Science.gov

Sample records for industrial technologies summary

  1. Energy-conserving technologies for industry: a summary of recent progress in research and development

    SciTech Connect

    Monarch, M.; Alston, T.; Macal, K.; Macal, C.; Tatar, J.; Hersh, H.; Blomquist, C.; Singh, M.; Larsen, R.

    1984-01-01

    Fifty-six summary sheets on energy-conserving industrial technologies were prepared. These summaries describe Office of Industrial Programs (OIP) energy-conservation and waste-recovery projects that have progressed to the point of potential industrial application. Possibilities for cross-industry applications are pointed out in many of the summary sheets. Each summary includes the following types of information: industrial application, process energy savings, conventional situation, new technology, R and D project development and status, technical information, economic analysis, and industry-wide savings.

  2. Office of Industrial Technologies: Summary of program results

    SciTech Connect

    1999-01-01

    Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

  3. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  4. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  5. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  6. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary

    SciTech Connect

    1995-04-01

    This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

  7. SUMMARY REPORT: CONTROL AND TREATMENT TECHNOLOGY FOR THE METAL FINISHING INDUSTRY: ION EXCHANGE

    EPA Science Inventory

    This Technology Transfer ummary Report is one of a series of reports that summarizes a pollution control technology for the metal finishing industry. he 45-page report is intended to promote an understanding of the use of ion exchange in the metal finishing industry. The sections...

  8. SUMMARY REPORT: CONTROL AND TREATMENT TECHNOLOGY FOR THE METAL FINISHING INDUSTRY: IN -PLANT CHANGES

    EPA Science Inventory

    This 30 - page Technology Transfer Report ummarizes how he metal finishing industry in the United States is subject to a variety of changing business conditions. wo of the most significant factors are the increasing costs of materials, such as plating chemicals and process water,...

  9. IMPACTS. Industrial Technologies Program: Summary of Program Results for CY 2008

    SciTech Connect

    none,

    2010-08-02

    The Impacts report summarizes benefits resulting from ITP-sponsored technologies, including energy savings, waste reduction, increased productivity, and lowered emissions. It also provides an overview of the activities of the Industrial Assessment Centers, BestPractices Program, and Combined Heat and Power efforts.

  10. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    NASA Astrophysics Data System (ADS)

    Yamada, Isao; Matsuo, Jiro; Toyoda, Noriaki

    2008-11-01

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R&D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  11. A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes

    SciTech Connect

    Reaven, S.J.

    1994-08-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

  12. Solar thermal technologies program summary

    SciTech Connect

    Not Available

    1985-05-01

    The primary applications being developed in solar thermal technology are the production of electricity and industrial process heat. Additional applications, such as the production of a transportable fuel, are also being studied to determine their feasibility. Two collector concepts are being examined: central receiver and distributed receiver. Some significant achievements are briefly described, as well as program goals and strategies. The research plan for the 1984 fiscal year is also briefly discussed, including a summary of the budget. (LEW)

  13. Industry/government seminar on Large Space systems technology: Executive summary

    NASA Technical Reports Server (NTRS)

    Scala, S. M.

    1978-01-01

    The critical technology developments which the participating experts recommend as being required to support the early generation large space systems envisioned as space missions during the years 1985-2000 are summarized.

  14. IMPACTS. Industrial Technologies Program: Summary of Program Results for CY 2009

    SciTech Connect

    none,

    2011-10-01

    This annual report tracks the energy and other benefits of our commercialized technologies. From the 1980s to 2009, cumulative net energy savings are estimated at 10.0 quads, with an associated cost savings of $50.55 billion (in 2009 dollars).

  15. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    SciTech Connect

    Conger, R.L.; Lee, V.E.; Buel, L.M.

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  16. A case study in technology utilization: Industrial products and practices. [summary of benefits to national economy resulting from space programs

    NASA Technical Reports Server (NTRS)

    1973-01-01

    In pursuit of such missions as Apollo, the National Aeronautics and Space Administration has called into being unique equipment that obviously has little direct application beyond the achievement of mission objectives. Yet, to assume that further direct application of space program hardware is somehow a measure of the industrial benefits accruing to the nation is to misunderstand how the creation of new technology affects modern industrial capability. This document presents a profile of the significant ways in which technological developments in response to aerospace mission requirements have been coupled into industrial practice, with the result being that improved products and processes are now being utilized to benefit the nation.

  17. Space electronics technology summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An overview is given of current electronics R and D activities, potential future thrusts, and related NASA payoffs. Major increases in NASA mission return and significant concurrent reductions in mission cost appear possible through a focused, long range electronics technology program. The overview covers: guidance assessments, navigation and control, and sensing and data acquisition processing, storage, and transfer.

  18. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  19. Space Station Technology Summary

    NASA Technical Reports Server (NTRS)

    Iacabucci, R.; Evans, S.; Briley, G.; Delventhal, R. A.; Braunscheidel, E.

    1989-01-01

    The completion of the Space Station Propulsion Advanced Technology Programs established an in-depth data base for the baseline gaseous oxygen/gaseous hydrogen thruster, the waste gas resistojet, and the associated system operations. These efforts included testing of a full end-to-end system at National Aeronautics and Space Administration (NASA)-Marshall Space Flight Center (MSFC) in which oxygen and hydrogen were generated from water by electrolysis at 6.89 MPa (1,000 psia), stored and fired through the prototype thruster. Recent end-to-end system tests which generate the oxygen/hydrogen propellants by electrolysis of water at 20.67 MPa (3,000 psia) were completed on the Integrated Propulsion Test Article (IPTA) at NASA-Johnson Space Center (JSC). Resistojet testing has included 10,000 hours of life testing, plume characterization, and electromagnetic interference (EMI) testing. Extensive 25-lbf thruster testing was performed defining operating performance characteristics across the required mixture ratio and thrust level ranges. Life testing has accumulated 27 hours of operation on the prototype thruster. A total of seven injectors and five thrust chambers were fabricated to the same basic design. Five injectors and three thrust chambers designed to incorporate improved life, performance, and producibility characteristics are ready for testing. Five resistojets were fabricated and tested, with modifications made to improve producibility. The lessons learned in the area of producibility for both the O2/H2 thrusters and for the resistojet have resolved critical fabrication issues. The test results indicate that all major technology issues for long life and reliability for space station application were resolved.

  20. Metalcasting Industry Technology Roadmap

    SciTech Connect

    none,

    1998-01-01

    The Roadmap sets out the strategy for pursuing near-, mid-, and long-term goals set out by industry and for carrying out the cooperative agreement between the U.S. Department of Energy and industry. The Roadmap outlines key goals for products and markets, materials technology, manufacturing technology, environmental technology, human resources, and industry health programs. The Roadmap sets out the strategy for pursuing near-, mid-, and long-term goals set out by industry and for carrying out the cooperative agreement between the U.S. Department of Energy and industry. The Roadmap sets out the strategy for pursuing near-, mid-, and long-term goals set out by industry and for carrying out the cooperative agreement between the U.S. Department of Energy and industry.

  1. Chicago Operations Office: Technology summary

    SciTech Connect

    Not Available

    1994-12-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation (RDDT and E) activities funded through the Chicago Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US Industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents which highlight technology development activities within each of the OTD program elements. OTD technologies addresses three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  2. Plutonium focus area: Technology summary

    SciTech Connect

    1996-03-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  3. Transferring Technology to Industry

    NASA Technical Reports Server (NTRS)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  4. Morgantown Energy Technology Center, technology summary

    SciTech Connect

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  5. Plutonium focus area. Technology summary

    SciTech Connect

    1997-09-01

    The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

  6. Pollution Prevention Program: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Department of Energy (DOE) has established a national Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) Program for pollution prevention and waste minimization at its production plants During FY89/90 the Office of Environmental Restoration and Waste Management (EM), through the Office of Technology Development (OTD), established comprehensive, pollution prevention technical support programs to demonstrate new, environmentally-conscious technology for production processes. The RDDT&E program now entails collaborative efforts across DOE. The Pollution Prevention Program is currently supporting three major activities: The DOE/US Air Force Memorandum of Understanding Program is a collaborative effort to utilize the combined resources of DOE and the Department of Defense, eliminate duplication of effort in developing technologies, and to facilitate technology solutions aimed at reducing waste through process modification, material substitution or recycling. The Waste Component Recycle, Treatment and Disposal Integrated Demonstration (WeDID) will develop recycle, treatment, and disposal processes and associated technologies for use in the dismantlement of non-nuclear weapons components, to support US arms treaties and policies. This program will focus on meeting all security and regulatory requirements (with additional benefit to the commercial electronics industry). The Environmentally Conscious Manufacturing Integrated Demonstration (ECMID) will effectively implement ECM technologies that address both the needs of the DOE Complex and US electronics industry, and encourage strong interaction between DOE and US industry. The ECMID will also develop life cycle analysis tools that will aid decisionmakers in selecting the optimum process based on the tradeoffs between cost an environmental impact.

  7. Building Technologies Program Planning Summary

    SciTech Connect

    none,

    2009-11-01

    The U.S. Department of Energy’s (DOE) Building Technologies Program (BTP) works in partnership with industry, state, municipal, and other federal organizations to achieve the goals of marketable net-zero energy buildings. To carry out its mission, BTP involves builders; appliance, window, lighting, operational systems, and component manufacturers; and end users in setting the program’s research priorities. These groups advise and help guide BTP through implementing, deploying, and standardizing new technologies, equipment, and processes being developed and tested in DOE’s national laboratories and in real-world applications in many U.S. communities.

  8. Innovation investment area: Technology summary

    SciTech Connect

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  9. Research and Technology Operating Plan Summary, Fiscal Year 1972 Research and Technology Program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The NASA Research and Technology program for FY 1972 is presented. It is a compilation of the summary portions of each of the RTOPs (Research and Technology Operating Plan) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities.

  10. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA research and technology program for FY 1990 is presented. The summary portions is compiled of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and universities. The first section containing citations and abstracts of the RTOPs is followed by four indices: Subject; Technical Monitor; Responsible NASA Organization; and RTOP number.

  11. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The NASA Research and Technology program for FY 1978 is represented by this compilation of the 'Summary' portions of each of the Research and Technology Objectives and Plans (RTOPS). The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section contains citations and abstracts of the RTOPs. Following this section are four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  12. Office of Industrial Technologies research in progress

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  13. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  14. Existing technology transfer reports. Summary

    SciTech Connect

    Schweighardt, F.K.

    1984-06-01

    From 1974 to 1980, Air Products and Chemicals, Inc. (APCI) conducted a broad spectrum of internal research projects on coal, coal liquefaction processing, and coal liquids analysis. The sum of all of these projects is reported to the United States Department of Energy (DOE) by a set of five Existing Technology Transfer Reports under the following titles: (1) Liquefaction Process and Product Studies, DOE/OR/03054-109; (2) Filtration and Deashing Technology, DOE/OR/03054-118; (3) Dissolver Cold-Flow Modelling, DOE/OR/03054-108; (4) Second-Stage Support, DOE/OR/03054-117; and (5) Analytical Capabilities, DOE/OR/03054-116. This summary report provides an overview of the five Existing Technology Transfer Reports by highlighting the program objectives/results and listing the documents in which the original experimental data are contained. These documents are presented as either an attached appendix or as a file of raw data maintained by the US DOE and the International Coal Refining Company (ICRC).

  15. Ethics for Industrial Technology

    ERIC Educational Resources Information Center

    Rosentrater, Kurt A.; Balamuralikrishna, Radha

    2005-01-01

    This paper takes aim at one specific, as well as basic, need in teamwork and interdisciplinary projects--ethics and its implications for professional practice. A preliminary study suggests that students majoring in industrial technology degree programs may not have adequate opportunity to formally study and engage in ethical aspects of technology…

  16. Wind energy technology program summary

    NASA Astrophysics Data System (ADS)

    1984-10-01

    The purpose of the Federal Wind Energy Technology Program is to perform research that will enable the private sector to develop and utilize safe, reliable, and efficient wind energy systems. Generic research will provide the technology base and scientific understanding necessary to allow industry to develop wind energy systems competitive with conventional energy sources. The goal of the DOE wind program is to improve the basic understanding of aerodynamics and structural dynamics in order to more accurately predict wind turbine aerodynamic performance, natural resonance frequencies, and structural loads. Areas included in the research plan being developed for the next five years include: advanced fluid dynamics, aerodynamics research, structural dynamics research, and advanced components and systems research, including multimegawatt (MOD-5) development.

  17. Computer Technology for Industry

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In this age of the computer, more and more business firms are automating their operations for increased efficiency in a great variety of jobs, from simple accounting to managing inventories, from precise machining to analyzing complex structures. In the interest of national productivity, NASA is providing assistance both to longtime computer users and newcomers to automated operations. Through a special technology utilization service, NASA saves industry time and money by making available already developed computer programs which have secondary utility. A computer program is essentially a set of instructions which tells the computer how to produce desired information or effect by drawing upon its stored input. Developing a new program from scratch can be costly and time-consuming. Very often, however, a program developed for one purpose can readily be adapted to a totally different application. To help industry take advantage of existing computer technology, NASA operates the Computer Software Management and Information Center (COSMIC)(registered TradeMark),located at the University of Georgia. COSMIC maintains a large library of computer programs developed for NASA, the Department of Defense, the Department of Energy and other technology-generating agencies of the government. The Center gets a continual flow of software packages, screens them for adaptability to private sector usage, stores them and informs potential customers of their availability.

  18. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This publication represents the NASA research and technology program for FY87. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  19. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This publication represents the NASA research and technology program for FY89. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  20. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication represents the NASA research and technology program for FY-93. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  1. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This publication represents the NASA research and technology program for FY 1985. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP number.

  2. Biological and chemical technologies research. FY 1995 annual summary report

    SciTech Connect

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  3. Research and technology objectives and plans: Summary fiscal year 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This publication represents the NASA research and technology program for FY 1991. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and in universities. The first section contains citations and abstracts of the RTOP's and is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  4. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This publication represents the NASA research and technology program for FY88. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  5. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This publication represents the NASA research and technology program for FY92. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  6. Missouri Industrial Technology Education Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Dept. of Practical Arts and Vocational-Technical Education.

    This guide is intended to serve as Missouri's primary resource for planning, implementing, and evaluating industrial technology/industrial arts education. The following topics are covered: selecting a direction for industrial technology education (ITE) (its underlying philosophy, mission, goals); planning an ITE program (recommended scope and…

  7. Top Level Summary of Technologies

    NASA Technical Reports Server (NTRS)

    Craig, Douglas, A.

    2009-01-01

    This document is a chart that reviews the technology of various NASA projects. Included in the chart is the title, a brief description of the technology, the funding status, a statement of the benefits, the date required, how the element connects to the Constellation project architecture, and how critical the technology is to the Constellation project.

  8. Forest Products Industry Technology Roadmap

    SciTech Connect

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  9. Richland Operations Office technology summary

    SciTech Connect

    Not Available

    1994-05-01

    This document has been prepared by the Department of Energy`s Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts.

  10. Robotics crosscutting program: Technology summary

    SciTech Connect

    1996-08-01

    The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies became evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.

  11. Manpower Impacts of Industrial Technology.

    ERIC Educational Resources Information Center

    New York State Dept. of Labor, Albany. Research and Statistics Office.

    The effects of technological change on the manpower and training needs of New York State industry were studied in a survey of 281 Industrial situations. The study was designed to help answer questions about the effects of factory and related technological change in displacing workers, in creating recruitment and training needs, and in altering the…

  12. Innovative Technology Summary Report (ITSR)

    SciTech Connect

    1999-10-01

    This section summarizes the demonstration of an Infrared-based Non-Intrusive Liquid Level Detection Technology (NLLDT) at the 221-U Facility located within the Hanford site. This demonstration was conducted by Infrared, Inc. of Reno Nevada in conjunction with Bechtel Hanford Inc. (Environmental Restoration Contractor) and DOE Engineers. The Infrared Imaging System demonstrated by Infrared, Inc. provides an attractive alternative to the baseline technology which employs mechanical methods of opening vessels to detect liquid level. An Infrared Imaging Systems is able to exploit the variations in physical properties of tanks, vessels and piping systems and the enclosed liquid and air to produce clearly defined locations of liquids, if they exist. For decontamination and commissioning (D and D) projects, the use of the NLLDT System to detect liquids in vessels eliminates the need to physically open and inspect these vessels. Risks to workers associated with gaining access to these type objects and the possible exposure to radioactive or contaminated materials can nearly be eliminated. This demonstration was conducted with the goal of characterizing a number of target vessels located on the deck of the 221 U Facility. This technology is suitable for DOE nuclear facilities D and D sites or similar public or commercial sites that must be decontaminated.

  13. Irradiation technologyIndustrial use

    NASA Astrophysics Data System (ADS)

    Zyball, A.

    1995-02-01

    The most important applications of the radiation technology are the crosslinking of polymers and sterilisation. Although extensive experience about the use of this technology is available and powerful and dependable radiation facilities can be obtained, as yet the radiation technology has not found the acceptance it deserves in the industry. The main reason herefore has to do with how the question of radiation or the term radiation is presented to the industry and among the population. This paper will deal with considerations and ways in which the industrial use of the radiation technology can be expanded.

  14. Aluminum Industry Technology Roadmap

    SciTech Connect

    none,

    2003-02-01

    This roadmap describes the industry's R&D strategy, priorities, milestones, and performance targets for achieving its long-term goals. It accounts for changes in the industry and the global marketplace since the first roadmap was published in 1997. An updated roadmap was published November 2001. (PDF 1.1 MB).

  15. Cone penetrometer: Innovative technology summary report

    SciTech Connect

    1996-04-01

    Cone penetrometer technology (CPT) provides cost-effective, real-time data for use in the characterization of the subsurface. Recent innovations in this baseline technology allow for improved access to the subsurface for environmental restoration applications. The technology has been improved by both industry and government agencies and is constantly advancing due to research efforts. The U.S. Department of Energy (DOE) Office of Science and Technology (formerly Technology Development) has contributed significantly to these efforts. This report focuses on the advancements made in conjunction with DOE`s support but recognizes Department of Defense (DOD) and industry efforts.

  16. Research and Technology Operating Plan Summary: Fiscal Year 1973 Research and Technology Program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts are presented of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA. This RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and universities. The summary is arranged in five sections consisting of citations and abstracts of the RTOPs and subject, technical monitor, responsible NASA organization, and RTOP number indexes.

  17. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    SciTech Connect

    Not Available

    1994-08-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds in Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.

  18. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    SciTech Connect

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  19. Summary of New Generation Technologies and Resources

    SciTech Connect

    1993-01-08

    This compendium includes a PG&E R&D program perspective on the Advanced Energy Systems Technology Information Module (TIM) project, a glossary, a summary of each TIM, updated information on the status and trends of each technology, and a bibliography. The objectives of the TIMs are to enhance and document the PG&E R&D Program's understanding of the technology status, resource potential, deployment hurdles, commercial timing, PG&E applications and impacts, and R&D issues of advanced technologies for electric utility applications in Northern California. [DJE-2005

  20. Fluid management systems technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.

    1974-01-01

    A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  1. Technology for Space Station Evolution. Executive summary and overview

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the technology discipline presentations. The Executive Summary and Overview contains an executive summary for the workshop, the technology discipline summary packages, and the keynote address. The executive summary provides a synopsis of the events and results of the workshop and the technology discipline summary packages.

  2. Robotics Technology Crosscutting Program. Technology summary

    SciTech Connect

    1995-06-01

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  3. Robotics Technology Development Program. Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  4. Computer Technology for Industry.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    A special National Aeronautics and Space Administration (NASA) service is contributing to national productivity by providing industry with reusable, low-cost, government-developed computer programs. Located at the University of Georgia, NASA's Computer Software Management and Information Center (COSMIC) has developed programs for equipment…

  5. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 1. Executive summary. Draft report

    SciTech Connect

    1995-11-01

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

  6. Innovative Technology Development Program. Final summary report

    SciTech Connect

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) Program. The plan is part of the DOE`s program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE`s clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process.

  7. Space industrialization. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Potential goals for space industrialization were identified, and evolutionary program options for the realization of those goals were developed and assessed. Program support demands were defined, and recommendations were made in relation to program implementation.

  8. Idaho Operations Office: Technology summary, June 1994

    SciTech Connect

    Not Available

    1994-06-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD`s technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  9. Research Projects in Industrial Technology.

    SciTech Connect

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  10. SDI and industrial technology policy

    SciTech Connect

    Zegveld, W.; Enzing, C.

    1987-01-01

    The author's central thesis is that the Strategic Defense Initiative (SDI) program contains strong elements of industrial technology policy. They approach this thesis from the perspective of the role of government in the development of science and technology and from insight in the processes of technological innovation. They also investigate the issue of the economic consequences of simulating scientific and technological development via the military route. The study is structured in three parts. Part I discusses the SDI program, its origin, content, size, and prospects. Part II focusses on the role of government in technological development on the (meso) process of technological innovation. Part III focusses on the process of technological innovation and the economic significance of military R and D-spending.

  11. Buried Waste Integrated Demonstration. Technology summary

    SciTech Connect

    Not Available

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities.

  12. Technology and Soviet energy availability: Summary

    NASA Astrophysics Data System (ADS)

    1981-11-01

    The course Soviet energy production will take if present policies in the West and the USSR remain unchanged is investigated. Opportunities and problems in the five primary Soviet energy industries: oil, gas, coal, nuclear, and electric power; equipment and technology requirements; and the implications of providing or withholding assistance are addressed.

  13. Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

    SciTech Connect

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

  14. OAST Technology for the Future. Executive Summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program (IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  15. The Rationale for Industrial Technology/Industrial Arts in Texas.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    The goal of industrial technology for industrial arts education in Texas is the education of society to enable its members to function efficiently in the world of advancing technology. Policymakers in Texas have chosen to organize the industrial technology curriculum around three technology clusters: visual communication, production, and energy…

  16. Ceramic Technology Project database: September 1990 summary report

    SciTech Connect

    Keyes, B.L.P.

    1992-06-01

    Data generated within the Ceramic Technology Project (CTP) represent a valuable resource for both research and industry. The CTP database was created to provide easy access to this information in electronic and hardcopy forms by using a computerized database and by issuing periodic hardcopy reports on the database contents. This report is the sixth in a series of semiannual database summaries and covers recent additions to the database, including joined brazed specimen test data. It covers 1 SiC, 34 SiN, 10 whisker-reinforced SiN, 2 zirconia-toughened aluminas, 8 zirconias, and 34 joints.

  17. Summary of solar energy technology characterizations

    SciTech Connect

    D'Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  18. Industrial Arts Education Competency Catalogs for Metals Technology, Woods Technology, General Industrial Arts, Industrial Crafts.

    ERIC Educational Resources Information Center

    Old Dominion Univ., Norfolk, VA. Dept. of Industrial Arts Education.

    Four competency catalogs of tasks for industrial arts programs are presented. These include catalogs in Metals Technology, Woods Technology, General Industrial Arts, and Industrial Crafts. The purpose of each catalog is to establish a basis for program content selection and criterion levels from which one may measure to see if individual learners…

  19. Low-G fluid behavior technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Bradshaw, R. D.; Blatt, M. H.

    1974-01-01

    This report presents a summarization and categorization of the pertinent literature associated with low-g fluid behavior technology. Initially a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance are summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer (GD/C). Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are; interface configuration, interface stability, natural frequency and damping, liquid reorientation, bubbles and droplets, fluid inflow, fluid outflow, convection, boiling and condensation heat transfer, venting effects, and fluid properties. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed. Cryogenic thermal control and fluid management systems technology are presented.

  20. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect

    Not Available

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  1. Satellite communications systems and technology. Executive Summary

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I.; Pelton, Joseph N.; Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert; Mahle, Christoph E.

    1993-01-01

    NASA and the National Science Foundation (NSF) commissioned a panel of US experts to study the international status of satellite communications systems and technology. The study covers emerging systems concepts, applications, services, and the attendant technologies. The panel members travelled to Europe, Japan, and Russia to gather information first-hand. They visited 17 sites in Europe, 20 sites in Japan, and four in Russia. These included major manufacturers, government organizations, service providers, and associated R&D facilities. The panel's report was reviewed by the sites visited, by the panel, and by representatives of US industry. The report details the information collected and compares it to US activities.

  2. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP Project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  3. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  4. Information Technology Assessment Study: Executive Summary

    NASA Technical Reports Server (NTRS)

    Peterson, John (Editor)

    2002-01-01

    A team was formed to assess NASA Office of Space Science (OSS) information technology research and development activities. These activities were reviewed for their relevance to OSS missions, for their potential for using products better supplied by industry or other government agencies, and for recommending an IT infusion strategy for appropriate products for OSS missions. Assessment scope and methodology and the findings and recommendations of OSS IT users and providers are presented.

  5. Raman probe. Innovative technology summary report

    SciTech Connect

    1999-07-01

    The Raman probe is deployed in high-level waste tanks with the cone penetrometer (CPT). These technologies are engineered and optimized to work together. All of the hardware is radiation hardened, designed for and tested in the high-radiation, highly caustic chemical environment of US Department of Energy`s (DOE`s) waste storage tanks. When deployed in tanks, the system is useful for rapidly assessing the species and concentrations of organic-bearing tank wastes. The CPT was originally developed for geological and groundwater applications, with sensors that measure physical parameters such as soil moisture, temperature, and pH. When deployed, it is hydraulically forced directly into the ground rather than using boring techniques utilized by rotary drilling systems. There is a separate Innovative Technology Summary Report for the CPT, so this report will focus on the changes made specifically to support the Raman probe. The most significant changes involve adapting the Raman probe for in-tank and subsurface field use and developing meaningful real-time data analysis. Testing of the complete LLNL system was conducted in a hot cell in the 222-S Laboratory at the Hanford site in summer 1997. Both instruments were tested in situ on solvent-contaminated soils (TCE and PCE) at the Savannah River Site in February and June 1998. This report describes the technology, its performance, its uses, cost, regulatory and policy issues, and lessons learned.

  6. Industrial Technology Programs: The Influence of Industry on Program Revision.

    ERIC Educational Resources Information Center

    Kozak, Michael R.; Richards, John V.

    1981-01-01

    Presents data collected concerning concepts and skills which should be emphasized in the general academic curriculum and in the industrial technology curriculum, recommended minor fields of study for industrial technology majors, characteristics of successful employees, and present and future professional industrial employment needs in the…

  7. Energy Technology Division research summary - 1999.

    SciTech Connect

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  8. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect

    Gilmartin, T.J.

    1996-06-04

    At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

  9. Assessment of US industry's technology trends and new technology requirements

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The utility and effectiveness of a novel approach (the Applications Development, or AD approach), intended to augment the efficiency of NASA's technology utilization (TU) through dissemination of NASA technologies and joint technology development efforts with U.S. industry is tested. The innovative AD approach consists of the following key elements: selection of NASA technologies appearing to have leading edge attributes; interaction with NASA researchers to assess the characteristics and quality of each selected technology; identification of industry's needs in the selected technology areas; structuring the selected technologies in terms of specifications and standards familiar to industry (industrial Spec. Sheets); identification and assessment of industry's interest in the specific selected NASA technologies, utilizing the greatly facilitated communication made possible by the availability of the industrial Spec. Sheets; and matching selected NASA technologies with the needs of selected industries.

  10. Energy Technology Division research summary 1997.

    SciTech Connect

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  11. The Extreme-Technology Industry

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    The persistent annual R&D quota of >15% of revenue in the semiconductor industry has been and continues to be more than twice as high as the OECD definition for High-Technology Industry. At the frontiers of miniaturization, the Cost-of-Ownership (COO) continues to rise upwards to beyond 10 billion for a Gigafactory. Only leaders in the world market for selected processors and memories or for foundry services can afford this. Others can succeed with high-value custom products equipped with high-performance application-specific standard products acquired from the leaders in their specific fields or as fabless original-device manufacturers buying wafers from top foundries and packaging/testing from contract manufacturers, thus eliminating the fixed cost for a factory. An overview is offered on the leaders in these different business models. In view of the coming highly diversified and heterogeneous world of nanoelectronic-systems competence, the point is made for global networks of manufacturing and services with the highest standards for product quality and liability.

  12. Concrete shaver. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The US Department of Energy (DOE) is in the process of decontamination and decommissioning (D and D) for many of its nuclear facilities throughout the United States. These facilities must be dismantled and the demolition waste sized into manageable pieces for handling and disposal. The facilities undergoing D and D are typically chemically and/or radiologically contaminated. To facilitate this work, DOE requires a tool capable of removing the surface of radiologically contaminated concrete floors. Operating requirements for the tool include simple and economical operation, the capability of operating in ambient temperatures from 3 C to 40 C (37 F to 104 F), and the ability to be easily decontaminated. The tool also must be safe for workers. The Marcrist Industries Limited concrete shaver is an electrically driven, self-propelled concrete and coating removal system. This technology consists of a 25-cm (10-in.)-wide diamond impregnated shaving drum powered by an electric motor and contains a vacuum port for dust extraction. The concrete shaver is ideal for use on open, flat, floor areas. The shaver may also be used on slightly curved surfaces. This shaver is self-propelled and produces a smooth, even surface with little vibration. The concrete shaver is an attractive alternative to traditional pneumatic scabbling tools, which were considered the baseline in this demonstration. The use of this tool reduces worker fatigue (compared to the baseline) due to lower vibration. The shaver is more than five times faster than the five-piston pneumatic scabbler at removing contamination from concrete. Because of this increased productivity, the shaver is 50% less costly to operate than baseline technologies. The DOE has successfully demonstrated the concrete shaver for decontaminating floors for free-release surveys prior to demolition work.

  13. Industrial Technology. It's an Exciting World!

    ERIC Educational Resources Information Center

    Missouri State Dept. of Elementary and Secondary Education, Jefferson City.

    This booklet provides information on industrial technology education (ITE) in Missouri. It describes the challenges to society of changing technology and Missouri's response. It addresses ITE's mission to develop the following in each student: (1) ability to understand, evaluate, and apply industrial and technological systems; (2) values and…

  14. High-Technology Industries through Entrepreneurial Education.

    ERIC Educational Resources Information Center

    Parikh, V. M.

    This report examines a study to promote high-technology industries in British Columbia using an essentially integrated educational and economic development program. Human resources, skilled in high-technology and entrepreneurship, are recognized as prime sources of potential development of high-technology industries in the Province. An educational…

  15. Buckminster Fuller Reflects on Industry and Technology.

    ERIC Educational Resources Information Center

    Estrem, William A.

    1983-01-01

    Fuller offers insights into the meanings of industry and technology and how they have acquired undeserved connotations. He examines capitalism, enterprise, and integrity as exemplified by Henry Ford and the consequences of the current lack of integrity in industry. (SK)

  16. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  17. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    NASA Technical Reports Server (NTRS)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  18. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  19. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  20. ANNUAL SUMMARY OF TECHNICAL AWARENESS IN THE NONFERROUS METALS INDUSTRY

    EPA Science Inventory

    The goal of this project was to pilot and refine methods and procedures for maintaining current awareness of technology and commercial trends in the U.S. nonferrous metal mining and manufacturing industry. The principal effort resulted in the publication of six bimonthly technica...

  1. Oakland Operations Office, Oakland, California: Technology summary

    SciTech Connect

    Not Available

    1994-11-01

    DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

  2. The Dairy Technology System in Venezuela. Summary of Research 79.

    ERIC Educational Resources Information Center

    Nieto, Ruben D.; Henderson, Janet L.

    A study examined the agricultural technology system in Venezuela with emphasis on the dairy industry. An analytical framework was used to identify the strengths and weaknesses of the following components of Venezuela's agricultural technology system: policy, technology development, technology transfer, and technology use. Selected government…

  3. Technology Roadmap for the Petroleum Industry

    SciTech Connect

    none,

    2000-02-01

    The petroleum refining industry defined a detailed R&D roadmap, Technology Roadmap for the Petroleum Industry, to identify high-priority areas for technology R&D. Those priorities helped ITP target cost-shared solicitations and guide development of a balanced R&D portfolio to yield useful results in the near, mid, and long-term.

  4. EPA's Technology Transfer: Now Geared to Industry

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1973

    1973-01-01

    Through capsule reports, seminars, and design manuals, Environmental Protection Agency has activated its industrial technology transfer program for marketing the products of federal research, development, and demonstration activities. Its purpose is to disseminate information to industry on available technology for control and treatment of air,…

  5. Industrial Maintenance Technology. Technical Committee Report.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in industrial maintenance technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings,…

  6. How a utility markets technology to industry

    SciTech Connect

    Kaczor, E.M.

    1986-03-01

    In response to economic contractions in its service area, Niagara Mohawk Power Company has instituted a technology transfer program for its industrial customers. The underlying motivation has been to maintain its industrial customers, as they provide a more substantial base to the economy than do service sector jobs. The program consists mainly of specialized seminars aimed at increasing industry's competitiveness by improving production efficiency. In addition, technical information is directly delivered to specific target industries.

  7. OSMA Research and Technology Strategy Team Summary

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2010-01-01

    This slide presentation reviews the work of the Office of Safety and Mission Assurance (OSMA), and the OSMA Research and Technology Strategy (ORTS) team. There is discussion of the charter of the team, Technology Readiness Levels (TRLs) and how the teams responsibilities are related to these TRLs. In order to improve the safety of all levels of the development through the TRL phases, improved communication, understanding and cooperation is required at all levels, particularly at the mid level technologies development.

  8. Industrial Technology Orientation Curriculum Guide.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield. Dept. of Adult, Vocational and Technical Education.

    The four courses in this guide were designed to meet the specifications for the career orientation level of Illinois' Education for Employment Curriculum Model. These orientation-level courses can be taken by high school students in any sequence: (1) communication technology; (2) energy utilization technology; (3) production technology; and (4)…

  9. Oak Ridge National Laboratory Technology Logic Diagram. Executive Summary

    SciTech Connect

    Not Available

    1993-06-30

    This executive summary contains a description of the logic diagram format; some examples from the diagram (Vol. 2) and associated technology evaluation data sheets (Vol. 3); a complete (albeit condensed) listing of the RA, D&D, and WM problems at ORNL; and a complete listing of the technology rankings for all the areas covered by the diagram.

  10. Savannah River Site Patented Technologies Summaries

    SciTech Connect

    Rabold, D.E.

    1995-07-18

    This information represents SRS`s contribution of the DOE technology information network, an internet service coordinated out of Los Alamos. The information provided is strictly DOE-SR-titled and-issued patented technologies including environmental remediation, robotics, sensors, materials science, biomedical applications, hydrogen, and consumer products.

  11. 2015 Summary Report on Industrial and Regulatory Engagement Activities

    SciTech Connect

    Thomas, Kenneth David

    2015-09-01

    The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway of the Light Water Reactor Sustainability(LWRS) Program conducts a vigorous engagement strategy with the U.S. nuclear power industry, including the nuclear operating companies, major support organizations, the Nuclear Regulatory Commission (NRC), and suppliers. The goal of this engagement strategy is to develop a shared vision and common understanding across the nuclear industry of the need for II&C modernization, the performance improvement that can be obtained, and the opportunities for collaboration to enact this vision. The primary means of engaging the nuclear operating companies is through a Utility Working Group (UWG), composed of utility representatives that participate in formal meetings and bi-monthly phone calls to provide input on nuclear plant needs and priorities for II&C technologies. Two working groups were initiated during FY 2015 to provide a means for UWG members to focus on particular technologies of interest. The Outage Improvement Working Group consists of eight utilities that participate in periodic conference calls and have access to a share-point web page for acccess to project materials developed in the Advanced Outage Control Center pilot project. In the area of computer-based procedures and automated work packages, the II&C Pathway has worked with the Nuclear Information Technology Strategic Leadership (NITSL) to set up a monthly conference call with interested utility members to discuss various aspects of mobile worker technologies. Twenty one technical and project reports were delivered to the UWG during FY 2015, reflecting the work of the II&C Pathway pilot projects during the year. Distribution of these reports is one of the primary means of transferring to the nuclear industry the knowledge and experience gained during the development of advanced II&C technologies in support of LWR sustainability. Site visits to discuss pilot project

  12. Flameless thermal oxidation. Innovative technology summary report

    SciTech Connect

    1995-09-01

    The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (PICs).

  13. Flameless Thermal Oxidation. Innovative Technology Summary Report

    SciTech Connect

    1995-09-01

    The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (Plcs ).

  14. The future steelmaking industry and its technologies

    SciTech Connect

    Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. |

    1995-01-01

    The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

  15. Proceedings: Outer Planet Probe Technology Workshop, summary volume

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A summary report and overview of the Outer Planet Probe Technology Conference are given. Summary data cover: (1) state of the art concerning mission definitions, probe requirements, systems, subsystems, and mission peculiar hardware, (2) mission and equipment trade-offs associated with Saturn/Uranus baseline configuration and the influence of Titan and Jupiter options on mission performance and costs, and (3) identification of critically required future R and D activities.

  16. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 1: Executive Summary, of a 15-Volume Set of Skills Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…

  17. Industrial Arts Curriculum Guide for Power Technology.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    This curriculum guide provides topic outlines and objectives for units in a three-level/-course Power Technology program. Introductory materials are objectives for industrial education and for power technology and list of general safety rules. Units contained in Level I, Power Technology, are History of Power, Basic Machines, Forms of Power, Power…

  18. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - THE ELECTROPLATING INDUSTRY

    EPA Science Inventory

    This 44-page Technology Transfer Environmental Regulations and Technology publication is an update of a 1980 EPA publication that has been revised to reflect changes in the EPA regulations, as well as in the pollution control technologies that affect the electroplating industry. ...

  19. The Office of Industrial Technologies technical reports

    SciTech Connect

    Not Available

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  20. Centrifugal shot blasting. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  1. Steam vacuum cleaning. Innovative technology summary report

    SciTech Connect

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. The baseline technology currently used for washing debris is a high-pressure water cleaning (HPWC) system. The system used at the FEMP is the Hotsy{reg_sign} Model 550B HPWC. Although the HPWC technology has functioned satisfactorily, improvements are being sought in areas related to reduced liquid waste volume, increased productivity, increased washing effectiveness, and decreased airborne contamination. An innovative technology that offers potential improvements in these areas is a steam vacuum cleaning (SVC) system that integrates high-pressure steam cleaning with a vacuum recovery sub-system that simultaneously collects dislodged contaminants thereby reducing airborne contamination. The SVC system selected for demonstration at the FEMP was the Kelly{trademark} Decontamination System shown. This report provides comparative performance and cost analyses between the Hotsy HPWC system and the Kelly Decontamination System. Both technologies were demonstrated at the FEMP site located at Fernald, Ohio from July 29, 1996 through August 15, 1996. The demonstrations were conducted at the FEMP Plant 1 as part of the LSTD project sponsored by the Deactivation and Decommissioning Focus Area (DDFA) of the US DOE`s Office of Science and Technology.

  2. Mixed Waste Landfill Integrated Demonstration; Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

  3. Rocky Flats Compliance Program; Technology summary

    SciTech Connect

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE`s strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP.

  4. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  5. STEM: Science Technology Engineering Mathematics. Executive Summary

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle

    2011-01-01

    Science, Technology, Engineering, and Mathematics (STEM) occupations are critical to the nation's continued economic competitiveness because of their direct ties to innovation, economic growth, and productivity, even though they will only be 5 percent of all jobs in the U.S. economy by 2018. The disproportionate influence of STEM raises a…

  6. Spotlight on Technology: The New Industrial Revolution.

    ERIC Educational Resources Information Center

    Suddath, John F.

    1994-01-01

    Describes how an industrial technology teacher teamed with employers and vendors of computer-aided design and manufacturing equipment to set curriculum, create purchasing plans, and get some bargains in the process. (Author)

  7. Aerospace Environmental Technology Conference: Exectutive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  8. Industrial Combustion Technology Roadmap: A Technology Roadmap by and for the Industrial Combustion Community (2002)

    SciTech Connect

    none,

    2002-10-01

    The Industrial Technology Program (ITP) convened industry workshops in 2001 to update the 1999 roadmap. The revised plan, in which the combustion industry lays out the R&D initiatives to meet its performance targets for the next 20 years, is presented in the Industrial Combustion Technology Roadmap. This roadmap showcases a comprehensive R&D plan for the industry and specifies the coordination and alignment of key groups, such as industry, academia, and the federal government, to meet the future energy and environmental goals of the industry.

  9. A Partnership Approach to Industrial Technology Education.

    ERIC Educational Resources Information Center

    Hoops, John; And Others

    This report summarizes and assesses the planning and first-year implementation of the Industrial Technology Program created through a partnership between South Shore Vocational Technical High School (SSVT) in Hanover, Massachusetts, and Procter & Gamble (P&G). It is a guide for the development of effective education/industry partnerships. An…

  10. Emerging energy-efficient industrial technologies

    SciTech Connect

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing

  11. Blade Plunging Cutter. Innovative Technology Summary Report

    SciTech Connect

    2001-09-01

    The Los Alamos LSDDP demonstrated a Mega-Tech hydraulic cutting shear to remove legs from plutonium glove boxes. The baseline technology used at LANL for removal of glove box legs is a reciprocating saw. Legs on glove boxes are typically either 3-inch diameter pipe or unistrut. During the demonstration, the Mega-Tech hydraulic cutting shear cut eight pipe legs in 15 minutes, while the reciprocating saw took 45-60 minutes to cut through eight legs, including a rest break to alleviate worker fatigue. Despite its lower production rate, the reciprocating saw may be favored in confined spaces, because it does not require as much access room as the hydraulic shears. Based on the faster production rate of the hydraulic shear, LANL and Rocky Flats are expected to begin using the hydraulic shear as their new baseline technology to remove legs from over 1,500 plutonium glove boxes at the two sites.

  12. Dynamic underground stripping. Innovative technology summary report

    SciTech Connect

    1995-04-01

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993.

  13. VOCs in Arid soils: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Volatile Organic Compounds In Arid Soils Integrated Demonstration (VOC-Arid ID) focuses on technologies to clean up volatile organic compounds and associated contaminants in soil and groundwater at arid sites. The initial host site is the 200 West Area at DOE`s Hanford site in southeastern Washington state. The primary VOC contaminant is carbon tetrachloride, in association with heavy metals and radionuclides. An estimated 580--920 metric tons of carbon tetrachloride were disposed of between 1955 and 1973, resulting in extensive soil and groundwater contamination. The VOC-Arid ID schedule has been divided into three phases of implementation. The phased approach provides for: rapid transfer of technologies to the Environmental Restoration (EM-40) programs once demonstrated; logical progression in the complexity of demonstrations based on improved understanding of the VOC problem; and leveraging of the host site EM-40 activities to reduce the overall cost of the demonstrations. During FY92 and FY93, the primary technology demonstrations within the ID were leveraged with an ongoing expedited response action at the Hanford 200 West Area, which is directed at vapor extraction of VOCs from the vadose (unsaturated) zone. Demonstration efforts are underway in the areas of subsurface characterization including: drilling and access improvements, off-gas and borehole monitoring of vadose zone VOC concentrations to aid in soil vapor extraction performance evaluation, and treatment of VOC-contaminated off-gas. These current demonstration efforts constitute Phase 1 of the ID and, because of the ongoing vadose zone ERA, can result in immediate transfer of successful technologies to EM-40.

  14. Summary of emissions reduction technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1977-01-01

    The NASA emissions reduction contract programs for EPA aircraft engine classes P2 (turboshaft engines), T1 (jet engines with thrust under 8000 lb), T4 (JT8D) engines), and T2 (jet engines with thrust over 8000 lb) are discussed. The most important aspects of these programs, the commonality of approaches used, the test results, and assessments regarding applications of the derived technology are summarized.

  15. Minimum Additive Waste Stabilization (MAWS). Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    In the Minimum Additive Waste Stabilization(MAWS) concept, actual waste streams are utilized as additive resources for vitrification, which may contain the basic components (glass formers and fluxes) for making a suitable glass or glassy slag. If too much glass former is present, then the melt viscosity or temperature will be too high for processing; while if there is too much flux, then the durability may suffer. Therefore, there are optimum combinations of these two important classes of constituents depending on the criteria required. The challenge is to combine these resources in such a way that minimizes the use of non-waste additives yet yields a processable and durable final waste form for disposal. The benefit to this approach is that the volume of the final waste form is minimized (waste loading maximized) since little or no additives are used and vitrification itself results in volume reduction through evaporation of water, combustion of organics, and compaction of the solids into a non-porous glass. This implies a significant reduction in disposal costs due to volume reduction alone, and minimizes future risks/costs due to the long term durability and leach resistance of glass. This is accomplished by using integrated systems that are both cost-effective and produce an environmentally sound waste form for disposal. individual component technologies may include: vitrification; thermal destruction; soil washing; gas scrubbing/filtration; and, ion-exchange wastewater treatment. The particular combination of technologies will depend on the waste streams to be treated. At the heart of MAWS is vitrification technology, which incorporates all primary and secondary waste streams into a final, long-term, stabilized glass wasteform. The integrated technology approach, and view of waste streams as resources, is innovative yet practical to cost effectively treat a broad range of DOE mixed and low-level wastes.

  16. Innovative technology summary report: Transportable vitrification system

    SciTech Connect

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  17. Industrial Combustion Technology Roadmap: A Technology Roadmap by and for the Industrial Combustion Community (1999)

    SciTech Connect

    none,

    1999-04-01

    Combustion system users and manufacturers joined forces in 1999 to develop the Industrial Combustion Technology Roadmap. The roadmap outlines R&D priorities for developing advanced, highly efficient combustion systems that U.S. industry will require in the future.

  18. Landfill stabilization focus area: Technology summary

    SciTech Connect

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  19. Handbook of industrial membrane technology

    SciTech Connect

    Porter, M.C.

    1989-01-01

    This book emphasizes the use of synthetic membranes for separations involving industrial or municipal process streams. In addition to the classic membrane processes-microfiltration, ultrafiltration, reverse osmosis, gas separation, and electrodialysis-chapters on enzyme membrane reactors, membrane fermentors and coupled transport membranes are included. The preparation of synthetic membranes and process design and optimization are also covered. Most of the membrane processes are pressure driven, the notable exception being electrodialysis, by which ions are separated under the influence of an electric field. In addition, coupled transport covers processes driven under the influence of a concentration gradient.

  20. Liposome Technology for Industrial Purposes

    PubMed Central

    Wagner, Andreas; Vorauer-Uhl, Karola

    2011-01-01

    Liposomes, spherical vesicles consisting of one or more phospholipid bilayers, were first described in the mid 60s by Bangham and coworkers. Since then, liposomes have made their way to the market. Today, numerous lab scale but only a few large-scale techniques are available. However, a lot of these methods have serious limitations in terms of entrapment of sensitive molecules due to their exposure to mechanical and/or chemical stress. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability. An additional point of view was taken to regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents. PMID:21490754

  1. Corrosion probe. Innovative technology summary report

    SciTech Connect

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.

  2. MIxed Waste Integrated Program (MWIP): Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Integrated Program (MWIP) is to develop and demonstrate innovative and emerging technologies for the treatment and management of DOE`s mixed low-level wastes (MLLW) for use by its customers, the Office of Waste Operations (EM-30) and the Office of Environmental Restoration (EM-40). The primary goal of MWIP is to develop and demonstrate the treatment and disposal of actual mixed waste (MMLW and MTRU). The vitrification process and the plasma hearth process are scheduled for demonstration on actual radioactive waste in FY95 and FY96, respectively. This will be accomplished by sequential studies of lab-scale non-radioactive testing followed by bench-scale radioactive testing, followed by field-scale radioactive testing. Both processes create a highly durable final waste form that passes leachability requirements while destroying organics. Material handling technology, and off-gas requirements and capabilities for the plasma hearth process and the vitrification process will be established in parallel.

  3. Expedited site characterization. Innovative technology summary report

    SciTech Connect

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned.

  4. Technology development needs summary, FY 1995

    SciTech Connect

    Not Available

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included.

  5. NASA partnership with industry: Enhancing technology transfer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Recognizing the need to accelerate and expand the application of NASA-derived technology for other civil uses in the United States, potential opportunities were assessed; the range of benefits to NASA, industry and the nations were explored; public policy implications were assessed; and this new range of opportunities were related to current technology transfer programs of NASA.

  6. Transfer of space technology to industry

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  7. Information Technology and the Third Industrial Revolution.

    ERIC Educational Resources Information Center

    Fitzsimmons, Joe

    1994-01-01

    Discusses the so-called third industrial revolution, or the information revolution. Topics addressed include the progression of the revolution in the U.S. economy, in Europe, and in Third World countries; the empowering technologies, including digital switches, optical fiber, semiconductors, CD-ROM, networks, and combining technologies; and future…

  8. The Model Industrial Technology Systems Project.

    ERIC Educational Resources Information Center

    Bowling Green State Univ., OH.

    This document contains materials used in a model industrial technology program that introduced technology into the curricula of elementary, middle, and high schools in three sites in Ohio: the Central site (coordinated through Ohio State University); the Northeast site (coordinated through Kent State University); and the Northwest site…

  9. Foreign technology summary of flight crucial flight control systems

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.

    1984-01-01

    A survey of foreign technology in flight crucial flight controls is being conducted to provide a data base for planning future research and technology programs. Only Free World countries were surveyed, and the primary emphasis was on Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The information was collected from open literature, personal communications, and a tour of several companies, government organizations, and research laboratories in the United Kingdom, France, and the Federal Republic of Germany. A summary of the survey results to date is presented.

  10. Energy Technology Division research summary -- 1994

    SciTech Connect

    Not Available

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  11. Ceramic Technology Project database: March 1990 summary report

    SciTech Connect

    Keyes, B.L.P.

    1992-07-01

    This report is the fifth in a series of semiannual data summary reports on information being stored in the Ceramic Technology Project (CTP) database. The overall system status as of March 31, 1990, is summarized, and the latest additions of ceramic mechanical properties data are given for zirconia, silicon carbide, and silicon nitride ceramic mechanical properties data, including some properties on brazed specimens.

  12. Research and Technology Objectives and Plans (RTOP), summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compilation of summary portions of each of the Research and Technology Operating Plans (RTOPS) used for management review and control of research currently in progress throughout NASA is presented. Subject, technical monitor, responsible NASA organization, and RTOP number indexes are included.

  13. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A compilation of the summary portion of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA is presented along with citations and abstracts of the RTOPs. Four indexes are included: (1) subject; (2) technical monitor; (3) responsible NASA organization; and (4) RTOP number.

  14. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compilation of summary portions of each of the Research and Technology Objectives and Plans (RTOPS) used for management review and control of research currently in progress throughout NASA is presented. Subject, technical monitors, responsible NASA organization, and RTOP number indexes are included.

  15. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A compilation of the summary portions of each of the Research and Technology Objective Plans (RTOP) used for management review and control of research currently in progress throughout NASA is presented. Indexes include: subject, technical monitor, responsible NASA organization, and RTOP number.

  16. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A compilation of the summary portions of each of the Research and Technology Objectives and Plans (RTOPS) used for management review and control research currently in progress throughout NASA is presented. Indexes include: subject, technical monitor, responsible NASA organization, and RTOP number.

  17. SRS tank closure. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-08-01

    High-level waste (HLW) tank closure technology is designed to stabilize any remaining radionuclides and hazardous constituents left in a tank after bulk waste removal. Two Savannah River Site (SRS) HLW tanks were closed after cleansing and then filling each tank with three layers of grout. The first layer consists of a chemically reducing grout. The fill material has chemical properties that retard the movement of some radionuclides and chemical constituents. A layer of controlled low-strength material (CLSM), a self-leveling fill material, is placed on top of the reducing grout. CLSM provides sufficient strength to support the overbearing weight. The final layer is a free-flowing, strong grout similar to normal concrete. After the main tank cavity is filled, risers are filled with grout, and all waste transfer piping connected to the tank is isolated. The tank ventilation system is dismantled, and the remaining systems are isolated. Equipment that remains with the tank is filled with grout. The tank and ancillary systems are left in a state requiring only limited surveillance. Administrative procedures are in place to control land use and access. DOE eventually plans to remove all of its HLW storage tanks from service. These tanks are located at SRS, Hanford, and Idaho National Engineering and Environmental Laboratory. Low-activity waste storage tanks at Oak Ridge Reservation are also scheduled for closure.

  18. Innovative technology summary report: Concrete grinder

    SciTech Connect

    1998-09-01

    The Flex concrete grinder is a lightweight, hand-held concrete and coating removal system used for decontaminating or stripping concrete surfaces. The US Department of Energy has successfully demonstrated it for decontaminating walls and floors for free release surveys prior to demolition work. The grinder is an electric-powered tool with a vacuum port for dust extraction and a diamond grinding wheel. The grinder is suitable for flat or slightly curved surfaces and results in a smooth surface, which makes release surveys more reliable. The grinder is lightweight and produces very little vibration, thus reducing worker fatigue. The grinder is more efficient than traditional baseline, tools at removing contamination from concrete surfaces (more than four times faster than hand-held pneumatic scabbling and scaling tools). Grinder consumables (i.e., replacement diamond grinding wheel) are more expensive than the replacement carbide parts for the scaler and scabbler. However, operating costs are outweighed by the lower purchase price of the grinder (50% of the price of the baseline scaler and 8% of the price of the baseline scabbler). Overall, the concrete grinder is an attractive alternative to traditional scabbling and scaling pneumatic tools. To this end, in July 1998, the outer rod room exposed walls of the Safe Storage Enclosure (SSE), an area measuring approximately 150 m{sup 2}, may be decontaminated with the hand-held grinder. This concrete grinder technology was demonstrated for the first time at the DOE`s Hanford Site. Decontamination of a sample room walls was performed at the C Reactor to free release the walls prior to demolition. The demonstration was conducted by onsite D and D workers, who were instructed by the vendor prior to and during the demonstration.

  19. In Situ Remediation Integrated Program: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  20. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    SciTech Connect

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  1. Benefits of advanced technology in industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.

    1979-01-01

    This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.

  2. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  3. Mechanical Systems Technology Branch research summary, 1985 - 1992

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L. (Editor)

    1993-01-01

    A collection of significant accomplishments from the research of the Mechanical Systems Technology Branch at the NASA Lewis Research Center completed during the years 1985-1992 is included. The publication highlights and accomplishments made in bearing and gearing technology through in-house research, university grants, and industry contracted projects. The publication also includes a complete listing of branch publications for these years.

  4. EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...

  5. A planning framework for transferring building energy technologies: Executive Summary

    SciTech Connect

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-08-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

  6. South Carolina Guide for Industrial Technology Education.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Occupational Education.

    This guide is intended for teachers conducting industrial technology education (TE) courses in South Carolina. Presented first is introductory information about the mission, clusters and units, and recommended educational format of TE in South Carolina. Discussed in the seven sections are various aspects of South Carolina's modular delivery system…

  7. Transformations: Technology and the Music Industry.

    ERIC Educational Resources Information Center

    Peters, G. David

    2001-01-01

    Focuses on the companies and organizations of the Music Industry Conference (MIC). Addresses topics such as: changes in companies due to technology, audio compact discs, the music instrument digital interface (MIDI) , digital sound recording, and the MIC on-line music instruction programs offered. (CMK)

  8. Exemplary Training Models in Industrial Technology.

    ERIC Educational Resources Information Center

    Hatton, Michael J., Comp.

    Prepared by Canadian, Chinese Taipei, and Thai educational agencies and based on surveys of Asia Pacific Economic Cooperation member nations, this report provides descriptions of 52 exemplary industrial technology training models in Australia, Brunei, Canada, Chinese Taipei, Hong Kong, Malaysia, New Zealand, the Philippines, the People's Republic…

  9. Industrial Arts, Technology, and the Future

    ERIC Educational Resources Information Center

    Mangano, Ronald M.

    1976-01-01

    Industrial arts educators' goal should be preparing individuals for a future embracing a "soft" technology, suited to human needs, non-violent, and environmentally gentle. Labor needs will change; career education competencies and craftsmanship will be required. Teachers can futurize courses by simple, inexpensive means: reading, and using games…

  10. Industrial Technology and the Productivity Problem.

    ERIC Educational Resources Information Center

    Sinn, John W.

    1982-01-01

    The role of industrial technology in addressing productivity encompasses work experience and attitude, quality assurance, research and development, time and motion studies, plant layout and flow diagramming, cost analysis, production process selection, maintenance, computer applications, materials and inventory requirements, safety programming,…

  11. Wireless Success Story - Industrial Technologies Program (ITP)

    SciTech Connect

    none,

    2010-05-01

    This success story presents the results of wireless research by Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The prioritized research resulted in success with realized energy and cost savings.

  12. ANTIMONY REMOVAL TECHNOLOGY FOR MINING INDUSTRY WASTEWATERS

    EPA Science Inventory

    This report assessed the current state-of-the-art of antimony removal technology for mining industry wastewaters. Through literature review and personal interviews, it was found that most mines and mills reporting significant quantities of antimony in their raw wastewater had app...

  13. Characterizing emerging industrial technologies in energy models

    SciTech Connect

    Laitner, John A.; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  14. Industrial Combustion Technology Roadmap. A Technology Roadmap by and for the Industrial Combustion Community

    SciTech Connect

    None, None

    2002-10-01

    The U.S. combustion industry is among the most productive, efficient, and technologically sophisticated in the world and remains vital to the nation’s economic competitiveness and national security. As the industry looks forward, it confronts tremendous growth opportunities but also significant technical and market challenges. Future industry success will depend on the industry's ability to respond to competitive pressures as well as public expectations for a clean and sustainable industry. Much progress has been made in understanding the fundamental science of combustion; however, much more is needed as regulatory and competitive forces push the industry to develop combustion equipment with better performance, lower environmental impact, and greater flexibility. Immense opportunities exist for companies to develop and apply new technology responding to these needs. Unfortunately, few companies can accept the high technical and financial risk required for the research if the technology is not adopted widely enough to provide a payback on their investment.

  15. Technology opportunities in a restructured electric industry

    SciTech Connect

    Gehl, S.

    1995-12-31

    This paper describes the Strategic Research & Development (SR&D) program of the Electric Power Research Institute (EPRI). The intent of the program is to anticipate and shape the scientific and technological future of the electricity enterprise. SR&D serves those industry R&D needs that are more exploratory, precompetitive, and longer-term. To this end, SR&D seeks to anticipate technological change and, where possible, shape that change to the advantage of the electric utility enterprise and its customers. SR&D`s response to this challenge is research and development program that addresses the most probable future of the industry, but at the same time is robust against alternative futures. The EPRI SR&D program is organized into several vectors, each with a mission that relates directly to one or more EPRI industry goals, which are summarized in the paper. 1 fig., 2 tabs.

  16. Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997

    SciTech Connect

    Peterson, G.

    1998-03-01

    The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

  17. Spatial perspective on the process of technological innovation in technology-intensive industry

    SciTech Connect

    Brugman, B.L.

    1983-01-01

    Focus here is on how knowledge capital and technological entrepreneurship shape the interstate pattern of technological innovation in technology-intensive industries. Technological innovation, the endogenous variable, is measures by an index of new-product generation. Technological entrepreneurship, identified with net firm formation in the present study, is measured by net change in the number of electronics establishments. Knowledge capital is represented by a number of indicators. Some are measures of R and D effort and others measure the number of industrial employees with specialized backgrounds in fields pertaining to the electronics knowledge base. New firm formation and university R and D show a strong, positive and direct effect on the subsequent interstate pattern of technological innovation. Company-funded R and D lags behind university R and D as an influence on subsequent technological entrepreneurship, and as an indirect influence on new product generation. In summary, technological entrepreneurship and knowledge capital have proved useful concepts in drawing out and testing implications about where technological innovation will appear.

  18. Frozen soil barrier technology. Innovative technology summary report

    SciTech Connect

    1995-04-01

    The technology of using refrigeration to freeze soils has been employed in large-scale engineering projects for a number of years. This technology bonds soils to give load-bearing strength during construction; to seal tunnels, mine shafts, and other subsurface structures against flooding from groundwater; and to stabilize soils during excavation. Examples of modern applications include several large subway, highway, and water supply tunnels. Ground freezing to form subsurface frozen soil barriers is an innovative technology designed to contain hazardous and radioactive contaminants in soils and groundwater. Frozen soil barriers that provide complete containment ({open_quotes}V{close_quotes}configuration) are formed by drilling and installing refrigerant piping (on 8-ft centers) horizontally at approximately 45{degrees} angles for sides and vertically for ends and then recirculating an environmentally safe refrigerant solution through the piping to freeze the soil porewater. Freeze plants are used to keep the containment structure at subfreezing temperatures. A full-scale containment structure was demonstrated from May 12 to October 10, 1994, at a nonhazardous site on SEG property on Gallaher Road, Oak Ridge, Tennessee.

  19. Cogeneration technology alternatives study. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.

  20. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  1. Photovoltaic industry manufacturing technology. Final report

    SciTech Connect

    Vanecek, D.; Diver, M.; Fernandez, R.

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  2. Industrial Applications of Electronic Nose Technology in the Textiles Industry

    NASA Astrophysics Data System (ADS)

    Gibson, Tim; Chandler, Rob; Hallam, Viv; Simpson, Claire; Bentham, Martin

    2009-05-01

    Electronic nose technology has been available commercially for over 12 years but uptake in actual industrial applications has yet to be fully realised. We report 2 specific test protocols being used in the textiles industry that allow the direct measurement of anti-odour and anti-microbial capabilities of fabrics. Results will be shown for the standard anti-odour test which was specifically commissioned by Courtaulds PLC and which is being used by a number of manufacturers. The second test, which measures the anti-microbial and the anti-odour capabilities of fabrics simultaneously was developed in 2008. Results will be shown that clearly indicate both parameters are detected and proofs of anti-microbial capabilities will be given. These 2 tests will for the first time, enable the fulfillment of legislation that states for textile product claims, anti-odour and anti-microbial capabilities of fabrics must be scientifically substantiated.

  3. Membrane Technologies in Wine Industry: An Overview.

    PubMed

    El Rayess, Youssef; Mietton-Peuchot, Martine

    2016-09-01

    Membrane processes are increasingly reported for various applications in wine industry such as microfiltration, electrodialysis, and reverse osmosis, but also emerging processes as bipolar electrodialysis and membrane contactor. Membrane-based processes are playing a critical role in the field of separation/purification, clarification, stabilization, concentration, and de-alcoholization of wine products. They begin to be an integral part of the winemaking process. This review will provide an overview of recent developments, applications, and published literature in membrane technologies applied in wine industry. PMID:25751507

  4. Advanced Thermionic Technology Program: summary report. Volume 1. Final report

    SciTech Connect

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. The report is organized in four volumes, each focused as much as possible on the needs of a particular audience. Volume 1 contains Part A, the Executive Summary. This Executive Summary describes the accomplishments of the Program in brief, but assumes the reader's familiarity with the thermionic process and the technical issues associated with the Program. For this reason, Volume 1 also contains Part B, a minimally technical overview of the Advanced Thermionic Technology Program. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. Volume 4 (Part E) is a highly technical discussion of the attempts made by the program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

  5. Innovative technology summary report: ResonantSonic{reg_sign} drilling

    SciTech Connect

    1995-04-01

    ResonantSonic{trademark} drilling has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology has been developed by industry with assistance from the U.S. Department of Energy (DOE) Office of Technology Development to ensure it meets the needs of the environmental restoration market.

  6. Summary of the particle physics and technology working group

    SciTech Connect

    Stephan Lammel et al.

    2002-12-10

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

  7. Industrial Enterprise. Grade 12. Course #8196 (Semester). Technology Education Course Guide. Industrial Arts/Technology Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    This guide is intended for use in teaching a course in industrial enterprise. The course, which has been designed using a student-centered approach, is intended to help students understand the dynamics of an industrial enterprise as a fusion of two technologies--material processing and management. The first two sections discuss the guide's…

  8. Science and technology for industrial ecology

    SciTech Connect

    Gilmartin, T.J.; Allenby, B.R.

    1996-07-10

    Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

  9. SUMMARY REPORT ON EMISSIONS FROM THE GLASS MANUFACTURING INDUSTRY

    EPA Science Inventory

    This project was undertaken to evaluate emissions rates from typical glass manufacturing furnaces. The effort concentrated on the container segment of the industry, however, tests were also conducted on the pressed blown, and flat glass segments of the industry. The quantitative ...

  10. Selected technology for the gas industry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers were presented at a conference concerned with the application of technical topics from aerospace activities for the gas industry. The following subjects were covered: general future of fossil fuels in America, exploration for fossil and nuclear fuels from orbital altitudes, technology for liquefied gas, safety considerations relative to fires, explosions, and detonations, gas turbomachinery technology, fluid properties, fluid flow, and heat transfer, NASA information and documentation systems, instrumentation and measurement, materials and life prediction, reliability and quality assurance, and advanced energy systems (including synthetic fuels, energy storage, solar energy, and wind energy).

  11. Robotic technologies for outdoor industrial vehicles

    NASA Astrophysics Data System (ADS)

    Stentz, Anthony

    2001-09-01

    The commercial industries of agriculture, mining, construction, and material handling employ a wide variety of mobile machines, including tractors, combines, Load-Haul-Dump vehicles, trucks, paving machines, fork trucks, and many more. Automation of these vehicles promises to improve productivity, reduce operational costs, and increase safety. Since the vehicles typically operate in difficult environments, under all weather conditions, and in the presence of people and other obstacles, reliable automation faces severe technical challenges. Furthermore, the viable technology solutions are constrained by cost considerations. Fortunately, due to the limited application domain, repetitive nature, and the utility of partial automation for most tasks, robotics technologies can have a profound impact on industrial vehicles. In this paper, we describe a technical approach developed at Carnegie Mellon University for automating mobile machines in several applications, including mass excavation, mining, and agriculture. The approach is introduced via case studies, and the results are presented.

  12. Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.; Sagerman, G. D.

    1980-01-01

    Various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications were compared to provide information needed by DOE to establish research and development funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment as compared with purchasing electricity from a utility and providing process heat with an on-site boiler. Also included in the comparisons and evaluations are results extrapolated to the national level.

  13. Space Transportation Propulsion Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transportation Propulsion Technology Symposium was held to provide a forum for communication within the propulsion within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.

  14. Intelligent Propulsion System Foundation Technology: Summary of Research

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions, and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, smart materials and structures, and system studies. Furthermore, this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. This Propulsion 21 - Phase 11 program consisted of four primary research areas and associated work elements at Ohio universities: 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, 3.0 Active Structural Controls and Performance, and 4.0 System Studies and Integration. Phase l, which was conducted during the period August 1, 2003, through September 30, 2004, has been reported separately.

  15. Intelligent Propulsion System Foundation Technology: Summary of Research

    NASA Technical Reports Server (NTRS)

    Williams, James C.

    2004-01-01

    The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, and smart materials and structures. Furthermore this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. The program consisted of three primary research areas (and associated work elements at Ohio universities): 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, and 3.0 Active Structural Controls.

  16. Advanced technology for America's future in space. Executive summary

    NASA Astrophysics Data System (ADS)

    1990-12-01

    This report summarizes the results of a review by a select external technology advisory committee of NASA's recently developed Integrated Technology Plan for the Civil Space Program. This document is the Summary Report from the review by the Space Systems and Technology Advisory Committee (SSTAC), a subcommittee of the NASA Advisory Committee with the assistance of the Space Science and Applications Advisory Committee and the Aerospace Medicine Advisory Committee, and the Aeronautics and Space Engineering Board and Space Studies Board of the National Research Council. The report asks the question 'Why should space technology be a national priority?' The report describes the benefits to the nation as Improving National Competitiveness, Stimulating Quality Science and Engineering Education, Developing Broadly Applicable New Technologies. Specific Benefits for future space endeavors include Improving the Quality for Future U.S. Flight Programs, Reducing the Cost of Access to Space, Increasing Safety and Reliability, Enabling New Space Missions, and Sustaining NASA Expertise. Other improvements and the value of the Integrated Technology Plan are emphasized. Almost uniformly, the review team found that the quality of individual research projects was very high and well integrated with other national efforts.

  17. Industrial Cogeneration Optimization Program: A summary of two studies

    NASA Astrophysics Data System (ADS)

    1981-08-01

    Two industrial cogeneration optimization programs were performed to examine the economic and energy saving impacts of adding cogeneration to site specific plants in the chemical, food, pulp and paper, petroleum refining, and textile industries. Industrial cogeneration is reviewed. The two parallel ICOP studies are described. The five industrial sectors are also described, followed by highlights of each of the site specific case studies. Steam turbine cogeneration systems fired by coal or alternative fuels are generally the most attractive in terms of economic performance and oil/gas savings potential. Of the 15 cogeneration systems selected as optimum in the ICOP studies, 11 were coal or wood fired steam turbines. By contrast, gas turbines, combined cycles, and diesel engines, which are limited to oil or gas firing, are usually less economical.

  18. Advanced Thermionic Technology Program: summary report. Volume 3. Final report

    SciTech Connect

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. As a general rule of thumb, cogeneration technologies are most attractive to industries when those technologies naturally produce a ration of electrical to thermal output which closely matches the demand within the industrial facilities themselves. Several of the industries which consume the largest amounts of energy have an electrical-to-thermal ratio of about ten percent, as can be seen in Exhibit D-1.1. This closely matches the electrical efficiency of thermionic converters. Thermionic cogeneration has several other unique advantages relative to alternative technologies for cogeneration which should lead to a much broader application of cogeneration in industry. These advantages accrue from the much higher temperatures at which thermionic energy conversion takes place, its suitability for very small as well as large process heaters, and, of course, its production of direct heat rather than process steam. In fact, thermionics can even be coupled to more conventional cogeneration technologies (e.g., steam turbines) to extend their applicability to processes requiring a greater electrical-to-thermal ratio than either cogeneration technology alone can provide. Several examples of thermionic cogeneration are presented in greater detail: copper refining by the Noranda process; thermionic topping cycles for gas turbine; and combined cycle and fossil-fuel steam power plants. 13 refs., 71 figs.

  19. Sensitive oil industry: users of advanced technology

    NASA Astrophysics Data System (ADS)

    Lindsey, Rhonda P.; Barnes, James L.

    1999-01-01

    The oil industry exemplifies mankind's search for resource sin a harsh environment here on the earth. Traditionally, the oil industry has created technological solutions to increasingly difficult exploration, drilling, and production activities as the need has arisen. The depths to which a well must be drilled to produce the finite hydrocarbon resources are increasing and the surface environments during oil and gas activities is the key to success, not information that is hours old or incomplete; but 'real-time' data that responds to the variable environment downhole and allows prediction and prevention. The difference that information makes can be the difference between a successfully drilled well and a blowout that causes permanent damage to the reservoir and may reduce the value of the reserves downhole. The difference that information makes can make the difference between recovering 22 percent of the hydrocarbon reserves in a profitable field and recovering none of the reserves because of an uneconomic bottom line. Sensors of every type are essential in the new oil and gas industry and they must be rugged, accurate, affordable, and long lived. It is not just for the sophisticated majors exploring the very deep waters of the world but for the thousands of independent producers who provide a lion's share of the oil and gas produced in the US domestic market. The Department of Energy has been instrumental in keeping reserves from being lost by funding advancements in sensor technology. Due to sponsorship by the Federal Government, the combined efforts of researchers in the National Laboratories, academic institutions, and industry research centers are producing increasingly accurate tools capable of functioning in extreme conditions with economics acceptable to the accountants of the industry. Three examples of such senors developed with Federal funding are given.

  20. Pipe Explorer{trademark} surveying system. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The US Department of Energy`s (DOE) Chicago Operations Office and the DOE`s Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer{trademark} system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals.

  1. Industrial Arts: Careers in Engineering and Technology for Minority Persons.

    ERIC Educational Resources Information Center

    Eddy, John P.; Waldrop, Phillip S.

    1981-01-01

    Discusses industrial arts as an opportunity to develop a technological orientation and as a professional technical career base for minorities. Describes employment opportunities for the industrial arts graduate in engineering, technology, and other areas. Considers advantages for minority students. (RC)

  2. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.

  3. Advanced Lost Foam Casting technology: 1997 summary report

    SciTech Connect

    1997-12-31

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on eight tasks listed as follows: Task 1--pyrolysis defects and sand distortion; Task 2--bronze casting technology; Task 3--steel casting technology; Task 4--sand filling and compaction; Task 5--coating technology; Task 6--precision pattern production; Task 7--computational modeling; and Task 8--project management and technology transfer. This report summarizes the work done under the current contract in all eight tasks in the period of October 1, 1995 through December 31, 1997.

  4. Report on Survey of Industry Needs for Quality. Summary Report.

    ERIC Educational Resources Information Center

    Neylon, Kevin; And Others

    The TAFE (Technical and Further Education) National Centre for Research and Development conducted a survey to determine industry needs for quality training in Australia. Interviews were conducted with managers in manufacturing and tourism/hospitality companies throughout Australia, especially with firms with a high reputation. Interview forms were…

  5. TRADE, INDUSTRIAL, AND TECHNICAL EDUCATION. RCU RESEARCH SUMMARIES.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Research Coordinating Unit.

    RESEARCH REPRESENTATIVE OF THE TYPE RECENTLY COMPLETED IN THE FIELD OF INDUSTRIAL AND TECHNICAL EDUCATION IS SUMMARIZED. STUDIES IN VOCATIONAL-TECHNICAL EDUCATION AT THE POST-HIGH SCHOOL LEVEL ARE CONCERNED WITH SCHOOLS AND STUDENTS, TEACHING TECHNIQUES, AND CURRICULUM EFFECTIVENESS. RESEARCH RELATING TO TRAINING AND RETRAINING CONCERNED…

  6. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect

    Gilmartin, T.J.

    1996-05-21

    This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

  7. Industrial wastewater treatment technology, Second edition

    SciTech Connect

    Patterson, J.W.

    1985-01-01

    The author has organized the book by specific pollutant or class of pollutants for reference. For each topic there is a description of sources and typical industry discharge levels of the pollutant, the appropriate treatment technologies and their applications and limitations, as well as the relative costs of each. Major Sections: Aluminium; Arsenic; Barium; Cadmium; Hexavalent Chromium; Trivalent Chromium; Copper; Cyanide; Fluoride; Iron; Lead; Manganese; Mercury; Nickel; Organic and Ammonia Nitrogen; Nitrite and Nitrate Nitrogen; Oil and Grease; Toxic Organics; pH Control; Phenol; Selenium; Silver; Total Dissolved Solids; Zinc.

  8. Ceramic Technology Project database: March 1990 summary report. DOE/ORNL Ceramic Technology Project

    SciTech Connect

    Keyes, B.L.P.

    1992-07-01

    This report is the fifth in a series of semiannual data summary reports on information being stored in the Ceramic Technology Project (CTP) database. The overall system status as of March 31, 1990, is summarized, and the latest additions of ceramic mechanical properties data are given for zirconia, silicon carbide, and silicon nitride ceramic mechanical properties data, including some properties on brazed specimens.

  9. Research and Technology Operating Plan. Summary: Fiscal year 1976 research and technology program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A compilation of the summary portions of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA was presented. The document is arranged in five sections. The first one contains citations and abstracts of the RTOP. This is followed by four indexes: subject, technical monitor, responsible NASA organization, and RTOP number.

  10. Aerosol sensing technologies in the mining industry

    NASA Astrophysics Data System (ADS)

    Janisko, Samuel J.; Noll, James D.; Cauda, Emanuele E.

    2011-06-01

    Recent health, safety and environmental regulations are causing an increased demand for monitoring of aerosols in the mining industry. Of particular concern are airborne concentrations of combustible and toxic rock dusts as well as particulate matter generated from diesel engines in underground mines. In response, the National Institute for Occupational Safety and Health (NIOSH) has been evaluating a number of real time sensing technologies for potential use in underground mines. In particular, extensive evaluation has been done on filter-based light extinction using elemental carbon (EC) as a surrogate measurement of total diesel particulate matter (DPM) mass concentration as well as mechanical tapered element oscillating microbalance (TEOM) technology for measurement of both DPM and rock dust mass concentrations. Although these technologies are promising in their ability to accurately measure mine aerosols for their respective applications, there are opportunities for design improvements or alternative technologies that may significantly enhance the monitoring of mine aerosols. Such alterations can lead to increases in sensitivity or a reduction in the size and cost of these devices. This paper provides a brief overview of current practices and presents results of NIOSH research in this area. It concludes with a short discussion of future directions in mine aerosol sensing research.

  11. Sustainable technologies for the building construction industry

    SciTech Connect

    Vanegas, J.A.; DuBose, J.R.; Pearce, A.R.

    1995-12-31

    As the dawn of the twenty-first century approaches, the current pattern of unsustainable, inequitable and unstable asymmetric demographic and economic growth has forced many segments of society to come together in facing a critical challenge: how can societies across the world meet their current basic human needs, aspirations and desires, without compromising the ability of future generations to meet their own needs? At the core of this challenge is the question: how can the human race maintain in perpetuity a healthy, physically attractive and biologically productive environment. The development path that we have been taking, in the past few centuries, has been ultimately detrimental to the health of our surrounding ecological context. We are consuming an increasing share of the natural resources available to use on this planet, and we are creating sufficiently large amounts of waste and pollution such that the earth can no longer assimilate our wastes and recover from the negative impacts. This is a result of a growing population as well as new technologies which make it easier for use to access natural resources and also require the consumption of more resources. Unsustainable technology has been the result of linear rather than cyclic thinking. The paradigm shift from linear to cyclic thinking in technological design is the crux of the shift from unsustainability to sustainability. This paper discusses the implications for the building design and construction industries. Strategies, technologies, and opportunities are presented to improve the sustainability of the built environment.

  12. Educational Resources for the Machine Tool Industry. Executive Summary.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This document describes the MASTER (Machine Tool Advanced Skills Educational Resources) program, a geographic partnership of seven of the nation's best 2-year technical and community colleges located in seven states. The project developed and disseminated a national training model for manufacturing processes and new technologies within the…

  13. An Analysis of Industrial Technology Curriculum and Its Significance to the Casting Industry.

    ERIC Educational Resources Information Center

    Hauser, Roger Emmett

    The purpose of this study was to determine to what extent industrial technology programs are training technologists in light of the needs of the casting industry. To determine the type of curriculum needed to prepare individuals for entry into the casting industry, and to study industrial technology programs as they relate to metal casting,…

  14. A Comparative Analysis of Industrial Technology Education in Minnesota and the Requirements of Industry.

    ERIC Educational Resources Information Center

    Strom, Irving Elner

    Questionnaires designed to determine to what extent existing 4-year industrial technology curriculums in the State of Minnesota were meeting the needs of the selected Minnesota industries were returned from all existing 4-year industrial technology programs and from 111 (80 percent) selected industries. Some of the findings were: (1) Aeronautics,…

  15. 15 CFR 1160.3 - Assistance to industrial technology partnerships.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Assistance to industrial technology... Trade (Continued) TECHNOLOGY ADMINISTRATION, DEPARTMENT OF COMMERCE PRODUCTIVITY, TECHNOLOGY AND INNOVATION Promotion of Private Sector Industrial Technology Partnerships § 1160.3 Assistance to...

  16. Report on Community College Industrial Production Technology Programs.

    ERIC Educational Resources Information Center

    Illinois Community Coll. Board, Springfield.

    This report provides an in-depth analysis of the Industrial Production Technology Programs in Illinois, which, according to Illinois Community College Board policy, must be reviewed at least once every five years. The disciplines included in this report are: industrial manufacturing technology, corrosion technology, plastics technology, and…

  17. Assessment of energy saving technologies with potential for applications in US industries

    NASA Astrophysics Data System (ADS)

    1982-01-01

    The purpose of this study was to assess and evaluate information on energy technologies displayed at international trade shows was assessed and evaluated. Technologies that had potential for saving energy in applications in US industries were identified. These technologies are identified and concise summaries on potential energy savings, economics, basic operational considerations, and potential applications are prepared. An objective of this study was to determine whether international trade shows can provide a convenient and useful forum for the identification of energy saving technologies which could have wider applications in US industry. Forty-four technologies were chosen for inclusion which are grouped into the following categories: heat recovery devices, heat exchangers, heat pumps, and various other technologies. Some of the technologies include: a low energy drying system, solid waste in cement manufacturing, boiler fuel optimization system, multifuel boiler plant and coal combustion efficiency improvements.

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: EXEL INDUSTRIAL AIRMIX SPRAY GUN

    EPA Science Inventory

    The Environmental Technology Verification Program has partnered with Concurrent Technologies Corp. to verify innovative coatings and coating equipment technologies for reducing air emissions. This report describes the performance of EXEL Industrial's Kremlin Airmix high transfer ...

  19. MHD magnet technology development program summary, September 1982

    SciTech Connect

    Not Available

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  20. Engineering and Industrial Fields. Revised Summary Report: Technical Employment in Northeast Florida.

    ERIC Educational Resources Information Center

    Baker, William E.; And Others

    The document is one of five summary reports, all part of a Pre-Technical Curriculum Planning Project for secondary students who aspire to technical employment or post secondary technical education. This report represents the results of an assessment of the northeast Florida area's technical occupations in engineering and industrial fields. A…

  1. IDC RP2 & 3 US Industry Standard Cost Estimate Summary.

    SciTech Connect

    Harris, James M.; Huelskamp, Robert M.

    2015-01-01

    Sandia National Laboratories has prepared a ROM cost estimate for budgetary planning for the IDC Reengineering Phase 2 & 3 effort, using a commercial software cost estimation tool calibrated to US industry performance parameters. This is not a cost estimate for Sandia to perform the project. This report provides the ROM cost estimate and describes the methodology, assumptions, and cost model details used to create the ROM cost estimate. ROM Cost Estimate Disclaimer Contained herein is a Rough Order of Magnitude (ROM) cost estimate that has been provided to enable initial planning for this proposed project. This ROM cost estimate is submitted to facilitate informal discussions in relation to this project and is NOT intended to commit Sandia National Laboratories (Sandia) or its resources. Furthermore, as a Federally Funded Research and Development Center (FFRDC), Sandia must be compliant with the Anti-Deficiency Act and operate on a full-cost recovery basis. Therefore, while Sandia, in conjunction with the Sponsor, will use best judgment to execute work and to address the highest risks and most important issues in order to effectively manage within cost constraints, this ROM estimate and any subsequent approved cost estimates are on a 'full-cost recovery' basis. Thus, work can neither commence nor continue unless adequate funding has been accepted and certified by DOE.

  2. Summary of mineral industry activities in Colorado. Part I: coal

    SciTech Connect

    Pascoe, D.M.

    1981-01-01

    Coal production for 1981 was a record, with production at 19,701,496 tons of coal mined and reported to the Division of Mines. This was a 4.95% increase over 1980. Statewide Divisional efforts to support a practical type of health and safety training program while encouraging skill education appropriate to mining needs, saw extensive accomplishment in 1981. The Division gave direct or monetary support through training grant funds, largely used for reimbursed tuition from strategically located state vocational schools who taught on campus as well as at mine sites. Total miner training reported by area schools to the Division of Mines indicates that 8408 students received 86,251 hours of classroom and on-the-job training. It is hoped that the education and training programs throughout the state will be continued in an effort to educate both the new and old miners. We believe this is the best approach to the coal industry's never ending task of reducing both lost-time and fatal accidents. Coal mine certification in all categories totaled 780 certificates issued. This was a decrease from 1980, and will probably decrease again in 1982 with the initiation of the $25.00 fee for each examination. Coal mining activity is reported by district.

  3. The NASA hydrogen energy systems technology study: A summary

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.

    1976-01-01

    The results and conclusions of the study, which found a significant current usage of hydrogen, dominated by chemical-industry needs and supplied mostly from natural gas and petroleum feedstocks are discussed. These needs are expected to increase significantly in the remainder of this century and to largely outgrow the current means of supply. Several hydrogen production methods were evaluated. Those not dependent on fossil resources were found to be presently more costly and technically more difficult than fossil-feedstock-based technologies, but it is clear that they will eventually need to be implemented.

  4. Technology transfer into the solid propulsion industry

    NASA Technical Reports Server (NTRS)

    Campbell, Ralph L.; Thomson, Lawrence J.

    1995-01-01

    This paper is a survey of the waste minimization efforts of industries outside of aerospace for possible applications in the manufacture of solid rocket motors (SRM) for NASA. The Redesigned Solid Rocket Motor (RSRM) manufacturing plan was used as the model for processes involved in the production of an SRM. A literature search was conducted to determine the recycling, waste minimization, and waste treatment methods used in the commercial sector that might find application in SRM production. Manufacturers, trade organizations, and professional associations were also contacted. Waste minimization efforts for current processes and replacement technologies, which might reduce the amount or severity of the wastes generated in SRM production, were investigated. An overview of the results of this effort are presented in this paper.

  5. Direct conversion technology: Annual summary report CY 1988

    SciTech Connect

    Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

  6. The 1995 HEV challenge: Results and technology summary

    SciTech Connect

    LeBlanc, N.; Larsen, R.; Duoba, M.

    1996-03-01

    The objective of this paper is to analyze and summarize the performance results and the technology used in the 1995 Hybrid Electric Vehicle (HEV) Challenge. Government and industry are exploring hybrid electric vehicle technology to significantly improve fuel economy and reduce emissions of the vehicles without sacrificing performance. This last in a three-year series of HEV competitions provided the testing grounds to evaluate the different approaches of 29 universities and colleges constructing HEVS. These HEVs competed in an affay of events, including: acceleration, emissions testing, consumer acceptance, range, vehicle handling, HVAC testing, fuel economy, and engineering design. The teams also documented the attributes of their vehicles in the technical reports. The strategies and approaches to HEV design are analyzed on the basis of the data from each of the events. The overall performance for promising HEV approaches is also examined. Additional significant design approaches employed by the teams are presented, and the results from the events are discussed.

  7. Industrial Perspectives on Innovation and Interactions with Universities. Summary of Interviews with Senior Industrial Officials.

    ERIC Educational Resources Information Center

    Industrial Research Inst., New York, NY.

    A study was done of the views of senior research managers in industry on the roles of business and universities in innovation, techical change, and competitiveness. This effort stemmed from an earlier set of roundtable discussions on university-industry research alliances and sought to add a stronger component of industrial views to an ongoing…

  8. Industrial Arts Education Competency Catalogs for Communication Technology, Materials and Processes Technology, Power and Transportation Technology.

    ERIC Educational Resources Information Center

    Dugger, William E.; And Others

    Three competency catalogs of tasks for industrial arts programs are presented. These include catalogs in Communications Technology, Materials and Processes Technology, and Power and Transportation Technology. The purpose of each catalog is to establish a basis for program content selection and criterion levels from which one may measure to see if…

  9. Transition costs in the electricity industry: A summary of issues

    SciTech Connect

    Baxter, L.; Hirst, E.; Hadley, S.

    1996-10-01

    Progress is evident as the restructuring debate in the U.S. electricity industry completes its third year. The Federal Energy Regulatory Commission released a final rule on transmission open access-a key element to facilitate more efficient wholesale markets. The majority of states have initiated investigations or discussions on restructuring retail markets. Yet hurdles remain in formulating and implementing state-level restructuring proposals. Perhaps foremost among these hurdles is the issue of transition costs (the potential monetary losses experienced by utilities, consumers, and other economic actors as a result of government initiatives to transform electricity generation from a regulated to a competitive market). Transition costs are approximately equal to the difference between the embedded cost for generation services under traditional cost-of-service regulation and the competitive-market price for power. When government takes action to open current monopoly franchises to multiple generation providers and the competitive-market price falls below embedded generation costs, then transition costs will arise. Transition costs will include one or more of the following four classes of costs: (1) assets, primarily utility-owned power plants; (2) liabilities, primarily long-term power-purchase and fuel-supply contracts; (3) regulatory assets, including deferred expenses and costs that regulators allow utilities to place on their balance sheets; and (4) public-policy programs, such as energy efficiency, low-income programs, and research and development. What is at issue in the transition-cost debate? The debate turns on four questions: (1) How large are the potential transition costs from restructuring? (2) How are these costs estimated? (3) What, if anything, might be done to address these costs? (4) Who will ultimately pay for any remaining costs and how? This paper summarizes some of the key results from a project at ORNL that addresses these four questions.

  10. Exploring Computer Technology. The Illinois Plan for Industrial Education.

    ERIC Educational Resources Information Center

    Illinois State Univ., Normal.

    This guide, which is one in the "Exploration" series of curriculum guides intended to assist junior high and middle school industrial educators in helping their students explore diverse industrial situations and technologies used in industry, deals with exploring computer technology. The following topics are covered in the individual lessons: the…

  11. Contaminant plumes containment and remediation focus area. Technology summary

    SciTech Connect

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  12. Projection display industry market and technology trends

    NASA Astrophysics Data System (ADS)

    Castellano, Joseph A.; Mentley, David E.

    1995-04-01

    The projection display industry is diverse, embracing a variety of technologies and applications. In recent years, there has been a high level of interest in projection displays, particularly those using LCD panels or light valves because of the difficulty in making large screen, direct view displays. Many developers feel that projection displays will be the wave of the future for large screen HDTV (high-definition television), penetrating the huge existing market for direct view CRT-based televisions. Projection displays can have the images projected onto a screen either from the rear or the front; the main characteristic is their ability to be viewed by more than one person. In addition to large screen home television receivers, there are numerous other uses for projection displays including conference room presentations, video conferences, closed circuit programming, computer-aided design, and military command/control. For any given application, the user can usually choose from several alternative technologies. These include CRT front or rear projectors, LCD front or rear projectors, LCD overhead projector plate monitors, various liquid or solid-state light valve projectors, or laser-addressed systems. The overall worldwide market for projection information displays of all types and for all applications, including home television, will top DOL4.6 billion in 1995 and DOL6.45 billion in 2001.

  13. Advanced-technology space station study: Summary of systems and pacing technologies

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.

    1990-01-01

    The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.

  14. New Technology Industries. Skills Task Force Research Paper 10.

    ERIC Educational Resources Information Center

    Hendry, Chris

    This paper provides an overview of the growth of new technology industries in Great Britain and the skills needed for these industries. The industries are advanced materials, biotechnology, and opto-electronics. The report profiles the current status, expected growth, and skills needed for each of these industry sectors. It also points out the…

  15. New Ways in Technology Transfer from University Towards Industry.

    ERIC Educational Resources Information Center

    van den Kroonenberg, H.H.

    1983-01-01

    Three approaches to technology transfer are described: passive, stimulative, and active. A condition for successful technology transfer to small- and medium-sized industry is the availability of "receivers" in the industries. Stimulating young engineers to start their own small company can affect technology transfer positively. (MSE)

  16. Technology Education Guidelines: Vocational Industrial, Industrial Arts, Home Economics.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education and Training, Winnipeg. Curriculum Services Branch.

    This guide is intended as a source book of policies, ideas, and suggestions for use by Manitoba division and school administrators responsibilities for planning, implementing, and monitoring courses in industrial arts, home economics, and vocational-industrial education. Presented in Section 1 is background on the development of…

  17. METAL FORMING (INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The Industrial Multimedia Branch's research program in metal products manufacturing was developed to identify environmental problems and deliver solutions for environmental improvements based on sustainable technology to the industry. There are over 35,000 manufacturing establish...

  18. Systems autonomy technology: Executive summary and program plan

    NASA Technical Reports Server (NTRS)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  19. Office of Industrial Technologies (OIT) Financial Assistance Brochure

    SciTech Connect

    Ericksen, E.

    1999-02-04

    In today's competitive world markets, the success of U.S. industry hinges on technological advances. Financial Assistance helps technology innovators develop and deliver clean, energy-saving technologies to the marketplace. Two Office of Industrial Technologies (OIT) programs Inventions and Innovation and NICE3 provide independent inventors, technology developers, and industry with easy access to a flexible package of services. Together, these programs issue 35 to 40 new grants each year to address pressing energy and environmental issues. Financial Assistance focuses specifically on technologies that can potentially improve energy efficiency, reduce wastes, and enhance productivity.

  20. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    SciTech Connect

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  1. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  2. Research and technology operating plan summary: Fiscal year 1975 research and technology program. [space programs, energy technology, and aerospace sciences

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Summaries are presented of Research and Technology Operating Plans currently in progress throughout NASA. Citations and abstracts of the operating plans are presented along with a subject index, technical monitor index, and responsible NASA organization index. Research programs presented include those carried out in the Office of Aeronautics and Space Technology, Office of Energy Programs, Office of Applications, Office of Space Sciences, Office of Tracking and Data Acquisition, and the Office of Manned Space Flight.

  3. Demonstration of Autonomous Rendezvous Technology (DART) Project Summary

    NASA Technical Reports Server (NTRS)

    Rumford, TImothy E.

    2003-01-01

    Since the 1960's, NASA has performed numerous rendezvous and docking missions. The common element of all US rendezvous and docking is that the spacecraft has always been piloted by astronauts. Only the Russian Space Program has developed and demonstrated an autonomous capability. The Demonstration of Autonomous Rendezvous Technology (DART) project currently funded under NASA's Space Launch Initiative (SLI) Cycle I, provides a key step in establishing an autonomous rendezvous capability for the United States. DART's objective is to demonstrate, in space, the hardware and software necessary for autonomous rendezvous. Orbital Sciences Corporation intends to integrate an Advanced Video Guidance Sensor and Autonomous Rendezvous and Proximity Operations algorithms into a Pegasus upper stage in order to demonstrate the capability to autonomously rendezvous with a target currently in orbit. The DART mission will occur in April 2004. The launch site will be Vandenburg AFB and the launch vehicle will be a Pegasus XL equipped with a Hydrazine Auxiliary Propulsion System 4th stage. All mission objectives will be completed within a 24 hour period. The paper provides a summary of mission objectives, mission overview and a discussion on the design features of the chase and target vehicles.

  4. Innovative technology summary report: Sealed-seam sack suits

    SciTech Connect

    1998-09-01

    Sealed-seam sack suits are an improved/innovative safety and industrial hygiene technology designed to protect workers from dermal exposure to contamination. Most of these disposable, synthetic-fabric suits are more protective than cotton suits, and are also water-resistant and gas permeable. Some fabrics provide a filter to aerosols, which is important to protection against contamination, while allowing air to pass, increasing comfort level of workers. It is easier to detect body-moisture breakthrough with the disposable suits than with cotton, which is also important to protecting workers from contamination. These suits present a safe and cost-effective (6% to 17% less expensive than the baseline) alternative to traditional protective clothing. This report covers the period from October 1996 to August 1997. During that time, sealed-seam sack suits were demonstrated during daily activities under normal working conditions at the C Reactor and under environmentally controlled conditions at the Los Alamos National Laboratory (LANL).

  5. Offset Stream Technology Test-Summary of Results

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Bridges, James E.; Henderson, Brenda

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  6. Challenges in industrial fermentation technology research.

    PubMed

    Formenti, Luca Riccardo; Nørregaard, Anders; Bolic, Andrijana; Hernandez, Daniela Quintanilla; Hagemann, Timo; Heins, Anna-Lena; Larsson, Hilde; Mears, Lisa; Mauricio-Iglesias, Miguel; Krühne, Ulrich; Gernaey, Krist V

    2014-06-01

    Industrial fermentation processes are increasingly popular, and are considered an important technological asset for reducing our dependence on chemicals and products produced from fossil fuels. However, despite their increasing popularity, fermentation processes have not yet reached the same maturity as traditional chemical processes, particularly when it comes to using engineering tools such as mathematical models and optimization techniques. This perspective starts with a brief overview of these engineering tools. However, the main focus is on a description of some of the most important engineering challenges: scaling up and scaling down fermentation processes, the influence of morphology on broth rheology and mass transfer, and establishing novel sensors to measure and control insightful process parameters. The greatest emphasis is on the challenges posed by filamentous fungi, because of their wide applications as cell factories and therefore their relevance in a White Biotechnology context. Computational fluid dynamics (CFD) is introduced as a promising tool that can be used to support the scaling up and scaling down of bioreactors, and for studying mixing and the potential occurrence of gradients in a tank. PMID:24846823

  7. Technology Education in Taiwan: A Transition from Industrial Arts to Living Technology.

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng Steven

    Secondary-level technology education in Taiwan is shifting its emphasis from industrial arts to living technology in an effort to overcome the following problems: industrial arts is seen as a subordinate subject; the public's perceptions are not aligned with the field; and industrial technology teachers have had to struggle with huge class sizes…

  8. A continuing program for technology transfer to the apparel industry

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  9. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

  10. ENVIRONMENTAL CONSIDERATIONS OF SELECTED ENERGY CONSERVATION MANUFACTURING PROCESS OPTIONS. VOLUME I. INDUSTRY SUMMARY REPORT

    EPA Science Inventory

    This report assesses the likelihood of new process technology and new practices being introduced by energy intensive industries and explores the environmental impacts of such changes. It covers the following 13 industries: iron and steel, petroleum refining, pulp and paper, olefi...

  11. Developing Competency Based Content in Business, Industry and Education. Summary Report, University Forum.

    ERIC Educational Resources Information Center

    Wright, Larry, Ed.

    Summarized are presentations made at the University Forum on Competency Based Content in Business, Industry, and Education, planned by the School of Industry and Technology Program Directors of the University of Wisconsin-Stout. The following topics about competency based content are among subjects reported: what competency based content is; who…

  12. High technology industries: Profiles and outlooks. The semiconductor industry

    NASA Astrophysics Data System (ADS)

    This profile is designed to assess the international competitive position of the U.S. Semiconductor Industry; pinpoint the major foreign and domestic challenges to American semiconductor manufacturers; and present for discussion possible options in terms of U.S. government policies affecting the sector's international standing.

  13. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  14. Strategies for Teaching Handicapped Students in Industrial Technology.

    ERIC Educational Resources Information Center

    Morley, Raymond E.; And Others

    This volume compiles methods known to be effective in helping industrial technology teachers work with mainstreamed handicapped students. It emphasizes an industrial technology/special education team approach, but also includes strategies that do not require this cooperation. The volume begins with a description of the special needs of several…

  15. Review of the Semiconductor Industry and Technology Roadmap.

    ERIC Educational Resources Information Center

    Kumar, Sameer; Krenner, Nicole

    2002-01-01

    Points out that the semiconductor industry is extremely competitive and requires ongoing technological advances to improve performance while reducing costs to remain competitive and how essential it is to gain an understanding of important facets of the industry. Provides an overview of the initial and current semiconductor technology roadmap that…

  16. Computer Utilization in Industrial Arts/Technology Education. Curriculum Guide.

    ERIC Educational Resources Information Center

    Connecticut Industrial Arts Association.

    This guide is intended to assist industrial arts/technology education teachers in helping students in grades K-12 understand the impact of computers and computer technology in the world. Discussed in the introductory sections are the ways in which computers have changed the face of business, industry, and education and training; the scope and…

  17. Characteristics of a Model Industrial Technology Education Field Experience.

    ERIC Educational Resources Information Center

    Foster, Phillip R.; Kozak, Michael R.

    1986-01-01

    This report contains selected findings from a research project that investigated field experiences in industrial technology education. Funded by the Texas Education Agency, the project addressed the identification of characteristics of a model field experience in industrial technology education. This was accomplished using the Delphi technique.…

  18. Encouraging Learning of Industry Technology: A Merchandising Example

    ERIC Educational Resources Information Center

    Reilly, Andrew; Huss, Megan; Stoel, Leslie

    2005-01-01

    The application of the technology acceptance model to a merchandising course teaching industry software was evaluated. Based on technology acceptance research, industry software was presented emphasizing ease-of-use and usefulness. The final course project gave students a quasi real-life experience of combining merchandising skills with the…

  19. Guidelines for Assessing Michigan Standards in Industrial Technology Education.

    ERIC Educational Resources Information Center

    Lutz, Ronald J.

    This document presents Michigan's standards in industrial technology education and details assessment procedures that will enable Michigan industrial technology teachers to analyze, upgrade, and justify their current programs. The introductory section contains the following materials: a discussion of supportive organizations; an overview of…

  20. National Survey of Computer Aided Manufacturing in Industrial Technology Programs.

    ERIC Educational Resources Information Center

    Heidari, Farzin

    The current status of computer-aided manufacturing in the 4-year industrial technology programs in the United States was studied. All industrial technology department chairs were mailed a questionnaire divided into program information, equipment information, and general comments sections. The questionnaire was designed to determine the subjects…

  1. Membrane technology applications in the food industry: Present and future

    SciTech Connect

    Leeper, S.A.; Mohr, C.M.; Engelgau, D.E.; Charboneau, B.L.

    1990-01-01

    This presentation provides an overview of present, near-term, and potential applications of membrane technology in the food industry. This presentation is based on a comprehensive survey of membrane applications and research in the food industry prepared by EG G Idaho, Inc. for the US Department of Energy, Office of Industrial Programs. 2 refs., 3 tabs.

  2. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  3. Steam Digest 2001: Office of Industrial Technologies

    SciTech Connect

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  4. NASA's Microgravity Technology Report: Summary of Activities 1997

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    The purpose of the 1997 NASA Microgravity Technology Report is to update the Microgravity Research Program's technology development policy and to present and assess current technology related activities and requirements identified within its research and technology disciplines.

  5. Industrial Storage Technology Applied to Library Requirements.

    ERIC Educational Resources Information Center

    Kountz, John

    1987-01-01

    Comparison of conventional book stacks, moving aisle book stacks, and industrial storage techniques shows that the industrial technique is the least expensive to build, maintain, and operate. Characteristics of automated storage and retrieval systems are discussed, and formulas for calculating the size and costs of a library system are presented.…

  6. Vitrification of ion exchange materials. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  7. Summary of the first network-centric sensing community workshop, 'netted sensors: a government, industry, and academia dialogue'

    NASA Astrophysics Data System (ADS)

    Tromp, Laurens D.; Jacyna, Garry M.; Allen, David P.

    2006-05-01

    The MITRE Corporation recently hosted the first Netted Sensors Community Workshop in McLean, Virginia, on 24 October - 26 October 2005. The Workshop was sponsored by the Defense Advanced Research Projects Agency (DARPA), Office of the Secretary of Defense (OSD) Director of Defense Research and Engineering (DDR&E), and the National Science Foundation (NSF). The goal was to establish and sustain an annual Netted Sensors workshop that brings together Government, Industry and Academia to accelerate the development and transition of appropriate Netted Sensor technologies to solve real world problems. The workshop provided a forum focused on the application of netted sensing research and development (R&D) activities to solve existing and future Department of Defense (DoD), Intelligence Community (IC), Department of Homeland Security (DHS), and Environmental sensing problems. The Netted Sensors workshop brought together the Science and Technology (S&T) community, Industry, and Government / Military organizations to (1) share, discuss and disseminate new R&D results, (2) highlight new commercial products and technologies, and (3) identify and discuss nationally important sensing problems suitable for Netted Sensing solutions. This paper provides a summary of the presentations that were made at the workshop as well as recommendations for future workshops.

  8. Russian Pulsating Mixer Pump. Innovative Technology Summary Report

    SciTech Connect

    2002-03-01

    This sludge mixing/mobilization system was developed in Russia. A prototype system was evaluated by the Tanks Focus Area (TFA) and Industry and University Programs (INDP). The Russian Pulsating Mixer Pump showed promise for mixing highly viscous sludges. This project is to refine the system design (especially the control subsystem) and manufacture the system in Russia in accordance with quality standards required for deployment in radioactive waste storage tanks. Specifications and requirements are being developed by the TFA and INDP. The requirements may call for two or three of the sludge mixing systems to be delivered to Oak Ridge. DOE-Oak Ridge and the Oak Ridge National Laboratory will deploy the pulsating mixing pump system in their Gunite Tanks. These tanks are being emptied and cleaned prior to closure. Oak Ridge has deployed a number of innovative technologies in these efforts. If successful at Oak Ridge, the pulsating mixing pump system has potential application at several other DOE sites, including Savannah River, Hanford, and Idaho.

  9. The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships

    SciTech Connect

    1997-09-01

    A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

  10. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1997

    SciTech Connect

    1998-05-01

    The mission of the Advanced Industrial Materials (AIM) Program is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. A fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrates on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support. Assessments of materials needs and opportunities in the process industries are an on-going effort within the program. These assessments are being used for program planning and priority setting, followed by support of work to satisfy those needs. All the industries have identified materials as critical, particularly for high-temperature strength, corrosion resistance, and wear resistance. Also important from the energy efficiency viewpoint are membranes, catalytic membranes, and reactors for separations, both for processing and waste reduction. AIM focuses, therefore, on high-temperature materials, corrosion resistant materials, wear resistant materials, strong polymers, coatings, and membrane materials for industrial applications.

  11. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    SciTech Connect

    2010-05-01

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  12. INDUSTRIAL MULTIMEDIA BRANCH (SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The mission of NRMRL's Industrial Multimedia Branch (IMB) is to develop, demonstrate, and evaluate timely and integrated innovative engineering and scientific approaches to reduce air, water, and land toxic pollution generated by the production. processing, and use of materials. ...

  13. The Superfund Innovative Technology Evaluation Program SUMMARY AND CLOSURE REPORT

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program promoted the development, commercialization, and implementation of innovative hazardous waste treatment technologies for 20 years. SITE offered a mechanism for conducting joint technology demonstration and evaluation ...

  14. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) research program annual review

    SciTech Connect

    None, None

    2005-08-01

    This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review.

  15. 15 CFR 1160.3 - Assistance to industrial technology partnerships.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Assistance to industrial technology partnerships. 1160.3 Section 1160.3 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) TECHNOLOGY ADMINISTRATION, DEPARTMENT OF COMMERCE PRODUCTIVITY, TECHNOLOGY...

  16. 15 CFR 1160.3 - Assistance to industrial technology partnerships.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Assistance to industrial technology partnerships. 1160.3 Section 1160.3 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) TECHNOLOGY ADMINISTRATION, DEPARTMENT OF COMMERCE PRODUCTIVITY, TECHNOLOGY...

  17. 15 CFR 1160.3 - Assistance to industrial technology partnerships.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Assistance to industrial technology partnerships. 1160.3 Section 1160.3 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) TECHNOLOGY ADMINISTRATION, DEPARTMENT OF COMMERCE PRODUCTIVITY, TECHNOLOGY...

  18. Technological Change in Michigan's Tool and Die Industry.

    ERIC Educational Resources Information Center

    Smith, Donald N.

    This study was conducted to answer four questions about the tool and die industry in Michigan. These were: (1) What are the current production techniques? (2) To what extent are these industrialists aware of new technologies? (3) What technical and economic factors affect technological change? and (4) To what extent will new technologies replace…

  19. Technology for nature conservation: an industry perspective.

    PubMed

    Joppa, Lucas N

    2015-11-01

    Information age technology has the potential to change the game for conservation by continuously monitoring the pulse of the natural world. Whether or not it will depends on the ability of the conservation sector to build a community of practice, come together to define key technology challenges and work with a wide variety of partners to create, implement, and sustain solutions. I describe why these steps are necessary, outline the latest developments in the field and offer actionable ways forward for conservation agencies, universities, funding bodies, professional societies, and technology corporations to come together to realize the revolution that computational technologies can bring for biodiversity conservation. PMID:26508340

  20. Roadmap 2030: The U.S. Concrete Industry Technology Roadmap

    SciTech Connect

    none,

    2002-12-01

    Roadmap 2030: The U.S. Concrete Industry Technology Roadmap tracks the eight goals published in the American Concrete Institute Strategic Development Council's Vision 2030: A Vision for the U.S. Concrete Industry. Roadmap 2030 highlights existing state-of-the-art technologies and emerging scientific advances that promise high potential for innovation, and predicts future technological needs. It defines enabling research opportunities and proposes areas where governmental-industrial-academic partnerships can accelerate the pace of development. Roadmap 2030 is a living document designed to continually address technical, institutional, and market changes.

  1. A Technological Assessment of the SLA Membership: Summary Report.

    ERIC Educational Resources Information Center

    Brimsek, Tobi A.

    1990-01-01

    Summarizes the results of a Special Libraries Association membership survey on technology. Data are reported on types of technology currently in use, parent organizations, members' relationships to technology, purchasing power, staffing, the impact of technology on staff size and services, user satisfaction, job satisfaction, type of institution…

  2. Industry Speaks to Two-Year Colleges about High Technology.

    ERIC Educational Resources Information Center

    Long, James P.

    A summary is presented of the major conclusions of seven regional conferences on high technology and the two-year college conducted by the National Postsecondary Alliance. The conclusions were drawn from the addresses of representatives from more than 40 firms, who responded to questions concerning their companies' involvement with high technology…

  3. The southern regional conference on technology assessment: Summary

    NASA Technical Reports Server (NTRS)

    Coates, V. T.; Mock, J. E.

    1974-01-01

    The proceedings of a conference on technology assessment are presented. A survey of recent Federal activity in technology assessment was discussed initially. Emphasis was placed on state and local activities with respect to technology assessment to include the following subjects: (1) the technology assessment desired by states, (2) organization of technology assessment activities, (3) how to perform technology assessments for less than $5,000, and (4) the preparation of environmental impact statements. Specific application of technology assessment to solid waste management in Connecticut is reported.

  4. NASA's Microgravity Technology Report, 1996: Summary of Activities

    NASA Technical Reports Server (NTRS)

    Kierk, Isabella

    1996-01-01

    This report covers technology development and technology transfer activities within the Microgravity Science Research Programs during FY 1996. It also describes the recent major tasks under the Advanced Technology Development (ATD) Program and identifies current technology requirements. This document is consistent with NASA,s Enteprise for the Human Exploration and development of Space (HEDS) Strategic Plan. This annual update reflects changes in the Microgravity Science Research Program's new technology activities and requirements. Appendix A. FY 1996 Advanced Technology Development. Program and Project Descriptions. Appendix B. Technology Development.

  5. Summary Writing for EFL Students of Science and Technology.

    ERIC Educational Resources Information Center

    Peretz, Arna S.

    This guide suggests techniques for teaching skills in summary writing to students of English as a foreign language (EFL) in scientific and technical fields. Activities include: pre-summarization (identification of thesis sentences, conclusions and other essential components, multiple readings, notetaking and text-marking); summarization activities…

  6. Leveraging Relational Technology through Industry Partnerships.

    ERIC Educational Resources Information Center

    Brush, Leonard M.; Schaller, Anthony J.

    1988-01-01

    Carnegie Mellon University has leveraged its technological expertise with database management systems (DBMS) into joint technological and developmental partnerships with DBMS and application software vendors. Carnegie's relational database strategy, the strategy of partnerships and how they were formed, and how the partnerships are doing are…

  7. Responding to Industry Demands: Advanced Technology Centers.

    ERIC Educational Resources Information Center

    Smith, Elizabeth Brient

    1991-01-01

    Discusses characteristics identified by the Center for Occupational Research and Development as indicative of fully functioning advanced technology centers, including the provision of training and retraining in such areas as design, manufacturing, materials science, and electro-optics; technology transfer; demonstration sites; needs assessment;…

  8. Organising Industrial Knowledge Dissemination on Frontier Technology

    ERIC Educational Resources Information Center

    Brintrup, A. M.; Ranasinghe, D.

    2008-01-01

    This paper describes the challenges faced by frontier technology education, typical among large integrated EU projects. These include an evolving nature, the scarcity of experts and established material, and the need for relevant material. Classical approaches to learning seem to not adequately address the needs of frontier technology alone.…

  9. Research and development in sensor technology: The DOE industrial energy conservation program

    SciTech Connect

    Not Available

    1987-04-01

    Sensor technology is an important component of modern day process technologies. It lends itself to further research and development with the potential for increased energy efficiency and productivity. Sensors are used by industry in practically every aspect of the production process. The utilization of automatic control systems and the anticipation of increased future applications of computers in production processes have highlighted the importance of research in this area. Recognizing this need, IP has funded a series of targeted projects to develop process-specific sensors as well as sensors for generic applications. This brochure describes, in summary form, the Office of Industrial Programs' research and development (R and D) efforts in the advancement of sensor technology.

  10. Characterization of alternative electric generation technologies for the SPS comparative assessment. Volume 1: Summary of central station technologies

    NASA Astrophysics Data System (ADS)

    1980-08-01

    The technologies selected for the detailed characterization were: solar technology; terrestrial photovoltaic (200 MWe); coal technologies; conventional high sulfur coal combustion with advanced fine gas desulfurization (1250 MWe), and open cycle gas turbine combined cycle plant with low Btu gasifier (1250 MWe); and nuclear technologies: conventional light water reactor (1250 MWe), liquid metal fast breeder reactor (1250 MWe), and magnetic fusion reactor (1320 MWe). A brief technical summary of each power plant design is given.

  11. Opportunities for industry participation in DOE`s environmental management technology development program

    SciTech Connect

    Bedick, R.C.; Walker, J.S.

    1996-09-01

    METC has managed about 85 research, development, and demonstration projects on behalf of DOE-EM`s Office of Science and Technology that include those in each of the four major environmental remediation and waste management problem areas: subsurface contaminants (radionuclides, heavy metals, dense nonaqueous phase liquids); decontamination and decommissioning of facilities; high-level waste tank remediation; and mixed waste characterization/treament/disposal. All projects within the Industry Programs are phased or have optional tasks at specific go/no-go decision points, allowing DOE to make investment decisions at various points in the technology development cycle to ensure that we are meeting the technology development goals and the needs of the customer or end-user. This decision making process is formalized in a Technology Investment Decision Model. A brief summary is given of R&D requirements (technology needs) in each of the above-mentioned 4 problem areas.

  12. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  13. Science and technology for industrial ecology

    SciTech Connect

    Gilmartin, T.J.; Allenby, B.R.

    1996-07-10

    This paper first discusses the challenge offered by natural and anthropogenic systems in all of their complexity and then indicates some areas of research in which specific scientific and technological needs are identifiable.

  14. A Government/Industry Summary of the Design Analysis Methods for Vibrations (DAMVIBS) Program

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G. (Compiler)

    1993-01-01

    The NASA Langley Research Center in 1984 initiated a rotorcraft structural dynamics program, designated DAMVIBS (Design Analysis Methods for VIBrationS), with the objective of establishing the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. An assessment of the program showed that the DAMVIBS Program has resulted in notable technical achievements and major changes in industrial design practice, all of which have significantly advanced the industry's capability to use and rely on finite-element-based dynamics analyses during the design process.

  15. PERVAPORATION TECHNOLOGY RESEARCH IN INDUSTRIAL POLLUTION PREVENTION APPLICATIONS

    EPA Science Inventory

    The objective of this presentation is to describe research activities with USDPA's NRMRL Prevaporation Team pertaining to industrial waste. The presentation will provide a brief introduction to pervaporation technology theory and applications. Pervaporation is a membrane separ...

  16. A photovoltaic industry overview - The results of a survey on photovoltaic technology industrialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Costogue, E. N.; Thornhill, J. W.; Shimada, K.

    1981-01-01

    The National Photovoltaics Program of the United States Department of Energy has the objective of bringing photovoltaic power systems to a point where they can supply a significant portion of the United States energy requirements by the year 2000. This is planned to be accomplished through substantial research and technology development activities aimed at achieving major cost reductions and market penetration. This paper presents information derived from a limited survey performed to obtain photovoltaic industry attitudes concerning industrialization, and to determine current industry plans to meet the DOE program goals. Silicon material production, a key photovoltaic manufacturing industry, is highlighted with regards to implementation of technology improvement and silicon material supply outlook.

  17. Technology transfer from NASA to targeted industries, volume 2

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  18. Technology transfer from NASA to targeted industries, volume 1

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  19. Industrial Maintenance Technology (IM-TEC). Student Manual.

    ERIC Educational Resources Information Center

    Fusch, Gene E.

    This student manual explains an innovative strategy through which Bellingham Technical College's (Washington) evening Industrial Electrician and Millwright Apprenticeships were aggregated with workforce upgrade course offerings to form the college's first evening degree program in Industrial Maintenance Technology (IM-TEC). Section 1 contains a…

  20. TECHNOLOGY ASSESSMENT REPORT FOR INDUSTRIAL BOILER APPLICATIONS: SYNTHETIC FUELS

    EPA Science Inventory

    The report, part of a series to aid in determining the technological basis for New Source Performance Standards for Industrial Boilers, addresses the use of synthetic fuels produced from coal as a precombustion emission control for new industrial boilers. The synthetic fuels tech...

  1. Application of photogrammetry technology to industrial inspection

    NASA Astrophysics Data System (ADS)

    Zhang, De-hai; Liang, Jin; Guo, Cheng; Chen, Zhi-xin

    2010-02-01

    In order to meet the requirement of obtaining the object figure quickly and accurately, XJTUDP software has been developed successfully by oneself based on photogrammetry theory. The contents of composing and explored of this system are introduced in this paper. The VDI/VDE2634 testing program is taken as referenced project, the self-designed framework of cube is taken as tested target, and then the conclusion that precision of XJTUDP may meet the standard of industrial measurement has been reached out. Finally, large-scale waterwheel leave is taken as example to conduct measuring, it is proved that photogrammetry system explored by ourselves may be imposed applying on the field of industrial measuring successfully.

  2. Phosphor Technology Center of Excellence: research, education, industrial interactions

    NASA Astrophysics Data System (ADS)

    Summers, Christopher J.

    1994-04-01

    A review is given of the participants and the research, education and industrial mission of the center. The Phosphor Technology Center of Excellence is established at the Georgia Institute of Technology with the University of Georgia, University of Florida, Pennsylvania State University, David Sarnoff Research Center and the American Display Consortium being charter members. The research mission addresses short, medium and long term needs in five technological areas; cathode ray tube, electroluminescence, field emission devices, plasma display panels and active-matrix liquid crystal display back-light phosphors through interactive university/industry technology groups. Outreach activities include the establishment of a phosphor database, industry analysis and short courses in addition to the conventional university education role. Specific science and technology programs are briefly described.

  3. Recent vaccine technology in industrial animals.

    PubMed

    Kim, Hyunil; Lee, Yoo-Kyoung; Kang, Sang Chul; Han, Beom Ku; Choi, Ki Myung

    2016-01-01

    Various new technologies have been applied for developing vaccines against various animal diseases. Virus-like particle (VLP) vaccine technology was used for manufacturing the porcine circovirus type 2 and RNA particle vaccines based on an alphavirus vector for porcine epidemic diarrhea (PED). Although VLP is classified as a killed-virus vaccine, because its structure is similar to the original virus, it can induce long-term and cell-mediated immunity. The RNA particle vaccine used a Venezuela equine encephalitis (VEE) virus gene as a vector. The VEE virus partial gene can be substituted with the PED virus spike gene. Recombinant vaccines can be produced by substitution of the target gene in the VEE vector. Both of these new vaccine technologies made it possible to control the infectious disease efficiently in a relatively short time. PMID:26866019

  4. Recent vaccine technology in industrial animals

    PubMed Central

    2016-01-01

    Various new technologies have been applied for developing vaccines against various animal diseases. Virus-like particle (VLP) vaccine technology was used for manufacturing the porcine circovirus type 2 and RNA particle vaccines based on an alphavirus vector for porcine epidemic diarrhea (PED). Although VLP is classified as a killed-virus vaccine, because its structure is similar to the original virus, it can induce long-term and cell-mediated immunity. The RNA particle vaccine used a Venezuela equine encephalitis (VEE) virus gene as a vector. The VEE virus partial gene can be substituted with the PED virus spike gene. Recombinant vaccines can be produced by substitution of the target gene in the VEE vector. Both of these new vaccine technologies made it possible to control the infectious disease efficiently in a relatively short time. PMID:26866019

  5. A Largely Unsatisfied Need: Continuing Professional Development for Process and Process Plant Industries. A Summary. FEU/PICKUP Project Report.

    ERIC Educational Resources Information Center

    Geldhart, D.; Brown, A. S.

    This summary report outlines the aims of a project that focused on provision of short courses for technical professionals in the chemical and allied process industry and the process plant industry. Continuing education needs of both companies and individuals, as well as corporate policies and attitudes toward continuing education and constraints…

  6. Introductory Industrial Technology I. Laboratory Activities.

    ERIC Educational Resources Information Center

    Towler, Alan L.; And Others

    This guide contains 36 learning modules intended for use by technology teachers and students in grades 7 and 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced,…

  7. Introductory Industrial Technology II. Laboratory Activities.

    ERIC Educational Resources Information Center

    Towler, Alan L.

    This guide contains 29 learning modules intended for use by technology teachers and students in grade 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced, equipment/supplies,…

  8. The Role of Science and Technology in Economic Competitiveness. Executive Summary.

    ERIC Educational Resources Information Center

    Conference Board, Inc., New York, NY.

    This is the executive summary for "The Role of Science and Technology in Economic Competitiveness," (1987) based on a national survey on competitiveness. The study focused on three primary topics: the adequacy of human resources and its relationship to human ability to compete; investment in resarch and development; and technology transfer, i.e.,…

  9. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    Johnson, F. D.; Heins, C. F.

    1974-01-01

    Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.

  10. Industry-Oriented Competency Requirements for Mechatronics Technology in Taiwan

    ERIC Educational Resources Information Center

    Shyr, Wen-Jye

    2012-01-01

    This study employed a three-phase empirical method to identify competency indicators for mechatronics technology according to industry-oriented criteria. In Phase I, a list of required competencies was compiled using Behavioral Event Interviews (BEI) with three engineers specializing in the field of mechatronics technology. In Phase II, the Delphi…

  11. Industrial applications of ion track technology

    NASA Astrophysics Data System (ADS)

    Hanot, H.; Ferain, E.

    2009-03-01

    It4ip sa is a spin out from the Université Catholique de Louvain (Belgium) dedicated to the development and production of unique templates and membranes based on the combination of ion track technology of polymers. It supplies customers with hi-tech products, state-of-the-art research and product development services with template capability to make high value added membranes. Notably based on results coming from several collaborative R&D projects supported by European and Regional funding, recent improvements of ion track technology open new doors for fast growing applications in niche markets. This paper reviews some of these Hi-Tec applications in different fields such as in healthcare (oncology, drug control release combined to implant and artificial organs etc.), energy (fuel cells and batteries etc.), water de-contamination and electronics (OLED etc.).

  12. Model Learner Outcomes for Technology Education/Industrial Technology.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul.

    This guide provides model learner outcomes used by communities and schools to improve learning experiences in trade and industrial education. It contains a mission statement for public education in Minnesota and 13 learner goals that must be incorporated into each district's goal statements. The bulk of this document contains model learner…

  13. Cyanide destruction/immobilization of residual sludge - mixed waste focus area. Innovative Technology Summary Report

    SciTech Connect

    1998-02-01

    Innovative Technology Summary Reports are designed to provide potential users with the information they need to quickly determine if a technology would apply to a particular environmental management problem. They are also designed for readers who may recommend that a technology be considered by prospective users. Each report describes a technology, system, or process that has been developed and tested with funding from DOE`s Office of Science and Technology (OST). A report presents the full range of problems that a technology, system, or process will address and its advantages to the DOE cleanup in terms of system performance, cost, and cleanup effectiveness. Most reports include comparisons to baseline technologies as well as other competing technologies. Information about commercial availability and technology readiness for implementation is also included. Innovative Technology Summary Reports are intended to provide summary information. References for more detailed information are provided in an appendix. Efforts have been made to provide key data describing the performance, cost, and regulatory acceptance of the technology. If this information was not available at the time of publication, the omission is noted.

  14. Environmental technology development through industry partnership

    SciTech Connect

    Sebastion, R.L.

    1995-12-31

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system. The precision measurement capability of the coherent laser radar (CLR) technology has already been demonstrated in the form of the CLR 3D Mapper, of which several copies have been delivered or are under order. The CLVS system, in contrast to the CLR 3D Mapper, will have substantially greater imaging speed with a compact no-moving parts scanner, more suitable for real-time robotic operations.

  15. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  16. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  17. ResonantSonic drilling. Innovative technology summary report

    SciTech Connect

    1995-04-01

    The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes.

  18. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  19. Unit-Credit Titles under Program Headings, Directory. Technology Education: Vocational Industrial, Industrial Arts, Home Economics.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education and Training, Winnipeg. Curriculum Services Branch.

    This directory lists the unit-credit titles of the technology education courses offered in Manitoba, along with their corresponding department codes and course numbers. Sections A through C list the unit-credit titles of the following vocational-industrial clusters: heavy industrial (agriculture, auto body repair, building construction, building…

  20. Industrial Arts Education Competency Catalogs for Exploring Technology, Modern Industry, Construction, Manufacturing.

    ERIC Educational Resources Information Center

    Ritz, John M.; And Others

    Four competency catalogs of tasks for industrial arts programs are presented. These include catalogs in Exploring Technology, Modern Industry, Construction, and Manufacturing. The purpose of each catalog is to establish a basis for program content selection and criterion levels from which one may measure to see if individual learners have achieved…

  1. Applications of aerospace technology in industry, a technology transfer profile: Lubrication

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    Technology transfer in the lubrication field is discussed in terms of the movement of NASA-generated lubrication technology into the private sector as affected by evolving industrial requirements. An overview of the field is presented, and NASA technical contributions to lubrication technology are described. Specific examples in which these technologies have been used in the private sector are summarized.

  2. Preliminary assessment of industrial needs for an advanced ocean technology

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Maher, K. M.; Balon, J. E.; Coyle, A. G.; Henkener, J. A.

    1979-01-01

    A quick-look review of selected ocean industries is presented for the purpose of providing NASA OSTA with an assessment of technology needs and market potential. The size and growth potential, needs and problem areas, technology presently used and its suppliers, are given for industries involved in deep ocean mining, petrochemicals ocean energy conversion. Supporting services such as ocean bottom surveying; underwater transportation, data collection, and work systems; and inspection and diving services are included. Examples of key problem areas that are amenable to advanced technology solutions are included. Major companies are listed.

  3. RFID in the pharmaceutical industry: addressing counterfeits with technology.

    PubMed

    Taylor, Douglas

    2014-11-01

    The use of Radio Frequency Identification (RFID) in the pharmaceutical industry has grown in recent years. The technology has matured from its specialized tracking and retail uses to a systemic part of supply chain management in international pharmaceutical production and distribution. Counterfeit drugs, however, remain a significant challenge for governments, pharmaceutical companies, clinicians, and patients and the use of RFID to track these compounds represents an opportunity for development. This paper discusses the medical, technological, and economic factors that support widespread adoption of RFID technology in the pharmaceutical industry in an effort to prevent counterfeit medicines from harming patients and brand equity. PMID:25308613

  4. Electrolytic technology in the metals industry: A scoping study: Final report

    SciTech Connect

    Sabatini, J.S.; Field, E.L.; Shanley, E.S.; Weiler, D.A.

    1989-01-01

    The overall purpose of the study was twofold: (1) to evaluate technologies with respect to the recovery of selected metals from both primary and secondary resources, as well as waste resources, and (2) to identify opportunities that might permit consideration for joint development by industry and EPRI. The technologies of interest are classified as ''electrolytic technologies'' and include electrorefining, electrowinning, and fused-salt electrolysis. In the course of this effort, more than 40 metal/commodities were screened and reviewed. Seven metal commodities selected for inclusion in this study were copper, iron/steel, lead, magnesium, sodium, titanium, and zinc. Sectors considered in this analysis included extraction from ore (''primary industry'') and recovery from scrap metal (''secondary industry'') as well as waste products. Using readily available data for these seven metals, market, industry, and current production overviews were developed, followed by the identification and evaluation of over 60 potential electrolytic processes in nine research categories. In addition, ''capsule summaries'' on markets and technologies were prepared for ten metals of secondary interest to this study: antimony, chromium, manganese, molybdenum, nickel, rare earth oxides, silicon, silver, tin and zirconium. 254 refs., 10 figs., 11 tabs.

  5. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    SciTech Connect

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`

  6. Status and outlook of industrial coal briquetting technology in China

    SciTech Connect

    Liu, S.; Xu, Z.; Li, W.; Tian, B.

    1997-12-31

    Considering that the lump coal supply falls short of demands, great amounts of fine coal and slime are stockpiled, waste energy is extensive, and environmental pollution is serious, this paper summarizes the present situation of industrial coal briquetting technologies and their applications, and evaluates the advantages and disadvantages of several different coal briquette technologies widely used. The authors think that the energetic development of industrial coal briquetting technology is an effective and feasible option to fully utilize fine coal and slime, mitigate the contradiction between supply and demand for lump coal, reduce the production cost of users, as well as decrease and control environmental pollution caused by coal utilization. It is a practical solution for clean coal in China. At present, the research for developing industrial coal briquetting technologies is in the selection and adoption of suitable binders which need dry processing and can produce high strength and waterproof briquettes.

  7. [Los Alamos National Laboratory industrial applications and technology transfer

    SciTech Connect

    Not Available

    1991-10-31

    This report summarizes the accomplishments of the Los Alamos Economic Development Corporation (LAEDC) under its contract with the Industrial Applications Office (IAO). The LAEDC has: provided business planning assistance to potential entrepreneurs, assisted IAO in preparing and distributing informational materials on technology, organized and managed meetings and seminars on technology transfer and entrepreneurship, identified new opportunities for technology transfer, and identified and implemented programs for the recognition of Laboratory entrepreneurs.

  8. Innovative technology summary report: High-speed clamshell pipe cutter

    SciTech Connect

    1998-09-01

    The Hanford Site C Reactor Technology Demonstration Group demonstrated the High-Speed Clamshell Pipe Cutter technology, developed and marketed by Tri Tool Inc. (Rancho Cordova, California). The models demonstrated are portable, split-frame pipe lathes that require minimal radial and axial clearances for severing and/or beveling in-line pipe with ranges of 25 cm to 41 cm and 46 cm to 61 cm nominal diameter. The radial clearance requirement from the walls, floors, or adjacent pipes is 18 cm. The lathes were supplied with carbide insert conversion kits for the cutting bits for the high-speed technique that was demonstrated. Given site-specific factors, this demonstration showed the cost of the improved technology to be approximately 30% higher than the traditional (baseline) technology (oxyacetylene torch) cost of $14,400 for 10 cuts of contaminated 41-cm and 61-cm-diameter pipe at C Reactor. Actual cutting times were faster than the baseline technology; however, moving/staging the equipment took longer. Unlike the baseline torch, clamshell lathes do not involve applied heat, flames, or smoke and can be operated remotely, thereby helping personal exposures to be as low as reasonably achievable. The baseline technology was demonstrated at the C Reactor north and south water pipe tunnels August 19--22, 1997. The improved technology was demonstrated in the gas pipe tunnel December 15--19.

  9. Technology export adds markets for industry

    SciTech Connect

    Not Available

    1984-05-01

    Petroleum-related engineering technology, developed as part of North Sea participation is now being marketed throughout the world by Norwegian engineering, construction, manufacturing and service companies. In moving into international competition, Norwegian companies are primarily testing markets which environmentally resemble the North Sea. Oil is recognized as the best opportunity for investment by Norway's businessmen and is important to the Norwegian economy. According to a recent study a major expansion of offshore activity will be required soon if the level of investment is not to decline after 1985. Production from existing fields is expected to peak at 60 million tons of oil equivalent (MTOE) in 1990, dropping to 10 MTOE by 2000.

  10. Summary of Research Report Lewis Incubator for Technology

    NASA Technical Reports Server (NTRS)

    Zeman, Wayne P.

    2000-01-01

    This report summarizes the work done to establish and operate the Lewis Incubator for Technology (LIFT) for the period July 1996 through September 2000. The Lewis Incubator helps the startup and growth of technology-based businesses with the potential to incorporate technology from the NASA Glenn Research Center. During the grant period, LIFT began operation, met or exceeded all key performance measures, and continues its operation through a new cooperative agreement with NASA Glenn and also through continued funding from the State of Ohio.

  11. Buildings sector demand-side efficiency technology summaries

    SciTech Connect

    Koomey, J.G.; Johnson, F.X.; Schuman, J.

    1994-03-01

    This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

  12. Mobile satellite communications technology - A summary of NASA activities

    NASA Technical Reports Server (NTRS)

    Dutzi, E. J.; Knouse, G. H.

    1986-01-01

    Studies in recent years indicate that future high-capacity mobile satellite systems are viable only if certain high-risk enabling technologies are developed. Accordingly, NASA has structured an advanced technology development program aimed at efficient utilization of orbit, spectrum, and power. Over the last two years, studies have concentrated on developing concepts and identifying cost drivers and other issues associated with the major technical areas of emphasis: vehicle antennas, speech compression, bandwidth-efficient digital modems, network architecture, mobile satellite channel characterization, and selected space segment technology. The program is now entering the next phase - breadboarding, development, and field experimentation.

  13. Six phase soil heating. Innovative technology summary report

    SciTech Connect

    1995-04-01

    Six Phase Soil Heating (SPSH) was developed to remediate soils contaminated with volatile and semi-volatile organic compounds. SPSH is designed to enhance the removal of contaminates from the subsurface during soil vapor extraction. The innovation combines an emerging technology, six-phase electric heating, with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation systems for difficult soil and/or contaminate applications. This document describes the technology and reports on field demonstrations conducted at Savannah River and the Hanford Reservation.

  14. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    SciTech Connect

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  15. Space Transportation Avionics Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  16. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy’s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program’s fourth solicitation.

  17. Materials and Components Technology Division research summary, 1992

    SciTech Connect

    Not Available

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

  18. Advanced Technology Display House. Volume 1: Project Summary and Procedures

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.

  19. COST DIGEST: COST SUMMARIES OF SELECTED ENVIRONMENTAL CONTROL TECHNOLOGIES

    EPA Science Inventory

    The report summarizes cost data on over 20 environmental control technologies. The cost parameters presented include total capital investment, net annual operating expenses, and unit annualized costs. These cost estimates are given over an appropriate range of system capacities f...

  20. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    SciTech Connect

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  1. Portable x-ray fluorescence spectrometer. Innovative technology summary report

    SciTech Connect

    1998-12-01

    This report describes the application of portable X-ray fluorescence (XRF) spectrometry to characterize materials related to deactivation and decommissioning (D and D) of contaminated facilities. Two portable XRF instruments manufactured by TN Spectrace were used in a technology evaluation as part of the Large-Scale Demonstration Project (LSDP) held at the Chicago Pile-5 Research Reactor (CP-5) located at Argonne National Laboratory (ANL). The LSDP is sponsored by the US Department of Energy (DOE), Office of Science and Technology, Deactivation and Decommissioning Focus Are (DDFA). The objective of the LSDP is to demonstrate innovative technologies or technology applications potentially beneficial to the D and D of contaminated facilities. The portable XRF technology offers several potential benefits for rapid characterization of facility components and contaminants, including significant cost reduction, fast turnaround time,a nd virtually no secondary waste. Field work for the demonstration of the portable XRF technology was performed from August 28--September 3, 1996 and October 30--December 13, 1996.

  2. Concrete Dust Suppression System. Innovative Technology Summary Report

    SciTech Connect

    1998-12-01

    The improved technology is a water-based dust suppression system for controlling concrete dust generated by demolition equipment, in this case a demolition ram. This demonstration was performed to assess the effectiveness of this system to (1) minimize the amount of water used to suppress potentially contaminated dust, (2) focus the water spray on the dust-generating source and (3) minimize the dust cloud generated by the demolition activity. The technology successfully reduced the water required by a factor of eight compared to the traditional (baseline) method, controlled the dust generated, and permitted a reduction in the work force. The water spray can be focused at the ram point, but it is affected by wind. Prior to the use of this dust control system, dust generated by the demolition ram was controlled manually by spraying with fire hoses (the baseline technology). The improved technology is 18% less expensive than the baseline technology for the conditions and parameters of this demonstration, however, the automated system can save up to 80% versus the baseline whenever waste water treatment costs are considered. For demolishing one high-walled room and a long slab with a total of 413 m{sup 3} (14,580 ft{sup 3}) of concrete, the savings are $105,000 (waste water treatment included). The improved technology reduced the need for water consumption and treatment by about 88% which results in most of the savings.

  3. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  4. Overview and Summary of the Advanced Mirror Technology Development Project

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  5. Reactor surface contamination stabilization. Innovative technology summary report

    SciTech Connect

    1998-11-01

    Contaminated surfaces, such as the face of a nuclear reactor, need to be stabilized (fixed) to avoid airborne contamination during decontamination and decommissioning activities, and to prepare for interim safe storage. The traditional (baseline) method of fixing the contamination has been to spray a coating on the surfaces, but ensuring complete coverage over complex shapes, such as nozzles and hoses, is difficult. The Hanford Site C Reactor Technology Demonstration Group demonstrated innovative technologies to assess stabilization properties of various coatings and to achieve complete coverage of complex surfaces on the reactor face. This demonstration was conducted in two phases: the first phase consisted of a series of laboratory assessments of various stabilization coatings on metal coupons. For the second phase, coatings that passed the laboratory tests were applied to the front face of the C Reactor and evaluated. The baseline coating (Rust-Oleum No. 769) and one of the innovative technologies did not completely cover nozzle assemblies on the reactor face, the most critical of the second-phase evaluation criteria. However, one of the innovative coating systems, consisting of a base layer of foam covered by an outer layer of a polymeric film, was successful. The baseline technology would cost approximately 33% as much as the innovative technology cost of $64,000 to stabilize an entire reactor face (196 m{sup 2} or 2116 ft{sup 2}) with 2,004 nozzle assemblies, but the baseline system failed to provide complete surface coverage.

  6. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    SciTech Connect

    Not Available

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization.

  7. Airborne laser induced fluorescence imaging. Innovative technology summary report

    SciTech Connect

    1999-06-01

    Laser-Induced Fluorescence (LIF) was demonstration as part of the Fernald Environmental Management Project (FEMP) Plant 1 Large Scale Demonstration and Deployment Project (LSDDP) sponsored by the US Department of Energy (DOE) Office of Science and Technology, Deactivation and Decommissioning Focus Area located at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The demonstration took place on November 19, 1996. In order to allow the contaminated buildings undergoing deactivation and decommissioning (D and D) to be opened to the atmosphere, radiological surveys of floors, walls and ceilings must take place. After successful completion of the radiological clearance survey, demolition of the building can continue. Currently, this process is performed by collecting and analyzing swipe samples for radiological analysis. Two methods are used to analyze the swipe samples: hand-held frisker and laboratory analysis. For the purpose of this demonstration, the least expensive method, swipe samples analyzed by hand-held frisker, is the baseline technology. The objective of the technology demonstration was to determine if the baseline technology could be replaced using LIF.

  8. Hybrid Propulsion Technology Program, phase 1. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The study program was contracted to evaluate concepts of hybrid propulsion, select the most optimum, and prepare a conceptual design package. Further, this study required preparation of a technology definition package to identify hybrid propulsion enabling technologies and planning to acquire that technology in Phase 2 and demonstrate that technology in Phase 3. Researchers evaluated two design philosophies for Hybrid Rocket Booster (HRB) selection. The first is an ASRM modified hybrid wherein as many components/designs as possible were used from the present Advanced Solid Rocket Motor (ASRM) design. The second was an entirely new hybrid optimized booster using ASRM criteria as a point of departure, i.e., diameter, thrust time curve, launch facilities, and external tank attach points. Researchers selected the new design based on the logic of optimizing a hybrid booster to provide NASA with a next generation vehicle in lieu of an interim advancement over the ASRM. The enabling technologies for hybrid propulsion are applicable to either and vehicle design may be selected at a downstream point (Phase 3) at NASA's discretion. The completion of these studies resulted in ranking the various concepts of boosters from the RSRM to a turbopump fed (TF) hybrid. The scoring resulting from the Figure of Merit (FOM) scoring system clearly shows a natural growth path where the turbopump fed solid liquid staged combustion hybrid provides maximized payload and the highest safety, reliability, and low life cycle costing.

  9. Field transportable beta spectrometer. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potential benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations.

  10. Near-infrared spectroscopy. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy`s (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program.

  11. Potential applications of bioprocess technology in petroleum industry.

    PubMed

    Singh, Ajay; Singh, Brajesh; Ward, Owen

    2012-11-01

    Petroleum refining is traditionally based on the use of physicochemical processes such as distillation and chemical catalysis that operate under high temperatures and pressures conditions, which are energy intensive and costly. Biotechnology has become an important tool for providing new approaches in petroleum industry during oil production, refining and processing as well as managing environmentally safe pollutant remediation and disposal practices. Earlier biotechnology applications in the petroleum industry were limited to microbial enhanced oil recovery, applications of bioremediation to contaminated marine shorelines, soils and sludges. The potential role of bioprocess technology in this industry has now expanded further into the areas of biorefining and upgrading of fuels, production of fine chemicals, control of souring during production and air VOC biofiltration. In this paper we provide an overview of the major applications of bioprocesses and technology development in the petroleum industry both in upstream and downstream areas and highlight future challenges and opportunities. PMID:22829348

  12. Industry/Department of Energy workshop on chemical safety: Summary and highlights

    SciTech Connect

    Not Available

    1993-05-01

    As part of the US Department of Energy (DOE) Office of Environment, Safety and Health (EH) oversight responsibilities under Secretary of Energy Notice 6D, the Office of Safety and Quality Assurance (EH-30) routinely evaluates the adequacy and effectiveness of line organization nonnuclear safety programs and processes, particularly where occupational safety can be affected. As a result of safety concerns raised in several forums, including Tiger Team Assessments and Technical Safety Appraisals, reviews of chemical incidents at DOE facilities, identification of safety issues by external DOE oversight organizations, and the EH oversight evaluation of Program Secretarial Officers` safety analysis programs, EH has determined that chemical safety is a key area requiring further evaluation. This workshop summary provides insight into the safety culture and management policies of leading US chemical companies. This summary also suggests some actions by the Department of Energy for improving its own safety activities. As part of the workshop, representatives of the chemical industry discussed the programs their companies have carried out to reduce or eliminate the use of highly hazardous chemicals as much as possible. The chemicals focused on for elimination or risk reduction included chlorine, ammonia, hydrogen fluoride, and sulfur dioxide.

  13. Industry/Department of Energy workshop on chemical safety: Summary and highlights

    SciTech Connect

    Not Available

    1993-05-01

    As part of the US Department of Energy (DOE) Office of Environment, Safety and Health (EH) oversight responsibilities under Secretary of Energy Notice 6D, the Office of Safety and Quality Assurance (EH-30) routinely evaluates the adequacy and effectiveness of line organization nonnuclear safety programs and processes, particularly where occupational safety can be affected. As a result of safety concerns raised in several forums, including Tiger Team Assessments and Technical Safety Appraisals, reviews of chemical incidents at DOE facilities, identification of safety issues by external DOE oversight organizations, and the EH oversight evaluation of Program Secretarial Officers' safety analysis programs, EH has determined that chemical safety is a key area requiring further evaluation. This workshop summary provides insight into the safety culture and management policies of leading US chemical companies. This summary also suggests some actions by the Department of Energy for improving its own safety activities. As part of the workshop, representatives of the chemical industry discussed the programs their companies have carried out to reduce or eliminate the use of highly hazardous chemicals as much as possible. The chemicals focused on for elimination or risk reduction included chlorine, ammonia, hydrogen fluoride, and sulfur dioxide.

  14. Executive summary

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A.

    1992-01-01

    The Astrotech 21 Optical Systems Technology Workshop was held in Pasadena, California on March 6-8, 1991. The purpose of the workshop was to examine the state of Optical Systems Technology at the National Aeronautics Space Administration (NASA), and in industry and academia, in view of the potential Astrophysics mission set currently being considered for the late 1990's through the first quarter of the 21st century. The principal result of the workshop is this publication, which contains an assessment of the current state of the technology, and specific technology advances in six critical areas of optics, all necessary for the mission set. The workshop was divided into six panels, each of about a dozen experts in specific fields, representing NASA, industry, and academia. In addition, each panel contained expertise that spanned the spectrum from x-ray to submillimeter wavelengths. This executive summary contains the principal recommendations of each panel. The six technology panels and their chairs were: (1) Wavefront Sensing, Control, and Pointing, Thomas Pitts, Itek Optical Systems, A Division of Litton; (2) Fabrication, Roger Angel, Steward Observatory, University of Arizona; (3) Materials and Structures, Theodore Saito, Lawrence Livermore National Laboratory; (4) Optical Testing, James Wyant, WYKO Corporation; (5) Optical Systems Integrated Modeling, Robert R. Shannon, Optical Sciences Center, University of Arizona; and (6) Advanced Optical Instruments Technology, Michael Shao, Jet Propulsion Laboratory, California Institute of Technology. This Executive Summary contains the principal recommendations of each panel.

  15. Enhanced In Situ Bioremediation. Innovative Technology Summary Report

    SciTech Connect

    2002-03-01

    Enhanced In-Situ Bioremediation (ISB) provides increased degradation of contaminants in the subsurface by indigenous microorganisms present in the soil by manipulating this natural process. In addition, there is reduced worker risk, and decreased waste management costs associated with traditional pump and treat technology.

  16. Helicopter technology benefits and needs. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Zuk, J.; Adams, R. J.

    1980-01-01

    Present public service helicopter benefits and the potential benefits of an advanced public service rotorcraft (200 knots to 300 knots) are summarized. Past and future public service growth is quantified and assessed and needs, problem areas, and desired vehicle characteristics are defined. Research and technology recommendations are formulated and the costs and benefits of research options are assessed.

  17. Summary of drive-train component technology in helicopters

    NASA Technical Reports Server (NTRS)

    Weden, G. J.; Coy, J. J.

    1984-01-01

    A review of current helicopters was conducted to determine the technology in the drive-train systems. The design features are highlighted including reliability characteristics in transmission systems for the OH-58, UH-1, CH-47, and UH-60 helicopters. In addition, trade-offs involving cost, reliability and life are discussed.

  18. EMERGING TECHNOLOGY SUMMARY: ELECTRO-PURE ALTERNATING CURRENT ELECTROCOAGULATION

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program was authorized as part of the 1986 amendments to the Superfund legislation. It represents a joint effort between the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development and Office of Solid W...

  19. Future orbital transfer vehicle technology study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Davis, E. E.

    1982-01-01

    Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.

  20. Summary presentation of the technology and test panel

    NASA Technical Reports Server (NTRS)

    Siemers, P.

    1985-01-01

    Tether related technology issues were investigated along with potential applications. Several of the applications do not derive necessarily from nor are they related to a technology issue. Tether designs must concern itself with length requirements (whether the tether is to be flexible or stiff) and what the environmental impact is on the particular material that is proposed for the tether. As far as tether manufacturing techniques, a lot of technology related work is required to develop cost effective manfacturing capabilities for the future tether. There are techniques that are used on the ground now. However, after some of the proposed applications are determined to be feasible, it may be that the best way to manufacture the tether is to pretend the satellite is a spider and allow it to spin its own web in space. The technology required to developed tapered tethers was considered. Definition of the taper, where the center of that taper should be, and the taper's relation to the end masses are all of concern.

  1. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  2. SUMMARY OF NEW TECHNOLOGY WOODSTOVE IN-HOUSE PERFORMANCE

    EPA Science Inventory

    The paper summarizes the in-house performance of new technology wood-stoves. se of wood as a residential heating fuel increased markedly in the U.S. during the l970s in response to an increase in fossil fuel costs. ost of the increase represented wood burned in airtight parlor st...

  3. FY 1978 aeronautics and space technology program summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Highlights of the aeronautics program include research on aircraft energy efficiency, supersonic cruise aircraft, vertical takeoff and landing aircraft, short haul/short takeoff and landing aircraft, and general aviation aircraft. The space technology program includes work on space structures, propulsion systems, power systems, materials, and electronics.

  4. An overview of the communications technology satellite project: Executive summary

    NASA Technical Reports Server (NTRS)

    Rapp, W.; Ogden, D.; Wright, D.

    1982-01-01

    An overview of the Communications Technology Satellite (CTS) project, a joint venture between NASA and the Canadian Department of Communications is given. A brief technical description of the CTS spacecraft and its cognate hardware and operations, a history of the CTS project, and a list of the CTS experiments and demonstrations conducted during the course of the project are given.

  5. Space Station Systems Technology Study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The four study areas addressed are: (1) attitude control, (2) data management, (3) long-life thermal management, and (4) automated housekeeping integration. The design concepts in each area were refined. The cost benefits, schedules, and life cycle costs for the options were evaluated. Technology advancement plans were prepared for each of the selected items, and documentation was prepared.

  6. Compact Subsurface Soil Investigation System. Innovative Technology Summary Report

    SciTech Connect

    1998-12-01

    The compact subsurface soil investigation system is a mobile soil sampler used to obtain soil samples, including from below concrete floors, such as under fuel soil basins. If soils under buildings can be sampled and analyzed to document that the soil is not contaminated and thus can remain in place, the concrete structure over it may also be left in place or only partially removed. Taking soil samples through a concrete floor, often in inaccessible or congested locations, required rugged, portable equipment, such as the improved technology tested, the Geoprobe Model 540M soil sampler that is mounted on a hand cart. The traditional (baseline) technology used a comparable probe mounted on a full-size, 1-ton capacity, diesel-powered truck. The truck was not easily able to access all areas, because of its greater size and weight. In two sample holes from below the fuel storage basin at C-Reactor, the Geoprobe Model 540M was able to penetrate to the full sampling target depth of 3.3 m (10 ft). In the other three locations the sampler was stopped at lesser depths because of large stones. The Geoprobe 540M reduced schedule time and reduced costs by approximately 50% versus the baseline technology. For sampling at a congested fuel storage basin at five locations, the improved technology cost $7,300, whereas the baseline technology would have cost $13,000. As an extension of this demonstration, cost savings and schedule acceleration can be expected to increase commensurate with structure complexity/congestion and the number of samples required.

  7. Summary

    SciTech Connect

    Itoh, Kimitaka

    2009-02-19

    In this presentation, lectures in the school are revisited and a brief summary is given. An emphasis is made to illustrate how the lectures are interconnected so as to constitute the unified basis of knowledge in realizing thermonuclear fusion in ITER.The first message here is the integration of the knowledge. All of conditions (which is imposed by individual characteristic dynamics) must be simultaneously fulfilled. Plasma conditions (density, pressure, current, shape, etc.) set parameter boundaries. Achievement of Q = 10 is expected to be realized near the ridge of boundary, so that exact knowledge of mutual relations between constraints is inevitable. The other message is that, the constraints of plasma, material and design must be subject to a special care. In this regard, the use of tritium in ITER introduces new issue in research. For instance, the containment of tritium in the device leads to a new demand for the system. This issue influences the choice of the wall material. The difference of the wall material (either light element or heavy metal), on the other hand, can have a large impact on confinement. These new features in integration will be explained.The other issue is the need of integration of knowledge to form a law of understanding. The mission of ITER must be realized as fast as possible, considering the fact the necessity for fusion energy will be more keen as time goes on. The operation of ITER has been predicted by extending the empirical scaling relations. More precise prediction and the resolution of possible problems in advance are required. For this urgency, our knowledge must be distilled as a scientific law in which elementary processes are validated.

  8. Solar central receivers: The technology, industry, markets, and economics

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Solar central receiver (SCR) technologies are described and compared briefly with other solar thermal technologies. Divergence in the capabilities of SCR technical options and the fact that no single SCR technology has emerged as the best technology for all applicatons are discussed. The necessity for continued technical development of both components and systems is presented. The geographic segmentation of the addressable market for SCR technology is considered. Economics and market factors favorable to adoption of SCR technology in the mid-1990's are described. The ways the competitive economics of SCR technology and its adoption rate in the market place can be improved with the implementation of specific federal programs are pointed out. The ways a cohesive federal program can serve to advance the date of free market competition and create a sustainable SCR industry are discussed.

  9. Transfer of security technology from Sandia to industry

    SciTech Connect

    Williams, J.D.; Matter, J.C.

    1991-01-01

    The National Competitiveness Technology Transfer Act of 1989 made technology transfer a mission for the national laboratories. The intent is to maximize the benefit from public monies and to improve the economic position of US industry in the world marketplace. A key instrument created by this legislation is the Cooperative Research and Development Agreement (CRADA) between a private company and a government-owned contractor-operated R D lab. Under these provisions, the national laboratories can negotiate directly with industry, grant title to intellectual property developed in a CRADA, and withhold publication of commercially-valuable information developed in a CRADA for up to five years. Sandia National Laboratories is very proactive in the transfer of technology developed as the DOE lead laboratory for physical security R D and from work for other government agencies. Specific security-related products have frequently evolved from government user needs into initial concepts followed by research and development into field prototypes which finally have a system design package appropriate for transfer to industry. In the past year several meetings announced in the Commerce Business Daily (CBD) were held with industry to present specific systems and to initiate discussions toward establishing a GRADA and/or granting a product license. Several examples and updates will be presented to illustrate this new process for security technology transfer from Sandia to industry. 2 refs.

  10. Advanced technology options for industrial heating equipment research

    SciTech Connect

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  11. Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.

    1980-01-01

    Large savings can be made in industry by cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules for determining performance and cost in individual plants and on a national level. It was found that: (1) atmospheric and pressurized fluidized bed steam turbine systems were the most attractive of the direct coal-fired systems; and (2) open-cycle gas turbines with heat recovery steam generators and combined-cycles with NO(x) emission reduction and moderately increased firing temperatures were the most attractive of the coal-derived liquid-fired systems.

  12. Introduction to technology roadmapping: The semiconductor industry association`s technology roadmapping process

    SciTech Connect

    Garcia, M.L.

    1997-04-01

    A technology roadmap is the result of a strategic technology planning process that cooperatively identifies (1) a particular industry`s common product and process performance targets, (2) the technology alternatives and milestones for meeting these targets, and (3) a common technology path for research and development activities. The author describes a successful major roadmapping experience - the Semiconductor Industry Association`s Technology Roadmapping Process, which culminated in a workshop held in 1992. The report explains the committee structure and processes that were used both before and after the workshop and presents principles and practices that can aid future technology roadmappers. Appendix 1 summarizes the process from a committee-structure viewpoint. Appendix 2 summarizes the process from a functional view-point. Appendix 3 answers some frequently asked questions about technology roadmapping.

  13. Industrial Wireless Technology for the 21st Century

    SciTech Connect

    none,

    2002-12-01

    In July 2002, the U.S. Department of Energy's Industrial Technologies Program sponsored the Industrial Wireless Workshop as a forum for articulating some long-term goals that may help guide the development of industrial wireless sensor systems. Over 30 individuals, representing manufacturers and suppliers, end users, universities, and national laboratories, attended the workshop in San Francisco and participated in a series of facilitated sessions. The workshop participants cooperatively developed a unified vision for the future and defined specific goals and challenges. This document presents the results of the workshop as well as some context for non-experts.

  14. The NASA Hydrogen Energy Systems Technology study - A summary

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.

    1976-01-01

    This study is concerned with: hydrogen use, alternatives and comparisons, hydrogen production, factors affecting application, and technology requirements. Two scenarios for future use are explained. One is called the reference hydrogen use scenario and assumes continued historic uses of hydrogen along with additional use for coal gasification and liquefaction, consistent with the Ford technical fix baseline (1974) projection. The expanded scenario relies on the nuclear electric economy (1973) energy projection and assumes the addition of limited new uses such as experimental hydrogen-fueled aircraft, some mixing with natural gas, and energy storage by utilities. Current uses and supply of hydrogen are described, and the technological requirements for developing new methods of hydrogen production are discussed.

  15. Innovative technology summary report: six phase soil heating

    SciTech Connect

    1999-04-01

    Six Phase Soil Heating (SPSH) was developed to remediate soils contaminated with volatile and semi-volatile organic compounds. SPSH is designed to enhance the removal of contaminants from the subsurface during soil vapor extraction. The innovation combines an emerging technology, that of six-phase electrical heating, with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system for difficult soil and/or contaminant applications. SPSH is especially suited to sites where contaminants are tightly bound to clays and are thus difficult to remove using soil vapor extraction alone. Target zones to be treated would most likely be above the water table, but a thicker treatment zone could be addressed by hydraulically lowering the water table with pumping wells.

  16. CIS-lunar space infrastructure lunar technologies: Executive summary

    NASA Technical Reports Server (NTRS)

    Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.

    1989-01-01

    Technologies necessary for the creation of a cis-Lunar infrastructure, namely: (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologies, are explored. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by Automation and Robotics (LOAR). Under direction from the NASA Office of Exploration, automation and robotics were extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a buddy system, these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of Lunar resources, and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar environmentally controlled life support system. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the Lunar surface. Physicochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ Lunar resources will be both tested and used within this bio-volume. Second phase development on the Lunar surface calls for manned operations. Repairs and re-configuration of the initial framework will ensue. An autonomously-initiated manned Lunar oasis can become an essential component of the United States space program.

  17. U.S. Competitiveness in Science and Technology. Monograph. Summary

    ERIC Educational Resources Information Center

    Galama, Titus; Hosek, James

    2008-01-01

    Is the United States in danger of losing its competitive edge in science and technology (S&T)? This concern has been raised repeatedly since the end of the Cold War, most recently in a wave of reports in the mid-2000s suggesting that globalization and the growing strength of other nations in S&T, coupled with inadequate U.S. investments in…

  18. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    SciTech Connect

    Not Available

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  19. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    SciTech Connect

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  20. Multipoint Grout Injection System. Innovative Technology Summary Report

    SciTech Connect

    2001-09-01

    At the Oak Ridge Reservation (ORR), radioactive waste contained in the 16 cylindrical Gunite and Associated Tanks (GAATs) must retrieved so the tanks can be closed. In many cases, removing the small amounts of sludge that remain in the tank after the bulk of the waste is retrieved is extremely costly and provides little benefit from site health and environmental standpoints. The Tanks Focus Area is working with ORR's M and I contractor (Bechtel-Jacobs), Oak Ridge National Laboratory, and Ground Environmental Services to demonstrate the application of multi-point-injection (MPI) grout emplacement technology for horizontal cylindrical tanks during a cold demonstration in FY99. GAAT TH-4 has been identified as the tank to be used for the hot demonstration in FY00. Evaluation efforts continue on the effect of slag on strength performance of the grout to be used in TH-4 tank closure. The site must find out what level of slag can be accommodated in the grout while maintaining strength performance requirements. Other efforts in support of the utilization of MPI TM technology in large-scale waste tanks will continue. Also, ORR is collaborating with SRS to evaluate the use this technology to support grouting of the Old Burial Ground tanks at SRS.

  1. Remote Underwater Characterization System - Innovative Technology Summary Report

    SciTech Connect

    Willis, W D

    1999-04-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available "Scallop" vehicle 1 , but has been modified by the Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a "head-to-head" fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations.

  2. Transportation Technology Curriculum Materials FY 90. Illinois Plan for Industrial Technology Education.

    ERIC Educational Resources Information Center

    Gallo, Dennis; And Others

    This packet contains technology-based learning activities for the transportation technology course at the orientation level (grades 9 and 10) of the Illinois Plan for Industrial Technology Education curriculum project. The packet includes a course rationale, mission, description, and course outline. Suggested learning objectives and suggested…

  3. Production Technology Curriculum Materials FY 90. Illinois Plan for Industrial Technology Education.

    ERIC Educational Resources Information Center

    Gallo, Dennis; And Others

    This packet contains technology-based learning activities for the production technology course at the orientation level (grades 9 and 10) of the Illinois Plan for Industrial Technology Education curriculum project. The packet includes a course rationale, mission, description, and outline. Suggested learning objectives and suggested learning…

  4. Exploratory Technology Research Program for electrochemical energy storage. Executive summary report for 1991

    SciTech Connect

    Kinoshita, K.

    1992-06-01

    The US DOE Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (EM) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This executive summary summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

  5. Personal Ice Cooling System (PICS). Innovative technology summary report

    SciTech Connect

    1998-11-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE`s Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDPs) in which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE`s projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. As buildings are demolished as part of the DOE Fernald Environmental Management Project`s (FEMP`s) D and D Plan, many of the activities are performed in hot weather and usually require use of various types and layers of personal protective equipment (PPE). While PPE is designed to protect the worker from contamination, it also significantly compromises the body`s ability to cool itself, leading to potentially serious heat stress situations. This report describes a comparative demonstration between the methodology currently used for heat stress management (i.e., limited stay times and cool-down rooms) and an alternative personal ice cooling suit technology. The baseline methodology for heat stress management is limited stay times when working in hot conditions. The FEMP`s Safety Performance Requirements outline the procedures and stay times to be followed and consider the temperature of the working environment, work load, and the type and amount of PPE required for the job. While these common criteria for determining stay times, other sites may have different requirements. This demonstration investigates the feasibility of using the personal ice cooling suite as a tool for managing heat stress in workers at the FEMP. This report provides a comparative analysis of

  6. Advanced lost foam casting technology. 1995 summary report

    SciTech Connect

    Bates, C.E.; Littleton, H.E.; Askeland, D.; Griffin, J.; Miller, B.A.; Sheldon, D.S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production; Task 2: Pattern Coating Consistency; Task 3: Sand Fill and Compaction Effects; Task 4: Pattern Gating; and Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers. This report summarizes the work done in the past two years and the conclusions drawn from the work.

  7. Heat stress monitoring system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy`s (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System`s heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker`s reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  8. Remote Underwater Characterization System - Innovative Technology Summary Report

    SciTech Connect

    Willis, Walter David

    1999-04-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The underwater characterization equipment is often required to operate at depths exceeding 20 ft (6.1 m) and in relatively confined or congested spaces. The typical baseline approach has been the use of radiation detectors and underwater cameras mounted on long poles, or stationary cameras with pan and tilt features mounted on the sides of the underwater facility. There is a perceived need for an inexpensive, more mobile method of performing close-up inspection and radiation measurements in confined spaces underwater. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available “Scallop” vehicle1, but has been modified by Department of Energy’s Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at Idaho National Engineering and environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a “head-tohead” fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations.

  9. Executive summary. Western oil shale developmet: a technology assessment

    SciTech Connect

    Not Available

    1981-11-01

    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  10. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  11. Materials and Components Technology Division research summary, 1991

    SciTech Connect

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  12. Innovative technology summary report: advanced worker protection system

    SciTech Connect

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), which was supported by the Department of Energy's (DOE's) Morgantown Energy Technology Center through a cost sharing research and development contract. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment.

  13. Advanced Thermionic Technology Program: summary report. Volume 4. Final report

    SciTech Connect

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. Volume 4 (Part E) is a highly technical discussion of the attempts made by the Program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

  14. Technology Vision 2020: A report on technology and the future of the U.S. petroleum industry

    SciTech Connect

    none,

    2000-02-01

    In February 2000, petroleum industry leaders signed a compact with ITP to work together through the Industries of the Future (IOF) initiative. This initiative helped industries articulate their long-term goals, create a unified vision for the future, and focus R&D efforts to achieve the industry vision. The industry defined its major goals for the future and outlined broad technology needs in Technology Vision 2020: A Technology Vision for the U.S. Petroleum Industry.

  15. Science, technology, and industrial policy in the Former Soviet Union

    SciTech Connect

    Not Available

    1992-01-01

    The conference was intended to give members of the American government and business communities a better understanding of the changes taking place in science, technology and industry in the Former Soviet Union. Science and technology issues were accorded a prominent place in the program of perestroika. In the six turbulent years of perestroika great strides were made in identifying problems, shortcomings and difficult relationships. But implementation of solutions to the problems has been far more modest. The science and technology community has been affected by the turmoil in the country, and continues to search for a viable and productive future. The objective of the conference was to examine the current state of science, technology and industry in Russia and the other states of the Commonwealth, and consider its possible future development. The specific topics and questions conference speakers were asked to address included: Analyze current science, technology and industrial policy. What is the new legal framework for science, technology and industry How are property rights and intellectual property rights being handled What has been done to insure individual rights and freedoms What are the organizational and management structures at the national level and at lower levels What impact is decentralization having on priorities and funding What industries are being de-nationalized What will be the relationship between private and government sponsored research To what extent will reductions in the budget for military R D affect non-defense S T funding How will reductions in military R D affect the long-term outlook for research How serious has the brain-drain become in the military R D sector. What has been the effect of glasnost on the R D community. How might improved international contacts affect S T What economic forecasting, if any, is feasible

  16. Science, technology, and industrial policy in the Former Soviet Union

    SciTech Connect

    Not Available

    1992-12-31

    The conference was intended to give members of the American government and business communities a better understanding of the changes taking place in science, technology and industry in the Former Soviet Union. Science and technology issues were accorded a prominent place in the program of perestroika. In the six turbulent years of perestroika great strides were made in identifying problems, shortcomings and difficult relationships. But implementation of solutions to the problems has been far more modest. The science and technology community has been affected by the turmoil in the country, and continues to search for a viable and productive future. The objective of the conference was to examine the current state of science, technology and industry in Russia and the other states of the Commonwealth, and consider its possible future development. The specific topics and questions conference speakers were asked to address included: Analyze current science, technology and industrial policy. What is the new legal framework for science, technology and industry? How are property rights and intellectual property rights being handled? What has been done to insure individual rights and freedoms? What are the organizational and management structures at the national level and at lower levels? What impact is decentralization having on priorities and funding? What industries are being de-nationalized? What will be the relationship between private and government sponsored research? To what extent will reductions in the budget for military R&D affect non-defense S&T funding? How will reductions in military R&D affect the long-term outlook for research? How serious has the brain-drain become in the military R&D sector. What has been the effect of glasnost on the R&D community. How might improved international contacts affect S&T? What economic forecasting, if any, is feasible?

  17. ORCMT -- technology resource for the 21. century nonwovens industry

    SciTech Connect

    Whittaker, J.W.

    1997-09-24

    As American textile and nonwovens companies participate in an increasingly competitive world market, technology is playing an ever-growing role in production of new, improved, and more cost competitive products and processes. But the same competitive pressures which drive the need for advanced manufacturing technology also reduce the resources available for necessary research and development activities. Technology resources and manufacturing expertise, unmatched in the world, are available to American industry at the Oak Ridge Centers for Manufacturing Technology (ORCMT). Bottom-line benefits from ORCMT technology solutions are already in the hundreds of millions of dollars. This presentation will describe a sampling of the technologies and expertise available, present examples of previous solutions, and explain how a company can benefit from the wealth of resources available.

  18. Gamma-ray imaging system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The RadScan 600 gamma-ray imaging system is designed to survey large surface areas for radiological contamination with accuracy and efficiency. The resulting survey data are clear, concise, and precise in describing how much contamination is present at exact locations. Data can be permanently stored electronically and on video tape, making storage and retrieval economical and efficient. This technology can perform accurate measurements in high radiation contamination areas while minimizing worker exposure. The RadScan 600 system is a safe and effective alternative to hand-held radiation detection devices. Performance data of the demonstrated survey area of the RadScan 600 system versus the baseline, which is the hand-held radiation detection devices (RO-2 and RO-7) for a given survey, production rate is 72% of the baseline. It should be noted that the innovative technology provides 100% coverage at a unit cost of $8.64/m{sup 2} versus a static measurement of a unit cost of $1.61/m{sup 2} for the baseline.

  19. TRUEX/SREX demonstration. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The tank waste at the Idaho National engineering and Environmental Laboratory (INEEL) must be removed from the tanks by 2012. Transuranic Extraction (TRUEX) and Strontium Extraction (SREX) are the preferred processes for treating INEEL tank waste. The demonstrations for both the TRUEX and SREX processes were carried out separately in the ICPP Remote Analytical Laboratory (RAL) shielded hot cell. A 24-stage bank of 2-cm diameter, centrifugal contactors was fabricated by Argonne National Laboratory. The contractors were modified at the ICPP for remote installation and operation in the RAL hot cell. An overall removal efficiency of 99.79% was obtained for the actinides using TRUEX. An overall removal efficiency of 94% was obtained for the actinides using SREX. The TRUEX and SREX processes will undergo further testing before full-scale processes are built. The experimental results are based on short-term testing (2--3 h). Longer testing times are needed. This report describes the technology, their performance, the application of the technology, costs, regulatory and policy issues, and lessons learned.

  20. Energy efficient transport technology: Program summary and bibliography

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Bartlett, D. W.; Hood, R. V.

    1985-01-01

    The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements.

  1. Efficient Separations and Processing Crosscutting Program. Technology summary

    SciTech Connect

    1995-06-01

    The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems.

  2. 33 CFR 148.722 - Should the construction plan incorporate best available technology and recommended industry...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incorporate best available technology and recommended industry practices? 148.722 Section 148.722 Navigation... plan incorporate best available technology and recommended industry practices? Each applicant must... industry practices as directed in § 148.730....

  3. Mobile robot worksystem (Rosie). Innovative technology summary report

    SciTech Connect

    1999-05-01

    The US Department of Energy (DOE) and the Federal Energy Technology Center (FETC) have developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial Deactivation and Decommissioning (D and D) technologies in comparison with current baseline technologies. Rosie is a mobile robot worksystem developed for nuclear facilities D and D. Rosie performs mechanical dismantlement of radiologically contaminated structures by remotely deploying other tools or systems. At the CP-5 reactor site, Rosie is a mobile platform used to support reactor assembly demolition through its long reach, heavy lift capability and its deployment and positioning of a Kraft Predator dexterous manipulator arm. Rosie is a tethered, 50 m (165 ft) long, robotic system controlled via teleoperation from a control console that is located outside of the radiological containment area. The operator uses Rosie to move, lift or offload radioactive materials using its integral lifting hook or to position the Kraft Predator arm in locations where the arm can be used to dismantle parts of the CP-5 reactor. The specific operating areas were concentrated in two high radiation areas, one at the top of the reactor structure atop and within the reactor tank assembly and the second at a large opening on the west side of the reactor`s biological shield called the west thermal column. In the first of these areas, low level radioactive waste size previously segmented or dismantled by the Dual Arm Work Platform (DAWP) and placed into a steel drum or transfer can were moved to a staging area for manual packaging. In the latter area, the manipulator arm removed and transferred shielding blocks from the west thermal column area of the reactor into waste containers. Rosie can also deploy up to twelve remotely controlled television cameras, some with microphones, which can be used

  4. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  5. Research Synthesis on Quality and Availability of Assistive Technology Devices. Executive Summary. Technical Report No. 8.

    ERIC Educational Resources Information Center

    Thorkildsen, Ron

    This executive summary of a research synthesis of information about assistive technology (AT) for school children with disabilities focuses on device characteristics as quality indicators of AT for manufacturers, clinicians, and consumers. It also provides an overview of AT use in the schools and how this use is determined or affected by the…

  6. Distance Education Technology Study. Final Report: Executive Summary presented to: Wisconsin Educational Communications Board.

    ERIC Educational Resources Information Center

    Evans Associates, Thiensville, WI.

    This document consists of the final report and executive summary of a distance education technology study conducted on behalf of the Wisconsin Educational Communications Board (WECB) during 1992-93 in order to provide information to assist the educational institutions of the state in formulating strategic directions for the development of distance…

  7. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    SciTech Connect

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  8. Training in Industrial Technology: A Collection of Essays.

    ERIC Educational Resources Information Center

    Hatton, Michael J., Ed.

    Prepared as part of the Asia Pacific Economic Cooperation Forum's efforts to explore issues related to economic development and technology training, the three essays in this collection describe industrial training efforts at community colleges, focusing on partnerships with the private sector, programs targeted at women, and the use of…

  9. Technology transfer between the government and the aerospace industry

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert; Dunbar, Dennis

    1992-01-01

    The object of this working group panel was to review questions and issues pertaining to technology transfer between the government and the aerospace industry for use on both government and commercial space customer applications. The results of this review are presented in vugraph form.

  10. Training and Technology: A Systems Approach for Industrial Training.

    ERIC Educational Resources Information Center

    Myers, William E.

    The document analyzes the Training and Technology (TAT) Industrial Skill and Technical Training (ISTT) program and describes the basic relationships between various training components and their linkages to certain aspects of program structure and organization. The TAT ISTT program operations are presented within the conceptual framework of an…

  11. University-Industry Technology Transfer in Hong Kong

    ERIC Educational Resources Information Center

    Poon, Patrick S.; Chan, Kan S.

    2007-01-01

    In the modern knowledge economy, higher educational institutions are being required to deal with commercialising the results of their research, spinning out knowledge-based enterprises and facilitating technology transfer between their research centres and industrial firms. The universities are undergoing changes in institutional and…

  12. Improving Instructional Development of Industrial Technology Graduate Teaching Assistants.

    ERIC Educational Resources Information Center

    Brauchle, Paul E.; Jerich, Kenneth F.

    1998-01-01

    Six industrial-technology graduate teaching assistants (GTAs) with prior teaching experience and 11 who took a course on instruction were rated by 140 and 106 undergraduates respectively, with no significant differences in instructor effectiveness. Exit interviews with GTAs led to a recommendation that all GTAs, even those with prior teaching…

  13. Centers for manufacturing technology: Industrial Advisory Committee Review

    SciTech Connect

    1995-10-01

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  14. Appendix H - GPRA06 industrial technologies program documentation

    SciTech Connect

    None, None

    2009-01-18

    The information provided in this appendix is based on the Industrial Technologies Program (ITP) report of the GPRA06 process, "GPRA06 Quality Metrics - Methodology and Results," Energetics Inc., October 25, 2004. The report includes additional methodological details and the actual off-line energy savings results submitted to the Office of Energy Efficiency and Renewable Energy (EERE).

  15. Information Technologies in Higher Education: Lessons Learned in Industrial Engineering

    ERIC Educational Resources Information Center

    Delgado-Almonte, Milagros; Andreu, Hernando Bustos; Pedraja-Rejas, Liliana

    2010-01-01

    This article describes a teaching experience in which information and communication technologies were applied in five industrial engineering courses at the Universidad de Tarapaca in Chile. The paper compares the performance and course pass rates of the e-learning platform and portable pocket PC platform with those of the same courses teaching in…

  16. Appendix H: GPRA05 Industrial Technologies Program documentation

    SciTech Connect

    None, None

    2009-01-18

    The information provided in this report is based on the Industrial Technologies Program (ITP) report of the GPRA05 process, “GPRA05 Quality Metrics – Methodology and Results,” Energetics, Inc., March 11, 2004. The report includes additional methodological details and the actual off-line energy savings results submitted to the Office of Energy Efficiency and Renewable Energy (EERE).

  17. Mathematical modeling of two-state classification technology transfer summary and user's guide

    SciTech Connect

    Baltich, L. K.

    1987-08-01

    CIRCUIT is a computer program developed for use in designing optimum two-stage classification configurations and operating conditions for energy conservation. It was developed in a cooperative effort between AMAX Research and Development Center and the US Department of Energy, Conservation Technologies Division. This document contains the final summary report for the technology phase of the project and the User's Guide for CIRCUIT. CIRCUIT is now available for use with IBM compatible personal computers.

  18. Special Applications RTG Technology Program: Thermoelectric module development summary report

    SciTech Connect

    Brittain, W.M.

    1988-09-01

    The primary objective of the Special Applications thermoelectric module development program is to design, develop and demonstrate the performance of a module which provides a significant thermoelectric conversion efficiency improvement over available technology for low power, relatively high voltage RTGS intended for terrestrial applications. ``Low power`` can be construed as an RTG power output of 10 watts or less, and ``high voltage`` can be considered as a load voltage of 5 volts or greater. In particular, the effort is to improve the system efficiency characteristic of the state-of-the-art bismuth telluride-based RTG system (e.g., Five-Watt RTG and Half-Watt RTG), typically 3 to 4%, to the range of 6% or better. This increase in efficiency will also permit reductions in the weight and size of RTGs in the low power range.

  19. Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

  20. Innovative technology summary report: mobile automated characterization system

    SciTech Connect

    1999-04-01

    The Mobile Automated Characterization System (MACS) has been developed by Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) for the U.S. Department of Energy's (DOE) Robotics Technology Development Program as an automated floor surface contamination characterization system. MACS was designed for use by Health Physics (HP) personnel in the performance of floor surveys of known or suspected contaminated areas, to be used during any floor characterization task which has significant open areas requiring radiological surveys. MACS was designed to automate the collection, storage and analysis of large, open floor areas, relieving the HP personnel of this portion of the floor characterization task. MACS does not require a dedicated full time operator and can be setup by the normal HP staff to survey the open areas while other techniques are used on the more constrained areas. The HP personnel performing the other characterization activities can monitor the MACS progress and address any problems encountered by MACS during survey operations. MACS is designed for unattended operation and has safety and operational monitoring functions which will safely shut the system down if any difficulties are encountered. During survey operations, MACS generates a map of surveyed areas with color-coding indicating radiation levels. This map is displayed on the control console monitor during operation and can be printed for survey result documentation. MACS produces data files containing data for all sensors used during a survey, providing a complete record of samples taken and contamination levels found for all areas traversed during a survey. This data can be processed to produce tabular output of the survey results.

  1. Arcjet thruster research and technology. Phase 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The principal objective of this two phase program is to conduct the development research required to make the low power arcjet a flight ready technology. Many important results were obtained during Phase 1 to move closer to this objective. Fundamental analyses were performed of the arcjet nozzle, the gas kinetic reaction effects, the thermal environment, and the arc stabilizing vortex. These aided the conceptual understanding of the arcjet and guided design work. A hydrazine (N2H4) arcjet was designed that combined a flight qualified catalyst bed with a modular arcjet. Extensive testing was performed which demonstrated the feasibility of using this propellant in an arcjet for the first time. Startup techniques were developed, stability maintained, material compatibility tests conducted, and performance mapping tests performed. Specific impulse values from 400 to 730 seconds were produced with a non-optimized design. These levels are higher than were originally thought possible and proved that extremely high enthalpy values can be obtained with constricted arc technology. Erosion rate data are promising for lifetime extensions to meet flight application requirements. Power control unit (PCU) development was started with the design and fabrication of a laboratory high switching frequency supply. Valuable data were obtained on PCU operation and on the interaction with the dynamic arc. Phase 2 efforts presently underway are resolving key issues for multi-hundred hour lifetimes, are continuing to investigate arcjet/PCU interactions, and will demonstrate duty cycle N2H4 arcjet/PCU operation in a simulated flight mode for lifetimes consistent with initial applications.

  2. Technological change and productivity growth in the air transport industry

    NASA Technical Reports Server (NTRS)

    Rosenberg, N.; Thompson, A.; Belsley, S. E.

    1978-01-01

    The progress of the civil air transport industry in the United States was examined in the light of a proposal of Enos who, after examining the growth of the petroleum industry, divided that phenomenon into two phases, the alpha and the beta; that is, the invention, first development and production, and the improvement phase. The civil air transport industry developed along similar lines with the technological progress coming in waves; each wave encompassing several new technological advances while retaining the best of the old ones. At the same time the productivity of the transport aircraft as expressed by the product of the aircraft velocity and the passenger capacity increased sufficiently to allow the direct operating cost in cents per passenger mile to continually decrease with each successive aircraft development.

  3. 77 FR 75174 - Draft Guidance for Industry on Providing Submissions in Electronic Format-Summary Level Clinical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ...The Food and Drug Administration (FDA) is announcing the availability of a draft guidance for industry entitled ``Providing Submissions in Electronic Format--Summary Level Clinical Site Data for CDER's Inspection Planning.'' The draft guidance is intended to assist applicants in the voluntary submission of a clinical dataset that describes and summarizes the characteristics and outcomes of......

  4. Electrochemical Treatment of Alkaline Nuclear Wastes. Innovative Technology Summary Report

    SciTech Connect

    2001-01-01

    Nitrate and nitrite are two of the major hazardous non-radioactive species present in Hanford and Savannah River (SR) high-level waste (HLW). Electrochemical treatment processes have been developed to remove these species by converting aqueous sodium nitrate/nitrite into sodium hydroxide and chemically reducing the nitrogen species to gaseous ammonia, nitrous oxide and nitrogen. Organic complexants and other organic compounds found in waste can be simultaneously oxidized to gaseous carbon dioxide and water, thereby reducing flammability and leaching risks as well as process interferences in subsequent radionuclide separation processes. Competing technologies include thermal, hydrothermal and chemical destruction. Unlike thermal and hydrothermal processes that typically operate at very high temperatures and pressures, electrochemical processes typically operate at low temperatures (<100 C) and atmospheric pressure. Electrochemical processes effect chemical transformations by the addition or removal of electrons and, thus, do not add additional chemicals, as is the case with chemical destruction processes. Hanford and SR have different plans for disposal of the low-activity waste (LAW) that results when radioactive Cs{sup 137} has been removed from the HLW. At SR, the decontaminated salt solution will be disposed in a cement waste form referred to as Saltstone, whereas at Hanford the waste will be vitrified as a borosilicate glass. Destruction of the nitrate and nitrite before disposing the decontaminated salt solution in Saltstone would eliminate possible groundwater contamination that could occur from the leaching of nitrate and nitrite from the cement waste form. Destruction of nitrate and nitrite before vitrification at Hanford would significantly reduce the size of the off-gas system by eliminating the formation of NO{sub x} gases in the melter. Throughout the 1990's, the electrochemical conversion process has been extensively studied at SR, the University of

  5. [Los Alamos National Laboratory industrial applications and technology transfer

    SciTech Connect

    Not Available

    1992-09-30

    In October 1989, the Los Alamos Economic Development Corporation (LAEDC) entered into a contract with the Industrial Applications office (IAO) of Los Alamos National Laboratory (LANL) whereby the LAEDC was to provide support services to IAO. More specifically, according to the Statement of Work in this contract The Los Alamos Economic Development Corporation shall assist the Los Alamos National Laboratory Industrial Applications Office in establishing and strengthening connections between potential entrepreneurs at the Laboratory and the business assistance community throughout New Mexico, directed toward enhancing the number, of successful start up businesses spinning off the Laboratory's technology base.'' As part of this contract and subsequent modifications thereof, the LAEDC was to perform seven tasks: 1. Provide business planning assistance to potential entrepreneurs. 2. (Assist IAO in preparing and distributing) informational materials on technology transfer. 3. (Organize and manage) meetings and seminars on technology transfer and entrepreneurship. 4. Identify new opportunities for technology transfer. 5. (Identify and implement programs for the) recognition of Laboratory Entrepreneurs. 6. Training Lab personnel, in the area of technology transfer and Laboratory industrial interactions. 7. Review and summarize prior New Mexico economic development studies. The purpose of this report, is to summarize the accomplishments of the LAEDC under its contract with IAO, and to fulfill its reporting requirements. This report covers the period from October 1989 to September 1992.

  6. Ceramics Technology Project database: September 1991 summary report

    SciTech Connect

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All data in this report were taken from the project`s semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.

  7. Ceramic Technology Project data base: September 1992 summary report

    SciTech Connect

    Keyes, B.L.P.

    1993-06-01

    Data presented in this report represent an intense effort to improve processing methods, testing methods, and general mechanical properties (rupture modulus, tensile, creep, stress-rupture, dynamic and cyclic fatigue, fracture toughness) of candidate ceramics for use in advanced heat engines. This work was performed by many facilities and represents only a small part of the data generated by the Ceramic Technology Project (CTP) since 1986. Materials discussed include GTE PY6, GN-10, NT-154, NT-164, SN-260, SN-251, SN-252, AY6, silicon nitride combined with rare-earth oxides, Y-TZP, ZTA, NC-433, NT-230, Hexoloy SA, MgO-PSZ-to-MgO-PSZ joints, MgO-PSZ-to-cast iron, and a few whisker/fiber-reinforced ceramics. Information in this report was taken from the project`s semiannual and bimonthly progress reports and from final reports summarizing the results of individual studies. Test results are presented in tabular form and in graphs. All data, including test rig descriptions and material characterizations, are stored in the CTP data base and are available to all project participants on request. The objective of this report is to make available the test results from these studies but not to draw conclusions from those data.

  8. Cesium removal using crystalline silicotitanate. Innovative technology summary report

    SciTech Connect

    1999-05-01

    Approximately 100 million gallons of radioactive waste is stored in underground storage tanks at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation, and Savannah River Site (SRS). Most of the radioactivity comes from {sup 137}Cs, which emits high-activity gamma radiation. The Cesium Removal System is a modular, transportable, ion-exchange system configured as a compact processing unit. Liquid tank waste flows through columns packed with solid material, called a sorbent, that selectively adsorbs cesium and allows the other materials to pass through. The sorbent is crystalline silicotitanate (CST), an engineered material with a high capacity for sorbing cesium from alkaline wastes. The Cesium Removal System was demonstrated at Oak Ridge using Melton Valley Storage Tank (MVST) waste for feed. Demonstration operations began in September 1996 and were completed during June 1997. Prior to the demonstration, a number of ion-exchange materials were evaluated at Oak Ridge with MVST waste. Also, three ion-exchange materials and three waste types were tested at Hanford. These bench-scale tests were conducted in a hot cell. Hanford's results showed that 300 times less sorbent was used by selecting Ionsiv IE-911 over organic ion-exchange resins for cesium removal. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues and lessons learned.

  9. Innovative technology summary report: Confined sluicing end effector

    SciTech Connect

    1998-09-01

    A Confined Sluicing End-Effector (CSEE) was field tested during the summer of 1997 in Tank W-3, one of the Gunite and Associated Tanks (GAAT) at the Oak Ridge Reservation (ORR). It should be noted that the specific device used at the Oak Ridge Reservation demonstration was the Sludge Retrieval End-Effector (SREE), although in common usage it is referred to as the CSEE. Deployed by the Modified Light-Duty Utility Arm (MLDUA) and the Houdini remotely operated vehicle (ROV), the CSEE was used to mobilize and retrieve waste from the tank. After removing the waste, the CSEE was used to scarify the gunite walls of Tank W-3, removing approximately 0.1 in of material. The CSEE uses three rotating water-jets to direct a short-range pressurized jet of water to effectively mobilize the waste. Simultaneously, the water and dislodged tank waste, or scarified materials, are aspirated using a water-jet pump-driven conveyance system. The material is then pumped outside of the tank, where it can be stored for treatment. The technology, its performance, uses, cost, and regulatory issues are discussed.

  10. Technology transfer. Determining industry needs: A guide for communities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Guide was developed in accordance with the Memorandum of Understanding between the NASA George C. Marshall Space Flight Center and the following States: Alabama, Georgia, Louisiana, Mississippi, Tennessee, West Virginia. The economic welfare of individual communities is currently a matter of considerable interest. Concern for the position of US industry in the competitive world marketplace is a matter of growing concern as well. This 'guide' describes a process whereby communities may seize the opportunity to improve their own economic destiny. The method described involves linking the technology needs of existing industries to the technologies which are available from Federal Laboratories. Community technology transfer is an 'action possibility' which allows individual citizen groups to do something tangible to improve the economic climate of the places where they live and work. The George C. Marshall Space Flight Center in Huntsville, Alabama is pledged to promote and encourage such efforts, and stands ready to help communities both large and small in that regard.

  11. Perspective of Membrane Technology in Dairy Industry: A Review

    PubMed Central

    Kumar, Pavan; Sharma, Neelesh; Ranjan, Rajeev; Kumar, Sunil; Bhat, Z. F.; Jeong, Dong Kee

    2013-01-01

    Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent. PMID:25049918

  12. Estimating energy-augmenting technological change in developingcountry industries

    SciTech Connect

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-07-07

    Assumptions regarding the magnitude and direction ofenergy-related technological change have long beenrecognized as criticaldeterminants of the outputs and policy conclusions derived fromintegrated assessment models. Particularly in the case of developingcountries, however, empirical analysis of technological change has laggedbehind simulation modeling. This paper presents estimates of sectoralproductivity trends and energy-augmenting technological change forseveral energy-intensive industries in India and South Korea, and, forcomparison, the United States. The key findings are substantialheterogeneity among both industries and countries, and a number of casesof declining energy efficiency. The results are subject to certaintechnical qualifications both in regards to the methodology and to thedirect comparison to integrated assessment parameterizations.Nevertheless, they highlight the importance of closer attention to theempirical basis for common modeling assumptions.

  13. Oxy-gasoline torch. Innovative technology summary report

    SciTech Connect

    1998-12-01

    Under the deactivation and decommissioning (D and D) Implementation Plan of the US Department of Energy`s (DOE) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP`s OSDF are provisions to protect against subsidence of the OSDF`s cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create significant depressions in the OSDF`s cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP`s OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene cutting torch was the baseline approach used by the FEMP`s D and D contractor on Plant 1, Babcock and Wilcox (B and W) Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, improvements are sought in the areas of productivity, airborne contamination, safety, and cost. This demonstration investigated the feasibility of using an oxy-gasoline torch as an alternative to the baseline oxy-acetylene torch for segmenting D and D components. This report provides a comparative analysis of the cost and performance of the baseline oxy-acetylene torch currently used by B and W Services, Inc., and the innovative oxy-gasoline torch.

  14. Curriculums in Industrial Technology. Plastics Technology. Industrial Maintenance. Computer Numerical Control. Teacher's Manuals and Student Learning Guides.

    ERIC Educational Resources Information Center

    El Paso Community Coll., TX.

    Curriculum guides are provided for plastics technology, industrial maintenance, and computer numerical control. Each curriculum is divided into a number of courses. For each course these instructor materials are presented in the official course outline: course description, course objectives, unit titles, texts and materials, instructor resources,…

  15. Apollo Program Summary Report: Synopsis of the Apollo Program Activities and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Overall program activities and the technology developed to accomplish lunar exploration are discussed. A summary of the flights conducted over an 11-year period is presented along with specific aspects of the overall program, including lunar science, vehicle development and performance, lunar module development program, spacecraft development testing, flight crew summary, mission operations, biomedical data, spacecraft manufacturing and testing, launch site facilities, equipment, and prelaunch operations, and the lunar receiving laboratory. Appendixes provide data on each of the Apollo missions, mission type designations, spacecraft weights, records achieved by Apollo crewmen, vehicle histories, and a listing of anomalous hardware conditions noted during each flight beginning with Apollo 4.

  16. Summary report of FY 1995 Raman spectroscopy technology development

    SciTech Connect

    Douglas, J.G.

    1995-11-01

    US DOE is sponsoring development of remote, fiber-optic Raman spectroscopy for rapid chemical characterization of Hanford high-level radioactive tank waste. Deployment targets for this technology are analytical hot cells and, via the Light-Duty Utility Arm and cone penetrometer, the waste tanks themselves. Perceived benefits of fiber-optic Raman spectroscopy are (1) rapid generation of tank-waste safety-related data, (2) reduced personnel exposure to highly radioactive waste, (3) reduced tank-waste sampling and analysis costs, and (4) reduced radioactive analytical waste. This document presents the results from the investigation of two dispersive, transmission-grating Raman systems and four fiber-optic Raman probe designs with non-radioactive tank waste simulants. One Raman system used a 532-nm, 400 mW, solid-state laser; the other used a 785-nm, 500 mW, solid-state diode laser. We found (1) the transmission-grating systems had better wavelength stability than previously tried Czerny-Turner-Based systems and (2) the 785-nm system`s specie detection limits in the spectral fingerprint regiion were at least as good as those for the 532-nm system. Based on these results, and the fact that some tank wastes luminesce with 514.5nm excitation, we selected the 785-nm system for hot-cell use. Of the four probes tested, three had a ``six-around-on`` fiber probe design; the fourth probe was a one-fiber-in-one-fiber-out, diffuse-relectance design. Comparison of the four probes` signal-to-noise rations, rations, transmission/collection efficiencies, and probe-silica Raman backgrounds showed that the best probe for use with Hanford-Site tank waste should (1) be filtered as close to the probe tip as possible to reduce the probe-silica Raman background and (2) have multiple collection fibers. The responses of all the probes tested showed a strong dependence on probe-sample distance, and the presence of a probe window appeared to increase the probe`s silica Raman background.

  17. Development of engineering technology basis for industrialization of pyrometallurgical reprocessing

    SciTech Connect

    Koyama, Tadafumi; Hijikata, Takatoshi; Yokoo, Takeshi; Inoue, Tadashi

    2007-07-01

    Development of the engineering technology basis of pyrometallurgical reprocessing is a key issue for industrialization. For development of the transport technologies of molten salt and liquid cadmium at around 500 deg. C, a salt transport test rig and a metal transport test rig were installed in Ar glove box. Function of centrifugal pump and 1/2' declined tubing were confirmed with LiCl- KCl molten salt. The transport behavior of molten salt was found to follow that of water. Function of centrifugal pump, vacuum sucking and 1/2' declined tubing were confirmed with liquid Cd. With employing the transport technologies, industrialization applicable electro-refiner was newly designed and engineering-scale model was fabricated in Ar glove box. The electro-refiner has semi-continuous liquid Cd cathode instead of conventional one used in small-scale tests. With using actinide-simulating elements, demonstration of industrial-scale throughput will be carried out in this electro-refiner for more precise evaluation of industrialization potential of pyrometallurgical reprocessing. (authors)

  18. The Perceived Influence of Industry-Sponsored Credentials in the Information Technology Industry.

    ERIC Educational Resources Information Center

    Bartlett, Kenneth R.

    A study investigated the influence of information technology (IT)-industry-sponsored credentials from both organizational and individual perspectives. A senior-level human resource (HR) executive from each of 33 organizations with 500 or more employees completed a paper-and-pencil questionnaire (response rate=66% of the 50 organizations comprising…

  19. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  20. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  1. Technology and Employment. Innovation and Growth in the U.S. Economy. Executive Summary.

    ERIC Educational Resources Information Center

    Cyert, Richard M., Ed.; Mowery, David C., Ed.

    Technological change will contribute significantly to growth in employment opportunities and wages. However, workers in specific occupations and industries may have to move among jobs and careers. Slow adoption by U.S. firms of productivity-increasing technologies is likely to cause more job displacement than their rapid adoption. New technologies…

  2. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  3. Government and industry interactions in the development of clock technology

    NASA Technical Reports Server (NTRS)

    Hellwig, H.

    1981-01-01

    It appears likely that everyone in the time and frequency community can agree on goals to be realized through the expenditure of resources. These goals are the same as found in most fields of technology: lower cost, better performance, increased reliability, small size and lower power. Related aspects are examined in the process of clock and frequency standard development. Government and industry are reviewed in a highly interactive role. These interactions include judgements on clock performance, what kind of clock, expenditure of resources, transfer of ideas or hardware concepts from government to industry, and control of production. Successful clock development and production requires a government/industry relationship which is characterized by long-term continuity, multidisciplinary team work, focused funding and a separation of reliability and production oriented tasks from performance improvement/research type efforts.

  4. The photovoltaic manufacturing technology project: A government/industry partnership

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  5. The photovoltaic manufacturing technology project: A government/industry partnership

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  6. What would an environmentally sustainable reproductive technology industry look like?

    PubMed

    Richie, Cristina

    2015-05-01

    Through the use of assisted reproductive technologies (ARTs), multiple children are born adding to worldwide carbon emissions. Evaluating the ethics of offering reproductive services against its overall harm to the environment makes unregulated ARTs unjustified, yet the ART business can move towards sustainability as a part of the larger green bioethics movement. By integrating ecological ethos into the ART industry, climate change can be mitigated and the conversation about consumption can become a broader public discourse. Although the impact of naturally made children on the environment is undeniable, I will focus on the ART industry as an anthropogenic source of carbon emissions which lead to climate change. The ART industry is an often overlooked source of environmental degradation and decidedly different from natural reproduction as fertility centres provide a service for a fee and therefore can be subject to economic, policy and bioethical scrutiny. In this article, I will provide a brief background on the current state of human-driven climate change before suggesting two conservationist strategies that can be employed in the ART business. First, endorsing a carbon capping programme that limits the carbon emissions of ART businesses will be proposed. Second, I will recommend that policymakers eliminate funded ARTs for those who are not biologically infertile. I will conclude the article by urging policymakers and all those concerned with climate change to consider the effects of the reproductive technologies industry in light of climate change and move towards sustainability. PMID:25060852

  7. On eco-efficient technologies to minimize industrial water consumption

    NASA Astrophysics Data System (ADS)

    Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem

    2016-07-01

    Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.

  8. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    PubMed

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-01

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money. PMID:26630247

  9. Vibration isolation technology: An executive summary of systems development and demonstration

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  10. Petroleum and geothermal production technology in Russia: Summary of information obtained during informational meetings with several Russian Institutes

    SciTech Connect

    Schafer, D.M.; Glowka, D.A.; Teufel, L.W.

    1995-04-01

    Russian scientists and engineers have drilled the deepest holes in the world. It is recognized that this experience has given them an expertise in drilling superdeep holes, as well as other aspects of drilling, completions, and geophysics. More and more US oil and gas companies are vigorously expanding their exploration and development into Russia. It is important for them to identify and use Russian technology in drilling, completion, logging, and reservoir characterization to the extent possible, in order to both reduce drilling costs and help support the Russian economy. While these US companies are interested in becoming involved in and/or sponsoring research in Russia, they have been unsure as to which scientists and institutes are working on problems of interest. It was also important to determine in which areas Russian technology is farther advanced than in the West. Such technology could then be commercialized as part of the Industrial Partnering Program. In order to develop a clear understanding of these issues, two Sandia engineers with drilling and completions expertise and a geophysicist with expertise in reservoir analysis traveled to Russia to meet with Russian scientists and engineers to discuss their technologies and areas of interest. This report contains a summary of the information obtained during the visit.

  11. The Development and Industrialization Recommendation of Current Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Hong, Z.

    2013-07-01

    At present, the research development and industrialization of aerial remote sensing technology in China are faced with enormous requirements and developing chance. It is the strategic selection for remote sensing technology to perfect the construction of remote sensing technology system, implement the three strategies of science and technology development, standardize and improve the producing ability of remote sensing products, and make the remote sensing technology become a kind of industries. Based on industry economics principle and the characteristics of aerial remote sensing technology, this paper put forward the suggestions on technological development, industrialization, and market competition of aerial remote sensing industrialization.

  12. Transfer of advanced manufacturing technologies to eastern Kentucky industries

    SciTech Connect

    Gillies, J.A.; Kruzich, R.

    1988-05-01

    This study concludes that there are opportunities to provide assistance in the adoption of manufacturing technologies for small- and medium-sized firms in eastern Kentucky. However, the new markets created by Toyota are not adequate to justify a directed technology transfer program targeting the auto supply industry in eastern Kentucky because supplier markets have been determined for some time, and manufacturers in eastern Kentucky were not competitive in this early selection process. The results of the study strongly reinforce a reorientation of state business-assistance programs. The study also concludes that the quality and quantity of available labor is a pervasive problem in eastern Kentucky and has particular relevance as the economy changes. The study also investigated what type of technology-transfer programs would be appropriate to assist manufacturing firms in eastern Kentucky and if there were a critical number of firms to make such a program feasible.

  13. Fluid-based radon mitigation technology development for industrial applications

    SciTech Connect

    Liu, K.V.; Gabor, J.D.; Holtz, R.E.; Gross, K.C.

    1996-06-01

    The objective of the radon mitigation technology development effort is to develop an efficient and economical radon gas removal technology based on a fluid absorption process. The technology must be capable of cleaning up a wide range of radon gas stream concentrations to a level that meets EPA gas emission standards for residential and industrial applications. Argonne has recently identified a phenomenon that offers the possibility of radon recovery from the atmosphere with high efficiency at room temperature, and radon release at slightly elevated temperatures (50-60 degrees C.) such a device would offer numerous substantial advantages over conventional cryogenic charcoal systems for the removal of radon. Controlled sources of radon in Argonne`s radon research facility are being used to quantitatively assess the performance of a selected class of absorbing fluids over a range of radon concentrations. This paper will discuss the design of laboratory- and engineering-scale radon absorption units and present some preliminary experimental test results.

  14. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    SciTech Connect

    Karlson, Benjamin; LeBlanc, Bruce Philip.; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz; Keck, Chris; Sullivan, Jonathan; Brigada, David; Parker, Lorri; Younger, Richard; Biddle, Jason

    2014-10-01

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

  15. An Investigation of the Effectiveness of Four-Year Industrial Technology Programs In Preparing Industrial Electronic Technicians to Meet the Requirements of Industry.

    ERIC Educational Resources Information Center

    Prewitt, Roger W.

    To determine the effectiveness of the 4-year industrial technology programs in preparing industrial electronic technicians for employment in industry, data were obtained through an opinionnaire, which was sent to the higher education institutions offering a 4-year electronic technician program and to selected industrial representatives located in…

  16. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies

    NASA Astrophysics Data System (ADS)

    1992-08-01

    Engineering Resources, Inc., is developing and testing a biological process for converting the waste gases into acetic acid. The process can operate at the atmospheric temperature and pressure of the carbon black waste gas stream and can selectively utilize the gas components to produce acetic acid. The technology should also be applicable to waste gases from the production of coke (used to make steel) and other industries as well.

  17. Industrial and hazardous waste. Annual waste summary instructions (revised November 1998)

    SciTech Connect

    1998-11-01

    This instructional booklet is intended to help in completing an annual waste summary using either a paper form or the State of Texas Environmental Electronic Reporting System (STEERS). In this summary, the facility`s waste management practices from Jan. 1 through Dec. 31 of the report year are reported to the Texas Natural Resource Conservation Commission (TNRCC).

  18. Responding to Agenda 2020: A technology vision and research agenda for America`s forest, wood and paper industry

    SciTech Connect

    Lang, K.S.

    1995-03-01

    This document presents project summaries that demonstrate specific capabilities of interest to the forest, wood and paper industry in areas where PNL offers significant depth of experience or unique expertise. Though PNL possesses a wide range of capabilities across many of the technology-related issues identified by the industry, this document focuses on capabilities that meet the specific forest, wood and paper industry needs of the following research areas: forest inventory; human and environmental effects; energy and environmental tradeoffs; reduction of impacts of liquid effluent; solid wastes; removal of non-process elements in pulp and paper operations; life cycle assessment; and process measurement and controls. In addition, PNL can provide the forest, wood and paper industry with support in areas such as strategic and program planning, stakeholder communications and outreach, budget defense and quality metrics. These are services PNL provides directly to several programs within DOE.

  19. INDUSTRIE 4.0 - Automation in weft knitting technology

    NASA Astrophysics Data System (ADS)

    Simonis, K.; Gloy, Y.-S.; Gries, T.

    2016-07-01

    Industry 4.0 applies to the knitting industry. Regarding the knitting process retrofitting activities are executed mostly manually by an operator on the basis on the operator's experience. In doing so, the knitted fabric is not necessarily produced in the most efficient way regarding process speed and fabric quality aspects. The knitting division at ITA is concentrating on project activities regarding automation and Industry 4.0. ITA is working on analysing the correspondences of the knitting process parameters and their influence on the fabric quality. By using e.g. the augmented reality technology, the operator will be supported when setting up the knitting machine in case of product or pattern change - or in case of an intervention when production errors occur. Furthermore, the RFID-Technology offers great possibilities to ensure information flow between sub-processes of the fragmented textile process chain. ITA is using RFID-chips to save yarn production information and connect the information to the fabric producing machine control. In addition, ITA is currently working on integrating image processing systems into the large circular knitting machine in order to ensure online-quality measurement of the knitted fabrics. This will lead to a self-optimizing and selflearning knitting machine.

  20. 3D body scanning technology for fashion and apparel industry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2007-01-01

    This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their

  1. ETV REPORT - EVALUATION OF DAVIS TECHNOLOGIES INTERNATIONAL CORP. - INDUSTRIAL WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    Abstract: Evaluation of Davis Technologies International Corp. Industrial Wastewater Treatment Plant

    The Davis Technologies International Corp. (DTIC) Industrial Wastewater Treatment Plant (IWTP) was tested, under actual production conditions, processing metalworking and ...

  2. Developing global health technology standards: what can other industries teach us?

    PubMed Central

    2013-01-01

    Background There is a lack of effective and affordable technologies to address health needs in the developing world. One way to address problems of innovation and affordability is to design global health technologies to follow agreed-upon standards. This Debate article argues that we can better develop standards for global health technologies if we learn lessons from other industries. Discussion The article’s Background section begins by explaining why standards are needed in global health. For example, if global health technologies can be modularized into independent interfacing parts, these parts can then interact via well-defined standards in a “plug and play” fashion. This can avoid development of mutually incompatible solutions by different organizations, speed the pace of innovation, unlock health systems from single providers and approaches, and lower barriers to entry. The Background then gives a brief primer on standards and discusses incentives for health standards. The article’s Discussion section begins with brief relevant cases of standards development from other industries, including electricity, container shipping, CD standards, Universal Serial Bus (USB), and the Internet. It then explores lessons from these and other industries that suggest how to develop standards for global health technologies. The remainder of the Discussion considers intellectual property and regulatory issues and standards-based global health business models, and ends with a checklist of considerations for health standards development leaders. (The associated Additional file discusses observations from standards development for cell phones and semiconductors, as well as challenges in the standards development process itself.) Throughout the article, point-of-care diagnostics are used as an illustrative example. An initiative is already underway to explore standardized diagnostics platforms. Summary This Debate article aims to convince the reader that standards can

  3. Space Transportation Materials and Structures Technology Workshop. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr. (Compiler); Gardner, J. E. (Compiler)

    1992-01-01

    The workshop was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems; Propulsion Systems; and Entry Systems. The goals accomplished were (1) to develop important strategic planning information necessary to transition materials and structures technologies from lab research programs into robust and affordable operational systems; (2) to provide a forum for the exchange of information and ideas between technology developers and users; and (3) to provide senior NASA management with a review of current space transportation programs, related subjects, and specific technology needs. The workshop thus provided a foundation on which a NASA and industry effort to address space transportation materials and structures technologies can grow.

  4. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect

    Price, Lynn; Price, Lynn

    2008-03-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  5. Environmental Remediation Technologies Derived from Space Industry Research

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Sauser, Brian; Helminger, Andrew

    2004-01-01

    Beginning in the 1950s and 1960s, an abundance of effort and initiative was focused on propelling the space industry outward for planetary exploration and habitation. During these early years, the push to take space science to new levels indirectly contributed to the evolution of another science field that would not fully surface until the early 1980s, environmental remediation. This field is associated with the remediation or cleanup of environmental resources such as groundwater, soil, and sediment. Because the space-exploration initiative began prior to the establishment of the U.S. Environmental Protection Agency (EPA) in December of 1970, many NASA Centers as well as space-related support contractors allowed for the release of spent chemicals into the environment. Subsequently, these land owners have been directed by the EPA to responsibly initiate cleanup of their impacted sites. This paper will focus on the processes and lessons learned with the development, testing, and commercialization initiatives associated with four remediation technologies. The technologies include installation techniques for permeable reactive barriers (PRBs), the use of ultrasound to improve long-term performance of PRBs, emulsified zero-valent iron for product-level solvent degradation, and emulsion technologies for application to metal and polychlorinated biphenyl contaminated media. Details of the paper cover technology research, evaluation, and testing; contracts and grants; and technology transfer strategies including patenting, marketing, and licensing.

  6. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    SciTech Connect

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  7. Contracts, grants and funding summary of supersonic cruise research and variable-cycle engine technology programs, 1972 - 1982

    NASA Technical Reports Server (NTRS)

    Hoffman, S.; Varholic, M. C.

    1983-01-01

    NASA-SCAR (AST) program was initiated in 1972 at the direct request of the Executive Office of the White House and Congress following termination of the U.S. SST program. The purpose of SCR was to conduct a focused research and technology program on those technology programs which contributed to the SST termination and, also, to provide an expanded data base for future civil and military supersonic transport aircraft. Funding for the Supersonic Cruise Research (SCR) Program was initiated in fiscal year 1973 and terminated in fiscal year 1981. The program was implemented through contracts and grants with industry, universities, and by in-house investigations at the NASA/OAST centers. The studies included system studies and five disciplines: propulsion, stratospheric emissions impact, materials and structures, aerodynamic performance, and stability and control. The NASA/Lewis Variable-Cycle Engine (VCE) Component Program was initiated in 1976 to augment the SCR program in the area of propulsion. After about 2 years, the title was changed to VCE Technology program. The total number of contractors and grantees on record at the AST office in 1982 was 101 for SCR and 4 for VCE. This paper presents a compilation of all the contracts and grants as well as the funding summaries for both programs.

  8. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect

    Olszewski, M.; Zaltash, A.

    1995-03-01

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  9. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  10. Program mid-year summaries research, development, demonstration, testing and evaluation: Office of Technology Development, FY 1993

    SciTech Connect

    Not Available

    1993-10-01

    This mid-year review provides a summary of activities within the Office of Technology Development with individual presentations being made to DOE HQ and field management staff. The presentations are by EM-541, 542, 551, and 552 organizations.

  11. High Level Manpower and Technological Change in the Steel Industry: Implications for Corporate Manpower Planning.

    ERIC Educational Resources Information Center

    Hiestand, Dale L.

    The purpose of this study was to examine the role that high level manpower plays in the establishment of new technologies at the plant and industry level. The steel industry was selected as an appropriate industry to approach these questions due to: its considerable technological changes; its straightforward, easier-to-understand technology; its…

  12. Making aerospace technology work for the automotive industry, introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  13. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  14. Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry

    SciTech Connect

    1999-02-01

    The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

  15. Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms

    SciTech Connect

    Lewis, Joanna; Wiser, Ryan

    2005-11-15

    This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

  16. TECHNOLOGY DEMONSTRATION SUMMARY. BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY (EPA/540/SR-92/017)

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...

  17. WFIRST-AFTA Overview Technology needs summary Mirror Technology Conference 2015

    NASA Technical Reports Server (NTRS)

    Marx, Catherine (Editor); Content, David; Zhao, Feng

    2015-01-01

    Presentation covers the overview of the science and hardware of the WFIRST-AFTA (Wide-Field Infrared Survey Telescope) (Astrophysics Focused Telescope Assets) mission. It includes an overview of the technology, with an emphasis on optics technology. It also introduces the WFIRST talks that come later, one on the Wide Field Instrument filters and the other on the CoronaGraph Instrument.

  18. Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary

    SciTech Connect

    Not Available

    1994-04-01

    The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

  19. Evolution of Ion Implantation Technology and its Contribution to Semiconductor Industry

    SciTech Connect

    Tsukamoto, Katsuhiro; Kuroi, Takashi; Kawasaki, Yoji

    2011-01-07

    Industrial aspects of the evolution of ion implantation technology will be reviewed, and their impact on the semiconductor industry will be discussed. The main topics will be the technology's application to the most advanced, ultra scaled CMOS, and to power devices, as well as productivity improvements in implantation technology. Technological insights into future developments in ion-related technologies for emerging industries will also be presented.

  20. PREFACE: Modern Technologies in Industrial Engineering (ModTech2015)

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Comaneci, R.; Carausu, C.; Placzek, M.; Cohal, V.; Topala, P.; Nedelcu, D.

    2015-11-01

    The dominant feature of the current stage of society development is the update, refinement and innovation of the technological processes and products whose ultimate goal is to satisfy the market requirements. New and modern technologies should be considered in terms of their applicability in industry while the materials can lead to an increase in the quality of the end products. Replacing the existing technologies with innovative and eco-efficient technologies can contribute to an added value increase in the production of new materials. Materials are one of the most dynamic and prospective fields, with applications in all other fields. The development of new advanced materials and technologies shall contribute to the procurement of a wide range of reliable products, with competitive prices and worldwide performance, high sensitivity and functionality, user-friendly and reduced energy consumption, for different industrial applications. Research in the field of advanced/intelligent materials supposes a fundamental, experimental, laboratory and technological research and its approach has to be linked to the application. This involves, even for the niche fields, complex projects which result in scientific issues in top journals, patents and functional models. The third edition of ModTech International Conference was held in Mamaia, Romania, between June 17-20, with the Professional Association in Modern Manufacturing Technologies, ModTech, as main organizer, and the Constanta Maritime University, Constanta, Romania, Silesian University of Technology, Gliwice, Poland, the Technical University of Chisinau, Republic of Moldova and the Donetsk National Technical University, Donetsk, Ukraine as co-organizers. The ModTech2015 International Conference brought together representatives of technology and materials manufacturers, various universities, professional associations and research institutes that exchanged the latest knowledge on the conference topics. This edition was

  1. A proposed framework for establishing integrated cost and performance criteria for environmental technologies: A summary report

    SciTech Connect

    1994-05-01

    This document presents a summary of results of a joint EPA/DOE project aimed at establishing a suite of standard cost and performance criteria for evaluating environmental cleanup technologies for DOE sites. Project findings include: (1) decisionmakers have quite different perspectives with interests and information needs varying among decisionmaker groups, (2) previous criteria development efforts may be too narrowly focused to apply to all decisionmakers, (3) criteria must include social/political/economic interests of decisionmakers as well as site-specific variations, and (4) there are 5 core questions that all decisionmakers are likely to ask when considering a technology for use at a site. The resource developed in the project offers decisionmakers a first-time comprehensive assessment of major technology evaluation issues.

  2. Historical evidence of importance to the industrialization of flat-plate silicon photovoltaic systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1978-01-01

    An analysis is given of the Low-Cost Silicon Solar Array Project plans for the industrialization of new production technologies expected to be forthcoming as a result of the project's technology development efforts. In particular, LSSA's mandate to insure an annual production capability of 500 MW peak for the photovoltaic supply industry by 1986 is critically examined. The examination focuses on one of the concerns behind this goal -- timely development of industrial capacity to supply anticipated demand. Some of the conclusions include: (1) construction of small-scale pilot plants should be undertaken only for purposes of technology development; (2) large-scale demonstrations should be undertaken only when the technology is well in hand; (3) commercial-scale production should be left to the private sector; (4) the 500-MW annual output goal should be shifted to Program Headquarters.

  3. An Assessment and Projection of Needed High Technology Training Programs in Colorado. Executive Summary.

    ERIC Educational Resources Information Center

    Ward, Mary; Wolff, Warren

    A study determined labor market needs of high technology firms in Colorado. It assessed such needs in relation to present and projected output of vocational education and training programs and developed recommendations for policies and programs to meet industry training needs at the vocational training level. Data were collected through on-site…

  4. Annual Summary. Training and Technology Experimentation, Demonstration, and Utilization Program Activities (January 1-December 31, 1971).

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Directed primarily toward increasing utilization of industrial resources for training and development of disadvantaged persons, Training and Technology (TAT) activities for 1971 included: (1) development and implementation of experimental approaches to program development and operation, (2) technical support for university-conducted related…

  5. The Technology Information Environment with Industry{trademark} system description

    SciTech Connect

    Detry, R.; Machin, G.

    1996-03-01

    The Technology Information Environment with Industry (TIE-In{trademark}) provides users with controlled access to distributed laboratory resources that are packaged in intelligent user interfaces. These interfaces help users access resources without requiring the user to have technical or computer expertise. TIE-In utilizes existing, proven technologies such as the Kerberos authentication system, X-Windows, and UNIX sockets. A Front End System (FES) authenticates users and allows them to register for resources and subsequently access them. The FES also stores status and accounting information, and provides an automated method for the resource owners to recover costs from users. The resources available through TIE-In are typically laboratory-developed applications that are used to help design, analyze, and test components in the nation`s nuclear stockpile. Many of these applications can also be used by US companies for non-weapons-related work. TIE-In allows these industry partners to obtain laboratory-developed technical solutions without requiring them to duplicate the technical resources (people, hardware, and software) at Sandia.

  6. Applying SOA Concepts to Distributed Industrial Applications Using WCF Technology

    NASA Astrophysics Data System (ADS)

    Stopper, Markus; Gastermann, Bernd

    2010-10-01

    Software Development is subject to a constant process of change. In the meantime web services, access to remote services or distributed applications are already the standard. Simultaneously with their advancement demands on these techniques are rising significantly. Defined support for security issues, coordination of transactions and reliable communications are expected. Windows Communication Foundation (WCF)—as a part of Microsoft Corporation's .NET Framework—supports these requirements in line with wide range interoperability. WCF provides the development of distributed and interconnected software applications by means of a service-oriented programming model. This paper introduces a service-oriented communication concept based on WCF, which is specifically designed for industrial applications within a production environment using a central manufacturing information system (MIS) database. It introduces applied technologies and provides an overview of some important design aspects and base service sets of WCF. Additionally, this paper also shows a factual implementation of the presented service-oriented communication concept in the form of an industrial software application used in plastics industry.

  7. Using federal technology policy to strength the US microelectronics industry

    NASA Astrophysics Data System (ADS)

    Gover, J. E.; Gwyn, C. W.

    1994-07-01

    A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan's government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

  8. Using federal technology policy to strength the US microelectronics industry

    SciTech Connect

    Gover, J.E.; Gwyn, C.W.

    1994-07-01

    A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

  9. Summary of the industry/NASA/FAA workshop on philosophy of automation: Promises and realities

    NASA Technical Reports Server (NTRS)

    Norman, Susan D.

    1990-01-01

    Issues of flight deck automation are multi-faceted and complex. The rapid introduction of advanced computer based technology on to the flight deck of transport category aircraft has had considerable impact on both aircraft operations and the flight crew. As part of NASA's responsibility to facilitate an active exchange of ideas and information between members of the aviation community, an Industry/NASA/FAA workshop was conducted in August 1988. One of the most important conclusions to emerge from the workshop was that the introduction of automation has clearly benefited aviation and has substantially improved the operational safety and efficiency of our air transport system. For example, one carrier stated that they have been flying the Boeing 767 (one of the first aircraft to employ substantial automation) since 1982, and they have never had an accident or incident resulting in damage to the aircraft. Notwithstanding its benefits, many issues associated with the design, certification, and operation of automated aircraft were identified. For example two key conceptual issues were the need for the crew to have a thorough understanding of the system and the importance of defining the pilot's role. With respect to certification, a fundamental issue is the lack of comprehensive human factors requirements in the current regulations. Operational considerations, which have been a factor in incidents involving automation, were also cited. Viewgraphs used in the presentation are given.

  10. Efficient Separations and Processing Integrated Program (ESP-IP): Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Efficient Separations and Processing Integrated Program (ESPIP) was created in 1991 to identify, develop and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. These wastes and environmental problems, located at more than 100 contaminated installations in 36 states and territories, are the result of half a century of nuclear processing activities by DOE and its predecessor organizations. The cost of cleaning up this legacy has been estimated to be of the order of hundreds of billions of dollars, and ESPIP`s origin came with the realization that if new separations and processes can produce even a marginal reduction in cost then billions of dollars will be saved. The ultimate mission for ESPIP, as outlined in the ESPIP Strategic Plan, is: to provide Separations Technologies and Processes (STPS) to process and immobilize a wide spectrum of radioactive and hazardous defense wastes; to coordinate STP research and development efforts within DOE; to explore the potential uses of separated radionuclides; to transfer demonstrated separations and processing technologies developed by DOE to the US industrial sector, and to facilitate competitiveness of US technology and industry in the world market. Technology research and development currently under investigation by ESPIP can be divided into four broad areas: cesium and strontium removal; TRU and other HLW separations; sludge technology, and other technologies.

  11. Summary tables of six commercially available entry control and contraband detection technologies.

    SciTech Connect

    Hunter, John Anthony

    2005-07-01

    Existing contraband detection and entry control devices such as metal detectors, X-ray machines, and radiation monitors were investigated for their capability to operate in an automated environment. In addition, a limited number of new devices for detection of explosives, chemicals, and biological agents were investigated for their feasibility for inclusion in future physical security systems. The tables in this document resulted from this investigation, which was part of a conceptual design upgrade for the United States Mints. This summary of commercially available technologies was written to provide a reference for physical security upgrades at other sites.

  12. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    SciTech Connect

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  13. The role of advanced technology in the future of the power generation industry

    SciTech Connect

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  14. [Industry of traditional Chinese patent medicine science and technology development and review].

    PubMed

    Lu, Jianwei; Wang, Fang; Yan, Dongmei; Luo, Yun; Yang, Ming

    2012-01-01

    "Fifteen" since, our country Chinese traditional medicine industry science and technology has made remarkable achievements. In this paper, the development of science and technology policy, Chinese medicine industry, platform construction and other aspects were analyzed, showing 10 years of Chinese traditional medicine industry development of science and technology innovation achievement and development, and on the current development of traditional Chinese medicine industry facing the main tasks and guarantee measures are analyzed. PMID:22741452

  15. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  16. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  17. Development of a Sensor Network System for Industrial Technology Education

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Chia; Wu, Din-Wu; Jou, Min; Tsai, Sheng-Jia

    Technology of e-learning has been gradually applied to all kinds of professional teaching fields. However, practicing and operation in real environment cannot be replaced by the method of e-learning such as multimedia and interactive simulations. The present e-learning system has very limited benefit for course of experiment and practical training, especially for the course which requires to experiment in clean room (ex. MEMS). Thus, the quality and quantity of industrial technology education cannot be improved. In order to overcome obstacles of traditional experiment and practical training course and enhance functions of present e-learning system, the study is going to take sensor network technology as foundation to developed web services system. The system is able to present the students 'operation and results right away, thus students can be guided appropriately when they face problems during experiment and practical training. Besides, the system is able to record students' learning process of experiment and practical training. These data of learning process will be helpful for building adaptive u-learning environment for skill-training.

  18. Ceramic Technology Project database: September 1990 summary report. [SiC, SiN, whisker-reinforced SiN, ZrO-toughened aluminas, zirconias, joints

    SciTech Connect

    Keyes, B.L.P.

    1992-06-01

    Data generated within the Ceramic Technology Project (CTP) represent a valuable resource for both research and industry. The CTP database was created to provide easy access to this information in electronic and hardcopy forms by using a computerized database and by issuing periodic hardcopy reports on the database contents. This report is the sixth in a series of semiannual database summaries and covers recent additions to the database, including joined brazed specimen test data. It covers 1 SiC, 34 SiN, 10 whisker-reinforced SiN, 2 zirconia-toughened aluminas, 8 zirconias, and 34 joints.

  19. Technology Demonstration Summary: International Waste Technologies In Situ Stabilization/Solidification, Hialeah, Florida

    EPA Science Inventory

    An evaluation was performed of the International Waste Technologies (IWT) HWT-20 additive and the Geo-Con, Inc. deep-soil-mixing equipment for an in situ stabilization/solidification process and its applicability as an on-site treatment method for waste site cleanup. The analysis...

  20. Structures technology project summary: Earth orbiting platforms program area of the space platforms technology program

    NASA Technical Reports Server (NTRS)

    Bush, Harold

    1991-01-01

    Viewgraphs are presented on the structures technology for the Earth orbiting platforms program. The objective of the work is to develop component and system level structural concepts and design methods to enable in-space construction and deployment of large platform structures in low earth orbit (LEO) and geosynchronous orbit (GEO) including primary platform structures, reflectors and antenna, and habitat and storage modules.