Science.gov

Sample records for industrial gas production

  1. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 2. OIL AND GAS PRODUCTION INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The oil and gas ...

  2. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY: PRODUCTION AND TRANSMISSION EMISSIONS

    EPA Science Inventory

    The paper discusses a co-funded, Gas Research Institute/EPA project to quantify methane emissions to the atmosphere resulting from operations in the natural gas industry. tudy results will measure or calculate all methane emissions, from production at the well and up to, but not ...

  3. Essays on the industrial composition of Texas oil and gas production

    NASA Astrophysics Data System (ADS)

    Peters, Genevieve Lynn

    This dissertation examines the changes in Texas oil and gas production from 1970--1996. Chapter II applies the survivor technique to the 300 largest oil producing firms in Texas for the years 1970--1996. The survivor technique is a powerful method to determine the efficient scale of production in a competitive industry. While previous applications of the survivor technique did not yield conclusive findings, Texas oil production is a competitive industry for which the technique provides clear results. Specifically, the technique shows that firms producing more than 100,000 barrels of oil per day in Texas have higher opportunity costs of production. Chapter III describes the size distribution of firms in Texas oil production. The Pareto distribution is found to correctly describe the size distribution of the 300 largest firms producing oil in Texas from 1970--1996, while the lognormal distribution is conclusively rejected. The k-firm concentration ratio reveals that Texas oil production became relatively less concentrated over this period. A simple relationship between the concentration ratio and the parameters of the Pareto distribution is defined and estimates of the Pareto distribution parameters are used to show that the size distribution of firms did not change significantly over the period 1970--1996. The fourth chapter analyses the impact of the changes in the regulatory environment of the Texas natural gas industry. In 1970, natural gas producers faced a quagmire of regulations governing the sale and price of their gas. Today, natural gas is a commodity traded freely in spot and futures markets. This chapter examines the pattern of production that resulted from this changing regulatory environment by examining the behavior of nine natural gas producing firms in Texas over the period 1970--1996. Each of these firms appeared on the list of the Texas top four natural gas producers at least once over this period. The analysis reveals that the majors have

  4. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    SciTech Connect

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-15

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy

  5. Greenhouse Gas and Carbon Profile of the U.S. Forest Products Industry Value Chain

    PubMed Central

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004−2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO2-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions. PMID:20355695

  6. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    SciTech Connect

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  7. Enhancement of methane gas production using an industrial waste in anaerobic digestion

    SciTech Connect

    Fradkin, L.; Kremer, F.

    1980-01-01

    One method of recycling that may aid in the solution of the current energy problems is anaerobic digestion. Chromium shavings are a solid waste produced by the leather tanning industry. Chromium can block enzymatic systems or interfere with essential cellular metabolites of most oxidizing bacteria. In general, heavy metals coagulate and precipitate proteins, many of which are denatured by this action. This study examines the effects on anaerobic digestion of chromium shavings from leather tanning. Leather chrome shavings contain proteins, nitrogen, and fats. These shavings were added to two of three digesters at various rates. The methane gas production of the experimental units improved significantly compared to the control. In addition, the presence of a toxic loading or change of feed had no harmful effect on the digester performance.

  8. Enhancement of methane gas production using an industrial waste in anaerobic digestion

    SciTech Connect

    Fradkin, L.; Kremer, F.

    1980-12-01

    One method of recycling that may aid in the solution of the current energy problems is anaerobic digestion. Chromium shavings are a solid waste produced by the leather tanning industry. Chromium can block enzymatic systems or interfere with essential cellular metabolites of most oxidizing bacteria. In general, heavy metals coagulate and precipitate proteins, many of which are denatured by this action. This study examines the effects on anaerobic digestion of chromium shavings from leather tanning. Leather chrome shavings contain proteins, nitrogen, and fats. These shavings were added to two of three digesters at various rates. The methane gas production of the experimental units improved significantly compared to the control. In addition, the presence of a toxic loading or change of feed had no harmful effect on the digester performance.

  9. Industrial Productivity

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASTRAN is an offshoot of the computer-design technique used in construction of airplanes and spacecraft. [n this technique engineers create a mathematical model of the aeronautical or space vehicle and "fly" it on the ground by means of computer simulation. The technique enables them to study performance and structural behavior of a number of different designs before settling on the final configuration and proceeding with construction. From this base of aerospace experience, NASA-Goddard developed the NASTRAN general purpose computer program, which offers an exceptionally wide range of analytic capability with regard to structures. NASTRAN has been applied to autos, trucks, railroad cars, ships, nuclear power reactors, steam turbines, bridges, and office buildings. NASA-Langley provides program maintenance services regarded as vital by many NASTRAN users. NASTRAN is essentially a predictive tool. It takes an electronic look at a computerire$.dedgn and reports how the structure will react under a great many different conditions. It can, for example, note areas where high stress levels will occur-potential failure points that need strengthening. Conversely, it can identify over-designed areas where weight and material might be saved safely. NASTRAN can tell how pipes stand up under strong fluid flow, how metals are affected by high temperatures, how a building will fare in an earthquake or how powerful winds will cause a bridge to oscillate. NASTRAN analysis is quick and inexpensive. It minimizes trial-and-error in the design process and makes possible better, safe, lighter structures affording large-scale savings in development time and materials. Some examples of the broad utility NASTRAN is finding among industrial firms are shown on these pages.

  10. Internalizing production externalities: A structural estimation of real options in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Muehlenbachs, Lucija

    There are hundreds of thousands of crude oil and natural gas wells across North America that are currently not producing oil or gas. Many of these wells have not been permanently decommissioned to meet environmental standards for permanent closure, but are in an inactive state that enables them to be more easily reactivated. Some of these wells have been in this inactive state for more than sixty years which begs the question of whether they will ever contribute to our energy supply, or whether they are being left inactive because the environmental remediation costs are prohibitively high. I estimate a structural model of optimal well operations over time and under uncertainty to determine what conditions or policies might push any of the inactive wells out of the hysteresis in which they reside. The model is further used to forecast production from existing wells and recoverable reserves from existing pools. The estimation uses data on production decisions from 84 thousand conventional oil and gas wells and estimates of the remaining reserves of 47 thousand pools. As the producer's decision depends on their subjective belief for how prices and recoverable reserves change over time, I also estimate the probability of changes in prices and recovery technology. I model increases and decreases in the estimated recoverable reserves to depend on price, and predict that natural gas reserves are more responsive to changes in price than conventional oil reserves. Under high prices there is potential for large increases in gas reserves, however this is not the case for oil reserves when the oil price is high. And likewise, under low prices, gas reserves decrease more than oil reserves. The dynamic programming model predicts that with only a drastic, arguably implausible, increase in prices and recovery rates will there be a significant increase in the number of inactive wells that are reactivated. If ideal conditions are not enough to induce well reactivation then this

  11. Gas prices and fuel efficiency in the U.S. automobile industry: Policy implications of endogenous product choice

    NASA Astrophysics Data System (ADS)

    Gramlich, Jacob Pleune

    I develop, estimate, and utilize an economic model of the U.S. automobile industry. I do so to address policy questions concerning automotive fuel efficiency (the relationship between gasoline used and distance traveled). Fuel efficiency has played a prominent role in our domestic energy policy for over 30 years. Recently it has received even more attention due to rising gas prices and concern over the environment and energy dependence. The model gives quantitative predictions for market fuel efficiency at various gas prices and taxes. The model makes contributions that are both methodological and policy based, and the two chapters of the dissertation focus on each in turn. The first chapter discusses the economic model of the U.S. automobile industry. The model allows firms to choose the fuel efficiency of their new vehicles, which allows me to predict fuel efficiency responses to policy and market conditions. These predictions were not possible with previous economic models which held fuel efficiency fixed. In the model, consumers care more about fuel efficiency when gas prices are high, and firms face a technological tradeoff between providing fuel efficiency and other quality. The level of the gas price, therefore, working through consumer demand, shifts firms' optimal locations along this technology frontier. Demand is nested logit, supply is differentiated products oligopoly, and data are from the U.S. automobile market from 1971-2007. In addition to endogenizing product choice, I also contribute to the modeling literature by relaxing restrictive identifying assumptions and obtaining more realistic estimates of fuel efficiency preference. The model predicts sales declines and compositions from the summer of 2008 with reasonable success. The second chapter discusses two counterfactual policy scenarios: maintained summer 2008 gas prices, and achieving 35 mpg (miles per gallon). At 3.43 per gallon (the summer 2008 price, 23% above 2007), the model predicts

  12. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect

    Joseph Rabovitser

    2009-06-30

    , pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  13. Coal conversion products Industrial applications

    NASA Technical Reports Server (NTRS)

    Warren, D.; Dunkin, J.

    1980-01-01

    The synfuels economic evaluation model was utilized to analyze cost and product economics of the TVA coal conversion facilities. It is concluded that; (1) moderate yearly future escalations ( 6%) in current natural gas prices will result in medium-Btu gas becoming competitive with natural gas at the plant boundary; (2) utilizing DRI price projections, the alternate synfuel products, except for electricity, will be competitive with their counterparts; (3) central site fuel cell generation of electricity, utilizing MBG, is economically less attractive than the other synthetic fuels, given projected price rises in electricity produced by other means; and (4) because of estimated northern Alabama synfuels market demands, existing conventional fuels, infrastructure and industrial synfuels retrofit problems, a diversity of transportable synfuels products should be produced by the conversion facility.

  14. Coal conversion products industrial applications

    NASA Technical Reports Server (NTRS)

    Dunkin, J. H.; Warren, D.

    1980-01-01

    Coal-based synthetic fuels complexes under development consideration by NASA/MSFC will produce large quantities of synthetic fuels, primarily medium BTU gas, which could be sold commercially to industries located in South Central Tennessee and Northern Alabama. The complexes would be modular in construction, and subsequent modules may produce liquid fuels or fuels for electric power production. Current and projected industries in the two states which have a propensity for utilizing coal-based synthetic fuels were identified, and a data base was compiled to support MFSC activities.

  15. GRS/industry eastern gas shale data base

    SciTech Connect

    Zielinski, R.E.; Sharer, J.C.

    1982-01-01

    The Gas Resource Information System (GRIS) is a computerized data base that contains historical data on eastern gas shale wells. It contains all those elements which industry feels are important for the evaluation of drilling, completion, stimulation and production techniques for eastern gas shale wells. While GRI will be researching the data on the base to optimize production from the eastern gas shales, it will make GRIS available to industry as a mutually beneficial tool.

  16. Industrial fuel gas plant project. Phase II. Memphis industrial fuel gas plant. Final report. [U-GAS process

    SciTech Connect

    Not Available

    1983-01-01

    The Industrial Fuel Gas Plant produces a nominal 50 billion Btu/day of product gas. The entire IFG production will be sold to MLGW. Under normal conditions, 20% of the output of the plant will be sold by MLGW to the local MAPCO refinery and exchanged for pipeline quality refinery gas. The MAPCO refinery gas will be inserted into the Memphis Natural Gas Distribution System. A portion (normally 10%) of the IFG output of the plant will be diverted to a Credit Generation Unit, owned by MLGW, where the IFG will be upgraded to pipeline quality (950 Btu/SCF). This gas will be inserted into MLGW's Natural Gas Distribution System. The remaining output of the IFG plant (gas with a gross heating value of 300 Btu/SCF) will be sold by MLGW as Industrial Fuel Gas. During periods when the IFG plant is partially or totally off-stream, natural gas from the Memphis Natural Gas Distribution System will be sent to an air mixing unit where the gas will be diluted to a medium Btu content and distributed to the IFG customers. Drawing 2200-1-50-00104 is the plant block flow diagram showing the process sequence and process related support facilities of this industrial plant. Each process unit as well as each process-related support facility is described briefly.

  17. An investment-production-regulatory model for firms in the offshore oil and gas industry. [Economic effects of proposed environmental regulations

    SciTech Connect

    Jin Di.

    1991-01-01

    This tripartite study examines the economic consequences of proposed environmental regulations on firms in the OCS oil and gas industry. The background part reviews the major issues associated with OCS oil and gas development and relevant environmental regulatory proposals. In the theoretical part, models are developed using optimal control theory and the theory of nonrenewable resources to analyze the impact of rising compliance cost on firm's behavior in terms of the investment and production rates over time. Finally, in the simulation part, an integrated investment-production-regulatory model is developed to simulate OCS development with and without the proposed environmental regulations. Effects of regulations are measured in terms of an increase in compliance costs and the associated reduction in net profits from oil and gas production. The theoretical results indicate that an increase in compliance costs will alter exploration, development and production rates. The total investments in exploration and development, and oil production will decrease as a result of rising compliance costs for exploration, development and production over the entire planning period.

  18. Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains.

    PubMed

    Kumar, Ajay; Demirel, Yasar; Jones, David D; Hanna, Milford A

    2010-05-01

    Thermochemical gasification is one of the most promising technologies for converting biomass into power, fuels and chemicals. The objectives of this study were to maximize the net energy efficiency for biomass gasification, and to estimate the cost of producing industrial gas and combined heat and power (CHP) at a feedrate of 2000kg/h. Aspen Plus-based model for gasification was combined with a CHP generation model, and optimized using corn stover and dried distillers grains with solubles (DDGS) as the biomass feedstocks. The cold gas efficiencies for gas production were 57% and 52%, respectively, for corn stover and DDGS. The selling price of gas was estimated to be $11.49 and $13.08/GJ, respectively, for corn stover and DDGS. For CHP generation, the electrical and net efficiencies were as high as 37% and 88%, respectively, for corn stover and 34% and 78%, respectively, for DDGS. The selling price of electricity was estimated to be $0.1351 and $0.1287/kWh for corn stover and DDGS, respectively. Overall, high net energy efficiencies for gas and CHP production from biomass gasification can be achieved with optimized processing conditions. However, the economical feasibility of these conversion processes will depend on the relative local prices of fossil fuels. PMID:20096571

  19. Competitive position of natural gas: Industrial baking

    SciTech Connect

    Minsker, B.S.; Salama, S.Y.

    1988-01-01

    Industrial baking is one of the largest natural gas consumers in the food industry. In 1985, bread, rolls, cookies, and crackers accounted for over 82 percent of all baked goods production. Bread accounting for 46 percent of all production. The baking industry consumed approximately 16 trillion Btu in 1985. About 93 percent was natural gas, while distillate fuel oil accounted for seven percent, and electricity accounted for much less than one percent. The three main types of baking ovens are the single lap, tunnel, and Lanham ovens. In the single lap oven, trays carry the product back and forth through the baking chamber once. The single lap oven is the most common type of oven and is popular due to its long horizontal runs, extensive steam zone, and simple construction. The tunnel oven is slightly more efficient and more expensive that the single lap oven. IN the tunnel oven, the hearth is a motorized conveyor which passes in a straight line through a series of heating zones, with loading and unloading occurring at opposite ends of the oven. The advantages of the tunnel oven include flexibility with respect to pan size and simple, accurate top and bottom heat control. The tunnel oven is used exclusively in the cookie and cracker baking, with the product being deposited directly on the oven band. The most recently developed type of oven is the Lanham oven. The Lanham oven is the most efficient type of oven, with a per pound energy consumption approaching the practical minimum for baking bread. Between one--half and two--thirds of all new industrial baking ovens are Lanham ovens. In the Lanham oven, the product enters the oven near the top of the chamber, spirals down through a series of heating zones, and exits near the bottom of the oven. The oven is gas--fired directly by ribbon burners. 31 refs.

  20. 2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas ▿ †

    PubMed Central

    Köpke, Michael; Mihalcea, Christophe; Liew, FungMin; Tizard, Joseph H.; Ali, Mohammed S.; Conolly, Joshua J.; Al-Sinawi, Bakir; Simpson, Séan D.

    2011-01-01

    2,3-Butanediol (23BD) is a high-value chemical usually produced petrochemically but which can also be synthesized by some bacteria. To date, the best microbial 23BD production rates have been observed using pathogenic bacteria in fermentation systems that depend on sugars as the carbon and energy sources for product synthesis. Here we present evidence of 23BD production by three nonpathogenic acetogenic Clostridium species—Clostridium autoethanogenum, C. ljungdahlii, and C. ragsdalei—using carbon monoxide-containing industrial waste gases or syngas as the sole source of carbon and energy. Through an analysis of the C. ljungdahlii genome, the complete pathway from carbon monoxide to 23BD has been proposed. Homologues of the genes involved in this pathway were also confirmed for the other two species investigated. A gene expression study demonstrates a correlation between mRNA accumulation from 23BD biosynthetic genes and the onset of 23BD production, while a broader expression study of Wood-Ljungdahl pathway genes provides a transcription-level view of one of the oldest existing biochemical pathways. PMID:21685168

  1. Forest Products Industry Technology Roadmap

    SciTech Connect

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  2. GAS INDUSTRY GROUNDWATER RESEARCH PROGRAM

    SciTech Connect

    James A. Sorensen; John R. Gallagher; Steven B. Hawthorne; Ted R. Aulich

    2000-10-01

    The objective of the research described in this report was to provide data and insights that will enable the natural gas industry to (1) significantly improve the assessment of subsurface glycol-related contamination at sites where it is known or suspected to have occurred and (2) make scientifically valid decisions concerning the management and/or remediation of that contamination. The described research was focused on subsurface transport and fate issues related to triethylene glycol (TEG), diethylene glycol (DEG), and ethylene glycol (EG). TEG and DEG were selected for examination because they are used in a vast majority of gas dehydration units, and EG was chosen because it is currently under regulatory scrutiny as a drinking water pollutant. Because benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) compounds are often very closely associated with glycols used in dehydration processes, the research necessarily included assessing cocontaminant effects on waste mobility and biodegradation. BTEX hydrocarbons are relatively water-soluble and, because of their toxicity, are of regulatory concern. Although numerous studies have investigated the fate of BTEX, and significant evidence exists to indicate the potential biodegradability of BTEX in both aerobic and anaerobic environments (Kazumi and others, 1997; Krumholz and others, 1996; Lovely and others, 1995; Gibson and Subramanian, 1984), relatively few investigations have convincingly demonstrated in situ biodegradation of these hydrocarbons (Gieg and others, 1999), and less work has been done on investigating the fate of BTEX species in combination with miscible glycols. To achieve the research objectives, laboratory studies were conducted to (1) characterize glycol related dehydration wastes, with emphasis on identification and quantitation of coconstituent organics associated with TEG and EG wastes obtained from dehydration units located in the United States and Canada, (2) evaluate

  3. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    NASA Astrophysics Data System (ADS)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  4. Recombinant organisms for production of industrial products

    PubMed Central

    Adrio, Jose-Luis

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. PMID:21326937

  5. Transformer Industry Productivity Slows.

    ERIC Educational Resources Information Center

    Otto, Phyllis Flohr

    1981-01-01

    Annual productivity increases averaged 2.4 percent during 1963-79, slowing since 1972 to 1.5 percent; computer-assisted design and product standardization aided growth in output per employee-hour. (Author)

  6. Biohydrogen production from industrial wastewaters.

    PubMed

    Moreno-Andrade, Iván; Moreno, Gloria; Kumar, Gopalakrishnan; Buitrón, Germán

    2015-01-01

    The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor. PMID:25607676

  7. Gas production apparatus

    DOEpatents

    Winsche, Warren E.; Miles, Francis T.; Powell, James R.

    1976-01-01

    This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

  8. Electro-gas-dynamic CO lasers with combustion products: a new scientific direction to the creation of the industrial high-power lasers

    NASA Astrophysics Data System (ADS)

    Baranov, Igor M.

    1997-04-01

    An industrial high-power laser is a technical system to be characterized primarily by the efficiency. For a high-power laser system to become like an industrial one the efficiency must be more than 10%. As is well known a steam-engine has such an efficiency. In welding and in cutting thick materials to provide required power density in a spot for the device with long focus the value of output power of radiation must be no less than 100 kW at beam divergence 10-3 rad. At the present time there is a problem in concurrent fulfillment of the requirements on an output power, the divergence, and the efficiency as well as the requirements on the stability of output parameters, total resource of operation, the safety of operation, and the use of standard components. A line of attack on this problem is proposed by the present author through the use of continuous formation of a CO laser mixture by combustion of a chemical fuel and the use of atmospheric air as a buffer gas (up to 80%), which is cooled in supersonic nozzles followed by excitation in a radio-frequency (rf) electric discharge without an electron gun. A small-scale model system of electrogasdynamic CO laser was used by the present author and his colleagues to demonstrate for the first time the laser radiation was possible in a system with combustion products and air. A technical proposal for a multipurpose self-contained industrial cw high-power CO laser system is proposed. This laser system is based on standard electrical machinery with a gas-turbine drive without ejecting toxic CO into the atmosphere.

  9. Solar/gas industrial process heat assessment

    NASA Astrophysics Data System (ADS)

    Kearney, D. W.

    1982-12-01

    An assessment was conducted of solar/gas industrial process heat systems, including consideration of market applications, the status and cost of applicable solar technologies, potential technical barriers to the efficient interfacing of solar with conventional gas fired equipment, and a detailed evaluation comparing solar/gas systems to competing options.

  10. Application of Nanotechnology and Nanomaterials in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Nabhani, Nader; Emami, Milad; Moghadam, A. B. Taghavi

    2011-12-01

    Micro and nano technologies have already contributed significantly to technological advances in a number of industries, including electronics, biomedical, pharmaceutical, materials and manufacturing, aerospace, photography and more recently the energy industries. Micro and nanotechnologies have the potential to introduce revolutionary changes in several areas of the oil and gas industries such as exploration, drilling, production, refining and distribution. For example, nanosensors might provide more detailed and accurate information about reservoirs and smart fluids for enhanced oil recovery (EOR) and drilling. This paper examines and documents applicable nanotechnology base products that can improve the competitiveness of the oil and gas industry. The future challenges of nanotechnology application in the oil and gas industry are also discussed.

  11. Natural Gas Industry and Markets

    EIA Publications

    2006-01-01

    This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

  12. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana.

    PubMed

    Kumar, Kanhaiya; Banerjee, Debopam; Das, Debabrata

    2014-01-01

    The present study investigated the feasibility of using Chlorella sorokiniana for CO2 sequestration from industrial flue gas. The flue gas emitted from the oil producing industry contains mostly CO2 and H2S (15.6% (v/v) and 120 mg L(-1), respectively) along with nitrogen, methane, and other hydrocarbons. The high concentration of CO2 and H2S had an inhibitory effect on the growth of C. sorokiniana. Some efforts were made for the maximization of the algal biomass production using different techniques such as diluted flue gas, flue gas after passing through the scrubber, flue gas passing through serially connected photobioreactors and two different reactors. The highest reduction in the CO2 content of inlet flue gas was 4.1% (v/v). Some new pigments were observed in the flue gas sequestered biomass. Fatty acid composition in the total lipid was determined to evaluate its suitability for food, feed, and biofuel. PMID:24292202

  13. How is Order 636 affecting the gas distribution industry

    SciTech Connect

    Margossian, K.M. )

    1993-12-01

    This paper is part of a six part series on how interstate gas pipelines have been affected by Order 636. These papers are written in an interview format with different individuals representing the pipeline, natural gas, utility, and regulatory side of this new regulation. The issues deal with how it has affected these industries; how the relationships have changed between suppliers, marketers, distributors, etc.; the risks now involved in marketing, shipping, and buying gas products; and new technology developments have resulted to comply with the new regulations. This paper is an interview with Kenneth M. Magossian, president and chief operating officer of Commonwealth Gas Co. and Hopkinton LNG Corp.

  14. Chemical production from industrial by-product gases: Final report

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  15. Gas insulated substation equipment for industrial applications

    SciTech Connect

    Kenedy, J.J.

    1984-11-01

    Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

  16. Strategic alliances for the future of the gas industry

    SciTech Connect

    Catell, R.B.

    1993-12-31

    The natural gas industry is in a position to benefit significantly from the inherent environmental advantages of natural gas and access to a large reserves base. Concurrently, the domestic natural gas industry will be undergoing extensive regulatory and structural changes in the coming years as a result of the implementation of FERC Order 636. The competition between fuels is intensifying, and the number of new market players and consumer demands are rising. As all sectors of the industry are facing new risk resulting from changes in access to storage, balancing, excess capacity, capacity release programs, and from the entry of gas marketers and aggregators, companies must increasingly rely on strategic alliances to remain competitive and stable. Strategic alliances are cooperative relationships between gas companies, pipelines, end-users, producers, marketers, as well as government bodies and labor unions. The principal goals of strategic alliances are to reduce risks, leverage resources and competitiveness, achieve long-term objectives, and build flexibility. Brooklyn Union has been involved in strategic alliances in the areas of (1) exploration, production, and supply; (2) transportation and storage; (3) marketing and market development; (4) regulatory and legislative activities; and (5) environmental activities. These alliances have allowed Brooklyn Union to diversify its gas supply, cooperatively support new pipelines, introduce new products and services, retain customers, generate new business, and assist in the enactment of reasonable Federal and State regulations and energy policies. Brooklyn Union recognizes that in the future the natural gas industry must continue to form strategic alliances to better serve the customer. Through strategic alliances the industry can increase the value and importance of natural gas as America`s premier energy source.

  17. Selected technology for the gas industry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers were presented at a conference concerned with the application of technical topics from aerospace activities for the gas industry. The following subjects were covered: general future of fossil fuels in America, exploration for fossil and nuclear fuels from orbital altitudes, technology for liquefied gas, safety considerations relative to fires, explosions, and detonations, gas turbomachinery technology, fluid properties, fluid flow, and heat transfer, NASA information and documentation systems, instrumentation and measurement, materials and life prediction, reliability and quality assurance, and advanced energy systems (including synthetic fuels, energy storage, solar energy, and wind energy).

  18. Production of gaseous radiotracers for industrial applications.

    PubMed

    Sharma, V K; Pant, H J; Goswami, Sunil; Jagadeesan, K C; Anand, S; Chitra, S; Rana, Y S; Sharma, Archana; Singh, Tej; Gujar, H G; Dash, Ashutosh

    2016-10-01

    This paper describes prerequisite tests, analysis and the procedure for irradiation of gaseous targets and production of gaseous radioisotopes i.e. argon-41 ((41)Ar) and krypton-79 ((79)Kr) in a 100MWTh DHRUVA reactor located at Bhabha Atomic Research Center (BARC), Trombay, Mumbai, India. The produced radioisotopes will be used as radiotracers for tracing gas phase in industrial process systems. Various details and prequalification tests required for irradiation of gaseous targets are discussed. The procedure for regular production of (41)Ar and (79)Kr, and assay of their activity were standardized. Theoretically estimated and experimentally produced amounts of activities of the two radioisotopes, irradiated at identical conditions, were compared and found to be in good agreement. Based on the various tests, radiological safety analysis and standardization of the irradiation procedure, necessary approval was obtained from the competent reactor operating and safety authorities for regular production of gaseous radiotracers in DHRUVA reactor. PMID:27518216

  19. Productivity, A Priority for Industrial Arts.

    ERIC Educational Resources Information Center

    Mietus, Walter S.

    The need for increased industrial productivity has become great in American society. If America is not to be outstripped by foreign competitors, worker productivity must be increased. Industrial arts can play a part in increasing productivity by fostering productive ideas in students. Attempts at work redesign have led to short-term increases in…

  20. A Phenomenological Model of Industrial Gas Sensors

    NASA Astrophysics Data System (ADS)

    Woestman, J. T.; Logothetis, E. M.; Shane, M. D.; Brailsford, A. D.

    1997-08-01

    Gas sensors are widely used in industry for applications ranging from air-to-fuel ratio control in combustion processes, including those in automotive engines and industrial furnaces, to leakage detection of inflammable and toxic gases. This presentation reports on a model to describe the response of typical electrochemical solid state gas sensors in environments of air (80% N2 and 20% O_2) and one reducing species such as CO, H2 or CH_4. The goal of the model is to predict the time-dependent sensor output resulting from a time-dependent gas composition. Through a set of coupled differential equations, the model accounts for the flow of the gases into the sensor, their diffusion through a porous spinel coating, their adsorption/desorption on/off a catalytic electrode and their redox reaction on the electrode. The solution of these equations provides an oxygen adatom concentration on the electrode surface. This oxygen concentration is used in the Nernst equation to determine an instantaneous sensor emf and a first order filter is user to account for the time delay associated with the emf generation processes. The model was applied to the operation of an automotive oxygen sensor exposed to mixtures of O2 and CO in N2 and mixtures of O2 and H2 in N_2. Good agreement was found with experimental results under both steady state and dynamic operating conditions.

  1. Engineering organisms for industrial fuel production.

    PubMed

    Berry, David A

    2010-01-01

    Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy. PMID:21326829

  2. Assistance to Oil and Gas State Agencies and Industry through Continuation of Environmental and Production Data Management and a Water Regulatory Initiative

    SciTech Connect

    Grunewald, Ben; Arthur, Dan; Langhus, Bruce; Gillespie, Tom; Binder, Ben; Warner, Don; Roberts, Jim; Cox, D.O.

    2002-05-31

    This grant project was a major step toward completion of the Risk Based Data Management System (RBDMS) project. Additionally the project addresses the needs identified during the projects initial phases. By implementing this project, the following outcomes were sought: (1) State regulatory agencies implemented more formalized environmental risk management practices as they pertain to the production of oil and gas, and injection via Class II wells. (2) Enhancement of oil and gas production by implementing a management system supporting the saving of abandoned or idle wells located in areas with a relatively low environmental risk of endangering underground sources of drinking water (USDWs) in a particular state. (3) Verification that protection of USDWs is adequate and additional restrictions of requirements are not necessary in areas with a relatively low environmental risk. (4) Standardization of data and information maintained by state regulatory agencies and decrease the regulatory cost burden on producers operating in multiple states, and (5) Development of a system for electronic data transfer among operators and state regulatory agencies and reduction of overall operator reporting burdens.

  3. Naturally occurring radioactive material in the oil and gas industry

    SciTech Connect

    Steingraber, W.A.

    1994-12-31

    Naturally occurring radioactive material (NORM) has been found in the Earth`s crust and soil, the water we drink, the food we eat, the air we breathe, and the tissues of every living organism. It is relatively easy to determine {open_quotes}concentrations{close_quotes}, or specific activity levels, in the range of 1 part per trillion for radioactive materials. With radioactive elements so abundant and detection possible at such low levels, the presence of NORM in oil and gas operations shouldn`t be surprising. In fact, this presence has been recognized since at least the 1930`s, but the phenomenon received only minimal attention in the United States until the mid-1980`s. At that time regulatory agencies in several oil- and gas-producing states began to focus on NORM in the exploration and production segment of the industry, expressing concern over potential health and safety implications. The most significant aspects of NORM in oil production operations include original source, transport media, composition/radionuclides present, measurement methods, health/safety issues, waste classification, and waste disposal. In addition, I will summarize industry-sponsored NORM data collection and analysis efforts being conducted to aid in development of sound policies and procedures to address environmental, health, and safety issues. Current activities by state and federal regulatory agencies relevant to NORM in the oil and gas industry will also be reviewed.

  4. Product stewardship in the composites industry

    NASA Technical Reports Server (NTRS)

    Aldrich, Donald C.; Merriman, Edmund A.

    1994-01-01

    The definition and purpose of Product Stewardship is discussed. Its' impact in the composites industry is stated. The report also outlines 12 ways that Product Stewardship can be utilized by consumers.

  5. Production Methods in Industrial Microbiology.

    ERIC Educational Resources Information Center

    Gaden, Elmer L., Jr.

    1981-01-01

    Compares two methods (batch and continuous) in which microorganisms are used to produce industrial chemicals. Describes batch and continuous stirred-tank reactors and offers reasons why the batch method may be preferred. (JN)

  6. Senate Forum on Shale Gas Development Explores Environmental and Industry Issues

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-06-01

    The U.S. Senate Committee on Energy and Natural Resources brought together industry and environmental leaders for a 23 May forum that focused on industry best practices and environmental concerns related to the current shale gas boom. The boom in shale gas development has been brought about in large part through advances in horizontal drilling and hydraulic fracturing ("fracking") to increase shale oil and gas production.

  7. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.

    PubMed

    Huang, Guanhua; Chen, Feng; Kuang, Yali; He, Huan; Qin, An

    2016-03-01

    The soaring increase of flue gas emission had caused global warming, environmental pollution as well as climate change. Widespread concern on reduction of flue gas released from industrial plants had considered the microalgae as excellent biological materials for recycling the carbon dioxide directly emitted from exhaust industries. Microalgae also have the potential to be the valuable feedback for renewable energy production due to their high growth rate and abilities to sequester inorganic carbon through photosynthetic process. In this review article, we will illustrate important relative mechanisms in the metabolic processes of biofixation by microalgae and their recent experimental researches and advances of sequestration of carbon dioxide by microalgae on actual industrial and stimulate flue gases, novel photobioreactor cultivation systems as well as the perspectives and limitations of microalgal cultivation in further development. PMID:26695777

  8. EIA's Natural Gas Production Data

    EIA Publications

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  9. Applications of Nanotechnology in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    Nanotechnology could be used to enhance the possibilities of developing conventional and stranded gas resources and to improve the drilling process and oil and gas production by making it easier to separate oil and gas in the reservoir. Nanotechnology can make the oil and gas industry considerably greener. There are numerous areas in which nanotechnology can contribute to more-efficient, less-expensive, and more-environmentally sound technologies than those that are readily available. We identified the following possibilities of nanotechnology in the petroleum industry: 1-Nanotechnology-enhanced materials that provide strength to increase performance in drilling, tubular goods, and rotating parts. 2- Designer properties to enhance hydro-phobic to enhance materials for water flooding applications. 3- Nano-particulate wetting carried out using molecular dynamics 4- Lightweight materials that reduce weight requirements on offshore platforms 5- Nano-sensors for improved temperature and pressure ratings 6- New imaging and computational techniques to allow better discovery, sizing, and characterization of reservoirs.

  10. A survey of gas-side fouling in industrial heat-transfer equipment

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Suitor, J. W.

    1983-01-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  11. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    PubMed Central

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  12. Gas production strategy of underground coal gasification based on multiple gas sources.

    PubMed

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  13. PRODUCTIVITY BENEFITS OF INDUSTRIAL ENERGY EFFICIENCY MEASURES

    EPA Science Inventory

    A journal article by: Ernst Worrell1, John A. Laitner, Michael Ruth, and Hodayah Finman Abstract: We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published dat...

  14. Tempo of Argentinian oil and gas industry quickens

    SciTech Connect

    Aalund, L.R.

    1988-08-01

    Exploration and production programs that the Argentinian Government has set in motion are making the country, which will host the next World Petroleum Congress, a more active and visible member of the international oil industry. A high, but possibly diminishing, inflation rate of about 15%/month, external financial debt, and the depressed price of oil are still drags on progress. But there are positive factors at work too. The government has recognized that it is in the country's self interest to entice technologically experienced foreign oil companies to search for and exploit its probably abundant oil and gas resources. The government's primary objective is to add enough output to its some 430,000 b/d production to eliminate crude oil imports. A good start on this will be made early next year when the country's first offshore field begins production.

  15. Gas hearth products market fact base. Topical report, January 1996

    SciTech Connect

    1996-02-01

    The Gas Hearth Products Market Fact Base is an analysis of the U.S. gas log and fireplace markets. The study was undertaken to: determine current usage of and attitudes about fireplaces; identify barriers to acceptance of gas logs and fireplaces; determine the influence of service providers, and; identify important trends that can affect the markets for gas hearth products. The market fact base is based on four studies: a market analysis synthesizing primary and secondary research reports; in-depth interviews with market influencers from across the country (architects, contractors, interior designers, fireplace retailers and installers) and industry experts from gas utilities and trade associations; focus group meetings with consumers who own or intend to buy fireplaces, gas fireplace industry professionals, and editors of fireplace-related trade magazines, and; quantitative interviews with consumers in six U.S. cities.

  16. Industrial Products from Biodiesel Glycerol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rise in cost of petroleum fuels has caused an increased interest in alternative fuels. This has resulted in a worldwide surge in the use of biodiesel, a renewable fuel derived from oils and fats, with world production projected to approach 1 billion gallons by the end of 2006. This rapid growt...

  17. Industrial Products from Biodiesel Glycerol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The continual rise in demand for and cost of petroleum fuels has resulted in an increased demand for alternative fuels. This has resulted in a worldwide surge in the use of biodiesel, a renewable fuel derived from oils and fats, with world production projected to approach 1 billion gallons by the e...

  18. Desulfurized gas production from vertical kiln pyrolysis

    DOEpatents

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  19. Explore Your Future: Careers in the Natural Gas Industry.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    This career awareness booklet provides information and activities to help youth prepare for career and explore jobs in the natural gas industry. Students are exposed to career planning ideas and activities; they learn about a wide variety of industry jobs, what workers say about their jobs, and how the industry operates. Five sections are…

  20. Electricity, Gas and Water Supply. Industry Training Monograph No. 4.

    ERIC Educational Resources Information Center

    Dumbrell, Tom

    Australia's electricity, gas, and water supply industry employs only 0.8% of the nation's workers and employment in the industry has declined by nearly 39% in the last decade. This industry is substantially more dependent on the vocational education and training (VET) sector for skilled graduates than is the total Australian labor market. Despite…

  1. INVENTORY OF METHANE LOSSES FROM THE NATURAL GAS INDUSTRY

    EPA Science Inventory

    The paper gives the second year's results of an ongoing 4-year program undertaken jointly by the Gas Research Institute and the U.S. EPA to assess the methane (CH4) losses from the U.S. natural gas industry. he program's objective is to assess the acceptability of natural gas as ...

  2. Organizational Productivity in Post-Industrial Society

    ERIC Educational Resources Information Center

    Corbett, Dick

    1978-01-01

    The term "post-industrial society" denotes the fact that more than half of a society's economy is devoted to service rather than to the production of goods. Discusses prospects for increasing productivity in service organizations and argues that irrational elements are built into service organizations as a consequence of the nature of the support…

  3. Industrial Technology and the Productivity Problem.

    ERIC Educational Resources Information Center

    Sinn, John W.

    1982-01-01

    The role of industrial technology in addressing productivity encompasses work experience and attitude, quality assurance, research and development, time and motion studies, plant layout and flow diagramming, cost analysis, production process selection, maintenance, computer applications, materials and inventory requirements, safety programming,…

  4. Opportunities for Industrial Uses of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The search for and development of non-fuel industrial uses of agricultural commodities is an ongoing endeavor. New technologies which can involve chemically, enzymatically, or genetically modifying agricultural products will be required in order to meet the requirements of the products of the futur...

  5. Information highway: Alliances and their impact on the gas industry. Topical report, November 1993

    SciTech Connect

    Davis, K.W.

    1993-11-01

    The report describes the major developments in digital information networks, the key industry players and their alliances and technologies, and the significance of their activities to the gas industry. The newly-integrated industries involved in creating the 'information highway' are likely to promote standards based on open protocols and accelerate the pace of technology implementation in new products that link home systems and external network systems. Research was conducted using primary and secondary sources, on-line databases, and documentary research. Factors leading to the development of a new communications infrastructure and the alliances driving it were analyzed in order to best define opportunities and interests for the gas industry.

  6. The Mobile Monitoring of fugitive methane emissions from natural gas consumer industries

    EPA Science Inventory

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools ...

  7. Mobile monitoring of fugitive methane emissions from natural gas consumer industries

    EPA Science Inventory

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not yet been well quantified. This presentation introduces new m...

  8. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect

    Lee Nelson

    2009-10-01

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  9. New applications for Coriolis flow and density measurement in the natural gas industry

    SciTech Connect

    Valentine, J.; Keilty, M.

    1995-11-01

    Simultaneous, highly accurate measurement of mass, density and temperature makes the Coriolis instrumentation ideal technology for a wide variety of natural gas applications. This paper describes the technology, discusses the benefits of using Coriolis instrumentation, and describes several applications related to the oil and gas production industries utilizing the Coriolis meter.

  10. Industrial Raman gas sensing for real-time system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.

    2014-06-01

    Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.

  11. Industry sector analysis Canada: Natural gas pipeline development. Export trade information

    SciTech Connect

    Stark, T.

    1992-08-01

    The analysis focuses on the Canadian natural gas pipeline industry and covers all inputs to natural gas pipeline construction and expansion projects: pipe, compressors, engineering services, tools, miscellaneous industrial supplies, and equipment rental. The Industry Sector Analysis (ISA) contains statistical and narrative information on projected market demand, end-users; receptivity of Canadian consumers to U.S. products; the competitive situation (Canadian production, total import market, U.S. market position, foreign competition, competitive factors), and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). The ISA also contains Key Contact information.

  12. Venezuela`s gas industry poised for long term growth

    SciTech Connect

    Croft, G.D.

    1995-06-19

    Venezuela`s enormous gas resource, combined with a new willingness to invite outside investment, could result in rapid growth in that industry into the next century. The development of liquefied natural gas exports will depend on the future course of gas prices in the US and Europe, but reserves are adequate to supply additional projects beyond the proposed Cristobal Colon project. Venezuela`s gas reserves are likely to increase if exploration for nonassociated gas is undertaken on a larger scale. The paper discusses gas reserves in Venezuela, internal gas markets, the potential for exports, competition from Trinidad, LNG export markets, and the encouragement of foreign investment in the gas industry of Venezuela.

  13. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  14. Productivity benefits of industrial energy efficiency measures

    SciTech Connect

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  15. Productivity benefits of industrial energy efficiency measures.

    SciTech Connect

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the mode ling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  16. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  17. Structural and technological changes of greenhouse gas emissions during the transition period in Polish industry

    NASA Astrophysics Data System (ADS)

    Pasierb, Slawomir; Niedziela, Karol; Wojtulewicz, Jerzy

    1996-01-01

    We analyzed the patterns of energy use and greenhouse gas (GHG) emissions in Polish industry arising during the transition from a centrally planned economy to a market economy. A method of analyzing industry energy use and GHG emissions is discussed. Using this method, the impact of changes in industrial production value, the share of specific industry branches in the total industrial production, energy intensity, and the mix of the energy carriers in the 1989 1993 period has been analyzed. The last year of the analyzed period shows favorable trends in efficiency and signs of production structure shift to a less energy-intensive one. Economic reform implemented after 1989, which released energy carriers' prices from government control, had important effects on the industrial sector. Energy efficiency and emission intensity trends of 1992 1994 were favorable; if they continue, production will return to 1989 levels with much lower energy consumption and significantly decreased GHG emissions.

  18. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products. PMID:26776601

  19. 2. PANORAMA OF INDUSTRY: (CLOCKWISE FROM LEFT) USSTEEL COKE GAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PANORAMA OF INDUSTRY: (CLOCKWISE FROM LEFT) USSTEEL COKE GAS PIPELINE, URR COAL LOADING STATION, CONRAIL PORT PERRY BRIDGE, URR HOT METAL BRIDGE, USSSTEEL EDGAR THOMSON WORKS. - Conrail Port Perry Bridge, Spanning Monongahela River, Elizabeth, Allegheny County, PA

  20. Forest Products Industry of the Future

    SciTech Connect

    Los Alamos Technical Associates, Inc

    2002-05-01

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  1. The Economic Impact of Shale Gas Production in the U.S

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    Energy is important to our daily lives. A price change of one energy type may influence our consumption choices, commodities prices and industry production. For the United States, shale gas is becoming a promising source of natural gas because of the rapid increase in its reserve and production capacity. Shale gas production is projected to be a large proportion of U.S. gas production, as predicted by Energy Information Administration (EIA). However, besides knowing the big picture, more details are needed before characterizing shale gas as a "game changer." It is interesting to address questions like to what extent the production of shale gas could affect other industries' production, stabilize commodities' prices, and what are the impacts on factor payments, capital returns, labor payments and household consumption. In this study, I use a CGE model to measure the impact on industry and the change in social welfare associated with shale gas production.

  2. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-01-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  3. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-09-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  4. Industry disputes administration report on oil and gas leasing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    Despite the Obama administration's efforts to make millions of acres of public lands available for oil and gas development, most of the acreage onshore and offshore of the contiguous United States remains idle, according to “Oil and gas lease utilization, onshore and offshore,” a 15 May report issued by the Department of the Interior (DOI). The report, which is being disputed by industry representatives, notes that 72% of the nearly 36 million leased offshore acres currently are inactive and that 50.6% of onshore leased acres (about 20.8 million acres) also are idle. “As part of the Obama administration's all-of- the-above energy strategy, we continue to make millions of acres of public lands available for safe and responsible domestic energy production on public lands and in federal waters,” said DOI secretary Ken Salazar. “These lands and waters belong to the American people, and they expect those energy supplies to be developed in a timely and responsible manner and with a fair return to taxpayers. We will continue to encourage companies to diligently bring production online quickly and safely on public lands already under lease.”

  5. Inhomogeneous feed gas processing in industrial ozone generation.

    PubMed

    Krogh, Fabio; Merz, Reto; Gisler, Rudolf; Müller, Marco; Paolini, Bernhard; Lopez, Jose L; Freilich, Alfred

    2008-01-01

    The synthesis of ozone by means of dielectric barrier discharge (DBD) is extensively used in industry. Ozone generators available on the market differ in ozone production capacities, electrode arrangements and working parameters, but operate with a uniformly distributed filamentary discharge plasma pattern.In the presented work the benefits of inhomogeneous feed gas processing are explored. Causality between power induction, production efficiency and working parameters are investigated. Different electrode arrangements, evenly distributed within a given space parameter, were designed, simulated, manufactured and tested on a representative scale. A finite element model was utilized to simulate an inhomogeneous power induction pattern along the ozone generator tube. The simulation yielded the local power density, the local gas temperature gradient and the relative DBD packing density.Results show that the degree of filamentation turns out to be decisive, indicating a new potential by means of plasma tailoring. An arrangement with a pronounced power induction at the inlet of the ozone generator revealed several advantages over homogeneous plasma processing arrangements, for which an increase in robustness and a reduction in electrical power consumption are achieved. PMID:19092182

  6. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  7. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE. CHAPTER 10. THE PLASTICS AND RESINS PRODUCTION INDUSTRY

    EPA Science Inventory

    The report presents a detailed analysis of the plastics and resins production industry, which includes operations that convert industrial organic chemicals into solid or liquid polymers. Elements of the analysis include an industry definition, raw materials, products and manufact...

  8. Phase 2: Seminars to US industry of TDA feasibility study. US export potential for oil and gas suppliers to Russian production associations. Final report. Export trade information

    SciTech Connect

    Not Available

    1994-09-18

    The study was funded by the U.S. Trade and Development Agency on behalf of the Russian Production Association Varyeganneftegas Joint Stock Company (VNG JSC). It is a report Phase II of the Russian Oilfield Study, and it had two main objectives. The first was to enhance the competitiveness of the U.S. private sector in sales of oilfield equipment and services; the second goal was to assist the World Bank and VNG JSC in efforts to rehabilitate their oilfields by familiarizing VNG representatives with U.S. production and service capabilities in the petroleum sector. The report is divided into the following sections: (1) Background; (2) The Planning Stage; (3) The Implementation Stage; and (4) Conclusions.

  9. GELCASTING: From laboratory development toward industrial production

    SciTech Connect

    Omatete, O.O.; Janney, M.A.; Nunn, S.D.

    1995-07-01

    Gelcasting, a ceramic forming process, was developed to overcome some of the limitations of other complex-shape forming techniques such as injection molding and slip casting. In gelcasting, a concentrated slurry of ceramic powder in a solution of organic monomers is poured into a mold and then polymerized in-situ to form a green body in the shape of the mold cavity. Thus, it is a combination of polymer chemistry with slip processing and represents minimal departure from standard ceramic processing. The simplicity of the process has attracted industrial partners and by collaboration between them and the developers, the process is being advanced from the laboratory toward industrial production.

  10. Trace gas flux from container production of woody landscape plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agriculture industry is a large source of greenhouse gas (GHG) emissions which are widely believed to be causing increased global temperatures. Reduction of these emissions has been heavily researched, with most of the work focusing on row crop and animal production sectors. Little attention has...

  11. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... production, by final product sold, of oil, gas, and other products. Disclosure shall be made by geographical... conversion to synthetic oil or gas, the product's production, transfer prices, and production costs should be... expressed in common units of production with oil, gas, and other products converted to a common unit...

  12. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... production, by final product sold, of oil, gas, and other products. Disclosure shall be made by geographical... conversion to synthetic oil or gas, the product's production, transfer prices, and production costs should be... expressed in common units of production with oil, gas, and other products converted to a common unit...

  13. Gas Conversion Systems Reclaim Fuel for Industry

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A human trip to Mars will require astronauts to utilize resources on the Red Planet to generate oxygen and fuel for the ride home, among other things. Lakewood, Colorado-based Pioneer Energy has worked under SBIR agreements with Johnson Space Center to develop technology for those purposes, and now uses a commercialized version of the technology to recover oil and gas that would otherwise be wasted at drilling sites.

  14. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  15. A biological process effective for the conversion of CO-containing industrial waste gas to acetate.

    PubMed

    Kim, Tae Wan; Bae, Seung Seob; Lee, Jin Woo; Lee, Sung-Mok; Lee, Jung-Hyun; Lee, Hyun Sook; Kang, Sung Gyun

    2016-07-01

    Acetogens have often been observed to be inhibited by CO above an inhibition threshold concentration. In this study, a two-stage culture consisting of carboxydotrophic archaea and homoacetogenic bacteria is found to be effective in converting industrial waste gas derived from a steel mill process. In the first stage, Thermococcus onnurineus could grow on the Linz-Donawitz converter gas (LDG) containing ca. 56% CO as a sole energy source, converting the CO into H2 and CO2. Then, in the second stage, Thermoanaerobacter kivui could grow on the off-gas from the first stage culture, consuming the H2 and CO in the off-gas completely and producing acetate as a main product. T. kivui alone could not grow on the LDG gas. This work represents the first demonstration of acetate production using steel mill waste gas by a two-stage culture of carboxydotrophic hydrogenogenic microbes and homoacetogenic bacteria. PMID:27106591

  16. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... production, by final product sold, of oil, gas, and other products. Disclosure shall be made by geographical... conversion to synthetic oil or gas, the product's production, transfer prices, and production costs should be... (Extractive Activities—Oil and Gas Topic). Instruction 5 to Item 1204: The average production cost,...

  17. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... production, by final product sold, of oil, gas, and other products. Disclosure shall be made by geographical... conversion to synthetic oil or gas, the product's production, transfer prices, and production costs should be... (Extractive Activities—Oil and Gas Topic). Instruction 5 to Item 1204: The average production cost,...

  18. Managing greenhouse gas emission in the indian aluminum industry

    NASA Astrophysics Data System (ADS)

    Mahadevan, H.

    2001-11-01

    Fluorocarbons are pollutants that destroy the ozone layer in the upper atmosphere and allow more ultraviolet radiation to reach the surface of the earth. Over-exposure to such radiation damages plants and greatly increases people’s risk of skin cancer. Aluminum refineries and smelters, which consume large amounts of energy, are committed to continuous improvement in greenhouse gas abatement. Although India is under no international pressure to reduce greenhouse gas emissions, the Indian aluminum industry could undertake such a commitment voluntarily. This analysis shows where immediate improvements are possible, and presents a tentative action plan for the industry.

  19. [Urinary tract carcinomas in gas industry employees (author's transl)].

    PubMed

    Manz, A

    1976-01-16

    Arising from a retrospective investigation of the causes of death in active and pensioned employees from the author's sphere of observation, the increased occurence of urinary tract carcinoma in furnace battery and pipe system workers in the gas industry is pointed out. Statistical studies suggest a causal connection between exposure to tar in these jobs and the urinary tract carcinomas. The necessity for industrial medical precautions is commented on. PMID:814428

  20. Hybrid intelligent algorithms for industrial production planning

    NASA Astrophysics Data System (ADS)

    Vasant, P.

    2012-11-01

    In this paper, the main significant contributions of a new non-linear membership function using fuzzy approach to capture and describe vagueness in the technological coefficients of constraints in the industrial production planning problems has been investigated thoroughly. This non-linear membership function is flexible and convenience to the decision makers in their decision making process. Secondly, a nonlinear objective function in the form of cubic function for fuzzy optimization problems is successfully solved by 15 hybrid and non-hybrid optimization techniques from the area of soft computing and classical approaches. An intelligent performance analysis table is tabulated to the convenience of decision makers and implementers to select the niche optimization techniques to apply in real word problem solving approach particularly related to industrial engineering problems.

  1. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep; Pfefferle, William

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines

  2. India's Fertilizer Industry: Productivity and Energy Efficiency

    SciTech Connect

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  3. How EIA Estimates Natural Gas Production

    EIA Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  4. Case study: City of Industry landfill gas recovery operation

    SciTech Connect

    1981-11-01

    Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

  5. Daugaz, a computerized data base serving the gas industry

    SciTech Connect

    Uvodic, A.; Collomb, A.; Bizzochi, C.

    1988-01-01

    The computerized documentary data bank Daugaz was created in 1982 by Gaz de France in order to handle the growing number of publications and to make its documentation accessible to the gas industry. Constantly extended, with the help, since 1985, of the French Gas Association, it now includes almost 50 000 written or audiovisual document references relating to gas energy. Daugaz has been accessible on line from outside France since September 1985 and is making promising developments, through fruitful cooperation, with the Ecole Polytechnique de Montreal in Canada for example. Its vocation as an international data bank should be confirmed in the future.

  6. Value of Underground Storage in Today's Natural Gas Industry, The

    EIA Publications

    1995-01-01

    This report explores the significant and changing role of storage in the industry by examining the value of natural gas storage; short-term relationships between prices, storage levels, and weather; and some longer term impacts of the Federal Energy Regulatory Commission's (FERC) Order 636.

  7. Assessment of Industrial VOC Gas-Scrubber Performance

    SciTech Connect

    Saito, H

    2004-02-13

    Gas scrubbers for air-pollution control of volatile organic compounds (VOC) cover a wide range of technologies. In this review, we have attempted to evaluate the single-pass scrubber destruction and removal efficiencies (DREs) for a range of gas-scrubber technologies. We have focused primarily on typical industrial DREs for the various technologies, typical problems, and any DRE-related experiential information available. The very limited literature citations found suggest significant differences between actual versus design performance in some technologies. The potentially significant role of maintenance in maintaining DREs was also investigated for those technologies. An in-depth portrayal of the entire gas scrubbing industry is elusive. Available literature sources suggest significant differences between actual versus design performance in some technologies. Lack of scrubber system maintenance can contribute to even larger variances. ''Typical'' industrial single-pass performance of commonly used VOC gas scrubbers generally ranged from {approx}80 to 99%. Imperfect solid and/or liquid particulates capture (possibly as low as 95% despite design for 99+% capture efficiency) can also lead to VOC releases. Changing the VOC composition in the gas stream without modifying scrubber equipment or operating conditions could also lead to significant deterioration in attainable destruction and removal efficiencies.

  8. Competitive position of natural gas: industrial baking. Topical report, December 1986-January 1988

    SciTech Connect

    Minsker, B.S.; Salama, S.Y.

    1988-01-01

    To quantify the competitive position of natural gas in industrial baking, market profiles were developed to define current technologies (single lap, tunnel, and Lanham ovens are predominant) and to characterize the applications and use of each technology in industrial baking. Important cost and performance parameters were identified and validated through interviews with industry representatives. Two areas of research that could improve technologies' effectiveness are advanced burner controls activated based on oven load that could reduce product loss, the largest coast associated with the oven, and cogeneration, which could penetrate the baking market if the high capital costs associated with existing equipment could be reduced.

  9. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  10. Novel industrial application: flammable and toxic gas monitoring in the printing industry

    NASA Astrophysics Data System (ADS)

    Jacobson, Esther; Spector, Yechiel

    1999-12-01

    The present paper describes an Open Path Electro-Optical Gas Monitoring System specifically designed for in-situ on-line monitoring of flammable and toxic atmospheres in the Printing Industry in general, and for air-duct applications in particular. The printing industry posies unique fire hazards due to the variety of toxic and flammable chemical employed in the various printing process. Flammable material such as paper, ink, solvents, thinners, metal powders, cornstarch powders, cloth, synthetic materials are frequently used in the printing industry in several processes such as letter-pressing, lithography, screen printing etc.

  11. Political risk in the international oil and gas industry

    SciTech Connect

    Lax, H.L.

    1984-01-01

    This book examines problems of foreign investment policies faced by oil and gas corporations through an in-depth look at how the political environments confronting them change. Lax describes how to analyze poltical risks as an essential component of corporate decision making in the 1980s-given the changing relationship between host government and company, new resource nationalism, and growing awareness of power in developed and developing countries alike. Contents: 1. Introduction: political risk and corporate decision making. 2. The politicization of oil and gas. 3. Substance and structure of the oil and gas industry. 4. Risks and resources in oil and gas. 5. The nature of political risks. 6. Approaches to political risk analysis. 7. Corporate management of political risk. Bibliography. Index.

  12. Wind tunnel modeling of toxic gas releases at industrial facilities

    SciTech Connect

    Petersen, R.L.

    1994-12-31

    Government agencies and the petroleum, chemical and gas industries in the US and abroad have become increasingly concerned about the issues of toxic gas dispersal. Because of this concern, research programs have been sponsored by these various groups to improve the capabilities in hazard mitigation and response. Present computer models used to predict pollutant concentrations at industrial facilities do not properly account for the effects of structures. Structures can act to trap or deflect the cloud and modify the cloud dimensions, thereby possibly increasing or reducing downwind concentrations. The main purpose of this evaluation was to develop a hybrid modeling approach, which combines wind tunnel and dispersion modeling, to obtain more accurate concentration estimates when buildings or structures affect the dispersion of hazardous chemical vapors. To meet the study objectives, wind tunnel testing was performed on a building cluster typical of two industrial settings where accidental releases of toxic gases might occur. This data set was used to test the validity of the AFTOX and SLAB models for estimating concentrations and was used to develop and test two hybrid models. Two accident scenarios were simulated, an evaporating pool of a gas slightly heavier than air (Hydrazine-N{sub 2}H{sub 4}) and a liquid jet release of Nitrogen Tetroxide (N{sub 2}O{sub 4}) where dense gas dispersion effects would be significant. Tests were conducted for a range of wind directions and wind speeds for two different building configurations (low rise and high rise structures).

  13. RADIOLYTIC GAS PRODUCTION RATES OF POLYMERS EXPOSED TO TRITIUM GAS

    SciTech Connect

    Clark, E.

    2013-08-31

    Data from previous reports on studies of polymers exposed to tritium gas is further analyzed to estimate rates of radiolytic gas production. Also, graphs of gas release during tritium exposure from ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon®), and Vespel® polyimide are re-plotted as moles of gas as a function of time, which is consistent with a later study of tritium effects on various formulations of the elastomer ethylene-propylene-diene monomer (EPDM). These gas production rate estimates may be useful while considering using these polymers in tritium processing systems. These rates are valid at least for the longest exposure times for each material, two years for UHMW-PE, PTFE, and Vespel®, and fourteen months for filled and unfilled EPDM. Note that the production “rate” for Vespel® is a quantity of H{sub 2} produced during a single exposure to tritium, independent of length of time. The larger production rate per unit mass for unfilled EPDM results from the lack of filler- the carbon black in filled EPDM does not produce H{sub 2} or HT. This is one aspect of how inert fillers reduce the effects of ionizing radiation on polymers.

  14. Bailey's industrial oil and fat products

    SciTech Connect

    Swern, D.

    1982-01-01

    The material in this book is divided into 7 chapters and is not solely an updating of subjects from earlier editions. Information on hydrogenation (chapter 1) is an update of the process in oil and fat technology. Chapter 2, entitled Fat Splitting, Esterification, and Interesterification, described the techniques used to obtain some of the most important chemical raw materials derived from oils and fats. The widely diverse natural sources of and the processing of oils and fats to render them suitable for the many industrial and edible applications are addressed in chapter 3, Extraction of Fats and Oils, and in chapter 4, Refining and Bleaching. Selected important commercial uses for oils and fats in edible products that show improved demand are discussed in chapter 5, and predominately industrial uses of oils and fats form the basis of material in chapter 6. The discussion of analytical methods for oils and fats covered in chapter 7 is entirely new material as is that covering environmental aspects presented in chapter 8. (BLM)

  15. Natural gas production problems : solutions, methodologies, and modeling.

    SciTech Connect

    Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M.; Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F.; Knight, Connie D.; Keefe, Russell G.; McKinney, Curt; Holm, Gus; Holland, John F.; Larson, Rich; Engler, Thomas W.; Lorenz, John Clay

    2004-10-01

    Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

  16. Production of High Value Fluorine Gases for the Semiconductor Industry

    SciTech Connect

    Bulko, J. B.

    2003-10-23

    The chemistry to manufacture high purity GeF{sub 4} and WF{sub 6} for use in the semiconductor industry using Starmet's new fluorine extraction technology has been developed. Production of GeF{sub 4} was established using a tube-style reactor system where conversion yields as high as 98.1% were attained for the reaction between and GeO{sub 2}. Collection of the fluoride gas improved to 97.7% when the reactor sweep gas contained a small fraction of dry air (10-12 vol%) along with helium. The lab-synthesized product was shown to contain the least amount of infrared active and elemental impurities when compared with a reference material certified at 99.99% purity. Analysis of the ''as-produced'' gas using ICP-MS showed that uranium could not be detected at a detection limit of 0.019ppm-wt. A process to make WF{sub 6} from WO{sub 2}, and UF{sub 4}, produced a WOF{sub 4} intermediate, which proved difficult to convert to tungsten hexafluoride using titanium fluoride as a fluorinating agent.

  17. Natural gas from seaweed: is near-term R and D funding by the US gas industry warranted

    SciTech Connect

    Gopalakrishnan, C.

    1985-10-01

    This paper is the result of a study of critical factors the Gas Research Institute needed to consider in deciding whether to continue R and D funding of a Marine Biomass Project (MBP). The mission of this project is to determine the commercial feasibility of large marine biomass farms for methane conversion and to develop such farms if they prove viable. The paper develops a macroanalytic framework for R and D decision making in an innovative but high-cost and high-risk method of natural gas production. It identifies and analyzes principal factors having significant bearing on the US natural gas industry and against this background examines implications for R and D funding of the MBP. The study is based on an extensive review of secondary data sources on the economics and technology of natural gas production supplemented by personal discussions with a number of experts. This paper suggests that decisions on near-term R and D funding of the MBP should be based on careful study of the current, continuing, and projected developments in the US natural gas industry as a whole rather than on narrow and short-term considerations. 16 references, 6 tables.

  18. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises. PMID:22468539

  19. Training using multimedia in the oil and gas industry

    SciTech Connect

    Bihn, G.C.

    1997-02-01

    Multimedia is becoming a widely used and accepted tool in general education. From preschool to the university, multimedia is promising and delivering some very impressive results. Its application in specific industry segments, like oil and gas, is expected to proliferate within the very near future. In fact, many titles are already on the market or in development. The objective of this article is to present an overview of the current state of multimedia as used in petroleum industry training and to provide managers with a feel for not only the technology but, more importantly, what benefit the technology is expected to bring to their organization.

  20. Industrial Research of Condensing Unit for Natural Gas Boiler House

    NASA Astrophysics Data System (ADS)

    Ziemele, Jelena; Blumberga, Dagnija; Talcis, Normunds; Laicane, Ilze

    2012-12-01

    In the course of work industrial research was carried out at the boiler plant A/S "Imanta" where a 10MW passive condensing economizer working on natural gas was installed after the 116MW water boiler. The work describes the design of the condensing economizer and wiring diagram. During the industrial experiment, the following measurements were made: the temperature of water before and after the economizer; the ambient temperature; the quantity of water passing through the economizer; heat, produced by the economizer and water boilers. The work summarizes the data from 2010-2011.

  1. Myanmar production meets first-gas targets

    SciTech Connect

    Lepage, A.

    1998-09-07

    Despite scheduling complications caused by annual monsoons, the Yadana project to bring offshore Myanmar gas ashore and into neighboring Thailand has met it first-gas target of July 1, 1998. The Yadana field is a dry-gas reservoir in the reef upper Birman limestone formation t 1,260 m and a pressure of 174 bara (approximately 2,500 psi). It extends nearly 7 km (west to east) and 10 km (south to north). The water-saturated reservoir gas contains mostly methane mixed with CO{sub 2} and N{sub 2}. No production of condensate is anticipated. The Yadana field contains certified gas reserves of 5.7 tcf, calculated on the basis of 2D and 3D seismic data-acquisition campaigns and of seven appraisal wells. The paper discusses early interest, development sequences, offshore platforms, the gas-export pipeline, safety, environmental steps, and schedule constraints.

  2. Energy and cost total cost management discussion: The global gas industry

    SciTech Connect

    Batten, R.M.

    1995-09-01

    Gas has emerged as one of the most desirable fuels for a wide range of applications that previously have been supplied by oil, coal, or nuclear energy. Compared to these, it is environmentally clean and burns at efficiencies far in excess of competitive fuels. The penetration of gas as the fuel of choice in most parts of the world is still modest. This is particularly true in newly-developed countries that are engaged in rapid industrialization and where rates of growth in the gross domestic products are two or three times greater than in the Organization for Economic Cooperation and Development (OECD) countries. I will not attempt here to survey the world gas scene comprehensively. I will, however, attempt to focus on some aspects of the industry that could be the trigger points for global development. These triggers are occurring all along the gas chain, by which I mean the entire process of bringing gas to the customer from discovery through delivery. The chain includes exploration and production, power generation, transmission, and distribution. I describe an industry that is on the verge of truly global status, which is fast overcoming the remaining obstacles to transnational trade, and which has unusually exciting long-term prospects. It does have a good way to go before it achieves the maturity of the international oil industry, but in the last few years there has been a tremendous growth of confidence among both investors and users. The global gas industry is certainly developing at a fast pace, and the world can only benefit from the wider availability of this clean, economic, and efficient hydrocarbon.

  3. Tempest gas turbine extends EGT product line

    SciTech Connect

    Chellini, R.

    1995-07-01

    With the introduction of the 7.8 MW (mechanical output) Tempest gas turbine, ECT has extended the company`s line of its small industrial turbines. The new Tempest machine, featuring a 7.5 MW electric output and a 33% thermal efficiency, ranks above the company`s single-shaft Typhoon gas turbine, rated 3.2 and 4.9 MW, and the 6.3 MW Tornado gas turbine. All three machines are well-suited for use in combined heat and power (CHP) plants, as demonstrated by the fact that close to 50% of the 150 Typhoon units sold are for CHP applications. This experience has induced EGT, of Lincoln, England, to announce the introduction of the new gas turbine prior to completion of the testing program. The present single-shaft machine is expected to be used mainly for industrial trial cogeneration. This market segment, covering the needs of paper mills, hospitals, chemical plants, ceramic industry, etc., is a typical local market. Cogeneration plants are engineered according to local needs and have to be assisted by local organizations. For this reason, to efficiently cover the world market, EGT has selected a number of associates that will receive from Lincoln completely engineered machine packages and will engineer the cogeneration system according to custom requirements. These partners will also assist the customer and dispose locally of the spares required for maintenance operations.

  4. The impact of corrosion on the oil and gas industry

    SciTech Connect

    Kermani, M.B.; Harrop, D.

    1996-08-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety, and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation, and refinery activities.

  5. Industrial protein production crops: new needs and new opportunities.

    PubMed

    Herman, Eliot M; Schmidt, Monica A

    2010-01-01

    There are many diverse uses for industrial proteins with new opportunities for novel uses frequently emerging. Prominent among these uses are enzymes catalyzing the processing of food/feed and for the production of cellulosic biofuels. Other significant industrial protein uses include antibodies and other binding proteins for purification and/or clean-up of industrial product streams. Enabling technology is needed to produce these now expensive industrial proteins could be produced cost-effectively. Plant-based production of industrial enzymes offers the prospect of massive, scalable production, coupled with low production cost especially if a co-product, such as seed oil or starch, subsidizes the primary crop production costs. High-protein seeds whose composition is remodeled to produce industrial proteins can be a cost-effective means to produce industrial proteins. There are both technical and regulatory issues to resolve in order to deploy plants and seeds as industrial protein production platforms and many of these issues may be more easily resolved by developing nonfood crops specifically for use as industrial production platforms. An emerging industrial plant, Camelina, has potential as a protein-production platform subsidized by the seed oil co-product. PMID:21912205

  6. Clinical laboratories: production industry or medical services?

    PubMed

    Plebani, Mario

    2015-06-01

    The current failure to evidence any link between laboratory tests, clinical decision-making and patient outcomes, and the scarcity of financial resources affecting healthcare systems worldwide, have put further pressure on the organization and delivery of laboratory services. Consolidation, merger, and laboratory downsizing have been driven by the need to deliver economies of scale and cut costs per test while boosting productivity. Distorted economics, based on payment models rewarding volume and efficiency rather than quality and clinical effectiveness, have underpinned the entrance of clinical laboratories into the production industry thus forcing them to relinquish their original mission of providing medical services. The sea change in laboratory medicine in recent years, with the introduction of ever newer and ever more complex tests, including 'omics', which impact on clinical decision-making, should encourage clinical laboratories to return to their original mission as long as payments models are changed. Rather than being considered solely in terms of costs, diagnostic testing must be seen in the context of an entire hospital stay or an overall payment for a care pathway: the testing process should be conceived as a part of the patient's entire journey. PMID:25405721

  7. Environmental Monitoring and the Gas Industry: Program Manager Handbook

    SciTech Connect

    Gregory D. Gillispie

    1997-12-01

    This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, where appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not described or

  8. A guide for the gas and oil industry

    SciTech Connect

    Not Available

    1994-12-01

    This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

  9. New models for success emerge for US natural gas industry

    SciTech Connect

    Addy, W.M. ); Hutchinson, R.A. )

    1994-11-14

    Very few companies in the US natural gas industry are confident in their ability to compete effectively in the brave new world of deregulation. Boston Consulting Group recently conducted an internal study to help the industry think about its future and identify models for success in this new environment. The authors examined the historical performance of 800 companies using several shareholder-value indicators, including cash-flow returns on investment, a measure of cash returns on cash invested that correlates closely to share price. Based on that review and discussions with investment managers and industry analysts, the authors were able to focus on a handful of companies that actually have thrived and created value against the difficult landscape of the past decade. Interviews with their senior executives provided important strategic and operational insights.

  10. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  11. Can a more competitive natural gas industry provide stability

    SciTech Connect

    Hanson, D.A.; Jennings, T.V.; Lemon, J.R.

    1988-01-01

    This paper addresses the question, ''Can a more competitive natural gas industry provide stability.'' When we discuss a free gas market here, we are primarily referring to a market in which flexible, accurate prices are free to adjust to achieve market equilibrium -- a balance of supply and demand. Implied is the lack of wellhead price regulations and the transmission of accurate price signals to both suppliers and end-users. Economic efficiency requires that prices respond to changes in conditions such as the world oil price, such as the world oil price, regional demands (for example, those of the Northeast US), sectoral demands (e.g., those of the electric utilities), and environmental policy (select use of gas for emission control, for example). 11 refs., 2 figs., 1 tab.

  12. Antrim gas play, production expanding in Michigan

    SciTech Connect

    Not Available

    1994-05-30

    Devonian Antrim shale gas, the Michigan basin's dominant hydrocarbon play in terms of number of wells drilled for several years, shows every sign of continuing at a busy pace. About 3,500 Antrim completions now yield 350 MMcfd, more than 60% of Michigan's gas production. The outlook is for Antrim production to climb in the next 2--3 years to 500--600 MMcfd, about 1% of US gas output. These delivery numbers, slow decline rates, and expected producing life of 20--30 years has snagged pipelines attention. The growing production overtaxed local gathering facilities last fall, and the play recently got its first interstate outlet. Completion and production technology advances are improving well performance and trimming costs. Several hundred wells a year are likely to be drilled during the next few years. Production increases are coming from new wells, deepenings, and workovers. Numerous pipeline/gathering projects are planned in the area to handle the growing Antrim volumes. The paper discusses the development of this resource, efforts to extend the play, geology and production, drilling programs, and gas transportation.

  13. Industrial Food Animal Production and Community Health.

    PubMed

    Casey, Joan A; Kim, Brent F; Larsen, Jesper; Price, Lance B; Nachman, Keeve E

    2015-09-01

    Industrial food animal production (IFAP) is a source of environmental microbial and chemical hazards. A growing body of literature suggests that populations living near these operations and manure-applied crop fields are at elevated risk for several health outcomes. We reviewed the literature published since 2000 and identified four health outcomes consistently and positively associated with living near IFAP: respiratory outcomes, methicillin-resistant Staphylococcus aureus (MRSA), Q fever, and stress/mood. We found moderate evidence of an association of IFAP with quality of life and limited evidence of an association with cognitive impairment, Clostridium difficile, Enterococcus, birth outcomes, and hypertension. Distance-based exposure metrics were used by 17/33 studies reviewed. Future work should investigate exposure through drinking water and must improve exposure assessment with direct environmental sampling, modeling, and high-resolution DNA typing methods. Investigators should not limit study to high-profile pathogens like MRSA but include a broader range of pathogens, as well as other disease outcomes. PMID:26231503

  14. Physics-Driven Innovation In the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Poitzsch, Martin

    2014-03-01

    In terms of sheer scale and financial investment and geographical footprint, nothing is bigger than the oil and gas industry. This ``mature industry'' employs a bewildering mix of technologies dating from the 19th century to the 21th. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, advanced 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To succeed at introducing new technology requires understanding which problems most need to be solved. The most esoteric technology can take off in this industry if it honestly offers the best solution to a key problem that is costing millions of dollars in risk or inefficiency. When the right breakthrough solution emerges, the resources to implement it can be almost limitless. However, the prevailing culture is conservative and brutally cost-driven: any cheaper or simpler solution that performs as well will prevail, no matter how inelegant!

  15. Industrial Crafts (Production.) Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Claus, Robert; And Others

    This course guide for an industrial crafts course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  16. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 15: GAS-ASSISTED GLYCOL PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  17. Interconnecting compressors control coalbed gas production

    SciTech Connect

    Payton, R.; Niederhofer, J. )

    1992-10-05

    This paper reports that centralized compressors afford Taurus Exploration Inc.'s coalbed gas operations optimum control of gas production. Unlike satellite stations, the centralized system allows methane gas to e shifted from station to station via the interconnecting low-pressure pipeline network. The operations area encompasses approximately 40,000 acres, about 40 miles southwest of Birmingham, Ala. The project includes about 250-miles of low-pressure gas flow lines to almost 400 wells. The centralized system is less costly than a satellite station to build and operate. Unlike a satellite station that requires each compressor to have a complete set of ancillary equipment, the centralized system requires only one suction manifold, one dehydration setup, and one metering facility for every five compressor sets.

  18. SEASAT demonstration experiments with the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.; Balon, J. E.

    1979-01-01

    Despite its failure, SEASAT-1 acquired a reasonable volume of data that can be used by industrial participants on a non-real-time basis to prove the concept of microwave sensing of the world's oceans from a satellite platform. The amended version of 8 experimental plans are presented, along with a description of the satellite, its instruments, and the data available. Case studies are summarized for the following experiments: (1) Beaufort Sea oil, gas, and Arctic operations; (2) Labrador Sea oil, gas, and sea ice; (3) Gulf of Mexico pipelines; (4) U.S. East Coast offshore oil and gas; (5) worldwide offshore drilling and production operations; (6) Equatorial East Pacific Ocean mining; (7) Bering Sea ice project; and (8) North Sea oil and gas.

  19. Rolls-Royce`s Trent industrial gas turbine moves to market

    SciTech Connect

    Wadman, B.

    1997-01-01

    The Rolls-Royce Trent industrial gas turbine, derived from the aircraft Trent 800 engine, is making significant progress in initial unit production and application at Rolls-Royce Gas Turbine Engines Canada Inc., located in Montreal. This paper discusses the design, development and application of this very high output aeroderivative gas turbine. The combustor section for the Trent has been designed for dry low-emission (DLE) performance, and the combustion system is designed primarily for natural gas, but dual-fuel versions are also offered with water-injection for liquid fuel emission control. There are eight individual combustors, the design of which is based on a premixed, lean burn, series staged concept developed by Rolls-Royce to simultaneously reduce both NO{sub x} and CO. 4 figs.

  20. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-07-01

    The paper reviews the technology of the Fischer-Tropsch synthesis used in the Sasal plant in South Africa. It discusses environmental aspects and economics of new FT facilities for the production of diesel fuels. Several projects are briefly described which use this technology for natural gas conversion.

  1. Bio-gas production from alligator weeds

    NASA Technical Reports Server (NTRS)

    Latif, A.

    1976-01-01

    Laboratory experiments were conducted to study the effect of temperature, sample preparation, reducing agents, light intensity and pH of the media, on bio-gas and methane production from the microbial anaerobic decomposition of alligator weeds (Alternanthera philoxeroides. Efforts were also made for the isolation and characterization of the methanogenic bacteria.

  2. New Methodology for Natural Gas Production Estimates

    EIA Publications

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  3. Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry

    SciTech Connect

    1999-02-01

    The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

  4. Full hoop casing for midframe of industrial gas turbine engine

    DOEpatents

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  5. Electrical studies for an industrial gas turbine cogeneration facility

    SciTech Connect

    Doughty, R.L.; Kalkstein, E.W. and Co., Newark, DE . Engineering Dept. Parsons Co., Pasadena, CA ); Willoughby, R.D. )

    1989-07-01

    Electrical studies are required to assure the proper integration of a gas-turbine cogeneration facility into an existing industrial-plant electrical system and the connected utility grid. Details of such a study effort are presented, including boundary-limit definition for the system model, individual component modeling, load-flow and short-circuit studies, stability studies, and simulation of on-line isolation from the electric utility during system undervoltage or underfrequency conditions. The impact of the studies on the design process and plant system reliability is discussed.

  6. Human factors engineering in oil and gas--a review of industry guidance.

    PubMed

    Robb, Martin; Miller, Gerald

    2012-01-01

    Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This

  7. Operational performance comparisons in the gas processing industry

    SciTech Connect

    Salahor, G.S.

    1996-12-31

    Comparison and benchmarking of operational performance measures in the natural gas processing and gathering industry has helped operators to identify and prioritize improvement initiatives and has led to direct and tangible improvements in operating efficiency. However, proper interpretation and utilization of performance benchmarking data in a complex operation such as gas processing must reflect due consideration of the technical factors which influence the overall economic performance and resource requirements. Plant operators must be able to use the data to understand the key technical influences reflected in their results, and thereby set performance targets commensurate with the structural considerations particular to their facility. Ernst and Young has developed an analytical framework for gas processing and gathering operations incorporating such considerations, and conducted a study involving North American and international participants for the past four years. The information obtained form this work has revealed a wide range of performance results across plants, and has served to challenge much of the conventional wisdom regarding what levels of performance are attainable, and to provide understanding as to how gas processing operational resource requirements are influenced by technical parameters.

  8. Productivity Continued to Increase in Many Industries during 1984.

    ERIC Educational Resources Information Center

    Herman, Arthur S.

    1986-01-01

    Productivity, as measured by output per employee hour, grew in 1984 in about three quarters of the industries for which the Bureau of Labor Statistics regularly publishes data. (A table shows productivity trends in industries measured by the Bureau, including mining, transportation and utilities, and trade and services.) (CT)

  9. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  10. Remote Sensing Application in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Sizov, Oleg; Aloltsov, Alexander; Rubtsova, Natalia

    2014-05-01

    The main environmental problems of the Khanty-Mansi Autonomous Okrug (a federal subject of Russia) related to the activities of oil and gas industry (82 active companies which hold 77,000 oil wells). As on the 1st of January 2013 the subject produces more than 50% of all oil in Russia. The principle of environmental responsibility makes it necessary to minimize human impact and ecological impact. One of the most effective tools for environmental monitoring is remote sensing. The main advantages of such approach are: wide coverage of areas of interest, high temporal resolution, precise location, automatic processing, large set of extracted parameters, etc. Authorities of KhMAO are interested in regular detection of the impact on the environment by processing satellite data and plan to increase the coverage from 434.9 to 659.9 square kilometers with resolution not less than 10 m/pixel. Years of experience of our company shows the significant potential to expand the use of such remote sensing data in the solution of environmental problems. The main directions are: monitoring of rational use of associated petroleum gas (detection of all gas flares and volumes of burned gas), monitoring of soil pollution (detection of areas of oil pollution, assess of the extent of pollution, planning of reclamation activities and assessment of their efficiency, detection of potential areas of pipelines corrosion), monitoring of status of sludge pits (inventory of all sludge pits, assessment of their liquidation), monitoring of technogenic impact (detection of changes), upgrading of a geospatial database (topographic map of not less than 1:50000 scale). Implementation of modeling, extrapolation and remote analysis techniques based on satellite images will help to reduce unnecessary costs for instrumental methods. Thus, the introduction of effective remote monitoring technology to the activity of oil and gas companies promotes environmental responsibility of these companies.

  11. A study of white finger in the gas industry.

    PubMed Central

    Walker, D D; Jones, B; Ogston, S; Tasker, E G; Robinson, A J

    1985-01-01

    Men engaged in breaking or reinstating road surfaces are exposed to vibration from mechanical tools. In view of the lack of epidemiological information on vibration white finger in such a population, a survey was carried out to identify the prevalence of symptoms of white finger in a sample of men using these tools in the gas industry and to compare the prevalence with that found in a control group not occupationally exposed to vibration. Altogether 905 men (97%) in the gas industry and 552 men (92%) in the control group were interviewed, using a questionnaire from which the presence or absence of white finger symptoms from all causes was noted. The prevalence of white finger was 9.6% in the group exposed to vibration at work compared with 9.5% in the control group. The prevalence in the former group when adjusted for age differences between the survey and control populations was 12.2%, but this difference did not reach statistical significance. In case the approach of comparing prevalences of white finger from all causes might have obscured any contributory effect of vibration, the prevalence of white finger was examined in relation to the number of years vibrating tools had been used, this being the only measure of exposure to vibration available. No direct association was found between the prevalence of symptoms and number of years vibrating tools had been used. In view of this and the absence of a significant excess of white finger symptoms in the group using vibratory tools, the authors conclude that vibration white finger is not a special problem in the gas industry. Nevertheless, experimental tests carried out on the different types of roadbreakers used in the industry and on different road surfaces indicate that the vibration levels exceed the standards advocated in the draft international standard DIS 5349 (1979) at the lower end of the frequency spectrum. That no particular problem has been found may be due to the relatively short exposures to vibration

  12. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    PubMed

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. PMID:25262945

  13. Carbon soundings: greenhouse gas emissions of the UK music industry

    NASA Astrophysics Data System (ADS)

    Bottrill, C.; Liverman, D.; Boykoff, M.

    2010-01-01

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors—such as businesses, non-government organizations, celebrities—have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO2e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO2e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO2e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  14. Computational sciences in the upstream oil and gas industry.

    PubMed

    Halsey, Thomas C

    2016-10-13

    The predominant technical challenge of the upstream oil and gas industry has always been the fundamental uncertainty of the subsurface from which it produces hydrocarbon fluids. The subsurface can be detected remotely by, for example, seismic waves, or it can be penetrated and studied in the extremely limited vicinity of wells. Inevitably, a great deal of uncertainty remains. Computational sciences have been a key avenue to reduce and manage this uncertainty. In this review, we discuss at a relatively non-technical level the current state of three applications of computational sciences in the industry. The first of these is seismic imaging, which is currently being revolutionized by the emergence of full wavefield inversion, enabled by algorithmic advances and petascale computing. The second is reservoir simulation, also being advanced through the use of modern highly parallel computing architectures. Finally, we comment on the role of data analytics in the upstream industry.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597785

  15. Human resource needs and development for the gas industry of the future

    SciTech Connect

    Klass, D.L.

    1991-01-01

    The natural gas industry will confront many challenges in the 1990s and beyond, one of which is the development of human resources to meet future needs. An efficient, trained work force in this era of environmental concern, high technology, and alternative fuels is essential for the industry to continue to meet the competition and to safely deliver our product and service to all customers. Unfortunately, during this period there will be an increasing shortfall of technical personnel to replace those lost to attrition and a steady decline in the availability of new employees who are able to read, write, and perform simple math. Technological and government developments that will impact the industry and the skill levels needed by the industry employees are reviewed. In-house and external training of professional and nonprofessional personnel and the benefits and disadvantages of selected advanced training methods are discussed. Recommendations are presented that can help improve the training of gas industry employees to meet future needs. 22 refs.

  16. Novel technology for flame and gas detection in the petrochemical industry

    NASA Astrophysics Data System (ADS)

    Spector, Yechiel; Jacobson, Esther

    1999-01-01

    A reliable and high performance novel method of flame and gas optical spectral analysis was developed to meet the specific flame and gas detection of the petrochemical industry. Petrochemical industries, especially the offshore and unmanned areas in onshore refineries, pose a major safety hazard with respect to potential explosions and fire events. Unwanted fuel spills or fugitive flammable vapor clouds, migrating along congested pipe lines and hot production areas may cause upon ignition significant loss or damage. To help prevents events like the catastrophic fire that destroyed the offshore oil platform Piper Alpha in July 1988, a reliable and fast gas and flame detection system can be used to trigger effective risk management actions. The present paper describes a patented method of Triple Optical Spectral Analysis employed for the detection of various gases in the air according to their unique 'spectral finger print' absorption characteristics of radiation, as well as for analysis of emission and absorption radiation from combustion processes for flame detection purpose. The method has been applied in the development of unique gas and flame monitoring system designed for 'high risk - harsh/extreme weather conditions continuous operation'. These systems have been recently installed on several offshore platforms and oil rigs as well as on 'floating production Storage and Offloading' - FPSO vessels. The systems advantages and limitations as well as several installations and test data are presented. Various atmospheric conditions as well as false alarm stimulus are discussed.

  17. Economic impact analysis of the oil and natural gas production NESHAP and the natural gas transmission and storage NESHAP. Final report

    SciTech Connect

    Conner, L.

    1999-05-01

    This report evaluates the impact of the final rule for controls of hazardous air pollutants (HAPs) in the Oil and Natural Gas Production industry and the Natural Gas Transmission and Storage industry. Total social costs are estimated by evaluating costs of compliance with the rule and associated market impacts, including: price changes in the natural gas market, adjustments in quantity produced, small entity impacts, and employment impacts.

  18. Solid waste generation from oil and gas industries in United Arab Emirates.

    PubMed

    Elshorbagy, Walid; Alkamali, Abdulqader

    2005-04-11

    Solid wastes generated from oil and gas industrial activities are very diverse in their characteristics, large in their amounts and many of which are hazardous in nature. Thus, quantifying and characterizing the generated amounts in association with their types, classes, sources, industrial activities, and their chemical and biological characteristics is an obvious mandate when evaluating the possible management practices. This paper discusses the types, amounts, generation units, and the factors related to solid waste generation from a major oil and gas field in the United Arab Emirates (Asab Field). The generated amounts are calculated based on a 1-year data collection survey and using a database software specially developed and customized for the current study. The average annual amount of total solid waste generated in the studied field is estimated at 4061 t. Such amount is found equivalent to 650 kg/capita, 0.37 kg/barrel oil, and 1.6 kg/m3 of extracted gas. The average annual amount of hazardous solid waste is estimated at 55 t and most of which (73%) is found to be generated from gas extraction-related activities. The majority of other industrial non-hazardous solid waste is generated from oil production-related activities (41%), The present analysis does also provide the estimated generation amounts per waste type and class, amounts of combustible, recyclable, and compostable wastes, and the amounts dumped in uncontrolled way as well as disposed into special hazardous landfill facilities. The results should help the decision makers in evaluating the best alternatives available to manage the solid wastes generated from the oil and gas industries. PMID:15811669

  19. The Microbiological Production of Industrial Chemicals.

    ERIC Educational Resources Information Center

    Eveleigh, Douglas E.

    1981-01-01

    Compares traditional and newer methods by which microorganisms are used to produce industrial chemicals. Includes a discussion of economic considerations and new genetic methods in programing microorganisms. Details methods for producing enzymes, aliphatic organic compounds, amino acids, ethanol, n-butanol, and alkene oxides. (CS)

  20. Who will market the independent power production industry

    SciTech Connect

    Frumerman, B.

    1988-02-01

    While this question is important, there is another question that is not asked often enough: How can the independent power production industry market itself and thereby create an environment in which member companies can thrive in the years ahead. This issue demands greater attention than it has received so far. If the independent power-production industry does not make an immediate and concerted effort to help shape public opinion regarding its role in generating and selling power, others outside the industry will. Unfortunately, such non-industry views do not tend to be supportive of the goals of independent power producers.

  1. Windowless gas targets for neutron production

    NASA Astrophysics Data System (ADS)

    Iverson, Erik. B.; Lanza, Richard C.; Lidsky, L. M.

    1997-02-01

    A windowless deuterium gas target has been constructed for either monoenergetic or white neutron production with a 900 KeV deuteron accelerator. The target is capable of operation at 100 mbar target pressure, and can admit a beam of 5 mm transverse extent. This target is further being modified by the inclusion of an intermittent valve arrangement to reduce the flow rates in the higher pressure stages. This valve should allow operation at up to 1000 mbar with low duty factor beams.

  2. Pollution prevention in the fabricated metals products industry

    SciTech Connect

    Denny, D.; Frewerd, B.; Pava, T.H.; Appley, E.

    1995-09-01

    The US metal fabrication industry is an essential part of both domestic and international economies and plays a key support role in the appliance, automotive, defense, electronics, furniture, and other assembly industries. Identified as Standard Industrial Classification Code (SIC Code) 34, the industry processes and manufacturers a wide range of metal components including cans, cutlery, hand tools, general hardware, ordnance, forgings, stampings, and structural metal products. The industry`s environmental compliance problems arise from increasingly restrictive discharge limitations and from the product phaseout of ozone-depleting chemicals (ODCs) as mandated in the 1990 Clean Air Act Amendments. Hazardous raw materials in some metal fabrication operations are regulated under the Occupational Safety and Health Act (OSHA). Some facility discharges are regulated by the Resource Conservation and Recovery Act (RCRA). The major pollutants of concern are volatile organic compounds (VOCs), ozone-depleting compounds (ODCs), hazardous air pollutants, heavy metals, acids, and oils.

  3. Mitigation strategies for microbiologically influenced corrosion in gas industry facilities

    SciTech Connect

    Pope, D.H.; Zintel, T.P. ); Cookingham, B.A. ); Howard, D.; Morris, R.G. ); Day, R.A.; Frank, J.R. ); Pogemiller, G.E. )

    1989-01-01

    This paper reports on a study of microbiologically influenced corrosion (MIC) and its mitigation in gas industry facilities. The results show that MIC commonly occurs on both external and internal surfaces of pipes, in down hole tubulars and in process equipment such as separators. Mitigation strategies were tested in side-stream devices at several sites. The results demonstrate that many biocides and corrosion inhibitors are relatively ineffective in controlling the surface microbial populations, at least under the conditions of the tests. Detailed studies with glutaraldehyde demonstrated that reestablishment of surface MIC communities after removal of this biocide was very rapid. Continuous treatment with glutaraldehyde led to the development of surface microbial communities resistant to the effects of the biocide.

  4. Development of hydrate risk quantification in oil and gas production

    NASA Astrophysics Data System (ADS)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  5. Modeling the Relative GHG Emissions of Conventional and Shale Gas Production

    PubMed Central

    2011-01-01

    Recent reports show growing reserves of unconventional gas are available and that there is an appetite from policy makers, industry, and others to better understand the GHG impact of exploiting reserves such as shale gas. There is little publicly available data comparing unconventional and conventional gas production. Existing studies rely on national inventories, but it is not generally possible to separate emissions from unconventional and conventional sources within these totals. Even if unconventional and conventional sites had been listed separately, it would not be possible to eliminate site-specific factors to compare gas production methods on an equal footing. To address this difficulty, the emissions of gas production have instead been modeled. In this way, parameters common to both methods of production can be held constant, while allowing those parameters which differentiate unconventional gas and conventional gas production to vary. The results are placed into the context of power generation, to give a ″well-to-wire″ (WtW) intensity. It was estimated that shale gas typically has a WtW emissions intensity about 1.8–2.4% higher than conventional gas, arising mainly from higher methane releases in well completion. Even using extreme assumptions, it was found that WtW emissions from shale gas need be no more than 15% higher than conventional gas if flaring or recovery measures are used. In all cases considered, the WtW emissions of shale gas powergen are significantly lower than those of coal. PMID:22085088

  6. C1-carbon sources for chemical and fuel production by microbial gas fermentation.

    PubMed

    Dürre, Peter; Eikmanns, Bernhard J

    2015-12-01

    Fossil resources for production of fuels and chemicals are finite and fuel use contributes to greenhouse gas emissions and global warming. Thus, sustainable fuel supply, security, and prices necessitate the implementation of alternative routes to the production of chemicals and fuels. Much attention has been focussed on use of cellulosic material, particularly through microbial-based processes. However, this is still costly and proving challenging, as are catalytic routes to biofuels from whole biomass. An alternative strategy is to directly capture carbon before incorporation into lignocellulosic biomass. Autotrophic acetogenic, carboxidotrophic, and methanotrophic bacteria are able to capture carbon as CO, CO2, or CH4, respectively, and reuse that carbon in products that displace their fossil-derived counterparts. Thus, gas fermentation represents a versatile industrial platform for the sustainable production of commodity chemicals and fuels from diverse gas resources derived from industrial processes, coal, biomass, municipal solid waste (MSW), and extracted natural gas. PMID:25841103

  7. Convergence of natural gas and electricity industries means change, opportunity for producers in the U. S

    SciTech Connect

    Dar, V.K. Jefferson Gas Systems Inc., Arlington, VA )

    1995-03-13

    The accelerating deregulation of natural gas and electricity distribution is the third and most powerful wave of energy deregulation coursing through North America. The first wave (1978--92) provided the impetus for sculpting competitive markets in energy production. The second (1986--95) is now breaking to fashion competitive bulk logistical and wholesale consumption markets through open access on and unbundling of gas pipeline and storage capacity and high voltage transmission capacity. The third wave, the deregulation of gas and electric retail markets through open access and nondiscriminatory, unbundled local gas and electric distribution tariffs, began in the early 1990s. It will gather momentum for the next 5 years and crest at the turn of the century, affecting and molding almost $300 billion/year in retail energy sales. The transformation will have these strategic implications: (1) the convergent evolution of the gas and electric industries; (2) severe margin compression along the energy value chain from wellhead to busbar to the distribution pipes and wires; and (3) the rapid emergency of cyberspace retailing of energy products and services. The paper discusses merchant plants, convergence and producers, capital flows, producer federations, issues of scale, and demand, margins, and value.

  8. Commitment to and preparedness for sustainable supply chain management in the oil and gas industry.

    PubMed

    Wan Ahmad, Wan Nurul K; Rezaei, Jafar; Tavasszy, Lóránt A; de Brito, Marisa P

    2016-09-15

    Our current dependency on the oil and gas (O&G) industry for economic development and social activities necessitates research into the sustainability of the industry's supply chains. At present, studies on sustainable supply chain management (SSCM) practices in the industry do not include firm-internal factors that affect the sustainability strategies employed by different functional areas of its supply chains. Our study aims to address this gap by identifying the relevant internal factors and exploring their relationship with SSCM strategies. Specifically, we discuss the commitment to and preparedness for sustainable practices of companies that operate in upstream and downstream O&G supply chain. We study the impact of these factors on their sustainability strategies of four key supply chain functions: supplier management, production management, product stewardship and logistics management. The analyses of data collected through a survey among 81 companies show that management preparedness may enhance sustainable supply chain strategies in the O&G industry more than commitment does. Among the preparedness measures, management of supply chain operational risks is found to be vital to the sustainability of all supply chain functions except for production management practices. The findings also highlight the central importance of supplier and logistics management to the achievement of sustainable O&G supply chains. Companies must also develop an organizational culture that encourages, for example, team collaboration and proactive behaviour to finding innovative sustainability solutions in order to translate commitment to sustainable practices into actions that can produce actual difference to their SSCM practices. PMID:27233046

  9. Report on Community College Industrial Production Technology Programs.

    ERIC Educational Resources Information Center

    Illinois Community Coll. Board, Springfield.

    This report provides an in-depth analysis of the Industrial Production Technology Programs in Illinois, which, according to Illinois Community College Board policy, must be reviewed at least once every five years. The disciplines included in this report are: industrial manufacturing technology, corrosion technology, plastics technology, and…

  10. Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry.

    PubMed

    Zhao, Jun; Liu, Quanli; Wang, Wei; Pedrycz, Witold; Cong, Liqun

    2012-03-01

    An energy system is the one of most important parts of the steel industry, and its reasonable operation exhibits a critical impact on manufacturing cost, energy security, and natural environment. With respect to the operation optimization problem for coke oven gas, a two-phase data-driven based forecasting and optimized adjusting method is proposed, where a Gaussian process-based echo states network is established to predict the gas real-time flow and the gasholder level in the prediction phase. Then, using the predicted gas flow and gasholder level, we develop a certain heuristic to quantify the user's optimal gas adjustment. The proposed operation measure has been verified to be effective by experimenting with the real-world on-line energy data sets coming from Shanghai Baosteel Corporation, Ltd., China. At present, the scheduling software developed with the proposed model and ensuing algorithms have been applied to the production practice of Baosteel. The application effects indicate that the software system can largely improve the real-time prediction accuracy of the gas units and provide with the optimized gas balance direction for the energy optimization. PMID:24808550

  11. Environmental impacts of antibiotic use in the animal production industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotics are routinely used in the livestock industry to treat and prevent disease. At subtherapeutic concentrations, antibiotics can select for resistant bacteria in the gastrointestinal tract of production animals, providing a potential reservoir for dissemination of drug resistant bacteria int...

  12. Impact of Aspergillus oryzae genomics on industrial production of metabolites.

    PubMed

    Abe, Keietsu; Gomi, Katusya; Hasegawa, Fumihiko; Machida, Masayuki

    2006-09-01

    Aspergillus oryzae is used extensively for the production of the traditional Japanese fermented foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste). In recent years, recombinant DNA technology has been used to enhance industrial enzyme production by A. oryzae. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of the fungus in biotechnology. Genes that have been newly discovered through genome research can be used for the production of novel valuable enzymes and chemicals, and are important for designing new industrial processes. This article describes recent progress of A . oryzae genomics and its impact on industrial production of enzymes, metabolites, and bioprocesses. PMID:16944282

  13. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens care products. 886.5918 Section 886.5918 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Industry Premarket Notification (510(k)) Guidance Document for Contact Lens Care Products.”...

  14. Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry

    NASA Astrophysics Data System (ADS)

    Wang, Mulan Xiaofeng

    in the LNG industry, Chapter 3 studies the operations of LNG supply chains facing both supply and price risk. To model the supply uncertainty, we employ a closed-queuing-network (CQN) model to represent upstream LNG production and shipping, via special oceans-going tankers, to a downstream re-gasification facility in the U.S, which sells natural gas into the wholesale spot market. The CQN shipping model analytically generates the unloaded amount probability distribution. Price uncertainty is captured by the spot price, which experiences both volatility and significant seasonality, i.e., higher prices in winter. We use a trinomial lattice to model the price uncertainty, and calibrate to the extended forward curves. Taking the outputs from the CQN model and the spot price model as stochastic inputs, we formulate a real option inventory-release model to study the benefit of optimally managing a downstream LNG storage facility. This allows characterization of the structure of the optimal inventory management policy. An interesting finding is that when it is optimal to sell, it is not necessarily optimal to sell the entire available inventory. The model can be used by LNG players to value and manage the real option to store LNG at a re-gasification facility, and is easy to be implemented. For example, this model is particularly useful to value leasing contracts for portions of the facility capacity. Real data is used to assess the value of the real option to store LNG at the downstream re-gasification facility, and, contrary to what has been claimed by some practitioners, we find that it has significant value (several million dollars). Chapter 4 studies the importance of modeling the shipping variability when valuing and managing a downstream LNG storage facility. The shipping model presented in Chapter 3 uses a "rolling forward" method to generate the independent and identically distributed (i.i.d.) unloaded amount in each decision period. We study the merit of the i

  15. CO Methanation for Synthetic Natural Gas Production.

    PubMed

    Kambolis, Anastasios; Schildhauer, Tilman J; Kröcher, Oliver

    2015-01-01

    Energy from woody biomass could supplement renewable energy production towards the replacement of fossil fuels. A multi-stage process involving gasification of wood and then catalytic transformation of the producer gas to synthetic natural gas (SNG) represents progress in this direction. SNG can be transported and distributed through the existing pipeline grid, which is advantageous from an economical point of view. Therefore, CO methanation is attracting a great deal of attention and much research effort is focusing on the understanding of the process steps and its further development. This short review summarizes recent efforts at Paul Scherrer Institute on the understanding of the reaction mechanism, the catalyst deactivation, and the development of catalytic materials with benign properties for CO methanation. PMID:26598405

  16. Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas

    SciTech Connect

    Kelsall, G.J.; Smith, M.A. . Coal Research Establishment); Cannon, M.F. . Aero and Technology Products)

    1994-07-01

    Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

  17. Regional resource depletion and industry activity: The case of oil and gas in the Gulf of Mexico

    USGS Publications Warehouse

    Attanasi, E.D.

    1986-01-01

    Stable and declining oil and gas prices have changed the industry's price expectations and, along with depletion of promising exploration prospects, has resulted in reduced exploration. Even with intensive additional exploration, production in most U.S. areas is expected to decline. What does this imply for the drilling and petroleum industry suppliers in particular regions? How should planners in government and the private sector project and incorporate the consequences of these changes in their strategies? This paper answers these questions for the industry operating in the offshore Gulf of Mexico. Future oil and gas production, as well as demand for offshore drilling and production facilities, are shown to depend on the size distribution of undiscovered fields, their associated production costs, and oil and gas prices. Declining well productivity is a consequence of development of progressively smaller fields so that long-run drilling demand should not decline in proportion to the expected production decline. Calculations show a substantial payoff to the drilling industry, in terms of potential demand increases, if it can develop and implement cost reducing technologies. Implications of these results for other offshore producing areas such as the North Sea are also discussed. ?? 1986.

  18. Productive trends in India's energy intensive industries

    SciTech Connect

    Roy, J.; Sathaye, J.; Sanstad, A.; Mongia, P.; Schumacher, K.

    1999-07-01

    This paper reports on an analysis of productivity growth and input trends in six energy intensive sectors of the Indian economy, using growth accounting and econometric methods. The econometric work estimates rates and factor price biases of technological change using a translog production model with an explicit relationship defined for technological change. Estimates of own-price responses indicate that raising energy prices would be an effective carbon abatement policy for India. At the same time, the authors results suggest that, as with previous findings on the US economy, such policies in India could have negative long run effects on productivity in these sectors. Inter-input substitution possibilities are relatively weak, so that such policies might have negative short and medium term effects on sectoral growth. The authors study provides information relevant for the analysis of costs and benefits of carbon abatement policies applied to India and thus contributes to the emerging body of modeling and analysis of global climate policy.

  19. Ternary gas mixtures for high-voltage industrial insulation

    NASA Astrophysics Data System (ADS)

    Pace, M. O.; Chan, C. C.; Christophorou, L. G.

    1981-10-01

    Gas dielectrics for insulating power apparatus, e.g., gas insulated transmission lines (GITL), were evaluated. Particular attention was given to mixtures using large proportions of an electron moderating gas (viz., N2, CHF3, or 1,1,1-C2H3F3) and smaller quantities of two electron attaching gases: SF6 and one fluorocarbon (e.g., c-C4F8). The proportions were sought at which the three gases function best as a team, moderating free electrons from higher to lower energies and there attaching them. Small amounts of the electron attaching additives can drastically raise the dielectric strength of the moderator. Certain combinations of SF6 and fluorocarbons do not produce the undesirable spark by products associated with either SF6 or fluorocarbons alone and also show improved negative polarity impulse breakdown characteristics over pure SF6. Small scale breakdown measurements were made of various ternary mixtures in the GITL geometry. It was found that nitrogen moderates electrons to extremely low energies, where SF6 attaches; the dipolar gases moderate to somewhat higher energies, where some fluorocarbons attach best.

  20. Bio Gas Oil Production from Waste Lard

    PubMed Central

    Hancsók, Jenő; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al2O3 catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280–380°C, P = 20–80 bar, LHSV = 0.75–3.0 h−1 and H2/lard ratio: 600 Nm3/m3). In case of the isomerization at the favourable process parameters (T = 360–370°C, P = 40 –50 bar, LHSV = 1.0 h−1 and H2/hydrocarbon ratio: 400 Nm3/m3) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms. PMID:21403875

  1. Environmental compliance tracking for the oil and gas industry

    SciTech Connect

    Thompson, C.C.; Qasem, J.; Killian, T.L.

    1998-12-31

    To meet the demand to track regulatory compliance requirements for oil and gas facilities, C-K Associates, Inc. and Conoco Inc. Natural Gas and Gas Products Department developed a customized relational database. The Compliance Tracking System (CTS), a Microsoft Access database, is designed to insure compliance with all applicable federally-enforceable air quality standards. Currently, compliance is insured through work practices, operating procedures, maintenance, and testing; however, associated documentation may be less formalized, especially for work practice standards and unmanned operations. Title V Operating Permits required by the 1990 Clean Air Act Amendments created the specific need for documentation of such compliance. Title V programs require annual compliance certification and semi-annual reports of compliance monitoring with signature by a responsible official. The CTS compiles applicable standards as well as monitoring, recordkeeping, and reporting requirements. A responsible party (primary and secondary) for each compliance action is assigned. Multiple tickler functions within the system provide notice of upcoming or past-due compliance actions. Systems flexibility is demonstrated through various sort mechanisms. Compliance items can be managed and documented through work orders generated by the CTS. This paper will present how the CTS was developed as an environmental management system and populated for a natural gas plant operating under a Title V permit. The system was expanded to include water quality, waste, and emergency reporting requirements to become a multi-discipline environmental compliance tool for the facility. Regulatory requirements were re-formatted to action items pertinent to field operations. The compliance actions were assigned to fit within current procedures whenever possible. Examples are presented for each media with emphasis on federally-enforceable Title V requirements.

  2. The new structure of the gas industry in the State of Sao Paulo

    SciTech Connect

    Neto, J.A.J.

    1998-07-01

    The rapidly increasing availability of natural gas is leading to a significant increase in the importance of the gas industry in Brazil. This new era is already causing major changes in the existing gas distribution companies. Gas distribution concessions are a natural monopoly and the growth in demand for this energy source will require that these growing concessions are regulated. The south/south-east of Brazil is the center of the country's industrial base and the State of Sao Paulo is where most of the manufacturing activity is located. In addition, natural gas from Bolivia is scheduled to arrive in the State of Sao Paulo at the end of 1998. These two facts combined will mean major changes in the operations of manufacturing industry and in the gas supply business. Comparing the experience faced by other countries where a competitive environment in the gas industry has been introduced with privatization programs and the dismantlement of monopolies, this paper attempts to look into the future of the natural gas industry in the State of Sao Paulo in respect to the possible regulation that might be applicable, focusing on the new regulatory framework proposed to the gas industry sector and the perspectives for the introduction of the competition in gas industry in the State of Sao Paulo.

  3. Evaluation of Fresh Kills landfill gas for industrial applications. Final report, August 1977-March 1980

    SciTech Connect

    Briceland, C.; Bortz, S.; Khinkis, M.J.; Abassi, H.; Waibel, R.T.

    1980-03-01

    This report describes a combined laboratory and field test program carried out at the Fresh Kills Landfill on Staten Island to determine the acceptability of landfill gas as a replacement for natural gas and imported fuels in industrial processes. Landfill gas, created by the natural breakdown of organic materials, is about 50 percent methane. The Fresh Kills gas was tested to gauge its performance, characteristics and heat value, especially in relation to natural gas. The result of the tests were so favorable, that an aggressive program has been initiated statewide to identify landfill sites and potential industrial users for the landfill gas.

  4. Organic Substances from Unconventional Oil and Gas Production in Shale

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  5. Cattle and the oil and gas industry in Alberta: A literature review with recommendations for environmental management

    SciTech Connect

    1996-12-31

    The purpose of this report is to bring together a review of published information on the potential effects of upstream oil and gas industry operations on the cattle industry in Alberta, some indication of the probability of occurrence of these effects, and recommendations on how they might be avoided or mitigated. Based on reviews of scientific papers and industry good-practice manuals, the report describes: The sources and quantities of environmental contaminants generated by Alberta`s oil and gas industry, including normal operations, accidental releases, and the effects of aging infrastructure; the chemical composition of the products, materials, and wastes associated with the industry; the fate and transport of the contaminants through air, water, and soil; cattle operations in Alberta; the toxicology of oil and gas industry contaminants in cattle; and selected Alberta case studies of accidental releases and planned experiments. Conclusions and recommendations deal with critical information gaps and strategies for the sustainable management of cattle and oil/gas operations in the province.

  6. The U.S. Chemical Industry, the Products It Makes

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry presents data on these areas of chemical production: growth rates, man-made fibers; the 50 largest volume chemicals, major inorganics and organics, plastics, drugs, magnesium, and paint. Includes production figures for 1961, 1969, 1970, 1971 and percent change for 1970-71 and for 1961-71.…

  7. Video Production Curriculum Guide. Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Fish, Calvin

    This curriculum guide is intended to help instructors implement video production as a trade and industrial education course offering with communication skills woven into each unit. The guide is written for a double-period class, meeting 350 hours per year for two years. The first year is based on single camera production; the second year is based…

  8. Competition and product quality in the supermarket industry.

    PubMed

    Matsa, David A

    2011-01-01

    This article analyzes the effect of competition on a supermarket firm's incentive to provide product quality. In the supermarket industry, product availability is an important measure of quality. Using U.S. Consumer Price Index microdata to track inventory shortfalls, I find that stores facing more intense competition have fewer shortfalls. Competition from Walmart—the most significant shock to industry market structure in half a century—decreased shortfalls among large chains by about a third. The risk that customers will switch stores appears to provide competitors with a strong incentive to invest in product quality. PMID:22148133

  9. Work environment and production development in Swedish manufacturing industry.

    PubMed

    Johansson, Bo

    2010-01-01

    Swedish manufacturing industry has previous held a leading position regarding the development of attractive industrial work environments, but increasing market competition has changed the possibilities to maintain the position. The purpose of this literature study is therefore to describe and analyze how Swedish manufacturing industry manages work environment and production development in the new millennium. The description and analysis is based on recently reported Swedish research and development. The gathered picture of how production systems generally are developed in Sweden strongly contrasts against the idealized theoretical and legal view of how production systems should be developed. Even if some of the researchers' and authorities' ambitions and demands may seem unrealistically high today, there still is a very large potential for improving the processes and tools for designing production systems and work environment. PMID:20828493

  10. Strategies implemented by the textile industry in response to natural-gas curtailments

    SciTech Connect

    Schreibeis, R.L.

    1980-01-01

    An examination is made of specific activities undertaken by textile firms in North and South Carolina and Georgia to insulate themselves against production losses resulting from natural gas curtailments. Results of the research effort focusing on investigating patterns or trends of precautionary activities undertaken by the textile industry in response to fuel interruptions are presented. Chapter II delineates the scope of the project, research design, and nature of the textile industry. One hundred candidate firms for detailed study were identified and 34 discussed their alternate fuel strategies. Information obtained was analyzed by means of two statistical analysis techniques. Methods employed and results are described in Chapter III. Overall results are presented in Chapter IV. Variations in the strategies implemented by various concerns were accounted for in terms of geographic location, plant size, plant type, and the duration and extent of curtailment impacts. Ranges of expenditures for short- and long-term strategies are identified.

  11. Advanced solidification processing of an industrial gas turbine engine component

    NASA Astrophysics Data System (ADS)

    Clemens, Mei Ling; Price, Allen; Bellows, Richard S.

    2003-03-01

    This paper will describe the efforts of the Advanced Turbine Airfoil Manufacturing Technology Program sponsored by the U.S. Department of Energy through the Oak Ridge National Laboratory and Howmet Research Corporation. The purpose of the program is to develop single-crystal and directionally solidified casting technologies to benefit Advanced Turbine Systems (ATS) industrial and utility gas turbine engines. The focus is on defining and implementing advanced Vacuum Induction Melting (VIM) furnace enhancements that provide precise control of mold temperatures during solidification. Emphasis was placed on increasing the total magnitude of thermal gradients while minimizing the difference in maximum and minimum gradients produced during the solidification process. Advanced VIM casting techniques were applied to Solar Turbines Incorporated’s Titan 130 First Stage High Pressure Turbine Blade under the ATS program. A comparison of the advanced VIM casting process to the conventional Bridgeman casting process will be presented as it pertains to the thermal gradients achieved during solidification, microstructure, elemental partitioning characterization, and solution heat treat response.

  12. 76 FR 20657 - Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing Take notice that on April 1, 2011, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed a revised Statement...

  13. 75 FR 56092 - Hattiesburg Industrial Gas Sales, L.L.C; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hattiesburg Industrial Gas Sales, L.L.C; Notice of Filing September 8, 2010. Take notice that on September 1, 2010, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed...

  14. 76 FR 78640 - Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing Take notice that on December 9, 2011, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed in PR12-8-000...

  15. 78 FR 21929 - Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing Take notice that on April 1, 2013, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed to cancel...

  16. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.

    PubMed

    Mei, Yanyang; Liu, Rujie; Yang, Qing; Yang, Haiping; Shao, Jingai; Draper, Christopher; Zhang, Shihong; Chen, Hanping

    2015-02-01

    Torrefaction of cedarwood was performed in a pilot-scale rotary kiln at various temperatures (200, 230, 260 and 290°C). The torrefaction properties, the influence on the grindability and hydroscopicity of the torrefied biomass were investigated in detail as well as the combustion performance. It turned out that, compared with raw biomass, the grindability and the hydrophobicity of the torrefied biomass were significantly improved, and the increasing torrefaction temperature resulted in a decrease in grinding energy consumption and an increase in the proportion of smaller-sized particles. The use of industrial flue gas had a significant influence on the behavior of cedarwood during torrefaction and the properties of the resultant solid products. To optimize the energy density and energy yield, the temperature of torrefaction using flue gas should be controlled within 260°C. Additionally, the combustion of torrefied samples was mainly the combustion of chars, with similar combustion characteristics to lignite. PMID:25497055

  17. Production Characteristics of Oceanic Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2014-12-01

    Oceanic natural gas hydrate (NGH) accumulations form when natural gas is trapped thermodynamically within the gas hydrate stability zone (GHSZ), which extends downward from the seafloor in open ocean depths greater than about 500 metres. As water depths increase, the thickness of the GHSZ thickens, but economic NGH deposits probably occur no deeper than 1 km below the seafloor. Natural gas (mostly methane) appears to emanate mostly from deeper sources and migrates into the GHSZ. The natural gas crystallizes as NGH when the pressure - temperature conditions within the GHSZ are reached and when the chemical condition of dissolved gas concentration in pore water is high enough to favor crystallization. Although NGH can form in both primary and secondary porosity, the principal economic target appears to be turbidite sands on deep continental margins. Because these are very similar to the hosts of more deeply buried conventional gas and oil deposits, industry knows how to explore for them. Recent improvements in a seismic geotechnical approach to NGH identification and valuation have been confirmed by drilling in the northern Gulf of Mexico and allow for widespread exploration for NGH deposits to begin. NGH concentrations occur in the same semi-consolidated sediments in GHSZs worldwide. This provides for a narrow exploration window with low acoustic attenuation. These sediments present the same range of relatively easy drilling conditions and formation pressures that are only slightly greater than at the seafloor and are essentially equalized by water in wellbores. Expensive conventional drilling equipment is not required. NGH is the only hydrocarbon that is stable at its formation pressures and incapable of converting to gas without artificial stimulation. We suggest that specialized, NGH-specific drilling capability will offer opportunities for much less expensive drilling, more complex wellbore layouts that improve reservoir connectivity and in which gas

  18. Results of Laboratory and Industrial Tests of Periodic-Type Gas Generators

    NASA Astrophysics Data System (ADS)

    Karp, I. N.; P‧yanykh, K. E.; Antoshchuk, T. A.; Lysenko, A. A.

    2015-05-01

    Results of laboratory and industrial tests of periodic-type gas generators burning various solid biofuels have been presented. The tests were carried out with the aim of obtaining producer gas which could totally or partly replace natural gas in power equipment burning gaseous fuel. The energy and environmental characteristics of a boiler unit burning a mixture of producer gas and natural gas have been assessed.

  19. Gas-well production decline in multiwell reservoirs

    SciTech Connect

    Aminian, K.; Ameri, S. ); Stark, J.J. ); Yost, A.B. II )

    1990-12-01

    This paper introduces a pseudosteady-state constant-pressure solution for gas wells. The solution was used to develop a type-curve-based method to history match and predict multiwell gas reservoir production. Good agreements between the predicted and actual gas well production rates were obtained.

  20. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel Morrison; Sharon Elder

    2006-01-24

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

  1. Economical Recovery of By-products in the Mining Industry

    SciTech Connect

    Berry, J.B.

    2001-12-05

    The U.S. Department of Energy (DOE) Office of Industrial Technologies, Mining Industry of the Future Program, works with the mining industry to further the industry's advances toward environmental and economic goals. Two of these goals are (1) responsible emission and by-product management and (2) low-cost and efficient production (DOE 1998). DOE formed an alliance with the National Mining Association (NMA) to strengthen the basis for research projects conducted to benefit the mining industry. NMA and industry representatives actively participate in this alliance by evaluating project proposals and by recommending research project selection to DOE. Similarly, the National Research Council (NRC) has recently and independently recommended research and technology development opportunities in the mining industry (NRC 2001). The Oak Ridge National Laboratory (ORNL) and Colorado School of Mines engineers conducted one such project for DOE regarding by -product recovery from mining process residue. The results of this project include this report on mining industry process residue and waste with opportunity for by-product recovery. The U.S. mineral processing industry produces over 30,000,000 metric tons per year of process residue and waste that may contain hazardous species as well as valuable by-products. This study evaluates the copper, lead, and zinc commodity sectors which generate between 23,300,000 and 24,000,000 metric tons per year. The distribution of residual elements in process residues and wastes varies over wide ranges* because of variations in the original ore content as it is extracted from the earth's crust. In the earth's crust, the elements of interest to mining fall into two general geochemical classifications, lithophiles and chalcophiles** (Cox 1997). Groups of elements are almost always present together in a given geochemical classification, but the relative amounts of each element are unique to a particular ore body. This paper generally describes

  2. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect

    Not Available

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  3. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect

    Not Available

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., ``Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  4. The utilization of renewable resources in German industrial production.

    PubMed

    Busch, Rainer; Hirth, Thomas; Liese, Andreas; Nordhoff, Stefan; Puls, Jürgen; Pulz, Otto; Sell, Dieter; Syldatk, Christoph; Ulber, Roland

    2006-01-01

    Renewable resources will be an increasingly important issue for the chemical industry in the future. In the context of white biotechnology, they represent the intersection point of agriculture and the chemical industry. The scarcity and related increase in the price of fossil resources make renewable resources an interesting alternative. If one considers the production of bulk chemicals, it is evident that for this area besides the C sources, sugar and starch, new sources of raw materials must be opened up. One possible solution is to utilize lignocellulose both for materials and energy. This article discusses this interesting prospective for the future, particularly from the point of view of the German industry. PMID:16897820

  5. Technological change, depletion and environmental policy in the offshore oil and gas industry

    NASA Astrophysics Data System (ADS)

    Managi, Shunsuke

    Technological change is central to maintaining standards of living in modern economies with finite resources and increasingly stringent environmental goals. Successful environmental policies can contribute to efficiency by encouraging, rather than inhibiting, technological innovation. However, little research to date has focused on the design and implementation of environmental regulations that encourage technological progress, or in insuring productivity improvements in the face of depletion of natural resources and increasing stringency of environmental regulations. This study models and measures productivity change, with an application to offshore oil and gas production in the Gulf of Mexico using Data Envelopment Analysis. This is an important application because energy resources are central to sustaining our economy. The net effects of technological progress and depletion on productivity of offshore oil and gas production are measured using a unique field-level set of data of production from all wells in the Gulf of Mexico over the time period from 1946--1998. Results are consistent with the hypothesis that technological progress has mitigated depletion effects over the study period, but the pattern differs from the conventional wisdom for nonrenewable resource industries. The Porter Hypothesis was recast, and revised version was tested. The Porter Hypothesis states that well designed environmental regulations can potentially contribute to productive efficiency in the long run by encouraging innovation. The Porter Hypothesis was recast to include market and nonmarket outputs. Our results support the recast version of Porter hypothesis, which examine productivity of joint production of market and environmental outputs. But we find no evidence for the standard formulation of the Porter hypothesis, that increased stringency of environmental regulation lead to increased productivity of market outputs and therefore increased industry profits. The model is used to

  6. Assessing drivers of export orientation in the subsea oil and gas industry.

    PubMed

    Aarstad, Jarle; Pettersen, Inger Beate; Jakobsen, Stig-Erik

    2015-01-01

    The purpose of this short study was to identify the drivers of export orientation of firms in the subsea oil and gas industry in Western Norway. As the oil fields in the North Sea are approaching a stage of maturity, gaining knowledge of these drivers is crucial. An online survey was conducted of firms operating in the subsea oil and gas industry in the region. Consistent with previous research, the data reveal that product innovation and a majority share of international ownership increase firms' export rates. The use of instrumental variables indicates that both product innovation and international ownership are causes of subsea petroleum exports. The study moreover finds that subcontractors have a lower rate of direct exports than system providers, but international ownership in particular boosts subcontractors' export rates, probably by decreasing their market dependency on regional system providers. A clear recommendation for managers and stakeholders is that they should encourage foreign investments throughout the value chain. The results of such a strategy appear to be especially positive for subcontractors. PMID:26261761

  7. Natural gas in the energy industry of the 21st century

    SciTech Connect

    Cuttica, J.

    1995-12-31

    This paper provides a gas industry perspective on the impacts of restructuring the natural gas and electric industries. The four main implications discussed are: (1) market trends, (2) strategic positioning, (3) significant market implications, and (4) issues for the future. Market trends discussed include transitioning rate of return to market competition and regulatory impacts. Significant market implications for gas-fired generation identified include limited new generation investment, extension of existing plants, and an opportunity for distributed power generation. 12 tabs.

  8. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    PubMed

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This

  9. Technological change and productivity growth in the air transport industry

    NASA Technical Reports Server (NTRS)

    Rosenberg, N.; Thompson, A.; Belsley, S. E.

    1978-01-01

    The progress of the civil air transport industry in the United States was examined in the light of a proposal of Enos who, after examining the growth of the petroleum industry, divided that phenomenon into two phases, the alpha and the beta; that is, the invention, first development and production, and the improvement phase. The civil air transport industry developed along similar lines with the technological progress coming in waves; each wave encompassing several new technological advances while retaining the best of the old ones. At the same time the productivity of the transport aircraft as expressed by the product of the aircraft velocity and the passenger capacity increased sufficiently to allow the direct operating cost in cents per passenger mile to continually decrease with each successive aircraft development.

  10. Projected total energy and natural gas demand in the industrial sector

    SciTech Connect

    Not Available

    1991-04-01

    The results presented summarize a study conducted to provide information on industrial energy use by fuel type, functional end use, industry group, and region (GRI-91/0179). The main objectives of the study were to identify the salient trends in future industrial total energy and natural gas demand and to analyze the basic factors underlying those trends.

  11. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin.

    PubMed

    Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Barredo, José Luis

    2010-10-01

    Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin). PMID:20711573

  12. Industry efficiency and total factor productivity growth under resources and environmental constraint in China.

    PubMed

    Tao, Feng; Li, Ling; Xia, X H

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517

  13. Industry Efficiency and Total Factor Productivity Growth under Resources and Environmental Constraint in China

    PubMed Central

    Tao, Feng; Li, Ling; Xia, X. H.

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517

  14. A desiccant/steam-injected gas-turbine industrial cogeneration system

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

    1993-01-01

    An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

  15. A desiccant/steam-injected gas-turbine industrial cogeneration system

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

    1993-12-31

    An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

  16. How a Physicist Can Add Value In the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Poitzsch, Martin

    2011-03-01

    The talk will focus on some specific examples of innovative and fit-for-purpose physics applied to solve real-world oil and gas exploration and production problems. In addition, links will be made to some of the skills and areas of practical experience acquired in physics education and research that can prove invaluable for success in such an industrial setting with a rather distinct and unique culture and a highly-collaborative working style. The oil and gas industry is one of the largest and most geographically and organizationally diverse areas of business activity on earth; and as a `mature industry,' it is also characterized by a bewildering mix of technologies dating from the 19th century to the 21st. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To be successful at introducing new technology requires understanding which problems most need to be solved. The most exotic or improbable technologies can take off in this industry if they honestly offer the best solution to a real problem that is costing millions of dollars in risk or inefficiency. On the other hand, any cheaper or simpler solution that performs as well would prevail, no matter how inelegant! The speaker started out in atomic spectroscopy (Harvard), post-doc'ed in laser cooling and trapping of ions for high-accuracy time and frequency metrology (NIST), and then jumped directly into Drilling Engineering with Schlumberger Corp. in Houston. Since then, his career has moved through applied electromagnetics, geological imaging, nuclear magnetic resonance logging, some R and D portfolio

  17. Study of the outlook for the development of the gas industry in Russia and analysis of risk associated with this process

    NASA Astrophysics Data System (ADS)

    Eliseeva, O. A.; Luk'yanova, A. S.; Tarasov, A. E.

    2010-12-01

    The gas industry in Russia will develop under conditions of the persistence of existing risks and emergence of the new ones caused by the world financial crisis, increased uncertainty in estimating world prices for natural gas, together with disturbed balance between interests of gas producers and consumers, and threat of loss of the competitiveness of Russian natural gas on foreign markets. In this context, in choosing a strategy of the development of the gas industry and its production-and-financial program, it is necessary to carry out a risk analysis of optimum decisions. Specific features of carrying out a risk analysis and results of the risk analysis of strategic decisions that would provide enhanced steadiness and the effectiveness of the development of the gas industry under conditions of the uncertainty of both external and internal factors are presented.

  18. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  19. 21 CFR 173.350 - Combustion product gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.350 Combustion product gas. The food additive combustion...

  20. Correlates of Research Productivity for Industrial Education Faculty.

    ERIC Educational Resources Information Center

    Christensen, Kip W.; Jansen, Duane G.

    1992-01-01

    Responses from 318 of 500 industrial education faculty showed that (1) over 70 percent were over 45; and (2) significant correlates of research productivity were networking with other faculty, conducting summer research, internal motivation, and involvement in teaching and advising graduate research students. (SK)

  1. Preface: Biocatalysis and Biotechnology for Functional Foods and Industrial Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book was assembled with the intent of bringing together current advances and in-depth review of biocatalysis and biotechnology with emphasis on functional foods and industrial products. Biocatalysis and biotechnology defined in this book include enzyme catalysis, biotransformation, bioconversi...

  2. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  3. GREENHOUSE PRODUCTION OF BEDDING AND FOLIAGE PLANTS WITH INDUSTRIAL HEAT

    EPA Science Inventory

    The report gives results of an evaluation of potentially beneficial uses of industrial waste heat for production of bedding and foliage plants, using conventionally and warm-water heated greenhouses in Fort Valley, GA. Each greenhouse was a plastic covered, 30 x 72-ft quonset. Th...

  4. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  5. Industry Immersion for Reading and Mathematics Improvement. Valley Products Company.

    ERIC Educational Resources Information Center

    Jones, Paul L.; And Others

    An intensive industry immersion program of reading and mathematics was conducted in Spring 1989 for employees at Valley Products, Inc., in a cooperative venture by the Literacy Foundation, Memphis, the Memphis City Schools Adult Education Program, and the company. Employee participants were assessed with the San Diego Quick Assessment Test to…

  6. CENTURY INDUSTRIAL PRODUCTS FRP-100 WET SCRUBBER EVALUATION

    EPA Science Inventory

    The report gives results of a field test evaluation of the performance of the Century Industrial Products FRP-100 wet scrubber installed on a lightweight aggregate kiln. Inlet/outlet tests for particle size distribution with cascade impactors and extractive sampling with an elect...

  7. [Description of Salmonella contamination of industrially made pizza products].

    PubMed

    Lohs, P; Kontny, I; Petzold, C; Schöttler, G

    1992-08-01

    Based on a impurity of industrial made pizza products with Salmonella it was checked to what extent the preparation instructions given by the producer are connected with a hygienic risk for the consumers. It can be declared that the producer didn't deal with its duty for exactness and that the made controls were insufficient. PMID:1388614

  8. Application of food industry waste to agricultural soils mitigates green house gas emissions.

    PubMed

    Rashid, M T; Voroney, R P; Khalid, M

    2010-01-01

    Application of organic waste materials such as food processing and serving industry cooking oil waste (OFW) can recycle soil nitrate nitrogen (NO(3)-N), which is otherwise prone to leaching after the harvest of crop. Nitrogen (N) recycling will not only reduce the amount of N fertilizer application for corn crop production but is also expected to mitigate green house gas (GHG) emissions by saving energy to be used for the production of the same amount of industrial fertilizer N required for the growth of corn crop. Application of OFW at 10Mg solid ha(-1)y(-1) conserved 68 kg N ha(-1)y(-1) which ultimately saved 134 L diesel ha(-1)y(-1), which would otherwise be used for the production of fertilizer N as urea. Average fossil energy substitution value (FESV) of N conserved/recycled was calculated to be 93 US$ ha(-1)y(-1), which is about 13 million US$y(-1). Potential amount of GHG mitigation through the application of OFW to agricultural soils in Canada is estimated to be 57 Gg CO(2)Eq y(-1). PMID:19765979

  9. Thermal reactor. [liquid silicon production from silane gas

    NASA Technical Reports Server (NTRS)

    Levin, H.; Ford, L. B. (Inventor)

    1982-01-01

    A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.

  10. Natural Gas Industry Restructuring and EIA Data Collection

    EIA Publications

    1996-01-01

    The Energy Information Administration's (EIA) Reserves and Natural Gas Division has undertaken an in-depth reevaluation of its programs in an effort to improve the focus and quality of the natural gas data that it gathers and reports. This article is to inform natural gas data users of proposed changes and of the opportunity to provide comments and input on the direction that EIA is taking to improve its data.

  11. Structural reform and productivity in the water and wastewater industry: Emerging issues

    NASA Astrophysics Data System (ADS)

    Abbott, Malcolm; Cohen, Bruce

    2010-03-01

    Over the past 2 decades there has been a range of reforms to the structure of the water supply and wastewater industries around the world. As yet these reforms have not been as extensive, or as uniform, as in other utilities such as telecommunications, gas, and electricity supply. One focus of reform has been to enhance the structure of water supply and wastewater industries to improve levels of productivity and efficiency while at the same time maintaining environmental and water quality standards, providing affordable access to clean water and encouraging innovation and improvement in service delivery. Now, however, a changing climate, new technologies, and greater emphasis on environmental impacts of supply from traditional sources are creating forces which are requiring a rethinking of traditional water and wastewater industry structures. The purpose of this paper is to examine emerging issues that confront the structure of the water and wastewater industries and to assess them in light of the findings of productivity and efficiency analysis undertaken to date. In doing so, this paper considers how industry structure may impact upon, and be influenced by, the dual achievement of both economic efficiency and issues such as water quality standards, environmental outcomes, innovation, and social goals in an evolving industry environment.

  12. Production of biodiesel using expanded gas solvents

    SciTech Connect

    Ginosar, Daniel M; Fox, Robert V; Petkovic, Lucia M

    2009-04-07

    A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

  13. Mobile monitoring of fugitive methane emissions from natural gas consumer industries

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Albertson, J. D.; Gaylord, A.; von Fischer, J.; Rudek, J.; Thoma, E. D.

    2015-12-01

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools for estimating emission rates from mobile methane measurements, and examines results from recent field measurements conducted downwind of several industrial plants using a specialized vehicle equipped with fast response methane sensor. Using these data along with local meteorological data measured by a 3-D sonic anemometer, a Bayesian approach is applied to probabilistically infer methane emission rates based on a modified Gaussian dispersion model. Source rates are updated recursively with repeated traversals of the downwind methane plume when the vehicle was circling around the targeted facilities. Data from controlled tracer release experiments are presented and used to validate the approach. With access via public roads, this mobile monitoring method is able to quickly assess the emission strength of facilities along the sensor path. This work is developing the capacity for efficient regional coverage of potential methane emission rates in support of leak detection and mitigation efforts.

  14. Industrial water demand management and cleaner production potential: a case of three industries in Bulawayo, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Gumbo, Bekithemba; Mlilo, Sipho; Broome, Jeff; Lumbroso, Darren

    The combination of water demand management and cleaner production concepts have resulted in both economical and ecological benefits. The biggest challenge for developing countries is how to retrofit the industrial processes, which at times are based on obsolete technology, within financial, institutional and legal constraints. Processes in closed circuits can reduce water intake substantially and minimise resource input and the subsequent waste thereby reducing pollution of finite fresh water resources. Three industries were studied in Bulawayo, Zimbabwe to identify potential opportunities for reducing water intake and material usage and minimising waste. The industries comprised of a wire galvanising company, soft drink manufacturing and sugar refining industry. The results show that the wire galvanising industry could save up to 17% of water by recycling hot quench water through a cooling system. The industry can eliminate by substitution the use of toxic materials, namely lead and ammonium chloride and reduce the use of hydrochloric acid by half through using an induction heating chamber instead of lead during the annealing step. For the soft drink manufacturing industry water intake could be reduced by 5% through recycling filter-backwash water via the water treatment plant. Use of the pig system could save approximately 12 m 3/month of syrup and help reduce trade effluent fees by Z30/m 3 of “soft drink”. Use of a heat exchanger system in the sugar refining industry can reduce water intake by approximately 57 m 3/100 t “raw sugar” effluent volume by about 28 m 3/100 t “raw sugar”. The water charges would effectively be reduced by 52% and trade effluent fees by Z3384/100 t “raw sugar” (57%). Proper equipment selection, equipment modification and good house-keeping procedures could further help industries reduce water intake and minimise waste.

  15. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect

    Schumacher, Katja

    1999-07-01

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  16. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect

    Diemer, P.E.; Seyfferth, W.

    1997-12-31

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  17. Windowless gas targets for neutron production

    NASA Astrophysics Data System (ADS)

    Iverson, Erik B.

    A windowless deuterium gas target has been constructed for high yield production of either monoenergetic or white fast neutrons. The operation of this target has been demonstrated on a 900 keV deuteron accelerator. The target is capable of operation at 100 mbar target pressure, and can admit a low duty factor beam of 5 mm transverse extent. The target employs an intermittent valve arrangement to reduce the flow rates in the higher pressure stages of a differentially pumped vacuum system. This valve allows operation at much greater target pressures for low duty factor beams than would otherwise be the case. Neutron yield measurements validated the functionality of the target system. This target will make possible considerable advances in methods of non-destructive testing and evaluation which employ fast neutrons, whether mono-energetic or otherwise. It is further suited to use as a thermal neutron source, with the addition of an appropriate moderator. The development of this target system has not only provided a functioning and valuable piece of equipment for use in further research, but has also investigated the technological limitations and functional requirements of implementing such a system in a practical setting. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 2139-4307. Ph. 617-253-5668; Fax 617- 253-1690.)

  18. Environmental regulatory drivers for industrial natural gas research and development. Final topical report, March 1992-March 1993

    SciTech Connect

    Bluestein, J.; Cheng, R.

    1993-03-01

    The purpose of the report is to analyze opportunities for environmentally driven research and development projects for industrial natural gas use. The report seeks to identify broad trends in current and future environmental regulations, identify those areas of industrial gas use which are most significantly affected and analyze the role of industrial natural gas energy use in response to these implications.

  19. English-Spanish glossary: offshore exploration and production, gas processing, and valves

    SciTech Connect

    Not Available

    1981-12-01

    This series of articles contains 3 different English-Spanish glossaries of related terms used in the oil industry. The glossary of the offshore exploration and production involves a summary of terms used in the offshore oil activity. It also includes names of singular equipment used in offshore drilling, as well as several navigation terms in relation to the floating oil structures. With the help of the Gas Processors Association it was possible to compile a glossary of gas processing with a concise selection of common terms of the industry of gas processing. The glossary of valves includes more than 200 terms of the industry of valves in a specialized glossary, and several explanations about the application and operation of valves.

  20. Design and industrial production of frequency standards in the USSR

    NASA Technical Reports Server (NTRS)

    Demidov, Nikolai A.; Uljanov, Adolph A.

    1990-01-01

    Some aspects of research development and production of quantum frequency standards, carried out in QUARTZ Research and Production Association (RPA), Gorky, U.S.S.R., were investigated for the last 25 to 30 years. During this period a number of rubidium and hydrogen frequency standards, based on the active maser, were developed and put into production. The first industrial model of a passive hydrogen maser was designed in the last years. Besides frequency standards for a wide application range, RPA QUARTZ investigates metrological frequency standards--cesium standards with cavity length 1.9 m and hydrogen masers with a flexible storage bulb.

  1. Compatibilized blends and value added products from leather industry waste

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Di Landro, Luca

    2014-05-01

    Blends based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed proteins (IP), derived from waste products of the leather industry, have been obtained by reactive blending and their chemical physical properties as well as mechanical and rheological behavior were evaluated. The effect of vinyl acetate content and of transesterification agent addition to increase interaction between polymer and bio-based components were considered. These blends represent a new type of biodegradable material and resulted promising for industrial application in several fields such as packaging and agriculture as transplanting or mulching films with additional fertilizing action of IP.

  2. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  3. Upstream Financial Review of the Global Oil and Natural Gas Industry

    EIA Publications

    2016-01-01

    This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

  4. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  5. Products Depend on Creative Potential: A Comment on the Productivist Industrial Model of Knowledge Production

    ERIC Educational Resources Information Center

    Runco, Mark A.

    2010-01-01

    Ghassib (2010) presents a provocative view of science as industry. He ties science specifically to a "productivist" industrial model and to knowledge production. If judged based on what is explicit in this article, his theory is useful and logical. There are, however, several concerns as well. Some of these are implied by the title of his article,…

  6. Prospects and challenges for industrial production of seaweed bioactives.

    PubMed

    Hafting, Jeff T; Craigie, James S; Stengel, Dagmar B; Loureiro, Rafael R; Buschmann, Alejandro H; Yarish, Charles; Edwards, Maeve D; Critchley, Alan T

    2015-10-01

    Large-scale seaweed cultivation has been instrumental in globalizing the seaweed industry since the 1950s. The domestication of seaweed cultivars (begun in the 1940s) ended the reliance on natural cycles of raw material availability for some species, with efforts driven by consumer demands that far exceeded the available supplies. Currently, seaweed cultivation is unrivaled in mariculture with 94% of annual seaweed biomass utilized globally being derived from cultivated sources. In the last decade, research has confirmed seaweeds as rich sources of potentially valuable, health-promoting compounds. Most existing seaweed cultivars and current cultivation techniques have been developed for producing commoditized biomass, and may not necessarily be optimized for the production of valuable bioactive compounds. The future of the seaweed industry will include the development of high value markets for functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals. Entry into these markets will require a level of standardization, efficacy, and traceability that has not previously been demanded of seaweed products. Both internal concentrations and composition of bioactive compounds can fluctuate seasonally, geographically, bathymetrically, and according to genetic variability even within individual species, especially where life history stages can be important. History shows that successful expansion of seaweed products into new markets requires the cultivation of domesticated seaweed cultivars. Demands of an evolving new industry based upon efficacy and standardization will require the selection of improved cultivars, the domestication of new species, and a refinement of existing cultivation techniques to improve quality control and traceability of products. PMID:26986880

  7. Competitive position of natural gas: Industrial baking and frying. May 1988

    SciTech Connect

    Not Available

    1988-01-01

    The summary of reports GRI-88/0020 and GRI-88/0042 provides the results of studies performed to determine the status of natural gas technologies in the industrial baking and frying markets and to identify R D to enhance the performance of these technologies. The studies indicate that natural gas will continue to be the most economical energy source for industrial baking and frying.

  8. Heterologous laccase production and its role in industrial applications.

    PubMed

    Piscitelli, Alessandra; Pezzella, Cinzia; Giardina, Paola; Faraco, Vincenza; Giovanni, Sannia

    2010-01-01

    Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry. PMID:21327057

  9. Heterologous laccase production and its role in industrial applications

    PubMed Central

    Pezzella, Cinzia; Giardina, Paola; Faraco, Vincenza; Sannia, Giovanni

    2010-01-01

    Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry. PMID:21327057

  10. Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry

    NASA Astrophysics Data System (ADS)

    Wang, Mulan Xiaofeng

    in the LNG industry, Chapter 3 studies the operations of LNG supply chains facing both supply and price risk. To model the supply uncertainty, we employ a closed-queuing-network (CQN) model to represent upstream LNG production and shipping, via special oceans-going tankers, to a downstream re-gasification facility in the U.S, which sells natural gas into the wholesale spot market. The CQN shipping model analytically generates the unloaded amount probability distribution. Price uncertainty is captured by the spot price, which experiences both volatility and significant seasonality, i.e., higher prices in winter. We use a trinomial lattice to model the price uncertainty, and calibrate to the extended forward curves. Taking the outputs from the CQN model and the spot price model as stochastic inputs, we formulate a real option inventory-release model to study the benefit of optimally managing a downstream LNG storage facility. This allows characterization of the structure of the optimal inventory management policy. An interesting finding is that when it is optimal to sell, it is not necessarily optimal to sell the entire available inventory. The model can be used by LNG players to value and manage the real option to store LNG at a re-gasification facility, and is easy to be implemented. For example, this model is particularly useful to value leasing contracts for portions of the facility capacity. Real data is used to assess the value of the real option to store LNG at the downstream re-gasification facility, and, contrary to what has been claimed by some practitioners, we find that it has significant value (several million dollars). Chapter 4 studies the importance of modeling the shipping variability when valuing and managing a downstream LNG storage facility. The shipping model presented in Chapter 3 uses a "rolling forward" method to generate the independent and identically distributed (i.i.d.) unloaded amount in each decision period. We study the merit of the i

  11. Measuring micro-organism gas production

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Pearson, A. O.; Mills, S. M.

    1973-01-01

    Transducer, which senses pressure buildup, is easy to assemble and use, and rate of gas produced can be measured automatically and accurately. Method can be used in research, in clinical laboratories, and for environmental pollution studies because of its ability to detect and quantify rapidly the number of gas-producing microorganisms in water, beverages, and clinical samples.

  12. Mathematical analysis of intermittent gas injection model in oil production

    NASA Astrophysics Data System (ADS)

    Tasmi, Silvya, D. R.; Pudjo, S.; Leksono, M.; Edy, S.

    2016-02-01

    Intermittent gas injection is a method to help oil production process. Gas is injected through choke in surface and then gas into tubing. Gas forms three areas in tubing: gas column area, film area and slug area. Gas column is used to propel slug area until surface. A mathematical model of intermittent gas injection is developed in gas column area, film area and slug area. Model is expanding based on mass and momentum conservation. Using assume film thickness constant in tubing, model has been developed by Tasmi et. al. [14]. Model consists of 10 ordinary differential equations. In this paper, assumption of pressure in gas column is uniform. Model consist of 9 ordinary differential equations. Connection of several variables can be obtained from this model. Therefore, dynamics of all variables that affect to intermittent gas lift process can be seen from four equations. To study the behavior of variables can be analyzed numerically and mathematically. In this paper, simple mathematically analysis approach is used to study behavior of the variables. Variables that affect to intermittent gas injection are pressure in upstream valve and in gas column. Pressure in upstream valve will decrease when gas mass in valve greater than gas mass in choke. Dynamic of the pressure in the gas column will decrease and increase depending on pressure in upstream valve.

  13. The Productivity Analysis of Chennai Automotive Industry Cluster

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2014-07-01

    Chennai, also called the Detroit of India, is India's second fastest growing auto market and exports auto components and vehicles to US, Germany, Japan and Brazil. For inclusive growth and sustainable development, 250 auto component industries in Ambattur, Thirumalisai and Thirumudivakkam Industrial Estates located in Chennai have adopted the Cluster Development Approach called Automotive Component Cluster. The objective is to study the Value Chain, Correlation and Data Envelopment Analysis by determining technical efficiency, peer weights, input and output slacks of 100 auto component industries in three estates. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper model by taking net worth, fixed assets, employment as inputs and gross output as outputs. The non-zero represents the weights for efficient clusters. The higher slack obtained reveals the excess net worth, fixed assets, employment and shortage in gross output. To conclude, the variables are highly correlated and the inefficient industries should increase their gross output or decrease the fixed assets or employment. Moreover for sustainable development, the cluster should strengthen infrastructure, technology, procurement, production and marketing interrelationships to decrease costs and to increase productivity and efficiency to compete in the indigenous and export market.

  14. Analysis of eastern Devonian gas shales production data

    SciTech Connect

    Gatens, J.M.; Stanley, D.K.; Lancaster, D.E.; Lee, W.J.; Lane, H.S.; Watson, A.T.

    1989-05-01

    Production data from more than 800 Devonian shale wells have been analyzed. Permeability-thickness product and gas in place estimated from production data have been found to correlate with well performance. Empirical performance equations, production type curves, and an analytical dual-porosity model with automatic history-matching scheme were developed for the Devonian shale.

  15. Product differentiation, competition and prices in the retail gasoline industry

    NASA Astrophysics Data System (ADS)

    Manuszak, Mark David

    This thesis presents a series of studies of the retail gasoline industry using data from Hawaii. This first chapter examines a number of pricing patterns in the data and finds evidence that gasoline stations set prices which are consistent with a number of forms of price discrimination. The second chapter analyzes various patterns of cross-sectional, cross-market and intertemporal variation in the data to investigate their suitability for use in structural econometric estimation. The remainder of the dissertation consists of specification and estimation of a structural model of supply and demand for retail gasoline products sold at individual gasoline stations. This detailed micro-level analysis permits examination of a number of important issues in the industry, most notably the importance of spatial differentiation in the industry. The third chapter estimates the model and computes new equilibria under a number of asymmetric taxation regimes in order to examine the impact of such tax policies on producer and consumer welfare as well as tax revenue. The fourth chapter examines whether there is any evidence of tacitly collusive behavior in the Hawaiian retail gasoline industry and concludes that, in fact, conduct is fairly competitive in this industry and market.

  16. Surface characterization of industrial fibers with inverse gas chromatography.

    PubMed

    van Asten, A; van Veenendaal, N; Koster, S

    2000-08-01

    Inverse gas chromatography (IGC) was applied for the determination of the surface characteristics of Tenax carbon fibers and Akzo Nobel Twaron fibers. Furthermore, IGC procedures for the determination of dispersive and acid-base interactions were validated. The data show that too high values for the dispersive component of the surface energy are obtained when the adsorption area occupied by a single adsorbed n-alkane molecule is estimated from parameters of the corresponding liquid. Comparable values are obtained when the Doris-Gray methodology (area per methylene unit) or measured probe areas are employed. For the fibers studied in this work meaningful Gibbs energy values of the acid-base interaction were only obtained with the polarizability approach. When the dispersive interaction of the polar probes with the fiber surface was scaled to the n-alkane interaction via surface tension, the boiling point, or the vapor pressure of the probes often negative acid-base interaction energies were found. From the temperature dependence of the Gibbs energy, the enthalpy of the acid-base interactions of various probes with the carbon and Twaron aramid fibers was determined. However, from these enthalpy values no meaningful acid-base surface parameters could be obtained. Generally, the limited accuracy with which these parameters can be obtained make the usefulness of this procedure questionable. Also the Gibbs energy data of acid-base interaction can provide a qualitative basis to classify the acidity-basicity of the fiber surface. This latter approach requires only a limited data set and is sufficiently rapid to enable the use of IGC as a screening tool for fibers at a production site. For several polar probes significant concentration effects on carbon fibers were observed. At very low probe loadings the interaction with the fiber surface suddenly increases. This effect is caused by the heterogeneity of the interaction energy of the active sites at the surface. A simple

  17. ESTIMATE OF METHANE EMISSIONS FROM THE U.S. NATURAL GAS INDUSTRY

    EPA Science Inventory

    Global methane from the fossil fuel industries have been poorly quantified and, in many cases, emissions are not well-known even at the country level. Historically, methane emissions from the U.S. gas industry have been based on sparse data, incorrect assumptions, or both. As a r...

  18. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  19. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  20. Protection of SF/sub 6/ gas insulated substations - Industry survey results

    SciTech Connect

    Akamine, J.K.; Baumgartner, E.A.; Emery, J.T.; Haas, R.W.; Murray, T.J.

    1987-10-01

    This paper summarizes the result of an industry survey of gas insulated equipment practices and develops recommendations where necessary. Tables are included to show the type of gas insulated equipment located at each substation (current transformers, voltage transformers, switches, bus bars, bushings, lightning arresters, and cable end terminations), the equipment configuration (single or three conductors), the type of gas monitoring equipment used (density or pressure), the use of gas monitoring equipment (alarm and/or trip), unique relaying protection applications, and unique operating procedures. Gas insulated circuit breakers are specifically excluded from this survey.

  1. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    SciTech Connect

    Atalla, Rajai; Beecher, James; Caron, Robert; Catchmark, Jeffrey; Deng, Yulin; Glasser, Wolfgang; Gray, Derek; Haigler, Candace; Jones, Philip; Joyce, Margaret; Kohlman, Jane; Koukoulas, Alexander; Lancaster, Peter; Perine, Lori; Rodriguez, Augusto; Ragauskas, Arthur; Wegner, Theodore; Zhu, Junyong

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  2. Competency Based Education Curriculum for the Orientation and Safety Program of the Oil and Gas Industry.

    ERIC Educational Resources Information Center

    United Career Center, Clarksburg, WV.

    This competency-based education curriculum for teaching the orientation and safety program for the oil and gas industry in West Virginia is organized into seven units. These units cover the following topics: introduction to oil and gas, first aid, site preparation, drilling operations, equipment familiarity, well completion, and preparation for…

  3. Role of gas cooling in tomorrow`s energy services industry

    SciTech Connect

    Hughes, P.J.

    1997-04-01

    This article discusses the marketing approach and opportunities for suppliers and manufacturers of gas cooling equipment to partner with energy service companies (ESCOs). The author`s viewpoint is that in educating and partnering with ESCOs the gas cooling industry enables their technology to reach its potential in the projects that the ESCOs develop.

  4. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  5. EVALUATION OF THE EFFICIENCY OF INDUSTRIAL FLARES: INFLUENCE OF GAS COMPOSITION

    EPA Science Inventory

    The report gives results of a pilot-scale evaluation of the efficiency of industrial flares. The work (1) evaluated the effects of additional gas mixtures on flare stability and efficiency with and without pilot assist and (2) correlated flame stability for the different gas mixt...

  6. Depressurization and electrical heating of hydrate sediment for gas production

    NASA Astrophysics Data System (ADS)

    Minagawa, H.

    2015-12-01

    As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on electrical heating of the hydrate core combined with depressurization for gas production. In-situ dissociation of natural gas hydrate is necessary for commercial recovery of natural gas from natural gas hydrate sediment. Thermal stimulation is an effective dissociation method, along with depressurization.To simulate methane gas production from methane hydrate layer, we investigated electrical heating of methane hydrate sediment. A decrease in core temperature due to the endothermic reaction of methane hydrate dissociation was suppressed and the core temperature increased between 1oC and 4oC above the control temperature with electric heating. A current density of 10A/m2 with depressurization would effectively dissociate hydrate. Therefore, depressurization and additional electrode heating of hydrate sediment saturated with electrolyte solution was confirmed to enable higher gas production from sediment with less electric power.

  7. Semi industrial scale RVNRL preparation, products manufacturing and properties

    NASA Astrophysics Data System (ADS)

    Zin, Wan Manshol Bin W.

    1998-06-01

    Natural rubber latex vulcanisation by radiation aims towards the preparation of prevulcanised natural rubber latex in the name of RVNRL for use to produce chemical-free and environment-friendly latex products. Scale up RVNRL preparation is proven possible when a semi-commercial latex irradiator was commissioned in MINT in March 1996. The plant is designed to irradiate up to 6 000 cubic meters per annum of natural rubber latex. RVNRL has the required properties and successfully used on industrial scale production of quality gloves and balloons.

  8. Food Safety Practices in the Egg Products Industry.

    PubMed

    Viator, Catherine L; Cates, Sheryl C; Karns, Shawn A; Muth, Mary K; Noyes, Gary

    2016-07-01

    We conducted a national census survey of egg product plants (n = 57) to obtain information on the technological and food safety practices of the egg products industry and to assess changes in these practices from 2004 to 2014. The questionnaire asked about operational and sanitation practices, microbiological testing practices, food safety training for employees, other food safety issues, and plant characteristics. The findings suggest that improvements were made in the industry's use of food safety technologies and practices between 2004 and 2014. The percentage of plants using advanced pasteurization technology and an integrated, computerized processing system increased by almost 30 percentage points. Over 90% of plants voluntarily use a written hazard analysis and critical control point (HACCP) plan to address food safety for at least one production step. Further, 90% of plants have management employees who are trained in a written HACCP plan. Most plants (93%) conduct voluntary microbiological testing. The percentage of plants conducting this testing on egg products before pasteurization has increased by almost 30 percentage points since 2004. The survey findings identify strengths and weaknesses in egg product plants' food safety practices and can be used to guide regulatory policymaking and to conduct required regulatory impact analysis of potential regulations. PMID:27357041

  9. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOEpatents

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  10. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  11. 77 FR 34031 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice... Industrial Gas Sales, L.L.C. (Hattiesburg), 9 Greenway Plaza, Suite 2800, Houston, Texas 77046, filed...

  12. 77 FR 70434 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Offer of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Energy Regulatory Commission Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice... Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg), filed a Stipulation and Agreement (Settlement..., using the ``eLibrary'' link and is available for review in the Commission's Public Reference Room...

  13. Environmental Conservation. The Oil and Gas Industries, Volume One.

    ERIC Educational Resources Information Center

    National Petroleum Council, Washington, DC.

    Prepared in response to a Department of the Interior request, this report is a comprehensive study of environmental conservation problems as they relate to or have impact on the petroleum industry. It contains the general comments and conclusions of The National Petroleum Council based on an analysis of detailed data. For presentation of key…

  14. The impact of internet-connected control systems on the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Martel, Ruth T.

    In industry and infrastructure today, communication is a way of life. In the oil and gas industry, the use of devices that communicate with the network at large is both commonplace and expected. Unfortunately, security on these devices is not always best. Many industrial control devices originate from legacy devices not originally configured with security in mind. All infrastructure and industry today has seen an increase in attacks on their networks and in some cases, a very dramatic increase, which should be a cause for alarm and action. The purpose of this research was to highlight the threat that Internet-connected devices present to an organization's network in the oil and gas industry and ultimately, to the business and possibly even human life. Although there are several previous studies that highlight the problem of these Internet-connected devices, there remains evidence that security response has not been adequate. The analysis conducted on only one easily discovered device serves as an example of the ongoing issue of the security mindset in the oil and gas industry. The ability to connect to a network through an Internet-connected device gives a hacker an anonymous backdoor to do great damage in that network. The hope is that the approach to security in infrastructure and especially the oil and gas industry, changes before a major catastrophe occurs involving human life.

  15. [Characteristics of industrial noise at the Astrakhan gas processing plant].

    PubMed

    Boĭko, V I; Dotsenko, Iu I; Boĭko, O V

    2011-01-01

    The level and nature of air pollution were studied in various objects of the Astrakhan gas processing plant. The necessity of introducing technical-hygienic, organizational, and medical measures to reduce the adverse effect of the noise on workers is warranted. PMID:21899100

  16. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 10: METERING AND PRESSURE REGULATING STATIONS IN NATURAL GAS TRANSMISSIONS AND DISTRIBUTION

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  17. Utilization of oleo-chemical industry by-products for biosurfactant production

    PubMed Central

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  18. Process for production desulfurized of synthesis gas

    DOEpatents

    Wolfenbarger, James K.; Najjar, Mitri S.

    1993-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

  19. Environmental policy and regulatory constraints to natural gas production.

    SciTech Connect

    Elcock, D.

    2004-12-17

    For the foreseeable future, most of the demand for natural gas in the United States will be met with domestic resources. Impediments, or constraints, to developing, producing, and delivering these resources can lead to price increases or supply disruptions. Previous analyses have identified lack of access to natural gas resources on federal lands as such an impediment. However, various other environmental constraints, including laws, regulations, and implementation procedures, can limit natural gas development and production on both federal and private lands. This report identifies and describes more than 30 environmental policy and regulatory impediments to domestic natural gas production. For each constraint, the source and type of impact are presented, and when the data exist, the amount of gas affected is also presented. This information can help decision makers develop and support policies that eliminate or reduce the impacts of such constraints, help set priorities for regulatory reviews, and target research and development efforts to help the nation meet its natural gas demands.

  20. High grade abrasive product development from virtified industrial waste

    SciTech Connect

    Blume, R.D.; Drummond, C.H. III; Sarko, A.

    1996-12-31

    Recent developments in environmental legislation, as well as economic incentives such as the increasing cost of landfilling, have led to a paradigm shift away from encapsulation of hazardous waste. The current focus is recycling and product development utilizing industrial waste as raw materials. Current research has targeted the development of high grade abrasive (Vickers hardness (VHN) > 1000 kgF/mm{sup 2}) for blasting and buffing and polishing applications. In addition to product specific physical properties, the developed formulations must also have processing characteristics necessary for vitrification using a high temperature product burner developed by Seiler Pollution Control Systems, as well as the necessary resistance to leaching of EPA regulated hazardous components. Current work has led to the development of formulations with high VHN (950 kgF/mm{sup 2}), acceptable chemical durability, and high mechanical durability utilizing electric arc furnace dust (KO61) and foundry sand as the major components.

  1. Applications for fiber optic sensing in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.

    2015-05-01

    Fiber optic sensing has been used in an increasing number of applications in the upstream oil and gas industry over the past 20 years. In some cases, fiber optic sensing is providing measurements where traditional measurement technologies could not. This paper will provide a general overview of these applications and describe how the use of fiber optic sensing is enabling these applications. Technologies such as Bragg gratings, distributed temperature and acoustic sensing, interferometric sensing, and Brillouin scattering will be discussed. Applications for optic sensing include a range of possibilities from a single pressure measurement point in the wellbore to multizone pressure and flow monitoring. Some applications make use of fully distributed measurements including thermal profiling of the well. Outside of the wellbore, fiber optic sensors are used in applications for flowline and pipeline monitoring and for riser integrity monitoring. Applications to be described in this paper include in-flow profiling, well integrity, production monitoring, and steam chamber growth. These applications will cover well types such as injectors, producers, hydraulic fracturing, and thermal recovery. Many of these applications use the measurements provided by fiber optic sensing to improve enhanced oil recovery operations. The growing use of fiber optic sensors is providing improved measurement capabilities leading to the generation of actionable data for enhanced production optimization. This not only increases the recovered amount of production fluids but can also enhance wellbore integrity and safety.

  2. CAD/CAM approach to improving industry productivity gathers momentum

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1982-01-01

    Recent results and planning for the NASA/industry Integrated Programs for Aerospace-Vehicle Design (IPAD) program for improving productivity with CAD/CAM methods are outlined. The industrial group work is being mainly done by Boeing, and progress has been made in defining the designer work environment, developing requirements and a preliminary design for a future CAD/CAM system, and developing CAD/CAM technology. The work environment was defined by conducting a detailed study of a reference design process, and key software elements for a CAD/CAM system have been defined, specifically for interactive design or experiment control processes. Further work is proceeding on executive, data management, geometry and graphics, and general utility software, and dynamic aspects of the programs being developed are outlined

  3. Fee electricity - a new headache for the gas industry

    SciTech Connect

    Allen, R.

    1980-01-01

    Stray current from underground primary electric cables and electric grounds can occasionally cause unusually high voltages at certain points along gas-distribution systems. Because of the parallel paths and many sources of stray neutral currents, the circuitry and voltage drops are complex. Washington Power's experience shows that (1) bare gas pipe systems remain relatively free of neutral currents because they are grounded along their entire length, (2) plastic and coated-steel pipe systems pick up stray neutral currents through holidays, bare valves, etc., and develop hazardous voltages because the steel pipe or the tracer wire of the plastic pipe is insulated from the soil, (3) pipeline voltages occur in areas having very high soil resistivities because of the poor return circuit for neutral currents back to the electric substation, and (4) the pipelines most distant from the substation experience the highest voltages because those areas contain the greatest imbalance of primary currents.

  4. The feasibility of effluent trading in the oil and gas industry

    SciTech Connect

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades, for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  5. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1990-07-01

    The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

  6. New projects developed by COMOTI in gas industry

    NASA Astrophysics Data System (ADS)

    Nitulescu, Marian; Silivestru, Valentin; Toma, Niculae; Slujitoru, Cristian; Petrescu, Valentin; Leahu, Mihai; Oniga, Ciprian; Ulici, Gheorghe

    2015-08-01

    The paper aims to present two new projects developed by the Romanian Research and Development Institute for Gas Turbines (COMOTI) in partnership with City University of London and GHH-Rand Germany, in the field of screw compressors/expanders. COMOTI passed, in recent years, from being a GHH-Rand licensed manufacturer for a range of oil-injected screw compressors, of CU type, to a new phase of range diversification, approaching screw compressors with a maximum discharge pressure of 45 bara. So, in cooperation with City University and GHH-Rand we design, manufacture and test, with air, in COMOTI test bench the new type of screw compressor named CHP 220. Also, the cooperation with GHH-Rand has resulted in the design, manufacture and air testing on the test bench, and then gas testing - in a gas compression station - for an electric generator driven by a screw expander. This paper presents how the tests were carried out, the experimental data and the interpretation of results

  7. Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators

    SciTech Connect

    Chmielewski, Andrzej G.; Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej; Licki, Janusz

    2003-08-26

    Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

  8. Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej; Licki, Janusz

    2003-08-01

    Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

  9. Strategies for gas production from oceanic Class 3 hydrateaccumulations

    SciTech Connect

    Moridis, George J.; Reagan, Matthew T.

    2007-05-01

    Gas hydrates are solid crystalline compounds in which gasmolecules are lodged within the lattices of ice crystals. Vast amounts ofCH4 are trapped in gas hydrates, and a significant effort has recentlybegun to evaluate hydrate deposits as a potential energy source. Class 3hydrate deposits are characterized by an isolated Hydrate-Bearing Layer(HBL) that is not in contact with any hydrate-free zone of mobile fluids.The base of the HBL in Class 3 deposits may occur within or at the edgeof the zone of thermodynamic hydrate stability.In this numerical study oflong-term gas production from typical representatives of unfracturedClass 3 deposits, we determine that simple thermal stimulation appears tobe a slow and inefficient production method. Electrical heating and warmwater injection result in very low production rates (4 and 12 MSCFD,respectively) that are orders of magnitude lower than generallyacceptable standards of commercial viability of gas production fromoceanic reservoirs. However, production from depressurization-baseddissociation based on a constant well pressure appears to be a promisingapproach even in deposits characterized by high hydrate saturations. Thisapproach allows the production of very large volumes ofhydrate-originating gas at high rates (>15 MMSCFD, with a long-termaverage of about 8.1 MMSCFD for the reference case) for long times usingconventional technology. Gas production from hydrates is accompanied by asignificant production of water. However, unlike conventional gasreservoirs, the water production rate declines with time. The lowsalinity of the produced water may require care in its disposal. Becauseof the overwhelming advantage of depressurization-based methods, thesensitivity analysis was not extendedto thermal stimulation methods. Thesimulation results indicate that depressurization-induced gas productionfrom oceanic Class 3 deposits increases (and the corresponding waterto-gas ratio decreases) with increasing hydrate temperature

  10. 78 FR 17835 - Approval and Promulgation of Federal Implementation Plan for Oil and Natural Gas Well Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... Register on August 15, 2012 (77 FR 48878), and residents of the FBIR, as well as industry representatives... Federal Implementation Plan for Oil and Natural Gas Well Production Facilities; Fort Berthold Indian... compounds emanating from well completions, recompletions, and production and storage operations....

  11. 75 FR 75995 - Request for Comments on Helium-3 Use in the Oil and Natural Gas Well Logging Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... for Comments on Helium-3 Use in the Oil and Natural Gas Well Logging Industry AGENCY: Office of Fossil... and gas well logging industry. DATES: Written comments and information are requested on or before 5 p...-3 for use by the well logging industry in Fiscal Year (FY) 2011 and for projecting the FY...

  12. Outer Continental Shelf Oil and Gas Leasing/Production Program

    SciTech Connect

    Not Available

    1988-01-01

    This annual report on the Outer Continental Shelf (OCS) Oil and Gas Leasing and Production program summarizes receipts and expenditures, and includes information on OCS safety violations as reported by the US Coast Guard. 3 figs., 12 tabs.

  13. Catalyst life and product color prediction for gas oil HDS

    SciTech Connect

    Ushio, M.; Hatayama, M.; Waku, T.

    1995-12-31

    Gas oil hydrodesulfurization was investigated. The sulfur content was reduced by increasing the reaction temperature. However, the severe temperatures made the product oil colored. The kinetic parameters of decoloring reaction at lower tempeatures were calculated.

  14. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    NASA Astrophysics Data System (ADS)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  15. Mitigating Accidents In Oil And Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Johnsen, Stig

    Integrated operations are increasingly used in oil and gas production facilities to improve yields, reduce costs and maximize profits. They leverage information and communications technology (ICT) to facilitate collaboration between experts at widely dispersed locations. This paper discusses the safety and security consequences of implementing integrated operations for oil and gas production. It examines the increased accident risk arising from the tight coupling of complex ICT and SCADA systems, and proposes technological, organizational and human factors based strategies for mitigating the risk.

  16. Preliminary report on the commercial viability of gas production from natural gas hydrates

    USGS Publications Warehouse

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  17. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  18. Carbonyl Emissions From Oil and Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; O'Neil, T.; Tran, T.

    2015-12-01

    A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable

  19. 76 FR 10067 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ...--Industrial Macromolecular Crystallography Association Correction In notice document 2011--2412 appearing on... and Production Act of 1993--Industrial Nacromolecular Crystallography Association'' should read ``Notice Pursuant to the National Cooperative Research and Production Act of...

  20. Open access and transition costs: Will the electric industry transition track the natural gas industry restructuring?

    SciTech Connect

    Santa, D.F. Jr.; Sikora, C.S.

    1994-12-31

    The Energy Policy Act of 1992 (EPAct) marked the first comprehensive energy policy legislation enacted in the United States in over a decade. Title VII of the EPAct amended the Public Utility Holding Company Act of 1935 (PUHCA) and the Federal Power Act (FPA), two New Deal era laws that constitute much of the statutory framework for federal regulation of the electric power industry. These amendments have been hailed as {open_quotes}two notable revisions to previous law that will eventually reshape the electric power business in North America.{close_quotes} While competitive forces already were taking root in the electric power industry prior to the enactment of the EPAct, the new law has been a catalyst for change in the industry and its regulatory environment. Even the EPAct`s authors have been surprised by the pace of change that has occurred in the two years following the statute`s enactment.

  1. Occupational exposures in the oil and gas extraction industry: State of the science and research recommendations.

    PubMed

    Witter, Roxana Z; Tenney, Liliana; Clark, Suzanne; Newman, Lee S

    2014-07-01

    The oil and gas extraction industry is rapidly growing due to horizontal drilling and high volume hydraulic fracturing (HVHF). This growth has provided new jobs and economic stimulus. The industry occupational fatality rate is 2.5 times higher than the construction industry and 7 times higher than general industry; however injury rates are lower than the construction industry, suggesting injuries are not being reported. Some workers are exposed to crystalline silica at hazardous levels, above occupational health standards. Other hazards (particulate, benzene, noise, radiation) exist. In this article, we review occupational fatality and injury rate data; discuss research looking at root causes of fatal injuries and hazardous exposures; review interventions aimed at improving occupational health and safety; and discuss information gaps and areas of needed research. We also describe Wyoming efforts to improve occupational safety in this industry, as a case example. PMID:24634090

  2. Occupational Exposures in the Oil and Gas Extraction Industry: State of the Science and Research Recommendations

    PubMed Central

    Witter, Roxana Z.; Tenney, Liliana; Clark, Suzanne; Newman, Lee S.

    2015-01-01

    The oil and gas extraction industry is rapidly growing due to horizontal drilling and high volume hydraulic fracturing (HVHF). This growth has provided new jobs and economic stimulus. The industry occupational fatality rate is 2.5 times higher than the construction industry and 7 times higher than general industry; however injury rates are lower than the construction industry, suggesting injuries are not being reported. Some workers are exposed to crystalline silica at hazardous levels, above occupational health standards. Other hazards (particulate, benzene, noise, radiation) exist. In this article, we review occupational fatality and injury rate data; discuss research looking at root causes of fatal injuries and hazardous exposures; review interventions aimed at improving occupational health and safety; and discuss information gaps and areas of needed research. We also describe Wyoming efforts to improve occupational safety in this industry, as a case example. PMID:24634090

  3. Ethanol production from an industrial feedstock by immobilized Zymomonas mobilis in a fluidized-bed bioreactor

    SciTech Connect

    Davison, B.H.; Scott, C.D.

    1986-05-01

    The utilization of a continuous system to ferment glucose to ethanol offers considerable advantages over the traditional batch technology. The combination of high cell loading and rapid flow rate allows the use of nonsterile feed because free contaminants will be washed out of the system. Operation of a columnar reactor filled with the biocatalyst beads as a fluidized - bed reactor will minimize mass transfer resistances and channeling and allow improved disengagement of the gas product, CO/sub 2/. Zymomonas mobilis has been sown to have a higher specific conversion rate and to be more efficient at ethanol fermentation than the conventional Saccharomyces cerevisiae. The response of Z. mobilis to typical unrefined industrial feedstocks, particularly the supplemental nutrients, was unknown and might be a stumbling block to commercialization. Z. mobilix, immobilized in kappa-carrageenan beads has been shown in our laboratory to assimilate and to convert industrial feedstocks as well as the laboratory medium. 4 refs., 2 figs., 1 tab.

  4. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Continued to solicit industry research partners to provide test sites, including Patina Oil and Gas and EOG Resources, each of whom have previously worked with ARI on a similar projects funded by the Gas Technology Institute. Both

  5. Mineral-wool industry: opportunities for natural gas technologies. Topical report, January-July 1987

    SciTech Connect

    Not Available

    1988-05-01

    To quantify the opportunities for natural gas and identify technological advances needed to capture such opportunities, the mineral-wool industry was analyzed with respect to the principal companies, their capabilities, and markets. The mineral-wool industry is stable with a slightly declining market. Of its market segments, only commercial acoustic insulation (which is currently dominant) is likely to be affected by growth in the next ten years. The principal process is based on treatment of blast-furnace slags in a cupola furnace using coke as the fuel and reducing agent. Expanded use of gas, as a substitute for coke, would eliminate environmental problems and expand the latitude of suitable raw materials. The study provides insights into the mineral-wool industry and identifies factors that may constitute bases for future usage of natural gas.

  6. First Operating Results of a Dynamic Gas Bearing Turbine in AN Industrial Hydrogen Liquefier

    NASA Astrophysics Data System (ADS)

    Bischoff, S.; Decker, L.

    2010-04-01

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  7. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  8. FIRST OPERATING RESULTS OF A DYNAMIC GAS BEARING TURBINE IN AN INDUSTRIAL HYDROGEN LIQUEFIER

    SciTech Connect

    Bischoff, S.; Decker, L.

    2010-04-09

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  9. Exploitation of Food Industry Waste for High-Value Products.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. PMID:26645658

  10. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  11. Field and laboratory support for the co-production of gas and water program. Annual report, May 1985-May 1986

    SciTech Connect

    Randolph, P.; Hayden, C.; Newberg, M.; Foh, S.

    1987-01-01

    It is widely recognized that tens of TCF of natural gas remain in water-drive reservoirs where primary production was abandoned at the onset of brine production. Today's depressed energy prices have focused attention upon an additional incentive for co-production: very low finding cost for new reserves. The location of the gas is already known. Further, in many cases, production can be achieved by reentry of old wells at a cost substantially below the cost of new wells. Co-production in an RandD mode is needed to provide a basis for informed judgments and decisions on the use of the process for future gas supply. To provide field instrumentation, sample collection, sample analysis, and laboratory support to the co-production program and to facilitate transfer of information and technology to the gas industry.

  12. Devices for the Production of Reference Gas Mixtures.

    PubMed

    Fijało, Cyprian; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2016-09-01

    For many years there has been growing demand for gaseous reference materials, which is connected with development in many fields of science and technology. As a result, new methodological and instrumental solutions appear that can be used for this purpose. Appropriate quality assurance/quality control (QA/QC) must be used to make sure that measurement data are a reliable source of information. Reference materials are a significant element of such systems. In the case of gas samples, such materials are generally called reference gas mixtures. This article presents the application and classification of reference gas mixtures, which are a specific type of reference materials, and the methods for obtaining them are described. Construction solutions of devices for the production of reference gas mixtures are detailed, and a description of a prototype device for dynamic production of reference gas mixtures containing aroma compounds is presented. PMID:27437588

  13. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    SciTech Connect

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  14. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    PubMed

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  15. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    PubMed Central

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  16. Developments in the use of Bacillus species for industrial production.

    PubMed

    Schallmey, Marcus; Singh, Ajay; Ward, Owen P

    2004-01-01

    Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based traditional natto fermentation, and some Bacillus species are on the Food and Drug Administration's GRAS (generally regarded as safe) list. The capacity of selected Bacillus strains to produce and secrete large quantities (20-25 g/L) of extracellular enzymes has placed them among the most important industrial enzyme producers. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Classical mutation and (or) selection techniques, together with advanced cloning and protein engineering strategies, have been exploited to develop these products. Efforts to produce and secrete high yields of foreign recombinant proteins in Bacillus hosts initially appeared to be hampered by the degradation of the products by the host proteases. Recent studies have revealed that the slow folding of heterologous proteins at the membrane-cell wall interface of Gram-positive bacteria renders them vulnerable to attack by wall-associated proteases. In addition, the presence of thiol-disulphide oxidoreductases in B. subtilis may be beneficial in the secretion of disulphide-bond-containing proteins. Such developments from our understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production. Bacillus strains have also been developed and engineered as industrial producers of nucleotides, the vitamin riboflavin, the flavor agent ribose, and the supplement poly

  17. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-04-01

    Given the extensive available resources of coal and, to a lesser extent, natural gas, the challenge to access these resources in a way that balances growth and conservation in a responsible way, is a tough technological task. On the one hand there is the inadverterable and undesirable liberation of CO{sub 2} when carbon is used and on the other hand it is reasonable to assume that hydrocarbon liquids will, for the foreseeable future, remain the backbone of the supply of energy to automotive vehicles. It is therefore necessary that options for improved environmental performance of such fuels are developed and considered for application where the economics would permit it.

  18. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process. PMID:18942836

  19. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    NASA Astrophysics Data System (ADS)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard

  20. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model

    SciTech Connect

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  1. Information highway and the gas industry: A threat or opportunity. Topical report, March 1995

    SciTech Connect

    Davis, K.W.

    1995-03-01

    This topical report discusses the likely infrastructure and services of the information highway, or I-Way, and examines I-Way activities already being undertaken by major players in the communications and energy industries. The report outlines the threats and opportunities to gas utilities that are posed by the development of a national information infrastructure. Research was conducted using primary and secondary sources, on-line databases, and documentary research. Competitive factors are analyzed and innovative technology trials are examined both theoretically and through the use of case studies. Specific competitive threats and business opportunities for the gas industry are discussed.

  2. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed. PMID:25163531

  3. US production of natural gas from tight reservoirs

    SciTech Connect

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  4. Production of Substitute Natural Gas from Coal

    SciTech Connect

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

  5. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  6. Swarm intelligence for multi-objective optimization of synthesis gas production

    NASA Astrophysics Data System (ADS)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  7. Gas househeating survey: 1982. 35th annual survey gas utility industry US

    SciTech Connect

    German, M.I.; Itteilag, R.L.; Paule, J.; Schafer, J.C.

    1983-01-01

    The results of the 35th Annual Gas Househeating Survey conducted by the American Gas Association using data collected for 1982, as well as projected data for 1983, provide a comprehensive portrait of the residential gas market by state and region, including customers, fuel prices, anticipated inventory additions from new homes and conversions, and existing requirements on new customer hook-ups. A total of 161 gas utility companies, serving 89% of the nation's residential gas customers responded to this year's survey. The information provided by these utilities was expanded to obtain the state and national totals. Individual company data are listed by region and state in Appendices 1 and 2. Some tabular data may not add to totals due to rounding. 1 figure, 9 tables.

  8. Advanced ceramic coating development for industrial/utility gas turbines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Stetson, A. R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO2.82O3; CaO.TiO2; 2CaO.SiO2; and MgO.Al2O3. The best overall results were obtained with a CaO.TiO2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO2.8Y2O3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines.

  9. Water Resources and Natural Gas Production from the Marcellus Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Kappel, William M.

    2009-01-01

    The Marcellus Shale is a sedimentary rock formation deposited over 350 million years ago in a shallow inland sea located in the eastern United States where the present-day Appalachian Mountains now stand (de Witt and others, 1993). This shale contains significant quantities of natural gas. New developments in drilling technology, along with higher wellhead prices, have made the Marcellus Shale an important natural gas resource. The Marcellus Shale extends from southern New York across Pennsylvania, and into western Maryland, West Virginia, and eastern Ohio (fig. 1). The production of commercial quantities of gas from this shale requires large volumes of water to drill and hydraulically fracture the rock. This water must be recovered from the well and disposed of before the gas can flow. Concerns about the availability of water supplies needed for gas production, and questions about wastewater disposal have been raised by water-resource agencies and citizens throughout the Marcellus Shale gas development region. This Fact Sheet explains the basics of Marcellus Shale gas production, with the intent of helping the reader better understand the framework of the water-resource questions and concerns.

  10. Vulnerability of industrial natural-gas markets to electricity and coal: a context for R and D planning. Working paper

    SciTech Connect

    Lerner, M.O.; Kothari, V.S.; Salama, S.Y.

    1982-11-01

    Current trends in electric- and coal-technology developments and the outlook for natural-gas prices indicate the possibility of strong competition and possible natural-gas market-share losses in the industrial sector. The report develops an initial classification of industrial energy-consuming processes and estimates the extent to which future natural-gas consumption in each class is vulnerable to competition from electricity and coal. The discussion also addresses reasons why specific gas markets are considered vulnerable.

  11. Gas Production from Hydrate-Bearing Sediments - Emergent Phenomena -

    SciTech Connect

    Jung, J.W.; Jang, J.W.; Tsouris, Costas; Phelps, Tommy Joe; Rawn, Claudia J; Santamarina, Carlos

    2012-01-01

    Even a small fraction of fine particles can have a significant effect on gas production from hydrate-bearing sediments and sediment stability. Experiments were conducted to investigate the role of fine particles on gas production using a soil chamber that allows for the application of an effective stress to the sediment. This chamber was instrumented to monitor shear-wave velocity, temperature, pressure, and volume change during CO{sub 2} hydrate formation and gas production. The instrumented chamber was placed inside the Oak Ridge National Laboratory Seafloor Process Simulator (SPS), which was used to control the fluid pressure and temperature. Experiments were conducted with different sediment types and pressure-temperature histories. Fines migrated within the sediment in the direction of fluid flow. A vuggy structure formed in the sand; these small cavities or vuggs were precursors to the development of gas-driven fractures during depressurization under a constant effective stress boundary condition. We define the critical fines fraction as the clay-to-sand mass ratio when clays fill the pore space in the sand. Fines migration, clogging, vugs, and gas-driven fracture formation developed even when the fines content was significantly lower than the critical fines fraction. These results show the importance of fines in gas production from hydrate-bearing sediments, even when the fines content is relatively low.

  12. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  13. New industrial heat pump applications to textile production

    SciTech Connect

    1990-12-01

    Application of pinch technology to the US industries in an early screening study has identified potential for heat pumps in several standard processes such as distillation and drying processes. Due to lack process information, the previous study was not able to draw any definite conclusion concerning the heat pump application potential in textile process. However, the commonly encountered drying process in the finishing section of textile plant has been shown to create opportunities for heat pump placement. The site selected for this study is a textile plant in North Carolina and the participating utility is Duke Power Company. The objective of this study is to further identify the energy savings potential through advanced heat pumps and other energy conservation methods developed in the context of pinch technology. The key findings of this study are as follows. The previously unrecoverable waste heat from the exhaust air can now be reclaimed through a spray type air washer and heat pump system. The recommended heat pump system recovers heat from the looper exhaust and use it to preheat the air in the gas tenter. A reduction of 50% of the gas consumption in the tenter can be achieved. The removal of lint from the exhaust air reduced the potential of air pollution. The collected lint can be burned in the boiler as a supplemental fuel source to reduce the fuel consumption in the plant. With fuel price predicted to go up and electricity price remain relatively stable in the future, the heat pump system can payback in less than three years. 15 figs., 4 tabs.

  14. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded. PMID:26393620

  15. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  16. Minnesota timber industry: An assessment of timber product output and use, 1990. Forest Service resource bulletin

    SciTech Connect

    Hackett, R.L.; Dahlman, R.A.

    1993-01-01

    The bulletin includes recent Minnesota forest industry trends and report the results of a detailed study of forest industry, industrial roundwood production, and associated primary mill wood and bark residue in Minnesota in 1990. Such detailed information is necessary for intelligent planning and decisionmaking in wood procurement, forest resource management, and forest industry development. Likewise, researchers need current forest industry and industrial roundwood information for planning projects.

  17. Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)

    SciTech Connect

    1980-03-01

    This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

  18. Energy production from food industry wastewaters using bioelectrochemical cells

    SciTech Connect

    Hamilton, Choo Yieng

    2009-01-01

    Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

  19. Valorization of Flue Gas by Combining Photocatalytic Gas Pretreatment with Microalgae Production.

    PubMed

    Eynde, Erik Van; Lenaerts, Britt; Tytgat, Tom; Blust, Ronny; Lenaerts, Silvia

    2016-03-01

    Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solublilty in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NOx in the cultivation broth. The absorbed NOx will form NO2(-) and NO3(-) that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%. PMID:26838336

  20. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources. PMID:27116971

  1. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel L. Morrison

    2005-08-26

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) prepare presentation for the 16th Annual Oil Recovery Conference in Wichita, Kansas, (2) continued working on the SWC technical bulletin ''Keeping the Home Wells Flowing: Helping Small Independent Oil and Gas Producers Develop New Technology Solutions'', (3) continue efforts on the Public Broadcast of Independent Oil: Rediscovering America's Forgotten Wells, and (4) continue efforts to recruit SWC members.

  2. HIP-clad products for the plastics industry

    NASA Astrophysics Data System (ADS)

    Bishop, Morley F.; Nickel, Clinton F.

    1999-07-01

    The production of plastics and plastics components requires equipment that can withstand severe wear and, in a high percentage of cases, wear and corrosion environments. There are two basic elements of plastic extrusion equipment: the barrels and the screws. Both must manifest similar properties, but since screw elements are less costly and easier to replace, they are usually designed to wear out first. Due to the high cost of wear/corrosion-resistance materials, the industry used clad (i.e., bimetallic) components. Barrel sections and screw segments are both produced as hot-isostatic press clad components using similar processes. There are any number of material combinations that are used and that are possible for the right application.

  3. Natural gas marketing II

    SciTech Connect

    Not Available

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing.

  4. THE USE OF INDUSTRIAL HYGIENE SAMPLERS FOR SOIL-GAS MEASUREMENT

    EPA Science Inventory

    This report describes a field evaluation of a passive-sampling technique for soil-gas surveying. The system uses a sampler, consisting of an industrial hygiene organic vapor monitor inside a metal sampling manifold, buried at a depth of approximately 0.3 meters (1 foot). Samplers...

  5. THE ADIPIC ACID ENHANCED FLUE GAS DESULFURIZATION PROCESS FOR INDUSTRIAL BOILERS. VOLUME 1. FIELD TEST RESULTS

    EPA Science Inventory

    The report gives results of an evaluation of the effect of adding adipic acid on the SO2 removal of a wet limestone flue gas desulfurization (FGD) system on a coal-fired industrial boiler at Rickenbacker Air National Guard Base near Columbus, OH. Emission data were collected in a...

  6. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  7. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  8. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    EIA Publications

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  9. THE ADIPIC ACID ENHANCED FLUE GAS DESULFURIZATION PROCESS FOR INDUSTRIAL BOILERS. VOLUME 2. TECHNICAL ASSESSMENT

    EPA Science Inventory

    The report gives results of an evaluation of an adipic acid enhanced limestone flue gas desulfurization (FGD) system on industrial boilers at Rickenbacker Air National Guard Base. The SO2 removal efficiency with the adipic acid averaged 94.3% over a 30-day period. This represents...

  10. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 14: GLYCOL DEHYDRATORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  11. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 13: CHEMICAL INJECTION PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  12. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 6: VENTED & COMBUSTION SOURCE SUMMARY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  13. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 9: UNDERGROUND PIPELINES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  14. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 4: STATISTICAL METHODOLOGY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  15. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 5: ACTIVITY FACTORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  16. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 11: COMPRESSOR DRIVER EXHAUST

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  17. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 2: TECHNICAL REPORT

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  18. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 8: EQUIPMENT LEAKS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  19. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 1: EXECUTIVE SUMMARY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  20. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 12: PNEUMATIC DEVICES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  1. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 3: GENERAL METHODOLOGY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  2. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 7: BLOW AND PURGE ACTIVITIES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  3. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  4. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    PubMed

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively. PMID:10849864

  5. Selection of Waste Water Equalization Systems for Multi Product Batch Production Facility: An Industrial Case Study

    NASA Astrophysics Data System (ADS)

    Bhatt, Vaidehi; Srinivasarao, Meka.; Dhanwani, Anand

    2010-10-01

    The generation rates of waste water from a batch plant causes significant variations in the flow rate as well as concentrations in the influent to effluent treatment plant. Flow equalization systems are used to reduce the shock loads. The present study deals with the suitability of two flow equalization schemes practiced in the industry with an objective of increasing production flexibility. The simulation study has conclusively established suitability of combined segregation tanks over distributed segregation tanks for a given production capacity. It is also shown that the production flexibility is more for combined scheme in comparison with the distributed scheme.

  6. Environmental permitting overview: Prepared for the Memphis Industrial Fuel Gas Demonstration Plant

    SciTech Connect

    Not Available

    1980-07-01

    This overview briefly describes the background of the Industrial Fuel Gas Demonstration Program (IFGDP), locates and describes the plant and its processes, and summarizes the existing site environment, the activities required for construction and the expected environmental impacts of the project. The IFGDP will convert 3158 tons per day of high-sulfur eastern bituminous coal into 171 million standard cubic feet (SCF) of industrial fuel gas (IFG) with a heating value of 300 +- 30 Btu per SCF. Most of this gas (approximately 90 percent) will be distributed directly to industrial customers within the Memphis area. The remaining gas will be upgraded to the approximate heating value of natural gas (950 Btu per SCF). This upgraded gas, called subsitute natural gas (SNG), will flow into the existing MLGW gas system. The IFGDP will be located on a peninsula of land near the confluence of the Mississippi River and Lake McKellar within the limits of the City of Memphis, Tennessee. Impacts from construction of the IFGDP will be limited to the displacement of wildlife from the site and pipeline routes, slight increases (less than 9 inches) in maximum flood heights along existing nearby flood protection structures on the south shore of Lake McKellar, temporary disturbances of aquatic species and water quality during dredging operations, removal of vegetation from the site (including wetland species), potential increases in air quality particulate concentrations due to fugitive emissions and an increase in local employment and income. Operational impacts from the IFGDP are expected to occur mainly in the areas of air quality, water quality, and socio-economics. (DMC)

  7. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  8. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  9. Natural gas productive capacity for the lower 48 states 1985 through 1997

    SciTech Connect

    1996-12-01

    This publication presents information on wellhead productive capacity and a projection of gas production requirements. A history of natural gas production and productive capacity at the wellhead, along with a projection of the same, is illustrated.

  10. Impact of information technology on productivity and efficiency in Iranian manufacturing industries

    NASA Astrophysics Data System (ADS)

    Abri, Amir Gholam; Mahmoudzadeh, Mahmoud

    2015-12-01

    The aim of this paper is to assess the impact of information technology (IT) on the productivity and efficiency of manufacturing industries in Iran. So, the data will be collected from 23 Iranian manufacturing industries during "2002-2006" and the methods such as DEA and panel data used to study the subject. Results obtained by the above two methods represent that IT has a positive and statistically significant effect on the productivity of manufacturing industries. It will be more in high IT-intensive industries than the other industries. But, there is no significant difference between the growth of labor productivity in IT-producing and IT-using industries.

  11. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  12. U-GAS process for production of hydrogen from coal

    SciTech Connect

    Dihu, R.J.; Patel, J.G.

    1982-01-01

    Today, hydrogen is produced mainly from natural gas and petroleum fractions. Tomorrow, because reserves of natural gas and oil are declining while demand continues to increase, they cannot be considered available for long-term, large-scale production of hydrogen. Hydrogen obtained from coal is expected to be the lowest cost, large-scale source of hydrogen in the future. The U-GAS coal gasification process and its potential application to the manufacture of hydrogen is discussed. Pilot plant results, the current status of the process, and economic projections for the cost of hydrogen manufactured are presented.

  13. Plastic Technology (Production). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Claus, Robert; And Others

    This course guide for a plastic technology course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  14. Wood Technology (Production). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Claus, Robert; And Others

    This course guide for a wood technology course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  15. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products

    DOEpatents

    Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel

    2000-01-01

    Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

  16. Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?

    ERIC Educational Resources Information Center

    Ghassib, Hisham B.

    2010-01-01

    The basic premise of this paper is the fact that science has become a major industry: the knowledge industry. The paper throws some light on the reasons for the transformation of science from a limited, constrained and marginal craft into a major industry. It, then, presents a productivist industrial model of knowledge production, which shows its…

  17. Trends in high performance compressors for petrochemical and natural gas industry in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  18. Selection of an industrial natural-gas-fired advanced turbine system - Task 3A

    SciTech Connect

    Holloway, G.M.

    1997-05-01

    TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

  19. Fundamentals of gas flow in shale; What the unconventional reservoir industry can learn from the radioactive waste industry

    NASA Astrophysics Data System (ADS)

    Cuss, Robert; Harrington, Jon; Graham, Caroline

    2013-04-01

    Tight formations, such as shale, have a wide range of potential usage; this includes shale gas exploitation, hydrocarbon sealing, carbon capture & storage and radioactive waste disposal. Considerable research effort has been conducted over the last 20 years on the fundamental controls on gas flow in a range of clay-rich materials at the British Geological Survey (BGS) mainly focused on radioactive waste disposal; including French Callovo-Oxfordian claystone, Belgian Boom Clay, Swiss Opalinus Clay, British Oxford Clay, as well as engineered barrier material such as bentonite and concrete. Recent work has concentrated on the underlying physics governing fluid flow, with evidence of dilatancy controlled advective flow demonstrated in Callovo-Oxfordian claystone. This has resulted in a review of how advective gas flow is dealt with in Performance Assessment and the applicability of numerical codes. Dilatancy flow has been shown in Boom clay using nano-particles and is seen in bentonite by the strong hydro-mechanical coupling displayed at the onset of gas flow. As well as observations made at BGS, dilatancy flow has been shown by other workers on shale (Cuss et al., 2012; Angeli et al. 2009). As well as experimental studies using cores of intact material, fractured material has been investigated in bespoke shear apparatus. Experimental results have shown that the transmission of gas by fractures is highly localised, dependent on normal stress, varies with shear, is strongly linked with stress history, is highly temporal in nature, and shows a clear correlation with fracture angle. Several orders of magnitude variation in fracture transmissivity is seen during individual tests. Flow experiments have been conducted using gas and water, showing remarkably different behaviour. The radioactive waste industry has also noted a number of important features related to sample preservation. Differences in gas entry pressure have been shown across many laboratories and these may be

  20. Organic Sulfur Gas Production in Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Engel, A. S.; Bennett, P. C.

    2001-12-01

    Lower Kane Cave, Big Horn Basin, WY, permits access to an environment where anaerobic sulfide-rich groundwater meets the aerobic vadose zone. At this interface microorganisms thrive on diverse metabolic pathways including autotrophic sulfur oxidation, sulfate reduction, and aerobic heterotrophy. Springs introduce groundwater rich in H2S to the cave where it both degasses into the cave atmosphere and is used by chemautotrophic sulfur oxidizing bacteria in the cave spring and stream habitat. The cave atmosphere in the immediate vicinity of the springs has elevated levels of CO2, H2S and methane, mirroring the higher concentration of H2S and methane in the spring water. The high CO2 concentrations are attenuated toward the two main sources of fresh air, the cave entrance and breathing holes at the rear of the cave. Conventional toxic gas monitors permit estimations of H2S concentrations, but they have severe cross sensitivity with other reduced sulfur gases, and thus are inadequate for characterization of sulfur cave gases. However employment of a field-based GC revealed elevated concentrations of carbonyl sulfide in cave atmosphere. Cultures of microorganisms collected from the cave optimized for enriching fermenters and autotrophic and heterophic sulfate reducing bacteria each produced carbonyl sulfide suggesting a biogenic in origin of the COS in addition to H2S. Enrichment cultures also produced methanethiol (methyl mercaptan) and an additional as yet undetermined volatile organic sulfur compound. In culture, the organo-sulfur compounds were less abundant than H2S, whereas in the cave atmosphere the organo-sulfur compounds were the dominant sulfur gases. Thus, these organo-sulfur gases may prove to be important sources of both reduced sulfur and organic carbon to microorganisms living on the cave wall in a subaerial habitat. Moreover groundwater has not yet been recognized as a source of sulfur gases to the atmosphere, but with the abundance of sulfidic

  1. 77 FR 17364 - Inadmissibility of Consumer Products and Industrial Equipment Noncompliant With Applicable Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... Inadmissibility of Consumer Products and Industrial Equipment Noncompliant With Applicable Energy Conservation or... and industrial equipment deemed noncompliant with the Energy Policy and Conservation Act of 1975 (EPCA... United States of certain consumer products and industrial equipment that do not meet applicable...

  2. Selling green power in California: Product, industry, and market trends

    SciTech Connect

    Wiser, R.H.; Pickle, S.J.

    1998-05-01

    As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California`s residential marketplace.

  3. Kinetics study on biomass pyrolysis for fuel gas production.

    PubMed

    Chen, Guan-Yi; Fang, Meng-Xiang; Andries, J; Luo, Zhong-Yang; Spliethoff, H; Cen, Ke-Fa

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme. PMID:12861621

  4. Gas phase acetaldehyde production in a continuous bioreactor

    SciTech Connect

    Hwang, Soon Ook . Dept. of Chemical Engineering); Trantolo, D.J. . Center for Biotechnology Engineering); Wise, D.L. . Dept. of Chemical Engineering Northeastern Univ., Boston, MA . Center for Biotechnology Engineering)

    1993-08-20

    The gas phase continuous production of acetaldehyde was studied with particular emphasis on the development of biocatalyst (alcohol oxidase on solid phase support materials) for a fixed bed reactor. Based on the experimental results in a batch bioreactor, the biocatalysts were prepared by immobilization of alcohol oxidase on Amberlite IRA-400, packed into a column, and the continuous acetaldehyde production in the gas phase by alcohol oxidase was performed. The effects of the reaction temperature, flow rates of gaseous stream, and ethanol vapor concentration on the performance of the continuous bioreactor were investigated.

  5. Hydrogen Gas Production by an Ectothiorhodospira vacuolata Strain.

    PubMed

    Chadwick, L J; Irgens, R L

    1991-02-01

    A hydrogen gas (H(2))-producing strain of Ectothiorhodospira vacuolata isolated from Soap Lake, Washington, possessed nitrogenase activity. Increasing evolution of H(2) with decreasing ammonium chloride concentrations provided evidence that nitrogenase was the catalyst in gas production. Cells were grown in a mineral medium plus 0.2% acetate with sodium sulfide as an electron donor. Factors increasing H(2) production included addition of reduced carbon compounds such as propionate and succinate, increased reducing power by increasing sodium sulfide concentrations, and increased energy charge (ATP) by increasing light intensity. PMID:16348423

  6. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.Z.

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  7. 77 FR 74196 - Draft Guidance for Industry on Safety Considerations for Product Design To Minimize Medication...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Product Design To Minimize Medication Errors; Availability AGENCY: Food and Drug Administration, HHS... guidance for industry entitled ``Safety Considerations for Product Design to Minimize Medication Errors... using a systems approach to minimize medication errors relating to product design. The draft...

  8. Socioeconomic impacts of natural gas curtailments: a study of the textile industry in the southeastern United States. Final report

    SciTech Connect

    Jennings, D.M.

    1980-01-01

    A study was undertaken to identify the effects of fuel curtailments in the textile industry in North and South Carolina. Regional economic and social structures were affected with natural gas curtailments in 1976 and 1977. This document presents results of the effects of production shutdown resulting from the curtailments. Chapter II presents background information on the pipelines that service the region. Chapters III and IV describe the affected communities and the observed increase in government expenditures to counteract the impacts. Chapter V contains a complete list of textile plants in the study area that had to either work under abbreviated schedules or close entirely during the winter of 1976-1977. Attention was given to economic impacts at the industrial level that may have been attributable to the curtailment. Chapter VI covers these topics. In some instances, textile mills have relocated their plant facilities because they could not be guaranteed continuous fuel service at their original site. These data are the main concern of Chapter VII. Chapter VIII concentrates on social impacts; many facilities which provide services essential to human needs were subjected to gas curtailments so that the critical energy supplies could be diverted to industry. Chapter VIII also discusses an interesting geographic separation between social and economic impacts.

  9. Air toxics regulations and their potential impact on the natural gas industry. Topical report, June 1991-October 1992

    SciTech Connect

    Fillo, J.P.; Harkov, R.; Koraido, S.M.; Olsakovsky, A.C.

    1992-10-01

    The objective of this effort was to perform an assessment of the potential impacts of air toxics regulations on the natural gas industry. Natural gas industry operations were reviewed to identify potential sources of air toxics emissions and representative compounds that may be emitted, as one basis for the evaluation. Legislation that regulate air toxics exist at the federal and state levels. The federal review addressed primarily the Clean Air Act (CAA), specifically the air toxics provisions under Title III of the 1990 CAA Amendments. Other relevant federal regulations were reviewed, including OSHA, TSCA, CERCLA, SARA Title III, and RCRA. Regulations for three bellweather states (i.e., Texas, New Jersey, California) were reviewed to assess relevant state air toxics regulations. Natural gas operations have the potential to emit air toxics, including benzene, toluene, ethylbenzene, and xylene (BTEX) emissions from glycol dehydration vents, products of incomplete combustion from compressor engines, fugitive emissions from facility equipment, and secondary emissions from storage and waste treatment facilities.

  10. Some modern notions on oil and gas reservoir production regulation

    SciTech Connect

    Lohrenz, J.; Monash, E.A.

    1980-05-21

    The historic rhetoric of oil and gas reservoir production regulations has been burdened with misconceptions. One was that most reservoirs are rate insensitive. Another was that a reservoir's decline is primarily a function of reservoir mechaism rather than a choice unconstrained by the laws of physics. Relieved of old notions like these, we introduce some modern notions, the most basic being that production regulation should have the purpose of obtaining the highest value from production per irreversible diminution of thermodynamically available energy. The laws of thermodynamics determine the available energy. What then is value. Value may include contributions other than production per se and purely monetary economic outcomes.

  11. A Direct Measurement Study of Air Emissions from Oil & Natural Gas Production Pads in the DJ Basin

    EPA Science Inventory

    EPA and industry cooperators conducted a one-week emission measurement study of 23 oil and natural gas well pads in the Denver-Julesburg Basin in July, 2011. The purpose of the study was to characterize emissions from individual production components and to evaluate the performa...

  12. A Direct Measurement Study of Air Emissions from Oil & Natural Gas Production Pads in the Denver-Julesburg Basin

    EPA Science Inventory

    EPA and industry cooperators conducted a one-week emission measurement study of 23 oil and natural gas well pads in the Denver-Julesburg Basin in July, 2011. The purpose of the study was to characterize emissions from individual production components and to evaluate the performa...

  13. Natural Gas Processing: The Crucial Link Between NG Production & Its Transportation to Market

    EIA Publications

    2006-01-01

    This special report examines the processing plant segment of the natural gas industry, providing a discussion and an analysis of how the gas processing segment has changed following the restructuring of the natural gas industry in the 1990s and the trends that have developed during that time.

  14. Reactive oxygen species production and discontinuous gas exchange in insects

    PubMed Central

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2012-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  15. Reactive oxygen species production and discontinuous gas exchange in insects.

    PubMed

    Boardman, Leigh; Terblanche, John S; Hetz, Stefan K; Marais, Elrike; Chown, Steven L

    2012-03-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  16. Production of bio-synthetic natural gas in Canada.

    PubMed

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system. PMID:20175525

  17. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    SciTech Connect

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  18. The shale gas revolution from the viewpoint of a former industry insider.

    PubMed

    Bamberger, Michelle; Oswald, Robert

    2015-02-01

    This is an interview conducted with an oil and gas worker who was employed in the industry from 1993 to 2012. He requested that his name not be used. From 2008 to 2012, he drilled wells for a major operator in Bradford County, Pennsylvania. Bradford County is the center of the Marcellus shale gas boom in Northeastern Pennsylvania. In 2012, he formed a consulting business to assist clients who need information on the details of gas and oil drilling operations. In this interview, the worker describes the benefits and difficulties of the hard work involved in drilling unconventional gas wells in Pennsylvania. In particular, he outlines the safety procedures that were in place and how they sometimes failed, leading to workplace injuries. He provides a compelling view of the trade-offs between the economic opportunities of working on a rig and the dangers and stresses of working long hours under hazardous conditions. PMID:25082393

  19. Microbiologically influenced corrosion in the natural gas industry. Annual report, January 1991-December 1991. Executive summary

    SciTech Connect

    Pope, D.H.

    1991-12-01

    The report presents results of 1991 work in the Gas Research Institute's program on microbiologically influenced corrosion (MIC) in the gas industry. A mechanistic model for MIC was developed which incorporated metallurgical, biological, chemical, andoperational factors. Supporting data from laboratory and field studies can be used with the MIC model to make informed choices regarding mitigation measures. Studies on coatings demonstrated the susceptibility of some coatings to accelerated disbondment due to MIC bacteria as well as cathodic disbondment at higher CP levels. Field and laboratory tests demonstrated that CP of sufficient potential, applied immediately and maintained throughout the test, combined with particular local enviornmental conditions protects against MIC. Targeted chemical biocide treatments (only at sites most likely to have internal MIC) performed in operating gas industry facilities resulted in more effective control at lower cost and reduced environmental and personnel exposure to toxic chemicals. A field guide for internal MIC/MIC mitigation, an instructional video tape on MIC in the gas industry, and a new field kit for the measurement of chemical species important to assessment of MIC and CP were developed.

  20. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the

  1. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect

    John R. Dorgan

    2005-09-30

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. The original project objectives had to be modified as a result of DOE funding cuts, the Biomass Program did not receive adequate funding to fully fund its selected projects. Nonetheless, effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. PI Dorgan taught one of the newly developed classes will in the Fall 2006, after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revisions. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the

  2. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  3. A semi-empirical photometric theory of cometary gas and dust production: Application to P/Halley's gas production rates

    NASA Technical Reports Server (NTRS)

    Newburn, R. L.

    1981-01-01

    The semiempirical photometric theory of cometary gas and dust production is recalibrated using UV observations from 14 comets and uniform visual photometry from 8 comets. The calibration is not changed significantly but becomes more secure. The complete theory is presented with all approximations evaluated and explained. Numerical calibration aspects are presented in tables. The theory is applied to P/Halley using a light curve without the artifact caused by the close approach to Earth in 1910. Gas production rates predicted for the 1985/86 apparition are similar to those for 1910.

  4. Minnesota timber industry. An assessment of timber product output and use, 1992. Forest Service resource bulletin

    SciTech Connect

    Hackett, R.L.; Dahlman, R.A.

    1997-09-19

    In this bulletin, the authors discuss recent Minnesota forest industry trends and report the results of a detailed study of forest industrial roundwood production, and associated primary mill wood and bark residue in Minnesota in 1992. Such detailed information is necessary for intelligent planning and decisionmaking in wood procurement, forest resource management, and forest industry development. Likewise, researchers need current forest industry and industrial roundwood information for planning projects.

  5. Low nanopore connectivity limits gas production in Barnett formation

    NASA Astrophysics Data System (ADS)

    Hu, Qinhong; Ewing, Robert P.; Rowe, Harold D.

    2015-12-01

    Gas-producing wells in the Barnett Formation show a steep decline from initial production rates, even within the first year, and only 12-30% of the estimated gas in place is recovered. The underlying causes of these production constraints are not well understood. The rate-limiting step in gas production is likely diffusive transport from matrix storage to the stimulated fracture network. Transport through a porous material such as shale is controlled by both geometry (e.g., pore size distribution) and topology (e.g., pore connectivity). Through an integrated experimental and theoretical approach, this work finds that the Barnett Formation has sparsely connected pores. Evidence of low pore connectivity includes the sparse and heterogeneous presence of trace levels of diffusing solutes beyond a few millimeters from a sample edge, the anomalous behavior of spontaneous water imbibition, the steep decline in edge-accessible porosity observed in tracer concentrations following vacuum saturation, the low (about 0.2-0.4% by volume) level presence of Wood's metal alloy when injected at 600 MPa pressure, and high tortuosity from mercury injection capillary pressure. Results are consistent with an interpretation of pore connectivity based on percolation theory. Low pore connectivity of shale matrix limits its mass transfer interaction with the stimulated fracture network from hydraulic fracturing and serves as an important underlying cause for steep declines in gas production rates and a low overall recovery rate.

  6. 21 CFR 173.350 - Combustion product gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Combustion product gas. 173.350 Section 173.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives §...

  7. Shallow seismic investigations of Devonian-shale gas production

    SciTech Connect

    Williams, R.T.; Ruotsala, J.E.; Kudla, J.J.; Dunne, W.E.

    1982-06-01

    The foremost conclusion of this study is that fractured Devonian shale gas reservoirs, as exemplified by the Cottageville field, are detectable by seismic reflection methods. Further, the target is not particularly difficult, once the nature of the seismic anomaly is understood. The preferred exploration rationale is based on travel time anomalies related to lowered acoustic velocity within the gas-bearing zone. In the simplest case the travel time anomaly causes an apparent down-warp or sag in a flat-lying reflector. This conclusion is developed in Parts B and C of this report. Concerning the high-resolution extension of the seismic method, which is the subject of Part A, there are essentially two separate conclusions which can be drawn. One is that additional, valuable subsurface information can be obtained by recording seismic data at frequenies higher than those in common use by the petroleum industry at the time of this writing. The other is that it is feasible to obtain seismic reflection data on a smaller scale, using less costly instrumentation, than is typically employed in the petroleum industry. However, it is not yet possible to say whether such small scale surveying will be practical from an industry point of view.

  8. 78 FR 19181 - Notice of Request for a New Information Collection: Egg Products Industry Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Food Safety and Inspection Service Notice of Request for a New Information Collection: Egg Products... information collection for a survey of the egg products industry. DATES: Comments on this notice must be.... SUPPLEMENTARY INFORMATION: Title: Egg Products Industry Survey. Type of Request: New information...

  9. An electromagnetic cavity sensor for multiphase measurement in the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al-Hajeri, S.; Wylie, S. R.; Stuart, R. A.; Al-Shamma'a, A. I.

    2007-07-01

    The oil and gas industry require accurate sensors to monitor fluid flow in pipelines in order to manage wells efficiently. The sensor described in this paper uses the different relative permittivity values for the three phases: oil, gas and water to help determine the fraction of each phase in the pipeline, by monitoring the resonant frequencies that occur within an electromagnetic cavity. The sensor has been designed to be non-intrusive. This is advantageous, as it will prevent the sensor being damaged by the flow through the pipeline and allow pigging, the technique used for cleaning rust and wax from the inside of the pipeline using blades or brushes.

  10. Current assessment of the potential of dielectric gas mixtures for industrial applications

    NASA Astrophysics Data System (ADS)

    Bouldin, D. W.; James, D. R.; Pace, M. O.; Christophorou, L. G.

    1984-04-01

    The need for more efficient, economical electrical power transmission and distribution has given impetus to the investigation of new insulating gases. Since no single gas meets all of the multiple needs and operating conditions that exist in power apparatus, mixtures were studied with the goal of tailoring the dielectric for a specific application by exploiting the properties of the component gases. Research results on dielectric gas mixtures and assesses the potential of such mixtures for industrial applications are reviewed. The topics considered include electrical breakdown characteristics, physical and chemical properties, and economics.

  11. Analytical Modeling of Shale Hydraulic Fracturing and Gas Production

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2012-12-01

    Shale gas is abundant all over the world. Due to its extremely low permeability, extensive stimulation of a shale reservoir is always required for its economic production. Hydraulic fracturing has been the primary method of shale reservoir stimulation. Consequently the design and optimization of a hydraulic fracturing treatment plays a vital role insuring job success and economic production. Due to the many variables involved and the lack of a simple yet robust tool based on fundamental physics, horizontal well placement and fracturing job designs have to certain degree been a guessing game built on previous trial and error experience. This paper presents a method for hydraulic fracturing design and optimization in these environments. The growth of a complex hydraulic fracture network (HFN) during a fracturing job is equivalently represented by a wiremesh fracturing model (WFM) constructed on the basis of fracture mechanics and mass balance. The model also simulates proppant transport and placement during HFN growth. Results of WFM simulations can then be used as the input into a wiremesh production model (WPM) constructed based on WFM. WPM represents gas flow through the wiremesh HFN by an elliptic flow and the flow of gas in shale matrix by a novel analytical solution accounting for contributions from both free and adsorbed gases stored in the pore space. WPM simulation is validated by testing against numerical simulations using a commercially available reservoir production simulator. Due to the analytical nature of WFM and WPM, both hydraulic fracturing and gas production simulations run very fast on a regular personal computer and are suitable for hydraulic fracturing job design and optimization. A case study is presented to demonstrate how a non-optimized hydraulic fracturing job might have been optimized using WFM and WPM simulations.Fig. 1. Ellipsoidal representation of (a) stimulated reservoir and (b) hydraulic fracture network created by hydraulic

  12. Alaska North Slope regional gas hydrate production modeling forecasts

    USGS Publications Warehouse

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  13. Assessment of research needs for gas-fired vent-free hearth products. Topical report, February-May 1995

    SciTech Connect

    DeWerth, D.W.; Roncace, E.A.

    1996-03-01

    The vent-free area is the fastest growing market within the hearth products segment of the gas industry. According to combined statistics of the GAMA and the HPA, almost 4,000,000 unvented gas heaters have been sold in the U.S. since 1980. In 1994 about 270,000 of the 1.2 million hearth products sold were vent-free. Gas-fired hearth product sales have been growing at an annual rate of about 30 percent. This translates into 1995 sales of vent-free hearth products of about 350,000 units. The purpose of the report is to present an integrated plan of research to support the vent-free hearth products and help overcome the potential short term and long term questions.

  14. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) The search for another field site was abandoned after discussion with DOE. There is a clear absence of willing industry partners to participate in this project. The greatest obstacle is having the necessary data to perform the

  15. Elemental Fluorine-18 Gas: Enhanced Production and Availability

    SciTech Connect

    VanBrocklin, Henry F.

    2011-12-01

    The overall objective of this project was to develop an efficient, reproducible and reliable process for the preparation of fluorine-18 labeled fluorine gas ([¹⁸F]F₂) from readily available cyclotron-produced [¹⁸F]fluoride ion. The two step process entailed the production of [¹⁸F]fluoromethane with subsequent conversion to [¹⁸F]F₂ by electric discharge of [¹⁸F]fluoromethane in the presence of carrier nonradioactive F₂ gas. The specific goals of this project were i) to optimize the preparation of [¹⁸F]fluoromethane from [¹⁸F]fluoride ion; ii) to develop a prototype automated system for the production of [¹⁸F]F₂ from [¹⁸F]fluoride ion and iii) develop a compact user friendly automated system for the preparation of [¹⁸F]F₂ with initial synthesis of fluorine-18 labeled radiotracers. Over the last decade there has been an increased interest in the production of "non-standard" positron-emitting isotopes for the preparation of new radiotracers for a variety of applications including medical imaging and therapy. The increased availability of these isotopes from small biomedical cyclotrons has prompted their use in labeling radiotracers. In much the same way the production of [¹⁸F]F₂ gas has been known for several decades. However, access to [¹⁸F]F₂ gas has been limited to those laboratories with the means (e.g. F₂ targetry for the cyclotron) and the project-based need to work with [¹⁸F]F₂ gas. Relatively few laboratories, compared to those that produce [¹⁸F]fluoride ion on a daily basis, possess the capability to produce and use [¹⁸F]F₂ gas. A simplified, reliable system employing [¹⁸F]fluoride ion from cyclotron targetry systems that are already in place coupled with on-demand production of the [¹⁸F]F₂ gas would greatly enhance its availability. This would improve the availability of [¹⁸F]F₂ gas and promote further work with a valuable precursor. The major goals of the project were accomplished

  16. 78 FR 59650 - Subzone 9F, Authorization of Production Activity, The Gas Company, LLC dba Hawai'i Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... inviting public comment (78 FR 33051-33052, June 3, 2013). The FTZ Board has determined that no further... Foreign-Trade Zones Board Subzone 9F, Authorization of Production Activity, The Gas Company, LLC dba Hawai'i Gas, (Synthetic Natural Gas), Kapolei, Hawaii On May 22, 2013, The Gas Company, LLC dba...

  17. The Impact of Water Regulation on the Availability of Shale Gas Resources for Production

    NASA Astrophysics Data System (ADS)

    Victor, D. G.

    2011-12-01

    Visions for a large increase in North American production of natural gas from shale are based heavily on the sharp rise in the estimated available resource. Those estimates are prepared by looking at the underlying geology as well as the cost and availability of technologies for extracting gas. We add to that equation the potential current and future regulation of water injection (subsurface) and runoff (surface). Using the political science theory of "veto points" we show that US water legislation is organized in ways that allow for large numbers of political forces to block (or make costly) access to gas resources. By our estimate, 26% of the shale gas resource will be unavailable-a fraction that could rise if there are strong contagion effects as jurisdictions that have traditionally had industry-friendly regulatory systems apply much stricter rules. This work has potentially large implications for visions of the new natural gas revolution and the price of North American (and potentially world) natural gas.

  18. Gas plant economic optimization is more than meeting product specification

    SciTech Connect

    Berkowitz, P.N.; Colwell, L.W.; Gamez, J.P.

    1996-12-31

    Gas plants require a higher level of process control to optimize the process to maximize operating profits. Automation alone does not achieve this objective whereas, on-line dynamic optimization of the control variables based on product pricing, the cost to process the gas and the contracts for gas and liquids is solvable by new control techniques. Daily operations are affected by a paradigm shift in the method of control for the facility. This newly developed and site proven technique has demonstrated how to improve benefits when net processing margins are positive and minimize operating cost when liquids margins are negative. Because ethane recovery versus its rejection is not a binary decision, a better means to operate can be shown to benefit the gas plant operator. Each specification has a cost to meet it or a penalty to exceed it. However, if allowed, exceeding specification may prove beneficial to the net profitability of the operations. With the decision being made on-line every few minutes, the results are more dramatic than previously understood. Gas Research Institute and Continental Controls, Inc. have installed more than 10 such systems in US gas processing plants. Project payout from the use of the MVC{reg_sign} technology has on average been less than six months. Processing savings have ranged from $.0075 to $.024 per Mcf. The authors paper last year showed where the benefits can be derived. This year the results of those facilities are shared along with the methodology to achieve them.

  19. AGA; U. S. gas reserve additions lag production

    SciTech Connect

    Not Available

    1992-05-04

    The American Gas Association estimates 1991 U.S. natural gas reserve additions were only 65-79% of production, compared with a 96% average for 1981-90. AGA found that 75% of 1991 reserve additions occurred as discoveries and field extensions, and only 25% came from revisions of estimates. Total reserve additions may range from 11.1 tcf to 13.4 tcf. The 30 largest gas reserves holders sold more than 1.1 tcf of reserves to other firms. The top 30 companies had reserve additions of 5.754 tcf, down 3.541 tcf from a year earlier. Total gas reserves held by the top 30 dropped by 3.757 tcf. The 30 companies produced 8.417 tcf in 1991, compared with 8.352 tcf in 1989. This paper reports that AGA compiles the reserve addition estimates from data the 30 largest gas companies file with the Securities and exchange Commission, supplemented with data from gas pipelines holding large reserves.

  20. Kojic Acid Production from Agro-Industrial By-Products Using Fungi

    PubMed Central

    El-Kady, Ismael A.; Zohri, Abdel Naser A.; Hamed, Shimaa R.

    2014-01-01

    A total of 278 different isolates of filamentous fungi were screened using synthetic medium for respective ability to produce kojic acid. Nineteen, six, and five isolates proved to be low, moderate, and high kojic acid producers, respectively. Levels of kojic acid produced were generally increased when shaking cultivation was used rather than those obtained using static cultivation. A trial for the utilization of 15 agro-industrial wastes or by-products for kojic acid production by the five selected higher kojic acid producer isolates was made. The best by-product medium recorded was molasses for kojic acid. A. flavus numbers 7 and 24 were able to grow and produce kojic acid on only 12 out of 15 wastes or by-products media. The best medium used for kojic acid production by A. flavus number 7 was rice fragments followed by molasses, while the best medium used for kojic acid production by A. flavus number 24 was the molasses followed by orange, pea, and rice fragments. An attempt for production of kojic acid using a 1.5 L laboratory fermentor has been made. Aspergillus flavus number 7 was used and grown on molasses medium; maximum level (53.5 g/L) of kojic acid was obtained after eight days of incubation. PMID:24778881

  1. Antitrust Enforcement in the Electricity and Gas Industries: Problems and Solutions for the EU

    SciTech Connect

    Leveque, Francois

    2006-06-15

    Antitrust enforcement in the electricity and gas industries raises specific problems that call for specific solutions. Among the issues: How can the anticompetitive effects of mergers be assessed in a changing regulatory environment? Should long-term agreements in energy purchasing be prohibited? What are the benefits of preventive action such as competition advocacy and market surveillance committees? Should Article 82 (a) of the EC Treaty be used to curb excessive pricing?. (author)

  2. SEASAT economic assessment. Volume 3: Offshore oil and natural gas industry case study and generalization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The economic benefits of improved ocean condition, weather and ice forecasts by SEASAT satellites to the exploration, development and production of oil and natural gas in the offshore regions are considered. The results of case studies which investigate the effects of forecast accuracy on offshore operations in the North Sea, the Celtic Sea, and the Gulf of Mexico are reported. A methodology for generalizing the results to other geographic regions of offshore oil and natural gas exploration and development is described.

  3. 30 CFR 260.116 - How do I measure natural gas production on my eligible lease?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I measure natural gas production on my... do I measure natural gas production on my eligible lease? You must measure natural gas production on... natural gas, measured according to part 250, subpart L of this title, equals one barrel of oil...

  4. Hydrogen and Oxygen Gas Production in the UT TRIGA Reflector

    SciTech Connect

    D. S. O'Kelly

    2000-11-12

    In December 1999, The University of Texas at Austin (UT) reported an unusual condition associated with the annular graphite reflector surrounding the Nuclear Engineering Teaching Laboratory (NETL) TRIGA reactor. The aluminum container encapsulating the graphite showed signs of bulging or swelling. Further, during an investigation of this occurrence, bubbles were detected coming from a weld in the aluminum. The gas composition was approximately 2:1 hydrogen to oxygen. After safety review and equipment fabrication, the reflector was successfully vented and flooded. The ratio of the gases produced is unusual, and the gas production mechanism has not yet been explained.

  5. Water Use by Texas Oil and Gas Industry: A Look towards the Future

    NASA Astrophysics Data System (ADS)

    Nicot, J.; Ritter, S. M.; Hebel, A. K.

    2009-12-01

    The Barnett Shale gas play, located in North Texas, has seen a relatively quick growth in the past decade with the development of new “frac” (aka, fracture stimulation) technologies needed to create pathways to produce gas from the very low permeability shales. This technology uses a large amount of fresh water (millions of gallons in a day or two on average) to develop a gas well. Now operators are taking aim at other shale gas plays in Texas including the Haynesville, Woodford, and Pearsall-Eagle Ford shales and at other tight formation such as the Bossier Sand. These promising gas plays are likely to be developed at an even steeper growth rate. There are currently over 12,000 wells producing gas from the Barnett Shale with many more likely to be drilled in the next couple of decades as the play expands out of its core area. Despite the recent gas price slump, thousands more wells may be drilled across the state to access the gas resource in the next few years. As an example, a typical vertical and horizontal well completion in the Barnett Shale consumes approximately 1.2 and 3.0 to 3.5 millions gallons of fresh water, respectively. This could raise some concerns among local communities and other surface water and groundwater stakeholders. We present a preliminary analysis of future water use by the Texas oil and gas industry and compare it to projections of total water use, including municipal use and irrigation. Maps showing large increase in total number of well completions in the Barnett Shale (black dots) from 1998 to 2008. Operators avoided the DFW metro area (center right on the map) until recently. Also shown are the structural limits of the Barnett Shale on its eastern boundaries.

  6. Halogens in oil and gas production-associated wastewater.

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.

    2014-12-01

    Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream

  7. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    PubMed

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry. PMID:25783163

  8. Spontaneous Anti-Stokes Raman Probe for Gas Temperature Measurements in Industrial Furnaces

    NASA Astrophysics Data System (ADS)

    Zikratov, George; Yueh, Fang-Yu; Singh, Jagdish P.; Norton, O. Perry; Kumar, R. Arun; Cook, Robert L.

    1999-03-01

    A compact, pulsed Nd:YAG laser-based instrument has been built to measure in situ absolute gas temperatures in large industrial furnaces by use of spontaneous anti-Stokes Raman scattering. The backscattering configuration was used to simplify the optics alignment and increase signal-to-noise ratios. Gated signal detection significantly reduced the background emission that is found in combustion environments. The anti-Stokes instead of the Stokes component was used to eliminate contributions to spectra from cold atmospheric nitrogen. The system was evaluated in a methane air flame and in a bench-top oven, and the technique was found to be a reliable tool for nonintrusive absolute temperature measurements with relatively clean gas streams. A water-cooled insertion probe was integrated with the Raman system for measurement of the temperature profiles inside an industrial furnace. Gas temperatures near 1500 1800 K at atmospheric pressure in an industrial furnace were inferred by fitting calculated profiles to experimental spectra with a standard deviation of less than 1% for averaging times of 200 s. The temperatures inferred from Raman spectra are in good agreement with data recorded with a thermocouple probe.

  9. Dissolved gas exsolution to enhance gas production and transport during bench-scale electrical resistance heating

    NASA Astrophysics Data System (ADS)

    Hegele, P. R.; Mumford, K. G.

    2015-05-01

    Condensation of volatile organic compounds in colder zones can be detrimental to the performance of an in situ thermal treatment application for the remediation of chlorinated solvent source zones. A novel method to increase gas production and limit convective heat loss in more permeable, potentially colder, zones involves the injection and liberation of dissolved gas from solution during heating. Bench-scale electrical resistance heating experiments were performed with a dissolved carbon dioxide and sodium chloride solution to investigate exsolved gas saturations and transport regimes at elevated, but sub-boiling, temperatures. At sub-boiling temperatures, maximum exsolved gas saturations of Sg = 0.12 were attained, and could be sustained when the carbon dioxide solution was injected during heating rather than emplaced prior to heating. This gas saturation was estimated to decrease groundwater relative permeability to krw = 0.64. Discontinuous gas transport was observed above saturations of Sg = 0.07, demonstrating the potential of exsolved CO2 to bridge vertical gas transport through colder zones.

  10. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2001-09-14

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the four quarterly technical progress report for the SWC. During this reporting period, Penn State primary focus was on finalizing all subcontracts, planning the SWC technology transfer meeting and two workshops in the southern US, and preparing the next SWC newsletter. Membership in the SWC now stands at 49.

  11. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2003-04-08

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the ninth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting two fall technology transfer meetings, (2) SWC membership class expansion, and (3) planning the SWC 2003 Spring meeting. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

  12. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-05-18

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fourteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing the SWC spring meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruit the SWC base membership.

  13. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2005-01-04

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventeenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting the SWC fall technology transfer meetings in Oklahoma City, Oklahoma and State College, Pennsylvania, (2) planning of the upcoming SWC spring proposal meeting, (3) release of the SWC Request-for-proposals (RFP), (4) revision of the SWC By-Laws, and (5) the SWC Executive Council nomination and election for 2005-2006 term members.

  14. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-12-28

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) exhibit and participate in the Society of Petroleum Engineers (SPE) Regional Meeting in Charleston West Virginia, (2) finalize the organization of the two fall Technology Transfer meetings and (3) initiate the revision of the SWC By-laws.

  15. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2005-01-03

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the second quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) exhibit and participate in the Society of Petroleum Engineers (SPE) Regional Meeting in Charleston WV, (2) host the SWC fall technology transfer meeting in Oklahoma City, OK and finalize the organization of the State College, PA fall Technology Transfer meeting, and (3) initiate the revision of the SWC By-laws.

  16. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-05-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period focused on organizing and hosting three fall technology transfer meetings that will be held in Wyoming, Texas, and Pennsylvania. In addition, work has started on developing the 2004 SWC request-for-proposals which will be released during the next reporting period. During this reporting period, the efforts were focused primarily on the organizing the SWC fall technology transfer meetings.

  17. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-12-23

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fifteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  18. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2005-02-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) host the State College, PA fall Technology Transfer meeting, (2) revision of the SWC By-laws, (3) the SWC Executive Council nomination and election for 2005-2006 term members, and (4) finalizing the plans for the Spring Proposal Meeting in San Antonio, Texas.

  19. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-12-28

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  20. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-01

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Organize and host the 2006 Spring Meeting in State College, PA to review and select projects for SWC co-funding; (2) Participation in the 2006 PA CleanEnergy Expo Energy Theater to air the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) New member additions; (4) Improving communications; and (5) Planning of the fall technology meetings.

  1. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-04-21

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventh quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Nomination and election of the Executive Council members for the 2006-07 term, (2) Finalize and release the 2006 Request for Proposals (RFP), (3) Invoice and recruit members, (4) Plan for the spring meeting, (5) Improving communication efforts, and (6) Continue distribution of the DVD entitled: ''Independent Oil: Rediscovering American's Forgotten Wells''.

  2. Field testing of a probe to measure fouling in an industrial flue gas stream

    SciTech Connect

    Sohal, M.S.

    1990-11-01

    The US Department of Energy, Office of Industrial Technology sponsors work in the area of measuring and mitigating fouling in heat exchangers. This report describes the design and fabrication of a gas-side fouling measuring device, and its testing in an industrial environment. The report gives details of the probe fabrication, material used, controllers, other instrumentation required for various measurements, and computer system needed for recording the data. The calibration constants for measuring the heat flux with the heat fluxmeter were determined. The report also describes the field test location, the tests performed, the data collected, and the data analysis. The conclusions of the tests performed were summarized. Although fouling deposits on the probe were minimal, the tests proved that the probe is capable of measuring the fouling in a harsh industrial environment. 17 refs., 19 figs., 5 tabs.

  3. NOBLE GAS PRODUCTION FROM MERCURY SPALLATION AT SNS

    SciTech Connect

    DeVore, Joe R; Lu, Wei; Schwahn, Scott O

    2013-01-01

    Calculations for predicting the distribution of the products of spallation reactions between high energy protons and target materials are well developed and are used for design and operational applications in many projects both within DOE and in other arenas. These calculations are based on theory and limited experimental data that verifies rates of production of some spallation products exist. At the Spallation Neutron Source, a helium stream from the mercury target flows through a system to remove radioactivity from this mercury target offgas. The operation of this system offers a window through which the production of noble gases from mercury spallation by protons may be observed. This paper describes studies designed to measure the production rates of twelve noble gas isotopes within the Spallation Neutron Source mercury target.

  4. Petroleum industry in Illinois, 1984. Oil and gas developments. Waterflood operations

    SciTech Connect

    Van Den Berg, J.; Treworgy, J.D.; Elyn, J.R.

    1986-01-01

    The report includes statistical information regarding the petroleum industry in Illinois during 1984. Illinois produced 28,873,000 barrels of crude oil in 1984. The value of this crude is estimated to be $830 million. New test holes drilled for oil and gas numbered 2732 - 4.1% more than in 1983. These tests resulted in 1575 oil wells, 21 gas wells, and 1136 dry holes. In addition, 28 former dry holes were reworked or deepened and completed as producers, and 9 former producers were reworked or deepened and completed as producers in new pay zones. In oil and gas exploration and development, including service wells and structure tests, total footage drilled in 1984 was 6,868,485 feet, 5.5% more than in 1983. Ten oil fields, 50 new pay zones in fields, and 51 extensions to fields were discovered in 1984.

  5. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemi...

  6. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  7. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  8. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  9. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  10. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  11. Introduction of the 2007-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Research Program, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Dallimore, S. R.; Numasawa, M.; Yasuda, M.; Fujii, T.; Fujii, K.; Wright, J.; Nixon, F.

    2007-12-01

    Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resource Canada (NRCan) have embarked on a new research program to study the production potential of gas hydrates. The program is being carried out at the Mallik gas hydrate field in the Mackenzie Delta, a location where two previous scientific investigations have been carried in 1998 and 2002. In the 2002 program that was undertaken by seven partners from five countries, 468m3 of gas flow was measured during 124 hours of thermal stimulation using hot warm fluid. Small-scale pressure drawdown tests were also carried out using Schlumberger's Modular Dynamics Tester (MDT) wireline tool, gas flow was observed and the inferred formation permeabilities suggested the possible effectiveness of the simple depressurization method. While the testing undertaken in 2002 can be cited as the first well constrained gas production from a gas hydrate deposit, the results fell short of that required to fully calibrate reservoir simulation models or indeed establish the technical viability of long term production from gas hydrates. The objectives of the current JOGMEC/NRCan/Aurora Mallik production research program are to undertake longer term production testing to further constrain the scientific unknowns and to demonstrate the technical feasibility of sustained gas hydrate production using the depressurization method. A key priority is to accurately measure water and gas production using state-of-art production technologies. The primary production test well was established during the 2007 field season with the re-entry and deepening of JAPEX/JNOC/GSC Mallik 2L-38 well, originally drilled in 1998. Production testing was carried out in April of 2007 under a relatively low drawdown pressure condition. Flow of methane gas was measured from a 12m perforated interval of gas-hydrate-saturated sands from 1093 to 1105m. The results establish the potential of the depressurization method and provide a basis for future

  12. Trash to Gas: Converting Space Trash into Useful Products

    NASA Technical Reports Server (NTRS)

    Nur, Mononita

    2013-01-01

    NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of C02, CO, CH4, and H20 were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.

  13. Trash-to-Gas: Converting Space Trash into Useful Products

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne J.; Hintze, Paul E.

    2013-01-01

    NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of CO2, CO, CH4, and H2O were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.

  14. Production, management, and environment symposium: Environmental footprint of livestock production - Greenhouse gas emissions and climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is the introduction to the 2015 Production, Management, and Environment symposium titled “Environmental Footprint of Livestock Production – Greenhouse Gas Emissions and Climate Change” that was held at the Joint Annual Meeting of the ASAS and ADSA at the Rosen Shingle Creek Resort in...

  15. Current and future water needs of the shale gas industry in Texas

    NASA Astrophysics Data System (ADS)

    Nicot, J.

    2010-12-01

    The Barnett Shale gas play, located in North Texas, has seen a relatively quick growth in the past decade with the development of new “frac” technologies needed to create pathways to produce gas from the very low permeability shales. More plays such as the Haynesville, Woodford, and Eagle Ford are coming online at a steeper rate than the Barnett did, even including the small dip in activity due to the recent economic slowdown. A typical horizontal well completion consumes over 3 millions gallons of fresh water in a very short time (days). The trend in the industry is to increase the length of laterals with an increased water use. Vertical well completion also typically consumes in excess of 1 million gallons. There are currently over 14,000 completed shale gas wells in the State of Texas and many more will be drilled in the next decades. If tight-gas completions are included, the volume of water used is even larger, raising some concerns among local communities and other groundwater stakeholders. However, the volume remains low on average compared to irrigation demand, although locally it can lead to conflicts. Nevertheless, the industry is improving its water footprint by increased recycling, developing alternative sources of water (brackish, treatment plants) and more efficient additives, and other innovative strategies. This paper presents current shale gas water use in Texas compiled from various sources as well as water use projections for the next decades based on recent data and our understanding of shale gas geology. The map shows the 30,000+ wells frac'ed in the past 5 years in Texas

  16. Natural Gas Monthly

    EIA Publications

    2016-01-01

    Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

  17. 77 FR 24722 - Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Cosmetic Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The... ``Guidance for Industry: Safety of Nanomaterials in Cosmetic Products.'' The draft guidance, when finalized, will represent FDA's current thinking on the safety assessment of nanomaterials in cosmetic...

  18. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  19. Production of light oil by injection of hot inert gas

    NASA Astrophysics Data System (ADS)

    Ruidas, Bidhan C.; Ganguly, Somenath

    2016-05-01

    Hot inert gas, when injected into an oil reservoir is capable of generating a vaporization-condensation drive and as a consequence, a preferential movement of the lighter components to the production well. This form of displacement is an important unit mechanism in hot flue-gas injection, or in thermal recovery from a watered-out oil reservoir. This article presents the movement of heat front vis-à-vis the changes in the saturation profile, and the gas-phase composition. The plateau in the temperature profile due to the exchange of latent heat, and the formation of water bank at the downstream are elaborated. The broadening of the vaporization-condensation zone with continued progression is discussed. The effect of inert gas temperature on the cumulative production of oil is reviewed. The results provide insight to the vaporization-condensation drive as a stand-alone mechanism. The paper underscores the relative importance of this mechanism, when operated in tandem with other processes in improved oil recovery and CO2 sequestration.

  20. Gas production by accelerated in situ bioleaching of landfills

    SciTech Connect

    Ghosh, S.

    1982-04-06

    A process for improved gas production and accelerated stabilization of landfills by accelerated in situ bioleaching of organic wastes by acid forming bacteria in substantially sealed landfills, passing the leachate of hydrolysis and liquefaction products of microbial action of the microorganisms with the organic material to an acid phase digester to regenerate the activated culture of acid forming microorganisms for recirculation to the landfill, passing the supernatant from the acid phase digester to a methane phase digester operated under conditions to produce methane rich gas. The supernatant from the methane phase digester containing nutrients for the acid forming microorganisms and added sewage sludge or other desired nutrient materials are circulated through the landfill. Low Btu gas is withdrawn from the acid phase digester while high Btu gas is withdrawn from the methane phase digester and may be upgraded for use as SNG. The process of this invention is applicable to small as well as large organic waste landfills, provides simultaneous disposal of municipal solid waste and sewage sludge or other aqueous organic waste in a landfill which may be stabilized much more quickly than an uncontrolled landfill as presently utilized.

  1. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    USGS Publications Warehouse

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  2. Profile of the lumber and wood products industry. EPA Office of Compliance sector notebook project

    SciTech Connect

    1995-09-01

    The lumber and wood products industry includes establishments engaged in cutting timber and pulpwood; sawmills, lath mills, shingle mills, cooperage stock mills (wooden casks or tubs), planing mills, plywood mills; and establishments engaged in manufacturing finished articles made entirely or mainly of wood or related materials such as reconstituted wood panel products manufacturers. The categorization corresponds to the Standard Industrial Classification (SIC) code 24 established by Department of Commerce`s Bureau of the Census to track the flow of goods and services within the economy. In this profile, the industry`s processes are divided into four general groups: logging timber; producing lumber; panel products and wood preserving.

  3. Identification of productive layers in low-permeability gas wells

    SciTech Connect

    Johnston, J.L.; Lee, W.J. )

    1992-11-01

    This paper presents new guidelines for determining net pay thickness in low-permeability, multilayered gas wells. These criteria were developed from a sensitivity study performed with an analytical solution for complex multilayered reservoirs. The purpose of this study is to determine whether many layers now considered to contribute to net pay actually have transmissibilities too low for the layer to be productive, causing performance projections from current singly-layer descriptive models to be too optimistic.

  4. Wisconsin timber industry: An assessment of timber product output and use, 1994. Forest Service resource bulletin

    SciTech Connect

    Hackett, R.L.; Whipple, J.W.

    1997-09-21

    In this bulletin we discuss recent Wisconsin forest industry trends and report the results of a detailed study of forest indsutry, industrial roundwood production, and associated primary mill wood and bark residue in Wisconsin in 1994. Such detailed information is necessary for intelligent planning and decisionmaking in wood procurement, forest resource management, and forest industry development. Likewise, researchers need current forest industry and idustrial roundwood information for planning project.

  5. By-Product of Industrialization: The Victorian Myth

    ERIC Educational Resources Information Center

    Intercom, 1976

    1976-01-01

    A case study designed to provide a picture of sex stereotypes in Europe and America before and after the industrial revolution. Qualities most often exhibited and admired by Victorian men and women are described. (Author/DB)

  6. Vanadium phosphate catalysts for biodiesel production from acid industrial by-products.

    PubMed

    Domingues, Carina; Correia, M Joana Neiva; Carvalho, Renato; Henriques, Carlos; Bordado, João; Dias, Ana Paula Soares

    2013-04-10

    Biodiesel production from high acidity industrial by-products was studied using heterogeneous acid catalysts. These by-products contain 26-39% of free fatty acids, 45-66% of fatty acids methyl esters and 0.6-1.1% of water and are consequently inadequate for direct basic catalyzed transesterification. Macroporous vanadyl phosphate catalysts with V/P=1 (atomic ratio) prepared via sol-gel like technique was used as catalyst and it was possible to produce in one reaction batch a biodiesel contain 87% and 94% of FAME, depending on the by-product used as raw material. The initial FAME content in the by-products had a beneficial effect on the reactions because they act as a co-solvent, thus improving the miscibility of the reaction mixture components. The water formed during esterification process seems to hinder the esters formation, possibly due to competitive adsorption with methanol and to the promotion of the FAME hydrolysis reaction.The observed catalyst deactivation seems to be related to the reduction of vanadium species. However, spent catalysts can be regenerated, even partially, by reoxidation of the reduced vanadium species with air. PMID:22902409

  7. Radiolytic gas production in the alpha particle degradation of plastics

    SciTech Connect

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-05-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100{degree}C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100{degree}C.

  8. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production

  9. 10 CFR 40.25 - General license for use of certain industrial products or devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false General license for use of certain industrial products or... General Licenses § 40.25 General license for use of certain industrial products or devices. (a) A general... of paragraphs (b), (c), (d), and (e) of this section, depleted uranium contained in...

  10. 10 CFR 40.25 - General license for use of certain industrial products or devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false General license for use of certain industrial products or... General Licenses § 40.25 General license for use of certain industrial products or devices. (a) A general... of paragraphs (b), (c), (d), and (e) of this section, depleted uranium contained in...

  11. 10 CFR 40.25 - General license for use of certain industrial products or devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General license for use of certain industrial products or... General Licenses § 40.25 General license for use of certain industrial products or devices. (a) A general... of paragraphs (b), (c), (d), and (e) of this section, depleted uranium contained in...

  12. 10 CFR 40.25 - General license for use of certain industrial products or devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false General license for use of certain industrial products or... General Licenses § 40.25 General license for use of certain industrial products or devices. (a) A general... of paragraphs (b), (c), (d), and (e) of this section, depleted uranium contained in...

  13. 10 CFR 40.25 - General license for use of certain industrial products or devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false General license for use of certain industrial products or... General Licenses § 40.25 General license for use of certain industrial products or devices. (a) A general... of paragraphs (b), (c), (d), and (e) of this section, depleted uranium contained in...

  14. Impact of United States biofuels co-products on the feed industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although 140 biodiesel plants produced 1.2 billion liters of biodiesel in 2010, very little crude glycerol has been used in animal feeds in the U.S. due to relatively low volume produced compared to ethanol industry co-products, and its higher value for consumer products and industrial manufacturing...

  15. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... methods is found in appendix M of 40 CFR part 51. (e) Definitions of terms used in this section. The... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources....

  16. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... methods is found in appendix M of 40 CFR part 51. (e) Definitions of terms used in this section. The... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources....

  17. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... methods is found in appendix M of 40 CFR part 51. (e) Definitions of terms used in this section. The... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources....

  18. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities...

  19. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities...

  20. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities...

  1. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities...

  2. 16 CFR 18.8 - Deception as to origin or source of industry products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... an unfair or deceptive act or practice to sell, offer for sale, or advertise an industry product by...,” “California Privet,” “Japanese Barberry,” etc.). (b) It is also an unfair or deceptive act or practice to advertise, sell, or offer for sale an industry product of foreign origin without adequate and...

  3. Spore production in Paecilomyces lilacinus (Thom.) samson strains on agro-industrial residues

    PubMed Central

    Robl, Diogo; Sung, Letizia B.; Novakovich, João Henrique; Marangoni, Paulo R.D.; Zawadneak, Maria Aparecida C.; Dalzoto, Patricia R.; Gabardo, Juarez; Pimentel, Ida Chapaval

    2009-01-01

    Paecilomyces lilacinus has potential for pests control. We aimed to analyze mycelial growth and spore production in P. lilacinus strains in several agro-industrial residues and commercial media. This study suggests alternative nutrient sources for fungi production and that the biotechnological potential of agro-industrial refuses could be employed in byproducts development. PMID:24031361

  4. Recent MARS15 developments: nuclide inventory, DPA and gas production

    SciTech Connect

    Mokhov, N.V.; /Fermilab

    2010-12-01

    Recent developments in the MARS15 code are described for the critical modules related to demands of hadron and lepton colliders and Megawatt proton and heavy-ion beam facilities. Details of advanced models for particle production and nuclide distributions in nuclear interactions at low and medium energies, energy loss, atomic displacements and gas production are presented along with benchmarking against data. Recent developments in the MARS15 physics models, such as nuclide production, decay and transmutation and all-component DPA modelling for arbitrary projectiles in the 1 keV to 10 TeV energy range, add new capabilities to the code crucial in numerous applications with high-intensity high-power beams. Some discrepancies in DPA rate predictions by several codes, relation of DPA and H/He production rates to changes in material properties, as well as corresponding experimental studies at energies above a hundred of MeV are the areas requiring further efforts.

  5. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  6. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  7. EPA compromises consistency in its coastal oil and gas industry cost-effectiveness analysis

    SciTech Connect

    Veil, J.A.

    1997-08-01

    The US Environmental Protection Agency (EPA) conducts a cost-effectiveness (CE) analysis to estimate the cost of complying with each newly proposed set of industrial effluent limitation guidelines (ELGs). CE is defined as the incremental annualized cost of a pollution control option in an industry per incremental pound equivalent (PE) of pollutant removed annually by that control options. EPA`s guidelines for conducting the CE analysis require that all costs be expressed in 1981 dollars so that comparison to other industries can be done on a consistent basis. In the results of its CE analyses, EPA presents information showing $/PE values for all the industries for which it has done the CE analysis. These examples indicate that EPA is interested in maintaining consistency and comparability. EPA is not legally bound by the results of a CE analysis; however, if the $/PE for a proposed ELG is calculated to be significantly higher than the $/PEs for other comparable ELGs, EPA might reconsider its proposal. EPA`s approach of using an expanded pollutant list and revised weighting factors probably generates a more accurate estimate of the PEs removed for the coastal oil and gas industry, but in doing so, EPA loses the ability to equitably compare this CE analysis to the CE analyses that have been done for other industries. This shortcoming is particularly obvious since the offshore Ce analysis, evaluating a nearly identical waste stream, was completed just two years earlier. Given EPA`s concern over consistency and comparability to other industries, it may be appropriate to modify this approach for the coastal CE analysis. Another alternative that would allow EPA to reflect the newest toxicological information and still preserve consistency and comparability would be to recalculate all earlier CE analyses whenever new weighting factors are developed.

  8. Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga Chlorella sp. C2.

    PubMed

    Chen, Weixian; Zhang, Shanshan; Rong, Junfeng; Li, Xiang; Chen, Hui; He, Chenliu; Wang, Qiang

    2016-02-01

    Nitrogen oxides (NOx) are the components of fossil flue gas that result in the most serious environmental concerns. We previously showed that the biological removal of NOx by microalgae appears superior to traditional treatments. This study optimizes the strategy for the microalgal-based DeNOx of flue gas by fed-batch mixotrophic cultivation. By using actual flue gas fixed salts (FGFS) as the nitrogen supply, the mixotrophical cultivation of the green alga Chlorella sp. C2 with high NOx absorption efficiency was optimized in a stepwise manner in a 5 L bioreactor and resulted in a maximum biomass productivity of 9.87 g L(-1) d(-1). The optimized strategy was further scaled up to 50 L, and a biomass productivity of 7.93 g L(-1) d(-1) was achieved, with an overall DeNOx efficiency of 96%, along with an average nitrogen CR of 0.45 g L(-1) d(-1) and lipid productivity of 1.83 g L(-1) d(-1). With an optimized mixotrophical cultivation, this study further proved the feasibility of using Chlorella for the combination of efficient biological DeNOx of flue gas and microalgae-based products production. Thus, this study shows a promising industrial strategy for flue gas biotreatment in plants with limited land area. PMID:26751001

  9. Industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Youwen; Liu, Cheng; Xie, Pinhua; Hartl, Andreas; Chan, Kalok; Tian, Yuan; Wang, Wei; Qin, Min; Liu, Jianguo; Liu, Wenqing

    2016-03-01

    SO2 variability over a large concentration range and interferences from other gases have been major limitations in industrial SO2 emission monitoring. This study demonstrates accurate industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm. The proposed analyzer features a large dynamic measurement range and correction of interferences from other coexisting infrared absorbers such as NO, CO, CO2, NO2, CH4, HC, N2O, and H2O. The multichannel gas analyzer measures 11 different wavelength channels simultaneously to correct several major problems of an infrared gas analyzer including system drift, conflict of sensitivity, interferences among different infrared absorbers, and limitation of measurement range. The optimized algorithm uses a third polynomial instead of a constant factor to quantify gas-to-gas interference. Measurement results show good performance in the linear and nonlinear ranges, thereby solving the problem that the conventional interference correction is restricted by the linearity of the intended and interfering channels. The results imply that the measurement range of the developed multichannel analyzer can be extended to the nonlinear absorption region. The measurement range and accuracy are evaluated through experimental laboratory calibration. Excellent agreement was achieved, with a Pearson correlation coefficient (r2) of 0.99977 with a measurement range from approximately 5 to 10 000 ppmv and a measurement error of less than 2 %. The instrument was also deployed for field measurement. Emissions from three different factories were measured. The emissions of these factories have been characterized by different coexisting infrared absorbers, covering a wide range of concentration levels. We compared our measurements with commercial SO2 analyzers. Overall, good agreement was achieved.

  10. Considerations concerning the physical heat-recovery of raw coke-oven gas in an industrial pilot-station

    SciTech Connect

    Paunescu, L.; Gaba, A.

    1998-12-31

    The paper presents the conception and realization obtained by the research team at the Metallurgical Researches Institute in an industrial pilot-station on the field of the physical heat-recovery of raw coke-oven gas.

  11. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  12. 77 FR 20026 - Draft Guidance for Industry: Modified Risk Tobacco Product Applications; Availability; Agency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... product; Sample product labels and labeling; All documents (including underlying scientific information... proposes to label and market the product, consumers will not be misled into believing that the product is... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry: Modified Risk Tobacco...

  13. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2001-06-28

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. The SWC is in its infancy; however, interest from the petroleum and natural gas industry has grown substantially during this reporting period. As of December 31, 2000, nineteen members have joined the consortium and several other companies have expressed interest. During the last three months, efforts were focused on the development of the necessary infrastructure and membership base to begin the consortium technology development activities. These efforts included: (1) preparing a draft constitution and bylaws, (2) developing draft membership application forms, (3) developing an intellectual property statement, (4) providing overview presentations to trade association meetings, and (5) marketing the consortium individually to potential members. These activities are discussed in further detail in this first quarterly technical progress report.

  14. Process for the production of fuel gas from coal

    DOEpatents

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  15. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    SciTech Connect

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  16. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with

  17. A Virtual Reality System Framework for Industrial Product Design Validation

    NASA Astrophysics Data System (ADS)

    Ladeveze, Nicolas; Sghaier, Adel; Fourquet, Jean Yves

    2009-03-01

    This paper presents a virtual reality simulation architecture intended to improve the product parts design quality and the way to take into account manufacturing and maintenance requests in order to reduce the cost and time of the products design. This architecture merges previous studies into a unique framework dedicated to product pre design. Using several interfaces, this architecture allows a fast pre designed product validation on a large scope from the multi physics computation to the maintainability studies.

  18. Nanopowder production by gas-embedded electrical explosion of wire

    NASA Astrophysics Data System (ADS)

    Zou, Xiao-Bing; Mao, Zhi-Guo; Wang, Xin-Xin; Jiang, Wei-Hua

    2013-04-01

    A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF-4 μF typically charged to 8 kV-30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20 nm-80 nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy Wd is often less than sublimation energy Ws due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = Wd/Ws) increasing.

  19. Modern technologies of waste utilization from industrial tire production

    NASA Astrophysics Data System (ADS)

    Azimov, Yusuf; Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    The innovative technology of waste tire production recovery from JSC "Nizhnekamskshina", which determines the possibility of obtaining a new type of composite material in the form fiber filled rubber compound (FFRC) as the raw material, production of rubber products with high technical and operational characteristics.

  20. Gas-inducible product gene expression in bioreactors.

    PubMed

    Weber, Wilfried; Rimann, Markus; de Glutz, François-Nicolas; Weber, Eric; Memmert, Klaus; Fussenegger, Martin

    2005-05-01

    Inducible transgene expression technologies are of unmatched potential for biopharmaceutical manufacturing of unstable, growth-impairing and cytotoxic proteins as well as conditional metabolic engineering to improve desired cell phenotypes. Currently available transgene dosing modalities which rely on physical parameters or small-molecule drugs for transgene fine-tuning compromise downstream processing and/or are difficult to implement technologically. The recently designed gas-inducible acetaldehyde-inducible regulation (AIR) technology takes advantage of gaseous acetaldehyde to modulate product gene expression levels. At regulation effective concentrations gaseous acetaldehyde is physiologically inert and approved as food additive by the Federal Drug Administration (FDA). During standard bioreactor operation, gaseous acetaldehyde could simply be administered using standard/existing gas supply tubing and eventually eliminated by stripping with inducer-free air. We have determined key parameters controlling acetaldehyde transfer in three types of bioreactors and designed a mass balance-based model for optimal product gene expression fine-tuning using gaseous acetaldehyde. Operating a standard stirred-tank bioreactor set-up at 10 L scale we have validated AIR technology using CHO-K1-derived serum-free suspension cultures transgenic for gas-inducible production of human interferon-beta (IFN-beta). Gaseous acetaldehyde-inducible IFN-beta production management was fully reversible while maintaining cell viability at over 95% during the entire process. Compatible with standard bioreactor design and downstream processing procedures AIR-based technology will foster novel opportunities for pilot and large-scale manufacturing of difficult-to-produce protein pharmaceuticals. PMID:15885616