Science.gov

Sample records for industrial scale coal

  1. Statistical modeling of spontaneous combustion in industrial-scale coal stockpiles

    SciTech Connect

    Ozdeniz, H

    2009-07-01

    Companies consuming large amounts of coal should work with coal stocks in order to not face problems due to production delays. The industrial-scale stockpiles formed for the aforementioned reasons cause environmental problems and economic losses for the companies. This study was performed in a coal stock area of a large company in Konya, which uses large amounts of coal in its manufacturing units. The coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 tons of weight was formed in the coal stock area of the company. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. A statistical model applicable for a spontaneous combustion event was developed during this study after applying multi-regression analyses to the data recorded in the stockpile during the spontaneous combustion event. The correlation coefficients obtained by the developed statistical model were measured approximately at a 0.95 level. Thus, the prediction of temperature variations influential in the spontaneous combustion event of the industrial-scale coal stockpiles will be possible.

  2. Compare pilot-scale and industry-scale models of pulverized coal combustion in an ironmaking blast furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Yu, Aibing; Zulli, Paul

    2013-07-01

    In order to understand the complex phenomena of pulverized coal injection (PCI) process in blast furnace (BF), mathematical models have been developed at different scales: pilot-scale model of coal combustion and industry-scale model (in-furnace model) of coal/coke combustion in a real BF respectively. This paper compares these PCI models in aspects of model developments and model capability. The model development is discussed in terms of model formulation, their new features and geometry/regions considered. The model capability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that these PCI models are all able to describe PCI operation qualitatively. The in-furnace model is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. These models are useful for understanding the flow-thermo-chemical behaviors and then optimizing the PCI operation in practice.

  3. Coal industry annual 1997

    SciTech Connect

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  4. Coal industry annual 1996

    SciTech Connect

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  5. Coal Industry Annual 1995

    SciTech Connect

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  6. Coal industry annual 1993

    SciTech Connect

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  7. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are

  8. Artificial neural network modeling of the spontaneous combustion occurring in the industrial-scale coal stockpiles with 10-18 mm coal grain sizes

    SciTech Connect

    Ozdeniz, A.H.; Yilmaz, N.

    2009-07-01

    Companies consuming large amounts of coal should work with coal stocks in order to not face problems due to production delays. The industrial-scale stockpiles formed for the aforementioned reasons cause environmental problems and economic losses for the companies. This study was performed in a coal stock area of a large company in Konya, which uses large amounts of coal in its manufacturing units. The coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 tons of weight was formed in the coal stock area of the company. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. In order to achieve this goal, the electrical signal conversion of temperatures sensed by 17 temperature sensors placed in certain points inside the coal stockpile, the transfer of these electrical signals into computer media by using analog-digital conversion unit after applying necessary filtration and upgrading processes, and the record of these information into a database in particular time intervals are provided. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. Afterwards, these measurement values were used for training and testing of an artificial neural network model. Comparison of the experimental and artificial neural network results, accuracy rates of training and testing were found to be 99.5% and 99.17%, respectively. It is shown that possible coal stockpile behavior with this artificial neural network model is powerfully estimated.

  9. Baseload, industrial-scale wind power: An alternative to coal in China

    SciTech Connect

    Lew, D.J.; Williams, R.H.; Xie Shaoxiong; Zhang Shihui

    1996-12-31

    This report presents a novel strategy for developing wind power on an industrial-scale in China. Oversized wind farms, large-scale electrical storage and long-distance transmission lines are integrated to deliver {open_quotes}baseload wind power{close_quotes} to distant electricity demand centers. The prospective costs for this approach to developing wind power are illustrated by modeling an oversized wind farm at Huitengxile, Inner Mongolia. Although storage adds to the total capital investment, it does not necessarily increase the cost of the delivered electricity. Storage makes it possible to increase the capacity factor of the electric transmission system, so that the unit cost for long-distance transmission is reduced. Moreover, baseload wind power is typically more valuable to the electric utility than intermittent wind power, so that storage can be economically attractive even in instances where the cost per kWh is somewhat higher than without storage. 9 refs., 3 figs., 2 tabs.

  10. Industrial- and utility-scale coal-water fuel demonstration projects

    SciTech Connect

    Hathi, V.; Ramezan, M.; Winslow, J.

    1993-01-01

    Laboratory-, pilot-, and large-scale CWF combustion work has been performed primarily in Canada, China, Italy, Japan, Korea, Sweden, and the United States, and several projects are still active. Sponsors have included governments, utilities and their research arms, engine manufacturers, equipment suppliers, and other organizations in attempts to show that CWF is a viable alternative to premium fuels, both in cost and performance. The objective of this report is to present brief summaries of past and current industrial- and utility-scale CWF demonstrations in order to determine what lessons can be learned from these important, highly visible projects directed toward the production of steam and electricity. Particular emphasis is placed on identifying the CWF characteristics; boiler type, geometry, size, and location; length of the combustion tests; and the results concerning system performance, including emissions.

  11. Development and Testing of Industrial Scale, Coal-Fired Combustion System: Phase 3.

    SciTech Connect

    Zauderer, B.

    1997-04-21

    In the first quarter of calendar year 1997, 17 days of combustor- boiler tests were performed, including one day of tests on a parallel DOE sponsored project on sulfur retention in a slagging combustor. Between tests, modifications and improvements that were indicated by these tests were implemented. This brings the total number of test days required to meet the task 5 project plan. The key project objectives in the areas of combustor performance and environmental performance have been exceeded. With sorbent injection in the combustion gas train, NO{sub x} emissions as low as 0.07 lb/MMBtu and SO{sub 2} emissions as low as 0.2 lb/MMBtu have been measured in tests in this quarter. Tests in the present quarter have resulted in further optimizing the sorbent injection and NO{sub x} control processes. A very important milestone in this quarter was two successful combustor tests on a very high ash (37%) Indian coal. Work in the next quarter will focus on commercialization of the combustor- boiler system. In addition, further tests of the NO{sub x} and SO{sub 2} control process and on the Indian coal will be performed.

  12. Coal conversion products industrial applications

    NASA Technical Reports Server (NTRS)

    Dunkin, J. H.; Warren, D.

    1980-01-01

    Coal-based synthetic fuels complexes under development consideration by NASA/MSFC will produce large quantities of synthetic fuels, primarily medium BTU gas, which could be sold commercially to industries located in South Central Tennessee and Northern Alabama. The complexes would be modular in construction, and subsequent modules may produce liquid fuels or fuels for electric power production. Current and projected industries in the two states which have a propensity for utilizing coal-based synthetic fuels were identified, and a data base was compiled to support MFSC activities.

  13. Development and testing of industrial scale, coal fired combustion system: Phase 3, Progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Zauderer, B.

    1995-10-12

    The primary objective of the present Phase 3 effort is to perform the final testing, at a 20 MMBtu/hr commercial scale, of an air cooled, slagging coal combustor for application to industrial steam boilers and power plants. The focus of the test effort is on combustor durability, automatic control of the combustor`s operation, and optimum environmental control of emissions inside the combustor. In connection with the latter, the goal is to achieve 0.4lb/MMBtu of SO{sub 2} emissions, 0.2 lb./MMBtu of NO{sub x}, emissions, and 0.02 lb. particulates/MMBtu. To meet the particulate goal a baghouse will be used to augment the slag retention in the combustor. The NO{sub x} emission goal will require a modest improvement over maximum reduction achieved to date in the combustor to a level of 0.26 lb. /MMBtu. To reach the SO{sub 2} emissions goal may require a combination of sorbent injection inside the combustor and sorbent injection inside the boiler, or stack. In the third quarter of calendar year 1995 work continued on task 5, ``Site Demonstration``, with emphasis on installation of the 20 MMBtu/hr combustor and auxiliary equipment at the Philadelphia test site. The task 5 effort involve testing the combustor over extended periods under conditions that fully simulate commercial operation and that meet the combustion and environmental specifications for this project. During the present quarterly reporting period, over 90% of the components needed to implement the initial 100 hours of testing were installed at the test site.

  14. Environmental protecting effect of industrial coal briquette

    SciTech Connect

    Zhao, Y.; Chen, L.

    1999-07-01

    This paper has analyzed the necessity of developing industrial coal briquette in China and introduced the present development of coal briquette and its environmental protecting effect in the country. The laboratory research shows that the rate of captured sulfur of coal briquette produced with calcium oxide as a capturing agent is up to 82%. Comparing with the combustion of raw coal, coal briquette produced in briquette cohesive agent made of magnesium oxide etc, can reduce the amount of sulfur dioxide by 78% and the amount of dust smoke by 29.3% when the coal briquette is burned in industrial boiler. When it is used as raw material of coal gasification, the amount of hydrogen sulfide in the gas generated by the gasification of mixed coal composed of 25% coal briquette and 75% lumps is lowered by 6.8% (volume ration) compared with that generated by the gasification of full lumps. Moreover, the sodium sulfocyanide is discovered in the boiler ashes and the amount of sodium sulfocyanide is up to 10% of the total (weight ration) when the boiler ashes are tested with x-ray diffractometer. The discovery shows that the coal briquette has the function of nitrogen fixation. The rate of captured sulfur of coal briquette which is briquetting at the front of industrial boiler and in which limestone is used as a capturing agent is up to 48% when it is burned in industrial boiler.

  15. Coal conversion products Industrial applications

    NASA Technical Reports Server (NTRS)

    Warren, D.; Dunkin, J.

    1980-01-01

    The synfuels economic evaluation model was utilized to analyze cost and product economics of the TVA coal conversion facilities. It is concluded that; (1) moderate yearly future escalations ( 6%) in current natural gas prices will result in medium-Btu gas becoming competitive with natural gas at the plant boundary; (2) utilizing DRI price projections, the alternate synfuel products, except for electricity, will be competitive with their counterparts; (3) central site fuel cell generation of electricity, utilizing MBG, is economically less attractive than the other synthetic fuels, given projected price rises in electricity produced by other means; and (4) because of estimated northern Alabama synfuels market demands, existing conventional fuels, infrastructure and industrial synfuels retrofit problems, a diversity of transportable synfuels products should be produced by the conversion facility.

  16. Continuing consolidation in the coal industry

    SciTech Connect

    Gaalaas, T.

    2006-08-15

    Extensive consolidation has occurred in the coal industry over the past decade. The greatest degree of consolidation has occurred in Northern Appalachia, the Illinois Basin, and the Wyoming portion of the Powder River Basin (PRB), which are the coal supply regions where most observers expect the greatest growth in coal production over the next decade. In addition to reducing the number of alternative suppliers, high level of concentration also tend to result in higher prices, more volatile spot markets, and lower levels of reliability. Therefore, coal-fired generators purchasing in these regions need to respond proactively and strategically to these market trends. 2 figs.

  17. Industrial unionism and the Oklahoma coal industry, 1870-1935

    SciTech Connect

    Sewall, S.L.

    1992-01-01

    This study traces the development of industrial unionism in Oklahoma's coal industry from the beginnings of the industry in 1870 to its decline in 1935. Chapter topics include the early years of the coal industry, life in the coal towns, and the series of strikes that occurred from 1894 to 1932. The study draws from both labor and management materials, but also from primary sources that reflect the role of both the state and federal governments during strikes. The study also utilizes the newspapers of the coal towns. They are a bountiful source on life in Oklahoma's coal towns. Study concludes that Oklahoma's coal towns were a perfect breeding ground for industrial unionism. Working in the most dangerous mines in the United States, the miners of Oklahoma turned to unionism in their efforts to improve working conditions and to secure a living wage. Above ground, the miners battled to break the company towns system. There the union achieved success in eliminating the company store and company housing, the two principal components of the company town system. At the same time, the miners created a union culture under which miners of all nationalities were welcome.

  18. 1982-1983 world coal industry report and directory

    SciTech Connect

    Not Available

    1982-01-01

    The coal industry in Australia, Canada, China, West Germany, India, Poland, South Africa, the USSR, England, and the United States are reported. The directory listings for each country are a compilation of information from government ministries, coal boards, bureaus of mines, and individual coal mining companies. More than 100 individual coal mines are listed, along with such information as coal seam thickness, coal analysis, and major equipment. (JMT)

  19. Status and outlook of industrial coal briquetting technology in China

    SciTech Connect

    Liu, S.; Xu, Z.; Li, W.; Tian, B.

    1997-12-31

    Considering that the lump coal supply falls short of demands, great amounts of fine coal and slime are stockpiled, waste energy is extensive, and environmental pollution is serious, this paper summarizes the present situation of industrial coal briquetting technologies and their applications, and evaluates the advantages and disadvantages of several different coal briquette technologies widely used. The authors think that the energetic development of industrial coal briquetting technology is an effective and feasible option to fully utilize fine coal and slime, mitigate the contradiction between supply and demand for lump coal, reduce the production cost of users, as well as decrease and control environmental pollution caused by coal utilization. It is a practical solution for clean coal in China. At present, the research for developing industrial coal briquetting technologies is in the selection and adoption of suitable binders which need dry processing and can produce high strength and waterproof briquettes.

  20. Small Scale Industries.

    ERIC Educational Resources Information Center

    Rural Development Detwork Bulletin, 1977

    1977-01-01

    Innovative programs for the promotion of small-scale enterprise are being conducted by a variety of organizations, including universities, government agencies, international research institutes, and voluntary assistance agencies. Their activities encompass basic extension services, management of cooperatives, community action programs, and…

  1. Development and testing of industrial scale, coal fired combustion system, Phase 3. Fifth quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Zauderer, B.

    1993-05-17

    In the present reporting period, the first quarter of calendar year 1993, the effort was divided between Task 2. ``Pre Systems Tests`` and Task 4 ``Economics and Commercialization Plan.`` A major part of the task 2 effort was devoted converting the nozzle from adiabatic to air cooted operation. This conversion will allow immediate implementation of the longer duration task 3.2 tests after the completion of the task 2 tests. Therefore, a significant pan of the exit nozzle conversion effort is also part of task 3.1, ``Combustor Refurbishment.`` In task 1 the only activity remaining is to receive the results of the BYU combustion modeling. The results are anticipated this Spring. One of the three remaining tests in task 2 was implemented in late January under freezing weather and snow conditions. Ice plugged the coal feed lines and stack scrubber water outlet and ice jammed and damaged the coal metering auger. While these lines were thawed, the combustor was fired with oil. The coal used in this test contained fine fibrous tramp material which passed through the two tramp material retaining screens and eventually plugged several of the coal feed lines to the combustor. This cut the planned coal feed rate in half. As a result it was decided for the next test to increase the number of coal injection ports by 50% in order to provide excess capacity in the pneumatic feed feed. This will allow continued operation even in the presence of fine tramp material in the coal.

  2. Elevation (typical EBT Coal Hopper Car) with scale. 3 Bay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation (typical EBT Coal Hopper Car) with scale. 3 Bay Steel Hopper Car with side extensions raising coal carrying capacity to 80,000 pounds. Note cars on either side lack extensions limiting their coal capacity to 70,000 pounds - East Broad Top Railroad & Coal Company, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  3. Development and testing of industrial scale coal fired combustion systems, Phase 3. Sixth quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Zauderer, B.

    1993-09-22

    The most significant effort in the quarter was the completion of the conversion of the exit nozzle from adiabatic operation to air cooled operation. This conversion was implemented midway in the task 2 test effort, and the final two tests in task 2 were with the cooled nozzle. It performed as per design. The second significant result was the successful implementation of a computer controlled combustor wall cooling procedure. The hot side combustor liner temperature can now be maintained within a narrow range of less than 5OF at the nominal wall temperature of 2000F. This is an essential requirement for long term durability of the combustor wall. The first tests with the computer control system were implemented in June 1993. A third development in this period was the decision to replace the coal feeder that had been in use since coal fired operation began in late 1987. Since that time, this commercial device has been modified numerous times in order to achieve uniform coal feed. Uniform feed was achieved in 1991. However, the feeder operation was not sufficiently reliable for commercial use. The new feeder has the same design as the sorbent feeders that have been successfully used since 1987. This design has much better speed control and it can be rapidly restarted when the feed auger becomes jammed with tramp material. The last task 2 test was a long duration coal fired test with almost 12 hours of coal fired operation until the 4 ton coal bin was empty. It was the longest coal firing period of the task 2 tests. The exit nozzle cooling maintained the wall temperature in the desired operating range.

  4. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  5. Coking partially briquetted coal charge under industrial conditions

    SciTech Connect

    Sukhorukov, V.I.; Bezdvernyi, G.N.; Kopeliovich, L.V.; Mishchikhin, V.G.; Berkutov, A.N.; Stepanov, Y.; Abramicheva, A.I.; Topchii, M.P.

    1982-01-01

    The partial briquetting of low grade coals ordinarily unsuitable for coking, has been found to allow use of these materials in the coking process under industrial conditions, with an improvement in coke quality. Coke oven capacity is increased. The binder used is medium temperature coal tar.

  6. PROSPECTS FOR INCREASING THE DIRECT USE OF COAL IN INDUSTRIAL BOILERS

    EPA Science Inventory

    The report gives a comprehensive evaluation of factors (environmental, technical, economic, and institutional) influencing solid coal use in industrial boilers. Trends in coal use, recent legislative warrants, and technical and logistic problems in coal use at industrial plants a...

  7. SOURCE ASSESSMENT: DRY BOTTOM INDUSTRIAL BOILERS FIRING PULVERIZED BITUMINOUS COAL

    EPA Science Inventory

    The report describes and assesses the potential impact of air emissions, wastewater effluents, and solid wastes from the operation of dry bottom industrial boilers firing pulverized bituminous coal. Air emissions were characterized by a literature survey and field sampling. Signi...

  8. Commissioning an Engineering Scale Coal Gasifier

    SciTech Connect

    Reid, Douglas J.; Bearden, Mark D.; Cabe, James E.

    2010-07-01

    This report explains the development, commissioning, and testing of an engineering scale slagging coal gasifier at PNNL. The initial objective of this project was to commission the gasifier with zero safety incidents. The commissioning work was primarily an empirical study that required an engineering design approach. After bringing the gasifier on-line, tests were conducted to assess the impact of various operating parameters on the synthesis gas (syngas) product composition. The long-term intent of this project is to produce syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in catalyst, materials, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for greater than 4 hours using coal feedstock. In addition, alternate designs that allow for increased flexibility regarding the fuel sources that can be used for syngas production is desired. Continued modifications to the fuel feed system will be pursued to address these goals. Alternative feed mechanisms such as a coal/methanol slurry are being considered.

  9. Preliminary assessment of coal-based industrial energy systems

    SciTech Connect

    Not Available

    1980-01-01

    This report presents the results of a study, performed by Mittelhauser Corp. and Resource Engineering, Inc. to identify the potential economic, environmental, and energy impacts of possible New Source Performance Standards for industrial steam generators on the use of coal and coal-derived fuels. A systems-level approach was used to take mine-mouth coal and produce a given quantity of heat input to a new boiler at an existing Chicago industrial-plant site. The technologies studied included post-combustion clean-up, atmospheric fluidized-bed combustion, solvent-refined coal liquids, substitute natural gas, and low-Btu gas. Capital and operating costs were prepared on a mid-1985 basis from a consistent set of economic guidelines. The cases studied were evaluated using three levels of air emission controls, two coals, two boiler sizes, and two operating factors. Only those combinations considered likely to make a significant impact on the 1985 boiler population were considered. The conclusions drawn in the report are that the most attractive applications of coal technology are atmospheric fluidized-bed combustion and post-combustion clean-up. Solvent-refined coal and probably substitute natural gas become competitive for the smaller boiler applications. Coal-derived low-Btu gas was found not to be a competitive boiler fuel at the sizes studied. It is recommended that more cases be studied to broaden the applicability of these results.

  10. Digging Deeper: Crisis Management in the Coal Industry

    ERIC Educational Resources Information Center

    Miller, Barbara M.; Horsley, J. Suzanne

    2009-01-01

    This study explores crisis management/communication practices within the coal industry through the lens of high reliability organization (HRO) concepts and sensemaking theory. In-depth interviews with industry executives and an analysis of an emergency procedures manual were used to provide an exploratory examination of the status of crisis…

  11. Coal combustion: Science and technology of industrial and utility applications

    SciTech Connect

    Feng, J.

    1988-01-01

    Despite the competition of oil and gas and the increasing importance of nuclear power, coal is still one of the main sources of energy in the world. In some regions of the world, the reserve of oil and natural gas is nearly depleted. The supply of such fuels relies on shipment from foreign countries, and may be vulnerable to political crisis, while coals are still abundant and easily available. Therefore, the technology of burning coal for energy, which seems rather old, has not lost its vitality and is in fact developing fast. Because of industry development, especially in developing countries, more and more coal is burned each year. If coal is not burned properly, it may pollute the environment and affect the ecological balance of the surrounding regions. Great attention has been paid to curb these issues, and significant progress has been achieved. Technology of desulfurization of flue gases, low nitrogen oxide coal burners, and also the technology of clean burning of coal by fluidized-bed combustion have all been developed and commercialized. Further improvements are under development. At the same time, new techniques have been used in the measurements and diagnoses of coal combustion. These new techniques facilitate more efficient and cleaner burning of coal. Although coal combustion is a very complicated physiochemical phenomenon, the use of the computer enables and pushes forward the theoretical analysis of coal combustion. Besides, the mathematical modelling of the coal combustion process is also a fast progressing field of research and encouraging results have been obtained by scientists throughout the world. This book compiles the papers presented in the conference on the subject of clean cool technology and fluidized-bed combustion.

  12. Development and testing of industrial scale, coal fired combustion system, Phase 3. Third quarterly technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Zauderer, B.

    1992-10-17

    In the third quarter of calendar year 1992, work continued on Task l. ``Design, Installation, and Shakedown of the Modifications to the 20 MMBtu/hr Air Cooled Combustor and Boiler Components``. Task 2. ``Preliminary Systems Tests`` and Task 4 ``Economics and Commercialization Plan``. In task 1, the design of the planned modifications were mostly completed. The equipment to implement these modifications was procured, and most of the installation of this equipment was completed. Finally, a series of two shakedown tests was performed to test the operability of these modifications. As previously reported, no modifications to the combustor were made. All the changes were improvements in overall combustor-boiler operation, maintenance and repair of components, and addition of diagnostics. In addition, during shakedown tests of these modifications the need for additional improvements or modifications became apparent, and these were or a-re being implemented. The major improvements focused on coal and sorbent storage, transport, and combustor injection, real time control of ash deposition in the boiler, unproved combustor wall cooling, expanded computer control and diagnostics, and refurbishment of the scrubber and combustor temperature measurements. AD this work has been described in a detailed topical report on task 1, which was recently submitted to DOE, and it will not be repeated here. Instead the focus of this report will be on the analysis of the test results obtained in the two shakedown tests. This work was partly reported in the 7th 8th and 9th monthly reports. An important result of these tests has been the observation of high (over 85%) SO{sub 2} reduction obtained with sorbent injection in the combustor.

  13. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  14. Managing Scarce Water Resources in China's Coal Power Industry.

    PubMed

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China. PMID:26908125

  15. Managing Scarce Water Resources in China's Coal Power Industry

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  16. Industry Wage Survey: Bituminous Coal, January 1976-March 1981.

    ERIC Educational Resources Information Center

    Bush, Joseph C.

    Production and related workers in the nation's bituminous coal mines averaged $6.94 an hour in January 1976, which represents an increase of 110% since the Bureau of Labor Statistics' 1967 survey in the industry. Over the same period, the Hourly Earnings Index rose by 84% for private nonagricultural workers. Earnings for most of the 128,390…

  17. New petrochemical compositions for use in the coal industry

    SciTech Connect

    D.O. Safieva; E.V. Surov; O.G. Safiev

    2008-12-15

    Various aspects of the use of antifreezing agents in the coal industry are considered. It has been found that, unlike previously proposed compositions, these agents can be prepared based on the products of a single process, the vacuum distillation of fuel oil.

  18. EVALUATION OF LOW EMISSION COAL BURNER TECHNOLOGY ON INDUSTRIAL BOILERS

    EPA Science Inventory

    The report summarizes the second year's effort under EPA Contract 68-02-3127. The objective of the program is to conduct field evaluations of the distributed mixing burner (DMB) on two industrial size boilers. The DMB concept provides for controlled mixing of coal with combustion...

  19. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    DOE PAGESBeta

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  20. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂ per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  1. Possibilities for dry adsorption of hydrocarbons in the coal industry

    SciTech Connect

    Peukert, W.

    1995-12-31

    For coal burning and gasification mostly inorganic waste gases like SO{sub 2}, NO{sub x}, H{sub 2}S, COS and others are relevant as emissions. During coal hydrogenation and pyrolysis substantial concentration of solid, liquid or gaseous hydrocarbons are generated besides other pollutants. The hydrocarbons may cover a wide range of different components with boiling points ranging from below {minus}100 C up to 600 C. Among the most dangerous species are polyaromatic hydrocarbons (PAH) with carcinogenic potential. The amount and composition of the hydrocarbons depend on the process under consideration. This paper describes both fundamentals and possibilities for dry collection of hydrocarbons in the coal industry. The evaluation of these processes require sophisticated measurement techniques for determination of gaseous components (e.g. GC-analysis) and modern techniques for characterization of adsorption processes of multi-component gas mixtures. Examples of realized fume treatment systems are given for anode baking systems and coke ovens.

  2. Development program to support industrial coal gasification. Quarterly report 1

    SciTech Connect

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  3. Wood/coal cofiring in industrial stoker boilers

    SciTech Connect

    Cobb, J.T. Jr.; Elder, W.W.; Freeman, M.C.

    1999-07-01

    Realizing that a significant reduction in the global emissions of fossil carbon dioxide may require the installation of a wide variety of control technologies, options for large and small boilers are receiving attention. With over 1,500 coal-fired stoker boilers in the US, biomass co-firing is of interest, which would also open markets for waste wood which is presently landfilled at significant costs ranging from $20--200/ton. While much cofiring occurs inside the fence, where industrial firms burn wastes in their site boilers, other opportunities exist. Emphasis has been placed on stoker boilers in the northeastern US, where abundant supplies of urban wood waste are generally known to exist. Broken pallets form a significant fraction of this waste. In 1997, the cofiring of a volumetric mixture of 30% ground broken pallet material and 70% coal was demonstrated successfully at the traveling-grate stoker boilerplant of the Pittsburgh Brewing Company. Fourteen test periods, with various wood/coal mixtures blended on site, and two extended test periods, using wood/coal mixtures blended at the coal terminal and transported by truck to the brewery, were conducted. The 30% wood/70% coal fuel was conveyed through the feed system without difficulty, and combusted properly on the grate while meeting opacity requirements with low SO{sub 2} and NO{sub x} emissions. Efforts are underway to commercialize a wood/coal blend at the brewery, to identify specific urban wood supplies in the Pittsburgh region and to conduct a demonstration at a spreader stoker.

  4. Summary of mineral industry activities in Colorado. Part I: coal

    SciTech Connect

    Pascoe, D.M.

    1981-01-01

    Coal production for 1981 was a record, with production at 19,701,496 tons of coal mined and reported to the Division of Mines. This was a 4.95% increase over 1980. Statewide Divisional efforts to support a practical type of health and safety training program while encouraging skill education appropriate to mining needs, saw extensive accomplishment in 1981. The Division gave direct or monetary support through training grant funds, largely used for reimbursed tuition from strategically located state vocational schools who taught on campus as well as at mine sites. Total miner training reported by area schools to the Division of Mines indicates that 8408 students received 86,251 hours of classroom and on-the-job training. It is hoped that the education and training programs throughout the state will be continued in an effort to educate both the new and old miners. We believe this is the best approach to the coal industry's never ending task of reducing both lost-time and fatal accidents. Coal mine certification in all categories totaled 780 certificates issued. This was a decrease from 1980, and will probably decrease again in 1982 with the initiation of the $25.00 fee for each examination. Coal mining activity is reported by district.

  5. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    SciTech Connect

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  6. The coal industry and its industrial relations. Some union/nonunion comparisons

    SciTech Connect

    Hannah, R.; Mangum, G.

    1985-01-01

    This book addresses the following questions: how do product markets and labor markets interact in a labor intensive industry; how can a union whose members once mined 90 percent of the coal and now mines 40 percent, still dominate the industrial relations system of the industry, bargaining for member, nonmember, miners and management; how did a union which came into being to take wages out of competition eventually come to shield prices from competition as well and what is causing the erosion of that power; how can the environmental threats of an industry be compromised with its essential resource role; with all of its traditional markets dead or dying, how coal has survived through electric power generation; and what is the future of the industry.

  7. Microcomputer based simulation of coal preparation plants: a planning and performance analysis tool for operating personnel in the coal industry

    SciTech Connect

    Chaves, M.M.

    1983-01-01

    The performance of a coal preparation plant can be simulated using an existing process simulation program and a large mainframe computer. Large computers, however, are not common in a preparation plant environment. The objective of this study was to transfer the simulation technology from a large scale mainframe computer environment to a small scale microcomputer environment. This was accomplished by logically decomposing and physically restructuring the existing program; adding interactive data entry/revision modules; providing a series of modules to control the execution of the individual programs; and adding the facility to review summary output on-line. The completed project was assessed by representatives from industry, government, and academia. The assessors state that the microcomputer based simulator is a valuable planning and analysis tool for design and operations engineers in the coal industry. The simulator created during this project utilized the microcomputer technolgy which was available in 1981-1982. Since that time, technological advances in the field of microcomputers have appeared in the marketplace. These advances involve extended memory capacities, higher density storage disks and faster execution times.

  8. The role of coal in industrialization: A case study of Nigeria

    SciTech Connect

    Akarakiri, J.B. )

    1989-01-01

    Coal is a mineral matter found in layers or beds in sedimentary rocks. It is a very highly variable substance. In addition to the variations from lignite to bituminous and anthracite, there are vast differences in its heating value, amount of volatiles, sulfur, moisture and so on. The chemical and physical properties of coal make it an important industrial raw material. There is proven 639 million tonnes of coal reserves in Nigeria. This paper examines the potential and current role of coal in the industrialization of Nigeria. Industries are now dependent on fuel oil as a source of fuel because of its economic and technological advantages over coal. Coal is a source of industrial energy for the future after the known oil reserves might have been exhausted. In the short term, coal can be used as a material for chemicals, iron and steel production as well as a substitute for wood energy in the process of industrialization.

  9. Economics of the coal industry east of the Mississippi, 1973-1982

    USGS Publications Warehouse

    Bhagwat, S.B.

    1987-01-01

    Government regulations on health, safety and environment have been poppular blamed for the declining productivity in U.S. coal mines since 1970. The stagnation in the coal industry east of the Mississippi is alleged to have been caused by this declining productivity and by the growth of cheaper and cleaner coal production west of the Mississippi. Economic evidence suggests, however, that productivity declines were more due to a relative lowering of labor costs in comparison with coal prices and due to work stoppages. The development of western coals fields was spurred by growth in local demand and had only a relatively small impact on coal production east of the Mississippi. Problems of the eastern coal industry are rooted mainly in slow economic growth in eastern U.S. which must be addressed in the long-term interests of the eastern coal industry. ?? 1987.

  10. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, Robert T.; Davidson, Casie L.

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sources together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  11. Development of a retrofit coal combustor for industrial applications, (Phase 2)

    SciTech Connect

    Not Available

    1989-07-01

    The objective of Phase I of the program for the development of a retrofit pulse coal combustor for industrial applications was to design, fabricate, test and evaluate advanced chamber designs at the laboratory-scale utilizing several fuels (Task 1). The activities were structured to provide design criteria for scaling up to the pilot-scale level for the demonstration of a pulse combustor fired with coal-water mixtures for industrial boiler and process heater retrofit applications. The design data and information acquired during Task 1 of the initial phase was to develop scale-up design criteria for scaling the laboratory-scale design to pilot-scale including interface requirements for the field demonstration. The scale-up pilot unit design was to be sufficiently developed to allow fabrication of the unit for testing in the existing test facility upon DOE exercising its option for the follow-on activities of this program. These follow-on activities (Phase II) included the fabrication, test, and engineering evaluation of the pilot-scale combustor as well as technical and laboratory test support activities for reducing the technical risks and costs of development at the pilot-scale. Based on the information, test, data and technical support activities, a retrofit combustor system was to be designed for field demonstration. An additional effort was added to the contract by modification A005. This modification added a Phase IA in place of the original Task 2 of Phase I activity. This interim phase consisted of three technical tasks described in previous quarterly reports. Phase II was initiated in April 1989.

  12. Some Problems of Industrial Scale-Up.

    ERIC Educational Resources Information Center

    Jackson, A. T.

    1985-01-01

    Scientific ideas of the biological laboratory are turned into economic realities in industry only after several problems are solved. Economics of scale, agitation, heat transfer, sterilization of medium and air, product recovery, waste disposal, and future developments are discussed using aerobic respiration as the example in the scale-up…

  13. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  14. Non traditional uses of coal ash: Steel industry applications

    SciTech Connect

    Hauke, D.

    1997-09-01

    Coal fly ash is used by the steel industry as an insulating cover to retain heat in ladles of molten steel and as a slag foamer in electric arc furnaces (EAFs) to prolong the life of consumable components and to aid extraction of impurities from the molten steel. The fly ashes that are used in the steel industry are generated from stoker boilers and have a relatively wide particle-size distribution. The powder-type materials used by steel mills to insulate ladles of molten metal include rice hull ash, a heat treated montmorillonite clay mineral (calcined clay), a fly ash from a stoker boiler called LadleJacket, and coke breeze. These ladle insulators should be flowable, coarse, and have a wide particle-size distribution. A study to compare the insulating characteristics of ladle insulators, conducted by the American Foundrymen`s Society Cast Metals Institute, indicated that the ladle insulated with LadleJacket exhibited a lower rate of heat loss than either the rice hull ash or calcined clay. To prolong the life of carbon electrodes and refractory in EAFs and to promote extraction of contaminants from the steel, carbon-based ingredients are injected into the slag to cause it to foam. Typically, high-carbon products such as coke breeze (coke fines) are used as slag foamers. A new product called Carbon Plus, which is a coarse, high-carbon fly ash from a coal-fired stoker boiler, is now being used as a slag foamer in the steel industry.

  15. ISO 9000 and its effects on the coal industry

    SciTech Connect

    Vardys, R.K.

    1996-12-31

    It is asserted that organizations that do not implement a formal quality program by the year 2000 will not survive. The ISO 9000 quality management standards provide the model for many companies that have determined a quality program is vital not only for their survival, but their growth, in an increasingly competitive business environment. The U.S. coal industry has been hit hard with utility de-regulation and global competition. More emphasis is being placed on bold cost savings measures by utilities and coal producers alike. These measures range from subcontracting analytical work to subcontracting power plant maintenance. Unfortunately, quality management systems are still seen as an expense instead of a cost saving measure and are not being addressed by those who most desperately need quality management systems. What must be understood is that through the implementation of a quality management program, companies can recover costs that were previously accepted as unrecoverable. Prevention costs (documentation, internal auditing, training, management review, etc.) will increase slightly, due to an increased emphasis on a quality management system, but, a net savings is realized through a decrease in failure costs, e.g., waste, scrap, meetings to discuss failures/place blame, worry, re-work, client loss, client doubt, etc.

  16. The research of distributed interactive simulation based on HLA in coal mine industry inherent safety

    NASA Astrophysics Data System (ADS)

    Dou, Zhi-Wu

    2010-08-01

    To solve the inherent safety problem puzzling the coal mining industry, analyzing the characteristic and the application of distributed interactive simulation based on high level architecture (DIS/HLA), a new method is proposed for developing coal mining industry inherent safety distributed interactive simulation adopting HLA technology. Researching the function and structure of the system, a simple coal mining industry inherent safety is modeled with HLA, the FOM and SOM are developed, and the math models are suggested. The results of the instance research show that HLA plays an important role in developing distributed interactive simulation of complicated distributed system and the method is valid to solve the problem puzzling coal mining industry. To the coal mining industry, the conclusions show that the simulation system with HLA plays an important role to identify the source of hazard, to make the measure for accident, and to improve the level of management.

  17. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    ERIC Educational Resources Information Center

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  18. Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs

    NASA Astrophysics Data System (ADS)

    Eberhardt, Christina; Grathwohl, Peter

    2002-11-01

    Groundwater contamination due to complex organic mixtures such as coal tar, creosote and fuels is a widespread problem in industrialized regions. Although most compounds in these mixtures are biodegradable, the contaminant sources are very persistent for many decades after the contamination occurred (e.g., more than 100 years ago at gasworks sites). This limited bioavailability is due to slow dissolution processes. This study presents results from a large scale tank experiment (8 m long) on the long-term (354 days) dissolution kinetics of BTEX and PAHs from a 2.5 m long coal tar pool and 0.5 m long (smear) zone containing coal tar blobs distributed in a coarse sand. The results indicate (1) that Raoult's law holds for estimation of the saturation aqueous concentrations of the coal tar constituents, (2) that for the dissolution of smear zones longer than approximately 0.1 m and with more than 3-5% residual saturation, the local equilibrium assumption is valid and (3) that although very small (<0.1 mm), the transverse vertical dispersivity dominates the pool dissolution processes. Typical time scales for removal of the pollutants from the blob zone and the pool are in the order of a few weeks to more than 10,000 years, respectively.

  19. Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs.

    PubMed

    Eberhardt, Christina; Grathwohl, Peter

    2002-11-01

    Groundwater contamination due to complex organic mixtures such as coal tar, creosote and fuels is a widespread problem in industrialized regions. Although most compounds in these mixtures are biodegradable, the contaminant sources are very persistent for many decades after the contamination occurred (e.g., more than 100 years ago at gasworks sites). This limited bioavailability is due to slow dissolution processes. This study presents results from a large scale tank experiment (8 m long) on the long-term (354 days) dissolution kinetics of BTEX and PAHs from a 2.5 m long coal tar pool and 0.5 m long (smear) zone containing coal tar blobs distributed in a coarse sand. The results inidicate (1) that Raoult's law holds for estimation of the saturation aqueous concentrations of the coal tar constituents, (2) that for the dissolution of smear zones longer than approximately 0.1 m and with more than 3-5% residual saturation, the local equilibrium assumption is valid and (3) that although very small (< 0.1 mm), the transverse vertical dispersivity dominates the pool dissolution processes. Typical time scales for removal of the pollutants from the blob zone and the pool are in the order of a few weeks to more than 10,000 years, respectively. PMID:12683639

  20. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  1. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  2. BENCH SCALE DEVELOPMENT OF MEYERS PROCESS FOR COAL DESULFURIZATION

    EPA Science Inventory

    The report gives results of coal desulfurization experiments to determine the feasibility and advantages of combining gravity separation of coal with chemical desulfurization. The investigations led to the definition of the Gravichem Process, a combination physical/chemical coal ...

  3. Productivity, job satisfaction, and health and safety in the coal industry: the participatory alternative

    SciTech Connect

    Not Available

    1982-01-01

    This is a conference which presents results and ideas on workplace participation in the coal industry. It discusses the theory of the quality circle groups for developing their own production rates and design goals. It presents the results of different coal company participation in this idea and how to implement this option. Individual topics are entered into the Data Base as separate items.

  4. Effective Communication and Training. A Guide for Workplace Trainers in the Australian Coal Industry.

    ERIC Educational Resources Information Center

    Lukin, Annabelle

    This guide is designed to help workplace trainers in Australia's coal industry improve coal miners' operator and general communication skills through a curriculum that integrates training in language, literacy, and numeracy. The following topics are discussed in the guide's seven sections: the changing workplace (changing work environment;…

  5. Upgrading selected Czech coals for home and industrial heating

    SciTech Connect

    Musich, M.A.; Young, B.C.

    1995-12-31

    The Czech Republic has large coal reserves, particularly brown coal and lignite, and to a lesser extent, bituminous coal. Concurrent with the recent political changes, there has been a reassessment of the role of coal for electrical and heating energy in the future economy, owing to the large dependence on brown coal and lignite and the implementation of more stringent environmental regulations. These coals have a relatively high sulfur content, typically 1-3 wt%, and ash content, leading to significant SO{sub 2} and other gaseous and particulate emissions. Some of the bituminous coals also exhibit high ash content. Against this background, the Energy & Environmental Research Center, on behalf of the U.S. Agency for International Development and the U.S. Department of Energy Office of Fossil Energy, undertook a project on upgrading Czech coals to achieve desired fuel properties. The purpose of the project was to assist the city of Usti nad Labem in Northern Bohemia in developing cost-effective alternatives for reducing environmental emissions from district and home heating systems.

  6. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  7. Solid-liquid separation for liquefied coal industries. Final report

    SciTech Connect

    Tiller, F.M.; Leu, W.

    1984-07-01

    This book has been written for engineers concerned with separation processes related to liquefied coal slurries. Difficulties in removing mineral residues and unconverted carbon represent a major obstacle to economic production of liquefied coal products. Reactor slurries in which hydrogenation has been used to upgrade coal generally contain 5 to 10 weight percents of solids which must be removed. Various kinds of equipment employed for particulate removal include rotary drum pressure, candle, and leaf filters, solid bowl centrifuges, hydrocyclones, and critical solvent de-ashers. Although emphasis has been given to filtration of solvent refined coal, much of the material is of a fundamental character and is applicable to other fields. Analysis of filtration data requires an understanding of the principles of frictional flow through compressible beds of particulates. Much of the analysis appearing in the literature must be carefully evaluated as errors and misinterpretations abound.

  8. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  9. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1990-07-01

    The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

  10. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  11. The development of a coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  12. Do coal consumption and industrial development increase environmental degradation in China and India?

    PubMed

    Shahbaz, Muhammad; Farhani, Sahbi; Ozturk, Ilhan

    2015-03-01

    The present study is aimed to explore the relationship between coal consumption, industrial production, and CO2 emissions in China and India for the period of 1971-2011. The structural break unit root test and cointegrating approach have been applied. The direction of causal relationship between the variables is investigated by applying the VECM Granger causality test. Our results validate the presence of cointegration among the series in both countries. Our results also validate the existence of inverted U-shaped curve between industrial production and CO2 emissions for India, but for China, it is a U-shaped relationship. Coal consumption adds in CO2 emissions. The causality analysis reveals that industrial production and coal consumption Granger cause CO2 emissions in India. In the case of China, the feedback effect exists between coal consumption and CO2 emissions. Due to the importance of coal in China and India, any reduction in coal consumption will negatively affect their industrial value added as well as economic growth. PMID:25277709

  13. Corrosion performance of alumina scales in coal gasification environments

    SciTech Connect

    Natesan, K.

    1997-02-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques.

  14. Scale effects on strength of geomaterials, case study: Coal

    NASA Astrophysics Data System (ADS)

    Scholtès, Luc; Donzé, Frédéric-Victor; Khanal, Manoj

    2011-05-01

    Scale effects on the strength of coal are studied using a discrete element model. The key point of the model is its capability to discriminate between the "strictly sample size" effect and the "Discrete Fracture Network (DFN) density" effect on the mechanical response. Simulations of true triaxial compression tests are carried out to identify their respective roles. The possible bias due to the discretization size distribution of the discrete element model is investigated in detail by considering low-resolution configurations. The model is shown to be capable of quantitatively reproducing the dependency of the maximum strength on the size of the sample. This relationship mainly relies on the DFN density. For all given sizes, as long as the DFN density remains constant with a uniform distribution or if discontinuities are absent in the considered medium, the maximum strength of the material remains constant.

  15. Estimates and Predictions of Coal Workers' Pneumoconiosis Cases among Redeployed Coal Workers of the Fuxin Mining Industry Group in China: A Historical Cohort Study.

    PubMed

    Han, Bing; Liu, Hongbo; Zhai, Guojiang; Wang, Qun; Liang, Jie; Zhang, Mengcang; Cui, Kai; Shen, Fuhai; Yi, Hongbo; Li, Yuting; Zhai, Yuhan; Sheng, Yang; Chen, Jie

    2016-01-01

    This research was aimed at estimating possible Coal workers' pneumoconiosis (CWP) cases as of 2012, and predicting future CWP cases among redeployed coal workers from the Fuxin Mining Industry Group. This study provided the scientific basis for regulations on CWP screening and diagnosis and labor insurance policies for redeployed coal workers of resource-exhausted mines. The study cohort included 19,116 coal workers. The cumulative incidence of CWP was calculated by the life-table method. Possible CWP cases by occupational category were estimated through the average annual incidence rate of CWP and males' life expectancy. It was estimated that 141 redeployed coal workers might have suffered from CWP as of 2012, and 221 redeployed coal workers could suffer from CWP in the future. It is crucial to establish a set of feasible and affordable regulations on CWP screening and diagnosis as well as labor insurance policies for redeployed coal workers of resource-exhausted coal mines in China. PMID:26845337

  16. Estimates and Predictions of Coal Workers’ Pneumoconiosis Cases among Redeployed Coal Workers of the Fuxin Mining Industry Group in China: A Historical Cohort Study

    PubMed Central

    Han, Bing; Liu, Hongbo; Zhai, Guojiang; Wang, Qun; Liang, Jie; Zhang, Mengcang; Cui, Kai; Shen, Fuhai; Yi, Hongbo; Li, Yuting; Zhai, Yuhan; Sheng, Yang; Chen, Jie

    2016-01-01

    This research was aimed at estimating possible Coal workers’ pneumoconiosis (CWP) cases as of 2012, and predicting future CWP cases among redeployed coal workers from the Fuxin Mining Industry Group. This study provided the scientific basis for regulations on CWP screening and diagnosis and labor insurance policies for redeployed coal workers of resource-exhausted mines. The study cohort included 19,116 coal workers. The cumulative incidence of CWP was calculated by the life-table method. Possible CWP cases by occupational category were estimated through the average annual incidence rate of CWP and males’ life expectancy. It was estimated that 141 redeployed coal workers might have suffered from CWP as of 2012, and 221 redeployed coal workers could suffer from CWP in the future. It is crucial to establish a set of feasible and affordable regulations on CWP screening and diagnosis as well as labor insurance policies for redeployed coal workers of resource-exhausted coal mines in China. PMID:26845337

  17. Response of an industrial coal flotation circuit to changing reagent dosages

    SciTech Connect

    Suardini, P.J.; Kawatra, S.K.

    1995-10-01

    A number of on-stream coal slurry analyzers are presently being developed and commercialized for measuring ash and solids in coal process streams, particularly around flotation circuits. The eventual goal of these efforts is to develop on-line quality control systems for flotation circuits and other fine-coal cleaning operations. As part of this on-line monitoring and control effort, it is important to gain a better understanding of the response of industrial flotation circuits to changing operating conditions. This paper summarizes the results from a detailed sampling program performed at an industrial coal flotation circuit in western Pennsylvania. The testing focused on evaluating the response of the circuit to changes in reagent dosages, operating conditions sand feed compositions. The testing indicated that it is desirable to maintain high collector-to-frother ratios to enhance coarse particle flotation. The recovery of fine impurity particles was also proportional to water recovery, due to hydraulic entrainment.

  18. Guide to federal export assistance activities applicable to the US coal and coal technologies industry

    SciTech Connect

    Not Available

    1989-09-01

    The federal government provides a complete range of programs and services that can assist United States (US) coal and coal-technology firms as they expand into the foreign marketplace. These programs cover the spectrum of business export needs, which include: providing assistance in identifying target markets, locating specific business opportunities and foreign joint-venture partners, arranging business appointments, organizing trade missions, sponsoring feasibility studies, conducting trade analyses, providing financing, insuring investments, and providing in-country training and assistance. Under the sponsorship of the Department of Energy's (DOE) Office of Fossil Energy (FE), this Guide has been developed to address this problem. It is intended to provide coal and coal technology firms with a single reference source for identifying US government agencies, programs, and contacts that might aid in exporting. The Guide contains an in-depth discussion of the eight major agencies offering export assistance: the Agency for International Development (AID), the Departments of Commerce (DOC) and State (DOS), the Export-Import Bank (Eximbank), the Overseas Private Investment Corporation (OPIC), the Small Business Administration (SBA), the Trade and Development Program (TDP), and the Office of the US Trade Representative (USTR). In addition, this guide identifies pertinent activities performed by other federal agencies that might assist coal and coal-technologies exporters, including the Departments of Defense (DOD), Education, Energy (DOE), and Labor (DOL).

  19. Development of a retrofit coal combustor for industrial applications, (Phase 2). Technical progress report, April--June 1989

    SciTech Connect

    Not Available

    1989-07-01

    The objective of Phase I of the program for the development of a retrofit pulse coal combustor for industrial applications was to design, fabricate, test and evaluate advanced chamber designs at the laboratory-scale utilizing several fuels (Task 1). The activities were structured to provide design criteria for scaling up to the pilot-scale level for the demonstration of a pulse combustor fired with coal-water mixtures for industrial boiler and process heater retrofit applications. The design data and information acquired during Task 1 of the initial phase was to develop scale-up design criteria for scaling the laboratory-scale design to pilot-scale including interface requirements for the field demonstration. The scale-up pilot unit design was to be sufficiently developed to allow fabrication of the unit for testing in the existing test facility upon DOE exercising its option for the follow-on activities of this program. These follow-on activities (Phase II) included the fabrication, test, and engineering evaluation of the pilot-scale combustor as well as technical and laboratory test support activities for reducing the technical risks and costs of development at the pilot-scale. Based on the information, test, data and technical support activities, a retrofit combustor system was to be designed for field demonstration. An additional effort was added to the contract by modification A005. This modification added a Phase IA in place of the original Task 2 of Phase I activity. This interim phase consisted of three technical tasks described in previous quarterly reports. Phase II was initiated in April 1989.

  20. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  1. Linkage with Industry on a National Scale.

    ERIC Educational Resources Information Center

    Shoemaker, Byrl R.

    1985-01-01

    Examines how the automobile industry, through the National Institute for Automotive Service Excellence and the National Automotive Technical Education Foundation, has accepted a set of standards developed by the Industry Planning Council of the American Vocational Association Trade and Industrial Division and made them a basis for certification of…

  2. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    NASA Astrophysics Data System (ADS)

    Fadhil, S. S. A.; Hasini, H.; Shuaib, N. H.

    2013-06-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential "ring-like" region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  3. Abandoned coal mining sites: using ecotoxicological tests to support an industrial organic sludge amendment.

    PubMed

    Chiochetta, Claudete G; Radetski, Marilice R; Corrêa, Albertina X R; Tischer, Vinícius; Tiepo, Erasmo N; Radetski, Claudemir M

    2013-11-01

    The different stages involved in coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. Remediation of these contaminated soils can be carried out by application of industrial organic sludge if the concerns regarding the potential negative environmental impacts of this experimental practice are properly addressed. In this context, the objective of this study was to use ecotoxicological tests to determine the quantity of organic industrial sludge that is required as a soil amendment to restore soil production while avoiding environmental impact. Chemical analysis of the solids (industrial sludge and soil) and their leachates was carried out as well as a battery of ecotoxicity tests on enzymes (hydrolytic activity), bacteria, algae, daphnids, earthworms, and higher plants, according to standardized methodologies. Solid and leachate samples of coal-contaminated soil were more toxic than those of industrial sludge towards enzyme activity, bacteria, algae, daphnids, and earthworms. In the case of the higher plants (lettuce, corn, wild cabbage, and Surinam cherry) the industrial sludge was more toxic than the coal-contaminated soil, and a soil/sludge mixture (66:34% dry weight basis) had a stimulatory effect on the Surinam cherry biomass. The ecotoxicological assessment of the coal-contaminated soil remediation using sludge as an amendment is very important to determine application rates that could promote a stimulatory effect on agronomic species without negatively affecting the environment. PMID:23114837

  4. Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor--The Effect of Coal Blending

    EPA Science Inventory

    A study has been undertaken to investigate the effect of blending PRB coal with an Eastern bituminous coal on the speciation of Hg across an SCR catalyst. In this project, a pilot-scale (1.2 MWt) coal combustor equipped with an SCR reactor for NOx control was used for evaluating ...

  5. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    SciTech Connect

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  6. The changing structure of the US coal industry: An update, July 1993

    SciTech Connect

    Not Available

    1993-07-29

    Section 205(a)(2) of the Department of Energy Organization Act of 1977 requires the Administrator of the Energy Information Administration (EIA) to carry out a central, comprehensive, and unified energy data and information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. The purpose of this report is to provide a comprehensive overview of changes in the structure of the US coal industry between 1976 and 1991. The structural elements examined include the number of mines, average mine size, the size distribution of mines, and the size distribution of coal firms. The report measures changes in the market shares of the largest coal producers at the national level and in various regions. The Central Appalachian low-sulfur coal market is given special attention, and the market for coal reserves is examined. A history of mergers in the coal industry is presented, and changes in the proportions of US coal output that are produced by various types of companies, including foreign-controlled firms, are described. Finally, the impact of post-1991 mergers on the structure of the industry is estimated. The legislation that created the EIA vested the organization with an element of statutory independence. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high-quality information and to perform objective, credible analyses in support of deliberations by both public and private decisionmakers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  7. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    SciTech Connect

    Suardini, P.J.

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  8. Liquid Fuels from Coal: From R&D to an Industry

    ERIC Educational Resources Information Center

    Swabb, L. E., Jr.

    1978-01-01

    Government support of coal liquefaction Research and Development has created the conditions that make possible the development of needed technology. With the proper government incentives, pioneer plants will lead to lower costs, and this, plus rising prices, will create the conditions necessary to develop a multi-plant industry. (Author/MA)

  9. EVALUATION OF LOW EMISSION COAL BURNER TECHNOLOGY ON INDUSTRIAL BOILERS. THIRD ANNUAL REPORT (1981)

    EPA Science Inventory

    The report summarizes the third year's effort under EPA Contract 68-02-3127. The objective of the program is to conduct a field evaluation of the distributed mixing burner (DMB) on an industrial size boiler. The DMB concept provides for controlled mixing of coal with combustion a...

  10. REVIEW OF CONCURRENT MASS EMISSION AND OPACITY MEASUREMENTS FOR COAL-BURNING UTILITY AND INDUSTRIAL BOILERS

    EPA Science Inventory

    The report gives results of concurrent particulate emissions and opacity measurements based on visual observations and/or in-stack transmissometry for more than 400 compliance, acceptance, or experimental tests on coal-fired utility and industrial boilers. The sampling, which inc...

  11. ENVIRONMENTAL ASSESSMENT OF A COAL/WATER SLURRY FIRED INDUSTRIAL BOILER. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    The report gives results of comprehensive emission measurements and analyses for a 7.6 kg/s (60,000 lb/hr) watertube industrial boiler firing a coal/water slurry. Measurements included continuous monitoring of flue gas; quantitation of semivolatile organics and 73 trace elements;...

  12. ENVIRONMENTAL ASSESSMENT OF A COAL/WATER SLURRY FIRED INDUSTRIAL BOILER. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report gives results of comprehensive emission measurements and analyses for a 7.6 kg/s (60,000 lb/hr) watertube industrial boiler firing a coal/water slurry. Measurements included continuous monitoring of flue gas; quantitation of semivolatile organics and 73 trace elements;...

  13. Coal-fired boiler costs for industrial applications

    SciTech Connect

    Kurzius, S.C.; Barnes, R.W.

    1982-04-01

    Several of the current sources of information provide data on coal-fired steam boiler costs. As published, these data give widely varying and possibly inconsistent conclusions. This study was undertaken to determine the extent to which the differences in the various sets of published data bases could be resolved and, if possible, to arrive at more reliable cost correlations to be used in Oak Ridge Energy Demand Models. Our principal finding is that it is indeed possible to restate the costs within each data base on a more consistent basis. When this is done, reasonable engineering correlations of all the cost data versus steam plant capacity can be made over the 10,000 to 5000,000 lb/hr range.

  14. Industrial pulverized coal low NO{sub x} burner. Phase 1

    SciTech Connect

    Not Available

    1993-02-23

    The objective of Phase 1 of this program is to develop a novel low NO{sub x} pulverized coal burner, which offers near-term commercialization potential, uses preheated combustion air of up to 1000{degree}F, and which can be applied to high-temperature industrial heating furnaces, chemical process furnaces, fired heaters, and boilers. In the low NO{sub x} coal burner concept, the flue gas is recycled to the burner by jet pump action provided by the momentum of the primary air flow. The recycled flue gas is used to convey the pulverized coal to the jet pump where mixing with the primary air takes place. Ignition occurs downstream of the jet mixing section. The recycled flue gas is at high temperature. When the pulverized coal is entrained, it is heated by conduction from the flue gas. The coal is pyrolyzed to a large extent before being mixed with the primary air. These pyrolysis products are the source of energy for the downstream flame. In this process, the fuel nitrogen associated with pyrolysis products can be converted to molecular nitrogen in the pyrolysis flame if the oxygen is held to substoichiometric concentrations based upon the burning species (pyrolysis products and some char). Pyrolysis products combustion is believed to be the primary source of NO{sub x} emissions in coal combustors. Progress is described.

  15. Analysis of the holistic impact of the Hydrogen Economy on the coal industry

    NASA Astrophysics Data System (ADS)

    Lusk, Shannon Perry

    As gas prices soar and energy demand continues to grow amidst increasingly stringent environmental regulations and an assortment of global pressures, implementing alternative energy sources while considering their linked economic, environmental and societal impacts becomes a more pressing matter. The Hydrogen Economy has been proposed as an answer to meeting the increasing energy demand for electric power generation and transportation in an environmentally benign way. Based on current hydrogen technology development, the most practical feedstock to fuel the Hydrogen Economy may prove to be coal via hydrogen production at FutureGen plants. The planned growth of the currently conceived Hydrogen Economy will cause dramatic impacts, some good and some bad, on the economy, the environment, and society, which are interlinked. The goal of this research is to provide tools to inform public policy makers in sorting out policy options related to coal and the Hydrogen Economy. This study examines the impact of a transition to a Hydrogen Economy on the coal industry by creating FutureGen penetration models, forecasting coal MFA's which clearly provide the impact on coal production and associated environmental impacts, and finally formulating a goal programming model that seeks the maximum benefit to society while analyzing the trade-offs between environmental, social, and economical concerns related to coal and the Hydrogen Economy.

  16. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  17. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.

  18. The mine management professions in the twentieth-century Scottish coal mining industry

    SciTech Connect

    Perchard, A.

    2007-07-01

    This book seeks to redress the exclusion of colliery managers and other mining professionals from the history of British, and particularly Scottish, coal industries. This is accomplished by examining these groups within the most crucial period of their ascendancy in the Scottish coal mining industry, 1930-1966. This work seeks to place such persons within their context and to examine their roles, statuses and behaviours through their relationships with employees and the execution of their functions, also examining their terms and conditions of employment, the outlook of their professional associations, and that of their union. Through all this, Dr. Perchard illustrates how this growing consciousness amongst managerial employees in the industry was accompanied by an intense public discussion, within the mining professions, over their future shape, principles and occupational standards.

  19. Sources and Distribution of Trace Elements in Soils Near Coal-Related Industries.

    PubMed

    Shangguan, Yuxian; Wei, Yuan; Wang, Linquan; Hou, Hong

    2016-04-01

    The degree of contamination of soil and the potential ecological risks associated with five different coal-burning industries were assessed in Shanxi Province, China. Results showed that the trace element concentrations in soil close to the coal industries were higher than those in the background soils, and the enrichment factors were >1. The potential ecological risk indexes ranged from 99 to 328 for the five coal-related industries. Results also illustrated that the trace elements were transported through the atmosphere. Concentrations of B, Hg, Mo, Pb, Se, Cr, Cu, Ni, V, Zn, and Mn were high in the area around the steel plant. Principal component analysis and redundancy analysis indicated that the sources of Se, Mo, Hg, Cd, As, Cr, B, Ni, and Cu were mainly anthropogenic, whereas Pb, V, Cu, Zn, and Mn were from natural sources. The soil Hg and Se contents were simulated by an artificial neural network model, which showed that Hg and Se in soils were from atmospheric deposits and their spatial distributions were related to the dominant wind direction. The potential ecological risk from Hg was much higher (one order of magnitude) than that from the other trace elements, which highlights the fact that it deserves urgent attention. Control of emissions from the burning of coal and other raw materials (such as iron and phosphate ores) should also be prioritized. PMID:26428004

  20. Large-scale studies of spontaneous combustion of coal. Rept. of investigations/1991

    SciTech Connect

    Smith, A.C.; Miron, Y.; Lazzara, C.P.

    1991-01-01

    The U.S. Bureau of Mines constructed a large-scale facility to study the self-heating of a large coal mass under conditions that simulate a gob area of a mine. The insulated coal chamber can hold up to 13 short tons (st) of coal and is provided with a forced ventilation system and computer-controlled temperature and gas measurement systems to monitor the heat and mass transfer phenomena that occur in the coalbed. Three experiments were completed with high-volatile C bituminous coals that exhibited high spontaneous combustion potentials in laboratory-scale tests. In the first two tests, a sustained heating was not achieved. In the third test, temperatures throughout the coalbed increased steadily from the start, with thermal runaway occurring near the center of the coalbed after 23 days. The thermal reaction zone then moved toward the front of the coalbed. The results of these tests showed that the self-heating of a large coal mass depends not just on the reactivity of the coal, but also on the particle size of the coal, the freshness of the coal surfaces, the heat-of-wetting effect, and the availability of O2 at optimum ventilation rates.

  1. Partners in health: Injury prevention and the coal mining industry

    SciTech Connect

    Hoerner, E.F.

    1996-12-31

    It is necessary to solve many of the work-related problems and areas of concern that are present in the mining industry. An overview of concerns and how to attack the problems is discussed. Some of the worker`s injury problems, such as back pain syndromes, are by no means unique to the industry. However, other problems such as bolter shoulder syndrome problems, are job specific and need biomechanical investigation to determine specific causal relation of job task to injury. The goal would be defined as twofold. The primary goal is to identify the specific job contribution to high risk occupations, and secondly, to implement a total work force injury prevention program. These goals are discussed.

  2. Strategy for large scale solubilization of coal - characterization of Neurospora protein and gene

    SciTech Connect

    Patel, A.; Chen, Y.P.; Mishra, N.C.

    1995-12-31

    Low grade coal placed on mycelial mat of Neurospora crassa growing on Petri plate was found to be solubilized by this fungus. A heat stable protein has been purified to near homogeneity which can solubilize low grade coal in in vitro. The biochemical properties of the Neurospora protein will be presented. The nature of the product obtained after solubilization of coal by Neurospora protein in vivo and in vitro will also be presented. The N-terminus sequence of the amino acids of this protein will be used to design primer for possible cloning of gene for Neurospora protein capable of solubilization of coal in order to develop methodology for coal solubilization on a large scale.

  3. Bio-coal briquette

    SciTech Connect

    Honda, Hiroshi

    1993-12-31

    Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

  4. An explanation of large-scale coal and gas outbursts in underground coal mines: the effect of low-permeability zones on abnormally abundant gas

    NASA Astrophysics Data System (ADS)

    An, F. H.; Cheng, Y. P.

    2013-09-01

    Large-scale coal and gas outbursts post a risk of fatal disasters in underground mines. Large-scale outbursts (outburst of coal and rock greater than 500 t) in recent years in China indicate that there is abundant gas in areas of outbursts containing large amounts of potential energy. The adequate sealing properties of the roof and floor of a coal seam are required for local abundant gas around the site of an outburst, but an annular low-permeability zone in a coal seam, which prevents the loss by gas migration through the coal seam itself, is also required. The distribution of coal gas with this annular zone of low permeability is described, and it is proposed that the annular zone of low permeability creates conditions for confining the coal gas. The effect of this low-permeability zone on the gas distribution is analyzed after allowing for simplifications in the model. The results show that the permeability and length of the low-permeability zone have a great impact on the gas distribution. A steep gradient of gas pressure in the low-permeability zone and the high gas pressure in the abundant zone of gas can promote coal mass failure and coal wall deformation, thereby accelerating the coal and gas outburst. The high pressure gas in abundant zone of gas will lead to a large-scale outburst if an outburst occurs.

  5. [Emission characteristics of PM10 from coal-fired industrial boiler].

    PubMed

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China. PMID:19432307

  6. The production of high load coal-water mixtures on the base of Kansk-Achinsk Coal Basin

    SciTech Connect

    Demidov, Y.; Bruer, G.; Kolesnikova, S.

    1995-12-01

    The results of the {open_quotes}KATEKNIIugol{close_quotes} work on the problems of high load coal-water mixtures are given in this article. General principles of the mixture production, short characteristics of Kansk-Achinsk coals, the experimental results of the coal mixture production on a test-industrial scale, the suspension preparation on the base of coal mixtures, technical-economical indexes of tested coal pipeline variants based on Kansk-Achinsk coals are described.

  7. 78 FR 26337 - Notice of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial Fuel Use Act... a coal capability self- certification to the Department of Energy (DOE) pursuant to Sec. 201(d) of... 501.60, 61. FUA and regulations thereunder require DOE to publish a notice of filing of...

  8. 77 FR 74473 - Notice of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial Fuel Use Act... a coal capability self- certification to the Department of Energy (DOE) pursuant to Sec. 201(d) of... 501.60, 61. FUA and regulations thereunder require DOE to publish a notice of filing of...

  9. Ash transformations in the real-scale pulverized coal combustion of South African and Colombian coals

    SciTech Connect

    Lind, T.; Kauppinen, E.I.; Valmari, T.; Klippel, N.; Mauritzson, C.

    1996-12-31

    In this work, the formation of ash particles in the combustion of South African Klein Kropie coal and a Colombian coal was studied by measuring the ash particle characteristics upstream of the electrostatic precipitator (ESP) at a 510 MW{sub e} pulverized coal fired power plant. The authors measured the ash particle mass size distributions in the size range 0.01--50 {micro}m using low-pressure impactors and precutter cyclones. Also, samples were collected for computer controlled scanning electron microscopy (CCSEM) with a cyclone with an aerodynamic cut-diameter of about 1 {micro}m. The cyclone-collected samples were analyzed with standard CCSEM procedure by depositing the particles on a filter, and by embedding the particles in epoxy hence acquiring the cross-section analysis of the sample. All major mineral classes in both coals were found to undergo extensive coalescence during combustion. Iron, calcium and magnesium rich particles resulting from the decomposition of pyrite, calcite and dolomite were found to coalesce with quartz and aluminosilicate particles. The size distributions of the fly ash determined with CCSEM and low-pressure impactor-cyclone sampler were found to be similar.

  10. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  11. ENVIRONMENTAL ASSESSMENT OF COAL-AND OIL-FIRING IN A CONTROLLED INDUSTRIAL BOILER. VOLUME I. EXECUTIVE SUMMARY

    EPA Science Inventory

    The report gives results of a comparative multimedia assessment of coal versus oil firing in a controlled industrial boiler. Relative environmental, energy, economic, and societal impacts were identified. Comprehensive sampling and analyses of gaseous, liquid, and solid emissions...

  12. FTIR monitoring of industrial scale CVD processes

    NASA Astrophysics Data System (ADS)

    Hopfe, V.; Mosebach, H.; Meyer, M.; Sheel, D.; Grählert, W.; Throl, O.; Dresler, B.

    1998-06-01

    The goal is to improve chemical vapour deposition (CVD) and infiltration (CVI) process control by a multipurpose, knowledge based feedback system. For monitoring the CVD/CVI process in-situ FTIR spectroscopic data has been identified as input information. In the presentation, three commonly used, and distinctly different, types of industrial CVD/CVI processes are taken as test cases: (i) a thermal high capacity CVI batch process for manufacturing carbon fibre reinforced SiC composites for high temperature applications, (ii) a continuously driven CVD thermal process for coating float glass for energy protection, and (iii) a laser stimulated CVD process for continuously coating bundles of thin ceramic fibers. The feasibility of the concept with FTIR in-situ monitoring as a core technology has been demonstrated. FTIR monitoring sensibly reflects process conditions.

  13. Coal fly ash: the most powerful tool for sustainability of the concrete industry

    SciTech Connect

    Mehta, P.K.

    2008-07-01

    In the last 15 years the global cement industry has almost doubled its annual rate of direct emissions of carbon dioxide. These can be cut back by reducing global concrete consumption, reducing the volume of cement paste in mixtures and reducing the proportion of portland clinker in cement. It has recently been proved that use of high volumes of coal fly ash can produce low cost, durable, sustainable cement and concrete mixtures that would reduce the carbon footprint of both the cement and the power generation industries. 2 photos.

  14. Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: Reactive Chlorine Emissions Inventory

    NASA Astrophysics Data System (ADS)

    McCulloch, Archie; Aucott, Michael L.; Benkovitz, Carmen M.; Graedel, Thomas E.; Kleiman, Gary; Midgley, Pauline M.; Li, Yi-Fan

    1999-04-01

    Much if not all of the chlorine present in fossil fuels is released into the atmosphere as hydrogen chloride (HCl) and chloromethane (CH3Cl, methyl chloride). The chlorine content of oil-based fuels is so low that these sources can be neglected, but coal combustion provides significant releases. On the basis of national statistics for the quantity and quality of coal burned during 1990 in power and heat generation, industrial conversion and residential and commercial heating, coupled with information on the chlorine contents of coals, a global inventory of national HCl emissions from this source has been constructed. This was combined with an estimate of the national emissions of HCl from waste combustion (both large-scale incineration and trash burning) which was based on an estimate of the global quantity released from this source expressed per head of population. Account was taken of reduced emissions where flue gases were processed, for example to remove sulphur dioxide. The HCl emitted in 1990, comprising 4.6 ± 4.3 Tg Cl from fossil fuel and 2 ± 1.9 Tg Cl from waste burning, was spatially distributed using available information on point sources such as power generation utilities and population density by default. Also associated with these combustion sources are chloromethane emissions, calculated to be 0.075 ± 0.07 Tg as Cl (equivalent) from fossil fuels and 0.032 ± 0.023 Tg Cl (equivalent) from waste combustion. These were distributed spatially exactly as the HCl emissions, and a further 0.007 Tg Cl in chloromethane from industrial process activity was distributed by point sources.

  15. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    PubMed

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass

  16. Vulnerability of industrial natural-gas markets to electricity and coal: a context for R and D planning. Working paper

    SciTech Connect

    Lerner, M.O.; Kothari, V.S.; Salama, S.Y.

    1982-11-01

    Current trends in electric- and coal-technology developments and the outlook for natural-gas prices indicate the possibility of strong competition and possible natural-gas market-share losses in the industrial sector. The report develops an initial classification of industrial energy-consuming processes and estimates the extent to which future natural-gas consumption in each class is vulnerable to competition from electricity and coal. The discussion also addresses reasons why specific gas markets are considered vulnerable.

  17. Mineralogical and geochemical composition of particulate matter (PM10) in coal and non-coal industrial cities of Henan Province, North China

    NASA Astrophysics Data System (ADS)

    Song, Xiaoyan; Shao, Longyi; Zheng, Qiming; Yang, Shushen

    2014-06-01

    A total of 19 24-h PM10 samples, the 11 for a typical coal industrial city and 8 for a non-coal industrial city, were collected by a TSP-PM10 sampler during a serious and continuous haze event in Henan Province, North China. An X-ray diffractometer (XRD) was used to determine the mineralogy and a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDS) was used to determine the morphology and chemical composition of the PM10 samples. The crystalline phases that were identified by XRD mainly include sulfate (dominated by koktaite, boussingaultite, gypsum, etc.) and silicate (quartz and kaolinite) as well as small amount of chloride (sal-ammoniac). Silicate particles mainly originate from crust as well as waste dumps for coal industrial cities, and usually have an irregular shape, while sulfate particles occur as individual sheets or needles, and have an anthropogenic origin, which are the products of chemical reaction of preexisting carbonate with SO2 emitted by coal combustion. Nitrogen, S and Cl occurring in particulate matter are considered to have an anthropogenic origin due to their high enrichment factors, and their abundance in particulate matter is associated with coal industrial activities. Nitrogen mainly occurs as NH4+ in sulfate, as well as in small amount of organic matter. Sulfur mainly occurs as SO42 - in sulfate. Chlorine mainly occurs in chloride.

  18. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    SciTech Connect

    Yoon, R.-H.; Yan, E.S.; Luttrell, G.H.; Adel, G.T.

    1996-12-31

    It is the objective of the present project to further develop the triboelectrostatic separation (TES) process developed at the Federal Energy Technology Center and test the process at a proof-of-concept (POC) scale. This process has a distinct advantage over other coal cleaning processes in that it does not entail costly steps of dewatering. The POC-scale unit is to developed based on (1) the charge characteristics of coal and mineral matter that can be determined using the novel online tribocharge measuring device developed at Virginia Tech, and (2) the results obtained from bench-scale TES tests conducted on three different coals. At present, the project is at the stage of engineering design, which has three subtasks, Charger Tests, Separator Tests, and Final POC Design. Work accomplished during the current reporting period pertains to the first two subtasks.

  19. Industry perspectives on increasing the efficiency of coal-fired power generation

    SciTech Connect

    Torrens, I.M.; Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  20. Use of sorbents of hot-contact coal carbonization in the power industry

    SciTech Connect

    A.I. Blokhin; F.E. Keneman; A.V. Sklyarov; B.S. Fedoseev

    2003-11-15

    The many years of experience in the use of sorbents of hot-contact coal carbonization (HCCC) in the power industry is used for substantiation of their prospects for solving problems of power and materials saving and improving the reliability and safety of operation of power equipment. Results of tests of sorbents in systems of water conditioning of thermal power plants, cleaning of return condensates, mazut- and oil-contaminated process wastewaters, makeup water in heat networks, and biosorption cleaning of sewerage are presented. The sorption methods of cleaning are shown to have many advantages, to save expensive ion-exchange resins and reagents, to decrease the cost of desalinated water, and to prolong the service of power equipment. Comparative data are presented for basic commercial kinds of activated carbon and HCCC (sorbents activated crushed brown-coal coke (ABD)). The technical characteristics of sorbents of hot-contact coal carbonization are shown to be at the level of commercial sorbents or be higher at a much lower cost (by a factor of 2.5 - 3). It is shown that the creation of several HCCC installations with an output of 25 - 30 thousand tons of sorbents a year at coal-fired power plants will solve many water-cleaning problems of the 'EES Rossii' Co. ('The United Power Systems of Russia') and make it a monopolistic producer of activated carbon in the Russian market.

  1. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  2. H. R. 3413: Coal Industry Health Benefit Stabilization Act of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, October 5, 1989

    SciTech Connect

    Not Available

    1989-01-01

    The bill would provide for stabilization of the process of providing coal industry health benefits and would clarify Federal tax treatment of the transfer of excess coal pension plan assets to coal health plans. The bill describes the authorization of surplus assets from coal pension plan to coal health plan; the continuing obligation to contribute to multi-employer plans; and the relationship to collective bargaining agreements.

  3. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  4. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  5. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-03-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  6. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  7. An explanation of large-scale coal and gas outbursts in underground coal mines: the effect of low-permeability zones on abnormally abundant gas

    NASA Astrophysics Data System (ADS)

    An, F. H.; Cheng, Y. P.

    2014-08-01

    Large-scale coal and gas outbursts pose a risk of fatal disasters in underground mines. Large-scale outbursts (outburst of coal and rock greater than 500 t) in recent years in China indicate that there is abundant gas in areas of outbursts containing large amounts of potential energy. The adequate sealing properties of the roof and floor of a coal seam are required for local abundant gas around the site of an outburst, but an annular low-permeability zone in a coal seam, which prevents the loss by gas migration through the coal seam itself, is also required. The distribution of coal gas with this annular zone of low permeability is described, and it is proposed that the annular zone of low permeability creates conditions for confining the coal gas. The effect of this low-permeability zone on the gas distribution is analyzed after allowing for simplifications in the model. The results show that the permeability and length of the low-permeability zone have a great impact on the gas distribution, and the permeability is required to be several orders of magnitude less than that of normal coal and enough length is also in demand. A steep gradient of gas pressure in the low-permeability zone and the high-pressure gas in the abundant zone of gas can promote coal mass failure and coal wall deformation, thereby accelerating the coal and gas outburst. The high-pressure gas in abundant zone of gas will lead to a large-scale outburst if an outburst occurs.

  8. South Africa, a new perspective: How the coal industry of RSA looks to an observer from the USA

    SciTech Connect

    Arthur, S.P.

    1994-09-01

    A microcosm of what was, what is, and hopefully what will be, is embodied in South Africa`s coal industry-the sixth largest in the world, the third largest in coal exports behind the United States and Australia, and the second largest in the world`s steam coal trade behind Australia. Mining is the international, economic life blood of South Africa. In total, the country exports 60 minerals to 80 countries, providing on a raw basis for 43% of the nation`s international trade, and as much as 60% when beneficiated products are included. The nation`s coal fields lie in the northeastern section of the country, running south from the Botswana-Zimbabwe-Mozambique borders, principally in the Transvaal, Natal, and Orange Free State provinces. The coal seams run in thickness from 2.5 to 8 m, with an average overburden thickness of 80 m. The coal industry provides 83% of the country`s commercial energy and 52% of all the electric power consumed on the entire continent. Seen from the air, the veld around Johannesburg is dotted with power plants-virtually all coal-fired. There is only one nuclear plant and two hydroelectric produced in South Africa comes from Eskom, the state-owned utility, and 90% total comes from coal-fired units.

  9. Pilot scale single stage fine coal dewatering and briquetting process. Technical report, September 1--November 30, 1995

    SciTech Connect

    Wilson, J.W.; Ding, Y.; Honaker, R.Q.

    1995-12-31

    The primary goal of the current coal preparation research is to reduce the ash and sulfur content from coal, using fine grinding and various coal cleaning processes to separate finely disseminated mineral matter and pyrite from coal. Small coal particles are produced by the grinding operation, thus the ultrafine coal becomes very difficult to dewater. In addition, the ultrafine coal also creates problems during its transportation, storage and handling at utility plants. The current research is seeking to combine ultrafine coal dewatering and briquetting processes into a single stage operation, using hydrophobic binders as coal dewatering and binding reagents with the help of a compaction device. From previous tests, it has been found that coal pellets with a moisture content of less than 15% and good wear and water resistance can be successfully fabricated at pressures of less than 6,000 psi using a lab scale ram extruder. The primary objective of the research described in this quarter has been to extend the lab scale ultrafine coal dewatering and briquetting process into a pilot scale operation, based on the test data obtained from earlier research. A standard roller briquetting machine was used to dewater fine coal-binder mixtures during the briquetting process. The operating parameters, including moisture content of feed, feed rate, and roller speed, were evaluated on the basis of the performance of the briquettes. Briquettes fabricated at rates of up to 108 pellets per minute exhibited satisfactory water and wear resistance, i.e., less than 7.5% cured moisture and less than 8.3% weight loss after 6 min. of tumbling. Also, coal-binder samples with moisture contents of 40 percent have been successfully dewatered and briquetted. Briquetting of fine coal was possible under current feeding conditions, however, a better feeding system must be designed to further improve the quality of dewatered coal briquettes.

  10. POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

    SciTech Connect

    1998-01-01

    This report covers the technical progress achieved from October 1, 1997 to December 31, 1997 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental test procedures and the results related to the processing of coal fines originating from process streams generated at the Shoal Creek Mine preparation plant, owned and operated by the Drummond Company Inc. of Alabama, are described. Two samples of coal fines, namely Cyclone Overflow and Pond Fines were investigated. The batch test results showed that by applying the Aglofloat technology a significant ash removal might be achieved at a very high combustible matter recovery: · for the Cyclone Overflow sample the ash reduction was in the range 50 to 55% at combustible matter recovery about 98% · for the Pond Fines sample the ash reduction was up to 48% at combustible matter recovery up to 85%. Additional tests were carried out with the Alberta origin Luscar Mine coal, which will be used for the parametric studies of agglomeration equipment at the 250 kg/h pilot plant. The Luscar coal is very similar to the Mary Lee Coal Group (processed at Shoal Creek Mine preparation plant) in terms of rank and chemical composition.

  11. COAL: DRDF (DENSIFIED REFUSE DERIVED FUEL) DEMONSTRATION TEST IN AN INDUSTRIAL SPREADER STOKER BOILER. USE OF COAL: DRDF BLENDS IN STOKER-FIRED BOILERS. VOLUME I

    EPA Science Inventory

    This study program has the overall objective of evaluating boiler performance and environmental feasibility when combusting densified forms of refuse derived fuels (dRDF) blended with coal and fired in a modern industrial spreader stoker-fired boiler. The results reported herein ...

  12. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    PubMed

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry. PMID:25783163

  13. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. PMID:27023281

  14. PROCEEDINGS: EPA/INDUSTRY FORUM ON COAL LIQUEFACTION HELD AT CHICAGO, ILLINOIS ON OCTOBER 23 AND 24, 1979

    EPA Science Inventory

    The proceedings document presentations made at the EPA/Industry Forum on Coal Liquefaction, October 23 and 24, 1979, in Chicago. The forum brought together representatives of government and industry with the goal of sharing information and increasing cooperation between the two g...

  15. Water-carbon trade-off in China's coal power industry.

    PubMed

    Zhang, Chao; Anadon, Laura Diaz; Mo, Hongpin; Zhao, Zhongnan; Liu, Zhu

    2014-10-01

    The energy sector is increasingly facing water scarcity constraints in many regions around the globe, especially in China, where the unprecedented large-scale construction of coal-fired thermal power plants is taking place in its extremely arid northwest regions. As a response to water scarcity, air-cooled coal power plants have experienced dramatic diffusion in China since the middle 2000s. By the end of 2012, air-cooled coal-fired thermal power plants in China amounted to 112 GW, making up 14% of China's thermal power generation capacity. But the water conservation benefit of air-cooled units is achieved at the cost of lower thermal efficiency and consequently higher carbon emission intensity. We estimate that in 2012 the deployment of air-cooled units contributed an additional 24.3-31.9 million tonnes of CO2 emissions (equivalent to 0.7-1.0% of the total CO2 emissions by China's electric power sector), while saving 832-942 million m(3) of consumptive water use (about 60% of the total annual water use of Beijing) when compared to a scenario with water-cooled plants. Additional CO2 emissions from air-cooled plants largely offset the CO2 emissions reduction benefits from Chinese policies of retiring small and outdated coal plants. This water-carbon trade-off is poised to become even more significant by 2020, as air-cooled units are expected to grow by a factor of 2-260 GW, accounting for 22% of China's total coal-fired power generation capacity. PMID:25215622

  16. Synthesis of hydroxy sodalite from coal fly ash using waste industrial brine solution.

    PubMed

    Musyoka, Nicholas M; Petrik, Leslie F; Balfour, Gillian; Gitari, Wilson M; Hums, Eric

    2011-01-01

    The effect of using industrial waste brine solution instead of ultra pure water was investigated during the synthesis of zeolites using three South African coal fly ashes as Si feedstock. The high halide brine was obtained from the retentate effluent of a reverse osmosis mine water treatment plant. Synthesis conditions applied were; ageing of fly ash was at 47 ° C for 48 hours, and while the hydrothermal treatment temperature was set at 140 ° C for 48 hours. The use of brine as a solvent resulted in the formation of hydroxy sodalite zeolite although unconverted mullite and hematite from the fly ash feedstock was also found in the synthesis product. PMID:22175873

  17. Use of Sorbents of Hot-Contact Coal Carbonization in the Power Industry

    SciTech Connect

    Blokhin, A. I.; Keneman, F. E.; Sklyarov, A. V.; Fedoseev, B. S.

    2003-11-15

    The many years of experience in the use of sorbents of hot-contact coal carbonization in the power industry is used for substantiation of their prospects for solving problems of power and materials saving and improving the reliability and safety of operation of power equipment. Results of tests of sorbents in systems of water conditioning of thermal power plants, cleaning of return condensates, mazut- and oil-contaminated process wastewaters, makeup water in heat networks, and biosorption cleaning of sewerage are presented. The sorption methods of cleaning are shown to have many advantages, to save expensive ion-exchange resins and reagents, to decrease the cost of desalinated water, and to prolong the service of power equipment. Comparative data are presented for basic commercial kinds of activated carbon and HCCC sorbents (ABD). The technical characteristics of sorbents of hot-contact coal carbonization are shown to be at the level of commercial sorbents or be higher at a much lower cost (by a factor of 2.5 - 3). It is shown that the creation of several HCCC installations with an output of 25 - 30 thousand tons of sorbents a year at coal-fired power plants will solve many water-cleaning problems of the 'EES Rossii' Co. ('The United Power Systems of Russia') and make it a monopolistic producer of activated carbon in the Russian market.

  18. Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler

    DOE PAGESBeta

    Liu, Manzhi; Shen, Bo; Han, Yafeng; Price, Lynn; Xu, Mingchao

    2015-08-01

    Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out ofmore » 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.« less

  19. Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler

    SciTech Connect

    Liu, Manzhi; Shen, Bo; Han, Yafeng; Price, Lynn; Xu, Mingchao

    2015-08-01

    Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out of 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.

  20. Study of application of ERTS-A imagery to fracture-related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    The author has identified the following significant results. The mine refuse inventory maps were prepared in response to a need by both the State and the coal industry. The lack of information on the scope of the problem handicapped all people concerned in drafting realistic legislation for a severance tax on coal production to raise funds for restoration of refuse sites. The inventory was conducted rapidly and economically, and demonstrated the benefits which can be derived through remote sensing methods.

  1. Capital and the state in regional economic development: the case of the coal industry in central Appalachia

    SciTech Connect

    Duncan, C.L.

    1985-01-01

    This study examines theories of development policy to assess their relevance for the problems of persistently poor regions within advanced capitalist societies. The central premises of three sets of theories are explored using a multi-method approach that combines quantitative analysis of the impact of growth in the coal industry in rural Kentucky between 1960 and 1980, and qualitative analysis of the perspectives of coal industry executives on development in the coal fields. Theories are categorized into neoclassical, redistributionist and critical paradigms because this typology clarifies the differences in the role of capital and the state in development strategies. Results of analyses of economic and social change in rural Kentucky challenge neoclassical development theory. Greater economic growth in coal counties did not bring greater social progress. The analysis supports the redistributionist and critical theorists' thesis that widespread distribution of economic benefits is important to development. Counties with better distribution of income and work had better conditions in 1980, and coal counties have the greatest economic inequality. Comments of coal industry executives confirm the critical theorists' argument that capital resists State policies to redistribute economic surplus for investment in development.

  2. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  3. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-09-03

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

  4. Integrated process control for recirculating cooling water treatment in the coal chemical industry.

    PubMed

    Pei, Y S; Guo, W; Yang, Z F

    2011-01-01

    This work focused on the integrated process of the recirculating cooling water (RCW) treatment to achieve approximate zero emission in the coal chemical industry. The benefits of fractional and comprehensive RCW treatment were quantified and qualified by using a water and mass balance approach. Limits of cycle of concentrations and some encountered bottlenecks were used to ascertain set target limits for different water sources. Makeup water was mixed with water produced from reverse osmosis (RO) in the proportion of 6:4, which notably reduced salts discharge. Side infiltration, which settled down suspended solids, can reduce energy consumption by over 40%. An automated on-line monitoring organic phosphorus inhibitor feed maintains the RCW system stability in comparison to the manual feed. Two-step electrosorb technology (EST) instead of an acid feed can lead cycle of concentration of water to reach 7.0. The wastewater from RO, EST and filter was transferred into a concentration treatment system where metallic ions were adsorbed by permanent magnetic materials. Separation of water and salts was completed by using a magnetic disc separator. Applying the integrated process in a coal chemical industry, a benefit of 1.60 million Yuan annually in 2 years was gained and approximate zero emission was achieved. Moreover, both technical and economic feasibility were demonstrated in detail. PMID:21977648

  5. Mercury emissions control in coal combustion systems using potassium iodide: bench-scale and pilot-scale studies

    SciTech Connect

    Ying Li; Michael Daukoru; Achariya Suriyawong; Pratim Biswas

    2009-01-15

    Bench- and pilot-scale experiments were conducted using potassium iodide (KI) for capture and removal of Hg in air and coal combustion exhaust. Two bench-scale reactor systems were used: (1) a packed-bed reactor (PBR) packed with granular or powder KI and (2) an aerosol flow reactor (AFR) with injection of KI particles. It was found that a higher temperature, a higher concentration of KI, and a longer gas residence time resulted in a higher Hg removal efficiency. A 100% Hg removal was achieved in the PBR above 300{sup o}C using 0.5 g of powder KI and in the AFR above 500{sup o}C with a KI/Hg molar ratio of 600 at a 5.8 s residence time. The low KI injection ratio relative to Hg indicated that KI is highly effective for Hg removal in air. Formation of I{sub 2} vapor by the oxidation of KI by O{sub 2} at high temperatures, which then reacts with Hg to produce HgI{sub 2}, was identified as the pathway for removal. The pilot-scale experiments were conducted in a 160 kW pulverized coal combustor. KI was introduced in two ways: as a powder mixed with coal and by spraying KI solution droplets into the flue gas. In both cases the Hg removal efficiency increased with an increase in the feed rate of KI. Mixing KI powder with coal was found to be more effective than spraying KI into the flue gas. The Hg removal by KI was less efficient in the pilot-scale tests than in the bench-scale tests probably due to certain flue gas components reacting with KI or I{sub 2}. Hg speciation measurements in both bench- and pilot-scale experiments indicated no oxidized mercury in the gas phase upon introduction of KI, indicating that the oxidation product HgI2 was captured in the particulate phase. This is very beneficial in coal-fired power plants equipped with electrostatic precipitators where particulate-bound Hg can be efficiently removed. 27 refs., 8 figs., 4 tabs.

  6. Corrosivities in a pilot-scale combustor of a British and two Illinois coals with varying chlorine contents

    USGS Publications Warehouse

    Chou, I.-Ming; Lytle, J.M.; Kung, S.C.; Ho, K.K.

    2000-01-01

    Many US boiler manufacturers have recommended limits on the chlorine (Cl) content (< 0.25% or < 0.3%) of coals to be used in their boilers. These limits were based primarily on extrapolation of British coal data to predict the probable corrosion behavior of US coals. Even though Cl-related boiler corrosion has not been reported by US utilities burning high-Cl Illinois coals, the manufacturer's limits affect the marketability of high-Cl Illinois coals. This study measured the relative rates of corrosion caused by two high-Cl coals (British and Illinois) and one low-Cl Illinois baseline coal under identical pilot-scale combustion conditions for about 1000 h which gave reliable comparisons. Temperatures used reflected conditions in boiler superheaters. The corrosion probes were fabricated from commercial alloy 304SS frequently used at the hottest superheater section of utility boilers. The results showed no evidence of direct correlation between the coal chlorine content and rate of corrosion. A correlation between the rate of corrosion and the metal temperature was obvious. The results suggested that the different field histories of corrosivity from burning high-Cl Illinois coal and high-Cl British coal occurred because of different metal temperatures operated in US and UK utility boilers. The results of this study can be combined into a database, which could be used for lifting the limits on chlorine contents of coals burned in utility boilers in the US.

  7. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect

    R.-H. Yoon; G.H. Luttrell; B. Luvsansambuu; A.D. Walters

    2000-10-01

    Work continued during the past quarter to improve the performance of the POC-scale unit. For the charging system, a more robust ''turbocharger'' has been fabricated and installed. All of the internal components of the charger have been constructed from the same material (i.e., Plexiglas) to prevent particles from contacting surfaces with different work functions. For the electrode system, a new set of vinyl-coated electrodes have been constructed and tested. The coated electrodes (i) allow higher field strengths to be tested without of risk of arcing and (ii) minimize the likelihood of charge reversal caused by particles colliding with the conducting surfaces of the uncoated electrodes. Tests are underway to evaluate these modifications. Several different coal samples were collected for testing during this reporting period. These samples included (i) a ''reject'' material that was collected from the pyrite trap of a pulverizer at a coal-fired power plant, (ii) an ''intermediate'' product that was selectively withdrawn from the grinding chamber of a pulverizer at a power plant, and (iii) a run-of-mine feed coal from an operating coal preparation plant. Tests were conducted with these samples to investigate the effects of several key parameters (e.g., particle size, charger type, sample history, electrode coatings, etc.) on the performance of the bench-scale separator.

  8. Ever-shifting ground: work and labor relations in the anthracite coal industry, 1968-1903

    SciTech Connect

    Blatz, P.K.

    1987-01-01

    This dissertation traces the work experience of the mine workers of the anthracite coal industry of northeastern Pennsylvania from the final three decades of the nineteenth century, during which several attempts to unionize the mines failed, to the industry-wide anthracite strikes of 1900 and 1902, which brought to a successful conclusion the United Mine Workers' drive for unionization. The correspondence of corporate executives shows that a pervasive philosophy of antiunionism characterized management's approach to labor relations. During the nonunion era, the state, rather than any labor organization, served as the most effective counterpoise to corporate power through its enactment of an extensive code of mining regulation. Nevertheless, mine workers still confronted a perilous workplace which, along with chronic underemployment and an utterly unsystematized congeries of work rules, combined to create a work experience fraught with insecurity. The United Mine Workers proposed an industry-wide contract as the means to solve these problems, and effective organization as the prod to force the corporations to negotiate such a contract. However, the union succeeded in its organizing only in the wake of numerous wildcat strikes protesting the many manifestations of the paternalistic, individualized style of labor relations which had always characterized the industry.

  9. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

    SciTech Connect

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  10. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4

    SciTech Connect

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  11. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1

    SciTech Connect

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  12. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5

    SciTech Connect

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  13. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

    SciTech Connect

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  14. Occupational health and safety regulation in the coal mining industry: public health at the workplace.

    PubMed

    Weeks, J L

    1991-01-01

    The strategy for preventing occupational disease and injury in the coal mining industry employs several elements. Standards are set and enforced; technical assistance, research, and development are provided; and surveillance is conducted. Compensation for black lung is a vivid reminder of the consequences of failure to prevent disease. And, workers are represented by a union that encourages active participation in all aspects of this strategy. There are significant problems in each of these elements. Regulatory reform threatens to weaken many standards, there is a decline in government research budgets, surveillance is not well monitored, and compensation for black lung is significantly more difficult to obtain now than in the past. Moreover, the conservative governments of the past decade are not friendly towards unions. Nevertheless, the fundamental structure of disease and injury prevention remains intact and, more importantly, it has a historical record of success. The Mine Safety and Health Act provided for a wide array of basic public health measures to prevent occupational disease and injury in the mining industry. These measures have been effective in reducing both risk of fatal injury and exposure to respirable coal mine dust. They are also associated with temporary declines in productivity. In recent years, however, productivity has increased, while risk of fatal injury and exposure to respirable dust have declined. At individual mines, productivity with longwall mining methods appear to be associated with increases in exposure to respirable dust. These trends are not inconsistent with similar trends following implementation of regulations by OSHA. When OSHA promulgated regulations to control exposure to vinyl chloride monomer, enforcement of the standard promoted significant efficiencies in vinyl chloride production (5). Similarly, when OSHA promulgated its standard regulating exposure to cotton dust, this effort provoked modernization in the cotton

  15. Semi industrial scale RVNRL preparation, products manufacturing and properties

    NASA Astrophysics Data System (ADS)

    Zin, Wan Manshol Bin W.

    1998-06-01

    Natural rubber latex vulcanisation by radiation aims towards the preparation of prevulcanised natural rubber latex in the name of RVNRL for use to produce chemical-free and environment-friendly latex products. Scale up RVNRL preparation is proven possible when a semi-commercial latex irradiator was commissioned in MINT in March 1996. The plant is designed to irradiate up to 6 000 cubic meters per annum of natural rubber latex. RVNRL has the required properties and successfully used on industrial scale production of quality gloves and balloons.

  16. Development and scale-up of particle agglomeration processes for coal beneficiation

    NASA Astrophysics Data System (ADS)

    Shen, Meiyu

    The development of two modified agglomeration processes for coal beneficiation is presented separately in Parts I and II of this dissertation. Part I is based on research which was conducted to study the mechanism and characteristics of a gas-promoted oil agglomeration process. Part II is based on research which was carried out to develop a newer and more innovative method for agglomerating coal particles with microscopic gas bubbles in aqueous suspensions. In Part I, the development of a gas-promoted oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During batch agglomeration tests the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspension. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. It was shown that gas bubbles trigger the process of agglomeration and participate in a very complex mechanism involving the interaction of particles, oil droplets, and gas bubbles. The process takes place in stages involving dispersion of oil and gas, flocculation, coagulation, and agglomerate building. Numerous agglomeration tests were conducted with two kinds of coal in concentrated suspensions to determine the important characteristics of the process and to study the effects of the following operating parameters: i-octane concentration, air concentration, particle concentration, tank diameter, impeller diameter, and impeller speed

  17. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    Mishra, N.C.

    1996-12-22

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the author plans to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. He also plans to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  18. Large scale solubilization of coal and bioconversion to utilizable energy. Fifth quarterly technical report, January 1, 1995--March 31, 1995

    SciTech Connect

    Mishra, N.C.

    1995-12-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  19. Impending impacts of Title III and Title V of the Clean Air Act Amendments of 1990 on the coal industry

    SciTech Connect

    Kerch, R.L.

    1994-12-31

    The coal industry has already begun to feel the affects of the acid deposition title, particularly in Illinois. Two challenges to the producers and sellers of coal; i.e., (1) Title III, Hazardous Air Pollutants and what is in store for customers, and (2) Title V, Operating Permits, which may affect production facilities are discussed. The utilities are temporarily exempted from Title III. The Great Waters report suggests that mercury will be regulated, and it looks like risk assessments will be based on coal analysis rather than on actual emission measurements. Stack sampling is difficult, expensive and slow. Coal cleaning is important in reducing trace elements. Electrostatic precipitators also remove trace elements. ESPs are less effective for mercury and selenium because they are emitted in the gas phase. FGD can remove hazardous air pollutants, but it is not well documented.

  20. EVALUATION OF THE IMPACT OF CHLORINE ON MERCURY OXIDATION IN A PILOT-SCALE COAL COMBUSTION--THE EFFECT OF COAL BLENDING

    EPA Science Inventory

    Coal-fired power plants are a major source of mercury (Hg) released into the environment and the utility industry is currently investigating options to reduce Hg emissions. The EPA Clean Air Mercury Rule (CAMR) depends heavily on the co-benefit of mercury removal by existing and ...

  1. Evaluation of water resources around Barapukuria coal mine industrial area, Dinajpur, Bangladesh

    NASA Astrophysics Data System (ADS)

    Howladar, M. Farhad; Deb, Pulok Kanti; Muzemder, A. T. M. Shahidul Huqe; Ahmed, Mushfique

    2014-09-01

    Water is a very important natural resource which can be utilized in renewable or non-renewable forms but before utilizing, the evaluation of the quality of this resource is crucial for a particular use. However, the problems of water quality are more severe in areas where the mining and mineral processes' industries are present. In mining processes, several classes of wastes are produced which may turn into ultimately the sources of water quality and environmental degradation. In consequences, the evaluations of water quality for livestock, drinking, irrigation purposes and environmental implications have been carried out around the Barapukuria Coal Mining Industry under different methods and techniques such as primarily the field investigation; secondly the laboratory chemical analysis and thirdly justified the suitability of the laboratory analysis with statistical representation and correlation matrix, Schoeller plot, Piper's Trilinear diagram, Expanded Durov diagram, Wilcox diagram, US salinity diagram, Doneen's chart and others. The results of all surface and ground water samples analysis show that the characteristics and concentrations of all the major physical and chemical parameters such as pH, EC, TDS, Na+, K+, Ca2+, Mg2+, Fetotal, Cl-, HCO3 -, CO3 2- and SO4 2- are varied from one sample to other but well analogous with the WHO and EQS standard limit for all purposes in the area where the abundance of the major ions is as follows: Ca2+ > Na+ > Mg2+ > K+ > Fetotal = HCO3 - > SO4 2- > Cl- > CO3 2-. The graphical exposition of analytical data demonstrates two major hydrochemical facies for example: calcium-bicarbonate (Ca2+- HCO3 -) and magnesium-bicarbonate (Mg2+- HCO3 -) type facies which directly support the shallow recently recharged alkaline water around the industry. The calculated values for the evaluation classification of water based on TDS, Na%, EC, SAR, PI, RSC, MH, and TH replicate good to excellent use of water for livestock, drinking and

  2. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M.

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  3. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3

    SciTech Connect

    Not Available

    1992-01-01

    The US Department of Energy's Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  4. Analysis of atomic scale chemical environments of boron in coal by 11B solid state NMR.

    PubMed

    Takahashi, Takafumi; Kashiwakura, Shunsuke; Kanehashi, Koji; Hayashi, Shunichi; Nagasaka, Tetsuya

    2011-02-01

    Atomic scale chemical environments of boron in coal has been studied by solid state NMR spectroscopy including magic angle spinning (MAS), satellite transition magic angle spinning (STMAS), and cross-polarization magic angle spinning (CPMAS). The (11)B NMR spectra can be briefly classified according to the degree of coalification. On the (11)B NMR spectra of lignite, bituminous, and sub-bituminous coals (carbon content of 70-90mass%), three sites assigned to four-coordinate boron ([4])B with small quadrupolar coupling constants (≤0.9 MHz) are observed. Two of the ([4])B sites in downfield are considered organoboron complexes with aromatic ligands, while the other in the most upper field is considered inorganic tetragonal boron (BO(4)). By contrast, on the (11)B NMR spectra of blind coal (carbon content >90mass%), the ([4])B which substitutes tetrahedral silicon of Illite is observed as a representative species. It has been considered that the organoboron is decomposed and released from the parent phase with the advance of coal maturation, and then the released boron reacts with the inorganic phase to substitute an element of inorganic minerals. Otherwise boron contained originally in inorganic minerals might remain preserved even under the high temperature condition that is generated during coalification. PMID:21175186

  5. Fields of Coal: An analysis of industry and sedimentology in Dolores, Texas

    NASA Astrophysics Data System (ADS)

    Oaden, A.; Besonen, M. R.

    2013-12-01

    characterize the sediments is underway. Basic conclusions indicate the present environment to be minimally affected by the coal operations and resulting tipple pile, but with a large variance over time in mineralogy and composition of sediment, with further research necessary to determine the full effects of industry in the area.

  6. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1993-01-29

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent relining the separator/reservoir and the cyclone melter. The relinings were completed, the cyclonemelter was reinstalled, and the test system was returned to operational status. The wet ESP was delivered and placed on its foundation. The focus during the upcoming months will be completing the integration ofthe wet ESP and conducting the first industrial proof-of-concept test. The other system modifications are well underway with the designs of the recuperator installation and the batch/coal feed system progressing smoothly. The program is still slightly behind the original schedule but it is anticipated that it will be back on schedule by the end of the year. The commercialization planning is continuing with the identification of seven potential near-term commercial demonstration opportunities.

  7. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities.

    PubMed

    Clapcott, Joanne E; Goodwin, Eric O; Harding, Jon S

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions. PMID:26467674

  8. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities

    NASA Astrophysics Data System (ADS)

    Clapcott, Joanne E.; Goodwin, Eric O.; Harding, Jon S.

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  9. A coal-fired combustion system for industrial processing heating applications. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler fly ash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler fly ash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NOx burners on the PENELEC boilers. Therefore, a substantial portion of the required thermal input came from the fly ash.

  10. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    SciTech Connect

    Broderick, T. E.; Grondin, R.

    2003-02-24

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN.

  11. Solvent-Refined Coal (SRC) process. Health programs: industrial hygiene, clinical and toxicological programs. Final report

    SciTech Connect

    Hubis, W.

    1982-03-01

    This final report summarizes the Health Program under the Solvent Refined Coal (SRC) Process Contract from January 1, 1976 through December 31, 1981 with particular emphasis on the period January 1, 1980 through December 31, 1981. The major areas of activity within the Health program were: an industrial hygiene monitoring program, a clinical medical examination program, a personal hygiene and educational program, an epidemiology program, and a toxicological program. The industrial hygiene monitoring program during the past two years continued evaluation of occupational exposures to various air contaminants. The major emphasis was directed to the development, refinement and implementation of the skin contamination evaluation project. The medical examination program continued to indicate the absence of discernible occupationally related changes in employee medical profiles. In addition, appreciable effort was expended on efforts to develop a single layered garment which would prevent the appearance of black specks on the anterior thighs of plant operators working in areas of high particulate concentrations. The employee personal hygiene and educational program was extended to include both temporary and contract personnel. An epidemiology program was initiated during the period and efforts were concentrated primarily on program design and data collection. In the toxicological program, acute and genetic studies were completed on most of the SRC-II materials but no studies were initiated in the SRC-I portion of the program because of unavailability of test materials.

  12. Analysis of the interaction of the coal and transportation industries in 1990

    SciTech Connect

    Not Available

    1981-09-01

    This study analyzes the impacts of major developments in coal transportation on coal production, prices and markets. Coal and coal transportation markets have special characteristics that must be accommodated if an analysis is to be useful. First, coal of differing energy and sulfur contents is produced in different regions in the United States. The transportation options from these supply regions to the various coal demand regions also differ. The market boundary between coal supply regions depends on the end-use cost to the final purchaser of using coal from each source. The differences in coals and transportation options imply that no simple rule of thumb will yield the end-use cost from competing supply regions at a given site, so market boundaries cannot be identified simply. Second, at most sites, one fuel, say coal from a given region, will clearly have a lower end-use cost than the others. However, there is no unique answer to the question of how the benefits from this lower cost at a given site are shared among the parties involved. Finally, the current status of the coal market is not a reliable guide to the future, because of ongoing changes in relative real fuel prices, the regulatory rules that railroads follow, and environmental constraints on utilities. The implication of these characteristics is that no one can predict what actual future coal markets and transportation rates will be using only a theoretical model or statistical analysis of historical data.

  13. Development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-04-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system, controls, and then test the complete system in order to evaluate its potential marketability. The past quarter began with a two-day test performed in January to determine the cause of pulsations in the batch feed system observed during pilot-scale testing of surrogate TSCA incinerator ash performed in December of 1993. Two different batch feedstocks were used during this test: flyash and cullet. The cause of the pulsations was traced to a worn part in the feeder located at the bottom of the batch feed tank. The problem was corrected by replacing the wom part with the corresponding part on the existing coal feed tank. A new feeder for the existing coal tank, which had previously been ordered as part of the new coal handling system, was procured and installed. The data from the pilot-scale tests performed on surrogate TSCA incinerator ash during December of 1993 was collected and analyzed. All of the glass produced during the test passed both the Toxicity characteristics Leach Procedure (TCLP) and the Product Consistency Test (PCT) by approximately two orders of magnitude.

  14. Industrial Large Scale Applications of Superconductivity -- Current and Future Trends

    NASA Astrophysics Data System (ADS)

    Amm, Kathleen

    2011-03-01

    Since the initial development of NbTi and Nb3Sn superconducting wires in the early 1960's, superconductivity has developed a broad range of industrial applications in research, medicine and energy. Superconductivity has been used extensively in NMR low field and high field spectrometers and MRI systems, and has been demonstrated in many power applications, including power cables, transformers, fault current limiters, and motors and generators. To date, the most commercially successful application for superconductivity has been the high field magnets required for magnetic resonance imaging (MRI), with a global market well in excess of 4 billion excluding the service industry. The unique ability of superconductors to carry large currents with no losses enabled high field MRI and its unique clinical capabilities in imaging soft tissue. The rapid adoption of high field MRI with superconducting magnets was because superconductivity was a key enabler for high field magnets with their high field uniformity and image quality. With over 30 years of developing MRI systems and applications, MRI has become a robust clinical tool that is ever expanding into new and developing markets. Continued innovation in system design is continuing to address these market needs. One of the key questions that innovators in industrial superconducting magnet design must consider today is what application of superconductivity may lead to a market on the scale of MRI? What are the key considerations for where superconductivity can provide a unique solution as it did in the case of MRI? Many companies in the superconducting industry today are investigating possible technologies that may be the next large market like MRI.

  15. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    NASA Astrophysics Data System (ADS)

    Oates, David Luke; Jaramillo, Paulina

    2013-06-01

    Wind power introduces variability into electric power systems. Due to the physical characteristics of wind, most of this variability occurs at inter-hour time-scales and coal units are therefore technically capable of balancing wind. Operators of coal-fired units have raised concerns that additional cycling will be prohibitively costly. Using PJM bid-data, we observe that coal operators are likely systematically under-bidding their startup costs. We then consider the effects of a 20% wind penetration scenario in the coal-heavy PJM West area, both when coal units bid business as usual startup costs, and when they bid costs accounting for the elevated wear and tear that occurs during cycling. We conclude that while 20% wind leads to increased coal cycling and reduced coal capacity factors under business as usual startup costs, including full startup costs shifts the burden of balancing wind onto more flexible units. This shift has benefits for CO2, NOX, and SO2 emissions as well as for the profitability of coal plants, as calculated by our dispatch model.

  16. CFD modeling of commercial-scale entrained-flow coal gasifiers

    SciTech Connect

    Ma, J.; Zitney, S.

    2012-01-01

    Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. Computational fluid dynamics (CFD) has been used to model the turbulent multiphase reacting flow inside commercial-scale entrained-flow coal gasifiers. Due to the complexity of the physical and chemical processes involved, the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented in this paper include a moisture vaporization model with consideration of high mass transfer rate and a coal devolatilization model with more species to represent coal volatiles and the heating rate effect on volatile yield. The global gas phase reaction kinetics is also carefully selected. To predict a reasonable peak temperature of the coal/O{sub 2} flame inside an entrained-flow gasifier, the reserve reaction of H{sub 2} oxidation is included in the gas phase reaction model. The enhanced CFD model is applied to simulate two typical commercial-scale oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here

  17. Large-Scale Digital Geologic Map Databases and Reports of the North Coal District in Afghanistan

    USGS Publications Warehouse

    Hare, Trent M.; Davis, Philip A.; Nigh, Devon; Skinner, James A.; SanFilipo, John R.; Bolm, Karen S.; Fortezzo, Corey M.; Galuszka, Donna; Stettner, William R.; Sultani, Shafiqullah; Nader, Billal

    2008-01-01

    members of the coal team: Engineer Saifuddin Aminy (Team Leader); Engineer Gul Pacha Azizi; Engineer Abdul Haq Barakati; Engineer Abdul Basir; Engineer Mohammad Daoud; Engineer Abdullah Ebadi; Engineer Abdul Ahad Omaid; Engineer Spozmy; and Engineer Shapary Tokhi. The ongoing efforts of Engineer Mir M. Atiq Kazimi (Team leader); Engineer M. Anwar Housinzada; and Engineer Shereen Agha of the AGS Records Department to organize and catalogue the AGS material were invaluable in locating and preserving these data. The efforts of the entire AGS staff to personally preserve these data during war time, in the absence of virtually any supporting infrastructure, was truly remarkable. The efforts by the British Geological Survey (BGS) to assist the AGS in archiving these data, and the personal assistance provided by BGS (notably Robert McIntosh), to the USGS teams were also appreciated. The logistical support provided by the U.S. Embassy in Kabul, particularly the Afghanistan Reconstruction Group, was critical to the success of the USGS teams while in Afghanistan. Finally, the efforts of the Minister of the Ministry of Mines and Industries (M. Ibrahim Adel) to support the USGS coal resource assessment in Afghanistan, in both his current and former role as President of the Mines Affairs Department was vital to this effort.

  18. Effect of Temperature Gradient on Industrial Coal Slag Infiltration into Porous Refractory Materials in Slagging Gasifiers

    SciTech Connect

    Kaneko, Tetsuya Kenneth; Bennett, James P.; Dridhar, Seetharaman

    2011-12-01

    Infiltration characteristics of industrial coal slag into alumina (Al{sub 2}O{sub 3}) refractory material with a temperature gradient induced along the slag's penetration direction are compared to those obtained under near-isothermal conditions. Experiments were conducted with a hot-face temperature of 1450°C and a CO/CO{sub 2} ratio of 1.8, which corresponds to an oxygen partial pressure of ~10{sup −8} atm. The refractory under the near-isothermal temperature profile, with higher average temperatures, demonstrated a greater penetration depth than its counterpart that was under the steeper temperature gradient. Slag that did not infiltrate into the refractory due to the induced temperature gradient, pooled and solidified on the top of the sample. Within the pool, a conglomerated mass of troilite (FeS) formed separately from the surrounding slag. Microscopy of the cross-sectioned infiltrated refractories revealed that the slag preferentially corroded the matrix regions closer to the top surface. Furthermore, the formation of a thick layer of hercynite (FeAl{sub 2}O{sub 4}) at the top of refractory/slag interface significantly depleted the slag of its iron-oxide content with respect to its virgin composition. A qualitative description of the penetration process is provided in this article.

  19. The effect of unionization and firm structure on health and safety in the bituminous coal industry

    SciTech Connect

    Reardon, J.E.

    1991-01-01

    The increase in the number of conglomerate mergers during the 1980's has prompted renewed debate on the effects of such mergers. This study investigates the effect of the conglomerate firm on the ability of the labor union to achieve safe working conditions in the bituminous coal industry. An index of union strength is constructed to replace the dummy union variable, traditionally included in econometric models to indicate whether or not the work place is unionized. The index is able to differentiate between situations in which the union has the ability to achieve a desired result from situations in which it does not. The principal data set constructed consists of 2,748 injuries in 270 mines from the states of: West Virginia, Pennsylvania, Virginia, Illinois, Kentucky, and Colorado for the year 1988. One finding was that the index of union strength has a negative but insignificant effect on the injury rate and the severity of the injury. Another principal finding was that conglomerate firms reduce the severity of the injury, but not the injury frequency rate. It was also found that conglomerate firms have a higher incidence of occupational illness than independent firms.

  20. "Rule of Thumb Methods No Longer Suffice": Development of British Coal Industry Education and Training 1900-circa 1970 and Lessons for Present-Day Education Policy-Makers

    ERIC Educational Resources Information Center

    Walker, Martyn A.

    2015-01-01

    This paper traces the origins and development of coal mining education and training in Britain from 1900 to the 1970s, by which time the coal industry had substantially declined. It looks at the progress from working-class self-help to national policy in support of education and training. The research makes use of college prospectuses and…

  1. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  2. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    SciTech Connect

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  3. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    1994-01-30

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing the system modification installation designs, completing the TSCA ash testing, and conducting additional industry funded testing. Final detailed installation designs for the integrated test system configuration are being completed.

  4. Chlor-Alkali Industry: A Laboratory Scale Approach

    ERIC Educational Resources Information Center

    Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.

    2004-01-01

    A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.

  5. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    PubMed

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment. PMID:26370817

  6. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  7. Estimation of Scale Deposition in the Water Walls of an Operating Indian Coal Fired Boiler: Predictive Modeling Approach Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-04-01

    Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.

  8. Large scale solubilization of coal and bioconversion to utilizable energy. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    Mishra, N.C.

    1996-05-01

    In order develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitates depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the products of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Results are presented for the cloning of genes for Neurospora CSA-protein.

  9. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-03-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was concentrated on conducting the 100 hour demonstration test. The test was successfully conducted from September 12th through the 16th. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler flyash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler flyash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NO{sub x} burners on the PENELEC boilers.

  10. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  11. Development of a retrofit coal combustor for industrial applications, (Phase 1-A)

    SciTech Connect

    Not Available

    1988-10-01

    During this past quarter, two tandem-fired pulse combustors were designed to fire at a nominal rate of 3.5 to 5.5 MMBtu/hr under continuation of Phase I work on DOE project DE-AC22-87PC79654. In prior work, MTCI demonstrated the operation of a 1--2 MMBtu/h coal-fired tandem pulse combustor that is intended for small industrial applications. These component tests emphasized verification of key design issues such as combustor coupling, slag rejection, and staged air addition. The current work, which represents an extension of the Phase I effort, focuses on integrated testing of the tandem pulse combustor with a fire-tube boiler, and the addition of a slag quench vessel. A tandem-fired pulse combustion unit designed to fire at a nominal rate of 3.5-5 MMBtu/hr was designed and fabricated. The configuration includes two combustion chambers cast in a single monolith, tailpipes cast separately with annular air preheating capability, and a cyclonic decoupler. Design analysis and evaluations were performed to optimize the system with respect to minimizing heat losses, size, and cost. Heat losses from the combustor and decoupler walls are predicted to be approximately 3 percent. The final designs for the ancillary items (slag quench, tertiary air addition, scrubber and sampling system) were completed and fabrication and installation initiated. A Cleaver-Brooks 150 hp-4 pass boiler was delivered and installed and modifications for interfacing with the retrofit pulse combustor unit completed. A below-ground slag collection pit was excavated to permit direct in-line coupling of the combustor to the boiler and to reduce head-room requirements. The pit is 30 inches deep and lined with waterproof and fireproof siding.

  12. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    SciTech Connect

    Gangwal, Santosh K.; McCabe, Kevin

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  13. Selenium And Arsenic Speciation in Fly Ash From Full-Scale Coal-Burning Utility Plants

    SciTech Connect

    Huggins, F.E.; Senior, C.L.; Chu, P.; Ladwig, K.; Huffman, G.P.; /Kentucky U. /Reaction Engin. Int. /Elect. Power Res. Inst., Palo Alto

    2007-07-09

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO{sub 3}{sup 2-}) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO{sub 4}{sup 3-}) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the post-combustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  14. Characterization of ash deposition and heat transfer behavior of coals during combustion in a pilot-scale facility and full-scale utility

    SciTech Connect

    Sushil Gupta; Rajender Gupta; Gary Bryant; Terry Wall; Shinji Watanabe; Takashi Kiga; Kimihito Narukawa

    2009-05-15

    Experimental measurements as well as theoretical models were used to investigate the impact of mineral matter of three coals on ash deposition and heat transfer for pulverized coal fired boilers. The ash deposition experiments were conducted in a pulverized fuel combustion pilot-scale facility and a full-scale unit. A mathematical model with input from computer-controlled scanning electron microscopy analysis of coal minerals was used to predict the effect of ash deposition on heat transfer. The predicted deposit thickness and heat flux from the model are shown to be consistent with the measurements in the test facility. The model differentiates the coals according to the deposits they form and their effect on heat transfer. The heat transfer predictions in the full-scale unit were found to be most suitable for the water wall under the furnace nose. The study demonstrates that the measurements in a full-scale unit can differ significantly from those in pilot-scale furnaces due to soot-blowing operations. 9 refs., 12 figs., 3 tabs.

  15. Pilot scale single stage fine coal dewatering and briquetting process. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.; Ding, Y.

    1997-05-01

    The primary goal of the ongoing ICCI coal preparation research project is to reduce ash and sulfur content in coal by using fine grinding and other coal cleaning processes. The ultrafine coal particles that result from the grinding and cleaning operations are difficult to dewater, and create problems in their storage, handling and transportation. The objective of this research is to combine the dewatering and briquetting processes of fine coal preparation into a single stage operation, thereby enhancing the economic viability of utilizing fine coal. A bitumen based emulsion, Orimulsion, has proven to be an effective hydrophobic binder, which helps not only with the briquetting process but also in the expulsion of water from the coal. Encouraging results from the use of a ram extruder briquetting device led to experimentation in the production of briquettes using a lab scale roll briquetting device. In the first quarter of this reporting year, a commercially available lab scale roll briquetting machine was employed (Komarek B-100). Further testing was conducted for the rest of the year with the use of a pilot scale model (Komarek B220-A). Briquettes were produced and evaluated by comparing results developed by adjusting various parameters of the briquetting machines and feed material. Results further substantiate previous findings that curing time dictates both moisture content and strengths of briquettes, and slower roll speeds produce more robust briquettes. A statistical model was set up to determine the optimal range of operating parameters. The statistical model generated from these results provided basic relationships between the roll speed and briquette form pressure.

  16. Operation of industrial-scale electron beam wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Han, Bumsoo; Kyu Kim, Jin; Kim, Yuri; Seung Choi, Jang; Young Jeong, Kwang

    2012-09-01

    Textile dyeing processes consume large amount of water, steam and discharge filthy and colored wastewater. A pilot scale e-beam plant with an electron accelerator of 1 MeV, 40 kW had constructed at Daegu Dyeing Industrial Complex (DDIC) in 1997 for treating 1,000 m3 per day. Continuous operation of this plant showed the preliminary e-beam treatment reduced bio-treatment time and resulted in more significant decreasing TOC, CODCr, and BOD5. Convinced of the economics and efficiency of the process, a commercial plant with 1 MeV, 400 kW electron accelerator has constructed in 2005. This plant improves the removal efficiency of wastewater with decreasing the retention time in bio-treatment at around 1 kGy. This plant is located on the area of existing wastewater treatment facility in DDIC and the treatment capacity is 10,000 m3 of wastewater per day. The total construction cost for this plant was USD 4 M and the operation cost has been obtained was not more than USD 1 M per year and about USD 0.3 per each m3 of wastewater.

  17. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect

    W. Pawlak; K. Szymocha

    1999-07-01

    The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

  18. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler

    NASA Astrophysics Data System (ADS)

    Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi; Doi, Yoshitaka; Aoki, Shinji; Izutsu, Masahiro

    1995-09-01

    A pilot-scale test for electron beam treatment of flue gas (12,000m3N/hr) from coal-fired boiler was conducted by Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation, in the site of Shin-Nagoya Thermal Power Plant in Nagoya, Japan. During 14 months operation, it was proved that the method is possible to remove SO2 and NOX simultaneously in wide concentration range of SO2 (250-2,000ppm) and NOX (140-240ppm) with higher efficiency than the conventional methods, with appropriate operation conditions (dose, temperature etc.). The pilot plant was easily operated with well controllability and durability, and was operated for long period of time without serious problems. The byproduct, ammonium sulfate and ammonium nitrate, produced by the treatment was proved to be a nitrogenous fertilizer with excellent quality.

  19. Old Dominion, industrial commonwealth: coal, politics, and economy in Antebellum America

    SciTech Connect

    Adams, S.P.

    2005-05-15

    The political economies of coal in Virginia and Pennsylvania from the late eighteenth century through the Civil War are compared, and the divergent paths these two states took in developing their ample coal reserves during a critical period of American industrialisation are examined. State economic policies played a major role. Virginia's failure to exploit the rich coal fields in the western part of the state can be traced to the legislature's over riding concern to protect and promote the interests of the agrarian, slaveholding elite of eastern Virginia. Pennsylvania's more fractious legislature enthusiastically embraced a policy of economic growth that resulted in the construction of an extensive transportation network, a statewide geological survey, and support for private investment in its coal fields.

  20. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  1. A new partnership to enhance international competitiveness for coal-related industries

    SciTech Connect

    Schobert, H.H.; Mitchell, G.D.; Finkelman, R.B.

    1999-07-01

    Conducting business in countries with significant indigenous coal supplies and expected economic growth (China, Indonesia, India, Russia, Ukraine, South Africa, Columbia, Brazil, and Venezuela) is extremely difficult, not only from a socio-economic/cultural standpoint, but because little reliable information is available on the properties and quality of raw materials. The question is how to compete and create opportunities in these countries when little or nothing is known about the properties of the indigenous raw materials. To address this concern the Penn State University and the U.S. Geological Survey (USGS) are partnering to develop an integrated database and sample bank of international coal and limestone samples of commercial value to power generation. The purpose of this partnership is to provide a reliable database linked to a convenient sample bank that would aid in resource evaluation and testing with regard to coal utilization including, but not limited to, combustion and combustion engineering, coke making, liquefaction, gasification, coalbed methane recovery, coal preparation, and mining. The Penn State-USGS-Private Sector partnership offers unique potential to provide this valuable service. The Penn State Energy Institute maintains a wide variety of analytical and testing equipment and expertise in coal-related engineering, chemistry and geology and has access to much more throughout the University system. For several decades the Institute has successfully maintained a large domestic coal sample bank. The USGS maintains a state-of-the-art analytical facility and a comprehensive domestic coal quality database. The USGS is actively working in about thirty countries to develop a reliable international coal quality database. Private sector will bring insights into the issues of competitiveness, certain knowledge of the marketplace and financial support.

  2. Pilot Scale Single Stage Fine Coal Dewatering and Briquetting Process. Technical report, March 1, 1996 - May 31, 1996

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.; Ding, Y.; Ho, K.

    1996-12-31

    The primary goal for this ICCI coal research project is to effectively liberate coal from fnely disseminated minerals for Illinois Basin coal by using fine grinding and cleaning processes. However, because of the large surface area generated during the cleaning processes, it is difficult and uneconomic for conventional techniques to dewater the coal fines. In addition, these coal fine pose transportation, storage and handling problems at cleaning and utility facilities. The objective of this research is to combine dewatering and briquetting processes into a single stage operation that will solve the problems mentioned above. To build on the promising results obtained from the previous studies, a pilot scale commercial briquetting machine was used to evaluate this technique. The primary objective of the research in this reporting period is to determine the effectiveness of a single stage dewatering and briquetting technique using a commercial briquetting device. Two types of samples were prepared and the results of the -28 x 100 mesh samples are presented in this report. Modifications were made to the machine in an attempt to solve the back drainage problem. A total of six experiments were conducted and the results indicate that water resistance of coal briquettes increased as curing time increased. However, due to a deficiency of fine particles to bridge the gaps between the coarse particles, the wear resistance of the products declined. Also, at high roll speeds and compaction pressures, the coal briquettes produced tended to have higher moisture content and lower strength. On the other hand, at high feed rates, because of the screw extrusion effect, coal briquettes were produced with lower moisture content and higher strengths.

  3. The true cost of renewables: An analytic response to the coal industry`s attack on renewable energy

    SciTech Connect

    Swezey, B G; Wan, Yih-huei

    1995-10-01

    In April 1995, the Center for Energy and Economic Development (CEED), an umbrella organization of pro-coal interests, released a report entitled Energy Choices in a Competitive Era: The Role of Renewable and Traditional Energy Resources in America`s Electric Generation Mix. The report purports to show that a very modest growth in the use of renewable energy in the U.S. power sector would entail unaffordable costs for the nation`s electricity ratepayers. The National Renewable Energy Laboratory (NREL) was commissioned by the U.S. Department of Energy (DOE) to review the assumptions contained in the report, which was prepared for CEED by Resource Data International, Inc. (RDI). The NREL analysis finds that the conclusions of the CEED/RDI study are based on faulty data and assumptions regarding the comparative economics of coal and renewable energy development. After correcting these errors, NREL finds that a modest growth path of renewable resource development would essentially cost the nation little more than projected electricity market costs for coal-fired generation, even before considering the environmental benefits that would accompany this development.

  4. Multi-scale radiographic applications in microelectronic industry

    NASA Astrophysics Data System (ADS)

    Gluch, J.; Löffler, M.; Meyendorf, N.; Oppermann, M.; Röllig, M.; Sättler, P.; Wolter, K. J.; Zschech, E.

    2016-02-01

    New concepts in assembly technology boost our daily life in an unknown way. High end semiconductor industry today deals with functional structures down to a few nanometers. ITRS roadmap predicts an ongoing decrease of the "DRAM half pitch" over the next decade. Packaging of course is not intended to realize pitches at the nanometer scale, but has to face the challenges of integrating such semiconductor devices with smallest pitch and high pin counts into systems. System integration (SiP, SoP, Hetero System Integration etc.) into the third dimension is the only way to reduce the gap between semiconductor level and packaging level interconnection. The described development is mainly driven by communication technology but also other branches like power electronics benefit from the vast progress in integration and assembly technology. The challenge of advanced packaging requires new nondestructive evaluation (NDE) techniques for technology development and production control. In power electronics production the condition monitoring receives a lot of interest to avoid electrical shortcuts, dead solder joints and interface cracking. It is also desired to detect and characterize very small defects like transportation phenomenon or Kirkendall voids. For this purpose imaging technologies with resolutions in the sub-micron range are required. Our presentation discusses the potentials and the limits of X-ray NDE techniques, illustrated by crack observation in solder joints, evaluation of micro vias in PCBs and interposers and the investigation of solder material composition and other aftermaths of electro migration in solder joints. Applied radiographic methods are X-ray through transmission, multi-energy techniques, laminography, CT and nano-CT.

  5. Clean coal technology: The new coal era

    SciTech Connect

    Not Available

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  6. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1994-01-30

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy awarded Vortec Corporation this Phase III contract (No. DE-AC22-91PC91161) for the development of {open_quotes}A Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes}. The effective contrast start date was September 3, 1991. The contract period of performance is 36 months. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. Final detailed installation designs for the integrated test system configuration are being completed. The equipment is being fabricated and deliveries have begun. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe recyclable glass product.

  7. The development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  8. Pilot-scale fluidized-bed combustor testing cofiring animal-tissue biomass with coal as a carcass disposal option

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Elizabeth M. Fedorowicz; David W. Harlan; Linda A. Detwiler; Michelle L. Rossman

    2006-10-15

    This study was performed to demonstrate the technical viability of cofiring animal-tissue biomass (ATB) in a coal-fired fluidized-bed combustor (FBC) as an option for disposing of specified risk materials (SRMs) and carcasses. The purpose of this study was to assess the technical issues of feeding/combusting ATB and not to investigate prion deactivation/pathogen destruction. Overall, the project successfully demonstrated that carcasses and SRMs can be cofired with coal in a bubbling FBC. Feeding ATB into the FBC did, however, present several challenges. Specifically, handling/feeding issues resulting from the small scale of the equipment and the extremely heterogeneous nature of the ATB were encountered during the testing. Feeder modifications and an overbed firing system were necessary. Through statistical analysis, it was shown that the ATB feed location had a greater effect on CO emissions, which were used as an indication of combustion performance, than the fuel type due to the feeding difficulties. Baseline coal tests and tests cofiring ATB into the bed were statistically indistinguishable. Fuel feeding issues would not be expected at the full scale since full-scale units routinely handle low-quality fuels. In a full-scale unit, the disproportionate ratio of feed line size to unit diameter would be eliminated thereby eliminating feed slugging. Also, the ATB would either be injected into the bed, thereby ensuring uniform mixing and complete combustion, or be injected directly above the bed with overfire air ports used to ensure complete combustion. Therefore, it is anticipated that a demonstration at the full scale, which is the next activity in demonstrating this concept, should be successful. As the statistical analysis shows, emissions cofiring ATB with coal would be expected to be similar to that when firing coal only. 14 refs., 5 figs., 6 tabs.

  9. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China.

    PubMed

    Song, Xiaoyan; Yang, Shushen; Shao, Longyi; Fan, Jingsen; Liu, Yanfei

    2016-11-15

    The atmospheric pollution created by coal-dominated industrial cities in China cannot be neglected. This study focuses on the atmospheric PM10 in the typical industrial city of Pingdingshan City in North China. A total of 44 PM10 samples were collected from three different sites (power plant, mining area, and roadside) in Pingdingshan City during the winter of 2013, and were analyzed gravimetrically and chemically. The Pingdingshan PM10 samples were composed of mineral matter (average of 118.0±58.6μg/m(3), 20.6% of the total PM10 concentration), secondary crystalline particles (338.7±122.0μg/m(3), 59.2%), organic matter (77.3±48.5μg/m(3), 13.5%), and elemental carbon (38.0±28.3μg/m(3), 6.6%). Different sources had different proportions of these components in PM10. The power plant pollutant source was characterized by secondary crystalline particles (377.1μg/m(3)), elemental carbon (51.5μg/m(3)), and organic matter (90.6μg/m(3)) due to coal combustion. The mining area pollutant source was characterized by mineral matter (124.0μg/m(3)) due to weathering of waste dumps. The roadside pollutant source was characterized by mineral matter (130.0μg/m(3)) and organic matter (81.0μg/m(3)) due to road dust and vehicle exhaust, respectively. A positive matrix factorization (PMF) analysis was performed for PM10 source apportionment to identify major anthropogenic sources of PM10 in Pingdingshan. Six factors-crustal matter, coal combustion, vehicle exhaust and abrasion, local burning, weathering of waste dumps, and industrial metal smelting-were identified and their contributions to Pingdingshan PM10 were 19.0%, 31.6%, 7.4%, 6.3%, 9.8%, and 25.9%, respectively. Compared to other major cities in China, the source of PM10 in Pingdingshan was characterized by coal combustion, weathering of waste dumps, and industrial metal smelting. PMID:27450962

  10. Outlook and Challenges for Chinese Coal

    SciTech Connect

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with

  11. Environmental impact of coal industry and thermal power plants in India.

    PubMed

    Mishra, U C

    2004-01-01

    Coal is the only natural resource and fossil fuel available in abundance in India. Consequently, it is used widely as a thermal energy source and also as fuel for thermal power plants producing electricity. India has about 90,000 MW installed capacity for electricity generation, of which more than 70% is produced by coal-based thermal power plants. Hydro-electricity contributes about 25%, and the remaining is mostly from nuclear power plants (NPPs). The problems associated with the use of coal are low calorific value and very high ash content. The ash content is as high as 55-60%, with an average value of about 35-40%. Further, most of the coal is located in the eastern parts of the country and requires transportation over long distances, mostly by trains, which run on diesel. About 70% oil is imported and is a big drain on India's hard currency. In the foreseeable future, there is no other option likely to be available, as the nuclear power programme envisages installing 20,000 MWe by the year 2020, when it will still be around 5% of the installed capacity. Hence, attempts are being made to reduce the adverse environmental and ecological impact of coal-fired power plants. The installed electricity generating capacity has to increase very rapidly (at present around 8-10% per annum), as India has one of the lowest per capita electricity consumptions. Therefore, the problems for the future are formidable from ecological, radio-ecological and pollution viewpoints. A similar situation exists in many developing countries of the region, including the People's Republic of China, where coal is used extensively. The paper highlights some of these problems with the data generated in the author's laboratory and gives a brief description of the solutions being attempted. The extent of global warming in this century will be determined by how developing countries like India manage their energy generation plans. Some of the recommendations have been implemented for new plants

  12. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 3, April--June 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-08-05

    Economical dewatering of an ultra-fine clean coal product to a 20% or lower level moisture will be an important step in successful implementation of the advanced fine coal cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept (POC) scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals. During this quarter, addition of reagents such as ferric ions and a novel concept of in-situ polymerization (ISP) was studied in the laboratory. Using the ISP approach with vacuum filtration provided 25% moisture filter cake compared to 65.5% moisture obtained conventionally without using the ISP. A series of dewatering tests were conducted using the Andritz hyperbaric pilot filter unit with high sulfur clean coal slurry.

  13. CAPSULE REPORT: PARTICULATE CONTROL BY FABRIC FILTRATION ON COAL-FIRED INDUSTRIAL BOILERS

    EPA Science Inventory

    Interest in fabric filtration for boiler particulate control has increased due to the conversion of oil- and gas- to coal-fired boilers and the promulgation of more stringent particulate emission regulations. his report describes the theory, applications, performance, and economi...

  14. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992

    SciTech Connect

    Not Available

    1992-09-03

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

  15. Coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    1995-08-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. This includes new installations and those existing installations that were originally designed for oil or gas firing. The data generated by these projects must be sufficient for private-sector decisions on the feasibility of using coal as the fuel of choice. This work should also provide incentives for the private sector to continue and expand the development, demonstration, and application of these combustion systems. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications is being developed under contract DE-AC22-91PC91161 as part of this DOE development program. The current contract represents the third phase of a three-phase development program. Phase I of the program addressed the technical and economic feasibility of the process, and was initiated in 1987 and completed 1989. Phase II was initiated in 1989 and completed in 1990. During Phase II of the development, design improvements were made to critical components and the test program addressed the performance of the process using several different feedstocks. Phase III of the program was initiated September 1991 and is scheduled for completion in 1994. The Phase III research effort is being focused on the development of a process heater system to be used for producing value-added vitrified glass products from boiler/incinerator ashes and selected industrial wastes.

  16. Particle scale modelling of the multiphase flow in a dense medium cyclone: Effect of medium-to-coal ratio

    NASA Astrophysics Data System (ADS)

    Chu, Kaiwei; Chen, Jiang; Yu, Aibing; Vince, Andrew

    2013-06-01

    The effect of solids loading ratio or the medium-to-coal (M:C) ratio is the most important operational parameter of the Dense Medium Cyclones (DMC) that are widely used in the coal industry to upgrade the run-of-mine coal by separating gangue from product coal. However, its effect is still not well understood so far, since the flow pattern within a DMC is complicated due to the size and density distributions of the feed and process medium solids, and the turbulent vortex formed. Recently, it is shown that the particle-laden flow in a DMC can be modelled by the so-called combined Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) (CFD-DEM) in which the flow of coal particles is modelled by DEM which applies Newton's laws of motion to individual particles and that of medium flow by the conventional CFD which solves the local-averaged Navier-Stokes equations, allowing consideration of particle-fluid mutual interaction and particle-particle collisions. In this work, the effect of medium-to-coal (M:C) ratio is studied by a two-way coupling CFD-DEM approach for a large diameter DMC. The flow structure, and particle-particle and particle-fluid forces are analysed to understand the fundamentals governing this effect. The results suggest that the solids volume fraction of 20% (or M:C ratio of 4 by volume) is a critical point for the DMC performance under the conditions considered.

  17. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-07-30

    Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the designs of the remaining major components of the integrated system were completed and the equipment was ordered. DOE has elected to modify the scope of the existing R&D program being conducted under this contract to include testing of a simulated TSCA incinerator ash. The modification will be in the form of an additional Task (Task 8 -- TSCA Ash Testing) to the original Statement of Work.

  18. Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report

    SciTech Connect

    1996-03-01

    Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

  19. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  20. Study of application of ERTS-A imagery to fracture related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.

    1973-01-01

    The author has identified the following significant results. The 70mm black and white infrared photography acquired in March 1973 at an approximate scale of 1:115,000 permits the identification of areas of mine subsidence not readily evident on other films. This is largely due to the high contrast rendition of water and land by this film and the excessive surface moisture conditions prevalent in the area at the time of photography. Subsided areas consist of shallow depressions which have impounded water. Patterns with a regularity indicative of the room and pillar configuration used in subsurface coal mining are evident.

  1. Economics of scale in the electric-utility industry: a review. Final report

    SciTech Connect

    Not Available

    1982-09-01

    Purpose of this paper is to examine the literature dealing with the issue of economy of scale, outline its effects on, and implications for, the electric utility industry, and to review the economies of scale for both conventional and renewable (or inexhaustible) utility technologies. The key characteristics of utility technology and other factors which influence economies of scale are included to provide historical and future perspective on the importance of the economy-of-scale issue. Intent of this paper is to review the role of scale economies in the electric utility industry in order to structure the discussion on and gain perspective on their continued importance.

  2. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  3. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion. (VC)

  4. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently sporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. the proposed program is composed of three major technical task. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  5. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Lippert, T.E.; Bachovchin, D.M.; Smeltzer, E.E.; Meyer, J.H.; Vidt, E.J.

    1989-09-01

    The ceramic cross-flow filter (CXF) system is a promising method to be used in advanced coal based power systems for high temperature, high pressure (HTHP) particle removal. Using a subpilot scale pressurized fluid-bed combustor (PFBC) at Argonne National Laboratory and various PFBC simulators, prior projects have indicated that CXF systems can be used in oxidizing environments at PFBC conditions. To extend the use of CXF systems, this project completed an economic analysis comparing the cost of various oxygen and air blown gasification systems with the CXF system incorporated, initiated the scaleup of the CXF element from development to commercial size, predicted the characteristics of gasifier dust cake, evaluated cleaning pulse characteristics in a large multielement simulation, upgraded pulse cleaning mathematical model, and completed additional testing of the CXF elements under gasification (reducing) and PFBC conditions. Coors Ceramic Company and GTE Products Corporation were integrally involved in this program through the development and fabrication of the CXF elements. 39 figs., 23 tabs.

  6. O absorption measurements in an engineering-scale high-pressure coal gasifier

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Sur, Ritobrata; Jeffries, Jay B.; Hanson, Ronald K.; Clark, Tommy; Anthony, Justin; Machovec, Scott; Northington, John

    2014-10-01

    A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2 f) was used to determine the absorption magnitude. The 1 f-normalized, WMS-2 f signal (WMS-2 f/1 f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1 f-normalized WMS-2 f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.

  7. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  8. Surface runoff from full-scale coal combustion product pavements during accelerated loading

    SciTech Connect

    Cheng, C.M.; Taerakul, P.; Tu, W.; Zand, B.; Butalia, T.; Wolfe, W.; Walker, H.

    2008-08-15

    In this study, the release of metals and metalloids from full-scale portland cement concrete pavements containing coal combustion products (CCPs) was evaluated by laboratory leaching tests and accelerated loading of full-scale pavement sections under well-controlled conditions. An equivalent of 20 years of highway traffic loading was simulated at the OSU/OU Accelerated Pavement Load Facility (APLF). Three types of portland cement concrete driving surface layers were tested, including a control section (i.e., ordinary portland cement (PC) concrete) containing no fly ash and two sections in which fly ash was substituted for a fraction of the cement; i.e., 30% fly ash (FA30) and 50% fly ash (FA50). In general, the concentrations of minor and trace elements were higher in the toxicity characteristic leaching procedure (TCLP) leachates than in the leachates obtained from synthetic precipitation leaching procedure and ASTM leaching procedures. Importantly, none of the leachate concentrations exceeded the TCLP limits or primary drinking water standards. Surface runoff monitoring results showed the highest release rates of inorganic elements from the FA50 concrete pavement, whereas there were little differences in release rates between PC and FA30 concretes. The release of elements generally decreased with increasing pavement loading. Except for Cr, elements were released as particulates (>0.45 {mu} m) rather than dissolved constituents. The incorporation of fly ash in the PC cement concrete pavements examined in this study resulted in little or no deleterious environmental impact from the leaching of inorganic elements over the lifetime of the pavement system.

  9. COAL: DRDF (DENSIFIED REFUSE DERIVED FUEL) DEMONSTRATION TEST IN AN INDUSTRIAL SPREADER STOKER BOILER. USE OF COAL: DRDF BLENDS IN STOKER-FIRED BOILERS, APPENDICES A, B, C, AND D. VOLUME II

    EPA Science Inventory

    This study program has the overall objective of evaluating boiler performance and environmental feasibility when combusting densified forms of refuse derived fuels (dRDF) blended with coal and fired in a modern industrial spreader stoker-fired boiler. The results reported herein ...

  10. Using MSD prevention for cultural change in mining: Queensland Government/Anglo Coal Industry partnership.

    PubMed

    Tilbury, Trudy; Sanderson, Liz

    2012-01-01

    Queensland Mining has a strong focus on safety performance, but risk management of health, including Musculoskeletal Disorders (MSDs) continues to have a lower priority. The reliance on individual screening of workers and lower level approaches such as manual handling training is part of the coal mining 'culture'. Initiatives such as the New South Wales and Queensland Mining joint project to develop good practice guidance for mining has allowed for a more consistent message on participatory ergonomics and prevention of MSD. An evidence based practice approach, including the introduction of participatory ergonomics and safe design principles, was proposed to Anglo American Coal operations in Queensland. The project consisted of a skills analysis of current health personnel, design of a facilitated participatory ergonomics training program, site visits to identify good practice and champions, and a graduated mentoring program for health personnel. Early results demonstrate a number of sites are benefiting from site taskforces with a focus on positive performance outcomes. PMID:22317407

  11. Large scale solubilization of coal and bioconversion to utilizable energy. Eighth quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Mishra, N.C.

    1996-02-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  12. Large scale solubilization of coal and bioconversion to utilizable energy. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Mishra, N.C.

    1995-12-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  13. Large scale solubilization of coal and bioconversion to utilizable energy. Fifth quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Mishra, N.C.

    1995-02-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. The authors also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  14. Large scale solubilization of coal and bioconversion to utilizable energy. Technical progress report, July 1, 1994--September 30, 1994, fourth quarterly

    SciTech Connect

    Mishra, N.C.

    1994-11-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms (Faison, 1991). In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  15. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly progress report, July - September 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-10-01

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale. The study which is in progress is being conducted at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter laboratory dewatering studies were conducted using a 4-in diameter laboratory chemical centrifuge. The baseline data provided a filter cake with about 32% moisture. Addition of 0.3 kg/t of a cationic surfactant lowered the moisture to 29%. Addition of anionic and non-ionic surfactant was not effective in reducing the filter cake moisture content. In the pilot scale studies, a comparison was conducted between the high pressure and vacuum dewatering techniques. The base line data with high pressure and vacuum filtration provided filter cakes with 23.6% and 27.8% moisture, respectively. Addition of 20 g/t of cationic flocculent provided 21% filter cake moisture using the high pressure filter. A 15% moisture filter cake was obtained using 1.5 kg/t of non-ionic surfactant. Vacuum filter provided about 23% to 25% moisture product with additional reagents. The high pressure filter processed about 3 to 4 times more solids compared to vacuum filter.

  16. Large scale solubilization of coal and bioconversion to utilizable energy. Third quarterly technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect

    Mishra, N.C.

    1994-08-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the investigators plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Main objectives are: (1) cloning of Neurospora gene for coal depolymerization protein controlling solubilization in different host cells, utilizing Neurospora plasmid and other vector(s); (2) (a) development of a large scale electrophoretic separation of coal drived products obtained after microbial solubilization; (b) identification of the coal derived products obtained after biosolubilization by Neurospora cultures or obtained after Neurospora enzyme catalyzed reaction in in vitro by the wildtype and mutant enzymes; (3) bioconversion of coal drived products into utilizable fuel; and (4) characterization of Neurospora wildtype and mutant CSA protein(s) involved in solubilization of coal in order to assess the nature of the mechanism of solubilization and the role of Neurospora proteins in this process.

  17. Laboratory scale studies on removal of chromium from industrial wastes.

    PubMed

    Baig, M A; Mir, Mohsin; Murtaza, Shazad; Bhatti, Zafar I

    2003-05-01

    Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr(3+)) and hexavalent (Cr(6+)) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr(3+) is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100% efficiency in reducing Cr(6+) to Cr(3+), and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase III studies indicated the best pH was 8.5 for precipitation of Cr(3+) to chromium hydroxide by using lime. An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confined that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries. PMID:12938996

  18. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  19. Development and testing of a high efficiency advanced coal combustor Phase III industrial boiler retrofit. Quarterly technical progress report, July 1, 1995--September 30, 1995 No. 16

    SciTech Connect

    Borio, R.W.

    1995-12-15

    The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the sixteenth quarter (July `95 through September `95) of the program. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components. (2) Design and experimental testing of a prototype HEACC (High Efficiency Advanced Coal Combustor) burner. (3) Installation and testing of a prototype HEACC system in a commercial retrofit application. (4) Economics evaluation of the HEACC concept for retrofit applications. (5) Long term demonstration under commercial user demand conditions.

  20. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  1. Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.

    1995-08-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

  2. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    PubMed

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study. PMID:24328080

  3. Industrial-scale radio frequency treatments for insect control in lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency (RF) treatments are considered as a potential postharvest technology for disinfesting legumes. After treatment protocols are validated to control postharvest insects without significant quality degradation, it is important to scale-up laboratory RF treatments to industrial applicatio...

  4. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  5. Community Economic Identity: The Coal Industry and Ideology Construction in West Virginia

    ERIC Educational Resources Information Center

    Bell, Shannon Elizabeth; York, Richard

    2010-01-01

    Economic changes and the machinations of the treadmill of production have dramatically reduced the number of jobs provided by extractive industries, such as mining and timber, in the United States and other affluent nations in the post-World War II era. As the importance of these industries to national, regional, and local economies wanes,…

  6. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.

    PubMed

    Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti

    2002-01-01

    Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process. PMID:12099502

  7. (Performance evaluation of fabric bag filters on a bench-scale coal gasifier)

    SciTech Connect

    Not Available

    1986-01-15

    The objective of the proposed work is to demonstrate the operational and economic feasibility of using high-temperature ceramic filters for particulate control in a variety of coal gasification power generating systems.

  8. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  9. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  10. Speed up the development and popularization of coal in Shanxi and Taiyuan areas

    SciTech Connect

    Hu, Y.; Ma, Q.; Fan, R.

    1997-12-31

    Clean coal utilization is a key step of sustainable development in China. In the period of ninth Five-Year-Plan, China will greatly enhance the development and adoption of clean coal technology, in which the industrial coal briquetting plays an important role. Compared with burning pulverized coal, burning coal briquettes in stoker boilers raises heat efficiency 10--14%, saves 15--21% of the coal, reduces particulate emission by 80--91% and SO{sub 2} by 20--36%. Consequently, development and popularization of coal briquette for boilers have been listed as one of the key projects in the ninth Five-Year-Plan. Owing to mechanized coal mining, the lump coal proportion is being reduced. On the other hand, thousands of gas producers in the small and medium scale ammonia plants increasingly demand lump anthracite. This discrepancy between supply and demand on lump coal can be resolved by coal briquetting. This paper describes the features and superiority of coal briquettes for gasification; it has uniform size, larger porosity, and higher reactivity. Some of its properties can be upgraded. Many Chinese organizations are being devoted to coal briquetting research, development and production. How to coordinate them in their efforts to form a coal briquetting industry with suitable production capacity and active market is a topic worth studying. This paper describes the current situation on briquette research, production and marketing. Some proposals to speed up the development and popularization of the coal briquettes are given.