Science.gov

Sample records for industrial process improvement

  1. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  2. Ergonomics and simulation tools for service & industrial process improvement

    NASA Astrophysics Data System (ADS)

    Sánchez, A.; García, M.

    2012-04-01

    Human interaction within designed processes is a really important factor in how efficiently any process will operate. How a human will function in relation to a process is not easy to predict. All the ergonomic considerations traditionally have been evaluated outside of the 3D product design. Nowadays technologies of 3D process design and simulation tools give us this opportunity from the earliest stages of the design process. Also they can be used to improve current process in order to increase human comfort, productivity and safety. This work shows a methodology using 3D design and simulation tools to improve industrial and service process. This methodology has as an objective the detection, evaluation, control of work-related musculoskeletal disorders (WMSDs).

  3. IMPROVING INDUSTRIAL WASTEWATER TREATMENT PROCESS RELIABILITY TO ENHANCE SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Sustainable development includes the recovery of resources from industrial manufacturing processes. One valuable resource that can often be purified and reused is process wastewater. Typically, pollutants are removed from process wastewater using physical, chemical, and biologica...

  4. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  5. Industrial methodology for process verification in research (IMPROVER): toward systems biology verification

    PubMed Central

    Meyer, Pablo; Hoeng, Julia; Rice, J. Jeremy; Norel, Raquel; Sprengel, Jörg; Stolle, Katrin; Bonk, Thomas; Corthesy, Stephanie; Royyuru, Ajay; Peitsch, Manuel C.; Stolovitzky, Gustavo

    2012-01-01

    Motivation: Analyses and algorithmic predictions based on high-throughput data are essential for the success of systems biology in academic and industrial settings. Organizations, such as companies and academic consortia, conduct large multi-year scientific studies that entail the collection and analysis of thousands of individual experiments, often over many physical sites and with internal and outsourced components. To extract maximum value, the interested parties need to verify the accuracy and reproducibility of data and methods before the initiation of such large multi-year studies. However, systematic and well-established verification procedures do not exist for automated collection and analysis workflows in systems biology which could lead to inaccurate conclusions. Results: We present here, a review of the current state of systems biology verification and a detailed methodology to address its shortcomings. This methodology named ‘Industrial Methodology for Process Verification in Research’ or IMPROVER, consists on evaluating a research program by dividing a workflow into smaller building blocks that are individually verified. The verification of each building block can be done internally by members of the research program or externally by ‘crowd-sourcing’ to an interested community. www.sbvimprover.com Implementation: This methodology could become the preferred choice to verify systems biology research workflows that are becoming increasingly complex and sophisticated in industrial and academic settings. Contact: gustavo@us.ibm.com PMID:22423044

  6. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    SciTech Connect

    Conger, R.L.; Lee, V.E.; Buel, L.M.

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  7. Petrochemical industry standards activity aimed at improving the mechanical integrity of process piping

    SciTech Connect

    Reynolds, J.T.

    1996-07-01

    This paper will cover numerous changes being made to existing standards and several new standards being created, all focusing on increasing mechanical integrity of petrochemical industry process piping. Those new standards include ones for (1) Risk-Based Inspection (2) Fitness for Service Analysis, (3) Positive Material Identification, and (4) In-service Inspection and Maintenance for Process Piping. A progress report is included for the Process Industry Practices (PIP) being created to consolidate individual company piping standards into one consistent industry set. And finally, recent initiatives toward standards cooperation/coordination between the American Petroleum Institute(API), American Society of Mechanical Engineers (ASME), International Standards Organization (ISO) and National Board are highlighted.

  8. Improvement of PNPI experimental industrial plant based on CECE process for heavy water detritiation

    SciTech Connect

    Bondarenko, S. D.; Alekseev, I. A.; Fedorchenko, O. A.; Vasyanina, T. V.; Konoplev, K. A.; Arkhipov, E. A.; Uborsky, V. V.

    2008-07-15

    An updated experimental industrial plant of PNPI for the development of CECE technology is described. Experimental results for heavy water detritiation in different operating modes are shown. The effect of pressure, temperatures and gas flow rate on the detritiation factor for the CECE process is presented. (authors)

  9. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  10. Innovative industrial materials processes

    SciTech Connect

    Hane, G.; Abarcar, R.; Hauser, S.G.; Williams, T.A.

    1983-08-01

    This paper reviews innovative industrial materials processes that have the potential for significant improvements in energy use, yet require long-term research to achieve that potential. Potential revolutionary alternatives are reviewed for the following industries: iron and steel; aluminum; petroleum refining; paper and pulp; food and kindred products; stone, clay and glass; textiles; and chemicals. In total, 45 candidate processes were identified. Examples of these processes include direct steelmaking and ore-to-powder systems that potentially require 30% and 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization that offer up to 90% reductions in energy use when compared with distillation; cold processing of cement that offers a 50% reduction in energy requirements; and dry forming of paper that offers a 25% reduction in the energy needed for papermaking.

  11. EDITORIAL: Industrial Process Tomography

    NASA Astrophysics Data System (ADS)

    Anton Johansen, Geir; Wang, Mi

    2008-09-01

    There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen

  12. Utilisation and Improvement of the Initialisation of Project Communication Processes During the Management of Projects in Industrial Enterprises in Slovakia

    NASA Astrophysics Data System (ADS)

    Samáková, Jana; Šujanová, Jana; Špirková, Marta

    2016-06-01

    Nowadays, project communication is slowed due to the need for compliance with strict rules. Therefore the aim of this paper is to analyse the use of the communication environment as a basic part of the initialisation of project communication in industrial enterprises in Slovakia, and to propose measures to improve the process of initialisation of project communication in these enterprises. In this paper, theoretical and empirical research (quantitative and qualitative) approaches were chosen. On the basis of the research we can conclude, that communication as a basic part of the "Initialisation of project communication" is not adequately elaborated in international methodologies and standards of project management and in industrial enterprises. Industrial enterprises do not deal with processes of the communication environment and this results in negative consequences.

  13. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  14. EDITORIAL: Industrial Process Tomography

    NASA Astrophysics Data System (ADS)

    West, Robert M.

    2004-07-01

    Industrial process tomography remains a multidisciplinary field with considerable interest for many varied participants. Indeed this adds greatly to its appeal. It is a pleasure and a privilege to once again act as guest editor for a special feature issue of Measurement Science and Technology on industrial process tomography, the last being in December 2002. Those involved in the subject appreciate the efforts of Measurement Science and Technology in producing another issue and I thank the journal on their behalf. It can be seen that there are considerable differences in the composition of material covered in this issue compared with previous publications. The dominance of electrical impedance and electrical capacitance techniques is reduced and there is increased emphasis on general utility of tomographic methods. This is encompassed in the papers of Hoyle and Jia (visualization) and Dierick et al (Octopus). Electrical capacitance tomography has been a core modality for industrial applications. This issue includes new work in two very interesting aspects of image reconstruction: pattern matching (Takei and Saito) and simulated annealing (Ortiz-Aleman et al). It is important to take advantage of knowledge of the process such as the presence of only two components, and then to have robust reconstruction methods provided by pattern matching and by simulated annealing. Although crude reconstruction methods such as approximation by linear back projection were utilized for initial work on electrical impedance tomography, the techniques published here are much more advanced. The paper by Kim et al includes modelling of a two-component system permitting an adaption-related approach; the paper by Tossavainen et al models free surface boundaries to enable the estimation of shapes of objects within the target. There are clear improvements on the previous crude and blurred reconstructions where boundaries were merely inferred rather than estimated as in these new developments

  15. Industrial process surveillance system

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  16. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  17. Industrial process surveillance system

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  18. Designing Process Improvement of Finished Good On Time Release and Performance Indicator Tool in Milk Industry Using Business Process Reengineering Method

    NASA Astrophysics Data System (ADS)

    Dachyar, M.; Christy, E.

    2014-04-01

    To maintain position as a major milk producer, the Indonesian milk industry should do some business development with the purpose of increasing customer service level. One strategy is to create on time release conditions for finished goods which will be distributed to customers and distributors. To achieve this condition, management information systems of finished goods on time release needs to be improved. The focus of this research is to conduct business process improvement using Business Process Reengineering (BPR). The deliverable key of this study is a comprehensive business strategy which is the solution of the root problems. To achieve the goal, evaluation, reengineering, and improvement of the ERP system are conducted. To visualize the predicted implementation, a simulation model is built by Oracle BPM. The output of this simulation showed that the proposed solution could effectively reduce the process lead time and increase the number of quality releases.

  19. Bacon Production: Evaluating Potential Processing and Management Practices to Improve Product Quality of Industrial Sliced Bacon

    ERIC Educational Resources Information Center

    Scramlin, Stacy Maurine

    2009-01-01

    The objective of this research was to determine areas of improvement to bacon production. The first trial was conducted to determine differences in belly and bacon quality traits in pigs fed ractopamine (RAC) for various durations during finishing. A 2x3x2 factorial arrangement was used with barrows and gilts, fed RAC levels of 0.0, 5.0, or 7.4…

  20. Performance Improvement Processes.

    ERIC Educational Resources Information Center

    1997

    This document contains four papers from a symposium on performance improvement processes. In "Never the Twain Shall Meet?: A Glimpse into High Performance Work Practices and Downsizing" (Laurie J. Bassi, Mark E. Van Buren) evidence from a national cross-industry of more than 200 establishments is used to demonstrate that high-performance work…

  1. Solar industrial process heat

    SciTech Connect

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  2. (New process modeling, design and control strategies for energy efficiency, high product quality and improved productivity in the process industries)

    SciTech Connect

    Not Available

    1991-01-01

    Highlights are reported of work to date on: resilient design and control of chemical reactors (polymerization, packed bed), operation of complex processing systems (compensators for multivariable systems with delays and Right Half Plane zeroes, process identification and controller design for multivariable systems, nonlinear systems control, distributed parameter systems), and computer-aided design software (CONSYD, POLYRED, expert systems). 15 figs, 54 refs. (DLC)

  3. [New process modeling, design and control strategies for energy efficiency, high product quality and improved productivity in the process industries

    SciTech Connect

    Not Available

    1991-12-31

    Highlights are reported of work to date on: resilient design and control of chemical reactors (polymerization, packed bed), operation of complex processing systems (compensators for multivariable systems with delays and Right Half Plane zeroes, process identification and controller design for multivariable systems, nonlinear systems control, distributed parameter systems), and computer-aided design software (CONSYD, POLYRED, expert systems). 15 figs, 54 refs. (DLC)

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  5. Industrial Applications of Image Processing

    NASA Astrophysics Data System (ADS)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  6. Making process improvement 'stick'.

    PubMed

    Studer, Quint

    2014-06-01

    To sustain gains from a process improvement initiative, healthcare organizations should: Explain to staff why a process improvement initiative is needed. Encourage leaders within the organization to champion the process improvement, and tie their evaluations to its outcomes. Ensure that both leaders and employees have the skills to help sustain the sought-after process improvements. PMID:24968631

  7. Vision Systems Illuminate Industrial Processes

    NASA Technical Reports Server (NTRS)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  8. Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes.

    PubMed

    Hollertz, R; Chatterjee, S; Gutmann, H; Geiger, T; Nüesch, F A; Chu, B T T

    2011-03-25

    The addition of carbon nanotubes (CNTs) to polymeric matrices or master batches has the potential to provide composites with novel properties. However, composites with a uniform dispersion of CNTs have proved to be difficult to manufacture, especially at an industrial scale. This paper reports on processing methods that overcome problems related to the control and reproducibility of dispersions. By using a high pressure homogenizer and a three-roll calendaring mill in combination, CNT reinforced epoxies were fabricated by mould casting with a well dispersed nanofiller content from 0.1 to 2 wt%. The influence of the nano-carbon reinforcements on toughness and electrical properties of the CNT/epoxies was studied. A substantial increase of all mechanical properties already appeared at the lowest CNT content of 0.1 wt%, but further raising the nanofiller concentration only led to moderate further changes. The most significant enhancement was obtained for fracture toughness, reaching up to 82%. The low percolation thresholds were confirmed by electrical conductivity measurements on the same composites yielding a threshold value of only about 0.01 wt%. As corroborated by a thorough microscopic analysis of the composites, mechanical and electrical enhancement points to the formation of an interconnected network of agglomerated CNTs. PMID:21317490

  9. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  10. Agricultural and industrial process heat

    NASA Technical Reports Server (NTRS)

    Dollard, J.

    1978-01-01

    The application of solar energy to agricultural and industrial process heat requirements is discussed. This energy end use sector has been the largest and it appears that solar energy can, when fully developed and commercialized, displace from three to eight or more quads of oil and natural gas in U.S. industry. This potential for fossil fuel displacement in the agricultural and industrial process heat area sector represents a possible savings of 1.4 to 3.8 million barrels of oil daily.

  11. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 26. TITANIUM INDUSTRY

    EPA Science Inventory

    The titanium industry produces two principal products, titanium metal and titanium dioxide. For purposes of analyses, therefore, the industry is considered in two segments: titanium metal production and titanium dioxide production. Two industrial process flow diagrams and eleven ...

  12. Safety Considerations in the Chemical Process Industries

    NASA Astrophysics Data System (ADS)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  13. Enhancing probiotic stability in industrial processes

    PubMed Central

    Gueimonde, Miguel; Sánchez, Borja

    2012-01-01

    Background Manufacture of probiotic products involves industrial processes that reduce the viability of the strains. This lost of viability constitutes an economic burden for manufacturers, compromising the efficacy of the product and preventing the inclusion of probiotics in many product categories. Different strategies have been used to improve probiotic stability during industrial processes. These include technological approaches, such as the modification of production parameters or the reformulation of products, as well as microbiological approaches focused on the strain intrinsic resistance. Among the later, both selection of natural strains with the desired properties and stress-adaptation of strains have been widely used. Conclusion During recent years, the knowledge acquired on the molecular basis of stress-tolerance of probiotics has increased our understanding on their responses to industrial stresses. This knowledge on stress-response may nowadays be used for the selection of the best strains and industrial conditions in terms of probiotic stability in the final product. PMID:23990824

  14. Improved compression molding process

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1967-01-01

    Modified compression molding process produces plastic molding compounds that are strong, homogeneous, free of residual stresses, and have improved ablative characteristics. The conventional method is modified by applying a vacuum to the mold during the molding cycle, using a volatile sink, and exercising precise control of the mold closure limits.

  15. Industrial process heat market assessment

    SciTech Connect

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  16. Process Improvement: Customer Service.

    PubMed

    Cull, Donald

    2015-01-01

    Utilizing the comment section of patient satisfaction surveys, Clark Memorial Hospital in Jeffersonville, IN went through a thoughtful process to arrive at an experience that patients said they wanted. Two Lean Six Sigma tools were used--the Voice of the Customer (VoC) and the Affinity Diagram. Even when using these tools, a facility will not be able to accomplish everything the patient may want. Guidelines were set and rules were established for the Process Improvement Team in order to lessen frustration, increase focus, and ultimately be successful. The project's success is driven by the team members carrying its message back to their areas. It's about ensuring that everyone is striving to improve the patients' experience by listening to what they say is being done right and what they say can be done better. And then acting on it. PMID:26571974

  17. Super-sensing through industrial process tomography

    PubMed Central

    2016-01-01

    In this introduction article, we present a brief overview of industrial process tomography. This will start by linking between the concept of industrial process tomography and super-sensing. This will follow with a brief introduction to various process tomography systems and in particular electrical tomography methods. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185965

  18. Super-sensing through industrial process tomography.

    PubMed

    Soleimani, Manuchehr

    2016-06-28

    In this introduction article, we present a brief overview of industrial process tomography. This will start by linking between the concept of industrial process tomography and super-sensing. This will follow with a brief introduction to various process tomography systems and in particular electrical tomography methods.This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185965

  19. FTIR monitoring of industrial scale CVD processes

    NASA Astrophysics Data System (ADS)

    Hopfe, V.; Mosebach, H.; Meyer, M.; Sheel, D.; Grählert, W.; Throl, O.; Dresler, B.

    1998-06-01

    The goal is to improve chemical vapour deposition (CVD) and infiltration (CVI) process control by a multipurpose, knowledge based feedback system. For monitoring the CVD/CVI process in-situ FTIR spectroscopic data has been identified as input information. In the presentation, three commonly used, and distinctly different, types of industrial CVD/CVI processes are taken as test cases: (i) a thermal high capacity CVI batch process for manufacturing carbon fibre reinforced SiC composites for high temperature applications, (ii) a continuously driven CVD thermal process for coating float glass for energy protection, and (iii) a laser stimulated CVD process for continuously coating bundles of thin ceramic fibers. The feasibility of the concept with FTIR in-situ monitoring as a core technology has been demonstrated. FTIR monitoring sensibly reflects process conditions.

  20. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  1. Industrial processes with animal cells.

    PubMed

    Kretzmer, G

    2002-07-01

    Industrial processes involving animal cells for the production of useful products still seem to be rather uncommon. Nevertheless, during the last four decades of the last century the number of relevant processes has increased from production of virus vaccines to monoclonal antibodies and finally complex structured glycoproteins. As soon as cell lines became permanent and culture medium changed from purely biological fluids to more or less defined chemical media, large-scale cultivation could begin. The developments of the 1970s - fusion of cells to form hybridomas, and genetic engineering - triggered a second wave of products. Monoclonal antibodies and recombinant proteins for diagnosis and therapy set new challenges for the inventors. Historically, there has been no straightforward process development since the product dictates the process operation. Therefore, the scale of production covers the whole range from small multiple-unit reactors (flasks or roller bottles) up to 10,000-l single-unit batch reactors. Products with high value and small demand can be produced in multiple-unit systems whereas "bulk" products for vaccination and therapy may need large-scale bioreactors to be cost effective. All the different systems have their advantages and disadvantages and significant challenges that curb the development of effective perfusion cultures still remain. PMID:12111138

  2. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 13. PLASTICIZERS INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The Plasticizer ...

  3. Improving staff selection processes.

    PubMed

    Cerinus, Marie; Shannon, Marina

    2014-11-11

    This article, the second in a series of articles on Leading Better Care, describes the actions undertaken in recent years in NHS Lanarkshire to improve selection processes for nursing, midwifery and allied health professional (NMAHP) posts. This is an area of significant interest to these professions, management colleagues and patients given the pivotal importance of NMAHPs to patient care and experience. In recent times the importance of selecting staff not only with the right qualifications but also with the right attributes has been highlighted to ensure patients are well cared for in a safe, effective and compassionate manner. The article focuses on NMAHP selection processes, tracking local, collaborative development work undertaken to date. It presents an overview of some of the work being implemented, highlights a range of important factors, outlines how evaluation is progressing and concludes by recommending further empirical research. PMID:25370266

  4. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  5. Use of Process Improvement Tools in Radiology.

    PubMed

    Rawson, James V; Kannan, Amogha; Furman, Melissa

    2016-01-01

    Process improvement techniques are common in manufacturing and industry. Over the past few decades these principles have been slowly introduced in select health care settings. This article reviews the Plan, Do, Study, and Act cycle, Six Sigma, the System of Profound Knowledge, Lean, and the theory of constraints. Specific process improvement tools in health care and radiology are presented in the order the radiologist is likely to encounter them in an improvement project. PMID:26684577

  6. Improving Performance Of Industrial Enterprises With CGT

    NASA Astrophysics Data System (ADS)

    Dolgih, I. N.; Bannova, К A.; Kuzmina, N. A.; Zdanova, A. B.

    2016-04-01

    At the present day, a falling in the overall level of efficiency production activities, especially in the machine-building companies makes it necessary to development various actions in the State support, including through the creation consolidated taxation system. Such support will help improve efficiency of activity not only the industrial companies, but also will allow improve economic and social situation in regions where often large engineering factories is city-forming.

  7. Improved melt processing of zein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order for zein, a potentially significant co-product of the bio-ethanol industry, to be used in new markets, improved zein based products are needed. These products need to be produced by the most economical means possible. In the traditional plastics industry, extrusion techniques are the basi...

  8. IMPROVED MELT PROCESSING OF ZEIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order for zein, a potentially significant co-product of the bio-ethanol industry, to be used in new markets, improved zein based products are needed. These products need to be produced by the most economical means possible. In the traditional plastics industry, extrusion techniques are used for...

  9. An improved plating process

    NASA Technical Reports Server (NTRS)

    Askew, John C.

    1994-01-01

    An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.

  10. Process modeling and industrial energy use

    SciTech Connect

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  11. Extraterrestrial materials processing and construction. [space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.; Mckenzie, J. D.

    1980-01-01

    Three different chemical processing schemes were identified for separating lunar soils into the major oxides and elements. Feedstock production for space industry; an HF acid leach process; electrorefining processes for lunar free metal and metal derived from chemical processing of lunar soils; production and use of silanes and spectrally selective materials; glass, ceramics, and electrochemistry workshops; and an econometric model of bootstrapping space industry are discussed.

  12. Developing and Managing University-Industry Research Collaborations through a Process Methodology/Industrial Sector Approach

    ERIC Educational Resources Information Center

    Philbin, Simon P.

    2010-01-01

    A management framework has been successfully utilized at Imperial College London in the United Kingdom to improve the process for developing and managing university-industry research collaborations. The framework has been part of a systematic approach to increase the level of research contracts from industrial sources, to strengthen the…

  13. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 6. THE INDUSTRIAL ORGANIC CHEMICALS INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the U.S. Entries for each industry are in consistent format and form separate chapters of the study. Industrial organic chemica...

  14. Why Process Improvement Training Fails

    ERIC Educational Resources Information Center

    Lu, Dawei; Betts, Alan

    2011-01-01

    Purpose: The purpose of this paper is to explore the underlying reasons why providing process improvement training, by itself, may not be sufficient to achieve the desired outcome of improved processes; and to attempt a conceptual framework of management training for more effective improvement. Design/methodology/approach: Two similar units within…

  15. Experts discuss how benchmarking improves the healthcare industry. Roundtable discussion.

    PubMed

    Capozzalo, G L; Hlywak, J W; Kenny, B; Krivenko, C A

    1994-09-01

    Healthcare Financial Management engaged four benchmarking experts in a discussion about benchmarking and its role in the healthcare industry. The experts agree that benchmarking by itself does not create change unless it is part of a larger continuous quality improvement program; that benchmarking works best when senior management supports it enthusiastically and when the "appropriate" people are involved; and that benchmarking, when implemented correctly, is one of the best tools available to help healthcare organizations improve their internal processes. PMID:10146069

  16. Improving scrap tire processing

    SciTech Connect

    Astafan, C.G.

    1997-01-01

    The market for tire-derived materials is growing rapidly, with the largest market being tire-derived fuels. There is therefore a growing demand for higher quality products. This paper describes the processing and removal of steel from scrap tires.

  17. Improved computed torque control for industrial robots

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Minis, Ioannis; Cleary, Kevin

    1992-01-01

    The authors examine the computed torque control problem for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators due to the dynamics introduced by the joint drive systems. The proposed approach overcomes this problem by combining a novel computed torque algorithm with simple torque controllers at each joint of the robot. The control scheme is applied to a seven degree-of-freedom industrial manipulator, and the system performance in standard tasks is evaluated using both dynamic simulation and actual experiments. The results show that the proposed controller leads to improved tracking performance over a conventional PD (proportional plus derivative) controller.

  18. Process Correlation Analysis Model for Process Improvement Identification

    PubMed Central

    Park, Sooyong

    2014-01-01

    Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data. PMID:24977170

  19. Integration of heat pumps into industrial processes

    SciTech Connect

    Chappell, R.N. ); Priebe, S.J. )

    1989-01-01

    The Department of Energy and others have funded studies to assess the potential for energy savings using industrial heat pumps. The studies included classifications of heat pumps, economic evaluations, and placement of heat pumps in industrial processes. Pinch technology was used in the placement studies to determine the placement, size, and type of heat pumps for a given applications. There appears to be considerable scope for heat pumping in several industries, but, where maximum process energy savings are desired, it is important to consider heat pumping in the context of overall process integration. 19 refs., 15 figs.

  20. Foundations for Excellence in the Chemical Process Industries. Voluntary Industry Standards for Chemical Process Industries Technical Workers.

    ERIC Educational Resources Information Center

    Hofstader, Robert; Chapman, Kenneth

    This document discusses the Voluntary Industry Standards for Chemical Process Industries Technical Workers Project and issues of relevance to the education and employment of chemical laboratory technicians (CLTs) and process technicians (PTs). Section 1 consists of the following background information: overview of the chemical process industries,…

  1. Improving Compressed Air System Performance: A Sourcebook for Industry

    SciTech Connect

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  2. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  3. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  4. Expert systems in the process industries

    NASA Technical Reports Server (NTRS)

    Stanley, G. M.

    1992-01-01

    This paper gives an overview of industrial applications of real-time knowledge based expert systems (KBES's) in the process industries. After a brief overview of the features of a KBES useful in process applications, the general roles of KBES's are covered. A particular focus is diagnostic applications, one of the major applications areas. Many applications are seen as an expansion of supervisory control. The lessons learned from numerous online applications are summarized.

  5. NCCDS configuration management process improvement

    NASA Technical Reports Server (NTRS)

    Shay, Kathy

    1993-01-01

    By concentrating on defining and improving specific Configuration Management (CM) functions, processes, procedures, personnel selection/development, and tools, internal and external customers received improved CM services. Job performance within the section increased in both satisfaction and output. Participation in achieving major improvements has led to the delivery of consistent quality CM products as well as significant decreases in every measured CM metrics category.

  6. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  7. Semiconductor Industry Plasma Processing Needs

    NASA Astrophysics Data System (ADS)

    Wise, Richard; Panda, Siddhartha; Yan, Wendy

    2003-10-01

    The plasma requirements of dry etch equipment used for advanced semiconductor process development and low cost semiconductor manufacturing are reviewed. Introduction of ArF (193nm) photolithography has resulted in increased demands on resist selectivity, increased sensitivity to plasma induced or exacerbated line edge roughness, and the introduction of novel hard and soft mask schemes. State of the art plasma processing chambers must be able to deliver low DC bias due to line edge roughness requirements with adequate ion/radical density to prevent loss of critical dimension control in deep features. These same systems may be required to operate in a high DC bias, low plasma density regime to achieve adequate etch rate on different films, and in many cases the system must be able to switch between low and high DC bias modes. The acceptable plasma density is limited by that necessary to provide adequate production of passivation agents necessary to achieve selectivity to ArF photoresists. Further limits on plasma density may be needed due to device and etch profile sensitivity to differential charging. The allowable DC bias may be limited to avoid damage to shallow implanted regions and thin gate. Decreases in gate length have increased sensitivity to non-anisotropic profiles, which in turn requires a minimum of DC bias to provide anisotropy. Particle sensitivity has resulted in a migration toward integrated plasma processing, putting additional demands on the stability and flexibility of the plasma equipment. State of the art plasma tooling must be capable of operating over a wide range of plasma densities, delivering both high and low DC bias, and provide RF stability over a wide range of wafer/chamber impedances. The increased uniformity requirements of 300 mm tools requires the anode and cathode potential be uniformly distributed over the entire surface, and that the plasma generation be as uniform as possible. Extended wet clean cycles have driven the need for

  8. Industrial waste treatment process engineering. Volume 2: Biological processes

    SciTech Connect

    Celenza, G.J.

    1999-11-01

    Industrial Waste Treatment Process Engineering is a step-by-step implementation manual in three volumes, detailing the selection and design of industrial liquid and solid waste treatment systems. It consolidates all the process engineering principles required to evaluate a wide range of industrial facilities, starting with pollution prevention and source control and ending with end-of-pipe treatment technologies. This three-volume set is a practical guide for environmental engineers with process implementation responsibilities; a one-stop resource for process engineering requirements--from plant planning to implementing specific treatment technologies for unit operations; a comprehensive reference for industrial waste treatment technologies; and includes calculations and worked problems based on industry cases. The contents of Volume 2 include: aeration; aerobic biological oxidation; activated sludge system; biological oxidation: lagoons; biological oxidation: fixed film processes; aerobic digesters; anaerobic waste treatment, anaerobic sludge treatment; and sedimentation.

  9. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE. CHAPTER 10A. THE PLASTICS AND RESINS PROCESSING INDUSTRY

    EPA Science Inventory

    The report contains a detailed analysis of the plastics and resins processing industry, which includes operations that convert polymers and resins into consumer products. Analytical elements include industry definition, raw materials, products, manufacturers, environmental impact...

  10. APPLICATIONS OF PULSE COMBUSTION IN INDUSTRIAL AND INCINERATION PROCESSES

    EPA Science Inventory

    The paper describes a recently developed approach for using a tunable pulse combustor (PC) to improve the performance of energy intensive industrial processes (e. g., drying, calcining, and incineration) by retrofitting the process with a tunable PC that is operated at a frequenc...

  11. Industrial application of semantic process mining

    NASA Astrophysics Data System (ADS)

    Espen Ingvaldsen, Jon; Atle Gulla, Jon

    2012-05-01

    Process mining relates to the extraction of non-trivial and useful information from information system event logs. It is a new research discipline that has evolved significantly since the early work on idealistic process logs. Over the last years, process mining prototypes have incorporated elements from semantics and data mining and targeted visualisation techniques that are more user-friendly to business experts and process owners. In this article, we present a framework for evaluating different aspects of enterprise process flows and address practical challenges of state-of-the-art industrial process mining. We also explore the inherent strengths of the technology for more efficient process optimisation.

  12. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  13. Interface design in the process industries

    NASA Technical Reports Server (NTRS)

    Beaverstock, M. C.; Stassen, H. G.; Williamson, R. A.

    1977-01-01

    Every operator runs his plant in accord with his own mental model of the process. In this sense, one characteristic of an ideal man-machine interface is that it be in harmony with that model. With this theme in mind, the paper first reviews the functions of the process operator and compares them with human operators involved in control situations previously studied outside the industrial environment (pilots, air traffic controllers, helmsmen, etc.). A brief history of the operator interface in the process industry and the traditional methodology employed in its design is then presented. Finally, a much more fundamental approach utilizing a model definition of the human operator's behavior is presented.

  14. The industrial processing of unidirectional fiber prepregs

    NASA Technical Reports Server (NTRS)

    Laird, B.

    1981-01-01

    Progress made in the industrial processing of preimpregnated composites with unidirectional fibers is discussed, with particular emphasis on applications within the aerospace industry. Selection of industrial materials is considered. Attention is given to the conditions justifying the use of composites and the properties required of industrial prepregs. The hardening cycle is examined for the cases of nonmodified and polymer modified resins, with attention given to the stabilization of flow, the necessary changes of state, viscosity control, and the elimination of porosity. The tooling necessary for the fabrication of a laminated plate is illustrated, and the influence of fabrication and prepreg properties on the mechanical characteristics of a laminate are indicated. Finally, the types of prepregs available and the processing procedures necessary for them are summarized.

  15. Course Development: Industrial or Social Process.

    ERIC Educational Resources Information Center

    Kaufman, David

    The development of course materials at the Open Learning Institute, British Columbia, Canada, is examined from two perspectives: as an industrial process and as a social process. The public institute provides distance education through paced home-study courses. The course team model used at the Institute is a system approach. Course development…

  16. Solar energy for industrial process heat

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  17. Industrial Holography Combined With Image Processing

    NASA Astrophysics Data System (ADS)

    Schorner, J.; Rottenkolber, H.; Roid, W.; Hinsch, K.

    1988-01-01

    Holographic test methods have gained to become a valuable tool for the engineer in research and development. But also in the field of non-destructive quality control holographic test equipment is now accepted for tests within the production line. The producer of aircraft tyres e. g. are using holographic tests to prove the guarantee of their tyres. Together with image processing the whole test cycle is automatisized. The defects within the tyre are found automatically and are listed on an outprint. The power engine industry is using holographic vibration tests for the optimization of their constructions. In the plastics industry tanks, wheels, seats and fans are tested holographically to find the optimum of shape. The automotive industry makes holography a tool for noise reduction. Instant holography and image processing techniques for quantitative analysis have led to an economic application of holographic test methods. New developments of holographic units in combination with image processing are presented.

  18. Review of industry interest in space processing

    NASA Technical Reports Server (NTRS)

    Mcdowell, J. R.

    1978-01-01

    The interest on the part of selected U.S. corporation in using the research facilities and capabilities for materials processing in space utilizing the Space Shuttle was assessed. The effectiveness of the interview techniques as a method for gaining insight into the complex array of issues related to materials processing in space was evaluated. The survey, conducted was intended as a random sample of individuals, representing industry, who were currently involved in materials processing in space.

  19. Waste Management Process Improvement Project

    SciTech Connect

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-02-25

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

  20. The "Data Wise" Improvement Process

    ERIC Educational Resources Information Center

    Boudett, Kathryn Parker; City, Elizabeth A.; Murnane, Richard J.

    2006-01-01

    Organizing the work of instructional improvement around a process that has specific, manageable steps helps educators build confidence and skill in using data. A process that includes eight distinct steps can take school leaders to use their assessment data effectively, and organized these steps into three phases: Prepare, Inquire, and Act. The…

  1. Application Process Improvement Yields Results.

    ERIC Educational Resources Information Center

    Holesovsky, Jan Paul

    1995-01-01

    After a continuing effort to improve its grant application process, the department of medical microbiology and immunology at the University of Wisconsin-Madison is submitting many more applications and realizing increased funding. The methods and strategy used to make the process more efficient and effective are outlined. (Author/MSE)

  2. ENVIRONMENTAL POLLUTION CONTROL: TEXTILE PROCESSING INDUSTRY

    EPA Science Inventory

    This manual contains information relating to the design of air, water and solids pollution abatement systems for the textile industry. It is intended for use by process design engineers, consultants, and engineering companies active in the design or upgrading of textile waste tre...

  3. Solar/gas industrial process heat assessment

    NASA Astrophysics Data System (ADS)

    Kearney, D. W.

    1982-12-01

    An assessment was conducted of solar/gas industrial process heat systems, including consideration of market applications, the status and cost of applicable solar technologies, potential technical barriers to the efficient interfacing of solar with conventional gas fired equipment, and a detailed evaluation comparing solar/gas systems to competing options.

  4. Digital Image Processing in Private Industry.

    ERIC Educational Resources Information Center

    Moore, Connie

    1986-01-01

    Examines various types of private industry optical disk installations in terms of business requirements for digital image systems in five areas: records management; transaction processing; engineering/manufacturing; information distribution; and office automation. Approaches for implementing image systems are addressed as well as key success…

  5. Gravity-dependent transport in industrial processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1994-01-01

    Gravity-dependent transport phenomena in various industrial processes are investigated in order to address a broader range of microgravity phenomena and to develop new applications of microgravity. A number of important topics are identified and analyzed in detail. The present article describes results on coating flow, zeolite growth, and rotating electrochemical system.

  6. Microprocessor systems for industrial process control

    NASA Technical Reports Server (NTRS)

    Lesh, F. H.

    1980-01-01

    Six computers operate synchronously and are interconnected by three independent data buses. Processors control one subsystem. Some can control buses to transfer data at 1 megabit per second. Every 2.5 msec each processor examines list of things to do during next interval. This spacecraft control system could be adapted for controlling complex industrial processes.

  7. Process mapping: A user-friendly tool for process improvement

    SciTech Connect

    Carson, M.L.; Levine, L.O.

    1993-09-01

    Process maps aid administrative process improvement efforts by documenting processes in a rigorous yet understandable way. Icons, graphics, and text support process documentation, analysis, and improvement.

  8. Improving Fan System Performance: A Sourcebook for Industry

    SciTech Connect

    2003-04-01

    This is one of a series of sourcebooks on motor-driven equipment produced by the Industrial Technologies Program. It provides a reference for industrial fan systems users, outlining opportunities to improve fan system performance.

  9. CAD/CAM approach to improving industry productivity gathers momentum

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1982-01-01

    Recent results and planning for the NASA/industry Integrated Programs for Aerospace-Vehicle Design (IPAD) program for improving productivity with CAD/CAM methods are outlined. The industrial group work is being mainly done by Boeing, and progress has been made in defining the designer work environment, developing requirements and a preliminary design for a future CAD/CAM system, and developing CAD/CAM technology. The work environment was defined by conducting a detailed study of a reference design process, and key software elements for a CAD/CAM system have been defined, specifically for interactive design or experiment control processes. Further work is proceeding on executive, data management, geometry and graphics, and general utility software, and dynamic aspects of the programs being developed are outlined

  10. Laser Processing Architecture for Improved Material Processing

    NASA Astrophysics Data System (ADS)

    Livingston, Frank E.; Helvajian, Henry

    This chapter presents a novel architecture and software-hardware design system for materials processing techniques that are widely applicable to laser direct-write patterning tools. This new laser material processing approach has been crafted by association with the genome and genotype concepts, where predetermined and prescribed laser pulse scripts are synchronously linked with the tool path geometry, and each concatenated pulse sequence is intended to induce a specific material transformation event and thereby express a particular material attribute. While the experimental approach depends on the delivery of discrete amplitude modulated laser pulses to each focused volume element with high fidelity, the architecture is highly versatile and capable of more advanced functionality. The capabilities of this novel architecture fall short of the coherent spatial control techniques that are now emerging, but can be readily applied to fundamental investigations of complex laser-material interaction phenomena, and easily integrated into commercial and industrial laser material processing applications. Section 9.1 provides a brief overview of laser-based machining and materials processing, with particular emphasis on the advantages of controlling energy deposition in light-matter interactions to subtly affect a material's thermodynamic properties. This section also includes a brief discussion of conventional approaches to photon modulation and process control. Section 9.2 comprehensively describes the development and capabilities of our novel laser genotype pulse modulation technique that facilitates the controlled and precise delivery of photons to a host material during direct-write patterning. This section also reviews the experimental design setup and synchronized photon control scheme, along with performance tests and diagnostic results. Section 9.3 discusses selected applications of the new laser genotype processing technique, including optical property variations

  11. Optimizing the availability of a buffered industrial process

    DOEpatents

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  12. Chemicals Industry New Process Chemistry Roadmap

    SciTech Connect

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  13. Alternative starting materials for industrial processes.

    PubMed Central

    Mitchell, J W

    1992-01-01

    In the manufacture of chemical feedstocks and subsequent processing into derivatives and materials, the U.S. chemical industry sets the current standard of excellence for technological competitiveness. This world-class leadership is attributed to the innovation and advancement of chemical engineering process technology. Whether this status is sustained over the next decade depends strongly on meeting increasingly demanding challenges stimulated by growing concerns about the safe production and use of chemicals without harmful impacts on the environment. To comply with stringent environmental regulations while remaining economically competitive, industry must exploit alternative benign starting materials and develop environmentally neutral industrial processes. Opportunities are described for development of environmentally compatible alternatives and substitutes for some of the most abundantly produced, potentially hazardous industrial chemicals now labeled as "high-priority toxic chemicals." For several other uniquely important commodity chemicals where no economically competitive, environmentally satisfactory, nontoxic alternative starting material exists, we advocate the development of new dynamic processes for the on-demand generation of toxic chemicals. In this general concept, which obviates mass storage and transportation of chemicals, toxic raw materials are produced in real time, where possible, from less-hazardous starting materials and then chemically transformed immediately into the final product. As a selected example for semiconductor technology, recent progress is reviewed for the on-demand production of arsine in turnkey electrochemical generators. Innovation of on-demand chemical generators and alternative processes provide rich areas for environmentally responsive chemical engineering processing research and development for next-generation technology. Images PMID:11607260

  14. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  15. Industry activities to improve valve performance

    SciTech Connect

    Callaway, C.

    1996-12-01

    Motor-operated valve issues refuse to go away. For over a decade the industry and the NRC have been focusing extraordinary resources on assuring these special components operate when called upon. Now that industry has fixed the design deficiencies, it is focusing on assuring that they perform their safety function within the current licensing basis for the remainder of plant life. NEI supported the efforts by ASME to develop OMN-1 and was encouraged that the industry and the NRC worked together to develop risk and performance based approaches to maintain MOV performance.

  16. Assessment of critical-fluid extractions in the process industries

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.

  17. Improving Learners' Research Process Skills

    NASA Astrophysics Data System (ADS)

    Quan, T. K.; Hunter, L.; Kluger-Bell, B.; Seagroves, S.

    2010-12-01

    The Professional Development Program (PDP) supports participants as they design inquiry activities that help learners improve their research process skills. These skills include the cognitive or reasoning skills that scientists and engineers use while doing research; for example, making a testable hypothesis, coordinating results from multiple experiments, or identifying and evaluating tradeoffs. Past work in the PDP indicated that additional support was needed to help participants design instructional activities that would teach these important skills. A new workshop was therefore developed for the 2009 PDP cycle, entitled "Improving Learners' Process Skills." In this workshop, participants worked in small groups to define specific science and engineering skills found in four past PDP activity designs. Participants distinguished between "simple tasks" and "authentic inquiry" activities that learners could perform as demonstration of the skill. Through this new workshop, participants were able to explicitly discuss ways in which individual process skills are unique or inter-related. In addition, by identifying a "simple task," participants were able to pinpoint areas in which their own designs could be improved to better focus on authentic inquiry tasks. In 2010, the workshop was slightly modified to help participants reconnect the research process skills with the activity content. In addition, the idea of using generic and context-specific scaffolds was also introduced. To make the participants feel like they were contributing to the PDP community, four activity designs actively being worked on in the 2010 cycle were used. Based on participant feedback, this "Improving Learners' Process Skills" workshop should be strongly considered for future returning participants.

  18. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 8. PESTICIDES INDUSTRY

    EPA Science Inventory

    The catalog was developed to aid in defining the environmental impacts of U.S. industrial activity. Entries for each industry are in consistent format and form separate chapters of the catalog. The pesticides industry produces organic chemicals used: to control agricultural pests...

  19. Improving Cognitive Skills of the Industrial Robot

    NASA Astrophysics Data System (ADS)

    Bezák, Pavol

    2015-08-01

    At present, there are plenty of industrial robots that are programmed to do the same repetitive task all the time. Industrial robots doing such kind of job are not able to understand whether the action is correct, effective or good. Object detection, manipulation and grasping is challenging due to the hand and object modeling uncertainties, unknown contact type and object stiffness properties. In this paper, the proposal of an intelligent humanoid hand object detection and grasping model is presented assuming that the object properties are known. The control is simulated in the Matlab Simulink/ SimMechanics, Neural Network Toolbox and Computer Vision System Toolbox.

  20. Iron and steel industry process model

    SciTech Connect

    Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

    1980-01-01

    The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

  1. 75 FR 43031 - National Sheep Industry Improvement Center

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Service 7 CFR Part 63 National Sheep Industry Improvement Center AGENCY: Agricultural Marketing Service... regulations establishing a National Sheep Industry Improvement Center (NSIIC) program, consistent with the... information is necessary for the proper performance of the functions of the agency, including whether...

  2. Unconscious processes improve lie detection.

    PubMed

    Reinhard, Marc-André; Greifeneder, Rainer; Scharmach, Martin

    2013-11-01

    The capacity to identify cheaters is essential for maintaining balanced social relationships, yet humans have been shown to be generally poor deception detectors. In fact, a plethora of empirical findings holds that individuals are only slightly better than chance when discerning lies from truths. Here, we report 5 experiments showing that judges' ability to detect deception greatly increases after periods of unconscious processing. Specifically, judges who were kept from consciously deliberating outperformed judges who were encouraged to do so or who made a decision immediately; moreover, unconscious thinkers' detection accuracy was significantly above chance level. The reported experiments further show that this improvement comes about because unconscious thinking processes allow for integrating the particularly rich information basis necessary for accurate lie detection. These findings suggest that the human mind is not unfit to distinguish between truth and deception but that this ability resides in previously overlooked processes. PMID:24219784

  3. Automated full matrix capture for industrial processes

    NASA Astrophysics Data System (ADS)

    Brown, Roy H.; Pierce, S. Gareth; Collison, Ian; Dutton, Ben; Dziewierz, Jerzy; Jackson, Joseph; Lardner, Timothy; MacLeod, Charles; Morozov, Maxim

    2015-03-01

    Full matrix capture (FMC) ultrasound can be used to generate a permanent re-focusable record of data describing the geometry of a part; a valuable asset for an inspection process. FMC is a desirable acquisition mode for automated scanning of complex geometries, as it allows compensation for surface shape in post processing and application of the total focusing method. However, automating the delivery of such FMC inspection remains a significant challenge for real industrial processes due to the high data overhead associated with the ultrasonic acquisition. The benefits of NDE delivery using six-axis industrial robots are well versed when considering complex inspection geometries, but such an approach brings additional challenges to scanning speed and positional accuracy when combined with FMC inspection. This study outlines steps taken to optimize the scanning speed and data management of a process to scan the diffusion bonded membrane of a titanium test plate. A system combining a KUKA robotic arm and a reconfigurable FMC phased array controller is presented. The speed and data implications of different scanning methods are compared, and the impacts on data visualization quality are discussed with reference to this study. For the 0.5 m2 sample considered, typical acquisitions of 18 TB/m2 were measured for a triple back wall FMC acquisition, illustrating the challenge of combining high data throughput with acceptable scanning speeds.

  4. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  5. Value of solar thermal industrial process heat

    SciTech Connect

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  6. Industrial Enterprise Handbook. The Wisconsin Guide to Local Curriculum Improvement in Industrial Education, K-12.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison. Div. of Instructional Services.

    This handbook is designed to aid industrial educators in developing a private enterprise component in their programs in order to help students learn how business and industry work. It is a guide to implementing The Wisconsin Guide to Local Curriculum Improvement in Industrial Education, K-12. The book contains the following three sections: (1)…

  7. Weaknesses in Applying a Process Approach in Industry Enterprises

    NASA Astrophysics Data System (ADS)

    Kučerová, Marta; Mĺkva, Miroslava; Fidlerová, Helena

    2012-12-01

    The paper deals with a process approach as one of the main principles of the quality management. Quality management systems based on process approach currently represents one of a proofed ways how to manage an organization. The volume of sales, costs and profit levels are influenced by quality of processes and efficient process flow. As results of the research project showed, there are some weaknesses in applying of the process approach in the industrial routine and it has been often only a formal change of the functional management to process management in many organizations in Slovakia. For efficient process management it is essential that companies take attention to the way how to organize their processes and seek for their continuous improvement.

  8. Gravity-Dependent Transport in Industrial Processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1996-01-01

    Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.

  9. Improved process for COS conversion

    SciTech Connect

    Dunlap, M.K.; Galstaun, L.S.

    1982-12-01

    It has been demonstrated that the hydrolysis of COS in crude gas streams from coal or heavy oil partial-oxidation gasifiers is more economically accomplished after a partial extraction of H/sub 2/S. While the system appears attractive with about 75 percent of the H/sub 2/S extracted before COS hydrolysis, detailed studies may show that the optimum pre-extraction may be higher or lower than this case. Other optimization studies may produce further improvements in the proposed process. 3 figures, 6 tables.

  10. Improving healthcare using Lean processes.

    PubMed

    Baker, G Ross

    2014-01-01

    For more than a decade, healthcare organizations across Canada have been using Lean management tools to improve care processes, reduce preventable adverse events, increase patient satisfaction and create better work environments. The largest system-wide effort in Canada, and perhaps anywhere, is currently under way in Saskatchewan. The jury is still out on whether Lean efforts in that province, or elsewhere in Canada, are robust enough to transform current delivery systems and sustain new levels of performance. This issue of Healthcare Quarterly features several articles that provide a perspective on Lean methods in healthcare. PMID:25191802

  11. COEX - process: cross-breeding between innovation and industrial experience

    SciTech Connect

    Drain, F.; Emin, J.L.; Vinoche, R.; Baron, P.

    2008-07-01

    Recycling used nuclear fuel at an industrial scale has been a reality for over 40 years. Since it was founded in 1976, AREVA has designed and built two used fuel treatment plants in La Hague, France. These plants, named UP2-800 and UP3, use the PUREX process. UP3 began operations at the end of the 80's and UP2-800 in the mid 90's. The plutonium extracted in UP2-800 and UP3 is then processed in MELOX plant which started operation in 1995, to be recycled under the form of MOX fuel in LWR. This technology has been selected by JNFL for its reprocessing and recycling plants. Rokkasho-Mura reprocessing plant incorporates also some Japanese technologies and is being commissioned soon. Over 23,000 tons of LWR used fuels have been treated in La Hague plants and over 1200 tons of MOX fuels have been produced by MELOX plant. Innovations have been constantly incorporated to these plants to improve process efficiency and to reduce the activity and volume of waste. During these years, AREVA has acquired an invaluable experience in industrializing processes and technologies developed in the laboratory. In the frame of its continuous improvement policy, AREVA has developed jointly with CEA (French Atomic Energy Agency) a new process, COEX{sup TM} process, offering significant improvement in term of proliferation resistance, process performance and investment and operating cost. The present paper recalls the process principles applied in French and Japanese recycling plants. Then it describes the main steps of COEX{sup TM} process, the status of its development and the improvements compared to PUREX process. The possible evolution of COEX{sup TM} process to cope with needs of future nuclear fuel cycles using fast reactors and possible recycling of minor actinides is presented. (authors)

  12. Coastal Altimetry, From Data Processing To Industrial Applications: Some Illustrations

    NASA Astrophysics Data System (ADS)

    Cancet, M.; Jeansou, E.; Lamouroux, J.; Crespon, F.; Birol, F.; Lyard, F.; Morrow, R.; Bronner, E.; Benveniste, J.

    2013-12-01

    During the last ten years, many efforts were made to develop corrections and processing strategies dedicated to the coastal altimetry observations. Ever since, the coastal altimetry data has proved to be of high value in many scientific and industrial applications. This paper gives an overview of some of NOVELTIS recent projects related to coastal altimetry, from the products improvement and assessment to the promotion of coastal altimetry through the development of new added-value products.

  13. Benefits of SPC for the hydrocarbon process industries

    SciTech Connect

    Herrmann, W.B.; Armitage, S.J.; Strong, R.C.

    1988-01-01

    Besides the benefits of improved efficiency and customer satisfaction, quality improvement also yields higher profits for a refiner. These benefits can best be realized by first identifying areas with high prices of nonconformance. Then efforts are concentrated in these areas to identify and eliminate the root causes of these nonconformances. One of the best tools for identifying and eliminating root causes is Statistical Process Control (SPC). This paper will present recommendations on how to implement a quality improvement system to realize the potential benefits, discuss SPC's place in this system, provide an overview of SPC techniques appropriate to the hydrocarbon process industries; offer two case studies of actual improvements, and summarize the benefits of SPC.

  14. Public relations and the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Coates, T. Donna

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the "enemy". Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. Clearly it is a challenge we cannot afford to ignore.

  15. Neural networks in the process industries

    SciTech Connect

    Ben, L.R.; Heavner, L.

    1996-12-01

    Neural networks, or more precisely, artificial neural networks (ANNs), are rapidly gaining in popularity. They first began to appear on the process-control scene in the early 1990s, but have been a research focus for more than 30 years. Neural networks are really empirical models that approximate the way man thinks neurons in the human brain work. Neural-net technology is not trying to produce computerized clones, but to model nature in an effort to mimic some of the brain`s capabilities. Modeling, for the purposes of this article, means developing a mathematical description of physical phenomena. The physics and chemistry of industrial processes are usually quite complex and sometimes poorly understood. Our process understanding, and our imperfect ability to describe complexity in mathematical terms, limit fidelity of first-principle models. Computational requirements for executing these complex models are a further limitation. It is often not possible to execute first-principle model algorithms at the high rate required for online control. Nevertheless, rigorous first principle models are commonplace design tools. Process control is another matter. Important model inputs are often not available as process measurements, making real-time application difficult. In fact, engineers often use models to infer unavailable measurements. 5 figs.

  16. Overview of Industrial Education. The Wisconsin Guide to Local Curriculum Improvement in Industrial Education, K-12.

    ERIC Educational Resources Information Center

    Ritz, John M.

    Included in this field tested instructional package are definitions of the terms industry, technology, industrial education, and industrial arts education. Defining behavioral objectives, the course description includes a basic information section, suggested classroom activities, and sample student evaluation forms. The total process of providing…

  17. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  18. Harness cavitation to improve processing

    SciTech Connect

    Pandit, A.G.; Moholkar, V.S.

    1996-07-01

    Mention cavitation to most chemical engineers, and they undoubtedly think of it as an operational problem. Indeed, the rapid creation and then collapse of bubbles, which is after all what cavitation involves, can destroy pumps and erode other equipment. Cavitation, however, also can have a positive side--presuming it is designed for and not unplanned. In this article, the authors look at how cavitation can be harnessed to improve processes, and the mechanisms for inducing cavitation--ultrasonics and hydrodynamics--and their likely roles. Sonication, that is, the use of ultrasound, is the conventional approach for creating cavitation, and so they turn to it first. Over the past few years, a number of groups have attempted to solve the problem of scale-up and design of ultrasonic reactors. The authors review the systems that already exist and also explore a simpler and efficient alternative to the ultrasonic reactor, the hydrodynamic cavitation reactor.

  19. Waste heat utilization in industrial processes

    NASA Technical Reports Server (NTRS)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  20. Impact of land use on solar industrial process heat for the food processing industry

    SciTech Connect

    Casamajor, A.B.

    1980-10-02

    A solar land use study of 1330 food processing plants located in the far-western United States (Arizona, California, Hawaii, Oregon, and Washington) has been conducted. Based upon estimates of each plant's annual energy consumption of process heat, derived from: annual sales figures, employment, and total energy consumption for that plant's Standard Industrial Classification (SIC) group; and the available surface area at each plant, determined by a site inspection, an assessment of each plant's potential for solar energy was made. Those industries having the highest potential for applying solar energy to their process heat loads include: fruit and vegetable packing, sugar refining, meat packing, wine and brandy, bread, and dairy products. It has been further determined that about 25% of the energy used for food processing in the study area can be supplied by solar if all of the available surface area at and adjacent to these plants is devoted to solar collectors.

  1. 27 CFR 19.36 - Spirits produced in industrial processes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... industrial processes. 19.36 Section 19.36 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... industrial processes. (a) General. Except as otherwise provided in paragraph (b) of this section, any person who produces distilled spirits in an industrial process, including spirits produced as a byproduct...

  2. 27 CFR 19.36 - Spirits produced in industrial processes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... industrial processes. 19.36 Section 19.36 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... industrial processes. (a) General. Except as otherwise provided in paragraph (b) of this section, any person who produces distilled spirits in an industrial process, including spirits produced as a byproduct...

  3. 27 CFR 19.36 - Spirits produced in industrial processes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... industrial processes. 19.36 Section 19.36 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... industrial processes. (a) General. Except as otherwise provided in paragraph (b) of this section, any person who produces distilled spirits in an industrial process, including spirits produced as a byproduct...

  4. 27 CFR 19.36 - Spirits produced in industrial processes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... industrial processes. 19.36 Section 19.36 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... industrial processes. (a) General. Except as otherwise provided in paragraph (b) of this section, any person who produces distilled spirits in an industrial process, including spirits produced as a byproduct...

  5. A Course in Project Evaluation in the Chemical Process Industries.

    ERIC Educational Resources Information Center

    Valle-Riestra, J. Frank

    1983-01-01

    Describes a course designed to expose neophytes to methodology used in chemical process industries to evaluate commercial feasibility of proposed projects. Previously acquired disciplines are integrated to facilitate process synthesis, gain appreciation of nature of industrial projects and industrial viewpoint in managing them, and to become adept…

  6. Industrialization of the ion plating process

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    A new process referred to as ion plating by induction heating (IPIH) is described, which combines the advantages of both ion plating and induction heating. The IPIH apparatus consists of the specimen (cathode) to be coated and the evaporation heating source, which is a ceramic crucible containing the metal to be heated. The specimen is an internal part of the high-voltage ceramic-metal vacuum feedthrough and is connected to the negative terminal of the high-voltage power supply, the positive terminal of the power supply being grounded. The plating conditions are the same as those most commonly used in industrial ion plating. A number of metals - such as nickel, iron, platinum - which were practically impossible to deposit by resistance heating evaporation can now be effectively evaporated and deposited to any desired thickness. Excellent adherence is observed for many metals deposited on various metal surfaces in thicknesses from 0.15 to 50 microns, regardless of the materials selected for coating and substrate.

  7. [Ways of improving health care of industrial workers of Kazakhstan].

    PubMed

    Petrov, P P; Asylbekova, G O; Zhakashov, N Zh; Kul'zhanov, M K

    1992-01-01

    The health of industrial workers should be considered from the point of view of broad social positions and primarily from the working and living conditions and the state of health services. Environmental factors should also be taken into consideration. Periodic medical check-ups of industrial workers indicate that their health is improving. Despite the success achieved, this problem in Kazakhstan is not being adequately solved, there are only 61 health units. Hospital beds in these institutions do not have necessary specialization corresponding to the profile of industrial enterprises. Numerous industrial enterprises, oil-and-gas extracting works pollute the environment, which has been confirmed by respective examples. The authors provide evidence for the necessity of economic education for the population. Preliminary results of experimental introduction of a new economic mechanism and medical insurance in Kazakhstan are being considered as factors contributing to the improvement of public health financing resources. PMID:1470989

  8. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  9. Industrial waste reduction: The process problem

    SciTech Connect

    Valentino, F.W.; Walmet, G.E.

    1986-09-01

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  10. Energy Efficiency Improvement in the Petroleum RefiningIndustry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-05-01

    Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

  11. Continuous Improvement in the Industrial and Management Systems Engineering Programme at Kuwait University

    ERIC Educational Resources Information Center

    Aldowaisan, Tariq; Allahverdi, Ali

    2016-01-01

    This paper describes the process employed by the Industrial and Management Systems Engineering programme at Kuwait University to continuously improve the programme. Using a continuous improvement framework, the paper demonstrates how various qualitative and quantitative analyses methods, such as hypothesis testing and control charts, have been…

  12. Case Studies in Continuous Process Improvement

    NASA Technical Reports Server (NTRS)

    Mehta, A.

    1997-01-01

    This study focuses on improving the SMT assembly process in a low-volume, high-reliability environment with emphasis on fine pitch and BGA packages. Before a process improvement is carried out, it is important to evaluate where the process stands in terms of process capability.

  13. Aerogel-Based Insulation for High-Temperature Industrial Processes

    SciTech Connect

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  14. The Power of Process Improvement

    ERIC Educational Resources Information Center

    Fairfield-Sonn, James W.; Morgan, Sandra; Sumukadas, Narendar

    2004-01-01

    Over the last several decades many systematic management approaches, such as Total Quality Management, aimed at improving organizational performance and employee satisfaction have captured organizations' attention. Given their origins in statistics, operations management, and engineering, many of the concepts and techniques are technical. When…

  15. Model-based software process improvement

    NASA Technical Reports Server (NTRS)

    Zettervall, Brenda T.

    1994-01-01

    The activities of a field test site for the Software Engineering Institute's software process definition project are discussed. Products tested included the improvement model itself, descriptive modeling techniques, the CMM level 2 framework document, and the use of process definition guidelines and templates. The software process improvement model represents a five stage cyclic approach for organizational process improvement. The cycles consist of the initiating, diagnosing, establishing, acting, and leveraging phases.

  16. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  17. Program Improvement Project for Industrial Education. Annual Report.

    ERIC Educational Resources Information Center

    Shaeffer, Bruce W.

    Designed to improve industrial education programs through the development of minimum uniform quality standards, a project developed a task list, educationally sequenced the identified tasks, and developed a recommended shop layout and equipment list for four occupational areas: diesel repair, appliance repair, office machine repair, and small…

  18. Strategies for Improving Compliance with Health Promotion Programs in Industry.

    ERIC Educational Resources Information Center

    Feldman, Robert H. L.

    1983-01-01

    Behavioral, educational, and organizational methods for improving the degree to which workers comply with the objectives of industrial health promotion programs are discussed. Compliance can be enhanced through: (1) better program location and scheduling; (2) increased worker satisfaction; (3) use of psychological and educational techniques; and…

  19. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 11. THE SYNTHETIC FIBER INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. Synthetic fibers...

  20. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 17. THE GYPSUM AND WALLBOARD INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The gypsum and w...

  1. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 25. PRIMARY ALUMINUM INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The primary alum...

  2. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 20. THE MICA INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. Mica is a group ...

  3. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 21. THE CEMENT INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The cement indus...

  4. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 15. BRINE AND EVAPORITE CHEMICALS INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The Brine and Ev...

  5. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 2. OIL AND GAS PRODUCTION INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The oil and gas ...

  6. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 12. THE EXPLOSIVES INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The explosives i...

  7. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 24. THE IRON AND STEEL INDUSTRY

    EPA Science Inventory

    The catalog was developed to aid in defining the environmental impacts of U.S. industrial activity. Entries for each industry are in consistent format and form separate chapters of the catalog. The Iron and Steel Industry encompasses a variety of processes for transforming iron o...

  8. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 16. THE FLUOROCARBON-HYDROGEN FLORIDE INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The materials of...

  9. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 18. THE LIME INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The lime industr...

  10. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 9. THE SYNTHETIC RUBBER INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The synthetic ru...

  11. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 7. ORGANIC DYES AND PIGMENTS INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The organic dyes...

  12. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 10. PLASTICS AND RESINS INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The Plastics and...

  13. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 29 PRIMARY COPPER INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The primary copp...

  14. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 19. THE CLAY INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The clay industr...

  15. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 4. CARBON BLACK INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States Entries for each industry are in consistent format and form separate chapters of the study. The carbon black ...

  16. Polyestercarbonates which exhibit improved processibility

    DOEpatents

    Krabbenhoft, Herman Otto

    1999-01-01

    The invention relates to a polyestercarbonate polymer which comprises repeating units of a mono-unsaturated aliphatic dicarboxylic acid having about 12 to about 20 carbon atoms. Preferred dicarboxylic acids for incorporation into the polymer are cis-octadec-9-enedioic acid or trans-octadec-9-enedioic acid. The use of these mono-unsaturated acids results in polymers with lower glass transition temperatures, and enhances processibility.

  17. Profit opportunities for the chemical process industries

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.

  18. Rubber Plastics Processing Industry Training Board

    ERIC Educational Resources Information Center

    Industrial Training International, 1974

    1974-01-01

    The training adviser's role is changing from trainer to problem analyst. Some of the problems being dealt with include: (1) the school to industry transition, (2) new training methods for the 16 to 18 year old entry worker, (3) foreign language training, (4) safety programs, and (5) tire-fitter training. (MW)

  19. Curbing variations in packaging process through Six Sigma way in a large-scale food-processing industry

    NASA Astrophysics Data System (ADS)

    Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar

    2015-08-01

    Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.

  20. 5 MV 30 mA industrial electron processing system

    NASA Astrophysics Data System (ADS)

    Hoshi, Y.; Mizusawa, K.

    1991-05-01

    Industrial electron beam processing systems have been in use in various application fields such as: improving heat resistivity of wire insulation; controlling quality of automobile rubber tires and melt index characteristics of PE foams; and curing paintings or printing inks. Recently, there has come up a need for electron beam with an energy higher than 3 MV in order to disinfect salmonella in chicken meat, to kill bugs in fruits, and to sterilize medical disposables. To meet this need we developed a 5 MV 30 mA electron processing system with an X-ray conversion target. The machine was tested in NHV's plant in Kyoto at continuous operation of full voltage and full current. It proved to be very steady in operation with a high efficiency (as much as 72%). Also, the X-ray target was tested in a continuous run of 5 MV 30 mA (150 kW). It proved to be viable in industrial utilization. This paper introduces the process and the results of the development.

  1. System for monitoring an industrial or biological process

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  2. System for monitoring an industrial or biological process

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  3. [Evaluation of microbial contamination of linens in industrial laundry processes].

    PubMed

    Sanna, Adriana; Coroneo, Valentina; Dessì, Sandro; Brandas, Valeria

    2013-01-01

    Laundering linens and protecting them from microbiological recontamination are critical issues for the hotel and food industries and especially for hospitals. This study was performed to evaluate a sample of industrial laundries in Sardinia (Italy), to assess their compliance with national hygienic and sanitary regulations, along the complete laundering process. Study results indicate that industrial laundering processes are effective and that better awareness of staff who handle laundered textiles is required to reduce the risk of recontamination. PMID:23903035

  4. Predictive maintenance of critical equipment in industrial processes

    NASA Astrophysics Data System (ADS)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  5. Operational performance comparisons in the gas processing industry

    SciTech Connect

    Salahor, G.S.

    1996-12-31

    Comparison and benchmarking of operational performance measures in the natural gas processing and gathering industry has helped operators to identify and prioritize improvement initiatives and has led to direct and tangible improvements in operating efficiency. However, proper interpretation and utilization of performance benchmarking data in a complex operation such as gas processing must reflect due consideration of the technical factors which influence the overall economic performance and resource requirements. Plant operators must be able to use the data to understand the key technical influences reflected in their results, and thereby set performance targets commensurate with the structural considerations particular to their facility. Ernst and Young has developed an analytical framework for gas processing and gathering operations incorporating such considerations, and conducted a study involving North American and international participants for the past four years. The information obtained form this work has revealed a wide range of performance results across plants, and has served to challenge much of the conventional wisdom regarding what levels of performance are attainable, and to provide understanding as to how gas processing operational resource requirements are influenced by technical parameters.

  6. Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised)

    SciTech Connect

    Not Available

    2012-10-01

    Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly the Industrial Technologies Program. AMO undertook this project as a series of sourcebook publications. Other topics in this series include: compressed air systems, pumping systems, fan systems, process heating and motor and drive systems. For more information about program resources, see AMO in the Where to Find Help section of this publication.

  7. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, U.B.; Gazula, G.K.M.; Hasham, A.

    1996-06-18

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

  8. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  9. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  10. Vibrator improves spark erosion cutting process

    NASA Technical Reports Server (NTRS)

    Thrall, L. R.

    1966-01-01

    Variable frequency mechanical vibrator improves spark erosion cutting process. The vibration of the cutting tip permits continual flushing away of residue around the cut area with nondestructive electric transformer oil during the cutting process.

  11. Process models: analytical tools for managing industrial energy systems

    SciTech Connect

    Howe, S O; Pilati, D A; Balzer, C; Sparrow, F T

    1980-01-01

    How the process models developed at BNL are used to analyze industrial energy systems is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for managing industrial energy systems.

  12. Emerging Laser Materials Processing Techniques for Future Industrial Applications

    NASA Astrophysics Data System (ADS)

    Kukreja, L. M.; Kaul, R.; Paul, C. P.; Ganesh, P.; Rao, B. T.

    Lasers are not only the proven and indispensable tools for some of the contemporary manufacturing technologies but have the potential for providing solutions to some of the upcoming intricate problems of industrial materials processing. The ongoing research is spearheading in the direction to develop novel fabrication techniques for improving qualities of the products, possibilities to engineer integrated multi-materials and multi-functional components and enhancing economic or procedural benefits. To explore the possibilities of achieving some of these objectives, we have carried out studies on the laser rapid manufacturing of structures of different metals with control over porosity, bimetallic integration, and other technologically important mechanical characteristics, laser melting based surface processing , laser shock peening , hybrid welding , and laser profile cutting of metal sheets. The results of these studies with comprehensiveness are presented and discussed in this chapter. A brief review of their scope for the industrial acceptability and adaptability has also been presented to assess the real potential of these research areas.

  13. Teacher Research as Continuous Process Improvement

    ERIC Educational Resources Information Center

    Ellis, Charles; Castle, Kathryn

    2010-01-01

    Purpose: Teacher research (inquiry) has been characterized as practice improvement, professional development and action research, among numerous names and descriptions. The purpose of this paper is to support the case that teacher research is also a form of quality improvement known as continuous process improvement (CPI).…

  14. The continuous improvement process and ergonomics in ultrasound department.

    PubMed

    Coffin, Carolyn T

    2013-01-01

    Continuous improvement processes, such as Lean, Six Sigma and Quality Control Circles, have been implemented in the manufacturing industries in an effort to increase productivity, eliminate waste, and engage employees in problem solving. These processes can be adapted to the healthcare sector as medical facilities strive to improve the patient experience, increase financial returns, and improve worker safety and morale. In the ultrasound department, productivity can be improved and the quality of patient care can be ensured by standardizing exam protocols and decreasing work related musculoskeletal disorders among sonography professionals. This article summarizes the more commonly used continuous improvement processes and provides a description of how one method might be applied to the ultrasound department. PMID:23577530

  15. Continuous improvement in the Industrial and Management Systems Engineering programme at Kuwait University

    NASA Astrophysics Data System (ADS)

    Aldowaisan, Tariq; Allahverdi, Ali

    2016-07-01

    This paper describes the process employed by the Industrial and Management Systems Engineering programme at Kuwait University to continuously improve the programme. Using a continuous improvement framework, the paper demonstrates how various qualitative and quantitative analyses methods, such as hypothesis testing and control charts, have been applied to the results of four assessment tools and other data sources to improve performance. Important improvements include the need to reconsider two student outcomes as they were difficult to implement in courses. In addition, through benchmarking and the engagement of Alumni and Employers, key decisions were made to improve the curriculum and enhance employability.

  16. Evolution of the radiation processing industry

    SciTech Connect

    Cleland, Marshall R.

    2013-04-19

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  17. Evolution of the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2013-04-01

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  18. Induced radioactivity from industrial radiation processing

    NASA Astrophysics Data System (ADS)

    Lone, M. A.

    1990-12-01

    Analytic expressions are developed for quantitative analysis of radioactivity induced by radiation processing of products with electrons or photons. These expressions provide reasonable estimates of induced activity much faster than Monte Carlo simulations. Analysis of radioactivity from processing of meat with 10 MeV electrons shows an induced activity of less than 10 mBq/(kgkGy) just after irradiation. This is 4 orders of magnitude less than the natural background activity of about 100 Bq/kg found in meat. Five days after processing the induced activity will reduce by a factor of 300.

  19. PROCESS IMPROVEMENT STUDIES ON THE BATTELLE HYDROTHERMAL COAL PROCESS

    EPA Science Inventory

    The report gives results of a study to improve the economic viability of the Battelle Hydrothermal (HT) Coal Process by reducing the costs associated with liquid/solid separation and leachant regeneration. Laboratory experiments were conducted to evaluate process improvements for...

  20. LWR improvement in EUV resist process

    NASA Astrophysics Data System (ADS)

    Koh, Chawon; Kim, Hyun-Woo; Kim, Sumin; Na, Hai-Sub; Park, Chang-Min; Park, Cheolhong; Cho, Kyoung-Yong

    2011-04-01

    Extreme ultraviolet lithography (EUVL) is the most effective way to print sub-30 nm features. The roughness of both the resist sidewall (line width roughness [LWR]) and resist top must be overcome soon for EUVL to be implemented. Currently, LWR can vary by about 1 nm according to the recipe used. We have characterized two promising techniques to improve LWR, an EUV rinse/TBAH process and an implant process, and demonstrated their efficacy. After cleaning inspection (ACI), LWR was improved with both the rinse and implant processes. After development inspection (ADI), LWR improved (0.12 nm, 2.4%) and ACI LWR improved (0.1 nm, 2.0% improvement) after using the EUV rinse process. ADI and ACI LWR improvement (0.45 nm, 9.1%, and 0.3 nm, 6.9%, respectively) was demonstrated with the EUV rinse/TBAH process. ADI LWR improvement (0.5 nm, 8.1%) and ACI LWR improvement (-0.5 nm, -16.9%) were characterized with the implant process. Critical dimension (CD) showed similar changes through pitch after the EUV rinse or TBAH process, but the degree of change depended on the initial pattern size giving CD difference of 2 nm between 30 nm HP and 50 nm HP after the implant process. For this technique, the dependence of CD change on pattern size must be minimized. Further extensive studies with rinse or implant are strongly encouraged for continued LWR improvement and real process implementation in EUVL. Demonstrating <2.2 nm LWR after pattern transfer is important in EUVL and needs to be pursued using various technical approaches. Initial resist LWR is important in assessing LWR improvements with additional process techniques. An initial EUV LWR < ~5.0 nm is required to properly assess the validity of the technique. Further study is required to improve ADI LWR and maintain better LWR after etch with advanced EUV rinse materials. Defects also need to be confirmed following the EUV rinse and TBAH developer. Further developing the implant process should focus on LWR improvement at low

  1. EMISSIONS FORECASTS FOR INDUSTRIAL PROCESS SOURCES

    EPA Science Inventory

    The report gives national and regional air emissions forecasts from several sulfur oxide and nitrogen oxide (SOx and NOx) emissions control Process Model Projection Technique (PROMPT) test runs. PROMPT, one of a number of National Acid Precipitation Assessment Program emission fo...

  2. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 30. THE ELECTRONIC COMPONENT MANUFACTURING INDUSTRY

    EPA Science Inventory

    This report is one of a series constituting the catalog of Industrial Process Profiles for Environmental Use. Each industry sector is addressed as a separate chapter of the study. The catalog was developed for the purpose of compiling relevant information concerning air, water, a...

  3. Secure VM for Monitoring Industrial Process Controllers

    SciTech Connect

    Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T; Carvalho, Marco

    2011-01-01

    In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicated host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.

  4. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect

    Price, Lynn; Price, Lynn

    2008-03-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  5. Agricultural and Industrial Process-Heat-Market Sector workbook

    SciTech Connect

    Shulman, M. J.; Kannan, N. P.; deJong, D. L.

    1980-01-01

    This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

  6. IMPROVING THE ENVIRONMENTAL PERFORMANCE OF CHEMICAL PROCESSES THROUGH THE USE OF INFORMATION TECHNOLOGY

    EPA Science Inventory

    Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...

  7. Urethane foam process improvements. Final report

    SciTech Connect

    Watson, D.R.

    1995-03-01

    A study was completed to evaluate the foam molding process for environmental and technical improvements. The investigation led to a replacement for chlorinated solvent usage, a potential permanent mold release coating, improved tooling design, and shrinkage characterization of foams filled with varying levels of aluminum oxide.

  8. Inspection effectiveness and risk in process industries

    SciTech Connect

    Conley, M.J.; Tallin, A.G.

    1996-12-01

    Failures occasionally occur in refinery and petrochemical process equipment due to in-service damage such as internal corrosion, external corrosion, or stress corrosion cracking. Many of these failures should be preventable by detection of the damage prior to failure. However, selection of an inspection method for detection of damage has not always been based upon an evaluation of the required inspection effectiveness. Resources can be wasted by using an inspection method that is incapable of detecting damage, or is so unlikely to detect damage that it may be considered to be ineffective. Another waste of resources is excessive inspection, where the amount of inspection effort is not matched to the benefit. This paper outlines an approach to quantify the effectiveness of the complete inspection method, here defined as all of the elements that determine the mechanical integrity of an equipment item. This paper demonstrates the use of simple statistical tools or experimental techniques for estimating the effectiveness of an inspection method, and using this estimate in a risk evaluation. The approach is used to update the estimated severity of damage in process equipment after an inspection has been performed. The result of the analysis can be used in a risk assessment to estimate the risk associated with equipment failure before and after an inspection, thus providing a powerful tool to realistically set priorities for inspection planning.

  9. Software Engineering Program: Software Process Improvement Guidebook

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The purpose of this document is to provide experience-based guidance in implementing a software process improvement program in any NASA software development or maintenance community. This guidebook details how to define, operate, and implement a working software process improvement program. It describes the concept of the software process improvement program and its basic organizational components. It then describes the structure, organization, and operation of the software process improvement program, illustrating all these concepts with specific NASA examples. The information presented in the document is derived from the experiences of several NASA software organizations, including the SEL, the SEAL, and the SORCE. Their experiences reflect many of the elements of software process improvement within NASA. This guidebook presents lessons learned in a form usable by anyone considering establishing a software process improvement program within his or her own environment. This guidebook attempts to balance general and detailed information. It provides material general enough to be usable by NASA organizations whose characteristics do not directly match those of the sources of the information and models presented herein. It also keeps the ideas sufficiently close to the sources of the practical experiences that have generated the models and information.

  10. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  11. Targeting industrial processes for pollution prevention

    SciTech Connect

    Li, D.W.

    1997-05-01

    Before investing in pollution prevention projects, companies need to focus on the processes that have the potential to result in the greatest payback. All too often, companies hire outside consultants to conduct one-time, isolated opportunity assessments in response to state or Federal planning requirements but do not continue to seek opportunities as operations are modified. As a result, companies may end up investing in projects to meet their immediate needs while missing opportunities for savings that may result from broader, longer term solutions. Similarly, departments may implement projects independently and end up missing opportunities to take advantage of economies of scale or internal reuse/recycling possibilities. The companies that have profited the most from pollution prevention strategies are those that have fully integrated the concept into their major business decisions at all levels within the organization. In this respect, pollution prevention is one of several possible tools to minimize projected environmental impacts.

  12. Imaging spectrometer for process industry applications

    NASA Astrophysics Data System (ADS)

    Herrala, Esko; Okkonen, Jukka T.; Hyvarinen, Timo S.; Aikio, Mauri; Lammasniemi, Jorma

    1994-11-01

    This paper presents an imaging spectrometer principle based on a novel prism-grating-prism (PGP) element as the dispersive component and advanced camera solutions for on-line applications. The PGP element uses a volume type holographic plane transmission grating made of dichromated gelatin (DCG). Currently, spectrographs have been realized for the 400 - 1050 nm region but the applicable spectral region of the PGP is 380 - 1800 nm. Spectral resolution is typically between 1.5 and 5 nm. The on-axis optical configuration and simple rugged tubular optomechanical construction of the spectrograph provide a good image quality and resistance to harsh environmental conditions. Spectrograph optics are designed to be interfaced to any standard CCD camera. Special camera structures and operating modes can be used for applications requiring on-line data interpretation and process control.

  13. Interference Analysis Process in Military Aircraft Industry

    NASA Astrophysics Data System (ADS)

    Rothenhaeusler, M.; Poisel, W.

    2012-05-01

    As flying platforms do have limited space for integration and increasing demands for antennas, interference and EMC analysis becomes ever more relevant for optimised antenna concepts. Of course aerodynamic and operational aspects are still important and can not be neglected, but interference can also be a performance killer if it is not analysed in a proper way. This paper describes an interference analysis process which is based on the electrical data of all transmitters and receivers, in- and out-of-band numerical simulation of the decoupling values of all involved antennas and includes EMC relevant data of conducted and radiated emissions, based on EMC standards like MIL-STD-461. Additionally hardware based interference cancellation is also taken into account as the last opportunity for the antenna engineer to reach the required decoupling for undisturbed communication.

  14. School Climate Improvement: Leadership and Process.

    ERIC Educational Resources Information Center

    Howard, Eugene R.

    Subtitled "Five Case Studies and Three Snapshots," this book illustrates what occurs in measurable terms when participants in the schooling process work cooperatively to improve school climate. In addition, the activities that are described reflect how to achieve the climate objectives of the schooling process--satisfaction and productivity. The…

  15. SNF project engineering process improvement plan

    SciTech Connect

    DESAI, S.P.

    1999-07-13

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819. All new procedures will be issued and implemented by September 30, 1999.

  16. Wyoming's industrial siting permit process and environmental impact assessment

    NASA Astrophysics Data System (ADS)

    Hyman, Eric L.

    1982-01-01

    The problem of management of industrial residuals can be reduced through a rational system for siting and planning major industrial facilities. In the United States, Wyoming has moved in the direction of establishing a one-stop permitting system that provides important information for air and water quality planning and solid waste management with a minimum of regulatory overlap. This paper describes Wyoming's Industrial Development Information and Siting Act of 1975 and suggests ways in which the Wyoming permitting system can be improved and applied elsewhere.

  17. Preliminary overview of innovative industrial-materials processes

    SciTech Connect

    Hane, G.J.; Hauser, S.G.; Blahnik, D.E.; Eakin, D.E.; Gurwell, W.E.; Williams, T.A.; Abarcar, R.; Szekely, J.; Ashton, W.B.

    1983-09-01

    In evaluating the potential for industrial energy conservation, 45 candidate processes were identified. The chemical and the iron and steel industries presented the most well-developed candidates, whereas those processes identified in the pulp and paper and textiles industries were the most speculative. Examples of the candidate processes identified include direct steelmaking and ore-to-powder systems, which potentially require 30 to 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization, which offer up to 90% reductions in energy use when compared with distillation; the cold processing of cement, which offers a 50% reduction in energy requirements; and the dry forming of paper, which offers a 25% reduction in the energy needed for papermaking. A review of all the industries revealed that the revolutionary alternatives often use similar concepts in avoiding current process inefficiencies. These concepts include using chemical, physical, or biological processes to replace thermally intensive processes; using specific forms of energy to minimize wasteful thermal diffusion; using chemical, biological, or ultrasonic processes to replace physical reduction; combining multiple processing steps into a single reactor; using a dry processing to eliminate energy needed for evaporation; and using sterilization or biotechnology to reduce the need for refrigeration.

  18. Biobased grease with improved oxidation performance for industrial application.

    PubMed

    Sharma, Brajendra K; Adhvaryu, Atanu; Perez, Joseph M; Erhan, Sevim Z

    2006-10-01

    Vegetable oils have significant potential as a base fluid and a substitute for mineral oil for grease formulation. This paper describes the preparation of biobased grease with high oxidative stability and a composition useful for industrial, agriculture/farming equipment, and forestry applications. The process utilizes more oxidatively stable epoxy vegetable oils as the base fluid, metal-soap thickener, and several specialty chemicals identified to address specific applications. Performance characteristics of greases used for industrial and automotive applications are largely dependent on the hardness and the oxidative stability of grease. Grease hardness was determined using standard test methods, and their oxidative stabilities were determined using pressurized differential scanning calorimetry and rotary bomb oxidation tests. Wear data were generated using standard test methods in a four-ball test geometry. Results indicate that grease developed with this method can deliver at par or better performance properties (effective lubrication, wear protection, corrosion resistance, friction reduction, heat removal, etc.) than existing mineral oil-based greases currently used in similar trades. Therefore, developed greases can be a good substitute for mineral oil-based greases in industrial, agriculture, forestry, and marine applications. PMID:17002427

  19. Advances toward industrialization of novel molten salt electrochemical processes.

    PubMed

    Ito, Yasuhiko; Nishikiori, Tokujiro; Tsujimura, Hiroyuki

    2016-08-15

    We have invented various novel molten salt electrochemical processes, that can be put to practical use in the fields of energy and materials. These processes are promising from both technological and commercial viewpoints, and they are currently under development for industrial application. To showcase current developments in work toward industrialization, we focus here on three of these processes: (1) electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure, (2) electrochemical formation of carbon film, and (3) plasma-induced discharge electrolysis to produce nanoparticles. PMID:27265244

  20. Society of the plastic industry process emission initiatives

    NASA Technical Reports Server (NTRS)

    Mcdermott, Joseph

    1994-01-01

    At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.

  1. Waste minimization in the poultry processing industry. Process and water quality aspects

    SciTech Connect

    Gelman, S.R.; Scott, S.; Davis, H.

    1989-11-09

    The poultry processing industry is a large, water intensive industry. In a typical week in Alabama up to 15 million birds are processed, and Arkansas, Georgia, and North Carolina have similar processing volumes. This presentation will focus on issues surrounding waste minimization in the live processing industry as well as provide a brief look at the prepared foods segment, mainly cooked chicken products. The case study also reviews water quality issues that require us to examine waste treatment in a new light. This information will also apply to other industries facing more stringent treatment requirements as a result of stiffer water quality regulations.

  2. online Surveillance of Industrial Processes with Correlated Parameters

    Energy Science and Technology Software Center (ESTSC)

    1996-12-18

    SMP is a system for online surveillance of industrial processes or machinery for determination of the incipience or onset of abnormal operating conditions. SMP exploits the cross correlation between all of the sensors that are available on the system under surveillance to provide an extremely high sensitivity for annunciation of subtle disturbances in process variables.

  3. REVIEW OF COMPUTER PROCESS SIMULATION TO INDUSTRIAL POLLUTION PREVENTION

    EPA Science Inventory

    The objective of this report is to provide environmental professionals with an understanding of the power and utility of state-of-the-art process simulation software for industrial pollution prevention (P2) analysis. rocess simulators are process design tools that were once used ...

  4. U.S. Fruit and Vegetable Processing Industries.

    ERIC Educational Resources Information Center

    Buckley, Katharine C.; And Others

    Because of shifts in consumer tastes and preferences, demographics, technology, government regulation, and the expanding interdependence of world markets, the United States fruit and vegetable processing industries must operate in a constantly changing and uncertain economic environment. U.S. per capita use of processed fruits and vegetables is…

  5. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40% of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Results of study contracts awarded by the Department of Energy (DOE) and managed by the NASA Lewis Research Center have identified three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near-term TES systems for these three industries is nearly 9 million bbl of oil.

  6. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40 percent of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement are discussed. Potential annual fuel savings, with large scale implementation of near-term TES systems for these three industries, is nearly 9,000,000 bbl of oil.

  7. Improved Process control of wood waste fired boilers

    SciTech Connect

    Process Control Solutions, Inc.

    2004-01-30

    This project's principal aim was the conceptual and feasibility stage development of improved process control methods for wood-waste-fired water-tube boilers operating in industrial manufacturing applications (primarily pulp and paper). The specific objectives put forth in the original project proposal were as follows: (1) fully characterize the wood-waste boiler control inter-relationships and constraints through data collection and analysis; (2) design an improved control architecture; (3) develop and test an appropriate control and optimization algorithm; and (4) develop and test a procedure for reproducing the approach and deriving the benefits on similar pulp and paper wood-waste boilers. Detailed tasks were developed supporting these objectives.

  8. Industrial process profiles for environmental use: chapter 27 primary lead industry

    SciTech Connect

    Not Available

    1980-07-01

    The primary lead industry as defined for this study consists of mining, beneficiation, smelting, and refining. A profile of the industry is given including plant locations, capacities, and various statistics regarding production and consumption of lead, co-products, and by-products. The report summarizes the various commercial routes practiced domestically for lead production in a series of process flow diagrams and detailed process descriptions. Each process description includes available data regarding input materials, operating conditions, energy and utility requirements, waste streams produced (air, water, and solid waste), and control technology practices and problems.

  9. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, Jr., Charles Q.

    1981-01-01

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  10. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, C.Q. Jr.

    1980-01-28

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  11. {open_quotes}Industry views--timing/structure of consultative process{close_quotes}

    SciTech Connect

    Volgelsberg, T.

    1995-12-31

    This paper examines industry`s perspective on the issues concerning the politics and economics of climatic change. The climate change issue complexity goes beyond science and involves: technology, economics, lifestyle, population, intergenerational equity, etc. Industry resources should be actively involved in technology, timeframes, economic assessments, and the political process. Climate mitigation options should be viewed on a holistic or total impact basis. Technology and economic assessment should not create winners and losers. The climate change process is like peeling an onion - long timeframes are required for cultural and infrastructure changes, there are both short term small improvement and long term structural changes, and implementation may take generations. Interdisciplinary communications are critical, cutting across the fields of social science, physical science, economics, technology, demographics, etc. Finally, industry must play or be played - industry can either help shape or be left to live with policy.

  12. Industrial process profiles for environmental use: Chapter 30. The electronic component manufacturing industry. Final report

    SciTech Connect

    Not Available

    1983-04-01

    This report is one of a series constituting the catalog of Industrial Process Profiles for Environmental Use. Each industry sector is addressed as a separate chapter of the study. The catalog was developed for the purpose of compiling relevant information concerning air, water, and solid waste emissions from industries which employ similar technologies, have common types of environmental impacts, and supply their products for further processing or consumption to the same general population of customers. This report addresses the following segments of the electronic component manufacturing industry: semiconductors, SIC 3674; capacitors, SIC 3675; resistors, SIC 3676; transformer and inductors, SIC 3677; printed circuit boards, SIC 3679052; electron tubes, SIC 36711, 36713; and cathode ray tubes, SIC 36712, 3671385.

  13. Cadmium isotope fractionation of materials derived from various industrial processes.

    PubMed

    Martinková, Eva; Chrastný, Vladislav; Francová, Michaela; Šípková, Adéla; Čuřík, Jan; Myška, Oldřich; Mižič, Lukáš

    2016-01-25

    Our study represents ϵ(114/110) Cd NIST3108 values of materials resulting from anthropogenic activities such as coal burning, smelting, refining, metal coating, and the glass industry. Additionally, primary sources (ore samples, pigment, coal) processed in the industrial premises were studied. Two sphalerites, galena, coal and pigment samples exhibited ϵ(114/110) CdNIST3108 values of 1.0±0.2, 0.2±0.2, 1.3±0.1, -2.3±0.2 and -0.1±0.3, respectively. In general, all studied industrial processes were accompanied by Cd isotope fractionation. Most of the industrial materials studied were clearly distinguishable from the samples used as a primary source based on ϵ(114/110) Cd NIST3108 values. The heaviest ϵ(114/110) CdNIST3108 value of 58.6±0.9 was found for slag resulting from coal combustion, and the lightest ϵ(114/110) CdNIST3108 value of -23±2.5 was observed for waste material after Pb refinement. It is evident that ϵ(114/110) Cd NIST3108 values depend on technological processes, and in case of incomplete Cd transfer from source to final waste material, every industrial activity creates differences in Cd isotope composition. Our results show that Cd isotope analysis is a promising tool to track the origins of industrial waste products. PMID:26452089

  14. Ultrasonically improved galvanochemical technology for the remediation of industrial wastewater.

    PubMed

    Abramov, Vladimir O; Abramova, Anna V; Keremetin, Petr P; Mullakaev, Marat S; Vexler, Georgiy B; Mason, Timothy J

    2014-03-01

    Two general methodologies adopted for the decontamination of industrial wastewater containing oil and metal ions are flocculation and coagulation. Both methods require the addition of chemicals and in the case of electrocoagulation the additional use of electrical power. Another methodology that was developed in Russia some years ago involves the production of Fe2O3 particles as coagulants by a galvanochemical reaction between iron and coke. Both of these materials are inexpensive and generally available in bulk. Ultrasonic processing of the particles generated in this reaction reduces the particle size of the Fe2O3 particles and provides surface cleaning making them more effective. Trials have proved their efficiency for the decontamination of wastewater made up in a laboratory and real wastewater from a carriage cleaning station on the St. Petersburg Metro. A mathematical model for the process has been developed. PMID:24051305

  15. Research on the property improvement of PVC using red mud in industrial waste residue

    NASA Astrophysics Data System (ADS)

    Nie, Xiaopeng; Li, Xingang; Shuai, Songxian

    2015-07-01

    Red mud is a red solid power waste that is discharged in the aluminium refinery industry during production. It is a strong alkali and can be categorized as polluting industrial residue. How to make comprehensive use of red mud has become a worldwide issue. In this paper, we put red mud into PVC (polyvinyl chloride polymer), taking advantage of the complicated chemical properties of red mud derived from the Bayer process. The results are compared with silica fume, coal ash and calcium carbonate under the same experimental conditions, which shows that improvement of PVC plastication can be achieved by adding red mud.

  16. Systematic Process Improvement of Sheet Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Carleer, Bart; Stippak, Michael

    2011-08-01

    The design of a forming process of sheet metal forming parts is a complex issue. Many boundary conditions must be fulfilled and many considerations must be made to come to a successful solution. Elimination wrinkles and splits very often need contrary measures. Many times the approach to come to a successful solution is an iterative process which is also dependent on the person who deals with the job. Generally this job has been solved with help of simulation software. AutoForm developed a methodology, systematic process improvement, to systematically approach this job. The systematic process improvement is a standardized way to effectively design forming processes. This systematical approach reduces the number of loops, gives transparency of the different solution statements and makes it easier to pass the work to a colleague. As a result the development of a forming process can be done faster, more reliable and less dependent on individuals. The systematic process improvement will be illustrated on the design of forming process of an automotive part.

  17. Use of process mapping in service improvement.

    PubMed

    Phillips, Joanna; Simmonds, Lorraine

    This article, the last of our three-part series on change management tools, analyses how process mapping can be used to show how processes are currently carried out and identify any changes that may improve the patient experience. The tool takes into account patient opinions so staff are able to see the pathway from patients' perspectives. It offers advice on how to write up the results and how they can be analysed to identify where changes can be made. PMID:23741910

  18. Improving industrial yeast strains: exploiting natural and artificial diversity

    PubMed Central

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  19. Improving industrial yeast strains: exploiting natural and artificial diversity.

    PubMed

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  20. Expert system for testing industrial processes and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Singer, Ralph M.

    1998-01-01

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  1. Expert system for testing industrial processes and determining sensor status

    DOEpatents

    Gross, K.C.; Singer, R.M.

    1998-06-02

    A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.

  2. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect

    Olszewski, M.; Zaltash, A.

    1995-03-01

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  3. Improved sulfur removal processes evaluated for IGCC

    SciTech Connect

    Not Available

    1986-12-01

    An inherent advantage of Integrated Coal Gasification Combined Cycle (IGCC) electric power generation is the ability to easily remove and recover sulfur. During the last several years, a number of new, improved sulfur removal and recovery processes have been commercialized. An assessment is given of alternative sulfur removal processes for IGCC based on the Texaco coal gasifier. The Selexol acid gas removal system, Claus sulfur recovery, and SCOT tail gas treating are currently used in Texaco-based IGCC. Other processes considered are: Purisol, Sulfinol-M, Selefning, 50% MDEA, Sulften, and LO-CAT. 2 tables.

  4. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  5. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    SciTech Connect

    Gupta, Manish; Baer, Douglas

    2013-09-30

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  6. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  7. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Alendorf; D. K. Ottensen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1999-01-01

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  8. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  9. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this

  10. Improving healthcare quality through organisational peer-to-peer assessment: lessons from the nuclear power industry.

    PubMed

    Pronovost, Peter J; Hudson, Daniel W

    2012-10-01

    Healthcare has made great efforts to reduce preventable patient harm, from externally driven regulations to internally driven professionalism. Regulation has driven the majority of efforts to date, and has a necessary place in establishing accountability and minimum standards. Yet they need to be coupled with internally driven efforts. Among professional groups, internally-driven efforts that function as communities of learning and change social norms are highly effective tools to improve performance, yet these approaches are underdeveloped in healthcare. Healthcare can learn much from the nuclear power industry. The nuclear power industry formed the Institute of Nuclear Power Operators following the Three Mile Island accident to improve safety. That organization established a peer-to-peer assessment program to cross-share best practices, safety hazards, problems and actions that improved safety and operational performance. This commentary explores how a similar program could be expanded into healthcare. Healthcare needs a structured, clinician-led, industry-wide process to openly review, identify and mitigate hazards, and share best practices that ultimately improve patient safety. A healthcare version of the nuclear power program could supplement regulatory and other strategies currently used to improve quality and patient safety. PMID:22562877

  11. Industrial process models of electricity demand. Volume 4. The aluminum industry. Final report

    SciTech Connect

    Pierce, B.L.; Coward, H.; Sparrow, F.T.; Pilati, D.A.

    1984-05-01

    The National Center for Analysis of Energy Systems at Brookhaven National Laboratory has developed a process model of the US aluminum industry. The model consists of the major process steps in the manufacture of milled and cast aluminum products and is designed to select modes of operation and energy consumption characteristics that minimize the cost of meeting projected demands for the industry's products. Domestic refineries and primary smelters are represented individually in the model. Industry structure in terms of plant ownership and allowed transfers of aluminum-bearing materials is explicitly modeled. With a growth in product demand of 4.2% per year, model results show a decline in electricity intensity of primary production.

  12. Practical Use of Operation Data in the Process Industry

    NASA Astrophysics Data System (ADS)

    Kano, Manabu

    This paper aims to reveal real problems in the process industry and introduce recent development to solve such problems from the viewpoint of effective use of operation data. Two topics are discussed: virtual sensor and process control. First, in order to clarify the present state and problems, a part of our recent questionnaire survey of process control is quoted. It is emphasized that maintenance is a key issue not only for soft-sensors but also for controllers. Then, new techniques are explained. The first one is correlation-based just-in-time modeling (CoJIT), which can realize higher prediction performance than conventional methods and simplify model maintenance. The second is extended fictitious reference iterative tuning (E-FRIT), which can realize data-driven PID control parameter tuning without process modeling. The great usefulness of these techniques are demonstrated through their industrial applications.

  13. Solutions for Arsenic Control in Mining Processes and Extractive Industry

    NASA Astrophysics Data System (ADS)

    Neitola, Raisa; Korhonen, Tero; Backnäs, Soile; Turunen, Kaisa; Kaartinen, Tommi; Laine-Ylijoki, Jutta; Wahlström, Margareta; Venho, Antti; Ahoranta, Sarita; Nissilä, Marika; Puhakka, Jaakko

    2015-04-01

    In mining, quarrying and industrial minerals production arsenic is a common element, thus creating a challenge in mining processes. This project aimed to develop solutions to control and remove As-compounds in materials and effluents of beneficiation processes and other mining operations. Focus was on various technologies e.g. traditional mineral processing, bioprocessing, water treatment, as well as various materials such as gold ores and concentrates, industrial by-products, and mine waters. The results of suggest that by novel mineral processing and proper water treatment methods the amount of As-compounds in tailings and effluents can be reduced to levels that satisfy the regulations concerning mining waste management. According to the environmental research, mining activities tend to increase the proportion of potentially mobile and available elements in soil. The effect of mining activity on geogenic contamination needs to be considered in risk assessment.

  14. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate... subject to such terms and conditions, and to the furnishing of any bond, that the appropriate TTB...

  15. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate... subject to such terms and conditions, and to the furnishing of any bond, that the appropriate TTB...

  16. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate... subject to such terms and conditions, and to the furnishing of any bond, that the appropriate TTB...

  17. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate... subject to such terms and conditions, and to the furnishing of any bond, that the appropriate TTB...

  18. Computer simulation program is adaptable to industrial processes

    NASA Technical Reports Server (NTRS)

    Schultz, F. E.

    1966-01-01

    The Reaction kinetics ablation program /REKAP/, developed to simulate ablation of various materials, provides mathematical formulations for computer programs which can simulate certain industrial processes. The programs are based on the use of nonsymmetrical difference equations that are employed to solve complex partial differential equation systems.

  19. Advantages of Laser Polarimetry Applied to Tequila Industrial Process Control

    NASA Astrophysics Data System (ADS)

    Fajer, V.; Rodriguez, C.; Flores, R.; Naranjo, S.; Cossio, G.; Lopez, J.

    2002-03-01

    The development of a polarimetric method for crude and cooked agave juice quality control not only by direct polarimetric measurement also by means of laser polarimeter LASERPOL 101M used as a liquid chromatographic detector is presented. The viability and advantage of this method for raw material quality control and during Tequila industrial process is shown.

  20. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  1. The Large Laboratory Course: Organize It to Parallel Industrial Process Development.

    ERIC Educational Resources Information Center

    Eckert, Roger E.; Ybarra, Robert M.

    1988-01-01

    Describes a senior level chemical engineering course at Purdue University that parallels an industrial process development department. Stresses the course organization, manager-engineer contract, evaluation of students, course evaluation, and gives examples of course improvements made during the course. (CW)

  2. Catalyst for Desulfurization of Industrial Waste Gases and Process for Preparing the Catalyst

    SciTech Connect

    Dupin, T.

    1983-12-27

    Industrial waste gases containing objectionable/polluting compounds of sulfur, e.g., H/sub 2/S, SO/sub 2/ and such organo-sulfur derivatives as COS, CS/sub 2/ and mercaptans, are catalytically desulfurized, e.g., by Claus process, employing an improved catalyst comprising titanium dioxide and calcium, barium, strontium or magnesium sulfate.

  3. Catalyst for the desulfurization of industrial waste gases and process for its preparation

    SciTech Connect

    Dupin, T.

    1984-11-27

    Industrial waste gases containing objectionable/polluting compounds of sulfur, e.g., H/sub 2/S, SO/sub 2/ and such organosulfur derivatives as COS, CS/sub 2/ and mercaptans, are catalytically desulfurized, e.g., by Claus process, employing an improved catalyst comprising titanium dioxide and calcium, barium, strontium or magnesium sulfate.

  4. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    SciTech Connect

    Broderick, T. E.; Grondin, R.

    2003-02-24

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN.

  5. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  6. Mask process simulation for mask quality improvement

    NASA Astrophysics Data System (ADS)

    Takahashi, Nobuyasu; Goto, So; Tsunoda, Dai; Shin, So-Eun; Lee, Sukho; Shon, Jungwook; Park, Jisoong

    2015-10-01

    Demand for mask process correction (MPC) is growing facing the 14nm era. We have developed model based MPC and can generate mask contours by using this mask process model. This mask process model consists of EB (development) and etch, which employs a threshold (level set) model and a variable bias model respectively. The model calibration tool accepts both CD measurement results and SEM images. The simulation can generate mask image (contour), runs with distributed computing resources, and has scalable performance. The contour simulation shows the accuracy of the MPC correction visually and provides comprehensive information about hot spots in mask fabrication. Additionally, it is possible to improve lithography simulation quality by providing a simulated mask contour. In this paper, accuracy and computational performance of mask process simulation are shown. The focus is on the difference between the calibration methods using CDs or images.

  7. Market development directory for solar industrial process heat systems

    SciTech Connect

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  8. Process Improvement in a Radically Changing Organization

    NASA Technical Reports Server (NTRS)

    Varga, Denise M.; Wilson, Barbara M.

    2007-01-01

    This presentation describes how the NASA Glenn Research Center planned and implemented a process improvement effort in response to a radically changing environment. As a result of a presidential decision to redefine the Agency's mission, many ongoing projects were canceled and future workload would be awarded based on relevance to the Exploration Initiative. NASA imposed a new Procedural Requirements standard on all future software development, and the Center needed to redesign its processes from CMM Level 2 objectives to meet the new standard and position itself for CMMI. The intended audience for this presentation is systems/software developers and managers in a large, research-oriented organization that may need to respond to imposed standards while also pursuing CMMI Maturity Level goals. A set of internally developed tools will be presented, including an overall Process Improvement Action Item database, a formal inspection/peer review tool, metrics collection spreadsheet, and other related technologies. The Center also found a need to charter Technical Working Groups (TWGs) to address particular Process Areas. In addition, a Marketing TWG was needed to communicate the process changes to the development community, including an innovative web site portal.

  9. Improving the Reverse Logistics Respecting Principles of Sustainable Development in an Industrial Company

    NASA Astrophysics Data System (ADS)

    Fidlerová, Helena; Mĺkva, Miroslava

    2016-06-01

    Reverse logistics, the movement of materials back up the supply chain, is recognised by many organisations as an opportunity for adding value. The paper considers the theoretical framework and the conception of reverse logistics in literature and practice. The objective of the article is to propose tangible solutions which eliminate the imbalances in reverse logistics and improve the waste management in the company. The case study focuses on the improvement in the process of waste packaging in the context of sustainable development as a part of reverse logistics in the surveyed industrial company in Slovakia.

  10. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.