huang-Huai-Hai River Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Zhe; Yan, Deng-Hua; Yang, Zhi-Yong; Yin, Jun; Yuan, Yong

    2015-11-01

    Drought is a kind of extreme hydrological event. With the penetration of climate change impact, severity, areal extent, and frequency of drought are increasing, especially in Huang-Huai-Hai River Basin, which plays a key role in China's agriculture production. Analyzing the regional temporal and spatial variability in the context of climate change could provide a basis for the evasion of disasters and risk. The maximum number of consecutive dry days was selected as the indicator to analyze the decadal variability of drought severity, areal extent, and spatial variability of drought frequency in different seasons in Huang-Huai-Hai River Basin. Based on these, temporal and spatial variability of two kinds of special extreme events—consecutive drought and heavy rain after drought—were studied. The results showed that: (1) Huang-Huai-Hai River Basin mainly experienced moderate drought and severe drought. Moderate drought mainly occurs in autumn. High-frequency region of moderate drought is located in the plain of Huang-Huai-Hai River Basin, and its area is approximately 22.7 % of Huang-Huai-Hai River Basin. Severe drought often occurs in spring with high-frequency region in the upstream of the Yellow River. The area of this high-frequency region is about 6 % of Huang-Huai-Hai River Basin. (2) During 1961~2011, the areal extent of summer severe drought, autumn severe drought, and extreme drought all showed increasing trend, in which the increasing trend of the autumn severe drought area in the Yellow River has reached the significance level α = 0.05. (3) Consecutive drought of several seasons often took place in Ningxia plain and Hetao plain which lie in the northwest of the Yellow River Basin. In the recent 20 years, consecutive drought from spring to summer and consecutive drought from summer to autumn occurred frequently. Drought-flood abrupt alternation such as heavy rain after drought often occurred in summer temporally and Huaihe River Basin spatially.

  11. Watershed nitrogen and phosphorus balance: The upper Potomac River basin

    SciTech Connect

    Jaworski, N.A.; Groffman, P.M.; Keller, A.A.; Prager, J.C.

    1992-01-01

    Nitrogen and phosphorus mass balances were estimated for the portion of the Potomac River basin watershed located above Washington, D.C. The total nitrogen (N) balance included seven input source terms, six sinks, and one 'change-in-storage' term, but was simplified to five input terms and three output terms. The phosphorus (P) baance had four input and three output terms. The estimated balances are based on watershed data from seven information sources. Major sources of nitrogen are animal waste and atmospheric deposition. The major sources of phosphorus are animal waste and fertilizer. The major sink for nitrogen is combined denitrification, volatilization, and change-in-storage. The major sink for phosphorus is change-in-storage. River exports of N and P were 17% and 8%, respectively, of the total N and P inputs. Over 60% of the N and P were volatilized or stored. The major input and output terms on the budget are estimated from direct measurements, but the change-in-storage term is calculated by difference. The factors regulating retention and storage processes are discussed and research needs are identified.

  12. Yakima River Basin Phase II Fish Screen Evaluations, 2002

    SciTech Connect

    Carter, Jessica A.; McMichael, Geoffrey A.; Chamness, Mickie A.

    2003-03-01

    In 2002, the Pacific Northwest National Laboratory evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. Pacific Northwest National Laboratory collected data to determine whether velocities in front of the screens and in the bypasses met National Marine Fisheries Service criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. In addition, Pacific Northwest National Laboratory conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2002, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Marine Fisheries Service. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to increase safe juvenile fish passage. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris should be improved at some sites.

  13. Enhanced Drought Monitoring in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Doesken, N.; Smith, R.; Ryan, W.; Schwalbe, Z.; Verdin, J. P.

    2012-12-01

    As a part of the National Integrated Drought Information System's Upper Colorado River Basin pilot project, an aggressive collaborative drought monitoring and communication process was initiated in 2010. Weekly climate, drought and water supply assessments were begun which included webinars during critical times of the year -- primarily late January through mid summer. A diverse set of stakeholders ranging from ski area operators, river commissioners, state and federal agency representatives, public land managers, municipal water providers, agricultural interests and media from a 3-state area were invited to participate along with National Weather Service forecast office personal, state climate office representatives and other information providers. The process evolved to become a weekly drought monitoring "committee" providing detailed input to the U.S. Drought Monitor national author. In 2012 this new system was put to the test as dry winter conditions exploded into extreme and widespread drought as the normal spring storms failed to materialize and instead long-duration above average temperatures added evaporative stress to the already limited water supplies. This presentation examines this effort with an emphasis on stakeholder engagement. The overall impact of the 2012 drought appears, so far, to be less than what was experienced in 2002 although measured stream flow appears tp be similar. To what extent this could be attributed to the enhanced drought monitoring and communication will be discussed. The sustainability of this aggressive monitoring effort will also be assessed.

  14. Arsenic mobility in sediments from Paracatu River Basin, MG, Brazil.

    PubMed

    Rezende, Patrícia Sueli; Costa, Letícia Malta; Windmöller, Cláudia Carvalhinho

    2015-04-01

    Paracatu River Basin, Minas Gerais, Brazil, houses long areas of irrigated agriculture and gold-, lead-, and zinc-mining activities. This region has a prevalence of sulfide minerals and a natural occurrence of high levels of arsenopyrite. In this work, surface water, groundwater, sediments and local vegetable samples were collected in October 2010 and November 2011 and were analyzed to evaluate arsenic (As) distribution, mobility, and transport in these environmental compartments. All sediment samples (738-2,750 mg kg(-1)) and 37 % of the water samples [less than the limit of detection (LOD) to 110 µg L(-1)] from the rivers and streams of Paracatu had As concentrations greater than the quality standards established by national and international environmental organizations (5.9 mg kg(-1) for sediments and 10 µg L(-1) for water). Most vegetable samples had As concentrations within the normal range for plants (lower than the LOD to 120 mg kg(-1)). A correlation among As concentrations in water, sediment, and vegetable samples was verified. PMID:25672271

  15. Herbicide and degradate flux in the Yazoo River Basin

    USGS Publications Warehouse

    Coupe, R.H.; Welch, H.L.; Pell, A.B.; Thurman, E.M.

    2005-01-01

    During 1996-1997, water samples were collected from five sites in the Yazoo River Basin and analysed for 14 herbicides and nine degradates. These included acetochlor, alachlor, atrazine, cyanazine, fluometuron, metolachlor, metribuzin, molinate, norflurazon, prometryn, propanil, propazine, simazine, trifluralin, three degradates of fluometuron, two degradates of atrazine, one degradate of cyanazine, norflurazon, prometryn, and propanil. Fluxes generally were higher in 1997 than in 1996 due to a greater rainfall in 1997 than 1996. Fluxes were much larger from streams in the alluvial plain (an area of very productive farmland) than from the Skuna River in the bluff hills (an area of small farms, pasture, and forest). Adding the flux of the atrazine degradates to the atrazine flux increased the total atrazine flux by an average of 14.5%. The fluometuron degradates added about 10% to the total fluometuron flux, and adding the norflurazon degradate flux to the norflurazon flux increased the flux by 82% in 1996 and by 171% in 1997. ?? 2005 Taylor & Francis.

  16. Observed low flow trends in major US river basins

    NASA Astrophysics Data System (ADS)

    Pournasiri Poshtiri, M.; Pal, I.

    2014-12-01

    Changes in global climate would likely be associated with impacts on regional hydrological cycle, such as changes in variability of precipitation and stream flow. Hence, to formulate and implement climate risk management strategies, it is essential to detect where and when hydrological extremes have been changing and to what extent. This scientific research presents where and how low flow characteristics, particularly the occurrence, intensity and severity of hydrological extremes, have been changing in fourteen major river basins within the continental U.S. Of particular interest is to detect if monotonic trends in low flow characteristics shifted with decades, reflecting the known climatic shifts, particularly before and after 1980. Persistent low flow conditions in a river can directly influence water supply for domestic, agricultural, industrial, ecological, and other needs; and a monotonic trend in such persistent low flow condition can lead to chronic water scarcity—a main driver of societal and cross-boundary conflicts around the world. Thus, outcomes from this research are instrumental for the water managers to develop suitable adaptive management measures at the locations and times of need.

  17. UPPER SNAKE RIVER PRIORITY BASIN ACCOMPLISHMENT PLAN, APRIL 1973

    EPA Science Inventory

    The Upper Snake Accomplishment Basin (17040104, 170402, 170501) is defined as the Idaho and Oregon portions of 2 STORET Basins, the Upper Snake Basin and the Central Snake Basin. The Basin drains approximately 62,100 square miles in Southern Idaho and Southeastern Oregon. Four ...

  18. A hydrochemical reconnaissance study of the Walker River basin, California and Nevada

    USGS Publications Warehouse

    Benson, L.V.; Spencer, R.J.

    1983-01-01

    During 1975 and 1976, a large number of water and sediment samples were collected from the Walker River Basin. Additional surface water samples were collected during 1980 and 1981. Data are given herein for chemical analyses of snowmelt, tributary, river, spring, well, lake, reservoir, lake sediment pore fluid, tufa, lake and river sediment samples. These data provide the basis for consideration of processes which govern the chemical evolution of large closed basin hydrologic systems in the Basin and Range Province of the Southwestern United States.

  19. Gazetteer of hydrologic characteristics of streams in Massachusetts; Connecticut River basin

    USGS Publications Warehouse

    Wandle, S.W.

    1984-01-01

    The Connecticut River basin study area includes streams draining the Ashuelot River (6.6 square miles), Millers River (389 square miles), Deerfield River (663 square miles), Chicopee River (727 square miles), Westfield River (517 square miles), Farmington River (158 square miles), and Connecticut River lowlands (656 square miles) basin in western Massachusetts, northern Connecticut, southern Vermont, and southern New Hampshire. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were re-computed for data-collection sites. Streamflow characteristics at 45 gaging stations, representing statistics were calculated using a new data base with daily flow records through 1981. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. Seven-day low-flow statistics are presented for 118 partial-record sites, and the procedures used to determine the hydrologic characteristics of a basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are presented for 54 sites in the Connecticut River basin. This gazetteer will aid in the planning and siting of water-resources related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)

  20. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  1. Characterizing 13 Years of Surface Water Variability from MODIS-based Near Real-Time Flood Mapping Products in the Indus River, Tonle Sap Lake, and Lake Chad.

    NASA Astrophysics Data System (ADS)

    Slayback, D. A.; Brakenridge, G. R.; Policelli, F. S.

    2015-12-01

    Driven by an increase in extreme weather events in a warming world, flooding appears to be increasing in many regions. Since 2012, we have been using the twice-daily near-global observations of the two MODIS instruments to operate a near real-time flood mapping capability. Primarily intended to support disaster response efforts, our system generates daily near-global maps of flood water extent, at 250 m resolution. Although cloud cover is a challenge, the twice-daily coverage from the Terra and Aqua satellites helps to capture most major events. We use the MOD44W product (the "MODIS 250-m land-water mask") to differentiate "normal" water from flood water. Products from the system are freely available, and used by disaster response agencies and academic and industry researchers. An open question, however, is: how "normal" are recently observed floods? Destructive and — as reported by the press — record floods seem to be occurring more and more frequently. With the MODIS archive going back to 1999 (Terra satellite) and 2002 (Aqua satellite), we now have more than a decade of twice-daily near-global observations to begin answering this question. Although the 13 years of available twice-daily data (2002-2015) are not sufficient to fully characterize surface water normals (e.g., 100-year floods), we can start examining recent trends in surface water extent and flood frequency. To do so, we have back-processed our surface water product through mid-2002 (Aqua launch) for a few regions, and have used this to evaluate the variability in surface water extent and flood frequency. These results will eventually feed back into an improved characterization of flood water in our near real-time flood product. Here we will present results on trends in surface water extent and flood frequency for a few regions, including the Indus in Pakistan, the Tonle Sap lake in Cambodia, and lake Chad in Africa.

  2. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed Central

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-01-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9703496

  3. Geology and resource appraisal of the Felix coal deposit, Powder River basin, Wyoming

    SciTech Connect

    Kent, B.H.; Weaver, J.N.; Boberts, S.B. ); Ming, T.; Shu, L.; Bangzhuo, M.

    1988-01-01

    The Powder River basin in Wyoming and Montana and the Ordos Basin in the Shaanxi Province of China were selected for study as part of Project 6, a joint program for coal basin exploration and analysis between the United States and the People's Republic of China. Some of the largest coal deposits in the world occur in Paleocene and Eocene rocks on the eastern flank of the Powder River basin. The authors report that the Felix coal is small compared to underlying deposits such as the Wyodak coal in upper Paleocene rocks.

  4. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington

    USGS Publications Warehouse

    Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E.

    2009-01-01

    The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet. Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4x10-7 to 4 ft/d. Variations in the concentrations of geochemical solutes and the concentrations and ratios of the isotopes of hydrogen, oxygen, and carbon in groundwater provided information on the hydrogeologic framework and groundwater movement. Stable isotope ratios of water (deuterium and oxygen-18) indicated dispersed sources of groundwater recharge to

  5. Floods simulation in the Crişul Alb River Basin using hydrological model CONSUL

    NASA Astrophysics Data System (ADS)

    Mic, Rodica Paula; Corbus, Ciprian; Matreata, Marius

    2016-04-01

    For the simulation of floods, in the Crişul Alb River Basin, Romanian hydrological model CONSUL with lumped parameters was used. This deterministic mathematical rainfall-runoff model compute discharge hydrographs on configured river sub-basins, their channel routing and composition on the main river and tributaries and finally their routing and mitigation through reservoirs, according to the schematic representation (topological modelling) of how water flows and integrate in a river basin. After topological modelling 42 sub-basins and 19 river reaches resulted for the Crişul Alb River Basin model configuration, established according to the position of tributaries, hydrometric stations and reservoirs that influence flow. The CONSUL model used as input data, for each sub-basin, average values of precipitation and air temperature determined based on the measured values of weather stations in the basin. Calculation of average values was performed using a pre-processing program of meteorological data from rectangular grid nodes corresponding to Crişul Alb River Basin, averaging being achieved as weighted values based on the representativeness of these nodes for each analyzed sub-basin. Calibration of model parameters was performed by the simulation of 25 rainfall-runoff events from the period 1975 - 2010, chosen to cover a wide range of possible situations in the case of floods formation. By simulating floods from the hydrometric stations located in the closing sections of river sub-basins were determined the infiltration and unit hydrograph parameters and by simulating floods from the hydrometric stations located in the downstream sections of the river reaches hydrometrically controlled were determined the routing equation parameters. The parameters thus determined allow building some generalization relationships of these parameters according to the morphometric characteristics of the river sub-basins (surface, slope) or river reaches (length, slope). Based on these

  6. Nutrient limitation of a thermokarst lake and large river ecosystem in the Kolyma River basin (Russia)

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Heslop, J.; Sobczak, W. V.; Schade, J. D.; Spektor, V.; Holmes, R. M.; Bunn, A. G.; Bulygina, E. B.; Walter Anthony, K. M.; Frey, K. E.; Zimov, N.; Zimov, S. A.

    2010-12-01

    Productivity (autotrophic phytoplankton and heterotrophic bacteria) are important food web components that govern the carbon cycling dynamics in aquatic ecosystems. Productivity is often regulated by macro- and micro micronutrient availability which can vary across the globe (polar, temperate, tropical, continents, latitude, etc.) and ecosystem (lake, river, estuary). Until recentely, very little research has been conducted in Polar aquatic ecosystems, particularly continuous permafrost regions, to understand nutrient limitation of lake productivity even though large scale disturbances from permafrost thaw may be changing the nutrient availability to these ecosystems. The objective of this study was to evaluate the nutrient limitation to surface productivity of a river and lake in the Kolyma River Basin, an area where observed methane and dissolved organic carbon transport from upland sources to the ocean has been observed. After 4 days and elevating nutrients to 10 times the background concentrations in a 75 L volume mesocosms, we determined autochthonous production in the Panteleja river was colimited by nitrogen and phosphorus before and during an algal bloom. In contrast, Suchi Lake, a thermokarst ecosystem, exhibited no response to nutrient additions indicating that other factors may limit production.

  7. Influence of natural and human factors on pesticide concentrations in surface waters of the White River Basin, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.

    1996-01-01

    Pesticide concentrations in surface waters of the White River Basin are affected by natural and human factors. For example, concentrations of atrazine, a herbicide widely used on corn in the White River Basin, tended to be higher in an agricultural basin with permeable, welldrained soils, than in an agricultural basin with less permeable, more poorly drained soils. Concentrations of butylate, another herbicide used on corn, were substantially higher in an agricultural basin in the southern part of the White River Basin than in an agricultural basin in the central part of the White River Basin, corresponding to the higher use of this compound in southern Indiana. Concentrations of diazinon were substantially higher in a predominantly urban basin than in two predominantly agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas.

  8. Future water resources for food production in five South Asian river basins and potential for adaptation--a modeling study.

    PubMed

    Biemans, H; Speelman, L H; Ludwig, F; Moors, E J; Wiltshire, A J; Kumar, P; Gerten, D; Kabat, P

    2013-12-01

    The Indian subcontinent faces a population increase from 1.6 billion in 2000 towards 2 billion around 2050. Therefore, expansion of agricultural area combined with increases in productivity will be necessary to produce the food needed in the future. However, with pressure on water resources already being high, and potential effects of climate change still uncertain, the question rises whether there will be enough water resources available to sustain this production. The objective of this study is to make a spatially explicit quantitative analysis of water requirements and availability for current and future food production in five South Asian basins (Indus, Ganges, Brahmaputra, Godavari and Krishna), in the absence or presence of two different adaptation strategies: an overall improvement in irrigation efficiency, and an increase of reservoir storage capacity. The analysis is performed by using the coupled hydrology and crop production model LPJmL. It is found that the Godavari and Krishna basins will benefit most from an increased storage capacity, whereas in the Ganges and the Indus water scarcity mainly takes place in areas where this additional storage would not provide additional utility. Increasing the irrigation efficiency will be beneficial in all basins, but most in the Indus and Ganges, as it decreases the pressure on groundwater resources and decreases the fraction of food production that would become at risk because of water shortage. A combination of both options seems to be the best strategy in all basins. The large-scale model used in this study is suitable to identify hotspot areas and support the first step in the policy process, but the final design and implementation of adaptation options requires supporting studies at finer scales. PMID:23928370

  9. Analysis of fixed-station water-quality data in the Umpqua River basin, Oregon

    USGS Publications Warehouse

    Rinella, J.F.

    1986-01-01

    An appraisal of surface water quality in the Umpqua River basin was made using existing monthly data collected by the Oregon Department of Environmental Quality and the U.S. Geological Survey in cooperation with the Douglas County Water Resources Survey. This appraisal was limited to interpretation of instantaneous monthly water quality data collected in the Umpqua River basin from water years 1974 to 1983. These data were used to compare water quality conditions throughout the basin and to determine if data collected from the NASQAN (National Stream Quality Accounting network) station are representative of upstream basin conditions. In general, data collected at the NASQAN station represent a composite of water quality from the North and South Umpqua Rivers. These river basins account for 82 % of the NASQAN station drainage. Water quality concentrations, loads, yields, and trends were statistically described and related to point source effluent loads and basin characteristics including geohydrology, hydrology, population, land use, and water use. Available point-and nonpoint-source data provided minimal information for determining cause-effect relations and for explaining observed trends in water quality; however, the data did indicate that the largest effluent discharges are located in the South Umpqua River basin in the Roseburg-Winston area. Instantaneous and annual flow weighted levels of specific conductance, phosphorus, organic plus ammonia nitrogen, nitrite plus nitrate, and fecal coliform bacteria are generally highest in the South Umpqua River near Roseburg. These high levels generally occur during the summer months when river flow is extremely low relative to flow in the North Umpqua River. The North Umpqua River has among the lowest constituent concentrations observed in the basin. (Lantz-PTT)

  10. Turbidity and suspended-sediment transport in the Russian River Basin, California

    USGS Publications Warehouse

    Ritter, John R.; Brown, William M., III

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  11. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  12. Scale-dependent controls on the metabolic organization of river basins

    NASA Astrophysics Data System (ADS)

    Caylor, K.; Rodriguez-Iturbe, I.

    2012-04-01

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. Recently, a principle of equal metabolic rate per unit area throughout the basin structure has been developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. While the empirical evidence suggests that river basin metabolic activity is linked with the fractal geometry of the network, a challenge remains in understanding how and when such organization plays a determining role in governing basin hydrological dynamics. In this presentation, I will review prior work seeking to understand the role of vegetation in governing basin response and propose use of geomorphological scaling laws as means for determining the potential for surface pattern (i.e. vegetation structure) to impact the dynamical behavior of river basin metabolism.

  13. Chemical weathering and associated carbon-dioxide consumption in a tropical river basin (Swarna River), Southwestern India

    NASA Astrophysics Data System (ADS)

    Muguli, T.; Gurumurthy, G. P.; Balakrishna, K.; Audry, S.; Riotte, J.; Braun, J.; Chadaga, M.; Shankar HN, U.

    2013-12-01

    Chemical weathering in river basins forms the key process to study the global climate change on a long term scale due to its association with the carbon sequestration. Water samples from a west flowing tropical river (Swarna River) of Southern India were collected for a period of two years to study the chemical weathering process and to quantify the weathering and associated carbon-dioxide consumption rates in the river basin. In addition, the major ion chemistry of Swarna River is studied for the first time on a spatial and temporal (monthly) scale to decipher the factors (lithology, precipitation/ discharge, temperature, slope and physical weathering) controlling the chemical weathering process. Swarna River originates in Western Ghats at an altitude of 1100 m above mean sea level and flows westwards draining Peninsular Gneiss and Dharwar Schist to join the Arabian Sea near Udupi. The river basin receives annual rainfall of 4500 mm and experiences warm climate with average temperature of 30°C. Major ion composition and radiogenic strontium isotopic composition measured in the Swarna river water reflects the influence of silicate rocks in the basin. The river water chemistry is found to be least affected by anthropogenic impact; however, the effect of evaporation is observed on few samples during the peak dry season. The atmospheric inputs and carbonate contributions to the river water are corrected to estimate the silicate weathering rate (SWR) and the associated carbon-dioxide consumption rate (CCR) using local rainwater and bed rock composition respectively. The SWR and CCR in the Swarna river basin are estimated to be 46 tons/km2/yr and 4.4 x 10^5 mol/km2/yr respectively. This estimation is observed to be relatively higher than the recently reported SWR and CCR in the adjacent larger Nethravati river basin (Gurumurthy et al., 2012). The increased rate could be attributed to the relatively higher precipitation in the Swarna river basin than the lithological

  14. Coupled Teleconnections and River Dynamics for Enhanced Hydrologic Forecasting in the Upper Colorado River Basin USA

    NASA Astrophysics Data System (ADS)

    Matter, M. A.; Garcia, L. A.; Fontane, D. G.

    2005-12-01

    Accuracy of water supply forecasts has improved for some river basins in the western U.S.A. by integrating knowledge of climate teleconnections, such as El Niño/Southern Oscillation (ENSO), into forecasting routines, but in other basins, such as the Colorado River Basin (CRB), forecast accuracy has declined (Pagano et al. 2004). Longer lead time and more accurate seasonal forecasts, particularly during floods or drought, could help reduce uncertainty and risk in decision-making and lengthen the period for planning more efficient and effective strategies for water use and ecosystem management. The goal of this research is to extend the lead time for snowmelt hydrograph estimation by 4-6 months (from spring to the preceding fall), and at the same time increase the accuracy of snowmelt runoff estimates in the Upper CRB (UCRB). We hypothesize that: (1) UCRB snowpack accumulation and melt are driven by large scale climate modes, including ENSO, PDO and AMO, that establish by fall and persist into early spring; (2) forecast analysis may begin in the fall prior to the start of the primary snow accumulation period and when energy to change the climate system is decreasing; and (3) between fall and early spring, streamflow hydrographs will amplify precipitation and temperature signals, and thus will evolve characteristically in response to wet, dry or average hydroclimatic conditions. Historical in situ records from largely unregulated river reaches and undeveloped time periods of the UCRB are used to test this hypothesis. Preliminary results show that, beginning in the fall (e.g., October or November) streamflow characteristics, including magnitude, rate of change and variability, as well as timing and magnitude of fall/early winter and late winter/early spring season flow volumes, are directly correlated with the magnitude of the upcoming snowmelt runoff (or annual basin yield). The use of climate teleconnections to determine characteristic streamflow responses in the

  15. A history of early geologic research in the Deep River Triassic Basin, North Carolina

    USGS Publications Warehouse

    Clark, T.W.

    1998-01-01

    The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.

  16. RELATION OF ENVIRONMENTAL CHARACTERISTICS TO FISH ASSEMBLAGES IN THE UPPER FRENCH BROAD RIVER BASIN, NORTH CAROLINA

    EPA Science Inventory

    Fish assemblages at 16 sites in the upper French Broad River basin, North Carolina were related to environmental variables using detrended correspondence analysis (DCA) and linear regression. This study was conducted at the landscape scale because regional variables are controlle...

  17. Involving Citizens in Water Resources Planning: The Communication-Participation Experiment in the Susquehanna River Basin

    ERIC Educational Resources Information Center

    Borton, Thomas E.; Warner, Katharine P.

    1971-01-01

    Description of the Susquehanna River Basin Comprehensive Planning Study, which focused on means of achieving more effective two-way communication between governmental agency planners and the public. Emphasizes importance of the role of public environmental education. (LK)

  18. HENRY'S FORK AND SNAKE RIVER BASIN, IDAHO - WATER QUALITY REPORT, 1973

    EPA Science Inventory

    Reported problems in the Henrys Fork and Snake River Basin (17040202, 17040203, 17040201) include bacteria levels exceeding water quality standards, dissolved oxygen standards violations, and excessive algal blooms resulting in aesthetic problems and contributing to DO depression...

  19. AN ECONOMIC ANALYSIS OF THE ELECTRIC UTILITY SECTOR IN THE OHIO RIVER BASIN REGION

    EPA Science Inventory

    This report was prepared in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. The potential effects of these different pricing mechanisms on capacity requirements, load factors, and ...

  20. Geology and ground-water resources of the Walla Walla River basin Washington-Oregon

    USGS Publications Warehouse

    Newcomb, R.C.

    1965-01-01

    The Walla Walla River, whose drainage basin of about 1,330 square miles lies astride the Washington-Oregon boundary, drains westward to empty into the Columbia River. The basin slopes from the 5,000-foot crest of the Blue Mountains through a structural and topographic basin to the terraced lands adjoining the Columbia River at an altitude of about 340 feet. The main unit of the topographic basin is the valley plain, commonly called the Walla Walla Valley, which descends from about 1,500 feet at the foot of the mountain slopes to about 500 feet in altitude where the river cuts through the bedrock ridge near Divide. In the Blue Mountains the streams flow in rockbound canyons. Beyond the canyons, near Milton-Freewater and Walla Walla, they pass onto the broad alluvial fans and the terrace lands of the valley.

  1. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  2. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  3. Predicting historic riparian vegetation in the Columbia River basin

    NASA Astrophysics Data System (ADS)

    Imaki, H.; Beechie, T. J.

    2009-12-01

    We developed a GIS data set that depicts pre-settlement riparian vegetation in the Columbia River basin to guide stream restoration for endangered salmon. To do this, we first created a data layer of historic riparian vegetation information from survey notes that were taken mid 19th to early 20th century during the Public Land Survey System (PLSS) conducted by General Land Office (GLO). Our reconstructed riparian vegetation data include randomly sampled basin-wide data (drainage area >200,000 km2), as well as intensively reconstructed watershed-level data (>3,000 km2). Second, based on the reconstructed riparian vegetation points, which are arrayed along a 1-mile (1600 m) grid, we are developing statistical models to estimate potential historic riparian vegetation types (conifer, hardwood, willow-shrub, grass, sage) as well as the probability of occurrence of individual species at stream reach level (~ 200 m) in the basin. We examined environmental variables, such as mean annual precipitation, average minimum and maximum temperature, channel gradient, channel bankfull width, floodplain width, and fine sediment supply potential, against five vegetation types and found that precipitation and temperature discriminate vegetation groups. We also developed vegetation response curves against each variable using kernel density estimates to describe the probability of each vegetation type occurring across the range of each environmental variable. Using a decision tree, we found that reaches greater than 8 m bankfull width (bfw) tended to develop riparian vegetation that is distinctly different from upland vegetation, whereas in small streams the riparian and upland vegetation were similar. Therefore, we analyzed the two channel size classes separately. It is notable that this 8-m threshold is identical to the threshold of channel migration in the study area, which was identified in a previous study (Hall et al. 2007). We adopted linear discriminant analysis (LDA), support

  4. Bibliography of selected water-resources information for the Arkansas River basin in Colorado through 1985

    USGS Publications Warehouse

    Kuzmiak, John M.; Strickland, Hyla H.

    1994-01-01

    The Arkansas River basin composes most of southeastern Colorado, and the numerous population centers and vast areas of agricultural development are located primarily in the semiarid part of the basin east of the Continental Divide. Because effective management and development of water resources in this semiarid area are essential to the viability of the basin, many hydrologic data- collection programs and investigations have been done. This report contains a bibliography of selected water-resources information about the basin, including regularly published information and special investigations, from Federal, State, and other organizations. To aid the reader, the infor- mation is indexed by author, subject, county, and hydrologic unit (drainage basin).

  5. Limnological characteristics of Cypress Lake, Upper Kissimmee River Basin, Florida

    USGS Publications Warehouse

    Gaggiani, Neville G.; McPherson, Benjamin F.

    1977-01-01

    Cypress Lake is in the upper Kissimmee River basin in Florida between Lake Tohopekaliga and Lake Hatchineha. It is remote from urban development and extensive agriculture. Nevertheless, most of the inflow to the lake, about 302,000 acre-ft per year, comes from 2 canals and a creek that drain the upper part of the basin which receives effluent from about 35 percent of the Orlando metropolitan area. With this inflow and a lake volume of 26,100 acre-ft, water in the lake is renewed about every 0.1 year. Cypress Lake has a surface area of 6.4 sq mi, a mean depth of 6.4 ft, an immediate overland drainage area of 29 sq mi and with Lake Hatchineha, receives drainage from 1,162 sq mi. From 1950 to 1964, before locks and dams at the outlets of Lakes Kissimmee and Tohopekaliga regulated water levels at Cypress Lake, water levels fluctuated from 57 ft msl to 48 ft msl, periodically flooding the surrounding area. After regulation from 1964 to 1975, the maximum water level at Cypress Lake was slightly more than 54 ft msl. Specific conductance of the water increased in Cypress Lake from an average of 76 micromho/cm in 1954-65 before regulations to 130 micromho/cm in 1964-75 after regulation. Cypress Lake is classified as a colored alkaline lake with an average color of 79 platinum cobalt units. Emergent marsh vegetation covers almost all the shoreline of the lake. (Woodard-USGS)

  6. Compilation of references on geology and hydrology of the Snake River drainage basin above Weiser, Idaho

    USGS Publications Warehouse

    Bassick, M.D.

    1986-01-01

    More than 1,100 references concerning geology and hydrology of the Snake River drainage basin above Weiser, Idaho, are compiled as part of the U.S. Geological Survey 's RASA (Regional Aquifer-System Analysis) study of the Snake River Plain. The list of references is intended as a primary source of information for investigators concerned with previous studies in the basin. Reference numbers correlate with a key-word index to help the user select and locate desired references. (USGS)

  7. Hypothesis of historical effects from selenium on endangered fish in the Colorado River basin

    USGS Publications Warehouse

    Hamilton, S.J.

    1999-01-01

    Anthropogenic selenium contamination of aquatic ecosystems was first associated with cooling reservoirs of coal-fired power plants in the late 1970s, and later with drainage water from agricultural irrigation activities in the 1980s. In the 1990s, selenium contamination has been raised as a concern in the recovery of currently endangered fish in the Colorado River system. Widespread contamination from seleniferous drain waters from agriculture has been documented in the upper and lower Colorado River basins. Historically, irrigation started in the upper Colorado River basin in the late 1880s. In the 1930s, selenium concentrations in various drains, tributaries, and major rivers in the upper and lower Colorado River basins were in the 100s and 1000s of ??g/L. Native fish inhabiting large rivers such as the Colorado pikeminnow and razorback sucker were abundant before 1890, but became rare after 1910 to 1920, before the influence of mainstem reservoirs in the upper and lower Colorado River. A hypothesis is presented that selenium contamination of the tributaries and major rivers of the Colorado River basin in the 1890 to 1910 period caused the decline of the endangered fish and continues to inhibit their recovery. ?? 1999 by ASP.

  8. Causes of variations in water quality and aquatic ecology in rivers of the Upper Mississippi River Basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Stark, James R.

    1996-01-01

    Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.

  9. Exposure of the Main Italian River Basin to Pharmaceuticals

    PubMed Central

    Ferrari, Federico; Gallipoli, Agata; Balderacchi, Matteo; Ulaszewska, Maria M.; Capri, Ettore; Trevisan, Marco

    2011-01-01

    This study give a preliminary survey of pharmaceutical contamination and accumulation in surface waters and sediments along the river Po basin (74,000 km2, the largest in Italy), a strategic region for the Italian economy: it collects sewage from a vast industrialized area of Italy (Autorità di Baciono del fiume Po, 2006, 2009). 10 pharmaceuticals (atenolol, propanolol, metoprolol, nimesulide, furosemide, carbamazepine, ranitidine, metronidazole, paracetamol, and atorvastatin) from several therapeutic classes were searched in 54 sampling points along the river Po from the source to the delta, and at the mouth of its major effluents. In water samples were found pharmaceuticals in the range of 0.38–0.001 μg/L, except for furosemide (max conc. 0.605 μg/L), paracetamol (max conc. 3.59 μg/L), metoprolol (never detected) and for atenolol (not analysed). In sediment samples, only paracetamol was not detected, while the others were generally found in the range of 0.4–0.02 μg/kg ww with high concentrations for atenolol (max conc. 284 μg/kg ww) and furosemide (max conc. 98.4 μg/kg ww). The findings confirm also STPs as point sources of contamination. Despite of the much evidence for the adverse effects of pharmaceuticals in the aquatic environment, the observed low levels cannot be considered to pose a serious risk to human health; further studies are necessary for a comprehensive risk assessment. PMID:21941542

  10. Geological remote sensing of Palaeogene rocks in the Wind River Basin, Wyoming, USA

    NASA Technical Reports Server (NTRS)

    Krishtalka, L.; Stucky, R. K.; Redline, A. D.

    1988-01-01

    Remote sensing studies of Palaeogene sediments in the Wind River Basin (Wyoming) were used for mapping stratigraphic units, sedimentary features and facies, and structural patterns. Thematic Mapper principal component images for the central and eastern Wind River Basin along with geological investigations and spectral analyses allowed: mapping of the Fort Union, Wind River, and Wagon Bed formations (Fm) and their subunits; recognition of two subunits in the Wind River Fm, one of which can be traced for 75 km; determination of sediment source and depositional environment of units within the Wind River Fm; correlation of the Wagon Bed Fm across the basin; and apparent confirmation of different sources of volcanic debris in the western and southeastern exposures of the Wagon Bed Fm.

  11. Quality of surface water in the Suwannee River Basin, Florida, August 1968 through December 1977

    USGS Publications Warehouse

    Hull, Robert W.; Dysart, Joel E.; Mann, William B., IV

    1981-01-01

    In the 9,950-square mile area of the Suwannee River basin in Florida and Georgia, 17 surface-water stations on 9 streams and several springs were sampled for selected water-quality properties and constituents from August 1968 through December 1977. Analyses from these samples indicate that: (1) the water quality of tributary wetlands controls the water quality of the upper Suwannee River headwaters; (2) groundwater substantially affects the water quality of the Suwannee River basin streams below these headquarters; (3) the water quality of the Suwannee River, and many of its tributaries, is determined by several factors and is not simply related to discharge; and (4) development in the Suwannee River basin has had observable effects on the quality of surface waters. (USGS)

  12. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river

  13. Framework design for remote sensing monitoring and data service system of regional river basins

    NASA Astrophysics Data System (ADS)

    Fu, Jun'e.; Lu, Jingxuan; Pang, Zhiguo

    2015-08-01

    Regional river basins, transboundary rivers in particular, are shared water resources among multiple users. The tempo-spatial distribution and utilization potentials of water resources in these river basins have a great influence on the economic layout and the social development of all the interested parties in these basins. However, due to the characteristics of cross borders and multi-users in these regions, especially across border regions, basic data is relatively scarce and inconsistent, which bring difficulties in basin water resources management. Facing the basic data requirements in regional river management, the overall technical framework for remote sensing monitoring and data service system in China's regional river basins was designed in the paper, with a remote sensing driven distributed basin hydrologic model developed and integrated within the frame. This prototype system is able to extract most of the model required land surface data by multi-sources and multi-temporal remote sensing images, to run a distributed basin hydrological simulation model, to carry out various scenario analysis, and to provide data services to decision makers.

  14. Long-term accumulation and transport of anthropogenic phosphorus in three river basins

    NASA Astrophysics Data System (ADS)

    Powers, Stephen M.; Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.; Haygarth, Philip M.; Howden, Nicholas J. K.; Jarvie, Helen P.; Lyu, Yang; Peterson, Heidi M.; Sharpley, Andrew N.; Shen, Jianbo; Worrall, Fred; Zhang, Fusuo

    2016-05-01

    Global food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30-70 years in mixed agricultural-urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.

  15. Fine particle emission potential from overflowing areas of Tarim River in the Tarim Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the low-precipitation zone (<100 mm annual precipitation) of the Tarim Basin, wind erosion and fugitive dust emission is a recognized problem. There is limited information, however, regarding wind erosion on river overflowing areas, areas of temporal flooding, in the Tarim Basin. The objectives o...

  16. MULTI-TEMPORAL LAND USE GENERATION FOR THE OHIO RIVER BASIN

    EPA Science Inventory

    A set of backcast and forecast land use maps of the Ohio River Basin (ORB) was developed that could be used to assess the spatial-temporal patterns of land use/land cover (LULC) change in this important basin. This approach was taken to facilitate assessment of integrated sustain...

  17. OVERVIEW OF THE MARK TWAIN LAKE/SALT RIVER BASIN CONSERVATION EFFECTS ASSESSMENT PROJECT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mark Twain Lake/Salt River Basin was selected as one of 12 USDA-Agricultural Research Service benchmark watersheds for the Conservation Effects Assessment Project (CEAP) because of documented soil and water quality problems and broad stakeholder interest. The basin is located in northeastern Mis...

  18. MODELING WILDLIFE RESPONSE TO LANDSCAPE CHANGE IN OREGON'S WILLAMETTE RIVER BASIN

    EPA Science Inventory

    The PATCH simulation model was used to predict the response of 17 wildlife species to
    three plausible scenarios of habitat change in Oregon's Willamette River Basin. This 30
    thousand square-kilometer basin comprises about 12% of the state of Oregon, encompasses extensive f...

  19. EVALUATING POINT-NONPOINT SOURCE WATER QUALITY TRADING IN A RARITAN RIVER BASIN SUB-WATERSHED

    EPA Science Inventory

    This project addresses water quality issues in the Raritan River Basin of New Jersey. It will build upon an existing study that determined the technical feasibility of implementing a point-nonpoint source water quality trading program in the Basin. Water quality trading is ...

  20. Radon Concentration in the Cataniapo-Autana River Basin, Amazonas State, Venezuela

    NASA Astrophysics Data System (ADS)

    Sajo-Bohus, L.; Greaves, E. D.; Alvarez, H.; Liendo, J.; Vásquez, G.

    2007-10-01

    Radon activity concentration is measured in rivers of the Autana-Cataniapo hydrologic basin. The region experiments mining and it is forecasted that the basin will be perturbed. Radon activity monitoring is one of the methods to measure environmental changes. Values of radon concentration in water range between 0.4 and 30 Bq L-1.

  1. Selected data describing stream subbasins in the Redwood River basin, southwestern Minnesota

    USGS Publications Warehouse

    Lorenz, D.L.; Payne, G.A.

    1989-01-01

    This report presents selected data describing the characteristics of streams upstream from selected points on streams in the Redwood River basin. The points on the streams include outlets of subbasins of about five square miles, sewage treatment plant outlets, and U.S. Geological Survey gaging stations in the basin.

  2. Magnitude, frequency and timing of floods in the Tarim River basin, China: Changes, causes and implications

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Sun, Peng; Chen, Xiaohong; Kong, Dongdong

    2016-04-01

    The flood magnitude, frequency and timing were analyzed using daily flow data for a period of 1950-2007 from 8 stations in the Tarim River basin, a typical arid inland river basin in China. The causes for flood occurrences were investigated using daily meteorological data. Results indicated that precipitation and temperature were increasing persistently since the 1980s and significant increases in precipitation and temperature were observed after the 1990s. As a result, floods amplified at annual and seasonal time scales in most tributary basins after the 1980s. The floods in the basin are mainly attributed to rainstorms and melting of glaciers and snowpack, and rainstorm-induced floods and temperature-induced floods were dominant in the basin. Extreme floods, such as the three largest recorded floods and floods with return periods > 10 years occurred mainly after the 1990s, with significant increase in flood-induced crop and livestock losses. It was found that heavy floods in many tributary basins often occurred about the same time. The Tarim River basin is a typical arid inland river basin in a high altitude zone and amplifying floods in recent decades, particularly after 1990s, is arousing considerable concern for mitigation of flood hazards. Results of this study shed light on hydrological response of arid regions to warming climate at higher latitudes in the northern hemisphere.

  3. Snow modeling in the Klamath River Basin: understanding the factors controlling snow distribution and melt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Point and spatially distributed models have been applied to the 4053 km2 Sprague River Basin which is one of three main tributaries to the Upper Klamath Basin in Southern Oregon, USA. The simulations cover entire water years to understand the physics controlling snow distribution during the accumul...

  4. An Ecologic Characterization and Landscape Assessment of the Humboldt River Basin

    EPA Science Inventory

    The Humboldt River Basin covers a large part of northern Nevada. Very little is known about the water quality of the entire Basin. The people living in this area depend on clean water. Not knowing about water quality is a concern because people will need to manage the negative...

  5. A SIMPLE HYDROLOGIC MODEL FOR WATER RESOURCES SIMULATION ON GRANDE RIVER BASIN, MINAS GERAIS STATE, BRAZIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydrological simulation on watersheds is one of the most important tools for water resources management due to possibility of flow regime prediction. Grande River Basin is located in south of Minas Gerais State, and the Rio Grande is the main tributary of basin which has 2080 km2 draining into t...

  6. The Transboundary Waters Assessment Programme (TWAP) River Basin Component Methods and Results

    NASA Astrophysics Data System (ADS)

    de Sherbinin, A. M.; Glennie, P.

    2014-12-01

    The Transboundary Waters Assessment Programme (TWAP) was initiated by the Global Environment Facility (GEF) to create the first baseline assessment of all of the planet's transboundary water resources. The TWAP River Basin component consists of a baseline comparative assessment of 270 transboundary river basins, including all but the smallest basins, to enable the identification of priority issues and hotspots at risk from a variety of stressors. The assessment is indicator based and it is intended to provide a relative analysis of basins based on risks to societies and ecosystems. Models and observational data have been used to create 14 indicators covering environmental, human and agricultural water stress; nutrient and wastewater pollution; extinction risk; governance and institutions; economic dependence on water resources; societal wellbeing at sub-basin scales; and societal risks from climate extremes. The methodology is not limited to transboundary basins, but can be applied to all river basins. This presentation will provide a summary of the methods and results of the TWAP River Basin component. It will also briefly discuss preliminary results of the TWAP lakes and aquifer components.

  7. Hydrologic sensitivity of Indian sub-continental river basins to climate change

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal; Lilhare, Rajtantra

    2016-04-01

    Climate change may pose profound implications for hydrologic processes in Indian sub-continental river basins. Using downscaled and bias corrected future climate projections and the Soil Water Assessment Tool (SWAT), we show that a majority of the Indian sub-continental river basins are projected to shift towards warmer and wetter climate in the future. During the monsoon (June to September) season, under the representative concentration pathways (RCP) 4.5 (8.5), the ensemble mean air temperature is projected to increase by more than 0.5 (0.8), 1.0 (2.0), and 1.5 (3.5) °C in the Near (2010-2039), Mid (2040-2069), and End (2070-2099) term climate, respectively. Moreover, the sub-continental river basins may face an increase of 3-5 °C in the post-monsoon season under the projected future climate. While there is a large intermodel uncertainty, robust increases in precipitation are projected in many sub-continental river basins under the projected future climate especially in the Mid and End term climate. A sensitivity analysis for the Ganges and Godavari river basins shows that surface runoff is more sensitive to change in precipitation and temperature than that of evapotranspiration (ET). An intensification of the hydrologic cycle in the Indian sub-continental basins is evident in the projected future climate. For instance, for Mid and End term climate, ET is projected to increase up to 10% for the majority of the river basins under both RCP 4.5 and 8.5 scenarios. During the monsoon season, ensemble mean surface runoff is projected to increase more than 40% in 11 (15) basins under the RCP 4.5 (8.5) scenarios by the end of the 21st century. Moreover, streamflow is projected to increase more than 40% in 8 (9) basins during the monsoon season under the RCP 4.5 (8.5) scenarios. Results show that water availability in the sub-continental river basins is more sensitive towards changes in the monsoon season precipitation rather than air temperature. While in the majority

  8. An Exploration, for the Upper Indus Basin, of Elevation Dependency in the Relationships Between Locally Observed Near Surface Air Temperature (SAT) and Remotely-Sensed Land Surface Temperature (LST)

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Fowler, H. J.; Blenkinsop, S.; Kilsby, C. G.; Archer, D. R.; Hardy, A. J.; Holderness, T. D. C.

    2014-12-01

    The distribution of ground-based observations of near-surface air temperature (SAT) is extremely skewed toward low elevation areas. Land surface temperature (LST) remote sensing data products -- from thermal and infrared wavelength satellite imagery -- provide spatial coverage independent of elevation, although they only provide values for "clear sky" conditions, the prevalence of which may be influenced by elevation-dependent factors. It is thus imperative for researchers studying EDW to characterise the relationship between observations of "all-sky" SAT and "clear-sky" thermal/infrared (TIR) LST in order to overcome the extreme sparseness of SAT observations at high elevations. Drawing on local SAT observation data from both manned meteorological stations and AWS units covering an elevation range from 1500 to 4700m asl in the Upper Indus Basin, coupled with cloud climatologies from MODIS and global reanalyses, this study develops "clear-sky" and "all-sky" comparative, site-based climatologies of: [a] ground-observed SAT [b] reanalysis SAT and LST (skin surface temperature) Relationships between these climatologies and corresponding clear-sky/TIR satellite-retrieved LST are quantitatively assessed in the context of elevation-dependency and cloud cover prevalence. The implications of these relationships are discussed in the context of efforts to develop a multi-decadal TIR LST data product. While multi-decadal and even centennial trends are calculated from station-based observations of SAT, the relatively short record lengths of satellite-borne instruments used to produce currently available TIR LST data products better lend themselves to characterisation of interannual variability than trend calculation. Thus progress is detailed on EDW-driven efforts to validate such an LST product for the Himalayan region using historical imagery from the second and third generation of the Advanced Very High Resolution Radiometer (AVHRR/2, AVHRR/3) instrument flown on NOAA

  9. Is There a Universal Fractal Human Population Distribution in River Basins?

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Jawitz, J. W.; Paik, K.; McGrath, G. S.; Kim, J.

    2015-12-01

    Human settlement locations are determined by heterogeneous landscape factors together with varied socio-economic conditions. Among these influencing factors, river networks hold an important historical role in affecting human population distribution. Classic scaling relations, Horton's laws, have been described for stream order and various river network geomorphological variables (e.g. stream number, stream length, and river basin areas). However, it is still an open question on how human population distribution is related with river network topological structure. In this study, we focus on the human population distribution in the river basins of the USA and test the following hypotheses: 1) Human population distribution shows a scaling law with stream order within river basins; 2) Equivalent-order basins become more attractive for humans as adjacency to higher order streams increases; 3) Such scaling relationships are universal across space. We used 2010 Landscan human population distribution data and extracted river sub-basins from DEMs in the USA. Our results show that: 1) the human population distribution shows a fractal structure, with power-law scaling between human population and stream order. This relationship is robust in sub-regions throughout the USA. However, area also shows a similar power-law scaling so population alone is not sufficiently informative. Because the exponents on the area relationship are consistently greater than for population, population density is negatively associated with stream order. This result is consistent with basin length:width ratios and the observed relationship of human distance to water. Populations in equivalent-order basins show large variation, with higher population density emergent in the basins connected with high-order rivers. Such scaling laws between human population distribution and stream order were found universally among hydrological units above a threshold size. The observed reciprocal coupling between

  10. Walla Walla River Basin Fish Screens Evaluations, 2006 Annual Report.

    SciTech Connect

    Chamness, Mickie; Abernethy, Scott; Tunnicliffe, Cherylyn

    2007-01-01

    Pacific Northwest National Laboratory evaluated Gardena Farms, Little Walla Walla, and Garden City/Lowden II Phase II fish screen facilities and provided underwater videography beneath a leaking rubber dam in the Walla Walla River basin in 2006. Evaluations of the fish screen facilities took place in early May 2006, when juvenile salmonids are generally outmigrating. At the Gardena Farms site, extended high river levels caused accumulations of debris and sediment in the forebay. This debris covered parts of the bottom drum seals, which could lead to early deterioration of the seals and drum screen. Approach velocities were excessive at the upstream corners of most of the drums, leading to 14% of the total approach velocities exceeding 0.4 feet per second (ft/s). Consequently, the approach velocities did not meet National Marine Fisheries Service (NMFS) design criteria guidelines for juvenile fish screens. The Little Walla Walla site was found to be in good condition, with all approach, sweep, and bypass velocities within NMFS criteria. Sediment buildup was minor and did not affect the effectiveness of the screens. At Garden City/Lowden II, 94% of approach velocities met NMFS criteria of 0.4 ft/s at any time. Sweep velocities increased toward the fish ladder. The air-burst mechanism appears to keep large debris off the screens, although it does not prevent algae and periphyton from growing on the screen face, especially near the bottom of the screens. In August 2006, the Gardena Farm Irrigation District personnel requested that we look for a leak beneath the inflatable rubber dam at the Garden City/Lowden II site that was preventing water movement through the fish ladder. Using our underwater video equipment, we were able to find a gap in the sheet piling beneath the dam. Erosion of the riverbed was occurring around this gap, allowing water and cobbles to move beneath the dam. The construction engineers and irrigation district staff were able to use the video

  11. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  12. Sinos River Hydrographic Basin: urban occupation, industrialization and environmental memory.

    PubMed

    Nunes, M F; Figueiredo, J A S; Rocha, A L C

    2015-12-01

    This article presents an analysis of the process of industrialization and urbanization of the Sinos Valley in Rio Grande do Sul state, Brazil, starting from the establishment of leather goods and footwear manufacturing in the region during the 19th century when tanneries and factories producing footwear and/or components for footwear began to appear, and with special attention to aspects related to the environmental impact on the Sinos river hydrographic basin. The article is based on both bibliographic and documentary research and also draws on biographical narratives of workers with links to the leather goods and footwear industry obtained using ethnographic method. It was found that contemporary environmental conflicts emerge from within a memory of work and an environmental memory in which the factories, the unplanned urbanization, and the utilization of water and other natural resources form a chain of significance. Significance that precludes any form of fragmented analysis that isolates any of these aspects from the others: the economic, socio-historic, cultural, political, or the environmental. PMID:26815938

  13. Environmental arsenic epidemiology in the Mekong river basin of Cambodia.

    PubMed

    Phan, Kongkea; Kim, Kyoung-Woong; Hashim, Jamal Hisham

    2014-11-01

    We investigated relationship of arsenicosis symptoms with total blood arsenic (BAs) and serum albumin (SAlb) of residents in the Mekong River basin of Cambodia. We found that arsenicosis patients had significantly higher BAs and lower SAlb than asymptomatic villagers (Mann-Whitney U test, p<0.01). Arsenicosis symptoms were found to be 76.4% (1.764 times) more likely to develop among individuals having an SAlb≤44.3gL(-1) than among those who had an SAlb>44.3gL(-1) (OR=1.764, 95% CI=0.999-3.114) and 117.6% (2.176 times) as likely to occur among those with BAs>5.73µgL(-1) than for those having BAs≤5.73µgL(-1) (OR=2.176, 95% CI=1.223-3.872). Furthermore, a significant negative correlation was also found between BAs and SAlb (rs (199)=-0.354, p<0.0001). As such, this study suggests that people with low SAlb and/or high BAs are likely to rapidly develop arsenicosis symptoms. PMID:25262072

  14. Adaptive Governance and Resilience: the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Cosens, B.; Boll, J.; Fremier, A. K.

    2012-12-01

    Ecologists have made progress in developing criteria for describing the resilience of an ecological system. Expansion of that effort to social-ecological systems has begun the identification of institutional changes to the social system necessary to foster ecological resilience including the use of adaptive management and integrated ecosystem management. But the changes in governance needed