Science.gov

Sample records for industry copper indium

  1. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    SciTech Connect

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  2. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    SciTech Connect

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  3. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S.; Nekuda, Jennifer A.

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  4. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  5. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  6. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  7. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  8. Liquid phase synthesis of copper indium diselenide nanoparticles

    SciTech Connect

    Jakhmola, Priyanka; Agarwal, Garima; Jha, Prafulla K.; Bhatnagar, S. P.

    2014-04-24

    Nanoparticles of Copper Indium diselenide (CuInSe{sub 2}), belongs to I-III-VI{sub 2} family has been synthesized via liquid phase route using ethylenediamine as a solvent. Characterization of as-grown particles is done by XRD, HRTEM, DLS, optical microscopy and UV-Vis spectroscopy. X-ray diffraction pattern confirmed that the CuInSe2 nanoparticles obtained reveals chalcopyrite structure. Particle size evaluated from dynamic light scattering of as grown particle possessing radius of 90 nm. The bandgap of 1.05eV is obtained from UV-Vis spectrum which will applicable to the solar cell devices.

  9. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect

    Urmila, K. S. Asokan, T. Namitha Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup −5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 10{sup 6} cm{sup −1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  10. Growth of copper indium sulphide films by thermal evaporation of mixtures of copper sulphide and indium sulphide powders

    SciTech Connect

    Rao, Pritty; Kumar, Sanjiv Sahoo, N.K.

    2013-08-01

    Graphical abstract: - Highlights: • CuInS{sub 2} films are prepared by resistively heating mixtures of CuS and In{sub 2}S{sub 3}. • As deposited films consist of Cu{sub 7}S{sub 4}, InS and In{sub 2}S{sub 3}. • These species react during vacuum annealing to produce CuInS{sub 2} films. • The films bear stoichiometric or Cu-rich composition. • Their electrical and optical features are conducive for photovoltaic applications. - Abstract: The physical evaporation of a 1:1 mixture of copper sulphide (CuS) and indium sulphide (In{sub 2}S{sub 3}) powders by resistive heating followed by the vacuum annealing of the resulting films at 723 K produces copper indium sulphide (CuInS{sub 2}) films with about 95% phase purity. Composed of sub-micron sized grains, the films bear stoichiometric or Cu-rich composition and are endowed with p-type conductivity, a band gap of about 1.5 eV and an absorption coefficient of about 4 × 10{sup 4} cm{sup −1} in visible region. Mechanistically, the formation of CuInS{sub 2} films takes place as a result of solid state reaction among Cu{sub 7}S{sub 4}, InS and In{sub 2}S{sub 3} in the condensed phase. These intermediate species are produced from the decomposition of CuInS{sub 2} formed in the evaporating mixture due to the reaction between CuS and In{sub 2}S{sub 3}, and excess CuS. Process simplicity and the absence of a sulphurisation step make this approach attractive for synthesising CuInS{sub 2} absorber layers for photovoltaic applications.

  11. Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide that includes scope, core competencies and capabilities, and contact/web information.

  12. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials.

    PubMed

    Gustafsson, Anna M K; Björefors, Fredrik; Steenari, Britt-Marie; Ekberg, Christian

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be -0.5 V and -0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  13. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    PubMed Central

    Gustafsson, Anna M. K.; Björefors, Fredrik; Steenari, Britt-Marie; Ekberg, Christian

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  14. Environmental and health aspects of copper-indium-diselenide thin-film photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Steinberger, Hartmut; Thumm, Werner; Freitag, Renate; Moskowitz, Paul D.; Chapin, Robert

    Copper-indium-diselenide (CIS) is a semiconductor compound that can be used to produce thin-film photovoltaic modules. There is on-going research being conducted by various federal agencies and private industries to demonstrate the commercial viability of this material. Because this is a new technology, and because scant information about the health and environmental hazards associated with the use of this material is available, studies have been initiated to characterize the environmental mobility and environmental toxicology of this compound. The objective of these studies is to identify the environmental and health hazards associated with the production, use, and disposal of CIS thin-film photovoltaic modules. The program includes both experimental and theoretical components. Theoretical studies are being undertaken to estimate material flows through the environment for a range of production options as well as use and disposal scenarios. The experimental programs characterize the physical, chemical (e.g. leachability), and biological parameters (e.g. EC(sub 50)) in daphnia and algae, and feeding studies in rats.

  15. Environmental and health aspects of copper-indium-diselenide thin-film photovoltaic modules

    SciTech Connect

    Steinberger, H.; Thumm, W.; Freitag, R.; Moskowitz, P.D.; Chapin, R.

    1994-12-31

    Copper-indium-diselenide (CIS) is a semiconductor compound that can be used to produce thin-film photovoltaic modules. There is on-going research being conducted by various federal agencies and private industries to demonstrate the commercial viability of this material. Because this is a new technology, and because scant information about the health and environmental hazards associated with the use of this material is available, studies have been initiated to characterize the environmental mobility and environmental toxicology of this compound. The objective of these studies is to identify the environmental and health hazards associated with the production, use, and disposal of CIS thin-film photovoltaic modules. The program includes both experimental and theoretical components. Theoretical studies are being undertaken to estimate material flows through the environment for a range of production options as well as use and disposal scenarios. The experimental programs characterize the physical, chemical e.g. leachability and biological parameters e.g. EC{sub 50} in daphnia and algae, and feeding studies in rats.

  16. Thermal resistance of indium coated sapphire-copper contacts below 0.1 K

    NASA Astrophysics Data System (ADS)

    Eisel, T.; Bremer, J.; Koettig, T.

    2014-11-01

    High thermal resistances exist at ultra-low temperatures for solid-solid interfaces. This is especially true for pressed metal-sapphire joints, where the heat is transferred by phonons only. For such pressed joints it is difficult to achieve good physical, i.e. thermal contacts due to surface irregularities in the microscopic or larger scale. Applying ductile indium as an intermediate layer reduces the thermal resistance of such contacts. This could be proven by measurements of several researchers. However, the majority of the measurements were performed at temperatures higher than 1 K. Consequently, it is difficult to predict the thermal resistance of pressed metal-sapphire joints at temperatures below 1 K. In this paper the thermal resistances across four different copper-sapphire-copper sandwiches are presented in a temperature range between 30 mK and 100 mK. The investigated sandwiches feature either rough or polished sapphire discs (Ø 20 mm × 1.5 mm) to investigate the phonon scattering at the boundaries. All sandwiches apply indium foils as intermediate layers on both sides of the sapphire. Additionally to the indium foils, thin indium films are vapour deposited onto both sides of one rough and one polished sapphire in order to improve the contact to the sapphire. Significantly different thermal resistances have been found amongst the investigated sandwiches. The lowest total thermal resistivity (roughly 26 cm2 K4/W at 30 mK helium temperature) is achieved across a sandwich consisting of a polished sapphire with indium vapour deposition. The thermal boundary resistance between indium and sapphire is estimated from the total thermal resistivity by assuming the scattering at only one boundary, which is the warm sapphire boundary where phonons impinge, and taking the scattering in the sapphire bulk into account. The so derived thermal boundary resistance agrees at low temperatures very well with the acoustic mismatch theory.

  17. Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

    SciTech Connect

    DePhillips, M.P.; Fthenakis, V.M.; Moskowitz, P.D.

    1994-03-01

    This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.

  18. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  19. Electronic properties of copper indium diselenide fabricated by two-step/solid selenium processing

    SciTech Connect

    Cai, L.; Attar, G.; Wu, C.; Morel, D.L. )

    1992-12-01

    Thin-film Copper Indium Diselenide has been deposited using a two-step process with solid selenium as the Se source rather than H[sub 2]Se. Film properties are strongly influenced by the substrate. Borosilicate glass produces more nucleation sites and smoother thin-films, while 1000 A films deposited on soda lime glass may exhibit disconnectedness. Electronic properties are similarly affected, particularly mobilities. Using MOSFET devices as analytical tools electron channel mobilities of up to 45 cm[sup 2]/Vs have been measured. Preliminary results from thin-film transistor dynamics indicate that traps with a trapping time of about 10 seconds are controlling surface properties and limiting solar cell performance.

  20. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  1. Potential health and safety hazards associated with the production of cadmium telluride, copper indium diselenide, and zinc phosphide photovoltaic cells

    SciTech Connect

    Moskowitz, P.D.; Fthenakis, V.M.; Lee, J.C.

    1985-04-01

    In large-scale manufacture of cadmium telluride, copper indium diselenide, and zinc phosphide photovoltaic cells, the materials and equipment used may present potential health and safety hazards to workers and the public. These hazards were identified by reviewing data on process materials, availability of control technology, biomedical effects, and health and environmental standards. Quantitative estimates of material inputs and outputs, and control technology costs for selected processes were based on preliminary engineering designs for hypothetical 10-MWp/yr photovoltaic cell production facilities. In the fabrication of these devices, unusually large quantities of some toxic gases may be used; large demands for phosphine and hydrogen selenide are of special concern. Because projected usage of these materials is much larger than the current one, a thorough evaluation of engineering controls will be needed before the technologies are commercialized. These materials could also present occupational health hazards. Some management options to reduce occupational exposures to these materials are presented. Although specific federal and state regulations have not been promulgated for emissions from the photovoltaic industry, prudent engineering practice should be applied to all waste streams - solid, atmospheric, or liquid - containing toxic pollutants to limit discharges of these materials. Control costs for most atmospheric waste streams should not be large (<0.01 cent per watt); for phosphine, however, costs are potentially much larger (4.4 cents per watt). Some processes may also produce large quantities of solid waste defined as toxic or hazardous under US Environmental Protection Agency guidelines. Disposal costs for these materials are presented.

  2. Transmission electron microscopy of the amorphization of copper indium diselenide by in situ ion irradiation

    SciTech Connect

    Hinks, J. A.; Edmondson, P. D.

    2012-03-01

    Copper indium diselenide (CIS), along with its derivatives Cu(In,Ga)(Se,S){sub 2}, is a prime candidate for use in the absorber layers of photovoltaic devices. Due to its ability to resist radiation damage, it is particularly well suited for use in extraterrestrial and other irradiating environments. However, the nature of its radiation hardness is not well understood. In this study, transmission electron microscopy (TEM) with in situ ion irradiation was used to monitor the dynamic microstructural effects of radiation damage on CIS. Samples were bombarded with 400 keV xenon ions to create large numbers of atomic displacements within the thickness of the TEM samples and thus explore the conditions under which, if any, CIS could be amorphized. By observing the impact of heavily damaging radiation in situ--rather than merely the end-state possible in ex situ experiments--at the magnifications allowed by TEM, it was possible to gain an understanding of the atomistic processes at work and the underlying mechanism that give rise to the radiation hardness of CIS. At 200 K and below, it was found that copper-poor samples could be amorphized and copper-rich samples could not. This difference in behavior is linked to the crystallographic phases that are present at different compositions. Amorphization was found to progress via a combination of one- and two-hit processes. The radiation hardness of CIS is discussed in terms of crystallographic structures/defects and the consequences these have for the ability of the material to recover from the effects of displacing radiation.

  3. Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells

    DOEpatents

    Bhattacharya, Raghu N.; Hasoon, Falah S.; Wiesner, Holm; Keane, James; Noufi, Rommel; Ramanathan, Kannan

    1999-02-16

    A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

  4. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  5. Synthesis, Characterization, and Processing of Copper, Indium, and Gallium Dithiocarbamates for Energy Conversion Applications

    NASA Technical Reports Server (NTRS)

    Duraj, S. A.; Duffy, N. V.; Hepp, A. F.; Cowen, J. E.; Hoops, M. D.; Brothrs, S. M.; Baird, M. J.; Fanwick, P. E.; Harris, J. D.; Jin, M. H.-C.

    2009-01-01

    Ten dithiocarbamate complexes of indium(III) and gallium(III) have been prepared and characterized by elemental analysis, infrared spectra and melting point. Each complex was decomposed thermally and its decomposition products separated and identified with the combination of gas chromatography/mass spectrometry. Their potential utility as photovoltaic materials precursors was assessed. Bis(dibenzyldithiocarbamato)- and bis(diethyldithiocarbamato)copper(II), Cu(S2CN(CH2C6H5)2)2 and Cu(S2CN(C2H5)2)2 respectively, have also been examined for their suitability as precursors for copper sulfides for the fabrication of photovoltaic materials. Each complex was decomposed thermally and the products analyzed by GC/MS, TGA and FTIR. The dibenzyl derivative complex decomposed at a lower temperature (225-320 C) to yield CuS as the product. The diethyl derivative complex decomposed at a higher temperature (260-325 C) to yield Cu2S. No Cu containing fragments were noted in the mass spectra. Unusual recombination fragments were observed in the mass spectra of the diethyl derivative. Tris(bis(phenylmethyl)carbamodithioato-S,S'), commonly referred to as tris(N,N-dibenzyldithiocarbamato)indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1(bar) with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry, and Fourier transform infrared (FT-IR) spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce

  6. Impact of atmospheric species on copper indium gallium selenide solar cell stability: an overview

    NASA Astrophysics Data System (ADS)

    Theelen, Mirjam

    2016-01-01

    An overview of the measurement techniques and results of studies on the stability of copper indium gallium selenide (CIGS) solar cells and their individual layers in the presence of atmospheric species is presented: in these studies, Cu(In,Ga)Se2 solar cells, their molybdenum back contact, and their ZnO:Al front contact were exposed to liquid water purged with gases from the atmosphere, like carbon dioxide (CO2), oxygen (O2), nitrogen (N2), and air. The samples were analyzed before, during, and after exposure in order to define their stability under these conditions. The complete CIGS solar cells as well as the ZnO:Al front contact degraded rapidly when exposed to H2O combined with CO2, while they were relatively stable in H2O purged with O2 or N2. This was caused by either degradation of the grain boundaries in the ZnO:Al film or by the dissolution of part of this film. Uncovered molybdenum films, on the other hand, oxidized rapidly in the presence of H2O and O2, while they were more stable in the presence of H2O with N2 and/or CO2.

  7. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    NASA Astrophysics Data System (ADS)

    Bercegol, Adrien; Chacko, Binoy; Klenk, Reiner; Lauermann, Iver; Lux-Steiner, Martha Ch.; Liero, Matthias

    2016-04-01

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.

  8. The dissociation of excitons at indium tin oxide-copper phthalocyanine interface in organic solar cells

    NASA Astrophysics Data System (ADS)

    Sun, X. Y.; Song, Q. L.; Wang, M. L.; Ding, X. M.; Hou, X. Y.; Zhou, Z. G.; Li, F. Y.

    2008-11-01

    Exciton dissociation process at indium tin oxide (ITO)/copper phthalocyanine (CuPc) interface of ITO/CuPc(370 nm)/Al is studied by transient photovoltage method. A negative-to-positive change in the polarity of photovoltage upon pulsed laser irradiation is observed in CuPc thin film. The polarity change is regarded as a summation of the effect of exciton dissociation at ITO/CuPc interface (fast process) and that of free carrier separation by built-in field (slow process). Further experiments confirm the existence of exciton dissociation at ITO/CuPc interface, and the direction of which is electron injected into ITO, with holes left in CuPc film. This is opposite to that of the interfacial dissociation at donor/acceptor (D/A) interface in single heterojunction cells (ITO/D/A/buffer/Al). 3-nm-thick LiF insulating layer is inserted between ITO and CuPc to inhibit the exciton dissociation at ITO/CuPc interface. Thereby, the open-circuit voltage and power conversion efficiency of the single layer cell have been increased by several times.

  9. Flexible copper-indium-diselenide films and devices for space applications

    NASA Technical Reports Server (NTRS)

    Armstrong, J. H.; Pistole, C. O.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1991-01-01

    With the ever increasing demands on space power systems, it is imperative that low cost, lightweight, reliable photovoltaics be developed. One avenue of pursuit for future space power applications is the use of low cost, lightweight flexible PV cells and arrays. Most work in this area assumes the use of flexible amorphous silicon (a-Si), despite its inherent instability and low efficiencies. However, polycrystalline thin film PV such as copper-indium-diselenide (CIS) are inherently more stable and exhibit better performance than a-Si. Furthermore, preliminary data indicate that CIS also offers exciting properties with respect to space applications. However, CIS has only heretofore only produced on rigid substrates. The implications of flexible CIS upon present and future space power platforms was explored. Results indicate that space qualified CIS can dramatically reduce the cost of PV, and in most cases, can be substituted for silicon (Si) based on end-of-life (EOL) estimations. Furthermore, where cost is a prime consideration, CIS can become cost effective than gallium arsenide (GaAs) in some applications. Second, investigations into thin film deposition on flexible substrates were made, and data from these tests indicate that fabrication of flexible CIS devices is feasible. Finally, data is also presented on preliminary TCO/CdS/CuInSe2/Mo devices.

  10. Low-temperature approach to highly emissive copper indium sulfide colloidal nanocrystals and their bioimaging applications.

    PubMed

    Yu, Kui; Ng, Peter; Ouyang, Jianying; Zaman, Md Badruz; Abulrob, Abedelnasser; Baral, Toya Nath; Fatehi, Dorothy; Jakubek, Zygmunt J; Kingston, David; Wu, Xiaohua; Liu, Xiangyang; Hebert, Charlie; Leek, Donald M; Whitfield, Dennis M

    2013-04-24

    We report our newly developed low-temperature synthesis of colloidal photoluminescent (PL) CuInS2 nanocrystals (NCs) and their in vitro and in vivo imaging applications. With diphenylphosphine sulphide (SDPP) as a S precursor made from elemental S and diphenylphosphine, this is a noninjection based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. For a typical synthesis with copper iodide (CuI) as a Cu source and indium acetate (In(OAc)3) as an In source, the growth temperature was as low as 160 °C and the feed molar ratios were 1Cu-to-1In-to-4S. Amazingly, the resulting CuInS2 NCs in toluene exhibit quantum yield (QY) of ~23% with photoemission peaking at ~760 nm and full width at half maximum (FWHM) of ~140 nm. With a mean size of ~3.4 nm (measured from the vertices to the bases of the pyramids), they are pyramidal in shape with a crystal structure of tetragonal chalcopyrite. In situ (31)P NMR (monitored from 30 °C to 100 °C) and in situ absorption at 80 °C suggested that the Cu precursor should be less reactive toward SDPP than the In precursor. For our in vitro and in vivo imaging applications, CuInS2/ZnS core-shell QDs were synthesized; afterwards, dihydrolipoic acid (DHLA) or 11-mercaptoundecanoic acid (MUA) were used for ligand exchange and then bio-conjugation was performed. Two single-domain antibodies (sdAbs) were used. One was 2A3 for in vitro imaging of BxPC3 pancreatic cancer cells. The other was EG2 for in vivo imaging of a Glioblastoma U87MG brain tumour model. The bioimaging data illustrate that the CuInS2 NCs from our SDPP-based low-temperature noninjection approach are good quality. PMID:23486927

  11. Single-Step Production of Nanostructured Copper-Nickel (CuNi) and Copper-Nickel-Indium (CuNiIn) Alloy Particles

    NASA Astrophysics Data System (ADS)

    Apaydın, Ramazan Oğuzhan; Ebin, Burçak; Gürmen, Sebahattin

    2016-04-01

    Nanostructured copper-nickel (CuNi) and copper-nickel-indium (CuNiIn) alloy particles were produced from aqueous solutions of copper, nickel nitrates and indium sulfate by hydrogen reduction-assisted ultrasonic spray pyrolysis. The effects of reduction temperatures, at 973 K, 1073 K, and 1173 K (700 °C, 800 °C, and 900 °C), on the morphology and crystalline structure of the alloy particles were investigated under the conditions of 0.1 M total precursor concentration and 0.5 L/min H2 volumetric flow rate. X-ray diffraction studies were performed to investigate the crystalline structure. Particle size and morphology were investigated by scanning electron microscope and energy-dispersive spectroscopy was applied to determine the chemical composition of the particles. Spherical nanocrystalline binary CuNi alloy particles were prepared in the particle size range from 74 to 455 nm, while ternary CuNiIn alloy particles were obtained in the particle size range from 80 to 570 nm at different precursor solution concentrations and reduction temperatures. Theoretical and experimental chemical compositions of all the particles are nearly the same. Results reveal that the precursor solution and reduction temperature strongly influence the particle size of the produced alloy particles.

  12. Single-Step Production of Nanostructured Copper-Nickel (CuNi) and Copper-Nickel-Indium (CuNiIn) Alloy Particles

    NASA Astrophysics Data System (ADS)

    Apaydın, Ramazan Oğuzhan; Ebin, Burçak; Gürmen, Sebahattin

    2016-07-01

    Nanostructured copper-nickel (CuNi) and copper-nickel-indium (CuNiIn) alloy particles were produced from aqueous solutions of copper, nickel nitrates and indium sulfate by hydrogen reduction-assisted ultrasonic spray pyrolysis. The effects of reduction temperatures, at 973 K, 1073 K, and 1173 K (700 °C, 800 °C, and 900 °C), on the morphology and crystalline structure of the alloy particles were investigated under the conditions of 0.1 M total precursor concentration and 0.5 L/min H2 volumetric flow rate. X-ray diffraction studies were performed to investigate the crystalline structure. Particle size and morphology were investigated by scanning electron microscope and energy-dispersive spectroscopy was applied to determine the chemical composition of the particles. Spherical nanocrystalline binary CuNi alloy particles were prepared in the particle size range from 74 to 455 nm, while ternary CuNiIn alloy particles were obtained in the particle size range from 80 to 570 nm at different precursor solution concentrations and reduction temperatures. Theoretical and experimental chemical compositions of all the particles are nearly the same. Results reveal that the precursor solution and reduction temperature strongly influence the particle size of the produced alloy particles.

  13. Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission

    SciTech Connect

    Li, Liang; Pandey, Anshu; Werder, Donald J.; Khanal, Bishnu P.; Pietryga, Jeffrey M.; Klimov, Victor I.

    2011-02-09

    We report an efficient synthesis of copper indium sulfide nanocrystals with strong photoluminescence in the visible to near-infrared. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. The overgrowth of as-prepared nanocrystals with a few monolayers of CdS or ZnS increases the photoluminescence quantum efficiency to > 80%. On the basis of time-resolved spectroscopic studies of core/shell particles, we conclude that the emission is due to an optical transition that couples a quantized electron state to a localized hole state, which is most likely associated with an internal defect.

  14. Heterojunction between the delafossite TCO n-copper indium oxide and p-Si for solar cell applications

    NASA Astrophysics Data System (ADS)

    Keerthi, K.; Masuzawa, T.; Nair, B. G.; Saito, I.; Okano, K.; Johns, N.; Philip, R. R.

    2016-05-01

    Junction formation of n-copper indium oxide (CIO) (extrinsically undoped) with p-Si leading to conversion of photons in the UV-Vis range is being reported for the first time. I-V and temporal photoconductivity data confirm positively the carrier generation in CIO under irradiation while optical absorbance data furnish its band gap to be ~ 3.1eV. Ultraviolet photoelectron spectroscopy is used to study the electronic band structure of CIO on Si and to construct a schematic diagram of the hetero-junction to explain the observed photovoltaic phenomena.

  15. I. Electroluminescence from Hydrogen Uranyl Phosphate. I. Indium-Substituted Bismuth Copper Oxide Superconductors

    NASA Astrophysics Data System (ADS)

    Dieckmann, Gunnar Rudolph

    1990-01-01

    Chapter 1. A review of the general aspects of solid electrolytes is presented along with a summary of the electrical and optical properties of hydrogen uranyl phosphate (HUO_2PO_4 bullet4H_2O, HUP). A review of impedance spectroscopy, as it relates to the determination of ionic conductivities and dielectric constants of solid electrolytes is presented. The final section covers some aspects of gas plasma display devices. Chapter 2. Electroluminescence (EL) cells have been constructed with the ionically conducting solid HUP as the emissive medium. With ac excitation, both uranyl emission and molecular nitrogen plasma emission are observed, with the latter appearing to excite the former. Similar results were obtained with fully-substituted sodium (NaUP), magnesium (Mg_{0.5}UP), and pyridinium (pyHUP) derivatives of HUP. For all of these solids, the dependence of the EL intensity on sample thickness, ac frequency, and applied voltage has been determined. Impedance measurements permitted acquisition of dielectric constants and ionic conductivities for these solids, both of which decrease in the order HUP > NaUP > Mg_{0.5}UP > pyHUP. A model describing the dependence of EL intensity on cell parameters is presented. Chapter 3. The copper oxide superconductors can be structurally classified into five major families, represented by the compositions, (La,Sr)_2CuO _4, YBa_2Cu_3O_7, Pb_2Sr_2(Y,Ca)Cu_3O_8, (TIO)_{m}Ca_{n-1}Ba_2Cu _{n}O_{2n+2}, and Bi_2Sr_2(Ln_{1-x}Ce _{x})_2Cu_2O_{10+y }. All families are linked by a CuO _2 layer, which is crucial for superconductivity. The structural and chemical aspects of each family is covered with emphasis on the bismuth and thallium systems. The effects of substitution and oxygen annealing are also briefly considered. Chapter 4. The attempted substitution of indium into the rm Bi_2(Ca,Sr)_2CuO _6 and Bi_2(Ca,Sr) _3Cu_2O _8 systems is reported. Previously unreported side products, (Ca,Sr)In_2O _4 and Bi-Ca-Sr-O, viz., produced in the

  16. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. PMID:26918838

  17. Metastability of copper indium gallium diselenide polycrystalline thin film solar cell devices

    NASA Astrophysics Data System (ADS)

    Lee, Jinwoo

    High efficiency thin film solar cells have the potential for being a world energy solution because of their cost-effectiveness. Looking to the future of solar energy, there is the opportunity and challenge for thin film solar cells. The main theme of this research is to develop a detailed understanding of electronically active defect states and their role in limiting device performance in copper indium gallium diselenide (CIGS) solar cells. Metastability in the CIGS is a good tool to manipulate electronic defect density and thus identify its effect on the device performance. Especially, this approach keeps many device parameters constant, including the chemical composition, grain size, and interface layers. Understanding metastability is likely to lead to the improvement of CIGS solar cells. We observed systematic changes in CIGS device properties as a result of the metastable changes, such as increases in sub-bandgap defect densities and decreases in hole carrier mobilities. Metastable changes were characterized using high frequency admittance spectroscopy, drive-level capacitance profiling (DLCP), and current-voltage measurements. We found two distinctive capacitance steps in the high frequency admittance spectra that correspond to (1) the thermal activation of hole carriers into/out of acceptor defect and (2) a temperature-independent dielectric relaxation freeze-out process and an equivalent circuit analysis was employed to deduce the dielectric relaxation time. Finally, hole carrier mobility was deduced once hole carrier density was determined by DLCP method. We found that metastable defect creation in CIGS films can be made either by light-soaking or with forward bias current injection. The deep acceptor density and the hole carrier density were observed to increase in a 1:1 ratio, which seems to be consistent with the theoretical model of VCu-V Se defect complex suggested by Lany and Zunger. Metastable defect creation kinetics follows a sub-linear power law

  18. Chemical vapor deposited copper indium diselenide thin film materials research. Final report, 15 November 1982-14 January 1984

    SciTech Connect

    Not Available

    1984-03-01

    The objective of the contract is to demonstrate the feasibility of producing device-quality copper indium diselenide films by the close-spacing chemical vapor transport (CSCVT) technique. The technical approaches used in this work consist of (1) the preparation of the CuInSe/sub 2/ source material by direct synthesis and the characterization of its properties, (2) the deposition of CuInSe/sub 2/ films on conducting and insulating substrates by the CSCVT technique, and (3) the formation and characterization of heterojunction solar cells. During the course of this subcontract, a number of copper indium selenide ingots (source material) have been synthesized from the elements, and their structural and electrical properties characterized. The deposition of p-type CuInSe/sub 2/ films on graphite, alumina, and coated graphite substrates by the CSCVT technique using iodine and hydrogen iodide as the transport agent has been carried out under a wide range of conditions. The compositional, structural, and electrical properties of CuInSe/sub 2/ films have been characterized. A number of n-ZnO/p-CuInSe/sub 2/ and n-CdO/p-CuInSe/sub 2/ heterojunction solar cells have been prepared by the deposition of the transparent oxide on p-CuInSe/sub 2/ films by ion-beam sputtering. The AM1 efficiency of these cells is in the range of 2% to 3%.

  19. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. PMID:26615488

  20. Highly sensitive photodetectors based on hybrid 2D-0D SnS2-copper indium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Yun; Zhan, Xueying; Xu, Kai; Yin, Lei; Cheng, Zhongzhou; Jiang, Chao; Wang, Zhenxing; He, Jun

    2016-01-01

    Both high speed and efficiency of photoelectric conversion are essential for photodetectors. As an emerging layered metal dichalcogenide (LMD), tin disulfide owns intrinsic faster photodetection ability than most other LMDs but poor light absorption and low photoelectric conversion efficiency. We develop an efficient method to enhance its performance by constructing a SnS2-copper indium sulfide hybrid structure. As a result, the responsivity reaches 630 A/W, six times stronger than pristine SnS2 and much higher than most other LMDs photodetectors. Additionally, the photocurrents are enhanced by more than 1 order of magnitude. Our work may open up a pathway to improve the performance of photodetectors based on LMDs.

  1. Commercial and industrial applications of indium gallium arsenide near-infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.

    1999-07-01

    Sensors Unlimited, Inc. has developed focal pane arrays (FPAs) fabricated with indium gallium arsenide (InGaAs) photodiode arrays and silicon CMOS readout integrated circuits. These devices are readily available in a wide variety of formats suitable for commercial and industrial applications. InGaAs FPAs are sensitive to the near IR, operate without cooling, and come in both 2D formats and 1D formats. 1D InGaAs FPAs are used as both spectroscopic detectors and line scan imagers. Key applications include miniature spectrometers used for wavelength control and monitoring of WDM laser sources, octane determination, the sorting o plastics during recycling, and web process control. 2D InGaAs FPAs find use in applications such as laser beam profiling, visualization of 'clear' ice on aircraft and roadways, and industrial thermal imaging.

  2. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    SciTech Connect

    Chopra, Nitin; Shi, Wenwu; Lattner, Andrew

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titania or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.

  3. Metals fact sheet - indium

    SciTech Connect

    1994-01-01

    Indium is generally found in concentrations averaging 10 to 20 ppm in sphalerite and chalcopyrite ores associated with zinc, copper, lead and tin deposits. Indium is recovered as a by-product of base metal mining by open pit, underground and other methods. After the recovery of zinc by the electrolytic process (copper concentrate by flotation, and lead and tin by electrolysis), indium antimonide slimes left on the anode and the indium-containing spent electrolyte become the input material for the processing of indium. Sulfuric acid is combined with the residues and heated to form sulfates which are then leached with water to filter off the remaining tin, lead and antimony. The indium in solution is recovered by cementation on aluminum, washed, melted, and refined into a metal.

  4. Industrial applications of high-power copper vapor lasers

    SciTech Connect

    Warner, B.E.; Boley, C.D.; Chang, J.J.; Dragon, E.P.; Havstad, M.A.; Martinez, M.; McLean, W. II

    1995-08-01

    A growing appreciation has developed in the last several years for the copper vapor laser because of its utility in ablating difficult materials at high rates. Laser ablation at high rates shows promise for numerous industrial applications such as thin film deposition, precision hole drilling, and machining of ceramics and other refractories.

  5. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  6. Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers.

    PubMed

    Kim, Jae-Yup; Yang, Jiwoong; Yu, Jung Ho; Baek, Woonhyuk; Lee, Chul-Ho; Son, Hae Jung; Hyeon, Taeghwan; Ko, Min Jae

    2015-11-24

    Copper-indium-selenide (CISe) quantum dots (QDs) are a promising alternative to the toxic cadmium- and lead-chalcogenide QDs generally used in photovoltaics due to their low toxicity, narrow band gap, and high absorption coefficient. Here, we demonstrate that the photovoltaic performance of CISe QD-sensitized solar cells (QDSCs) can be greatly enhanced simply by optimizing the thickness of ZnS overlayers on the QD-sensitized TiO2 electrodes. By roughly doubling the thickness of the overlayers compared to the conventional one, conversion efficiency is enhanced by about 40%. Impedance studies reveal that the thick ZnS overlayers do not affect the energetic characteristics of the photoanode, yet enhance the kinetic characteristics, leading to more efficient photovoltaic performance. In particular, both interfacial electron recombination with the electrolyte and nonradiative recombination associated with QDs are significantly reduced. As a result, our best cell yields a conversion efficiency of 8.10% under standard solar illumination, a record high for heavy metal-free QD solar cells to date. PMID:26431392

  7. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.

    PubMed

    Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2014-09-24

    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C. PMID:25180569

  8. Electrical Bias as an Alternate Method for Reproducible Measurement of Copper Indium Gallium Diselenide (CIGS) Photovoltaic Modules: Preprint

    SciTech Connect

    Deline, C.; Stokes, A.; Silverman, T. J.; Rummel, S.; Jordan, D.; Kurtz, S.

    2012-08-01

    Light-to-dark metastable changes in thin-film photovoltaic (PV) modules can introduce uncertainty when measuring module performance on indoor flash testing equipment. This study describes a method to stabilize module performance through forward-bias current injection rather than light exposure. Measurements of five pairs of thin-film copper indium gallium diselenide (CIGS) PV modules indicate that forward-bias exposure maintained the PV modules at a stable condition (within 1%) while the unbiased modules degraded in performance by up to 12%. It was additionally found that modules exposed to forward bias exhibited stable performance within about 3% of their long-term outdoor exposed performance. This carrier-injection method provides a way to reduce uncertainty arising from fast transients in thin-film module performance between the time a module is removed from light exposure and when it is measured indoors, effectively simulating continuous light exposure by injecting minority carriers that behave much as photocarriers do. This investigation also provides insight into the initial light-induced transients of thin-film modules upon outdoor deployment.

  9. Selective ablation of Copper-Indium-Diselenide solar cells monitored by laser-induced breakdown spectroscopy and classification methods

    NASA Astrophysics Data System (ADS)

    Diego-Vallejo, David; Ashkenasi, David; Lemke, Andreas; Eichler, Hans Joachim

    2013-09-01

    Laser-induced breakdown spectroscopy (LIBS) and two classification methods, i.e. linear correlation and artificial neural networks (ANN), are used to monitor P1, P2 and P3 scribing steps of Copper-Indium-Diselenide (CIS) solar cells. Narrow channels featuring complete removal of desired layers with minimum damage on the underlying film are expected to enhance efficiency of solar cells. The monitoring technique is intended to determine that enough material has been removed to reach the desired layer based on the analysis of plasma emission acquired during multiple pass laser scribing. When successful selective scribing is achieved, a high degree of similarity between test and reference spectra has to be identified by classification methods in order to stop the scribing procedure and avoid damaging the bottom layer. Performance of linear correlation and artificial neural networks is compared and evaluated for two spectral bandwidths. By using experimentally determined combinations of classifier and analyzed spectral band for each step, classification performance achieves errors of 7, 1 and 4% for steps P1, P2 and P3, respectively. The feasibility of using plasma emission for the supervision of processing steps of solar cell manufacturing is demonstrated. This method has the potential to be implemented as an online monitoring procedure assisting the production of solar cells.

  10. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.

    PubMed

    Dong, Hailong; Quintilla, Aina; Cemernjak, Marco; Popescu, Radian; Gerthsen, Dagmar; Ahlswede, Erik; Feldmann, Claus

    2014-02-01

    Selenium nanoparticles with diameters of 100-400nm are prepared via hydrazine-driven reduction of selenious acid. The as-prepared amorphous, red selenium (a-Se) particles were neither a stable phase nor were they colloidally stable. Due to phase transition to crystalline (trigonal), grey selenium (t-Se) at or even below room temperature, the particles merged rapidly and recrystallized as micronsized crystal needles. As a consequence, such Se particles were not suited for layer deposition and as a precursor to manufacture thin-film CIS (copper indium selenide/CuInSe2) solar cells. To overcome this restriction, Se@CuSe core@shell particles are presented here. For these Se@CuSe core@shell nanoparticles, the phase transition a-Se→t-Se is shifted to temperatures higher than 100°C. Moreover, a spherical shape of the particles is retained even after phase transition. Composition and structure of the Se@CuSe core@shell nanostructure are evidenced by electron microscopy (SEM/STEM), DLS, XRD, FT-IR and line-scan EDXS. As a conceptual study, the newly formed Se@CuSe core@shell nanostructures with CuSe acting as a protecting layer to increase the phase-transition temperature and to improve the colloidal stability were used as a selenium precursor for manufacturing of thin-film CIS solar cells and already lead to conversion efficiencies up to 3%. PMID:24267336

  11. Influence of Indium Addition on Whisker Mitigation in Electroplated Tin Coatings on Copper Substrates

    NASA Astrophysics Data System (ADS)

    Meinshausen, L.; Bhassyvasantha, S.; Majumdar, B. S.; Dutta, I.

    2016-01-01

    Among many factors that influence whisker nucleation and growth in electroplated tin, it is now well established that small additions of Pb leads to whisker mitigation. To date, a good non-toxic elemental alternative to Pb that would mitigate whiskers remains elusive. In this work, a 50-100 nm In electroplated layer was incorporated into a 1- μm-thick electroplated Sn on a pure Cu substrate. In order to permit diffusion of In into Sn, heat treatments (HTs) between 125°C and 160°C were performed. The diffusion profile of In was altered by varying the dwell times of the HT and by utilizing two variants of In layer deposition, namely, (1) electroplating In at the top of the Sn plating, and (2) by sandwiching the In plating between two Sn layers, each approximately 500 nm thick. Appropriate control samples of pure Sn were utilized to permit valid data on the influence of In on whisker mitigation. Indium additions reduced whisker growth by at least two orders of magnitude following the 160°C treatment, independent of the location of the In layer. X-ray microanalysis of a focused ion beam cross section of the sandwich plating confirmed that In had indeed diffused into the Sn through the 160°C HT and was a likely reason for the mitigation of Sn whiskers.

  12. Copper, indium, tin, and lead complexes with fluorinated selenolate ligands: precursors to MSex.

    PubMed

    Holligan, Kareem; Rogler, Patrick; Rehe, David; Pamula, Michael; Kornienko, Anna Y; Emge, Thomas J; Krogh-Jespersen, Karsten; Brennan, John G

    2015-09-21

    Reductive cleavage of C6F5SeSeC6F5 with elemental M (M = Cu, In, Sn, Pb) in pyridine results in the formation of (py)4Cu2(SeC6F5)2, (py)2In(SeC6F5)3, (py)2Sn(SeC6F5)2, and (py)2Pb(SeC6F5)2. Each group adopts a unique structure: the Cu(I) compound crystallizes as a dimer with a pair of bridging selenolates, two pyridine ligands coordinating to each Cu(I) ion, and a short Cu(I)-Cu(I) distance (2.595 Å). The indium compound crystallizes as monometallic five-coordinate (py)2In(SeC6F5)3 in a geometry that approximates a trigonal bipyramidal structure with two axial pyridine ligands and three selenolates. The tin and lead derivatives (py)2M(SeC6F5)2 are also monomeric, but they adopt nearly octahedral geometries with trans pyridine ligands, a pair of cis-selenolates, and two "empty" cis-positions on the octahedron that are oriented toward extremely remote selenolates (M-Se = 3.79 Å (Sn), 3.70 Å (Pb)) from adjacent molecules. Two of the four compounds (Cu, In) exhibit intermolecular π-π stacking arrangements in the solid state, whereas the stacking of molecules for the other two compounds (Sn, Pb) appears to be based upon molecular shape and crystal packing forces. All compounds are volatile and decompose at elevated temperatures to give MSex and Se(C6F5)2.The electronic structures of the dimeric Cu compound and monomeric (py)2M(SeC6F5)2 (M = Sn, Pb) were examined with density functional theory calculations. PMID:26317752

  13. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.

    PubMed

    Jeong, Jiyoung; Kim, Jeongeun; Seok, Seung Hyeok; Cho, Wan-Seob

    2016-04-01

    Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm(2)/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury. PMID:25731971

  14. Copper-indium ordering in RECu 6In 6 ( RE=Y, Ce, Pr, Nd, Gd, Tb, Dy)

    NASA Astrophysics Data System (ADS)

    Zaremba, Roman; Muts, Ihor; Hoffmann, Rolf-Dieter; Kalychak, Yaroslav M.; Zaremba, Vasyl' I.; Pöttgen, Rainer

    2007-09-01

    The rare earth metal-copper-indides RECu 6In 6 ( RE=Y, Ce, Pr, Nd, Gd, Tb, Dy) were synthesized from the elements by arc-melting. Well-crystallized samples were obtained by slowly cooling the melted buttons from 1320 to 670 K in sealed silica tubes in a muffle furnace. They were investigated by X-ray diffraction on powders and single crystals: ThMn 12 type, space group I4/ mmm, Z=2, a=916.3(2), c=535.8(2) pm, w R2=0.063, 216 F2 values, 15 variables for YCu 6In 6, a=926.5(4), c=543.5(3) pm, w R2=0.064, 314 F2 values, 15 variables for CeCu 6In 6, a=925.7(4), c=540.1(3) pm, w R2=0.075, 219 F2 values, 15 variables for PrCu 6In 6, a=923.1(4), c=540.3(3) pm, w R2=0.071, 218 F2 values, 15 variables for NdCu 6In 6, a=917.7(4), c=540.2(3) pm, w R2=0.076, 207 F2 values, 15 variables for GdCu 6In 6, a=917.0(5), c=540.5(4) pm, w R2=0.062, 215 F2 values, 15 variables for TbCu 6In 6, a=915.2(8), c=540.7(7) pm, w R2=0.108, 218 F2 values, 15 variables for DyCu 6In 6. The structures have been refined with a split position (50% Cu+50% In) for the 8 j site. They can be explained by a tetragonal body-centered packing of CN 20 polyhedra (10Cu+10In) around the rare earth atoms. The ordering models of the copper and indium atoms and the limitations/resolution of X-ray diffraction for this topic are discussed.

  15. Growth and characterization of indium doped silicon single crystals at industrial scale

    NASA Astrophysics Data System (ADS)

    Haringer, Stephan; Giannattasio, Armando; Alt, Hans Christian; Scala, Roberto

    2016-03-01

    Indium is becoming one of the most important dopant species for silicon crystals used in photovoltaics. In this work we have investigated the behavior of indium in silicon crystals grown by the Czochralski pulling process. The experiments were performed by growing 200 mm crystals, which is a standard diameter for large volume production, thus the data reported here are of technological interest for the large scale production of indium doped p-type silicon. The indium segregation coefficient and the evaporation rate from the silicon melt have been calculated to be 5 × 10-4 ± 3% and 1.6 × 10-4 cm·s-1, respectively. In contrast to previous works the indium was introduced in liquid phase and the efficiency was compared with that deduced by other authors, using different methods. In addition, the percentage of electrically active indium at different dopant concentrations is calculated and compared with the carrier concentration at room temperature, measured by four-point bulk method.

  16. Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free

    NASA Astrophysics Data System (ADS)

    Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian

    2016-05-01

    Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  17. Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study

    NASA Astrophysics Data System (ADS)

    Diyatmika, Wahyu; Xue, Lingjun; Lin, Tai-Nan; Chang, Chia-wen; Chu, Jinn P.

    2016-08-01

    The feasibility of using Zr53.5Cu29.1Al6.5Ni10.9 thin-film metallic glass (TFMG) as a diffusion barrier for copper indium gallium selenide (CIGS) solar cells on stainless steel (SS) is investigated. The detrimental Fe diffusion from SS into CIGS is found to be effectively hindered by the introduction of a 70-nm-thick TFMG barrier; the cell performance is thus improved. Compared with the 2.73% of CIGS on bare SS, a higher efficiency of 5.25% is obtained for the cell with the Zr52Cu32Al9Ni7 TFMG barrier.

  18. Industrial aspects of precision machining with copper vapor lasers

    NASA Astrophysics Data System (ADS)

    Hartmann, Martin; Koch, Juergen; Lang, Adolf; Schutte, Karsten; Bergmann, Hans W.

    1997-08-01

    The applications of conventional infrared lasers running cw or quasi-sw for drilling, cutting and shaping are limited in the precision achievable due to the long interaction time which leads to heat affected zones. The necessity to use a gas jet to blow the molten material out of the cut kerf will damage fragile workpieces like thin foils. Short laser pulses of sufficient intensity remove the material directly by evaporation and minimize the amount of heat transferred into the solid. Classical infrared laser sources generate a shielding air plasma within some ns at power densities above some 107W/cm2. The optical breakdown threshold value in air can be shifted to higher intensities by using visible light as well as reducing the focal diameter. An alternative way is to shorten the pulse duration to less than 10 ps that a plasma is generated only after the pulse. Thus, the material removal process begins after the deposition of the pulse energy into the material. But such short pulses will generate a pressure wave due to the sudden thermal expansion and can damage or destroy microscopic components. For industrial production the productivity is a further aspect. Hence, a certain mean power is required in order to obtain the desired production rate. Considering the above aspects, copper vapor lasers (CVLs) with ns pulse duration are well suited for precision machining of metals and ceramics. Processing with CVLs is an advantage in that its wavelength is highly absorbed by metallic targets and the probability for the optical breakdown in air is low. CVLs in an oscillator-amplifier-setup incorporate diffraction limited beam quality and high average power. The present paper outlines the potential of the CVL for the industrial use regarding high processing speed and precision. Under these aspects the limiting mechanisms on the material removal process and the necessary processing strategies for scaling up the productivity are shown. The relevant laser parameters for

  19. Surface potential measurement of fullerene derivative/copper phthalocyanine on indium tin oxide electrode by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Satoh, Nobuo; Yamaki, Michio; Noda, Kei; Katori, Shigetaka; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2015-08-01

    We have investigated the organic semiconductor thin films deposited by vacuum evaporation deposition using intersecting metal shadow masks on indium tin oxide (ITO) electrode/glass substrates to simulate organic solar cells by simultaneous observation with dynamic force microscopy (DFM)/Kelvin-probe force microscopy (KFM). The energy band diagram was depicted by simultaneously obtaining topographic and surface potential images of the same area using DFM/KFM. We considered the charge behavior at the interface having band bending in the phenyl-C61-butyric acid methyl ester (PCBM) film.

  20. Indium Sorption to Iron Oxides

    NASA Astrophysics Data System (ADS)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  1. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  2. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots

    SciTech Connect

    Sun, Chun; Liu, Wenyan; Zhang, Xiaoyu; Zhang, Yu E-mail: wyu6000@gmail.com; Wang, Yu; Kalytchuk, Sergii; Kershaw, Stephen V.; Rogach, Andrey L.; Zhang, Tieqiang; Zhao, Jun; Yu, William W. E-mail: wyu6000@gmail.com

    2014-06-30

    In a line with most recent trends in developing non-toxic fluorescent nanomaterials, we combined blue emissive carbon dots with green and red emissive zinc copper indium sulfide (ZCIS) core/shell quantum dots (QDs) to achieve white light-emitting diodes (WLEDs) with a high color rendering index of 93. This indicates that ZCIS QDs, with their broad emission bands, can be employed to effectively make up the emission of carbon dots in the yellow and red regions to produce WLEDs in the wide region of color temperature by tuning the volume ratio of these constituting luminophores. Their electroluminescence characteristics including color rendering index, Commission Internationale de l'Eclairage (CIE) color coordinates, and color temperatures were evaluated as a function of forward current. The CIE-1931 chromaticity coordinates of the as-prepared WLEDs, exhibiting good stability, were slightly shifted from (0.321, 0.312) at 10 mA to (0.351, 0.322) at 30 mA, which was mainly caused by the different thermal quenching coefficients of carbon dots and ZCIS QDs.

  3. An econometric model of the U.S. secondary copper industry: Recycling versus disposal

    USGS Publications Warehouse

    Slade, M.E.

    1980-01-01

    In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production. ?? 1990.

  4. COPPER

    EPA Science Inventory

    The report is a review of current knowledge of the distribution of copper in the environment and living things. Metabolism and the effects of copper in the biosphere are also considered. Copper compounds are common and widely distributed in nature. They are also extensively mined...

  5. Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria.

    PubMed

    Yusuf, A A; Arowolo, T A; Bamgbose, O

    2003-03-01

    The levels of cadmium, copper and nickel in five different edible vegetables, Talinum triangulare, Celosia trigyna, Corchorus olitorus, Venomia amygydalina and Telfaria accidentalis, and the soils in which they were grown, from three industrial and three residential areas of Lagos City, Nigeria, were determined using atomic absorption spectrophotometry. The results obtained for these three heavy metals from the industrial areas were higher than those of the residential areas as a result of pollution. Industrial area results for vegetables ranged between 1.13 and 1.67 microg/g for cadmium; 25.08 and 56.84 microg/g for copper and 1.33 and 2.06 microg/g for nickel. There were statistically significant differences (P<0.05) between the levels of copper and nickel in all the vegetables studied from industrial and residential areas, while there was no statistically significant difference for cadmium. The results also show that Corchorus olitorus (bush okra) has the ability to accumulate more copper and nickel than the other vegetable studied but has the least ability to accumulate cadmium. PMID:12504169

  6. Indium: bringing liquid-crystal displays into focus

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-01-01

    Compared to more abundant industrial metals such as lead and zinc, information about the behavior and toxicity of indium in the environment is limited. However, many indium compounds have been proven to be toxic to animals.

  7. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals.

    PubMed

    Orell, Alvaro; Navarro, Claudio A; Arancibia, Rafaela; Mobarec, Juan C; Jerez, Carlos A

    2010-01-01

    Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes. PMID:20627124

  8. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 29 PRIMARY COPPER INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The primary copp...

  9. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  10. Development of the copper and molybdenum industries and the Armenian economy

    USGS Publications Warehouse

    Bond, A.R.; Levine, R.M.

    1997-01-01

    Production of copper and molybdenum in Armenia is examined, with special emphasis on the location of major deposits, former and proposed future centers of processing, and contribution of metals exports to the country's foreign trade revenues. Particular emphasis is placed on the impacts on these industries of the disruption of economic ties resulting from the dissolution of the USSR and an economic crisis precipitated by a major earthquake, Armenia's tension with Azerbaijan over armed conflict in Nagorno-Karabakh and surrounding areas in Azerbaijan, an economic blockade imposed by Turkey and Azerbaijan, and a consequent severe energy crisis. The paper highlights developments in the mid-1990s in copper and molybdenum and in the recent expansion of trade relations with Iran.

  11. Surface Alteration of Activated Carbon for Detoxification of Copper (ii) from Industrial Effluents

    NASA Astrophysics Data System (ADS)

    Bhutto, Sadaf; Khan, M. Nasiruddin

    2013-04-01

    The low-cost modified activated carbons were prepared from Thar and Lakhra (Pakistan) coals by activation with sulfuric acid and further modified with citric, tartaric and acetic acids for the selective adsorption of Cu(II) from aqueous solution. The original carbon obtained from activated Thar and Lakhra coals at pH 3.0 displayed significant adsorption capacity for lead and insignificant capacity values (0.880 and 0.830 mgṡg-1) for copper. However, after modification with citric, tartaric and acetic acid the copper adsorption capacities enhanced in the range of 5.56-21.85 and 6.05-44.61 times, respectively. The Langmuir, Freundlich and Temkin adsorption isotherms were used to elucidate the observed sorption phenomena. The isotherm equilibrium data was well fitted by the Langmuir and sufficiently fitted to the Freundlich models. The calculated thermodynamic parameters such as change in Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) inferred that the investigated adsorption was spontaneous and endothermic in nature. Based on the results, it was concluded that the surface alteration with citric and tartaric acid, Thar and Lakhra activated carbons had significant potential for selective removal of copper(II) from industrial wastewater.

  12. Reduction of pollutants and disinfection of industrial wastewater by an integrated system of copper electrocoagulation and electrochemically generated hydrogen peroxide.

    PubMed

    Barrera-Díaz, Carlos E; Frontana-Uribe, Bernardo A; Roa-Morales, Gabriela; Bilyeu, Bryan W

    2015-01-01

    The objective of this study was to evaluate the effect of copper electrocoagulation and hydrogen peroxide on COD, color, turbidity, and bacterial activity in a mixed industry wastewater. The integrated system of copper electrocoagulation and hydrogen peroxide is effective at reducing the organic and bacterial content of industrial wastewater. The copper electrocoagulation alone reduces COD by 56% in 30 min at pH 2.8, but the combined system reduces COD by 78%, biochemical oxygen demand (BOD5) by 81%, and color by 97% under the same conditions. Colloidal particles are flocculated effectively, as shown by the reduction of zeta potential and the 84% reduction in turbidity and 99% reduction in total solids. Additionally, the total coliforms, fecal coliforms, and bacteria are all reduced by 99%. The integrated system is effective and practical for the reduction of both organic and bacterial content in industrial wastewater. PMID:25723067

  13. Treatment of copper ores and concentrates with industrial nitrogen species catalyzed pressure leaching and non-cyanide precious metals recovery

    NASA Astrophysics Data System (ADS)

    Anderson, Corby G.

    2003-04-01

    Today, with a stringent economic and environmental climate prevailing in the copper business, there is increased interest in evaluating new processing alternatives for production. Hydrometallurgical pressure oxidation of copper concentrates is one of the more viable approaches, and several technological candidates have emerged. Of these, an overlooked but, ironically, the first industrially proven methodology utilized nitrogen species catalyzation in the oxidizing pressure-leach system to produce copper via solvent extraction/electrowinning. Given its advantages, this may prove to be a feasible process alternative for the future. In this article, the history of the system and its application to copper concentrates and ores will be outlined. In particular, a non-cyanide methodology for effective recovery of precious metals from chalcopyrite concentrates will be discussed.

  14. Synthesis, Characterization and Decomposition Studies of Tris(N,N-dibenzyldithiocarbamato) Indium(III): Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.; Fanwick, Philip E.; Khan, Osman; Jin, Michael H.-C.; Hepp, Aloysius F.

    2005-01-01

    Tris(bis(phenylmethyl)carbamodithioato-S,S ), commonly referred to as tris(N,Ndibenzyldithiocarbamato) indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1 bar with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry and Fourier-Transform infrared spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.

  15. Alumina polymorphs affect the metal immobilization effect when beneficially using copper-bearing industrial sludge for ceramics.

    PubMed

    Tang, Yuanyuan; Lu, Xiuqing; Shih, Kaimin

    2014-12-01

    The feasibility of recycling copper-bearing industrial sludge as a part of ceramic raw materials was evaluated through thermal interaction of sludge with aluminum-rich precursors. To observe copper incorporation mechanism, mixtures of copper-bearing sludge with alumina polymorphs (γ-Al2O3 and α-Al2O3) were fired between 750 and 1250°C. Different copper-hosting phases were identified by X-ray diffraction, and CuAl2O4 was found to be the predominant phase throughout the reactions. The experimental results indicate different CuAl2O4 initiating temperatures for two alumina materials, and the optimal temperature for CuAl2O4 formation is around 1100°C. To monitor the stabilization effect, prolonged leaching tests were carried out to leach sintered products for up to 20d. The results clearly demonstrate a substantial decrease in copper leachability for products with higher CuAl2O4 content formed from both alumina precursors despite their different sintering behavior. Meanwhile, the leachability of aluminum was much lower than that of copper, and it decreased by more than fourfold through the formation of CuAl2O4 spinel in γ-Al2O3 system. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering multiphase copper-bearing industrial sludge with aluminum-rich ceramic raw materials, and suggests a promising and reliable technique for reusing industrial sludge. PMID:25299935

  16. Atmospheric Deposition of Indium in the Northeastern United States: Flux and Historical Trends.

    PubMed

    White, Sarah Jane O; Keach, Carrie; Hemond, Harold F

    2015-11-01

    The metal indium is an example of an increasingly important material used in electronics and new energy technologies, whose environmental behavior and toxicity are poorly understood despite increasing evidence of detrimental health impacts and human-induced releases to the environment. In the present work, the history of indium deposition from the atmosphere is reconstructed from its depositional record in an ombrotrophic bog in Massachusetts. A novel freeze-coring technique is used to overcome coring difficulties posed by woody roots and peat compressibility, enabling retrieval of relatively undisturbed peat cores dating back more than a century. Results indicate that long-range atmospheric transport is a significant pathway for the transport of indium, with peak concentrations of 69 ppb and peak fluxes of 1.9 ng/cm2/yr. Atmospheric deposition to the bog began increasing in the late 1800s/early 1900s, and peaked in the early 1970s. A comparison of deposition data with industrial production and emissions estimates suggests that both coal combustion and the smelting of lead, zinc, copper, and tin sulfides are sources of indium to the atmosphere in this region. Deposition appears to have decreased considerably since the 1970s, potentially a visible effect of particulate emissions controls instated in North America during that decade. PMID:26426729

  17. New Cu(TiBN x ) copper alloy films for industrial applications

    NASA Astrophysics Data System (ADS)

    Lin, Chon-Hsin

    2016-06-01

    In this study, I explore a new type of copper alloy, Cu(TiBN x ), films by cosputtering Cu and TiB within an Ar/N2 gas atmosphere on Si substrates. The films are then annealed for 1 h in a vacuum environment at temperatures up to 700 °C. The annealed films exhibit not only excellent thermal stability and low resistivity but also little leakage current and strong adhesion to the substrates while no Cu/Si interfacial interactions are apparent. Within a Sn/Cu(TiBN x )/Si structure at 200 °C, the new alloy exhibits a minute dissolution rate, which is lower than that of pure Cu by at least one order of magnitude. Furthermore, the new alloy’s consumption rate is comparable to that of Ni commonly used in solder joints. The new films appear suitable for some industrial applications, such as barrierless Si metallization and new wetting and diffusion barrier layers required in flip-chip solder joints.

  18. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.

    2014-12-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  19. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    SciTech Connect

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van; Xu, M.; Vroon, Z.; Belt, R. van de; Buskens, P. E-mail: buskens@dwi.rwth-aachen.de

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  20. Influence of copper to indium atomic ratio on the properties of Cu-In-Te based thin-film solar cells prepared by low-temperature co-evaporation

    SciTech Connect

    Mise, Takahiro; Nakada, Tokio

    2012-09-15

    The influence of copper to indium atomic ratio (Cu/In) on the properties of Cu-In-Te based thin films and solar cells was investigated. The films (Cu/In = 0.38-1.17) were grown on both bare and Mo-coated soda-lime glass substrates at 250 Degree-Sign C by single-step co-evaporation using a molecular beam epitaxy system. Highly (112)-oriented CuInTe{sub 2} films were obtained at Cu/In ratios of 0.84-0.99. However, stoichiometric and Cu-rich films showed a poor film structure with high surface roughness. The films consist of polyhedron-shaped grains, which are related to the coexistence of a Cu{sub 2-x}Te phase, and significant evidence for the coexistence of the Cu{sub 2-x}Te phase in the stoichiometric and Cu-rich films is presented. KCN treatment was performed for the films in order to remove the Cu{sub 2-x}Te phase. The stoichiometric CuInTe{sub 2} thin films exhibited a high mobility above 50 cm{sup 2}/V s at room temperature after the KCN treatment. A preliminary solar cell fabricated using a 1.4-{mu}m-thick Cu-poor CuInTe{sub 2} thin film (Cu/In = 0.84, E{sub g} = 0.988 eV) yielded a total-area efficiency of 2.10%. The photovoltaic performance of the cell was improved after long-term ambient aging in dark conditions.

  1. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  2. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.

    PubMed

    Hunsom, M; Pruksathorn, K; Damronglerd, S; Vergnes, H; Duverneuil, P

    2005-02-01

    An electrochemical technique was tested in a laboratory scale to treat heavy metals (Cu2+, Cr6+ and Ni2+) from plating industrial effluent. The experiments were performed in a membrane reactor having a capacity of 1 l. Stainless-steel sheets with surface area of 0.011 m2 and titanium coated with ruthenium oxide were used as cathode and anode, respectively. The electrolyte was circulated at a constant flow rate (0.42 l/min) and the pH was kept constant at 1. Applied current densities were 10 and 90 A/m2. According to the experiment, it was found that a membrane reactor with plane electrode was capable for treating plating wastewater with low energy consumption (42.30 kWh/kg metal) and low operating cost (5.43 US dollars/m3). More than 99% of metal reduction was achieved and the final concentrations of copper, chromium and nickel in treated water were 0.10-0.13, 0.19-0.20 and 0.05-0.13 ppm, respectively. The brightener had no effect on copper reduction whereas hexavalent chromium had strong effect. The kinetic of copper reduction in the presence of hexavalent chromium was modeled as a two-step process with respect to copper concentration. PMID:15707634

  3. COPPER(1-Y)SILVER(Y)INDIUM - DISULFIDE(1-X)SELENIDE(2X) as a Prototype of the Pentenary Chalcopyrite Semiconductor Systems.

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn Harrison

    The group III-V mixed alloy quarternary semiconductors, such as Ga(,(1-y))In(,y)As(,(1-x))P(,x) have been extensively employed in lattice matching different semiconducting layers (at specific bandgaps) to form heterojunction electro-optical devices. However, these cover only a limited set of direct bandgap/lattice constant combinations. The analogous pentenary alloys, consisting of the ternary chalcopyrite groups I -III-VI(,2) and II-IV-V(,2), have the potential of similar applications as they cover an even wider band/lattice range. As a prototype of such alloys, samples of the pentenary Cu(,(1 -y))Ag(,y)InS(,2(1-x))Se(,2x) have been synthesized and studied. Samples were prepared by reacting stoichimetric powder mixtures at about 900 C. X-ray diffractometry tests suggest the compounds maintained complete powder solid solubility throughout the system in the chalcopyrite crystal structure. The intrinsic conductivity type of the alloys appear to follow a trend towards n-type for silver and sulfur rich compounds, while forming p-type for copper and selenium rich materials. The bandgap of these samples were measured using cathodoluminescence techniques, which generally have some ambiguity in their resulting estimates. To generate better values of the band parameters extensive computer modeling for the emission spectra from heavily doped direct bandgap materials was done. The effect of band tails and Gaussian impurity states on the luminescence spectra was studied for changes in doping densities, temperature and carrier injection levels. Formulae were derived from these models to obtain better estimates of the bandgap and impurity activation levels. Algorithms were developed to obtain the impurity spreading energy of a tailed or Gaussian band, and the quasi-Fermi energy levels for injected current in a material with a specific band structure. Cathodoluminescence measurements were made at 300 and 77 K on the samples. As predicted by the models, it was found easier to

  4. Ammonia Leaching: A New Approach of Copper Industry in Hydrometallurgical Processes

    NASA Astrophysics Data System (ADS)

    Radmehr, Vahid; Koleini, Seyed Mohammad Javad; Khalesi, Mohammad Reza; Tavakoli Mohammadi, Mohammad Reza

    2013-10-01

    Ammonia and ammonium salts have been recognized as effective leaching agents in hydrometallurgical processes due to low toxicity and cost, easy recovery and high selective recovery of metals. New research findings on considerable advantages of leaching by these agents and elimination of problems associated with acid leaching have resulted in a new approach in the world to this method. The investigations in this field indicate more frequent use of this method for extracting copper from ore and concentrate relative to other basic metals. In this paper, an attempt was made to describe the basis and different ammonia leaching methods and present the major research activities in this field for copper. Also latest findings and related novel processes have been presented. Comparisons including assessment of advantages and disadvantages of this method relative to acid leaching method, kinetic study of copper ammonia leaching and evaluation of Eh-pH diagrams in a system containing water and ammonia are other parts of this study. Finally, by describing the studies on copper extraction from the resulting pregnant solutions, the applicable extraction agents have been reviewed.

  5. Fluxless indium and silver-indium bonding processes for photonics and high-temperature electronics

    NASA Astrophysics Data System (ADS)

    So, William Wilson

    .5 kg. Indium has been a choice for bonding photonic devices such as laser diodes. A major concern is the change of solder composition during device operation caused by diffusion of copper atoms from the copper substrate. Copper atoms can easily diffuse into and react with the indium joint to form intermetallic compounds Cu2In, CuIn, Cu9In4, Cu11 In9. This reaction continues even after the bonding process is completed and the device is put in operation at some temperature. Consequently, the composition, the microstructure and physical properties of the joint change during the device life.To prevent the intermetallic formation, the solder joint must remain indium rich. A barrier metallization on the copper substrate is necessary to stop copper atoms from getting into the solder joint. Device packages usually need more than one soldering operation to complete. The indium-rich alloys have a 156°C melting temperature. During subsequent bonding operations, another process with a bonding temperature lower than 156°C is valuable. Desirable bonding temperature should be lower than 156°C but higher than the maximum temperature of the joint during device operation. In-Sn eutectic alloy with a melting temperature of 118°C is chosen. (Abstract shortened by UMI.)

  6. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    NASA Astrophysics Data System (ADS)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T.; Symietz, C.; Bonse, J.; Andree, S.; Krüger, J.; Heidmann, B.; Schmid, M.; Lux-Steiner, M.

    2016-03-01

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  7. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst.

    PubMed

    Kuld, Sebastian; Conradsen, Christian; Moses, Poul Georg; Chorkendorff, Ib; Sehested, Jens

    2014-06-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent picture of surface alloying between copper and zinc. This analysis enables a reinterpretation of the methods that have been used for the determination of the Cu surface area and provides an opportunity to independently quantify the specific Cu and Zn areas. This method may also be applied to other systems where metal-support interactions are important, and this work generally addresses the role of the carrier and the nature of the interactions between carrier and metal in heterogeneous catalysts. PMID:24764288

  8. Emissions from the copper-nickel industry on the Kola Peninsula and at Noril'sk, Russia

    USGS Publications Warehouse

    Boyd, Ron; Barnes, S.-J.; De Caritat, P.; Chekushin, V.A.; Melezhik, V.A.; Reimann, C.; Zientek, M.L.

    2009-01-01

    Published estimates for base metal emissions from the copper-nickel industry on the Kola Peninsula are re-examined in the light of (a) chemical data on the composition of the ores; (b) official emission figures for 1994; and (c) modelled emissions based on dry and wet deposition estimates derived from data for snow and rain samples collected in 1994. The modelled emissions, official emission figures and chemical data are mutually compatible for Ni, Cu and Co and show that previously published figures underestimated the emissions of the major elements, Ni and Cu (though within the same order of magnitude) and overestimated the emissions of As, Pb, Sb and Zn by up to several orders of magnitude, in some cases exceeding the calculated total input to the plants. Published estimates have neglected information on the nature and chemistry of the ores processed in metallurgical industries in the Noril'sk area of Siberia and the Urals. Revised emission estimates for 1994, using knowledge of the chemistry of the ores, are proposed: taken with published information on total emissions up to 2000 these data give an indication of emission levels in more recent years. ?? 2008 Elsevier Ltd. All rights reserved.

  9. Indium sealing techniques.

    NASA Technical Reports Server (NTRS)

    Hochuli, U.; Haldemann, P.

    1972-01-01

    Gold films are used as an alloying flux to form 5-micron-thick indium film seals at temperatures below 300 C. Pyrex was sealed to quartz, ULE, CER-VIT, Irtran 2, Ge, GaAs, Invar, Kovar, Al, and Cu. The seals can also be used as current feedthroughs and graded seals.

  10. Respirable Indium Exposures, Plasma Indium, and Respiratory Health Among Indium-Tin Oxide (ITO) Workers

    PubMed Central

    Cummings, Kristin J.; Virji, M. Abbas; Park, Ji Young; Stanton, Marcia L.; Edwards, Nicole T.; Trapnell, Bruce C.; Carey, Brenna; Stefaniak, Aleksandr B.; Kreiss, Kathleen

    2016-01-01

    Background Workers manufacturing indium-tin oxide (ITO) are at risk of elevated indium concentration in blood and indium lung disease, but relationships between respirable indium exposures and biomarkers of exposure and disease are unknown. Methods For 87 (93%) current ITO workers, we determined correlations between respirable and plasma indium and evaluated associations between exposures and health outcomes. Results Current respirable indium exposure ranged from 0.4 to 108 μg/m3 and cumulative respirable indium exposure from 0.4 to 923 μg-yr/m3. Plasma indium better correlated with cumulative (rs = 0.77) than current exposure (rs = 0.54) overall and with tenure ≥1.9 years. Higher cumulative respirable indium exposures were associated with more dyspnea, lower spirometric parameters, and higher serum biomarkers of lung disease (KL-6 and SP-D), with significant effects starting at 22 μg-yr/m3, reached by 46% of participants. Conclusions Plasma indium concentration reflected cumulative respirable indium exposure, which was associated with clinical, functional, and serum biomarkers of lung disease. PMID:27219296

  11. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    NASA Astrophysics Data System (ADS)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    Land filling is the most common method of disposal of solid waste all over the world. As well as municipal solid waste, industrial wastes, which may contain hazardous substances, are also received by landfills in many countries. Leachate is one of the problems arising from landfills. When water percolates through solid wastes, contaminants are leached into solution. The major concern with the movement of leachate into the subsurface aquifer is the fate of the constituents found in leachate. The fate of heavy metals is the greatest interest in leachate. Several treatment technologies have been developed for eliminating heavy metals recently. Adsorption is one of the most interesting methods that it has been successfully applied for the heavy metal removal. Activated carbons were widely used as adsorbent materials because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. However, it is restricted due to its relatively high price, high operation costs, and problems with generation for the industrial scale applications. Recently, more research efforts have been focused on effective sorbents material in order to minimize the processing cost and solve their disposal problems in an environmentally sustainable way. Adsorption of metal ions onto clay minerals has been studied extensively because both metal ions and clays are common components in nature. The cost of clays is relatively low as compared to other alternative adsorbents. Furthermore, the high specific surface area, chemical and mechanical stability, variety of structural and surface properties and higher values of cation exchange capacities make the clays an excellent group of adsorbents. Sepiolite (Si12O30Mg8(OH)4(H2O)4•8H2O) is a natural, fibrous clay mineral with fine microporous channels running parallel to the length of the fibers. The structure of sepiolite, in some aspects, is similar to those of other 2:1 trioctahedral silicates, such

  12. Sorption of indium (III) onto carbon nanotubes.

    PubMed

    Alguacil, F J; Lopez, F A; Rodriguez, O; Martinez-Ramirez, S; Garcia-Diaz, I

    2016-08-01

    Indium has numerous applications in different industrial sectors and is not an abundant element. Therefore appropriate technology to recover this element from various process wastes is needed. This research reports high adsorption capacity of multiwalled carbon nanotubes (MWCNT) for In(III). The effects of pH, kinetics, isotherms and adsorption mechanism of MWCNT on In(III) adsorption were investigated and discussed in detail. The pH increases improves the adsorption capacity for In(III). The Langmuir adsorption model is the best fit with the experimental data. For the kinetic study, the adsorption onto MWCNT could be fitted to pseudo second-order. The adsorption of indium(III) can be described to a mechanism which consists of a film diffusion controlled process. Metal desorption can be achieved with acidic solutions. PMID:27085001

  13. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland surface waters using common onion, Allium cepa bioassay.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2015-02-01

    Toxicity of copper, cadmium and chromium relevant to established tolerance limits for the discharge of industrial effluents into inland surface waters was evaluated by Allium cepa bioassay. The roots of A. cepa bulbs exposed to Cu(2+) (3 mg L(-1)) individually or in mixtures with Cd(2+) (0.1 mg L(-1)) or/and Cr(6+) (0.1 mg L(-1)) exhibited the highest growth inhibition, mitotic index depression and nuclear abnormalities. Root tip cells exposed to Cr(6+) or Cd(2+) alone or in mixture displayed significant chromosomal aberrations in comparison to the controls. EC50s for root growth inhibition followed the order Cu(2+) < Cd(2+) < Cr(6+) indicating greater toxicity of copper. The results show that the industrial effluent discharge regulatory limits for these metals need to be reviewed considering potential cyto-genotoxicity to biological systems. PMID:25201323

  14. The use of exopolysaccharide - producing cyanobacteria as biosorbents to remove copper from industrial waste - waters

    NASA Astrophysics Data System (ADS)

    Rossi, Federico; El Badaoui, Hajar; De Philippis, Roberto

    2014-05-01

    The accumulation of heavy metals in water bodies represent a widespread cause of pollution, and poses the need to develop novel technologies to remove metals at the source, abating the costs of the commonly used chemical and physio-chemical methods. The use of cyanobacteria as biosorbents has been acknowledged as a promising alternative, due to their charged polysaccharidic envelopes which have affinity for metal ions. Nonetheless, the reseach must move towards: i) assessing the effectiveness of the process towards complex wastewater solutions which contain chemical species that can interfere with the sorption process, also considering the characteristics of the used strains, and ii) developing novel devices that support biomass growth and use, in order to achieve a scaling up of the process. We compared the specific removal of three cyanobacteria, Cyanothece 16 Som 2, Cyanothece ET5 and Cyanospira capsulata, towards Cu2+ contained, with various other metals, in two industrial effluents (one at pH 1.26 and one at pH 10.26). The strains were selected due to their previously assayed affinity toward Cu2+ in pure solutions (De Philippis et al. 2011). Acid or basic pretreatments (respectively for the acid and the basic effluent) were performed in the tentative to increase the specific removal. Metal concentration in solution, before and after the contact with the biomasses, was determined by atomic absorption spectrometry. Specific removals resulted different to those obtained towards pure metal solutions, likely due to the presence of other competing ions. Cyanothece 16 Som 2 showed the highest Cu2+ specific removal towards both the effluents. The pretreatment was effective only in the case of the basic effluent. Results proved the capacity of Cyanothece 16 Som 2 to act as a selective Cu2+ sorbent even in the presence of complex solutions. A novel prototype device is being projected in order to support the growth and the immobilization of the cyanobacterial biomass for

  15. Soil acidity status in the vicinity of the Severonikel copper-nickel industrial complex, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Kashulina, G. M.; Kubrak, A. N.; Korobeinikova, N. M.

    2015-04-01

    The physicochemical properties of soils exposed to emissions from the Severonikel industrial complex (one of the largest sources of SO2 and heavy metals in northern Europe) for 70 years were studied. The results showed that even after the long-term impact of heavy SO2 emissions, the , the content of exchangeable bases, and the base saturation remained at the medium and high levels inherent to undisturbed soils of the region studied. An exclusion was the illuvial horizon of the podzols, where a relative reduction of the (at the level of low values of the natural variation) was revealed. At the same time, the hydrolytic acidity and cation exchange capacity in most samples of podzols, peat eutrophic, and mountain soils in the zone exposed to emissions (local zone) were also reduced. This fact is explained by indirect effects of the emissions: the gradual decrease in the organic matter content in the soils due to the destruction of the vegetation, the absence of fresh plant falloff, the development of erosion, and the disturbance of the hydrological regime of the soils and landscapes.

  16. Indium acetate toxicity in male reproductive system in rats.

    PubMed

    Lee, Kuo-Hsin; Chen, Hsiu-Ling; Leung, Chung-Man; Chen, Hsin-Pao; Hsu, Ping-Chi

    2016-01-01

    Indium, a rare earth metal characterized by high plasticity, corrosion resistance, and a low melting point, is widely used in the electronics industry, but has been reported to be an environmental pollutant and a health hazard. We designed a study to investigate the effects of subacute exposure of indium compounds on male reproductive function. Twelve-week old male Sprague-Dawley rats were randomly divided into test and control groups, and received weekly intraperitoneal injections of indium acetate (1.5 mg/kg body weight) and normal saline, respectively, for 8 weeks. Serum indium levels, cauda epididymal sperm count, motility, morphology, chromatin DNA structure, mitochondrial membrane potential, oxidative stress, and testis DNA content were investigated. The indium acetate-treated group showed significant reproductive toxicity, as well as an increased percentage of sperm morphology abnormality, chromatin integrity damage, and superoxide anion generation. Furthermore, positive correlations among sperm morphology abnormalities, chromatin DNA damage, and superoxide anion generation were also noted. The results of this study demonstrated the toxic effect of subacute low-dose indium exposure during the period of sexual maturation on male reproductive function in adulthood, through an increase in oxidative stress and sperm chromatin DNA damage during spermiogenesis, in a rodent model. PMID:25044390

  17. Mineral of the month: indium

    USGS Publications Warehouse

    George, Micheal W.

    2004-01-01

    Indium was discovered in Germany in 1863. Although it is a lustrous silver-white color, the finders named the new material for the “indigo” spectral lines the mineral created on the spectrograph. Indium ranks 61st in abundance in Earth’s crust and is about three times more abundant than silver or mercury.

  18. Effect of Lead and Copper on the Growth of Heavy Metal Resistance Fungi Isolated from Second Industrial City in Riyadh, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Siham, Al-Kadeeb A.

    In this study, soil samples for isolation of heavy metal resistance fungi were collected from different distance of Electric Meter manufactory in Second Industrial City, Riyadh, Saudi Arabia. Soil samples were analyzed chemically for heavy metal concentrations, total soluble salts and pH and mechanically for composition of soils. Saturation percent were determined also. Eighteen fungal isolates were grown in 10 mM concentration of either lead or copper ions. Aspergillus was predominant and represented by 6 species. Fusarium was represented by 4 species. Mucor was represented by 3 species. Penicillium was represented by 2 species. While Alternaria, Cephaliophora, Eurotium were represented by one species each. The intraspecific variability in growth response to Pb2+ and Cu2+ on agar and liquid culture was studied among isolated fungi. The growth rate of some fungi isolated on solid media was less sensitive to addition of lead or copper than biomass production in liquid culture.

  19. [Health effects of solar cell component material. Toxicity of indium compounds to laboratory animals determined by intratracheal instillations].

    PubMed

    Tanaka, Akiyo; Hirata, Miyuki

    2013-01-01

    Owing to the increasing interest being paid to the issue of the global environment, the production of solar cells has increased rapidly in recent years. Copper indium gallium diselenide (CIGS) is a new efficient thin film used in some types of solar cell. Indium is a constitutive element of CIGS thin-film solar cells. It was thought that indium compounds were not harmful until the beginning of the 1990s because there was little information regarding the adverse health effects on humans or animals arising from exposure to indium compounds. After the mid-1990s, data became available indicating that indium compounds can be toxic to animals. In animal studies, it has been clearly demonstrated that indium compounds cause pulmonary toxicity and that the dissolution of indium compounds in the lungs is considerably slow, as shown by repeated intratracheal instillations in experimental animals. Thus, it is necessary to pay much greater attention to human exposure to indium compounds, and precautions against possible exposure to indium compounds are paramount with regard to health management. PMID:23718969

  20. Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper.

    PubMed

    Scholz, Miklas; Xu, Jing

    2002-06-01

    The aim of this study was to investigate the treatment efficiency of passive vertical-flow wetland filters containing different macrophytes (Phragmites and/or Typha) and granular media with different adsorption capacities. Gravel, sand, granular activated carbon, charcoal and Filtralite (light expanded clay) were used as filter media. Different concentrations of lead and copper sulfate were added to polluted urban stream inflow water to simulate pretreated mine wastewater. The relationships between growth media, microbial and plant communities as well as the reduction of predominantly lead, copper and five-day biochemical oxygen demand (BOD5) were investigated. An analysis of variance showed that concentration reductions (mg l(-1)) of lead, copper and BOD5 were significantly similar for the six experimental wetlands. Microbial diversity was low due to metal pollution and similar for all filters. There appears to be no additional benefit in using adsorption media and macrophytes to enhance biomass performance during the first 10 months of operation. PMID:12056494

  1. Current and historical record of indium deposition from the atmosphere to an ombrotrophic bog in northeastern United States

    NASA Astrophysics Data System (ADS)

    White, S. O.; Keach, C.; Hemond, H.

    2012-12-01

    The industrial production of indium is increasing dramatically due to new uses in the rapidly growing electronics, photovoltaic, and LED industries. Little is known, however, about the natural or industrial cycling of indium or its environmental behavior, despite the fact that industrial emissions to the atmosphere appear to have already exceeded natural emissions. The history of metal deposition from the atmosphere is often reflected in the vertical profiles of the metals in ombrotrophic bogs, which by definition do not receive surface or subsurface runoff. Analysis of a peat core obtained using a novel freeze corer at Thoreau's Bog in Concord, MA shows that the rate of indium deposition to the bog increased beginning in the early 1900s, peaked in the early 1970s, and then decreased dramatically to pre-1900 values by the present time. This profile is counter to the pattern of indium's industrial use, which has increased only in the past 30-40 years. The profile coincides well, however, with the estimated history of particulate emissions from smelting and from coal combustion in North America. Back-trajectory analysis suggests that smelting was the dominant source of atmospheric particles with high indium concentrations deposited to the bog. This study suggests that metal smelting and coal burning are currently indium's primary industrial environmental sources. While releases from the semiconductor and electronics industries are comparatively small at present, this scenario may change with the rapid growth of indium use in these industries.

  2. Indium Second-Surface Mirrors

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1982-01-01

    Second-surface mirrors are formed by vapor deposition of indium onto glass. Mirrors have reflectances comparable to those of ordinary silver or aluminized mirrors and are expected to show superior corrosion resistance. Mirrors may be used in solar concentrators.

  3. Indium oxide based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shukla, Sarika; Sharma, Navneet K.

    2016-05-01

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  4. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  5. Groundwater composition near the nickel—copper smelting industry on the Kola Peninsula, central Barents Region (NW Russia and NE Norway)

    NASA Astrophysics Data System (ADS)

    de Caritat, Patrice; Danilova, Svetlana; Jæger, Øystein; Reimann, Clemens; Storrø, Gaute

    1998-07-01

    The chemical composition of 185 groundwater samples collected from two catchments in the extreme NE Norway and NW Russia over the period April 1994 to November 1995 is reported in terms of Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, K, Li, Mg, Mn, Mo, Na, Ni, NO 3, P, Pb, PO 4,Rb, S, Sb, Se, Si, SO 4, Sr, Th, Ti, Tl, U, V and Zn concentrations (as determined by ICP-MS, ICP-AES and IC), pH and electrical conductance. One catchment (C2) is located in Russia 5 km downwind of the nickel—copper ore smelting industry in Monchegorsk, which is a major SO 2 and trace metal emission source, the other (C5) is located in Norway 30 km off-wind from the nickel-copper ore smelter in Nikel and 52 km off-wind from the nickel—copper ore roasting plant of Zapoljarniy, which are also significant emitters of inorganic atmospheric pollutants. Groundwater chemistry mostly reflects the mineralogical composition of the gabbro aquifer in C2 and the Quaternary deposits in C5, although groundwater in C2 also shows signs of incipient contamination from surface waters (heavy metals, sulphate, chloride). Groundwater in C2 appears to have been acidified by S-compounds emitted from Monchegorsk, but the groundwater's capacity to neutralise incoming acidity has not been exhausted. In C5, groundwater has not been acidified to any extent and has a high acid neutralising capacity. This study demonstrates that the geological substrate of a catchment is a fundamental control on how groundwater responds to atmospheric pollution, even if the latter is severe.

  6. Rapid-extraction oxidation process to recover and reuse copper chromium and arsenic from industrial wood preservative sludge.

    PubMed

    Kazi, F K M; Cooper, P A

    2002-01-01

    Chromated copper arsenate (CCA) wood preservative can form insoluble sludges when the hexavalent chromium component is reduced by wood extractives, wood particles and preservative additives in the solution. This sludge accumulates in treating solution work tanks, sumps and in-line filters and must be disposed of as hazardous wastes by waste disposal companies at high costs. A number of commercial sludges were investigated and found to contain 18-94% copper, chromium and arsenic as oxides combined with sand, oil, wood particles, additives and wood extractives. We have developed a multi-stage recycling process whereby approximately 97% of the CCA components are recovered from the sludge. It involves extraction with sodium hypochlorite to remove and oxidize chromium (more than 90%) and extract most of the arsenic (approx. 80%) followed by extraction of the copper and remaining arsenic and chromium with phosphoric acid. The phosphoric acid extract contains some trivalent chromium, which is subsequently oxidized by sodium hypochlorite. The combined oxidized extract containing CrVI, CuII and AsV was compatible with CCA treating solutions and could be re-used commercially for treating wood without having a significant effect on the preservative fixation rate or the leach resistance of the treated wood. A cost analysis showed that the economic savings from recovery of CCA chemicals and reduced landfill costs exceeded the variable costs for materials and energy for the process by as much as Can $966 per tonne of sludge if sodium sulfite can be acquired in bulk quantities for the process. PMID:11952176

  7. Utilizing an earthworm bioassay (Eisenia andrei) to assess a South African soil screening value with regards to effects from a copper manufacturing industry.

    PubMed

    Maboeta, Mark; Fouché, Tanya

    2014-09-01

    Metal contamination of soil due to industrialization has become an increasingly important problem in South Africa. This study aimed to investigate the potential impact of a copper (CuSO4·5H2O) production company on the soil environment. Bioassays using Eisenia andrei were performed to assess changes in biomass, reproduction and a biomarker, neutral red retention time, over a 28 day period. Earthworms exposed to soils from the Cu production site differed significantly (p < 0.05) from those exposed to soils 500 m and 5 km away in terms of the measured endpoints. These findings are consistent with the results from the chemical analysis which showed an elevated soil Cu content for both sites closest to the chemical production company compared to the reference site. The results confirm the importance and predictive value of using bioassays in conjunction with chemical analysis during soil quality assessments. PMID:24875827

  8. Influence of alloying elements on friction and wear of copper

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1972-01-01

    The friction and wear characteristics were determined for copper binary alloys containing 10 atomic percent aluminum, silicon, indium, and tin. A ternary alloy containing 10 atomic percent aluminum and 5 atomic percent silicon was also examined. The effectiveness of each of the alloying elements aluminum and silicon were very effective in reducing friction. Silicon, however, also reduced wear appreciably. With lubrication, silicon, indium, and tin were all effective alloying elements in reducing friction and wear from values obtained for copper. Silicon was the most effective single element in reducing friction and wear in dry sliding and with lubrication.

  9. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    NASA Technical Reports Server (NTRS)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  10. Indium: Understanding its Behavior in Magmatic-Hydrothermal Systems Today to Meet Tomorrow's Demand

    NASA Astrophysics Data System (ADS)

    Piccoli, P. M.; Kayser, S.; Candela, P. A.

    2014-12-01

    Indium is integral to modern electronic devices, and is an essential component in indium-tin oxide (ITO), an electrically conductive, and optically transparent material that forms the basis for touch screens and high-end LCDs. World-wide production of indium has increased almost seven-fold from 1990 to 2012. Continued increases in production can be aided by better models for the formation of indium-bearing ores, yet little is known about the behavior of indium in magmatic-hydrothermal systems. As a first step toward solving this problem, we performed experiments to evaluate the partitioning of indium between pyrrhotite (po) and silicate melt (m). Experiments were performed at 800 °C, 100 MPa, and fO2 ≈ NNO in a po-saturated, vapor-brine-rhyolite melt system for durations of 5 to15 days. Three separate series of experiments were conducted in which each series differed by the aqueous solution added. The first series of experiments were prepared with pure water, the second series of experiments with a 1.01 M chloride solution and the third series with a 0.35 M CuCl2-bearing starting aqueous solution. These changes in starting material produced changes in the composition of the run product po and glass. The partition coefficient D(po/m) for the pure-water series experiments is on the order of ≈ 10. The addition of chloride-bearing aqueous solution leads to a decrease in the partition coefficient to ≈ 1.5. The copper-bearing experiments yield a D ≈ 3. The lower values for D in the chloride-bearing experiments may be explained by indium-chloride interactions in the melt phase. Although the D does vary depending upon the composition of the starting aqueous solution, an order of magnitude estimate for D, for general modeling purposes, can be made by assuming a value of 4. By using reasonable estimates of the mass fraction of po that crystallizes in crustal magmatic systems, the proportion of indium sequestered by po, during fractional crystallization, can be

  11. Nanomechanical Characterization of Indium Nano/Microwires

    PubMed Central

    2010-01-01

    Nanomechanical properties of indium nanowires like structures fabricated on quartz substrate by trench template technique, measured using nanoindentation. The hardness and elastic modulus of wires were measured and compared with the values of indium thin film. Displacement burst observed while indenting the nanowire. ‘Wire-only hardness’ obtained using Korsunsky model from composite hardness. Nanowires have exhibited almost same modulus as indium thin film but considerable changes were observed in hardness value. PMID:20596474

  12. Ionization levels of doped copper indium sulfide chalcopyrites.

    PubMed

    Tablero, C

    2012-02-01

    The electronic structure of modified chalcopyrite CuInS(2) has been analyzed from first principles within the density functional theory. The host chalcopyrite has been modified by introducing atomic impurities M at substitutional sites in the lattice host with M = C, Si, Ge, Sn, Ti, V, Cr, Fe, Co, Ni, Rh, and Ir. Both substitutions M for In and M for Cu have been analyzed. The gap and ionization energies are obtained as a function of the M-S displacements. It is interesting for both spintronic and optoelectronic applications because it can provide significant information with respect to the pressure effect and the nonradiative recombination. PMID:22239718

  13. The oxidation of copper-indium diselenide surfaces

    SciTech Connect

    Diniz, A.S.A.C.

    1997-12-31

    The mechanisms, chemistry, structure and interface properties of native and grown oxides on CuInSe{sub 2} are presented. During thermal oxidation of this ternary semiconductor, the composition and the electrical properties are controlled, primarily by the temperature and duration of oxidation treatment. The oxygen reacts principally with In, leaving the Cu and Se to readjust at the interface to form a Cu{sub x}Se transition layer. The thermal oxide consists of an In{sub 2}O{sub 3} matrix and having either inclusion of Cu or SeO{sub 2} particles, depending on the precise formation conditions. The Cu{sub x}Se transition layer eventually acts as a barrier that prevents further oxidation of the underlying CuInSe{sub 2}.

  14. Lattice dynamics in copper indium diselenide by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Derollez, P.; Fouret, R.; Laamyem, A.; Hennion, B.; Gonzalez, J.

    1999-05-01

    The phonon dispersion curves along the [100] and [001] directions of CuInSe2 have been measured by inelastic neutron scattering. The neutron measurements reveal the uncertainty of optical measurements because of the large absorption of this material. The lattice dynamics is analysed with a rigid ion model: Born-von Karman short range interactions associated with long range electrostatic forces. The calculated dispersion curves are in good agreement with the experiment. The atomic displacements associated with each vibrational mode are used to discuss the optical phonons. The obtained results provide a strong experimental basis from which we can validate the ab initio methods.

  15. High efficiency thin film copper indium diselenide solar cell

    NASA Astrophysics Data System (ADS)

    Shah, Nitinkumar Maheshchandra

    The rapidly expanding oil sands of western Canada, the third largest reserves in the world, are creating serious challenges, such as ecological harm, labour shortages, and extensive natural gas consumption. This thesis develops three practical real options models to evaluate the feasibility of oil sands projects and to estimate the optimal rate of oil sands expansion, while accounting for the stated concerns. (Abstract shortened by UMI.).

  16. Copper transport.

    PubMed

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats. PMID:9587137

  17. Adsorption of copper(II) by ``waste`` Fe(III)/Cr(III) hydroxide from aqueous solution and radiator manufacturing industry wastewater

    SciTech Connect

    Namasivayam, C.; Senthilkumar, S.

    1999-01-01

    Waste Fe(III)/Cr(III) hydroxide has been used as an adsorbent for the effective removal of copper from aqueous solution. The parameters studied include agitation time, Cu(II) concentration, adsorbent dose, temperature, and pH. The percent adsorption of Cu(II) increased with a decrease in the concentration of Cu(II) and an increase in temperature. Quantitative removal of Cu(II) by 50 mg/50 mL adsorbent was observed at pH 5.0 for a Cu(II) concentration of 40 mg/L. The equilibrium data fit well with the Langmuir isotherm. The adsorption capacity (Q{sub 0}) calculated from the Langmuir isotherm was 92.59 mg/g at an initial pH of 5.0 at 32 C. Desorption of Cu(II) from a Cu(II)-loaded adsorbent was 55.4% at pH 3.0. Application of the adsorbent for the removal of Cu(II) was successfully demonstrated using radiator manufacturing industry wastewater.

  18. Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent.

    PubMed

    Aman, Tehseen; Kazi, Asrar Ahmad; Sabri, Muhammad Usman; Bano, Qudsia

    2008-05-01

    A new sorbent potato peels, which are normally discarded as solid waste for removing toxic metal ion Cu(II) from water/industrial waste water have been studied. Potato peels charcoal (PPC) was investigated as an adsorbent of Cu(II) from aqueous solutions. Kinetic and isotherm studies were carried out by studying the effects of various parameters such as temperature, pH and solid liquid ratios. The optimum pH value for Cu(II) adsorption onto potato peels charcoal (PPC) was found to be 6.0. The thermodynamic parameters such as standard Gibb's free energy (Delta G degrees ), standard enthalpy (Delta H degrees ) and standard entropy (DeltaS degrees ) were evaluated by applying the Van't Hoff equation. The thermodynamics of Cu(II) adsorption onto PPC indicates its spontaneous and exothermic nature. The equilibrium data at different temperatures were analyzed by Langmuir and Freundlich isotherms. PMID:18215510

  19. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  20. Recycling of indium from CIGS photovoltaic cells: potential of combining acid-resistant nanofiltration with liquid-liquid extraction.

    PubMed

    Zimmermann, Yannick-Serge; Niewersch, Claudia; Lenz, Markus; Kül, Zöhre Zohra; Corvini, Philippe F-X; Schäffer, Andreas; Wintgens, Thomas

    2014-11-18

    Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called "urban mining" considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper-indium-gallium- selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (<3 bar). Retentates were then subjected to a further selective liquid-liquid extraction (LLE). Even at very acidic pH indium was retained to >98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m(-2) CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by >60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥ 0.6), it may be applied in hydrometallurgy typically using acidic conditions. PMID:25310266

  1. Process for Patterning Indium for Bump Bonding

    NASA Technical Reports Server (NTRS)

    Denis, Kevin

    2012-01-01

    An innovation was created for the Cosmology Large Angular Scale Surveyor for integration of low-temperature detector chips with a silicon backshort and a silicon photonic choke through flipchip bonding. Indium bumps are typically patterned using liftoff processes, which require thick resist. In some applications, it is necessary to locate the bumps close to high-aspect-ratio structures such as wafer through-holes. In those cases, liftoff processes are challenging, and require complicated and time-consuming spray coating technology if the high-aspect-ratio structures are delineated prior to the indium bump process. Alternatively, processing the indium bumps first is limited by compatibility of the indium with subsequent processing. The present invention allows for locating bumps arbitrarily close to multiple-level high-aspect-ratio structures, and for indium bumps to be formed without liftoff resist. The process uses the poor step coverage of indium deposited on a silicon wafer that has been previously etched to delineate the location of the indium bumps. The silicon pattern can be processed through standard lithography prior to adding the high-aspect-ratio structures. Typically, high-aspectratio structures require a thick resist layer so this layer can easily cover the silicon topography. For multiple levels of topography, the silicon can be easily conformally coated through standard processes. A blanket layer of indium is then deposited onto the full wafer; bump bonding only occurs at the high points of the topography.

  2. Production of ultrahigh purity copper using waste copper nitrate solution.

    PubMed

    Choi, J Y; Kim, D S

    2003-04-25

    The production of ultrahigh purity copper (99.9999%) by electrolysis in the presence of a cementation barrier has been attempted employing a waste nitric copper etching solution as the electrolyte. The amount of copper deposited on the cathode increased almost linearly with electrolysis time and the purity of copper was observed to increase as the electrolyte concentration was increased. At some point, however, as the electrolyte concentration increased, the purity of copper decreased slightly. As the total surface area of cementation barrier increased, the purity of product increased. The electrolyte temperature should be maintained below 35 degrees C in the range of investigated electrolysis conditions to obtain the ultrahigh purity copper. Considering that several industrial waste solutions contain valuable metallic components the result of present study may support a claim that electrowinning is a very desirable process for their treatment and recovery. PMID:12719148

  3. A Kinetic Study of Indium Leaching from Indium-Bearing Zinc Ferrite Under Microwave Heating

    NASA Astrophysics Data System (ADS)

    Zhang, Linye; Mo, Jiamei; Li, Xuanhai; Pan, Liuping; Liang, Xinyuan; Wei, Guangtao

    2013-12-01

    To obtain information about leaching reaction and kinetics of indium from indium-bearing materials under microwave heating (MH), leaching of indium from indium-bearing zinc ferrite (IBZF) has been investigated. IBZF samples under MH and under conventional heating (CH) were studied by X-ray diffraction and specific surface area. Compared with that of CH, the effect of MH and the effects of various control parameters on indium leaching were studied. The results showed that compared with CH, MH enhanced the indium leaching from IBZF and increased the leaching rate. The leaching behavior of indium from IBZF was analyzed by unreacted shrinking core model, and the regression of kinetic equations showed that leaching of indium from IBZF obeyed the model very well. The activation energies under MH and under CH were 77.374 kJ/mol and 53.555 kJ/mol, respectively; the ratio of frequency factor K 0(MH)/ K 0(CH) was 10,818.36. The activation mechanism involved in leaching of indium under MH was mainly the increase of reactant energy and effective collision, which caused by the thermal and nonthermal microwave effect. Compared with the activation energy, the effective collision played a more important role in the acceleration of leaching of indium.

  4. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  5. Indium Antimonide Nanowires: Synthesis and Properties

    NASA Astrophysics Data System (ADS)

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-e-Alam, Muhammad; Wang, Zhiming M.

    2016-03-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  6. Indium Antimonide Nanowires: Synthesis and Properties.

    PubMed

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-E-Alam, Muhammad; Wang, Zhiming M

    2016-12-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors. PMID:27009531

  7. Co-precipitation of Ni, Cr, Mn, Pb and Zn in industrial wastewater and sediment samples with copper(II) cyclo-hexylmethyldithiocarbamate for their flame atomic absorption spectrometric determination.

    PubMed

    Ipeaiyeda, Ayodele Rotimi; Odola, Adekunle Johnson

    2012-01-01

    A co-precipitation technique for nickel(II), chromium(II), manganese(II), lead(II) and zinc(II) with the aid of copper(II) cyclo-hexylmethyldithiocarbamate was established. The influences of some analytical parameters such as pH, sample volume, amounts of cyclo-hexylmethyldithiocarbamate and copper(II) on the recovery of metal ions were investigated. The heavy metals in the precipitate were determined by flame atomic absorption spectrophotometry. The range of detection limits for the heavy metals was 0.003-0.005 mg/L. The atomic spectrometric technique with co-precipitation procedure was successfully applied for the determination of Ni, Cr, Mn, Pb and Zn in industrial wastewater and sediment samples from Ladipo stream in Lagos, Nigeria. The mean concentrations for these metals using co-precipitation procedure were not significantly different from corresponding concentrations obtained using spectrometric techniques without co-precipitation procedure. PMID:22678206

  8. Mineral resource of the month: indium

    USGS Publications Warehouse

    Tolcin, Amy C.

    2011-01-01

    Geologically, the occurrence of indium minerals is rare. The element most often occurs as a sulfide inclusion or substitutes in other base-metal minerals, including cassiterite, chalcopyrite, sphalerite and stannite. Indium’s abundance in the crust is estimated to be 0.05 parts per million, which makes it more abundant than silver, but it is so widely disseminated that it does not occur in high enough concentrations to form mineable deposits. Therefore, indium is most often recovered from byproduct residues produced during the refining of lead and zinc. But only about one-quarter of the indium mined worldwide is refined into metal, as many indium-bearing concentrates are sent to refineries that do not have the capability of recovering the metal.

  9. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes. PMID:21656137

  10. Indium Single-Ion Frequency Standard

    NASA Technical Reports Server (NTRS)

    Nagourney, Warren

    2001-01-01

    A single laser-cooled indium ion is a promising candidate for an ultimate resolution optical time or frequency standard. It can be shown that single ions from group IIIA of the periodic table (indium, thallium, etc.) can have extremely small systematic errors. In addition to being free from Doppler, transit-time and collisional shifts, these ions are also quite insensitive to perturbations from ambient magnetic and electric fields (mainly due to the use of a J=0-0 transition for spectroscopy). Of all group IIIA ions, indium seems to be the most practical, since it is heavy enough to have a tolerable intercombination cooling transition rate and (unlike thallium) has transitions which are easily accessible with frequency multiplied continuous-wave lasers. A single indium ion standard has a potential inaccuracy of one part in 10(exp 18) for integration times of 10(exp 6) seconds. We have made substantial progress during the grant period in constructing a frequency standard based upon a single indium ion. At the beginning of the grant period, single indium ions were being successfully trapped, but the lasers and optical systems were inadequate to achieve the desired goal. We have considerably improved the stability of the dye laser used to cool the ions and locked it to a molecular resonance line, making it possible to observe stable cooling-line fluorescence from a single indium ion for reasonable periods of time, as required by the demands of precision spectroscopy. We have substantially improved the single-ion fluorescence signal with significant benefits for the detection efficiency of forbidden transitions using the 'shelving' technique. Finally, we have constructed a compact, efficient UV 'clock' laser and observed 'clock' transitions in single indium ions using this laser system. We will elaborate on these accomplishments.

  11. Quantification of indium in steel using PIXE

    NASA Astrophysics Data System (ADS)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J. C.

    1989-04-01

    The quantitative analysis of steel for endodontics tools was carried out using low-energy protons (≤ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important.

  12. Thermal conductance of pressed metallic contacts augmented with Indium foil or Apiezon-N (tm) grease at liquid helium temperatures

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Spivak, Alan L.

    1993-01-01

    The thermal conductance of pressed contacts which have been augmented with Indium foil or Apiezon-N (tm) grease was measured over the temperature range of 1.6 to 6.0 K, with applied forces from 22 N to 670 N. The sample pairs were fabricated from OFHC copper, 6061-T6 aluminum, free-machining brass, and 304 stainless steel. Although the thermal conductance was found to increase with increasing applied contact force, the force dependence was less than in earlier work. The addition of Indium foil or Apiezon-NT grease between the contact surfaces resulted in an improvement over uncoated surfaces ranging from a factor of approximately 3 for stainless steel to an order of magnitude for copper contacts.

  13. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  14. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  15. Copper Metallochaperones

    PubMed Central

    Robinson, Nigel J.; Winge, Dennis R.

    2014-01-01

    The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

  16. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  17. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  18. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  19. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  20. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  1. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  2. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  3. Indium-111 leukocyte scanning and fracture healing

    SciTech Connect

    Mead, L.P.; Scott, A.C.; Bondurant, F.J.; Browner, B.D. )

    1990-01-01

    This study was undertaken to determine the specificity of indium-111 leukocyte scans for osteomyelitis when fractures are present. Midshaft tibial osteotomies were performed in 14 New Zealand white rabbits, seven of which were infected postoperatively with Staphylococcus aureus per Norden's protocol. All 14 rabbits were scanned following injection with 75 microCi of indium 111 at 72 h after osteotomy and at weekly intervals for 4 weeks. Before the rabbits were killed, the fracture sites were cultured to document the presence or absence of infection. The results of all infected osteotomy sites were positive, whereas no positive scans were found in the noninfected osteotomies. We concluded from this study that uncomplicated fracture healing does not result in a positive indium-111 leukocyte scan.

  4. Transport in indium-decorated graphene

    NASA Astrophysics Data System (ADS)

    Chandni, U.; Henriksen, Erik A.; Eisenstein, J. P.

    2015-06-01

    The electronic-transport properties of single-layer graphene that has a dilute coating of indium adatoms have been investigated. Our studies establish that isolated indium atoms donate electrons to graphene and become a source of charged impurity scattering, affecting the conductivity as well as magnetotransport properties of the pristine graphene. Notably, a positive magnetoresistance is observed over a wide density range after In doping. The low-field magnetoresistance carries signatures of quantum interference effects which are significantly altered by the adatoms.

  5. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria.

    PubMed

    Andreazza, Robson; Okeke, Benedict C; Lambais, Márcio Rodrigues; Bortolon, Leandro; de Melo, George Wellington Bastos; Camargo, Flávio Anastácio de Oliveira

    2010-11-01

    Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L.) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1; Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg⁻¹ dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg⁻¹ of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg⁻¹ of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha⁻¹ of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas. PMID:20937516

  6. Sinterless Formation Of Contacts On Indium Phosphide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  7. Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide

    NASA Astrophysics Data System (ADS)

    Palimar, Sowmya; Bangera, Kasturi V.; Shivakumar, G. K.

    2013-12-01

    The present paper reports observations made on investigations carried out to study structural, optical and electrical properties of thermally evaporated ZnO thin films and their modulations on doping with metallic indium and indium oxide separately. ZnO thin film in the undoped state is found to have a very good conductivity of 90 Ω-1 cm-1 with an excellent transmittance of up to 90 % in the visible region. After doping with metallic indium, the conductivity of the film is found to be 580 Ω-1 cm-1, whereas the conductivity of indium oxide-doped films is increased up to 3.5 × 103 Ω-1 cm-1. Further, the optical band gap of the ZnO thin film is widened from 3.26 to 3.3 eV when doped with indium oxide and with metallic indium it decreases to 3.2 eV. There is no considerable change in the transmittance of the films after doping. All undoped and doped films were amorphous in nature with smooth and flat surface without significant modifications due to doping.

  8. The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants

    NASA Astrophysics Data System (ADS)

    Detweiler, Zachary M.; Wulfsberg, Steven M.; Frith, Matthew G.; Bocarsly, Andrew B.; Bernasek, Steven L.

    2016-06-01

    Metallic indium and its oxides are useful in electronics applications, in transparent conducting electrodes, as well as in electrocatalytic applications. In order to understand more fully the speciation of the indium and oxygen composition of the indium surface exposed to atmospheric oxidants, XPS, HREELS, and TPD were used to study the indium surface exposed to water, oxygen, and carbon dioxide. Clean In and authentic samples of In2O3 and In(OH)3 were examined with XPS to provide standard spectra. Indium was exposed to O2 and H2O, and the ratio of O2 - to OH- in the O1s XPS region was used to monitor oxidation and speciation of the surface. HREELS and TPD indicate that water dissociates on the indium surface even at low temperature, and that In2O3 forms at higher temperatures. Initially, OH- is the major species at the surface. Pure In2O3 is also OH- terminated following water exposure. Ambient pressure XPS studies of water exposure to these surfaces suggest that high water pressures tend to passivate the surface, inhibiting extensive oxide formation.

  9. Copper cyanide

    Integrated Risk Information System (IRIS)

    Copper cyanide ; CASRN 544 - 92 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  10. Copper: a metal for the ages

    USGS Publications Warehouse

    Doebrich, Jeff

    2009-01-01

    Copper was one of the first metals ever extracted and used by humans, and it has made vital contributions to sustaining and improving society since the dawn of civilization. Copper was first used in coins and ornaments starting about 8000 B.C., and at about 5500 B.C., copper tools helped civilization emerge from the Stone Age. The discovery that copper alloyed with tin produces bronze marked the beginning of the Bronze Age at about 3000 B.C. Copper is easily stretched, molded, and shaped; is resistant to corrosion; and conducts heat and electricity efficiently. As a result, copper was important to early humans and continues to be a material of choice for a variety of domestic, industrial, and high-technology applications today.

  11. Development of an Indium bump bond process for silicon pixel detectors at PSI

    NASA Astrophysics Data System (ADS)

    Broennimann, Ch.; Glaus, F.; Gobrecht, J.; Heising, S.; Horisberger, M.; Horisberger, R.; Kästli, H. C.; Lehmann, J.; Rohe, T.; Streuli, S.

    2006-09-01

    The hybrid pixel detectors used in the high-energy physics experiments currently under construction use a vertical connection technique, the so-called bump bonding. As the pitch below 100 μm, required in these applications, cannot be fulfilled with standard industrial processes (e.g. the IBM C4 process), an in-house bump bond process using reflowed indium bumps was developed at PSI as part of the R&D for the CMS-pixel detector. The bump deposition on the sensor is performed in two subsequent lift-off steps. As the first photolithographic step a thin under bump metalization (UBM) is sputtered onto bump pads. It is wettable by indium and defines the diameter of the bump. The indium is evaporated via a second photolithographic step with larger openings and is reflowed afterwards. The height of the balls is defined by the volume of the indium. On the readout chip only one photolithographic step is carried out to deposit the UBM and a thin indium layer for better adhesion. After mating both parts a second reflow is performed for self-alignment and obtaining high mechanical strength. For the placement of the chips a manual and an automatic machine were constructed. The former is very flexible in handling different chip and module geometries but has a limited throughput while the latter features a much higher grade of automatization and is therefore much more suited for producing hundreds of modules with a well-defined geometry. The reliability of this process was proven by the successful construction of the PILATUS detector. The construction of PILATUS 6M (60 modules) and the CMS pixel barrel (roughly 800 modules) has started in early 2006.

  12. The n-type conduction of indium-doped Cu{sub 2}O thin films fabricated by direct current magnetron co-sputtering

    SciTech Connect

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan Wang, Huan; Tian, Xiao-Qing; Zhang, Dong-Ping; Fan, Ping; Luo, Jing-Ting; Zheng, Zhuang-Hao; Liang, Guang-Xing; Roy, V. A. L.

    2015-08-24

    Indium-doped Cu{sub 2}O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O{sub 2}. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu{sub 2}O, with no other phases detected. Indium atoms exist as In{sup 3+} in Cu{sub 2}O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. The Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu{sub 2}O and, therefore, lead to n-type conduction.

  13. The n-type conduction of indium-doped Cu2O thin films fabricated by direct current magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan; Wang, Huan; Tian, Xiao-Qing; Zhang, Dong-Ping; Fan, Ping; Luo, Jing-Ting; Zheng, Zhuang-Hao; Liang, Guang-Xing; Roy, V. A. L.

    2015-08-01

    Indium-doped Cu2O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O2. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu2O, with no other phases detected. Indium atoms exist as In3+ in Cu2O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. The Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2-713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu2O and, therefore, lead to n-type conduction.

  14. Indium-111 autologous leukocyte imaging in pancreatitis

    SciTech Connect

    Anderson, J.R.; Spence, R.A.; Laird, J.D.; Ferguson, W.R.; Kennedy, T.L.

    1986-03-01

    Thirty-nine patients with acute pancreatitis have been assessed using a prognostic factor grading system, abdominal ultrasound, and autologous leukocyte imaging. Both prognostic factor grading and leukocyte imaging can accurately assess the severity of the disease early in its course. All patients with a negative indium-labeled leukocyte image recovered without sequelae, whereas five of the 12 patients with a positive image developed complications, including two deaths. Abdominal ultrasound is of no value in assessing severity, but is a useful method of detecting those patients with gallstone-associated disease. In patients with suspected abscess formation following acute pancreatitis, indium leukocyte imaging does not differentiate between fat necrosis and abscess formation. In this situation, computerized tomography should be carried out before laparotomy is undertaken.

  15. Electroplated indium bump arrays and the bonding reliability

    NASA Astrophysics Data System (ADS)

    Qiuping, Huang; Gaowei, Xu; Gang, Quan; Yuan, Yuan; Le, Luo

    2010-11-01

    A novel electroplating indium bumping process is described, as a result of which indium bump arrays with a pitch of 100 μm and a diameter of 40 μm were successfully prepared. UBM (under bump metallization) for indium bumping was investigated with an XRD technique. The experimental results indicate that Ti/Pt (300 Å / 200 Å) has an excellent barrier effect both at room temperature and at 200 °C. The bonding reliability of the indium bumps was evaluated by a shear test. Results show that the shear strength of the indium bump significantly increases after the first reflow and then changes slowly with increasing reflow times. Such a phenomenon may be caused by the change in textures of the indium after reflow. The corresponding flip-chip process is also discussed in this paper.

  16. The toxicology of indium tin oxide.

    PubMed

    Bomhard, Ernst M

    2016-07-01

    Indium tin oxide (ITO) is a technologically important semiconductor. An increasing number of cases of severe lung effects (characterized by pulmonary alveolar proteinosis and/or interstitial fibrosis) in ITO-exposed workers warrants a review of the toxicological hazards. Short- and long-term inhalation studies in rats and mice revealed persistent alveolar proteinosis, inflammation and fibrosis in the lungs down to concentrations as low as 0.01mg/m(3). In rats, the incidences of bronchiolo-alveolar adenomas and carcinomas were significantly increased at all concentrations. In mice, ITO was not carcinogenic. A few bronchiolo-alveolar adenomas occurring after repeated intratracheal instillation of ITO to hamsters have to be interpreted as treatment-related. In vitro and in vivo studies on the formation of reactive oxygen species suggest epigenetic effects as cause of the lung tumor development. Repeated intratracheal instillation of ITO to hamsters slightly affected the male sexual organs, which might be interpreted as a secondary effect of the lung damage. Epidemiological and medical surveillance studies, serum/blood indium levels in workers as well as data on the exposure to airborne indium concentrations indicate a need for measures to reduce exposure at ITO workplaces. PMID:27343753

  17. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  18. COPPER AND BRAIN FUNCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence shows that brain development and function are impaired when the brain is deprived of copper either through dietary copper deficiency or through genetic defects in copper transport. A number of copper-dependent enzymes whose activities are lowered by copper deprivation form the ba...

  19. GEMAS: Concentrations and origin of indium in agricultural soil of Europe

    NASA Astrophysics Data System (ADS)

    Ladenberger, Anna; Sadeghi, Martiya; Demetriades, Alecos; Reimann, Clemens; Birke, Manfred; Andersson, Madelen; Jonsson, Erik

    2014-05-01

    Indium is classified as a critical metal, urgently needed in the electronics industry, especially for the production of solar panels and LCD screens. It is a volatile chalcophile rare element and its primary sources are different types of sulphide ore deposits. Although sphalerite is the main host mineral for indium, chalcopyrite-rich ores usually contain the highest contents of this element. Apart from common sulphides, higher indium concentrations can occur in cassiterite, wolframite and magnetite, in addition to few known indium minerals such as roquesite. Indium is a very rare element and its determination needs a technique with very low detection limits. Data for In are hardly ever provided in geochemical data sets due to its function as an internal standard when using the ICP-MS for analysis. Within the GEMAS project, over 4000 samples of agricultural (Ap) and grazing land (Gr) soil have been collected, and indium concentrations have been measured by ICP-MS in an aqua regia extraction. The median value of aqua regia extractable In in European soil is 0.0176 mg/kg in the Ap and 0.0177 mg/kg in the Gr samples. The most striking pattern on an In distribution map of Europe in an aqua regia extraction is the large difference between northern (low - median 0.012 mg/kg In in the Ap samples) and southern Europe (high - median 0.021 mg/kg In in the Ap samples). The boundary between predominantly high and low concentrations follows exactly the southernmost limit of the last glaciation. In southern Scandinavia, clay-rich soil is indicated by In anomalies, as is the Oslo Rift and the old silver mine at Kongsberg (Norway). Generally, distinct In anomalies mark many of the famous old mining areas of the continent, typically those featuring relatively young hydrothermal deposits (northern Portugal, Iberian Pyrite Belt, Cornwall in the UK, Harz in Germany and Erzgebirge at the German/Czech border), and granitic intrusions (probably related to associated Sn and skarn

  20. Increased blood and urine copper after residential exposure to copper naphthenate

    SciTech Connect

    Bluhm, R.E.; Welch, L.; Branch, R.A. )

    1992-01-01

    Despite widespread industrial use of copper naphthenate, there are no reports of the relationship of copper naphthenate and copper absorption in humans or animals. We report a family of three individuals who lived in a home where copper naphthenate was sprayed on the inner foundation. Subsequently, these individuals developed non-specific complaints. In two of these individuals, serum copper levels were elevated when first measured months after copper naphthenate was sprayed in the home. A gradual decline over several years in urine and serum copper levels was observed in the individual who maintained follow-up. It is not known if symptoms reflected exposure to naphthenate, the solvent vehicle, volatilized copper, or the stress of exposure to a malodorous compound perceived as toxic. Exposure to copper naphthenate may be another cause of an elevated serum and urine copper level but the interpretation of these levels as normal' or toxic' requires additional study for clarification. This report suggests the need for further study of the absorption and relative toxicity of copper naphthenate.

  1. A multi-step solvent-free mechanochemical route to indium(iii) complexes.

    PubMed

    Wang, Jingyi; Ganguly, Rakesh; Yongxin, Li; Díaz, Jesus; Soo, Han Sen; García, Felipe

    2016-05-10

    Mechanochemistry is well-established in the solid-phase synthesis of inorganic materials but has rarely been employed for molecular syntheses. In recent years, there has been nascent interest in 'greener' synthetic methods with less solvent, higher yields, and shorter reaction times being especially appealing to the fine chemicals and inorganic catalyst industries. Herein, we demonstrate that main-group indium(iii) complexes featuring bis(imino)acenaphthene (BIAN) ligands are readily accessible through a mechanochemical milling approach. The synthetic methodology reported herein not only bypasses the use of large solvent quantities and transition metal reagents for ligand synthesis, but also reduces reaction times dramatically. These new main-group complexes exhibit the potential to be reduced to indium(i) compounds, which may be employed as photosensitizers in organic catalyses and functional materials. PMID:27112317

  2. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  3. Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium

    SciTech Connect

    Albin, David S.; Noufi, Rommel

    2015-06-09

    Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium are provided. In one embodiment, a method for fabricating a thin film device comprises: providing a semiconductor film comprising indium (In) and selenium (Se) upon a substrate; heating the substrate and the semiconductor film to a desired temperature; and performing a mass transport through vapor transport of a copper chloride vapor and se vapor to the semiconductor film within a reaction chamber.

  4. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor); Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  5. Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance.

    PubMed

    Chen, Zuofeng; Ye, Shengrong; Stewart, Ian E; Wiley, Benjamin J

    2014-09-23

    Transparent conducting films of solution-synthesized copper nanowires are an attractive alternative to indium tin oxide due to the relative abundance of Cu and the low cost of solution-phase nanowire coating processes. However, there has to date been no way to protect Cu nanowires with a solution-phase process that does not adversely affect the optoelectric performance of Cu nanowire films. This article reports that the electrodeposition of zinc, tin, or indium shells onto Cu nanowires, followed by oxidation of these shells, enables the protection of Cu nanowire films against oxidation without decreasing film performance. PMID:25180448

  6. Some adverse effects of soil amendment with organic Materials-The case of soils polluted by copper industry phytostabilized with red fescue.

    PubMed

    Cuske, Mateusz; Karczewska, Anna; Gałka, Bernard; Dradrach, Agnieszka

    2016-08-01

    The study was aimed to examine the effects of soil amendment with organic waste materials on the growth of red fescue and the uptake of Cu and Zn by this grass, in view of its potential usage for phytostabilization of Cu-polluted soils. Five soils, containing 301-5180 mg/kg Cu, were collected from the surroundings of copper smelter Legnica, and amended with lignite (LG) and limed sewage sludge (SS). Plant growth and the concentrations of Cu and Zn in the shoots and roots of grass were measured in a pot experiment and related to the results of Pytotoxkit and Microtox® tests performed on soil solution. The effects of soil amendment with LG and SS differed greatly, and depended on soil properties. In some cases, the application of alkaline SS resulted in dramatic increase of Cu phytotoxicity and its enhanced uptake by plants, while application of LG to slightly acidic soil caused increased accumulation of Zn in plants, particularly in their roots. The study confirmed good suitability of red fescue for phytostabilization of Cu-contaminated soils except for those extremely polluted. Organic amendments to be used for metal immobilization should be thoroughly examined prior to application. PMID:26853183

  7. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    SciTech Connect

    Yang, Tsung-Jui; Wu, Yuh-Renn; Shivaraman, Ravi; Speck, James S.

    2014-09-21

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  8. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  9. Copper Recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  10. J/{psi} production in indium-indium collisions at SPS energies

    SciTech Connect

    Pillot, P.; Ducroux, L.; Guichard, A.; Tieulent, R.; Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Averbeck, R.; Drees, A.; Banicz, K.; Keil, M.; Castor, J.; Devaux, A.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.

    2006-01-12

    The NA60 experiment collected data on dimuon production in indium-indium collisions at 158 GeV/c per incident nucleon, in year 2003, to contribute to the clarification of several questions raised by previous experiments studying high-energy heavy-ion physics at the CERN SPS in search of the quark gluon plasma. Among these previous results stands the observation, by NA50, that the production yield of J/{psi} mesons is suppressed in central Pb-Pb collisions beyond the normal nuclear absorption defined by proton-nucleus data. By comparing the centrality dependence of the suppression pattern between different colliding systems, S-U, Pb-Pb and In-In, we should be able to identify the corresponding scaling variable, and the physics mechanism driving the suppression. In this paper, we will present the ratio of J/{psi} and Drell-Yan production cross-sections in indium-indium collisions, in three centrality bins, and how these values compare to previous measurements. We will also present a study of the transverse momentum distributions of the J/{psi} mesons, in seven centrality bins.

  11. Influence of indium concentration on the structural and optoelectronic properties of indium selenide thin films

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Li, Shasha; Yu, Zhou; Liu, Lian; Yan, Chuanpeng; Zhang, Yong; Zhao, Yong

    2014-12-01

    We have grown indium selenide thin films using magnetron sputtering method. The influence of indium concentration on the structural, optical and electrical properties was studied. The concentration of indium in indium selenide thin films was varied by adjusting the sputtering power from 40 to 80 W while keeping the substrate temperature and argon pressure constant. The β-phase, which only exists at elevated temperatures in bulk single crystals, can persist at room temperature in the In-rich films. The β-phase thin film with smaller band gap has an electrical resistivity about four orders of magnitude lower than that of the γ-In2Se3 thin film, which is also stable at room temperature. Furthermore, the single-phase γ-In2Se3 thin film was then assembled in visible-light photodetector which shows a fast, reversible, and stable response. These results indicate the possibility of using γ-In2Se3 thin film in various next-generation photoelectric and optical-memory applications.

  12. Aqueous sol-gel routes to conducting films of indium oxide and indium-tin-oxide

    NASA Astrophysics Data System (ADS)

    Perry, Carole C.; McGiveron, J. K.; Harrison, Philip G.

    2000-05-01

    Thin films of indium tin oxide (ITO) are of interest because of their high transparency and low electrical resistivity. Applications include use as electrodes for liquid crystal display and as heat mirrors for solar energy devices. We have developed totally aqueous routes to indium oxide (IO) and ITO materials because, (1) the particulate sols afford a longer shelf life than for alkoxyide derived materials, (2) organics do not have to be removed from the films by baking, and (3) the starting materials are cheaper than the corresponding alkoxides. Indium and mixed indium/tin sols have been prepared form inorganic solutions and treated with alkali to produce white thixotropic sols ca. 0.64 in Mz+ ions. This films were prepared by spinning on low iron or pure silica slides previously cleaned with DECON and washed with distilled water. Films were subsequently heated at 773K in air, or 1173K in air or nitrogen. The film with the lowest resistivity contained ca. 5 percent Sn and had an average optical transmittance between 400 and 600nm of 95 percent. The film was non-porous, smooth in texture, approximately 300nm thick and had a band gap energy of 3.22eV.

  13. A Bright Future for copper electrowinning

    NASA Astrophysics Data System (ADS)

    Moats, Michael; Free, Michael

    2007-10-01

    Over the past 40 years, the copper mining industry has undergone a dramatic shift toward hydrometallurgical extraction of copper at the mine site. This has increased the importance of recovering high-purity copper by electrowinning. High-purity cathode production was achieved by implementing numerous technologies including superior lead-alloy anodes, improved cathode handling and/or stainless steel blanks, better electrolyte control, and advanced tankhouse automation. In the future, it is projected that tankhouses will produce high-quality copper at lower costs using technologies that could include dimensionally stable anodes, alternative anode reactions, innovative cell designs, novel electrolyte circulation systems, and more. This paper reviews existing commercial copper electrowinning technologies and discusses advances that need to be made to implement future technologies.

  14. Studies of indium amides and nitrides

    SciTech Connect

    Purdy, A.P.; Berry, A.D.

    1993-12-31

    A reaction between InI{sub 3} and 3 eq. of KNH{sub 2} in liquid NH{sub 3} forms indium(III) amide (In(NH{sub 2}){sub 3}) a white, nearly insoluble compound. Indium(III) amide readily combines with KNH{sub 2} in liquid NH{sub 3} to form the mixed metal amide K{sub 2}In(NH{sub 2}){sub 5}. Other potassium and sodium derivatives MxIn(NH{sub 2}){sub 3+x} derivatives were prepared in a similar manner, but not all were obtained pure in the solid state. An impure tri-lithium derivative (Li{sub 3}In(NH{sub 2}){sub 6}) was obtained by adding a KNH{sub 2} solution (6 eq) to a solution of InI{sub 3} and 3 eq of LiI. Pyrolysis (in vacuo 25-300{degrees}C, under N{sub 2} 300-400{degrees}C) of In(NH{sub 2}){sub 3} or MxIn(NH{sub 2}){sub x+3} (M = Na, K) to 400{degrees}C results in the formation of InN, but indium metal is also formed from some of the mixed metal amides. The product from thermal decomposition of Li{sub 3}In(NH{sub 2}){sub 6} under vacuum was tentatively identified as the ternary nitride Li{sub 3}InN{sub 2}. Products were characterized by elemental analysis, IR spectroscopy, and powder x-ray diffraction experiments.

  15. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  16. Rapid solidification of indium: Modeling subcooling

    SciTech Connect

    Le Bot, C. Delaunay, D.

    2008-05-15

    This paper deals with the study of crystallization kinetics. A pure metal - indium - is subjected to different cooling rates by analyzing phenomena with a differential scanning calorimeter. Thanks to the thermal flux obtained by this device and to the temperature determined with a thermocouple inside the metal sample, and according to the modified Avrami theory, the aim was to determine a temperature dependent function K which links thermodynamic properties to a macroscopic model of crystallization kinetics. Experiments highlight the recalescence phenomenon and show that this function has a shape similar to that of the nucleation rate.

  17. Fabrication, structure and mechanical properties of indium nanopillars

    SciTech Connect

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  18. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    PubMed Central

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap. PMID:21255296

  19. Laser microstructured metal thin films as promising alternative for indium based transparent electrodes.

    PubMed

    Eckhardt, Sebastian; Siebold, Mathias; Lasagni, Andrés Fabián

    2016-03-21

    In the search for alternative materials to replace indium-tin-oxide in transparent electrodes we have structured copper and aluminum thin films (between 5 an 40 nm) for tailoring their optical properties. Micrometer scaled holes were produced using the direct laser interference patterning (DLIP) technique. We compared the optical and electrical parameters of nanosecond and picosecond processed thin films. It was found that the optical transmittance of the structured layers was relatively increased between 25 to 125% while the electrical resistance was marginally influenced. In addition, the laser treatment enhanced the diffuse to total transmission ratio (HAZE) by values ranging from 30 to 82% (relative) as a potential advantage of μm structuring. The results also show that both of the studied metals succeed to match the target which is set by typical applications of indium thin oxide (ITO) films. Furthermore, numerical simulations are performed in order to understand the ablation process of thin film material for ps and ns pulses. PMID:27136876

  20. Nanosecond pulsed laser blackening of copper

    NASA Astrophysics Data System (ADS)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  1. Passivation coating on electrospun copper nanofibers for stable transparent electrodes.

    PubMed

    Hsu, Po-Chun; Wu, Hui; Carney, Thomas J; McDowell, Matthew T; Yang, Yuan; Garnett, Erik C; Li, Michael; Hu, Liangbing; Cui, Yi

    2012-06-26

    Copper nanofiber networks, which possess the advantages of low cost, moderate flexibility, small sheet resistance, and high transmittance, are one of the most promising candidates to replace indium tin oxide films as the premier transparent electrode. However, the chemical activity of copper nanofibers causes a substantial increase in the sheet resistance after thermal oxidation or chemical corrosion of the nanofibers. In this work, we utilize atomic layer deposition to coat a passivation layer of aluminum-doped zinc oxide (AZO) and aluminum oxide onto electrospun copper nanofibers and remarkably enhance their durability. Our AZO-copper nanofibers show resistance increase of remarkably only 10% after thermal oxidation at 160 °C in dry air and 80 °C in humid air with 80% relative humidity, whereas bare copper nanofibers quickly become insulating. In addition, the coating and baking of the acidic PEDOT:PSS layer on our fibers increases the sheet resistance of bare copper nanofibers by 6 orders of magnitude, while the AZO-Cu nanofibers show an 18% increase. PMID:22548313

  2. Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions

    NASA Astrophysics Data System (ADS)

    Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena

    2012-11-01

    Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed

  3. On the correlation between surface morphology and electron work function of indium tin oxide

    NASA Astrophysics Data System (ADS)

    Xue, Mingshan; Wu, Hainan; Ou, Junfei; Wang, Fajun; Li, Xibao; Li, Wen; Jiang, Zhonghao

    2012-06-01

    The electron work function (EWF) is an important parameter of a semiconductor. The understanding of the correlation between the EWF and surface morphology is of much significance for revealing related photoelectric mechanisms. In this study, the surface of indium tin oxide (ITO) was treated by chemical corrosion or absorption of copper phthalocyanine molecules, and their changes in EWF were systematically investigated using scanning Kelvin probe. The decrease of the EWF with the increase of surface roughness was found. Based on a microcapacitor model, the correlation between the EWF and surface microstructures was built up, which was well consistent with the experimental results. These data are of help for improving the photoelectric behaviors of ITO-based devices by adjusting surface/interface structures.

  4. Copper and Copper Proteins in Parkinson's Disease

    PubMed Central

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  5. Indium antimonide large-format detector arrays

    NASA Astrophysics Data System (ADS)

    Davis, Mike; Greiner, Mark

    2011-06-01

    Large format infrared imaging sensors are required to achieve simultaneously high resolution and wide field of view image data. Infrared sensors are generally required to be cooled from room temperature to cryogenic temperatures in less than 10 min thousands of times during their lifetime. The challenge is to remove mechanical stress, which is due to different materials with different coefficients of expansion, over a very wide temperature range and at the same time, provide a high sensitivity and high resolution image data. These challenges are met by developing a hybrid where the indium antimonide detector elements (pixels) are unconnected islands that essentially float on a silicon substrate and form a near perfect match to the silicon read-out circuit. Since the pixels are unconnected and isolated from each other, the array is reticulated. This paper shows that the front side illuminated and reticulated element indium antimonide focal plane developed at L-3 Cincinnati Electronics are robust, approach background limited sensitivity limit, and provide the resolution expected of the reticulated pixel array.

  6. Tumour scanning with indium-111 dihaematoporphyrin ether.

    PubMed Central

    Quastel, M. R.; Richter, A. M.; Levy, J. G.

    1990-01-01

    Photofrin II (dihaematoporphyrin ether/ester, DHE) was labelled with indium-111 and its biodistribution in tumour bearing mice compared with that of 111In chloride. The uptake and clearance of 111In labelled DHE differed markedly from that of indium-111 chloride in that the former was not taken up by the tissues as much as the latter. Scintillation scanning with a gamma-camera showed marked uptake of both 111In agents at the site of the tumour, but a much lower tissue background (excluding the abdominal organs) for the mice given 111In DHE. Tumour:muscle ratios of dissected tissues were 2-3 times higher in 111In DHE treated animals as compared to the uptake of 111In chloride. There was a distinct difference in the pattern of distribution of the two 111In preparations in the tissues. The major accumulation of 111In chloride was in the kidneys, whereas the highest uptake of 111In DHE was in the liver, the organ in which unlabelled porphyrins accumulate. Extraction and testing of materials from tumours of 111In DHE treated animals indicated that most of the tumour extractable 111In had remained associated with the porphyrin in vivo up to 4 days after injection. Images Figure 1 PMID:2147858

  7. Discovery of Cadmium, Indium, and Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Amos, Stephanie; Thoennessen, Michael

    2009-10-01

    As of today, no comprehensive study has been made covering the initial observations and identifications of isotopes. A project has been undertaken at MSU to document the discovery of all the known isotopes. The criteria defining discovery of a given isotope is the publication of clear mass and element assignment in a refereed journal. Prior to the current work the documentation of the discovery of eleven elements had been completed^1. These elements are cerium^2, arsenic, gold, tungsten, krypton, silver, vanadium, einsteinium, iron, barium, and cobalt. We will present the new documentation for the cadmium, indium, and tin isotopes. Thirty-seven cadmium isotopes, thirty-eight indium isotopes, and thirty-eight tin isotopes have been discovered so far. The description for each discovered isotope includes the year of discovery, the article published on the discovery, the article's author, the method of production, the method of identification, and any previous information concerning the isotope discovery. A summary and overview of all ˜500 isotopes documented so far as a function of discovery year, method and place will also be presented. ^1http://www.nscl.msu.edu/˜thoennes/2009/discovery.htm ^2J.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data. Tables, in press (2009), doi:10.1016/j.adt.2009.06.002

  8. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  9. Additive monitoring and interactions during copper electroprocessing

    NASA Astrophysics Data System (ADS)

    Collins, Dale Wade

    The electrochemical deposition of copper has been a major focus of research for decades. Renewed interest in copper electroplating is not limited to the copper producers but is also a major concern of semiconductor manufacturers. The focus on copper electrochemistry by the semiconductor manufacturers has increased since IBM's announcement in 1997 that copper will be used for metallization in high speed/power semiconductors [1--3]. The desire to use copper instead of aluminum is simply a reflection on copper's superior conductivity (lower RC time constants) and resistance to electromigration (generally proportional to the melting point). This dissertation is the compilation of the research into analytical techniques for monitoring surface-active additives in common sulfuric acid/copper sulfate plating baths. Chronopotentiometric, DC and AC voltammetry were the major analytical techniques used in this research. Several interactions between the additives will also be presented along with their apparent decline in activity. The decline in activity is well known in the industry and is also detected by these methods as presented in chapters 4 and 5. Finally, a systemic approach for monitoring the additive Galactosal, which is commonly used in electrowinning, will be outlined. The monitoring system proposed herein would have to be adjusted for each electrowinning facility because each has a unique chemistry and cell configuration.

  10. Estimating Dermal Transfer of Copper Particles from the Surfaces of Pressure-Treated Lumber and Implications for Exposure

    EPA Science Inventory

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper ba...

  11. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides.

    PubMed

    Björkbacka, Åsa; Yang, Miao; Gasparrini, Claudia; Leygraf, Christofer; Jonsson, Mats

    2015-09-28

    One of the main challenges for the nuclear power industry today is the disposal of spent nuclear fuel. One of the most developed methods for its long term storage is the Swedish KBS-3 concept where the spent fuel is sealed inside copper canisters and placed 500 meters down in the bedrock. Gamma radiation will penetrate the canisters and be absorbed by groundwater thereby creating oxidative radiolysis products such as hydrogen peroxide (H2O2) and hydroxyl radicals (HO˙). Both H2O2 and HO˙ are able to initiate corrosion of the copper canisters. In this work the kinetics and mechanism of reactions between the stable radiolysis product, H2O2, and copper and copper oxides were studied. Also the dissolution of copper into solution after reaction with H2O2 was monitored by ICP-OES. The experiments show that both H2O2 and HO˙ are present in the systems with copper and copper oxides. Nevertheless, these species do not appear to influence the dissolution of copper to the same extent as observed in recent studies in irradiated systems. This strongly suggests that aqueous radiolysis can only account for a very minor part of the observed radiation induced corrosion of copper. PMID:26287519

  12. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    PubMed

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions. PMID:19167162

  13. Convection sensitivity and thermal analyses for indium and indium-lead mixing experiment (74-18)

    NASA Technical Reports Server (NTRS)

    Bourgeois, S. V.; Doty, J. P.

    1976-01-01

    Sounding rocket Experiment 74-18 was designed to demonstrate the effects of the Black Brandt rocket acceleration levels (during the low-g coast phase of its flight) on the motion of a liquid metal system to assist in preflight design. Some post flight analyses were also conducted. Preflight studies consisted of heat transfer analysis and convection sensitivity and convection modeling analyses which aided in the: (1) final selection of fluid materials (indium-lead melts rather than paraffins); (2) design and timing of heater and quench system; and (3) preflight predictions of the degree of lead penetration into the pure indium segment of the fluid. Postflight studies involved: (1) updating the convection sensitivity calculations by utilizing actual flight gravity levels; and (2) modeling the mixing in the flight samples.

  14. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  15. The effect of prenatal indium chloride exposure on chondrogenic ossification.

    PubMed

    Ungváry, G; Tátrai, E; Szakmáry, E; Náray, M

    2001-03-01

    Daily indium chloride doses of control (0) or 400 mg/kg were administered orally to pregnant Sprague-Dawley (SD) rats by gavage, on d 20 of gestation. Indium concentration was determined in the maternal and fetal blood, livers, kidneys, skulls, and femurs by atomic absorption spectrometry. Further groups of pregnant rats were treated with control (0) or 400 mg/kg indium chloride orally, during the whole gestation period. The fetuses were examined on d 21 of gestation, using histological and histochemical methods. Four hours after the administration indium concentration was found to be significant in the blood, liver, and kidneys of the dams. Twenty-four hours later it increased in the blood but not in the liver and kidney. Fetal indium concentrations were 40-50% of the maternal levels due to a barrier of the placenta. In the skull and the femur, indium was already detectable at 4 h after the administration, and by the end of 24 h, metal concentration was several times higher than that at 4 h, indicating accumulation. Furthermore, it was found that the birefringency of collagen detectable by picrosirius red staining in polarized light around the chondrocytes disappeared and became irregular. In the matrix of the epiphyseal cartilage, the regular, birefringent network demonstrable by Rivanol reaction became irregular and hardly recognizable. In the cytoplasm of the chondrocytes, the diffuse, evenly distributed positive Ricinus communis agglutinin reaction became irregular or disappeared. Similar but much weaker changes were observed with concanavalin A and wheat germ agglutinin stainings. It was concluded that the missing femur and micromelia diagnosed by alizarin staining is the consequence of a specific toxic effect of indium that inhibits chondrogenic ossification. No similar histochemical changes were observed in the bones of the skull developing by desmogenic ossification, despite the presence of indium. Data indicate that the mechanisms of the effects of indium

  16. Body of Knowledge (BOK) for Copper Wire Bonds

    NASA Technical Reports Server (NTRS)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  17. Reflectance of metallic indium for solar energy applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1984-01-01

    An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.

  18. Electrodeposition of Indium Bumps for Ultrafine Pitch Interconnection

    NASA Astrophysics Data System (ADS)

    Tian, Yingtao; Liu, Changqing; Hutt, David; Stevens, Bob

    2014-02-01

    Electroplating is a promising method to produce ultrafine pitch indium bumps for assembly of pixel detectors in imaging applications. In this work, the process of indium bumping through electrodeposition was demonstrated and the influences of various current waveforms on the bump morphology, microstructure and height uniformity were investigated. Electron microscopy was used to study the microstructure of electroplated indium bumps and a Zygo white light interferometer was utilised to evaluate the height uniformity. The results indicated that the bump uniformities on wafer, pattern and feature scales were improved by using unipolar pulse and bipolar pulse reverse current waveforms.

  19. Determination of indium in rocks by substoichiometric radioisotope dilution analysis

    USGS Publications Warehouse

    Greenland, L. Paul; Campbell, E.Y.

    1973-01-01

    Rocks containing 10-140 ng of indium per g are decomposed with hydrofluoric and nitric acids in the presence of 114In. Indium is separated from other constituents by sequential extractions of the bromide, cupferronate, and acetylacetonate, and is then reacted with a substoichiometric amont of EDTA. Excess of indium is removed by acetylacetone extraction and the specific activity of the complexed fraction is determined by counting 114In. Analyses of the U.S.G.S. standard rocks are reported. These show good agreement with previous neutron activation analyses. Repetitive rock analyses indicated an analytical precision of ??4-7%. ?? 1973.

  20. [Copper transport and metabolism].

    PubMed

    Kurasaki, Masaaki; Saito, Takeshi

    2016-07-01

    In this review, copper metabolism and transport in mammalian tissues are introduced and discussed. Firstly, the copper required amounts and LD50 levels are shown to explain the difficult balances of copper in the cells between necessity and toxicity. Furthermore, on the basis of literatures published, relationship between copper-binding metallothioneins and mechanisms for the absorption and excretion of copper or hereditary copper metabolic disorders metabolism abnormality symptom are explained. Finally it has been indicated that apoptosis induced by heavy metals, especially copper was initiated by production of reactive oxygen species and oxidative stress in the cells. To understand precise mechanism for copper homeostasis in mammalian cells, further investigation will be needed to clarify the copper behaviors in normal and abnormal situations. PMID:27455798

  1. High quality factor indium oxide mechanical microresonators

    SciTech Connect

    Bartolomé, Javier Cremades, Ana; Piqueras, Javier

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.

  2. Indium antimonide based HEMT for RF applications

    NASA Astrophysics Data System (ADS)

    Subash, T. D.; Gnanasekaran, T.

    2014-11-01

    We report on an indium antimonide high electron mobility transistor with record cut-off frequency characteristics. For high frequency response it is important to minimize parasitic resistance and capacitance to improve short-channel effects. For analog applications adequate pinch-off behavior is demonstrated. For proper device scaling we need high electron mobility and high electron density. Toward this end, the device design features and simulation are carried out by the Synopsys TCAD tool. A 30 nm InSb HEMT exhibits an excellent cut-off frequency of 586 GHz. To the knowledge of the authors, the obtained cut-off frequency is the highest ever reported in any FET on any material system.

  3. Investigation of Post-Etch Copper Residue on Direct Bonded Copper (DBC) Substrates

    NASA Astrophysics Data System (ADS)

    Mei, Yunhui; Lu, Guo-Quan; Chen, Xu; Gang, Chen; Luo, Shufang; Ibitayo, Dimeji

    2011-10-01

    For many years, direct bonded copper (DBC) substrates have proved to be an excellent solution for electrical isolation and thermal management of high-power semiconductor modules. However, in this study we detected a copper residue on the surface of DBC alumina, presumably a result of pattern etching even in industry. As is known, growth of metal dendrites could be observed with the assistance of electric field, temperature, and humidity. Metal dendrites normally grow from the cathode to anode. Silver and copper are two kinds of metals susceptible to migration. In this work, copper dendrites could be formed at 400°C and 50 V/mm between conductors. These dendrites may impact the reliability of DBC in power electronic applications. Therefore, the formation of copper residue is an interesting phenomenon for etched DBC and warrants further attention in the future.

  4. Effects of Copper Nanomaterials on Marine Benthic Communities

    EPA Science Inventory

    Copper nanomaterials (CuNMs) are used as an anti-bacterial and anti-fouling agent in numerous commercial and industrial products, including water purifiers, fungicides, wood and touch surfaces. The widespread popularity of copper nanomaterials in consumer products increases the r...

  5. The safety of copper sulfate to channel catfish eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper sulfate (CuSO4) is an economical treatment to control fungus (Saprolegnia spp.) on channel catfish eggs and is widely used by the industry. The purpose of this study was to determine the safety of copper sulfate to channel catfish eggs when treated at the therapeutic rate (10 mg/L), and also...

  6. Indium foil with beryllia washer improves transistor heat dissipation

    NASA Technical Reports Server (NTRS)

    Hilliard, J.; John, J. E. A.

    1964-01-01

    Indium foil, used as an interface material in transistor mountings, greatly reduces the thermal resistance of beryllia washers. This method improves the heat dissipation of power transistors in a vacuum environment.

  7. Clinical imaging with indium-111 leukocytes: uptake in bowel infarction

    SciTech Connect

    Gray, H.W.; Cuthbert, I.; Richards, J.R.

    1981-08-01

    Leukocytes labeled with indium-111 accumulated in an area of small-bowel infarction, mimicking a paracolic abscess. Evidence of subacute bowel obstruction should alert the nuclear medicine physician to the former possibility.

  8. Doping of indium phosphide with group IV elements

    SciTech Connect

    Zakharenkov, L.F.; Samorukov, B.E.; Zykov, A.M.

    1985-06-01

    This paper studies the doping of single crystals of indium phosphide (InP) with group IV elements using data obtained by measuring the total charge concentration of additives and carriers. Single crystals of indium phosphide were grown by the Czochralski method from liquid melts with a liquid hermetic seal in quartz cubicles. The total impurity concentration was determined by atomic-absorption analysis with + or - 10% error. In order to explain the behavior of germanium and tin in indium phosphide, the authors consider the bond energies of additives in indium phosphide and their tetrahedral radii. The authors conclude that the established higher amphoteric character of germanium with respect to tin is probably explained by the moduli of elasticity of the doped crystal.

  9. Low temperature solder process to join a copper tube to a silicon wafer

    NASA Astrophysics Data System (ADS)

    Versteeg, Christo; Scarpim de Souza, Marcio

    2014-06-01

    With the application for wafer level packages, which could be Complementary Metal-Oxide-Semiconductor (CMOS) based, and which requires a reduced atmosphere, a copper tube connection to a vacuum pump and the package is proposed. The method evaluated uses laser assisted brazing of a solder, to join the copper tube to a silicon wafer. The method was applied to a silicon wafer coated with a metallic interface to bond to the solder. The hermeticity of the joint was tested with a helium leak rate tester and the bonding energy thermal extent was verified with a thin layer of indium that melted wherever the substrate temperature rose above its melting temperature.

  10. Status of indium phosphide solar cell development at Spire

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.

    1987-01-01

    On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.

  11. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained. PMID:18959988

  12. Development of indium bumping technology through AZ9260 resist electroplating

    NASA Astrophysics Data System (ADS)

    Huang, Qiuping; Xu, Gaowei; Yuan, Yuan; Cheng, Xiao; Luo, Le

    2010-05-01

    Indium bumping is very critical technology in the application of high-density interconnection between a FPA (focal plane array) and a Si ROIC (read-out integrated circuit) by flip-chip bonding. In this paper, the indium BGA (ball grid array) chips are prepared with an electroplating method on the Si substrate. With such a method, the first difficulty arises in removing the seed layer. Two ways, including IBE (ion beam etching) and lift-off, are adopted to overcome it. The results show that the lift-off process is effective but not IBE. During the reflow process, many indium bumps fall off the substrate. Two ways are tried to solve this problem: one is to optimize the reflow profile and the other is to thicken the wetting layer. The results show that these two ways can effectively improve such status. The barrier effects of the UBM (under bump metallization) for indium, which are Ti/Pt (300 Å/200 Å) and Ti/Pt/Au/Ep Au (300 Å/200 Å/1000 Å/4 µm), are also investigated. Experimental results indicate that both of them can be used in application of integration of the FPA and ROIC. Reliability of indium bumps with these two kinds of UBM is evaluated by the shear test. The results show that their shear strength has a significant increase after reflow. For the indium bump with UBM of Ti/Pt/Au/Ep Au (300 Å/200 Å/1000 Å/4 µm), IMC (intermetallic compounds) at the interface of Au-In can strengthen the indium bump but may change the plasticity of indium.

  13. Analysis of the production of ATLAS indium bonded pixel modules

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Andreazza, A.; Bulgheroni, A.; Corda, G.; Di Gioia, S.; Fiorello, A.; Gemme, C.; Koziel, M.; Manca, F.; Meroni, C.; Nechaeva, P.; Paoloni, A.; Rossi, L.; Rovani, A.; Ruscino, E.

    2006-09-01

    The ATLAS collaboration is currently building 1500 pixel modules using the indium bump bonding technique developed by SELEX Sistemi Integrati (former AMS). The indium deposition and flip-chip process are described together with an overview of the chip stripping machine that allows defective modules to be reworked. The production is half-way through at the time of this writing. This paper also discusses the problems encountered during production and the adopted solutions.

  14. Recovery of indium from LCD screens of discarded cell phones.

    PubMed

    Silveira, A V M; Fuchs, M S; Pinheiro, D K; Tanabe, E H; Bertuol, D A

    2015-11-01

    Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4. PMID:25922168

  15. Copper in diet

    MedlinePlus

    ... please enable JavaScript. Copper is an essential trace mineral present in all body tissues. Function Copper works ... nih.gov/pubmed/25057538 . Mason JB. Vitamins, trace minerals, and other micronutrients. In: Goldman L, Schafer AI, ...

  16. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  17. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  18. On copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    The action of hydrogen superoxide on copper salts in alcoholic solutions is studied. The action of hydrogen peroxide on copper hydroxide in alcoholic suspensions, and the action of ethereal hydrogen peroxide on copper hydroxide are discussed. It is concluded that using the procedure proposed excludes almost entirely the harmful effect of hydrolysis.

  19. Highly Stable Transparent Electrodes Made from Copper Nanotrough Coated with AZO/Al2O3.

    PubMed

    Li, Peng; Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Liu, Yichun

    2016-04-01

    Due to their high flexibility, high conductivity and high transparency in a wide spectrum range, metal nanowires and meshes are considered to be two of the most promising candidates to replace the traditional transparent conducting films, such as tin doped indium oxide. In this paper, transparent conducting films made from copper nanotroughs are prepared by the electrospinning of polymer fibers and subsequent thermal evaporation of copper. The advantages of the technique include low junction resistance, low cost and low preparation temperature. Although the copper nanotrough transparent conducting films exhibited a low sheet resistance (19.2 Ω/sq), with a high transmittance (88% at 550 nm), the instability of copper in harsh environments seriously hinders its applications. In order to improve the stability of the metal transparent conducting films, copper nanotroughs were coated with 39 nm thick aluminum-doped zinc oxide and 1 nm thick aluminum oxide films by atomic layer deposition. The optical and electrical measurements show that coating copper nanotrough with oxides barely reduces the transparency of the films. It is worth noting that conductive oxide coating can effectively protect copper nanotroughs from thermal oxidation or acidic corrosion, whilst maintaining the same flexibility as copper nanotroughs on its own. PMID:27451715

  20. A Simulator for Copper Ore Leaching

    SciTech Connect

    Travis, B.

    1999-05-14

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Copper is a strategic metal and the nation needs a secure supply both for industrial use and military needs. However, demand is growing worldwide and is outstripping the ability of the mining industry to keep up. Improved recovery methods are critically needed to maintain the balance of supply and demand. The goal of any process design should be to increase the amount of copper recovered, control movement of acid and other environmentally harmful chemicals, and reduce energy requirements. To achieve these ends, several improvements in current technology are required, the most important of which is a better understanding of, and the ability to quantify, how fluids move through heterogeneous materials in a complex chemical environment. The goal of this project is create a new modeling capability that couples hydrology with copper leaching chemistry . once the model has been verified and validated, we can apply the model to specific problems associated with heap leaching (flow channeling due to non-uniformities in heap structure, precipitation/dissolution reactions, and bacterial action), to understand the causes of inefficiencies, and to design better recovery systems. We also intend to work with representatives of the copper mining industry to write a coordinated plan for further model development and application that will provide economic benefits to the industry and the nation.

  1. Fabrication challenges for indium phosphide microsystems

    NASA Astrophysics Data System (ADS)

    Siwak, N. P.; Fan, X. Z.; Ghodssi, R.

    2015-04-01

    From the inception of III-V microsystems, monolithically integrated device designs have been the motivating drive for this field, bringing together the utility of single-chip microsystems and conventional fabrication techniques. Indium phosphide (InP) has a particular advantage of having a direct bandgap within the low loss telecommunication wavelength (1550 nm) range, able to support passive waveguiding and optical amplification, detection, and generation depending on the exact alloy of In, P, As, Ga, or Al materials. Utilizing epitaxy, one can envision the growth of a substrate that contains all of the components needed to establish a single-chip optical microsystem, containing detectors, sources, waveguides, and mechanical structures. A monolithic InP MEMS system has, to our knowledge, yet to be realized due to the significant difficulties encountered when fabricating the integrated devices. In this paper we present our own research and consolidate findings from other research groups across the world to give deeper insight into the practical aspects of InP monolithic microsystem development: epitaxial growth of InP-based alloys, etching techniques, common MEMS structures realized in InP, and future applications. We pay special attention to shedding light on considerations that must be taken when designing and fabricating a monolithic InP MEMS device.

  2. Thermal contact resistance across a copper-silicon interface

    NASA Astrophysics Data System (ADS)

    Khounsary, Ali M.; Chojnowski, David; Assoufid, Lahsen; Worek, William M.

    1997-12-01

    An experimental setup to measure the thermal contact conductance across a silicon-copper (Si-Cu) interface is described, and the results obtained are presented. The resulting thermal contact resistance data are used in estimating the thermo-mechanical and optical performance of optical substrates cooled by interfaced copper cooling blocks. Several factors influence the heat transfer across solid interfaces. These include the material properties, interface pressure, flatness and roughness of the contacting surfaces, temperature, and interstitial material, if any. Results presented show the variation of thermal contact conductance as a function of applied interface pressure for a Cu-Si interface. Various interstitial materials investigated include indium foil, silver foil and a liquid eutectic (Ga-In-Sn). As expected, thermal contact resistance decreases as interface pressure increases, except in the case of the eutectic, in which it was nearly constant. The softer the interstitial material, the lower the thermal contact resistance. Liquid metal provides the lowest thermal contact resistance across the Cu-Si interface, followed by the indium foil, and then the silver foil.

  3. Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals.

    PubMed

    Yarema, Olesya; Yarema, Maksym; Bozyigit, Deniz; Lin, Weyde M M; Wood, Vanessa

    2015-11-24

    Ternary I-III-VI nanocrystals, such as silver indium selenide (AISe), are candidates to replace cadmium- and lead-based chalcogenide nanocrystals as efficient emitters in the visible and near IR, but, due to challenges in controlling the reactivities of the group I and III cations during synthesis, full compositional and size-dependent behavior of I-III-VI nanocrystals is not yet explored. We report an amide-promoted synthesis of AISe nanocrystals that enables independent control over nanocrystal size and composition. By systematically varying reaction time, amide concentration, and Ag- and In-precursor concentrations, we develop a predictive model for the synthesis and show that AISe sizes can be tuned from 2.4 to 6.8 nm across a broad range of indium-rich compositions from AgIn11Se17 to AgInSe2. We perform structural and optical characterization for representative AISe compositions (Ag0.85In1.05Se2, Ag3In5Se9, AgIn3Se5, and AgIn11Se17) and relate the peaks in quantum yield to stoichiometries exhibiting defect ordering in the bulk. We optimize luminescence properties to achieve a record quantum yield of 73%. Finally, time-resolved photoluminescence measurements enable us to better understand the physics of donor-acceptor emission and the role of structure and composition in luminescence. PMID:26370776

  4. Cobalt distribution during copper matte smelting

    NASA Astrophysics Data System (ADS)

    Kho, T. S.; Swinbourne, D. R.; Lehner, T.

    2006-04-01

    Many smelter operators subscribe to the “precautionary principle” and wish to understand the behavior of the metals and impurities during smelting, especially how they distribute between product and waste phases and whether these phases lead to environmental, health, or safety issues. In copper smelting, copper and other elements are partitioned between copper matte, iron silicate slag, and possibly the waste gas. Many copper concentrates contain small amounts of cobalt, a metal of considerable value but also of some environmental interest. In this work, the matte/slag distribution ratio (weight percent) of cobalt between copper matte (55 wt pct) and iron silicate slag was thermodynamically modeled and predicted to be approximately 5. Experiments were performed using synthetic matte and slag at 1250 °C under a low oxygen partial pressure and the distribution ratio was found to be 4.3, while between industrial matte and slag, the ratio was found to be 1.8. Both values are acceptably close to each other and to the predicted value, given the errors inherent in such measurements. The implications of these results for increasingly sustainable copper production are discussed.

  5. Indium-granulocyte scanning in the painful prosthetic joint

    SciTech Connect

    Pring, D.J.; Henderson, R.G.; Keshavarzian, A.; Rivett, A.G.; Krausz, T.; Coombs, R.R.; Lavender, J.P.

    1986-07-01

    The value of indium-111-labeled granulocyte scanning to determine the presence of infection was assessed in 50 prosthetic joints (41 of which were painful) in 40 patients. Granulocytes were obtained from the patients' blood and labeled in plasma with indium 111 tropolonate. Abnormal accumulation of indium 111 in the region of the prosthesis was noted. Proven infection occurred in 11 prostheses, and all of the infections were detected by indium-111-labeled granulocyte scanning. Nineteen were not infected (including nine asymptomatic controls) and only two produced false-positive scans. This represents a specificity of 89.5%, sensitivity of 100%, and overall accuracy of 93.2%. These results compare favorably with plain radiography. There was no radiologic evidence of infection in three of the infected prostheses, and 10 of the noninfected prostheses had some radiologic features that suggested sepsis. We conclude that indium-granulocyte scanning can reliably detect or exclude infection in painful prosthetic joints and should prove useful in clinical management.

  6. Highly Conducting Transparent Indium-Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2014-09-01

    Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature ( T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm-3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10-4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.

  7. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  8. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  9. Indium-111-Photofrin-II scintillation scan

    SciTech Connect

    Origitano, T.C.; Karesh, S.M.; Reichman, O.H.; Henkin, R.E.; Caron, M.J.

    1989-04-01

    Photodynamic therapy is under intense investigation as an adjuvant treatment for malignant glial tumors of the central nervous system. Photofrin-II (HpD-II) is currently the most actively investigated photosensitizing agent. A crucial issue regarding the safe and efficacious usage of HpD-II-based photodynamic therapy is the individual in vivo kinetics of tumor uptake and retention, compared with normal brain clearance. The optimal time for photoactivation of sensitized tumor must be known to ensure a high target-to-nontarget ratio, resulting in the maximal tumor destruction while preserving normal brain. Our laboratory developed a radionuclide scan based on 111indium (111In)-labeled HpD-II to evaluate HpD-II localization and clearance noninvasively within a canine model of intracerebral gliosarcoma. Synthesis of the 111In-HpD-II complex in greater than 90% yield is achieved by a simple, rapid labeling method. Radiochemical purity and stability were verified by high-performance liquid chromatography. Using the canine model of intracerebral gliosarcoma, we followed the uptake of 111In-HpD-II in tumors with serial scintillation scanning. Localization of the tumor by 111In-HpD-II has been verified by contrast-enhanced computed tomographic scan followed by gross and histological examination of the enhancing brain region. Total body biodistribution of 111In-HpD-II at various times after injection has been evaluated. The ratio of uptake in tumor compared with surrounding brain peaked at 72 hours after injection. The knowledge of regional distribution and concentration of a photosensitizing agent within a tumor mass and surrounding brain allows for the most efficacious timing and localization of a photoactivating source.

  10. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    PubMed Central

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  11. Materials flow of indium in the United States in 2008 and 2009

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Indium is a material that has many applications. It is used by anyone who watches television or views a computer screen. It is found in solar energy arrays and in soldering applications that are required to be lead free. In 2009, about 550 metric tons (t) of indium metal was produced from primary sources world-wide; it was estimated that the United States consumed about 110 t of indium metal (20 percent of world primary production). However, when imports of consumer products that contain indium are considered, the United States consumed about 200 t of indium (36 percent of world primary production). When one considers the recovery from the low-efficiency sputtering process that coats indium-tin oxide onto glass and other surfaces, the recycling rate (within the manufacturing process that uses indium-tin oxide in flat panel displays approaches 36 percent. However, indium recovery from old scrap generated from end-of-life consumer products is not sufficiently economic to add significantly to secondary production. Between 1988 and 2010, indium prices averaged $381 per kilogram (in constant 2000 dollars). However, prices have been quite volatile (deviating from the average of $381 per kilogram by ±$199 per kilogram, a 52 percent difference from the average), reflecting short-term disequilibrium of supply and demand but also responsiveness of supply to demand. The dynamics of zinc smelting govern the primary supply of indium because indium is a byproduct of zinc smelting. Secondary indium supply, which accounts for about one-half of total indium supply, is governed by indium prices and technological advances in recovery. Indium demand is expected to grow because the number and volume of cutting edge technology applications that depend on indium are expected to grow.

  12. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  13. Synthesis and conductivity of indium-doped tin pyrophosphates

    SciTech Connect

    Garzon, Fernando H; Mukundan, Rangachary; Brosha, Eric L

    2008-01-01

    We have synthesized indium-doped tin pyrophosphates as high-temperature anhydrous proton conductors. The ratio of tin to indium was varied using two different synthetic methods. The first is a high-temperature reaction in which a paste containing the reactants in excess phosphoric acid was heated for various amounts of time at various temperatures. The second method is a solution precipitation procedure followed by calcination, which offers several advantages over traditional synthetic techniques. These advantages inc 1 ude better stoichiometric control, lower temperature requirements, and chemically uniform products. Several phosphate sources were investigated, including phosphoric acid, pyrophosphoric acid, and potassium pyrophosphate. The resulting indium-doped tin pyrophosphates had good proton conductivity over a wide temperature range with no humidification.

  14. Mobility of indium on the ZnO(0001) surface

    SciTech Connect

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  15. Mobility of indium on the ZnO(0001) surface

    NASA Astrophysics Data System (ADS)

    Heinhold, R.; Reeves, R. J.; Williams, G. T.; Evans, D. A.; Allen, M. W.

    2015-02-01

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ˜520 °C, with indium migrating from the ( 000 1 ¯ ) underside of the wafer, around the non-polar ( 1 1 ¯ 00 ) and ( 11 2 ¯ 0 ) sidewalls, to form a uniform self-organized (˜20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In2O3 precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  16. Copper Wire Bonding Concerns and Best Practices

    NASA Astrophysics Data System (ADS)

    Chauhan, Preeti; Zhong, Z. W.; Pecht, Michael

    2013-08-01

    Copper wire bonding of microelectronic parts has developed as a means to cut the costs of using the more mature technology of gold wire bonding. However, with this new technology, changes in the bonding processes as well as bonding metallurgy can affect product reliability. This paper discusses the challenges associated with copper wire bonding and the solutions that the industry has been implementing. The paper also provides information to enable customers to conduct qualification and reliability tests on microelectronic packages to facilitate adoption in their target applications.

  17. Mineral resource of the month: copper

    USGS Publications Warehouse

    U.S. Geological Survey

    2011-01-01

    The article provides information on copper and its various uses. It was the first metal used by humans and is considered as one of the materials that played an important role in the development of civilization. It is a major industrial metal because of its low cost, availability, electrical conductivity, high ductility and thermal conductivity. Copper has long been used in the circuitry of electronics and the distribution of electricity and is now being used in silicon-based computer chips, solar and wind power generation, and coinage.

  18. Contact heat conductance at a diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    NASA Astrophysics Data System (ADS)

    Assoufid, L.; Khounsary, A. M.

    1996-09-01

    The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 μm of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7±8 W/cm2-K for nonplated copper and 23.0±8 W/cm2-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm 2 contact area, will be about 10°C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes.

  19. Contact heat conductance at a diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    SciTech Connect

    Assoufid, L.; Khounsary, A.

    1996-09-01

    The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 {mu}m of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7{plus_minus}8 W/cm{sup 2}-K for nonplated copper and 23.0{plus_minus}8 W/cm{sup 2}-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm {sup 2}contact area, will be about 10{degree}C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes. {copyright} {ital 1996 American Institute of Physics.}

  20. United States copper metal and scrap use and trade patterns, 1995‒2014

    USGS Publications Warehouse

    Goonan, Thomas G.

    2016-01-01

    This report considers changes to the copper and copper scrap industries of the United States. For the study period, 1995 through 2014, U.S. refined copper production from all sources (primary and secondary materials) decreased from 2.28 million metric tons (Mt) of copper to 1.05 Mt (a 54 percent decrease). During the same period, U.S. copper scrap net exports increased from 0.203 Mt to 0.737 Mt (a 263 percent increase and a compound annual growth rate of about 7.0 percent per year). Copper and copper scrap prices (in constant 2014 dollars) rose such that 2014 prices were about 48 percent greater than 1995 prices. From 1995 through 2014, Chinese imports of copper scrap from the United States grew from 0.061 Mt to 0.569 Mt (an increase of about 830 percent and a compound annual growth rate of about 12.5 percent per year). In 2011, Chinese imports of U.S. copper scrap peaked at 0.745 Mt of contained copper. In 1995, Chinese imports of U.S. copper scrap accounted for 17 percent of U.S. copper scrap exports. By 2014, Chinese imports accounted for 69 percent of U.S. copper scrap exports (by weight), and Chinese imports of U.S. copper scrap were valued at $1.45 billion.

  1. Diffusion parameters of indium for silicon process modeling

    NASA Astrophysics Data System (ADS)

    Kizilyalli, I. C.; Rich, T. L.; Stevie, F. A.; Rafferty, C. S.

    1996-11-01

    The diffusion parameters of indium in silicon are investigated. Systematic diffusion experiments in dry oxidizing ambients at temperatures ranging from 800 to 1050 °C are conducted using silicon wafers implanted with indium. Secondary-ion-mass spectrometry (SIMS) is used to analyze the dopant distribution before and after heat treatment. The oxidation-enhanced diffusion parameter [R. B. Fair, in Semiconductor Materials and Process Technology Handbook, edited by G. E. McGuire (Noyes, Park Ridge, NJ, 1988); A. M. R. Lin, D. A. Antoniadis, and R. W. Dutton, J. Electrochem. Soc. Solid-State Sci. Technol. 128, 1131 (1981); D. A. Antoniadis and I. Moskowitz, J. Appl. Phys. 53, 9214 (1982)] and the segregation coefficient at the Si/SiO2 interface [R. B. Fair and J. C. C. Tsai, J. Electrochem. Soc. Solid-State Sci. Technol. 125, 2050 (1978)] (ratio of indium concentration in silicon to that in silicon dioxide) are extracted as a function of temperature using SIMS depth profiles and the silicon process simulator PROPHET [M. Pinto, D. M. Boulin, C. S. Rafferty, R. K. Smith, W. M. Coughran, I. C. Kizilyalli, and M. J. Thoma, in IEDM Technical Digest, 1992, p. 923]. It is observed that the segregation coefficient of indium at the Si/SiO2 interface is mIn≪1, similar to boron; however, unlike boron, the segregation coefficient of indium at the Si/SiO2 interface decreases with increasing temperature. Extraction results are summarized in analytical forms suitable for incorporation into other silicon process simulators. Finally, the validity of the extracted parameters is verified by comparing the simulated and measured SIMS profiles for an indium implanted buried-channel p-channel metal-oxide-semiconductor field-effect-transistor [I. C. Kizilyalli, F. A. Stevie, and J. D. Bude, IEEE Electron Device Lett. (1996)] process that involves a gate oxidation and various other thermal processes.

  2. Transition properties of low-lying states in atomic indium

    SciTech Connect

    Sahoo, B. K.; Das, B. P.

    2011-07-15

    We present here the results of our relativistic many-body calculations of various properties of the first six low-lying excited states of indium. The calculations were performed using the relativistic coupled-cluster method in the framework of the singles, doubles, and partial triples approximation. The lifetime of the [4p{sup 6}]5s{sup 2}5p{sub 3/2} state in this atom is determined. Our results could be used to shed light on the reliability of the lifetime measurements of the excited states of atomic indium that we have considered in the present work.

  3. Equation of state of liquid Indium under high pressure

    SciTech Connect

    Li, Huaming E-mail: mo.li@gatech.edu; Li, Mo E-mail: mo.li@gatech.edu; Sun, Yongli

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  4. Equation of state of liquid Indium under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Sun, Yongli; Li, Mo

    2015-09-01

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  5. Method for labelling leucocytes with indium In-111 oxine

    SciTech Connect

    Kaminsky, D.

    1992-03-03

    This patent describes an improved method for radio-labelling leucocytes with Indium In-111 oxine. It comprises separating the leucocytes from whole blood for obtaining separated leucocytes mixed with residual red blood cells; and then labelling the separated leucocytes with Indium In-111 oxine; wherein the improvement comprises the following further step: depleting residual red blood cells from the separated leucocytes by resuspending the leucocytes in an isotonic saline solution, then rocking the resuspended leucocytes for causing the leucocytes to preferentially settle out, and then removing residual red blood cells which remain suspended within the supernatant isotonic saline solution.

  6. Uptake of indium-111-labeled leukocytes by brain metastasis

    SciTech Connect

    Balachandran, S.; Husain, M.M.; Adametz, J.R.; Pallin, J.S.; Angtuaco, T.L.; Boyd, C.M.

    1987-04-01

    Uptake of indium-labeled leukocytes was seen in two cases of histologically proven brain metastasis. In one, this led to misdiagnosis of the lesion as an abscess. On histological evaluation, a large number of white blood cells or macrophages was seen at the neoplastic sites. Reasons for leukocyte accumulation around metastatic brain neoplasms are discussed. In contrast to the current reports that indium-labeled leukocyte scans can differentiate intracranial infection from tumor, these cases demonstrate their lack of specificity in the detection of brain abscess.

  7. Deep Subgap Feature in Amorphous Indium Gallium Zinc Oxide. Evidence Against Reduced Indium

    SciTech Connect

    Sallis, Shawn; Quackenbush, Nicholas F.; Williams, Deborah S.; Senger, Mikell; Woicik, Joseph C.; White, Bruce E.; Piper, Louis F.

    2015-01-14

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. In spite of the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. We present evidence against In+ lone pair active electrons as the origin of the deep subgap features. No In+ species are observed, only In0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states.

  8. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect

    Yoshimura, Masatoshi Nakai, Eiji; Fukui, Takashi; Tomioka, Katsuhiro

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436 V, short-circuit current of 24.8 mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5 G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  9. Evaluation of critical materials for five advanced design photovoltaic cells with an assessment of indium and gallium

    SciTech Connect

    Watts, R.L.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Pawlewicz, W.T.; Smith, S.A.; Teeter, R.R.

    1980-05-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. This report presents the results of the screening of the five following advanced PV cell designs: polycrystalline silicon, amorphous silicon, cadmium sulfide/copper sulfide frontwall, polycrystalline gallium arsenide MIS, and advanced concentrator-500X. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 GWe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has 5 GWe of peak capacity by the year 2000, so that the total online cpacity for the five cells is 25 GWe. Based on a review of the preliminary basline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. Earlier DOE sponsored work on the assessment of critical materials in PV cells conclusively identtified indium and gallium as warranting further investigation as to their availability. Therefore, this report includes a discussion of the future availability of gallium and indium. (WHK)

  10. High adherence copper plating process

    DOEpatents

    Nignardot, Henry

    1993-01-01

    A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.

  11. Liquid Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Bailey, S.; Cowen, Jonathan; Lucas, L.; Ernst, Frank; Pirouz, P.

    2004-01-01

    The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Since future missions will demand large aggregates of solar cells, and space flight is expensive, the solar cells must furthermore be available at low costs and have a long lifetime and high resistance against structural damage introduced by irradiation with high energy electrons and protons. The photovoltaic materials that are presently available only partly fulfill all these requirements. Therefore, we propose to explore a new method for fabricating thin-films for cost-efficient solar cells with very high specific power,high irradiation resistance and long lifetime based on the alpha-phase of the Cu-In-Se system "alpha-CIS."

  12. Sulfur incorporation into copper indium diselenide single crystals through annealing in hydrogen sulfide

    SciTech Connect

    Titus, Jochen; Birkmire, Robert W.; Hack, Christina; Mueller, Georg; McKeown, Patrick

    2006-02-15

    CuInSe{sub 2} crystals were sulfurized in a H{sub 2}S-Ar gas mixture at 575 deg. C. The focus was on the resulting mass transport, in particular, on the interdiffusion of Se and S. Experiments were done for various sulfurization times, and the resulting S distribution was measured by Auger electron spectroscopy sputter depth profiling and analyzed with the Boltzmann-Matano method. A one-dimensional diffusion process had shaped the S distribution in these crystals. The respective diffusion coefficient was on the order of 10{sup -16} cm{sup 2}/s, and it varied only slightly with the S content in CuIn(Se,S){sub 2}.

  13. Electrical influence of sodium in Bridgman-grown copper indium selenide

    NASA Astrophysics Data System (ADS)

    Myers, Hadley Franklin

    Sodium is well known to improve the performance of thin-film, polycrystalline CuInSe2-based photovoltaic devices. This has led to extensive research on the effects of this element on the polycrystalline material, with the ultimate objective of identifying the mechanism by which Na acts on the cells. However, much less research has been done on the effects of sodium on the monocrystalline form of this material. Such research could help to differentiate bulk from grain-boundary effects, as well as to identify reactions between the Na and the compound itself, or the individual elements within the compound. Therefore, in the present work, Na was added in varying quantities to quartz ampoules containing Cu, In and Se, in the atomic ratios of 1:1:2. The ampoules were evacuated and sealed before being put through a vertical-Bridgman procedure, resulting in ingots containing large, cm-size crystals. Electrical measurements on the ingot material revealed p-type conductivity for all material grown with stoichiometric proportions of the starting elements, without Na, but n-type conductivity for material grown with Na above a certain critical value. It was discovered that this critical value of Na increased when excess Se, above stoichiometry, was also included in the ampoules. Further experiments confirmed the mechanism responsible for the conductivity type change to be a reaction between the Na and Se, in a 2:1 atomic ratio, corresponding to the chemical formula Na2Se, which starved the CuInSe2 of its share of selenium, rendering it Se-deficient and therefore n-type. Other effects of Na on the material are identified, including no detection of sodium within the ternary itself. As well, some photovoltaic cells were made, the best of which achieved an efficiency of 8.8 %.

  14. Admittance spectroscopy of copper indium diselenide/cadmium sulfide solar cells

    NASA Astrophysics Data System (ADS)

    Strifler, Walter A.

    This dissertation concentrates on admittance spectroscopy of CuInSe2/CdS heterojunction solar cells prepared by chemical spray pyrolysis (CSP) and by multiple-source evaporation (MSE). The primary goal is to examine some of the more important electrical characteristics of these heterojunctions and determine if the spray-pyrolyzed cells behave similar, albeit at a lower efficiency, to higher quality cells prepared by other techniques. The primary analytical tool used in this study is admittance spectroscopy. The theory of admittance spectroscopy is developed using the concept of equivalent circuits. The traditional temperature-swept technique for admittance spectroscopy is shown to be inadequate for measuring most heterojunction samples examined in this study because of the large parallel leakage conductance found in these devices. Instead, a frequency-swept admittance technique is developed and employed to correct for the parallel conductance effect and reveal the true nature of slow charge in the depletion layer. In addition to admittance spectroscopy, the two sets of solar cell diodes are characterized using a variety of measurement techniques including capacitance-voltage, current-voltage over spectral response, capacitance dispersion over wavelength, and solar efficiency. The different pieces of experimental data are discussed to form a self-consistent physical model of the polycrystalline solar cells. Charge transport across the diode junction is dominated by recombination processes within the CuInSe2 depletion layer for both sets of diodes although the large parallel conductance in the CSP diodes often masks this characteristic. The CSP solar cells exhibit a pronounced blue peak in the spectral response indicating that electron collection is the limiting factor in the overall short-circuit quantum efficiency. A large degree of capacitance dispersion is found in both sets of diodes. Supporting measurements indicate that the majority of this dispersion is due to interface traps in the MSE diodes and bulk acceptor traps in the CSP diodes. The high density of bulk acceptor traps in the CuInSe2 are located approximately 0.30 eV above the valence band and exhibit a capture cross section of approximately 5 x 10(exp -18)/sq cm. The dissertation concludes with a summary of the important mechanisms that presently dominate the efficiency of the CuInSe2/CdS solar cells prepared by CSP.

  15. Controlling surface defects of non-stoichiometric copper-indium-sulfide quantum dots.

    PubMed

    Park, Jae Chul; Nam, Yoon Sung

    2015-12-15

    Quantum dots (QDs) can be used for a wide range of practical applications including solar energy conversion, light-emitting display, bio-imaging, and sensing. However, toxic heavy metal elements of Pb- and Cd-based QDs cause potential environmental problems and limit their wide applicability. To overcome this limitation, CuInS2 (CIS) QDs, which have a bulk bandgap energy of 1.5eV and relatively high absorptivity, can be a good alternative. However the photoluminescence quantum yield (PLQY) of CIS QDs is too low for practical applications. Here we investigate the effects of experimental factors in the solution synthesis of CIS/ZnS QDs on intrinsic defects and surface defects from photoluminescence (PL) analysis. A heating-up method is used with dodecanethiol as a sulfur source, a ligand, and a medium. The Cu-to-In feeding ratio is changed to control the PL spectrum in the range of visible to near infrared (NIR) frequencies. The PLQY is increased above 40% in all of the ranges through ZnS shell passivation and additional process optimization (e.g., controlled cooling rate and additional feeding of In(3+) ion precursor). This work demonstrates the role of intrinsic defects in PL and the importance of suppressing the formation of the surface defects to increase the PLQY. PMID:26319334

  16. Method of synthesizing and growing copper-indium-diselenide (CuInSe.sub.2) crystals

    DOEpatents

    Ciszek, Theodore F.

    1987-01-01

    A process for preparing CuInSe.sub.2 crystals includes melting a sufficient quantity of B.sub.2 O.sub.3 along with stoichiometric quantities of Cu, In, and Se in a crucible in a high pressure atmosphere of inert gas to encapsulate the CuInSe.sub.2 melt and confine the Se to the crucible. Additional Se in the range of 1.8 to 2.2 percent over the stoichiometric quantity is preferred to make up for small amounts of Se lost in the process. The crystal is grown by inserting a seed crystal through the B.sub.2 O.sub.3 encapsulate into contact with the CuInSe.sub.2 melt and withdrawing the seed upwardly to grow the crystal thereon from the melt.

  17. Transient thermoreflectance from graphene composites with matrix of indium and copper

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Jagannadham, K.

    2013-03-01

    Transient thermoreflectance was measured from In and In-graphene composite films pressed on to different substrates that include Si, GaAs, Cu and Cu-graphene composite. Measurements were also made from Al film deposited on substrates of Cu and Cu-graphene composite. The experimental results were modeled using solution to the thermal diffusion equation to determine the thermal conductivity of the phases and thermal conductance of the interface. The In-graphene and Cu-graphene composites are found to spread the heat more rapidly than In and Cu, respectively. The interface thermal conductance of In or In-graphene film pressed on to Cu was found to be smaller than the observed values for metal-metal contacts reported in the literature although higher than the value observed for the interface between Pb-Sn eutectic solder alloy bonded to Cu. The interface thermal conductance between Al film deposited on mechanically polished Cu or Cu-graphene composite is also found to be much lower than the value observed previously. The smaller value of interface thermal conductance of either In or In-gr or Al film on different substrates is explained by absence of atomic level bonding, presence of rough surfaces with incomplete contact and oxygen or water vapor at the interface.

  18. Control of toxic gas release during the production of copper-indium-diselenide photovoltaic cells

    SciTech Connect

    Fowler, P.K.; Dobryn, D.G.; Lee, C.M.

    1986-03-01

    Toxic gas control systems will be needed to treat both routine and accidental H/sub 2/Se and H/sub 2/S emissions from manufacturing facilities producing CuInSe/sub 2/ photovoltaic cells. In this study, routine and accidental environmental control options were evaluated for a manufacturing plant with an annual production of cells capable of generating 10 MWp. A routine emissions treatment facility was designed which uses a venture scrubber, a packed-bed scrubber, and a carbon adsorption bed to reduce emissions to allowable limits. This facility incrementally increases the cost of manufacturing CuInSe/sub 2/ photovoltaic cells by 0.60 cents/Wp. Two alternative systems were designed to handle an accidental release: a packed-bed scrubber/carbon adsorption bed, and a containment scheme followed by carbon adsorption. The incremental costs of manufacturing for these release systems are 0.91 cents/Wp and 1.25 cents/Wp, respectively.

  19. Photoactive nanocrystals by low-temperature welding of copper sulfide nanoparticles and indium sulfide nanosheets.

    PubMed

    Lim, Hui Min; Tan, Jia Yi; Batabyal, Sudip K; Magdassi, Shlomo; Mhaisalkar, Subodh G; Wong, Lydia H

    2014-12-01

    We successfully utilize the concept of coalescence and room-temperature sintering to prepare morphologically different nanoparticles. n-Type chalcogenide (CuIn5 S8 ) nanocrystals are synthesized at room temperature by simple mixing of oppositely charged precursor nanoparticles. The coalescence of polycation-coated CuS nanoparticles and negatively charged In2 S3 nanoplates is driven by close contact of the particles due to electrostatic interactions. Analysis by X-ray diffraction, transmission electron microscopy (TEM) imaging, and Raman spectroscopy confirms the formation of single-phase CuIn5 S8 without traceable secondary phase. In a photovoltaic device, the use of the coalesced particles yields a power conversion efficiency of 1.8%. PMID:25146714

  20. Chemical spray pyrolysis of copper indium diselenide/cadmium sulfide solar cells

    SciTech Connect

    Brown, B.J.

    1989-01-01

    This dissertation concentrates on Chemical Spray Pyrolysis (CSP) of CuInSe{sub 2} and CdS thin films and solar cells. The primary goal is to gain an understanding of the chemistry and physics of CSP, and apply this knowledge to the fabrication of CuInSe{sub 2}/CdS solar cells. It provide an extensive review of the literature on the properties of CuInSe{sub 2} an CdS produced by CSP and other techniques. The films are characterized by x-ray diffractometry, scanning electron microscopy, electron microprobe, van der Pauw-Hall measurements, and optical absorption spectroscopy, and the devices are characterized electrically in the dark and under illumination. A model for the chemical mechanisms involved in CSP of CdS an CuInSe{sub 2} thin films is developed which is used to point out similarities between the two systems and explain the correlation between spray solution pH and second phases in CuInSe{sub 2} thin films. Structural investigations show that the CuInSe{sub 2} films can be produced in either the ordered or disordered crystal structure, while different substrates radically change the morphology of the films. By taking into account the effect of second phases, the electrical and optical properties of the sprayed films agree with published results for CuInSe{sub 2} produced by other techniques. The properties of the sprayed CdS films in this work are shown to agree with those sprayed by others. The device properties of cells fabricated in both the backwall and reverse backwall configuration are compared with each other and related to the materials properties of the semiconductor layers. The highest efficiency cell employing sprayed CuInSe{sub 2} is reported; however, the efficiency of the cells still need improvement before becoming practical. The dissertation concludes with recommendations for increasing the efficiency of completely sprayed CuInSe{sub 2}/CdS solar cells.

  1. Long-term performance analysis of copper indium gallium selenide thin-film photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Kaul, Ashwani; Pethe, Shirish A.; Dhere, Neelkanth G.

    2012-01-01

    Current accelerated qualification tests of photovoltaic (PV) modules mostly assist in avoiding premature failures but can neither duplicate changes occurring in the field nor predict useful product lifetime. Therefore, outdoor monitoring of field-deployed thin-film PV modules was undertaken at FSEC with the goal of assessing their performance in hot and humid climate under high system-voltage operation. Significant and comparable degradation rate of -5.13±1.53% and -4.5±1.46% per year was found using PVUSA type regression analysis for the positive and negative strings, respectively of 40W glass-to-glass Cu-In-Ga-Se (CIGS) thin-film PV modules in the hot and humid climate of Florida. Using the current-voltage measurements, it was found that the performance degradation within the PV array was mainly due to a few (8% to 12%) modules that had substantially higher degradation. The remaining modules within the array continued to show reasonable performance (>96% of the rated power after ˜ four years).

  2. Room temperature synthesis of copper indium diselenide in non-aqueous solution using an organoindium reagent

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Andras, Maria T.; Bailey, Sheila G.; Duraj, Stan A.

    1992-01-01

    A novel two-phase synthesis of CuInSe2 at 25 C from Cu2Se and Cp3In in 4-methylpyridine has been discovered. Characterization of the material produced shows it to be platelet-shaped crystallites with an average particle size of 10 microns, less than 2 percent C and H, with a small amount of unidentified crystalline impurity. The results demonstrate that it is possible to produce from solution a material that is ordinarily synthesized in bulk or films at much higher temperatures or using extraneous reagents and/or electrons. The use of a solid-state reagent as a starting material which is converted to another solid-state compound by an organometallic reagent has tremendous potential to produce precursors for a wide range of solid-state materials of interest to the electronics, defense, and aerospace communities.

  3. Method of synthesizing and growing copper-indium-diselenide (CuInSe/sub 2/) crystals

    DOEpatents

    Ciszek, T.F.

    1984-11-29

    A process for preparing CuInSe/sub 2/ crystals includes melting a sufficient quantity of B/sub 2/O/sub 2/ along with stochiometric quantities of Cu, In, and Se in a crucible in a high-pressure atmosphere of inert gas to encapsulate the CuInSe/sub 2/ melt and confine the Se to the crucible. Additional Se in the range of 1.8 to 2.2% over the stochiometric quantity is preferred to make up for small amounts of Se lost in the process. The melt can then be cooled slowly to form the crystal as direct solidification, or the crystal can be grown by inserting a seed crystal through the B/sub 2/O/sub 3/ encapsulate into contact with the CuInSe/sub 2/ melt and withdrawing the seed upwardly to grow the crystal thereon from the melt.

  4. Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films.

    PubMed

    Harvey, Taylor B; Mori, Isao; Stolle, C Jackson; Bogart, Timothy D; Ostrowski, David P; Glaz, Micah S; Du, Jiang; Pernik, Douglas R; Akhavan, Vahid A; Kesrouani, Hady; Vanden Bout, David A; Korgel, Brian A

    2013-09-25

    The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process. PMID:23957691

  5. Liquid-Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide

    NASA Technical Reports Server (NTRS)

    Cowen, J.; Lucas, L.; Ernst, F.; Pirouz, P.; Hepp, A.; Bailey, S.

    2005-01-01

    The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Figure 1 shows a well-known example: The robotic vehicle "Rover," constructed for NASA s "Mars Pathfinder" mission. The solar cells for such applications not only need to have high conversion efficiency, but must possess a high specific power, thus a high power output per unit mass. Since future missions will demand for large aggregates of solar cells and space flights are expensive, the solar cells must furthermore be available at low costs (per unit power output) and - very important in outer space - have a long lifetime and a high resistance against structural damage introduced by irradiation with high-energy electrons and protons.

  6. Optical constants of silver and copper indium ternary sulfides from infrared reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.

    2016-03-01

    Infrared reflection spectra are obtained in the frequency range of 50-2000 cm-1 for AgIn5S8 and CuIn5S8 single crystals grown by Bridgman method. All four infrared-active modes are detected, which are in full agreement with the prediction of group-theoretical analysis. Spectral dependence of optical parameters; real and imaginary parts of the dielectric function, the function of energy losses, refractive index, absorption index and absorption coefficient were calculated from reflectivity experiments. The frequencies of transverse and longitudinal optical modes and oscillator strengths were also determined. The bands detected in IR spectra of studied crystals were assigned to various vibration types (valence and valence-deformation) on the basis of the symmetrized displacements of atoms obtained employing the Melvin projection operators.

  7. Characterization of organic photovoltaic devices with indium-tin-oxide anode treated by plasma in various gases

    NASA Astrophysics Data System (ADS)

    Hong, Z. R.; Liang, C. J.; Sun, X. Y.; Zeng, X. T.

    2006-11-01

    Indium-tin-oxide (ITO) anode treated by different gas plasma or UV ozone has been used for photovoltaic (PV) cells with structure of ITO/copper phthalocyanine (CuPc)/C60/bathocuproine/Al. Both surface energy and work function of the ITO substrates were affected by these treatments. However, the main performance parameters of PV cells, including short circuit current, open circuit voltage, power conversion efficiency, and fill factor, were almost unaffected. On the other hand, series and shunt resistances of the PV cells derived from numerical fitting of I-V curves were not significantly changed with different treatments. Therefore, no significant impact of substrate treatment on hole collection was concluded, although hole injection under forward bias showed strong dependence on treatment methods. It indicates that hole transfer from CuPc layer to ITO is not the bottleneck in the CuPc/C60 based organic solar cells.

  8. Non-Stoichiometric Amorphous Indium Selenide Thin Films as a Buffer Layer for CIGS Solar Cells with Various Temperatures in Rapid Thermal Annealing.

    PubMed

    Yoo, Myoung Han; Kim, Nam-Hoon

    2016-05-01

    The conventional structure of most of copper indium gallium diselenide (Culn(1-x)Ga(x)Se2, CIGS) solar cells includes a CdS thin film as a buffer layer. Cd-free buffer layers have attracted great interest for use in photovoltaic applications to avoid the use of hazardous and toxic materials. The RF magnetron sputtering method was used with an InSe2 compound target to prepare the indium selenide precursor. Rapid thermal annealing (RTA) was conducted in ambient N2 gas to control the concentration of volatile Se from the precursor with a change in temperature. The nature of the RTA-treated indium selenide thin films remained amorphous under annealing temperatures of ≤ 700 degrees C. The Se concentration of the RTA-treated specimens demonstrated an opposite trend to the annealing temperature. The optical transmittance and band gap energies were 75.33% and 2.451-3.085 eV, respectively, and thus were suitable for the buffer layer. As the annealing temperature increased, the resistivity decreased by an order-of-magnitude from 10(4) to 10(1) Ω-cm. At lower Se concentrations, the conductivity abruptly changed from p-type to n-type without crystallite formation in the amorphous phase, with the carrier concentration in the order of 10(17) cm(-3). PMID:27483873

  9. A new environmentally-preferred copper corrosion inhibitor

    SciTech Connect

    Cheng, L.; May, R.C.; Given, K.M.

    1999-11-01

    Copper and its alloys have excellent heat transfer properties and are widely used in industrial cooling water systems. A corrosion inhibitor, however, is needed to prevent equipment failures and to reduce the discharge of toxic copper compounds into the environment. Although azoles such as benzotriazole and tolyltriazole have been used to protect copper alloys from corrosion, they react with oxidizing halogens which are commonly used to control microbiological activity. Their reaction with chlorine, for example, produces species that are not protective to copper. The inhibitor films formed on copper also deteriorate in the presence of halogens, leading to high copper corrosion rates. A number of new azole derivatives have been discovered that provide superior copper protection in halogenated cooling water systems. A new halogen resistant azole (HRA) has been developed which has minimal reactivity with halogens and protects copper when chlorine is present. As a result, elimination of copper-induced pitting corrosion on mild steel was also achieved. This novel material has numerous environmental benefits. Laboratory and field results are presented.

  10. Vermiculite decorated with copper nanoparticles: Novel antibacterial hybrid material

    NASA Astrophysics Data System (ADS)

    Drelich, Jaroslaw; Li, Bowen; Bowen, Patrick; Hwang, Jiann-Yang; Mills, Owen; Hoffman, Daniel

    2011-09-01

    Vermiculite decorated with copper nanoparticles is a new antibacterial material that was prepared in this study through ion-exchange process and hydrogen reduction. The replacement of magnesium ions in interlayer structure was carried out using concentrated copper sulfate solutions at elevated temperature. Copper ions were reduced to elemental copper at 400-600 °C using hydrogen as the reducing agent. During the reduction process copper diffused primarily to vermiculite surface regions and formed copper nanoparticles with a broad range of sizes, from ˜1 to 400 nm. Strong adhesion of copper nanoparticles to the vermiculite carrier makes this hybrid very stable and durable. The new vermiculite-metallic copper hybrid material shows strong antibacterial activity against Staphylococcus aureus at 37 °C. Vermiculite is an inexpensive mineral that is very stable under a wide range of industrial and environmental conditions, and extensively used as filler in fireproof materials, plastics, paints and lightweight concrete, so the addition of copper as an antibacterial agent opens new avenues for the application of vermiculite in consumer products and other areas.

  11. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  12. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  13. Improved Electroformed Structural Copper and Copper Alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.

    1998-01-01

    Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.

  14. Hybrid aluminum and indium conducting filaments for nonpolar resistive switching of Al/AlOx/indium tin oxide flexible device

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Wang, Jer-Chyi; Zhang, Zhigang; Ye, Yu-Ren; Pan, Liyang; Xu, Jun; Lai, Chao-Sung

    2014-02-01

    The nonpolar resistive switching characteristics of an Al/AlOx/indium tin oxide (ITO) device on a plastic flexible substrate are investigated. By analyzing the electron diffraction spectroscopy results and thermal coefficient of resistivity, it is discovered that the formation of aluminum and indium conducting filaments in AlOx film strongly depends on the polarity of the applied voltage. The metal ions arising from the Al and ITO electrodes respectively govern the resistive switching in corresponding operation polarity. After 104 times of mechanical bending, the device can perform satisfactorily in terms of resistance distribution, read sequence of high and low resistive states, and thermal retention properties.

  15. Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors.

    PubMed

    Dou, Letian; Cui, Fan; Yu, Yi; Khanarian, Garo; Eaton, Samuel W; Yang, Qin; Resasco, Joaquin; Schildknecht, Christian; Schierle-Arndt, Kerstin; Yang, Peidong

    2016-02-23

    Copper nanowire (Cu NW) based transparent conductors are promising candidates to replace ITO (indium-tin-oxide) owing to the high electrical conductivity and low-cost of copper. However, the relatively low performance and poor stability of Cu NWs under ambient conditions limit the practical application of these devices. Here, we report a solution-based approach to wrap graphene oxide (GO) nanosheets on the surface of ultrathin copper nanowires. By mild thermal annealing, GO can be reduced and high quality Cu r-GO core-shell NWs can be obtained. High performance transparent conducting films were fabricated with these ultrathin core-shell nanowires and excellent optical and electric performance was achieved. The core-shell NW structure enables the production of highly stable conducting films (over 200 days stored in air), which have comparable performance to ITO and silver NW thin films (sheet resistance ∼28 Ω/sq, haze ∼2% at transmittance of ∼90%). PMID:26820809

  16. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  17. Technique for depositing silicon dioxide on indium arsenide improves adhesion

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Planar array processing of indium arsenide wafers includes dicing into a prescribed geometry, then cleaning and drying, and finally pre-oxidizing in an oxygen atmosphere at 500 degrees C. The last step forms an oxide interface between the InAs surface and a glow discharge deposited layer of silicon dioxide.

  18. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  19. Properties and composition of anodic oxide layers of indium antimonide

    SciTech Connect

    Sorokin, I.N.; Gat'ko, L.E.; Nikitina, N.G.

    1985-09-01

    In recent years a number of optoelectronic devices based on narrowgap semiconductors of the AIIIBV type have been developed. One of the factors preventing widespread production of such devices is the inadequate study of the effect of the technology on the properties of insulator-semiconductor systems, of which anodic oxide films (AOF)--indium antimonide--are most promising. In this work the authors studied the dielectric properties and chemical composition of indium antimonide AOF as a function of their thicknesses and conditions of formation. It is determined that anodic indium antimonide oxide layers 90-110nm thick have high dielectric properties. It is also determined that an increase of the film thickness above 80100nm is accompanied by a decrease in the relative antimony content. The ratio of indium and antimony in oxide layers depends on the electrical conditions of oxidation of the semiconductor: the relative antimony content increases as a result of a decrease in the field intensity under conditions of constant voltage.

  20. Sub-micronewton thrust measurements of indium field emission thrusters

    NASA Technical Reports Server (NTRS)

    Ziemer, J. K.

    2003-01-01

    The performance of three indium field emission thrusters (In-FETs) developed by the Austrian Research Center Seibersdorf (ARCS) have been measured up to 200 muN, 2 mA, and 20 W using a submicronewton resolution thrust stand.

  1. Detection of accessory spleens with indium 111-labeled autologous platelets

    SciTech Connect

    Davis, H.H., II; Varki, A.; Heaton, W.A.; Siegel, B.A.

    1980-01-01

    In two patients with recurrent immune thrombocytopenia, accessory splenic tissue was demonstrated by radionuclide imaging following administration of indium 111-labeled autologous platelets. In one of these patients, no accessory splenic tissue was seen on images obtained with technetium 99m sulfur colloid. This new technique provides a simple means for demonstrating accessory spleens and simultaneously evaluating the life-span of autologous platelets.

  2. Indium segregation measured in InGaN quantum well layer

    PubMed Central

    Deng, Zhen; Jiang, Yang; Wang, Wenxin; Cheng, Liwen; Li, Wei; Lu, Wei; Jia, Haiqiang; Liu, Wuming; Zhou, Junming; Chen, Hong

    2014-01-01

    The indium segregation in InGaN well layer is confirmed by a nondestructive combined method of experiment and numerical simulation, which is beyond the traditional method. The pre-deposited indium atoms before InGaN well layer growth are first carried out to prevent indium atoms exchange between the subsurface layer and the surface layer, which results from the indium segregation. The uniform spatial distribution of indium content is achieved in each InGaN well layer, as long as indium pre-deposition is sufficient. According to the consistency of the experiment and numerical simulation, the indium content increases from 16% along the growth direction and saturates at 19% in the upper interface, which cannot be determined precisely by the traditional method. PMID:25339386

  3. Reclaim System Design of Indium Tin Oxide Thin-Film Removal from Color Filters of Displays

    NASA Astrophysics Data System (ADS)

    Pa, Pai-Shan

    2008-09-01

    A newly design precision reclaim system using electrochemical machining as an etching process for indium tin oxide (ITO) thin-film removal from the color filter surface of a displays is presented. Through the ultra precise etching of the nanostructure, the semiconductor industry can effectively recycle defective products, thereby reducing production costs. A large gyration diameter of a cathode combined with a small gap width between the cathode and a workpiece takes less time for the same amount of ITO removed. An adequate feed rate of color filters combined with a sufficient electric power produces fast machining. Pulsed direct current and higher rotational speed of the cathode can improve the effects of dregs discharge and are advantageous to be combined with a high feed rate of workpieces. Electrochemical machining only requires a short time to easily and cleanly remove ITO films.

  4. Minimization of Copper Losses in Copper Smelting Slag During Electric Furnace Treatment

    NASA Astrophysics Data System (ADS)

    Coursol, Pascal; Cardona Valencia, Nubia; Mackey, Phillip; Bell, Stacy; Davis, Boyd

    2012-11-01

    In the quest to achieve the highest metal recovery during the smelting of copper concentrates, this study has evaluated the minimum level of soluble copper in iron-silicate slags. The experimental work was performed under slag-cleaning conditions for different levels of Fe in the matte and for a range of Fe/SiO2 ratios in the slag. All experiments were carried out under conditions where three phases were present (copper-matte-slag), which is the condition typically prevailing in many slag-cleaning electric furnaces. The %Fe in the electric furnace matte was varied between 0.5 wt.% and 11 wt.%, and two different Fe/SiO2 ratios in the slag were used (targeted values were 1.4 and 1.6). All experiments were performed at 1200°C. From thermodynamic considerations, from industrial experience, and from the results obtained in this study, the minimum soluble copper content in the electric furnace slag is expected to be near 0.55 wt.% Cu. This level does not account for a portion of the copper present as mechanically entrained matte/metal droplets. Taking this into account, the current authors believe an overall copper level in discard slag between 0.7 wt.% and 0.8 wt.% can be obtained with optimal operating conditions. For these conditions, the copper losses in the slag are roughly 75% as dissolved copper and 25% as entrained matte and copper. Such conditions include operating the electric furnace at metallic copper saturation, maintaining the %Fe in the electric furnace matte between 6 wt.% and 9 wt.%, not exceeding a slag temperature of 1250°C, and controlling the Fe/SiO2 ratio in the smelting furnace slag at ≤1.5. In addition, magnetite reduction needs to be performed efficiently during the slag-cleaning cycle so as to maintain a total magnetite content of ≤7 wt.% in the discard slag. The authors further consider that under exceptionally well-controlled conditions, a copper content in electric furnace discard slag between 0.55 wt.% and 0.7 wt.% can be obtained, by

  5. Cross-current leaching of indium from end-of-life LCD panels.

    PubMed

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-01

    Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels. PMID:25997989

  6. Plasma Treatment to Remove Carbon from Indium UV Filters

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  7. Bioaccessibility and Solubility of Copper in Copper-Treated Lumber

    EPA Science Inventory

    Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...

  8. Use of and occupational exposure to indium in the United States.

    PubMed

    Hines, Cynthia J; Roberts, Jennifer L; Andrews, Ronnee N; Jackson, Matthew V; Deddens, James A

    2013-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009-2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m(3) for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  9. Use of and Occupational Exposure to Indium in the United States

    PubMed Central

    Hines, Cynthia J.; Roberts, Jennifer L.; Andrews, Ronnee N.; Jackson, Matthew V.; Deddens, James A.

    2015-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009–2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m3 for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  10. Chemical Industry: A New Interdisciplinary Course for Secondary Schools.

    ERIC Educational Resources Information Center

    Nae, Nehemia; And Others

    1980-01-01

    Describes an advanced high school course which incorporates an industrial approach into the chemistry curriculum. Presents three case studies as examples taken from the local chemistry industry--the production of copper, bromine, and plastics. (CS)

  11. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.

    PubMed

    Dutra, A J B; Rocha, G P; Pombo, F R

    2008-04-01

    Copper-cyanide bleed streams arise from contaminated baths from industrial electroplating processes due to the buildup of impurities during continuous operation. These streams present an elevated concentration of carbonate, cyanide and copper, constituting a heavy hazard, which has to be treated for cyanide destruction and heavy metals removal, according to the local environmental laws. In the Brazilian Mint, bleed streams are treated with sodium hypochlorite, to destroy cyanide and precipitate copper hydroxide, a solid hazardous waste that has to be disposed properly in a landfill or treated for metal recovery. In this paper, a laboratory-scale electrolytic cell was developed to remove the copper from the bleed stream of the electroplating unit of the Brazilian Mint, permitting its reutilization in the plant and decreasing the amount of sludge to waste. Under favorable conditions copper recoveries around 99.9% were achieved, with an energy consumption of about 11 kWh/kg, after a 5-h electrolysis of a bath containing copper and total cyanide concentrations of 26 and 27 g/L, respectively. Additionally, a substantial reduction of the cyanide concentration was also achieved, decreasing the pollution load and final treatment costs. PMID:17728063

  12. Molecular beam epitaxy growth of indium nitride and indium gallium nitride materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Trybus, Elaissa

    The objective of the proposed research is to establish the technology for material growth by molecular beam epitaxy (MBE) and fabrication of indium gallium nitride/gallium nitride (InxGa1-xN/GaN) heterojunction solar cells. InxGa1-xN solar cells have the potential to span 90% of the solar spectrum, however there has been no success with high indium (In) incorporation and only limited success with low In incorporation InxGa1-xN. Therefore, this present work focuses on 15--30% In incorporation leading to a bandgap value of 2.3--2.8 eV. This work will exploit the revision of the indium nitride (InN) bandgap value of 0.68 eV, which expands the range of the optical emission of nitride-based devices from ultraviolet to near infrared regions, by developing transparent In xGa1-xN solar cells outside the visible spectrum. Photovoltaic devices with a bandgap greater than 2.0 eV are attractive because over half the available power in the solar spectrum is above the photon energy of 2.0 eV. The ability of InxGa1-xN materials to optimally span the solar spectrum offers a tantalizing solution for high-efficiency photovoltaics. This work presents results confirming the revised bandgap of InN grown on germanium (Ge) substrates and the effects of oxygen contamination on the bandgap. This research adds to the historical discussion of the bandgap value of InN. Using the metal modulated epitaxy (MME) technique in a new, ultra-clean refurbished MBE system, an innovative growth regime is established where In and Ga phase separation is diminished by increasing the growth rate for In xGa1-xN. The MME technique modulates the metal shutters with a fixed duty cycle while maintaining a constant nitrogen flux and proves effective for improving crystal quality and p-type doping. InxGa 1-xN/GaN heterojunction solar cells require p-type doping to create the p-n subcell collecting junction, which facilitates current collection through the electrostatic field created by spatially separated ionized

  13. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    PubMed

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively. PMID:25191877

  14. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating

  15. Copper as a biocidal tool.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2005-01-01

    Copper ions, either alone or in copper complexes, have been used to disinfect liquids, solids and human tissue for centuries. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide as well as an anti-bacterial and anti-fouling agent. Copper also displays potent anti-viral activity. This article reviews (i) the biocidal properties of copper; (ii) the possible mechanisms by which copper is toxic to microorganisms; and (iii) the systems by which many microorganisms resist high concentrations of heavy metals, with an emphasis on copper. PMID:16101497

  16. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  17. MOCVD growth of gallium nitride with indium surfactant

    NASA Astrophysics Data System (ADS)

    Won, Dong Jin

    In this thesis research, the effect of indium surfactant on Ga-polar and N-polar GaN films grown at 950 °C by MOCVD on various substrates such as Si-face SiC, bulk GaN, Si(111), and C-face SiC was studied to investigate the stress relaxation mechanism, structural, and optical properties of GaN films which were modified by the indium surfactant. The effect of indium surfactant on GaN films grown on SiC was studied first. In the 1.8 microm thick Ga-polar GaN films grown on lattice-mismatched Si-face SiC substrates utilizing indium surfactant at 950 °C, inverted hexagonal pyramid surface defects, so-called V-defects which consist of six (1011) planes, formed at threading dislocations on the GaN surface, which gave rise to the relaxation of compressive misfit stress in an elastic way. Simultaneously, enhanced surface mobility of Ga and N adatoms with indium surfactant lead to improved 2D growth, which may be contradictory to the formation of surface defects like V-defects. In order to find the driving force for V-defect formation in the presence of indium, a nucleation and growth model was developed, taking into consideration the strain, surface, and dislocation energies modified by indium surfactant. This model found that the V-defect formation can be energetically preferred since indium reduces the surface energy of the (1011) plane, which gives rise to the V-defect formation and growth that can overcome the energy barrier at the critical radius of the V-defect. These Ga-polar GaN films were found to be unintentionally doped with Si. Thus, an investigation into the effect of intentional Si doping at a constant TMIn flow rate on GaN films was also performed. Si turned out to be another important factor in the generation of V-defects because Si may be captured at the threading dislocation cores by forming Si -- N bonds, acting as a mask to locally prevent GaN growth. This behavior appeared to assist the initiation of the V-defect which enables V-defects to easily

  18. Cross-current leaching of indium from end-of-life LCD panels

    SciTech Connect

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-15

    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium

  19. The investigation of electrolytic surface roughening for PCB copper foil

    NASA Astrophysics Data System (ADS)

    Lee, Shuo-Jen; Liu, Chao-Kai

    2013-10-01

    This study is the application of the principle of electrochemical. The anodic dissolution has no concentration polarization. Hence, electrolyte life is substantially increased. The waste copper is high in ion concentration with a recovery value. As compared with the current PCB chemical pre-treatment method, it may have advantages of cost-saving, improvement of overall efficiency, reduction of production costs and reduction of the amount of waste generated. In the development of the copper foil for electrochemical roughening process, the use of electrolysis reaction affects the copper surface dissolution to form a unique bump coarsening. It will increase in the surface area of the copper foil to improve dry film solder mask and the adhesion between the copper surfaces. Four electrolytes, two neutral salts and two acids, were selected to explore the best of the electrolytic roughening parameters of temperature, time and voltage. The surface roughness and the surface morphology of the copper foil were measured before and after the electrolytic surface roughening. Finally, after repeated experiments, electrolytes A and B copper generates obvious inter-granular corrosion, resulting in a rough surface similar to the chemical pre-treatment. On the other hands, the surface morphology resulted from electrolytes C and D appears more like pitting. Both electrolytic could generate surface roughness of Ra 0.3 um roughened copper surface higher than industrial standard.

  20. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    PubMed

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW). PMID:26219270

  1. Fibrotic gene expression coexists with alveolar proteinosis in early indium lung.

    PubMed

    Noguchi, Shuhei; Eitoku, Masamitsu; Kiyosawa, Hidenori; Suganuma, Narufumi

    2016-08-01

    Occupational inhalation of indium compounds can cause the so-called "indium lung disease". Most affected individuals show pulmonary alveolar proteinosis (PAP) and fibrotic interstitial lung disease. In animal experiments, inhalation of indium tin oxide or indium oxide has been shown to cause lung damage. However, the mechanisms by which indium compounds lead to indium lung disease remain unknown. In this study, we constructed a mouse model of indium lung disease and analyzed gene expression in response to indium exposure. Indium oxide (In2O3, 10 mg/kg, primary particle size <100 nm) was administered intratracheally to C57BL/6 mice (male, 8 weeks of age) twice a week for 8 weeks. Four weeks after the final instillation, histopathological analysis exhibited periodic acid-Schiff positive material in the alveoli, characteristic of PAP. Comprehensive gene expression analysis by RNA-Seq, however, revealed expression of fibrosis-related genes, such as surfactant associated protein D, surfactant associated protein A1, mucin 1, and collagen type I and III, was significantly increased, indicating that fibrotic gene expression progresses in early phase of indium lung. These data supported the latest hypothesis that PAP occurs as an acute phase response and is replaced by fibrosis after long-term latency. PMID:27308969

  2. Exploratory synthesis of copper alkoxides as potential precursors for chemical vapor deposition of copper

    NASA Astrophysics Data System (ADS)

    Himes, Charles Leonard

    Volatile copper compounds are needed by the electronics industry for applying thin films of copper during integrated circuit fabrication. Copper alkoxides comprise a class of compounds that offer promise for this purpose. This research investigated possible synthesis pathways to candidate compounds. Syntheses of aminoalkoxocopper(II) compounds by metathesis in water and under an inert atmosphere were investigated. 2-Aminoalkoxocopper(II) can be made in both environments. N-Alkylamino substituted copper(II) aminoethanolates were synthesized only under an inert atmosphere. 2- N,N-Dimethylaminoethoxocopper(II), 2-N,N-diethylaminoethoxocopper(II), and 2-N-ethylaminoethoxocopper(II) were synthesized. This synthesis method is suggested as a general method for preparation of aminoalkoxocopper(II) compounds. The volatility of 2-N,N-dialkylaminoethoxocopper(II) compounds suggests that they may be appropriate for further development as solid chemical vapor deposition precursors for copper and copper oxides. Their volatility might be controllable by variation of their alkyl substituents. Attempted formation of oxidatively-stable aminoalkoxocopper(I) compounds, in air, by replacement of nitrato and chlorido groups from triphenylphosphine-stablized copper(I) compounds was unsuccessful. The observed reactions suggest successful syntheses might be conducted under an inert atmosphere. The synthesis of volatile alkoxocopper(I) compounds was attempted by using a stabilizing ligand to interrupt their polymeric structures. Derivatives of methoxocopper(I) and ethoxocopper(I) compounds using triphenylphosphine were attempted. Methods of separation and isolation of the products were studied. Chloride contamination in reactants and production of copper(I) oxide interfered with success in these syntheses. Nitratobis(triphenylphosphine)copper(I) was used as a novel starting material for syntheses of triphenylphosphine-stabilized tert-butoxocopper(I) compounds and proved to be a valuable

  3. Volatility of copper

    SciTech Connect

    Palmer, D.A.; Simonson, J.M.; Joyce, D.B.

    1996-08-01

    The relevant aqueous thermodynamics of copper and its oxides are evaluated and summarized with emphasis on solubility, hydrolysis, and complexation. The solubilities of metallic copper, solid cuprous and cupric oxides in steam measured by Pocock and Stewart in 1963 are discussed and the latter data are fitted in the form of established empirical equations and compared to other existing results. No other sources of data were found for the solubility of copper and cupric oxide in steam and even these data are very limited. Discussion of corresponding available solubility data on both oxide phases in liquid water is given. The possible effects of complexing agents are considered. A brief discussion is provided of the role of surface adsorption in determining the fate of dissolved copper in the boiler. 37 refs., 5 figs., 3 tabs.

  4. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria

    PubMed Central

    Staehlin, Benjamin M.; Gibbons, John G.; Rokas, Antonis; O’Halloran, Thomas V.; Slot, Jason C.

    2016-01-01

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including the cus (copper sensing copper efflux system), and pco (plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative of Enterobacter cloacae as the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the original pco module was replaced by a divergent pco homolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens. PMID:26893455

  5. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria.

    PubMed

    Staehlin, Benjamin M; Gibbons, John G; Rokas, Antonis; O'Halloran, Thomas V; Slot, Jason C

    2016-03-01

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including thecus(copper sensing copper efflux system), andpco(plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative ofEnterobacter cloacaeas the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the originalpcomodule was replaced by a divergentpcohomolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens. PMID:26893455

  6. Toxicology and carcinogenesis studies of indium phosphide (CAS No. 22398-90-7) in F344/N rats and B6C3F1 mice (inhalation studies).

    PubMed

    2001-07-01

    Indium phosphide is used to make semiconductors,injection lasers, solar cells, photodiodes, and light-emittingdiodes. Indium phosphide was nominated for study because of its widespread use in the microelectronics industry, the potential for worker exposure,and the absence of chronic toxicity data. Male and female F344/N rats and B6C3F1 mice were exposed to indium phosphide (greater than 99% pure) by inhalation for 14 weeks or 2 years. The frequency of micronuclei was determined in the peripheral blood of mice exposed to indium phosphide for 14 weeks. 14-WEEK STUDY IN RATS: Groups of 10 male and 10 female rats were exposed to particulate aerosols of indium phosphide with amass median aerodynamic diameter of approximately 1.2 microm at concentrations of 0, 1, 3, 10, 30, or 100 mg/m3 by inhalation, 6 hours per day, 5 days per week (weeks 1 through 4 and weeks 10 through 14) or 7 days per week (weeks 5 through 9) to accommodate a concurrent teratology study. One male in the 100 mg/m3 group died before the end of the study. Body weight gains of all males and females exposed to 100 mg/m3 were less than those of the chamber controls. As a result of indium phosphide exposure, the lungs of all exposed rats had a gray to black discoloration and were significantly enlarged, weighing 2.7- to 4.4-fold more than those of the chamber controls. Indium phosphide particles were observed throughout the respiratory tract and in the lung-associated lymph nodes. A spectrum of inflammatory and proliferative lesions generally occurred in the lungs of all exposed groups of rats and consisted of alveolar proteinosis, chronic inflammation, interstitial fibrosis, and alveolar epithelial hyperplasia. Pulmonary inflammation was attended by increased leukocyte and neutrophil counts in the blood. The alveolar proteinosis was the principal apparent reason for the increase in lung weights. Indium phosphide caused inflammation at the base of the epiglottis of the larynx and hyperplasia of the

  7. Indium Phosphide Nanocrystals Formed in Silica by Sequential Ion Implantation

    SciTech Connect

    Denmark, D.; Ueda, A.; Shao, C. L.; Wu, M. H.; Mu, R.; White, Clark W; Vlahovic, B.; Muntele, C. I.; Ila, Dr. Daryush; Liu, Y. C.

    2005-01-01

    Fused silica substrates were implanted with: (1) phosphorus only, (2) indium only, and (3) phosphorus plus indium ions. Vibrational and electronic characterizations have been performed on the P only and In only samples to obtain an understanding of the thermal annealing behavior in order to obtain a meaningful guide for the fabrication of InP quantum dots (QDs) formed by sequential ion implantation of In and P in SiO{sub 2}. Thermal annealing procedures for InP synthesis have been established and InP quantum dots are confirmed by TEM, XRD and far infrared measurements. Far IR spectra show a single resonance at 323 cm{sup -1} rather than two absorption peaks in its counterpart of bulk InP crystals. The single band absorption is attributed to the surface phonon of InP quantum dots which will appear between transverse optical (TO) and longitudinal optical (LO) phonon modes of the bulk.

  8. Enhanced superconducting pairing interaction in indium-doped tin telluride

    SciTech Connect

    Erickson, A.S.; Chu, J.-H.; Toney, M.F.; Geballe, T.H.; Fisher, I.R.; /SLAC, SSRL /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.

    2010-02-15

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  9. Enhanced superconducting pairing interaction in indium-doped tin telluride

    SciTech Connect

    Erickson, A.S.

    2010-05-03

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  10. Absorption of ac fields in amorphous indium-oxide films

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2014-08-01

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (InxO) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In2O3-x) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  11. Determination of series resistance of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving

    1991-01-01

    The series resistance of a solar cell is an important parameter, which must be minimized to achieve high cell efficiencies. The cell series resistance is affected by the starting material, its design, and processing. The theoretical approach proposed by Jia, et. al., is used to calculate the series resistance of indium phosphide solar cells. It is observed that the theoretical approach does not predict the series resistance correctly in all cases. The analysis was modified to include the use of effective junction ideality factor. The calculated results were compared with the available experimental results on indium phosphide solar cells processed by different techniques. It is found that the use of process dependent junction ideality factor leads to better estimation of series resistance. An accurate comprehensive series resistance model is warranted to give proper feedback for modifying the cell processing from the design state.

  12. Oxygen-free atomic layer deposition of indium sulfide

    DOEpatents

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  13. Preparation and photoluminescence study of mesoporous indium hydroxide nanorods

    SciTech Connect

    Li, Changyu; Lian, Suoyuan; Liu, Yang; Liu, Shouxin; Kang, Zhenhui

    2010-02-15

    Mesoporous indium hydroxide nanorods were successfully synthesized by a mild one-step one-pot method. The obtained samples were characterized by X-ray diffraction, transmission electron microscopy with selected area electron diffraction, N{sub 2} adsorption, ultraviolet-visible absorption and photoluminescence, respectively. Transmission electron microscopy showed that there were some pores in the samples, which were mainly composed of rod-like shapes with length of 300 nm and diameter of 90 nm. N{sub 2} adsorption/desorption measurements confirmed that the prepared powder was mesoporous with average pore diameter of 3.1 nm. The ultraviolet-visible absorption spectroscopy analysis indicated that the band gap energy of the samples was 5.15 eV. Photoluminescence spectrum showed that there were two strong emissions under ultraviolet light irradiation. The growth mechanism of indium hydroxide nanorods and the role of cetyltrimethyl ammonium bromide were also discussed.

  14. Order on disorder: Copper phthalocyanine thin films on technical substrates

    SciTech Connect

    Peisert, H.; Schwieger, T.; Auerhammer, J. M.; Knupfer, M.; Golden, M. S.; Fink, J.; Bressler, P. R.; Mast, M.

    2001-07-01

    We have studied the molecular orientation of the commonly used organic semiconductor copper phthalocyanine (CuPC) grown as thin films on the technically relevant substrates indium tin oxide, oxidized Si, and polycrystalline gold using polarization-dependent x-ray absorption spectroscopy, and compare the results with those obtained from single crystalline substrates [Au(110) and GeS(001)]. Surprisingly, the 20{endash}50 nm thick CuPC films on the technical substrates are as highly ordered as on the single crystals. Importantly, however, the molecular orientation in the two cases is radically different: the CuPC molecules stand on the technical substrates and lie on the single crystalline substrates. The reasons for this and its consequences for our understanding of the behavior of CuPC films in devices are discussed. {copyright} 2001 American Institute of Physics.

  15. Indium-111 leukocyte scintigraphy in Wegener's granulomatosis involving the spleen

    SciTech Connect

    Morayati, S.J.; Fink-Bennett, D.

    1986-12-01

    Indium-111-labeled leukocyte scintigraphy was performed on a 44-yr-old man to exclude an occult abscess. Four- and twenty-four-hour images of the abdomen revealed splenic photopenia except for a rim of activity medially. A subsequent computed tomography (CT) study demonstrated necrosis or hemorrhage of the spleen except for a medial rim. Exploratory laparotomy demonstrated necrotizing vasculitis with granuloma formation consistent with Wegener's granulomatosis and a rim of viable splenic tissue corresponding to the radionuclide and CT studies.

  16. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  17. Effect of strain on indium incorporation in heteroepitaxial (indium, gallium) nitride nanomaterials

    NASA Astrophysics Data System (ADS)

    Ewoldt, David A.

    2011-12-01

    One of the challenges facing LED lighting today is the achievement of low-cost true white lighting. Ideally, multiple LEDs of different colors, blue, red and green, would be utilized in order to achieve white light. Currently, the quality of green LEDs is low when compared to the red and blue counterparts. Green emission from LEDs is difficult to achieve due to phase segregation that occurs during growth of the (In,Ga)N LED structure, which separates into compositions of high and low InN concentration and prevents the moderate composition required for green emission. On the nanoscale, strain effects in the (In,Ga)N material system give rise to shifts in optical properties. Relieving strain allows for the incorporation of additional indium nitride, which shifts the wavelength of light emitted by the structure. In order to control strain effects, growth templates were fabricated by several methods (PAA, FIB, EBL). A robust process for fabrication of pores down to 25 nm in diameter has been developed in order to investigate this effect. From this process, a template using e-beam lithography has been created and then growth of (In,Ga)N on this template in a metallorganic chemical vapor deposition system was performed. As (In,Ga)N grows from the GaN substrate, it is naturally strained due to the lattice mismatch. Lateral growth out of the templates relieves strain by allowing the rods to expand as they grow out of the prepared pores. The effect of the diameter of pores on the emission characteristics has been analyzed and a strong logarithmic trend was discovered correlating emission wavelength to pore diameter. In addition to allowing control over the wavelength of emission based on pore diameter, the process that has been developed and demonstrated will allow a distribution of pore sizes that could facilitate color mixing.

  18. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Metaferia, Wondwosen; Sun, Yan-Ting; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto; Lourdudoss, Sebastian

    2014-07-01

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III-V semiconductor layers on low cost and flexible substrates for solar cell applications.

  19. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    SciTech Connect

    Metaferia, Wondwosen; Sun, Yan-Ting Lourdudoss, Sebastian; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  20. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    NASA Astrophysics Data System (ADS)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  1. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    NASA Astrophysics Data System (ADS)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  2. Thermal contact resistance across a copper-silicon interface

    SciTech Connect

    Khounsary, A.M.; Chojnowski, D.; Assoufid, L.; Worek, W.M.

    1997-10-01

    The issue of thermal contact resistance across metallic interfaces has been investigated for many situations over the past several decades. The application in the present case is contact cooling of high heat load optical substrates. High heat load x-ray mirrors and other optical components used at the Advanced Photon Source (APS) are either internally cooled or contact cooled. In the internally cooled mirrors, a coolant flows through passages configured in the optical substrate. In the contact-cooled case, cooling is provided by placing cooling plates in contact with the mirror to extract the heat. Here, an experimental setup to measure the thermal contact conductance across a silicon-copper (Si-Cu) interface is described, and the results obtained are presented. The resulting thermal contact resistance data are used in estimating the thermo-mechanical and optical performance of optical substrates cooled by interfaced copper cooling blocks. Several factors influence the heat transfer across solid interfaces. These include the material properties, interface pressure, flatness and roughness of the contacting surfaces, temperature, and interstitial material, if any. Results presented show the variation of thermal contact conductance as a function of applied interface pressure for a Cu-Si interface. Various interstitial materials investigated include indium foil, silver foil and a liquid eutectic (Ga-In-Sn). As expected, thermal contact resistance decreases as interface pressure increases, except in the case of the eutectic, in which it was nearly constant. The softer the interstitial material, the lower the thermal contact resistance. Liquid metal provides the lowest thermal contact resistance across the Cu-Si interface, followed by the indium foil, and then the silver foil.

  3. Experimental and theoretical study of the optical and electrical properties of nanostructured indium tin oxide fabricated by oblique-angle deposition.

    PubMed

    Sood, Adam W; Poxson, David J; Mont, Frank W; Chhajed, Sameer; Cho, Jaehee; Schubert, E Fred; Welser, Roger E; Dhar, Nibir K; Sood, Ashok K

    2012-05-01

    Oblique-angle deposition of indium tin oxide (ITO) is used to fabricate optical thin-film coatings with a porous, columnar nanostructure. Indium tin oxide is a material that is widely used in industrial applications because it is both optically transparent and electrically conductive. The ITO coatings are fabricated, using electron-beam evaporation, with a range of deposition angles between 0 degrees (normal incidence) and 80 degrees. As the deposition angle increases, we find that the porosity of the ITO film increases and the refractive index decreases. We measure the resistivity of the ITO film at each deposition angle, and find that as the porosity increases, the resistivity increases superlinearly. A new theoretical model is presented to describe the relationship between the ITO film's resistivity and its porosity. The model takes into account the columnar structure of the film, and agrees very well with the experimental data. PMID:22852330

  4. Optimization of indium bump preparation in infrared focal plane array fabrication

    NASA Astrophysics Data System (ADS)

    Hou, Zhijin; Si, Junjie; Wang, Wei; Wang, Haizhen; Wang, Liwen

    2014-11-01

    Optimization of indium bump preparation in infrared focal plane array (IRFPA) fabrication is presented. Reasons of bringing defective pixels during conventional lift-off and cleanout process in fabrication of indium bump are discussed. IRFPAs are characterized by IRFPA test-bench. Results show that defective pixels of InSb IRFPA are owing to indium bumps connecting through indium residue on the surface of wafer. The characteristic and configuration of defective pixels of InSb IRFPA are given and analyzed. A method of reducing defective pixels through optimizing liftoff and cleanout process in InSb IRFPA is proposed. Results prove that this method is effective.

  5. Method for enhancing the solubility of boron and indium in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  6. Ultrasonic-Assisted Acid Leaching of Indium from Blast Furnace Sludge

    NASA Astrophysics Data System (ADS)

    Shen, Xingmei; Li, Liaosha; Wu, Zhaojin; Lü, Huihong; Lü, Jia

    2013-12-01

    Ultrasonic-assisted acid leaching was used to improve extraction of indium from blast furnace sludge. The effects of solid-liquid ratio, leaching temperature, and leaching time on extraction of indium were investigated and three leaching methods of high temperature acid leaching (HL), ultrasonic acid leaching (UL), and high temperature-ultrasonic acid leaching (HUL) were compared. The results show that extraction of indium increases with leaching time for all the methods. UL exhibits the lowest indium extraction. For HL, extraction of indium reaches 32.6 pct when the leaching time is 4 hours, and after 4 hours, the extraction increases slowly. Leaching temperature has a more positive effect on extraction of indium than ultrasonic. HUL can lead to a higher extraction of indium than high temperature acid leaching and UL, and extraction of indium reaches 40.4 pct when the leaching time is 2 hours. After 2 hours, no obvious increase occurs. HUL not only increases extraction of indium but also reduces the leaching time which can improve production efficiency.

  7. Thermodynamics of Indium Dissolution Behavior in FeO-Bearing Metallurgical Slags

    NASA Astrophysics Data System (ADS)

    Han, Yun Soon; Park, Joo Hyun

    2015-02-01

    Indium solubility in the FeO-SiO2-Al2O3-5CaO-MgOsat slag system was measured at 1573 K (1300 °C) to confirm the thermodynamic dissolution behavior of indium at atm. The indium solubility in FeO-bearing slags increased with increasing oxygen partial pressure and decreased with increasing basicity which is in proportion to the activity of FeO. The dissolution of indium in FeO-bearing slags was confirmed to progress according to the following reaction: The enthalpy change for the dissolution of indium in FeO-bearing slag was about -181 kJ/mol, indicating that indium dissolution is exothermic. The indium solubility in the FeO-SiO2-Al2O3-5CaO-MgOsat slag system was minimized as a function of alumina content at a given FeO/SiO2 ratio, which can be explained by the amphoteric behavior of Al2O3 in the slag system. To improve indium recovery by lowering indium loss to the slag phase during the pyro-recycling of In-containing materials using FeO-bearing metallurgical slags, a lower oxygen potential and lower silica content are highly favorable.

  8. The Status and Outlook for the Photovoltaics Industry

    NASA Astrophysics Data System (ADS)

    Carlson, David

    2006-03-01

    The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.

  9. Bacterial Killing by Dry Metallic Copper Surfaces▿

    PubMed Central

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important first steps for revealing the molecular sensitive targets in cells lethally challenged by exposure to copper surfaces and provide a scientific explanation for the use of copper surfaces as antimicrobial agents for supporting public hygiene. PMID:21148701

  10. Potentiometric detection and removal of copper using porphyrins

    PubMed Central

    2013-01-01

    Background Copper is an essential trace element with a great importance in industry, environment and biological systems. The great advantage of ion-selective sensors in comparison with other proposed techniques is that they are measuring the free metal ion activity which is responsible for their toxicity. Porphyrins are known to be among the best ionophores in formulation of ion-selective sensors. Results A symmetrically substituted meso-porphyrin, namely: 5,10,15,20-tetrakis(4-allyloxyphenyl)porphyrin (TAPP) was used in the construction of a new copper selective-sensor and was also tested for the removal of copper from waste waters. The potentiometric response characteristics (slope and selectivity) of copper-selective electrodes based on TAPP in o-nitrophenyloctylether (o-NPOE), dioctyl phtalate (DOP) and dioctyl sebacate (DOS) plasticized with poly(vinyl chloride) membranes are compared. Conclusions The best results were obtained for the membrane plasticized with DOP. The sensor has linear response in the range 1x10-7 – 1x10-1 M with 28.4 ± 0.4 mV/decade near-Nernstian slope towards copper ions and presents good selectivity. Due to its chelating nature, the same porphyrin was also tested for the retention of copper from synthetic copper samples, showing a maximum adsorption capacity of 280 mg/g. PMID:23829792

  11. Preparation of high purity copper fluoride by fluorinating copper hydroxyfluoride

    NASA Technical Reports Server (NTRS)

    King, R. B.; Lundquist, J. R.

    1969-01-01

    Copper fluoride containing no more than 50 ppm of any contaminating element was prepared by the fluorination of copper hydroxyfluoride. The impurity content was obtained by spark source mass spectrometry. High purity copper fluoride is needed as a cathode material for high energy density batteries.

  12. Copper and copper-nickel alloys as zebra mussel antifoulants

    SciTech Connect

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K.

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  13. Gold, nickel and copper mining and processing.

    PubMed

    Lightfoot, Nancy E; Pacey, Michael A; Darling, Shelley

    2010-01-01

    Ore mining occurs in all Canadian provinces and territories except Prince Edward Island. Ores include bauxite, copper, gold, iron, lead and zinc. Workers in metal mining and processing are exposed, not only to the metal of interest, but also to various other substances prevalent in the industry, such as diesel emissions, oil mists, blasting agents, silica, radon, and arsenic. This chapter examines cancer risk related to the mining of gold, nickel and copper. The human carcinogenicity of nickel depends upon the species of nickel, its concentration and the route of exposure. Exposure to nickel or nickel compounds via routes other than inhalation has not been shown to increase cancer risk in humans. As such, cancer sites of concern include the lung, and the nasal sinus. Evidence comes from studies of nickel refinery and leaching, calcining, and sintering workers in the early half of the 20th century. There appears to be little or no detectable risk in most sectors of the nickel industry at current exposure levels. The general population risk from the extremely small concentrations detectable in ambient air are negligible. Nevertheless, animal carcinogenesis studies, studies of nickel carcinogenesis mechanisms, and epidemiological studies with quantitative exposure assessment of various nickel species would enhance our understanding of human health risks associated with nickel. Definitive conclusions linking cancer to exposures in gold and copper mining and processing are not possible at this time. The available results appear to demand additional study of a variety of potential occupational and non-occupational risk factors. PMID:21199602

  14. Mechanical durability of superhydrophobic and oleophobic copper meshes

    NASA Astrophysics Data System (ADS)

    Yin, Linting; Yang, Jin; Tang, Yongcai; Chen, Lin; Liu, Can; Tang, Hua; Li, Changsheng

    2014-10-01

    We developed a simple and inexpensive method to prepare the superhydrophobic and oleophobic copper meshes with rough structures fabrication and chemical modification. The achieved surfaces displayed liquid-repellent toward water and several organic liquids (such as hexadecane), which possessed much lower surface tension than that of water. Liquid repellency of the fabricated superhydrophobic copper mesh was demonstrated by visible experiment results and contact angle measurements. Even if the superhydrophobic copper mesh was rolled up, it still kept the superhydrophobicity. The mechanical durability was investigated by finger touch and mechanical abrasion tests. The results indicated that the copper mesh can maintain its superhydrophobicity against an abrasion length of 300 cm under a high pressure (77.2 kPa). The superhydrophobicity and oleophobicity, combined with mechanical durability, would promote the superhydrophobic surface to practical application in industry in the future.

  15. Ceruloplasmin, copper ions, and angiogenesis.

    PubMed

    Raju, K S; Alessandri, G; Ziche, M; Gullino, P M

    1982-11-01

    The ability to induce new formation of capillaries in the cornea was tested for ceruloplasmin, the copper carrier of serum, for fragments of the ceruloplasmin molecule with and without copper, for heparin, and for glycyl-L-histidyl-L-lysine, bound or not bound to copper ions. Male or female 2- to 3-kg New Zealand White rabbits were used. These experiments were prompted by the previous observation of copper accumulation in the cornea during angiogenesis and by the inability of copper-deficient rabbits to mount an angiogenic response. The results showed that the three different molecules were all able to induce angiogenesis provided that they were bound to copper. Fragments of the ceruloplasmin molecule also induced angiogenesis but only when copper was bound to the peptides. The data are interpreted to indicate that copper ions are involved in the sequence of events leading to angiogenesis and that the carrier molecules may be of quite a different nature. PMID:6182332

  16. Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure.

    PubMed

    Nunes, Inês; Jacquiod, Samuel; Brejnrod, Asker; Holm, Peter E; Johansen, Anders; Brandt, Kristian K; Priemé, Anders; Sørensen, Søren J

    2016-11-01

    Copper has been intensively used in industry and agriculture since mid-18(th) century and is currently accumulating in soils. We investigated the diversity of potential active bacteria by 16S rRNA gene transcript amplicon sequencing in a temperate grassland soil subjected to century-long exposure to normal (∼15 mg kg(-1)), high (∼450 mg kg(-1)) or extremely high (∼4500 mg kg(-1)) copper levels. Results showed that bioavailable copper had pronounced impacts on the structure of the transcriptionally active bacterial community, overruling other environmental factors (e.g. season and pH). As copper concentration increased, bacterial richness and evenness were negatively impacted, while distinct communities with an enhanced relative abundance of Nitrospira and Acidobacteria members and a lower representation of Verrucomicrobia, Proteobacteria and Actinobacteria were selected. Our analysis showed the presence of six functional response groups (FRGs), each consisting of bacterial taxa with similar tolerance response to copper. Furthermore, the use of FRGs revealed that specific taxa like the genus Nitrospira and several Acidobacteria groups could accurately predict the copper legacy burden in our system, suggesting a potential promising role as bioindicators of copper contamination in soils. PMID:27543319

  17. Copper-phosphorus alloys offer advantages in brazing copper

    SciTech Connect

    Rupert, W.D.

    1996-05-01

    Copper-phosphorus brazing alloys are used extensively for joining copper, especially refrigeration and air-conditioning copper tubing and electrical conductors. What is the effect of phosphorus when alloyed with copper? The following are some of the major effects: (1) It lowers the melt temperature of copper (a temperature depressant). (2) It increases the fluidity of the copper when in the liquid state. (3) It acts as a deoxidant or a fluxing agent with copper. (4) It lowers the ductility of copper (embrittles). There is a misconception that silver improves the ductility of the copper-phosphorus alloys. In reality, silver added to copper acts in a similar manner as phosphorus. The addition of silver to copper lowers the melt temperature (temperature depressant) and decreases the ductility. Fortunately, the rate and amount at which silver lowers copper ductility is significantly less than that of phosphorus. Therefore, taking advantage of the temperature depressant property of silver, a Ag-Cu-P alloy can be selected at approximately the same melt temperature as a Cu-P alloy, but at a lower phosphorus content. The lowering of the phosphorus content actually makes the alloy more ductile, not the silver addition. A major advantage of the copper-phosphorus alloys is the self-fluxing characteristic when joining copper to copper. They may also be used with the addition of a paste flux on brass, bronze, and specialized applications on silver, tungsten and molybdenum. Whether it is selection of the proper BCuP alloy or troubleshooting an existing problem, the suggested approach is a review of the desired phosphorus content in the liquid metal and how it is being altered during application. In torch brazing, a slight change in the oxygen-fuel ratio can affect the joint quality or leak tightness.

  18. Processing of copper converter slag for metal reclamation. Part I: Extraction and recovery of copper and cobalt.

    PubMed

    Deng, Tong; Ling, Yunhan

    2007-10-01

    Clean processing of copper converter slag to reclaim cobalt and copper could be a challenge. An innovative and environmentally sound approach for recovering valuable metals from such a slag has been developed in the present study. Curing the slag with strong sulphuric acid, without re-smelting or roasting as practiced currently in the industry, render it accessible to leaching, and more than 95% of cobalt and up to 90% of copper was extracted together with iron by water leaching, leaving silica behind in a residue. The copper in the leach liquor was recovered by cementation with iron and the dissolved iron crystallized as ferrous sulphate monohydrate. The cobalt in the mother-liquor rich in iron was recovered by either cementation or sulphide precipitation. Operation variables in the new process were also investigated and optimized. PMID:17985669

  19. High adherence copper plating process

    SciTech Connect

    Mignardot, H.

    1992-12-31

    A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.

  20. SOURCES OF COPPER AIR EMISSIONS

    EPA Science Inventory

    The report gives results of a study to update estimates of atmospheric emissions of copper and copper compounds in the U.S. Source categories evaluated included: metallic minerals, primary copper smelters, iron and steel making, combustion, municipal incineration, secondary coppe...

  1. High adherence copper plating process

    DOEpatents

    Nignardot, H.

    1993-09-21

    A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing the surface of an aluminum or steel substrate for the electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to either substrate.

  2. Lab Tracker and Copper Calculator

    MedlinePlus

    ... on the top of this page. Appendix: Recommended Target Result Ranges for Good Copper Control in Treated Wilson Disease Patients. 24 Hour Urine Copper On Chelators: 200 - 500µg (3 - 8µmoles)/day On Zinc: <75µg/day 24 Hour Urine Zinc >2.0mg/day Non-Ceruloplasmin in Bound (Free) Copper 5 - 15 µg/ ...

  3. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Mane, R. S.; Kale, S. S.; Sonawane, S. H.; Shaikh, Arif V.; Han, Sung-Hwan

    2006-12-01

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 °C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu 2- xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm 2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  4. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2016-02-01

    Due to the widespread use of indium tin oxide (ITO), it is important to investigate its effect on human health. In this study, we evaluated the cellular effects of ITO nanoparticles (NPs), indium chloride (InCl3) and tin chloride (SnCl3) using human lung epithelial A549 cells. Transmission electron microscopy and inductively coupled plasma mass spectrometry were employed to study cellular ITO NP uptake. Interestingly, greater uptake of ITO NPs was observed, as compared with soluble salts. ITO NP species released could be divided into two types: 'indium release ITO' or 'tin release ITO'. We incubated A549 cells with indium release ITO, tin release ITO, InCl3 or SnCl2 and investigated oxidative stress, proinflammatory response, cytotoxicity and DNA damage. We found that intracellular reactive oxygen species were increased in cells incubated with indium release ITO, but not tin release ITO, InCl3 or SnCl2. Messenger RNA and protein levels of the inflammatory marker, interleukin-8, also increased following exposure to indium release ITO. Furthermore, the alkaline comet assay revealed that intracellular accumulation of indium ions induced DNA damage. Our results demonstrate that the accumulation of ionic indium, but not ionic tin, from ITO NPs in the intracellular matrix has extensive cellular effects. PMID:26378248

  5. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  6. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  7. Materials recovery from waste liquid crystal displays: A focus on indium.

    PubMed

    Fontana, Danilo; Forte, Federica; De Carolis, Roberta; Grosso, Mario

    2015-11-01

    In the present work the recovery of indium and of the polarizing film from waste liquid crystal displays was experimentally investigated in the laboratory. First of all, the polarizing film was removed by employing a number of different techniques, including thermal and chemical treatments. Leaching of indium was then performed with HCl 6N, which allowed solubilisation of approximately 90% In (i.e. 260 mg In per kg of glass) at room temperature, without shredding. Indium recovery from the aqueous phase was then investigated through solvent extraction with polyethylene glycol (PEG)-based aqueous biphasic systems. Indium extraction tests through the PEG-ammonium sulphate-water system were conducted as a function of PEG concentration, salt concentration and molecular weight of PEG, using 1,10 phenanthroline as a ligand. The experimental results demonstrated that indium partitioning between the bottom (salt-rich) and the top (PEG-rich) phase is quite independent on the composition of the system, since 80-95% indium is extracted in the bottom phase and 5-20% in the top phase; it was also found that when PEG concentration is increased, the ratio between the bottom and the upper phase volumes decreases, resulting in an increase of indium concentration in the bottom phase (at [PEG]=25% w/w, indium concentration in the bottom phase is ∼30% higher than the initial concentration before the extraction). PMID:26239936

  8. Creative Copper Crests

    ERIC Educational Resources Information Center

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  9. Ab initio calculation of the thermal conductivity of indium antimonide

    NASA Astrophysics Data System (ADS)

    Miranda, Alonso L.; Xu, Bin; Hellman, Olle; Romero, Aldo H.; Verstraete, Matthieu J.

    2014-12-01

    A theoretical study based on the density functional theory and the temperature-dependent effective potential method is performed to analyze the changes in the phonon band structure as a function of temperature for indium antimonide. In particular, we show changes in the thermal expansion coefficient and the thermal resistivity that agree rather well with experimental measurements. From the theoretical side, we show a weak dependence with respect to the chosen thermostat used to obtain the inter-atomic force constants, which strengthens our conclusions.

  10. Hydrogenated microcrystalline silicon electrodes connected by indium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuhiko P.; VJ, Logeeswaran; Saif Islam, M.; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Stanley Williams, R.; Chen, Yong

    2007-09-01

    The authors report the connection of two planar hydrogenated silicon (Si:H) electrodes by intersecting and bridging indium phosphide nanowires (InP NWs). A simple metal-semiconductor-metal photoconductor was used as a test vehicle to measure electrical and optical characteristics of the connected InP NWs. This implementation of III-V compound semiconductor nanowires on Si:H combines the characteristics of a direct bandgap semiconductor with the flexible fabrication processes of non-single-crystal silicon platforms that do not require single-crystal substrates.

  11. Study of indium tin oxide films exposed to atomic axygen

    NASA Technical Reports Server (NTRS)

    Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.

    1989-01-01

    A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.

  12. Detection of deep venous thrombosis by indium-111 leukocyte scintigraphy

    SciTech Connect

    D'Alonzo, W.A. Jr.; Alavi, A.

    1986-05-01

    Indium-111-labeled leukocyte ((/sup 111/In)WBC) scintigraphy has been used successfully for detection of inflammation. Occasionally, noninflammatory collections of white blood cells such as hematomas or hemorrhage have been localized. We report a case in which unsuspected femoral deep venous thrombosis was diagnosed on an (/sup 111/In)WBC leukocyte scan performed for detection of osteomyelitis. Readers are advised to avoid interpreting all vascular (/sup 111/In)WBC localization as necessarily infectious. This may be of particular significance in patients with vascular grafts.

  13. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  14. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  15. Copper leaching from chalcopyrite concentrates

    NASA Astrophysics Data System (ADS)

    Wang, Shijie

    2005-07-01

    Chalcopyrite (CuFeS2) is one of the most abundant copper-bearing minerals, which accounts for approximately 70 percent of the world’s known copper reserves. For more than 30 years, a significant number of processes have been developed to leach copper from chalcopyrite concentrates. These processes recover copper via hydrometallurgical leaching of the copper component of chalcopyrite concentrates, followed by solvent extraction and electrowinning. A number of demonstration plant operations have been conducted, but as of this writing none of the processes have become completely commercially operational.

  16. How Copper Nanowires Grow and How To Control Their Properties.

    PubMed

    Ye, Shengrong; Stewart, Ian E; Chen, Zuofeng; Li, Bo; Rathmell, Aaron R; Wiley, Benjamin J

    2016-03-15

    understanding of the structure-property relationship of nanowires in transparent conducting films, enabled the production of copper nanowires that can be coated from solution to make films with properties that rival the dominant transparent conductor, indium tin oxide. Finally, we show how copper nanowires can be coated with Zn, Sn, In, Ni, Co, Ag, Au, and Pt to protect them from oxidation or enable their use as transparent electrocatalysts. PMID:26872359

  17. Size-dependent electrical conductivity of indium zinc oxide deposited by RF magnetron sputtering.

    PubMed

    Heo, Young-Woo; Pearton, S J; Norton, D P

    2012-04-01

    We investigated the size-dependent electrical conductivities of indium zinc oxide stripes with different widths from 50 nm to 4 microm and with the same thickness of 50 nm deposited by RF magnetron sputtering. The size of the indium zinc oxide stripes was controlled by e-beam lithography. The distance of the two Ti/Au Ohmic electrodes along the indium zinc oxide stripes was kept constant at 25 microm. The electrical conductivity decreased as the size of the indium zinc oxide stripes decreased below a critical width (80 nm). The activation energy, derived from the electric conductivity versus temperature measurement, was dependent on the dimensions of indium zinc oxide stripes. These results can be understood as stemming from surface charge trapping from the absorption of oxygen and/or water vapor, which leads to an increase in the energy difference between the conduction energy band and the Fermi energy. PMID:22849102

  18. Sputtering of the gallium-indium eutectic alloy in the liquid phase

    NASA Technical Reports Server (NTRS)

    Dumke, M. F.; Tombrello, T. A.; Weller, R. A.; Housley, R. M.; Cirlin, E. H.

    1983-01-01

    Watson and Haff (1980) have discussed a theory which is designed to explain quantitatively isotopic fractionation effects observed during sputtering of simple or complex targets. This theory is based on the assumption that most of the atoms sputtered from a surface originate in the top monolayer. The present investigation is mainly concerned with a direct experimental test of that assumption. The sputtering of both solid and liquid phases of gallium, indium, and the gallium-indium eutectic alloy is studied. Results obtained with the aid of ion scattering and Auger spectroscopy show that, in agreement with rough theoretical expectations, the surface monolayer of a gallium-indium alloy with 16.5 percent indium in bulk contains more than 94 percent indium, while the next layer can be only slightly enriched.

  19. Limitations of indium leukocyte imaging for the diagnosis of spine infections

    SciTech Connect

    Whalen, J.L.; Brown, M.L.; McLeod, R.; Fitzgerald, R.H. Jr. )

    1991-02-01

    The usefulness of indium-111 white blood cell (WBC) scintigraphy in the detection of spine sepsis was studied in 22 patients who had open or percutaneous biopsies for microbiologic diagnosis. The indium images in 18 patients with vertebral infection were falsely negative in 15 (83%) and truly positive in 3 (17%). All four patients with negative cultures and histology had true-negative scans. The indium-111 WBC imaging results yielded a sensitivity of 17%, a specificity of 100%, and an accuracy rate of 31%. Prior antibiotic therapy was correlated with a high incidence of false-negative scans and photon-deficient indium-111 WBC uptake. The usefulness of indium-111 WBC scintigraphy for the diagnosis of vertebral infection may be limited to those patients who have not been treated with antibiotics previously.

  20. The study of selective heating of indium bump in MCT infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Cao, Lan; Zhuang, Fulong; Hu, Xiaoning; Gong, Haimei

    2012-10-01

    Generally the electrical interconnectivity between The Mercury Cadmium Telluride (MCT) infrared focal plane array (IRFPA) device and circuit takes the flip chip technology using indium bump as a connection medium. In order to improve the reliability of the interconnectivity indium melting is a common packaging technique at present. This technique is called reflow soldering. The heating is transferred to the indium bump by heating the device and circuit. This heating process will persist about 10 minutes resulting in the MCT material going through a 10 minutes high temperature baking course. This baking process will strongly degenerate the characteristic of the MCT device. Under this circumstance this article gives a new heating technique for indium bump which is call induction heating melting technique. This method realizes the selective heating. While the indium bump is melted by the conduction heating the semiconductor material such as MCT can't be heated.

  1. Effect of doping of tin on optoelectronic properties of indium oxide: DFT study

    SciTech Connect

    Tripathi, Madhvendra Nath

    2015-06-24

    Indium tin oxide is widely used transparent conductor. Experimentally observed that 6% tin doping in indium oxide is suitable for optoelectronic applications and more doping beyond this limit degrades the optoelectronic property. The stoichiometry (In{sub 32-x}Sn{sub x}O{sub 48+x/2}; x=0-6) is taken to understand the change in lattice parameter, electronic structure, and optical property of ITO. It is observed that lattice parameter increases and becomes constant after 6% tin doping that is in good agreement of the experimental observation. The electronic structure calculation shows that the high tin doping in indium oxide adversely affects the dispersive nature of the bottom of conduction band of pure indium oxide and decreases the carrier mobility. Optical calculations show that transmittance goes down upto 60% for the tin concentration more than 6%. The present paper shows that how more than 6% tin doping in indium oxide adversely affects the optoelectronic property of ITO.

  2. Synthesis and structure of undoped and indium-doped thermoelectric lead telluride nanoparticles

    PubMed Central

    2014-01-01

    Undoped and indium (In)-doped lead telluride (PbTe) nanostructures were synthesized via solvothermal/hydrothermal route. The crystalline structure of the as-prepared undoped and In-doped PbTe samples was examined by X-ray diffraction (XRD) which indicated the formation of face-centered single-phase cubic crystal. A first principle calculation on indium doping shows that the indium atoms are more likely to replace lead (Pb) rather than to take the interstitial sites. Laser-induced breakdown spectroscopy (LIBS) analysis confirms that indium is incorporated into the PbTe matrix of the indium-doped PbTe samples. The effects of surfactant and synthesis temperature on the structure and morphology of the undoped PbTe were also investigated; it was found that PbTe nanostructures synthesized with the addition of surfactants exhibited uniform shapes and their size increased with the synthesis temperature. PMID:24872808

  3. Safety of copper sulfate to channel catfish eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper sulfate (CuSO4) is commonly used in the catfish industry to control saprolegniasis (caused by watermolds) on eggs. This study was designed to establish the safety of CuSO4 when applied to hatching troughs containing channel catfish eggs in 26 degrees C flow-through well water at 10, 30, and ...

  4. Using copper sulfate to control fungus on fish eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper sulfate (CuSO4) is widely used by the catfish industry as an economical treatment to control fungus (Saprolegnia spp.) on catfish eggs. This is an overview of our effectiveness and safety studies. Channel catfish spawns were 24 - 48 hrs old. Comparable portions of a single spawn were place...

  5. Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China

    NASA Astrophysics Data System (ADS)

    Nie, Zhiqiang; Liu, Guorui; Liu, Wenbin; Zhang, Bing; Zheng, Minghui

    2012-09-01

    Field monitoring was conducted to update and develop unintentional persistent organic pollutant (unintentional POP) emission inventories for the copper metallurgy industry in China. In this study, emissions of six unintentional POPs comprised of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), hexachlorobenzene (HxCBz) and pentachlorobenzene (PeCBz) in stack gas and fly ash samples from primary and secondary copper smelters using different raw materials and technologies were measured and compared. Different concentrations, congener patterns and emission factors of unintentional POPs among four copper smelters were observed. Variations in unintentional POP emissions from several areas of a primary copper smelter were also investigated. The total emissions of unintentional POPs from primary and secondary copper production in 2010 in China were estimated respectively. These results provide a useful reference for the establishment of unintentional POP emission inventories and for policymakers to formulate control strategies to reduce unintentional POPs resulting from copper metallurgy.

  6. Effects of a powered air-purifying respirator intervention on indium exposure reduction and indium related biomarkers among ITO sputter target manufacturing workers.

    PubMed

    Liu, Hung-Hsin; Chen, Chang-Yuh; Lan, Cheng-Hang; Chang, Cheng-Ping; Peng, Chiung-Yu

    2016-05-01

    This study aimed to evaluate the efficacy of powered air-purifying respirators (PAPRs) worn by the workers, and to investigate the effect of this application on exposure and preclinical effects in terms of workplace measuring and biomarker monitoring in ITO sputter target manufacturing plants and workers, respectively. Fifty-four workers were recruited and investigated from 2010-2012, during which PAPRs were provided to on-site workers in September 2011. Each worker completed questionnaires and provided blood and urine samples for analysis of biomarkers of indium exposure and preclinical effects. Area and personal indium air samples were randomly collected from selected worksites and from participants. The penetration percentage of the respirator (concentration inside respirator divided by concentration outside respirator) was 6.6%. Some biomarkers, such as S-In, SOD, GPx, GST, MDA, and TMOM, reflected the decrease in exposure and showed lower levels, after implementation of PAPRs. This study is the first to investigate the efficacy of PAPRs for reducing indium exposure. The measurement results clearly showed that the implementation of PAPRs reduces levels of indium-related biomarkers. These findings have practical applications for minimizing occupational exposure to indium and for managing the health of workers exposed to indium. PMID:26771526

  7. Early Changes in Clinical, Functional, and Laboratory Biomarkers in Workers at Risk of Indium Lung Disease

    PubMed Central

    Cummings, Kristin J.; Virji, M. Abbas; Trapnell, Bruce C.; Carey, Brenna; Healey, Terrance; Kreiss, Kathleen

    2015-01-01

    Rationale Occupational exposure to indium compounds, including indium–tin oxide, can result in potentially fatal indium lung disease. However, the early effects of exposure on the lungs are not well understood. Objectives To determine the relationship between short-term occupational exposures to indium compounds and the development of early lung abnormalities. Methods Among indium–tin oxide production and reclamation facility workers, we measured plasma indium, respiratory symptoms, pulmonary function, chest computed tomography, and serum biomarkers of lung disease. Relationships between plasma indium concentration and health outcome variables were evaluated using restricted cubic spline and linear regression models. Measurements and Main Results Eighty-seven (93%) of 94 indium–tin oxide facility workers (median tenure, 2 yr; median plasma indium, 1.0 μg/l) participated in the study. Spirometric abnormalities were not increased compared with the general population, and few subjects had radiographic evidence of alveolar proteinosis (n = 0), fibrosis (n = 2), or emphysema (n = 4). However, in internal comparisons, participants with plasma indium concentrations ≥1.0 μg/l had more dyspnea, lower mean FEV1 and FVC, and higher median serum Krebs von den Lungen-6 and surfactant protein-D levels. Spline regression demonstrated nonlinear exposure response, with significant differences occurring at plasma indium concentrations as low as 1.0 μg/l compared with the reference. Associations between health outcomes and the natural log of plasma indium concentration were evident in linear regression models. Associations were not explained by age, smoking status, facility tenure, or prior occupational exposures. Conclusions In indium–tin oxide facility workers with short-term, low-level exposure, plasma indium concentrations lower than previously reported were associated with lung symptoms, decreased spirometric parameters, and increased serum biomarkers of lung

  8. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  9. Recent developments in indium phosphide space solar cell research

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Weinberg, Irving

    1987-01-01

    Recent developments and progress in indium phosphide solar cell research for space application are reviewed. Indium phosphide homojunction cells were fabricated in both the n + p and p + n configurations with total area efficiencies of 17.9 and 15.9 percent (air mass 0 and 25 C) respectively. Organometallic chemical vapor deposition, liquid phase epitaxy, ion implantation and diffusion techniques were employed in InP cell fabrication. A theoretical model of a radiation tolerant, high efficiency homojunction cell was developed. A realistically attainable AM0 efficiency of 20.5 percent was calculated using this model with emitter and base doping of 6 x 10 to the 17th power and 5 x 10 to the 16th power/cu cm, respectively. Cells of both configurations were irradiated with 1 MeV electrons and 37 MeV protons. For both proton and electron irradiation, the n + p cells are more radiation resistant at higher fluences than the p + n cells. The first flight module of four InP cells was assembled for the Living Plume Shield III satellite.

  10. Photoluminescence of monovalent indium centres in phosphate glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Fujimoto, Yutaka; Kanemitsu, Yoshihiko; Ina, Toshiaki

    2015-01-01

    Valence control of polyvalent cations is important for functionalization of various kinds of materials. Indium oxides have been used in various applications, such as indium tin oxide in transparent electrical conduction films. However, although metastable In+ (5 s2 configuration) species exhibit photoluminescence (PL), they have attracted little attention. Valence control of In+ cations in these materials will be important for further functionalization. Here, we describe In+ species using PL and X-ray absorption fine structure (XAFS) analysis. Three absorption bands in the UV region are attributed to the In+ centre: two weak forbidden bands (1S0 → 3P1, 1S0 → 3P2) and a strong allowed band (1S0 → 1P1). The strongest PL excitation band cannot be attributed to the conventional allowed transition to the singlet excited state. Emission decay of the order of microseconds suggests that radiative relaxation occurs from the triplet excitation state. The XAFS analysis suggests that these In+ species have shorter In–O distances with lower coordination numbers than in In2O3. These results clearly demonstrate that In+ exists in a metastable amorphous network, which is the origin of the observed luminescent properties.

  11. Recent developments in indium phosphide space solar cell research

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Weinberg, Irving

    1987-01-01

    Recent developments and progress in indium phosphide solar cell research for space application are reviewed. Indium phosphide homojunction cells were fabricated in both the n+p and p+n configurations with total area efficiencies of 17.9 and 15.9% (air mass 0 and 25 C) respectively. Organometallic chemical vapor deposition, liquid phase epitaxy, ion implantation and diffusion techniques were employed in InP cell fabrication. A theoretical model of a radiation tolerant, high efficiency homojunction cell was developed. A realistically attainable AMO efficiency of 20.5% was calculated using this model with emitter and base doping of 6 x 10 to the 17th power and 5 x 10 the the 16th power/cu cm respectively. Cells of both configurations were irradiated with 1 MeV electrons and 37 MeV protons. For both proton and electron irradiation, the n+p cells are more radiation resistant at higher fluences than the p+n cells. The first flight module of four InP cells was assembled for the Living Plume Shield III satellite.

  12. Absorption of ac fields in amorphous indium-oxide films

    SciTech Connect

    Ovadyahu, Z.

    2014-08-20

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (In{sub x}O) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In{sub 2}O{sub 3−x}) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  13. Photoluminescence of monovalent indium centres in phosphate glass

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Fujimoto, Yutaka; Kanemitsu, Yoshihiko; Ina, Toshiaki

    2015-09-01

    Valence control of polyvalent cations is important for functionalization of various kinds of materials. Indium oxides have been used in various applications, such as indium tin oxide in transparent electrical conduction films. However, although metastable In+ (5 s2 configuration) species exhibit photoluminescence (PL), they have attracted little attention. Valence control of In+ cations in these materials will be important for further functionalization. Here, we describe In+ species using PL and X-ray absorption fine structure (XAFS) analysis. Three absorption bands in the UV region are attributed to the In+ centre: two weak forbidden bands (1S0 → 3P1, 1S0 → 3P2) and a strong allowed band (1S0 → 1P1). The strongest PL excitation band cannot be attributed to the conventional allowed transition to the singlet excited state. Emission decay of the order of microseconds suggests that radiative relaxation occurs from the triplet excitation state. The XAFS analysis suggests that these In+ species have shorter In-O distances with lower coordination numbers than in In2O3. These results clearly demonstrate that In+ exists in a metastable amorphous network, which is the origin of the observed luminescent properties.

  14. Solder joint reliability of indium-alloy interconnection

    NASA Astrophysics Data System (ADS)

    Shimizu, Kozo; Nakanishi, Teru; Karasawa, Kazuaki; Hashimoto, Kaoru; Niwa, Koichi

    1995-01-01

    Recent high-density very large scale integrated (VLSI) interconnections in multichip modules require high-reliability solder interconnection to enable us to achieve small interconnect size andlarge number of input/output terminals, and to minimize soft errors in VLSIs induced by α-particle emission from solder. Lead-free solders such as indium (In)-alloy solders are a possible alternative to conventional lead-tin (Pb-Sn) solders. To realize reliable interconnections using In-alloy solders, fatigue behavior, finite element method (FEM) simulations, and dissolution and reaction between solder and metallization were studied with flip-chip interconnection models. We measured the fatigue life of solder joints and the mechanical properties of solders, and compared the results with a computer simulation based on the FEM. Indium-alloy solders have better mechanical properties for solder joints, and their flip-chip interconnection models showed a longer fatigue life than that of Pb-Sn solder in thermal shock tests between liquid nitrogen and room temperatures. The fatigue characteristics obtained by experiment agree with that given by FEM analysis. Dissolution tests show that Pt film is resistant to dissolution into In solder, indicating that Pt is an adequate barrier layer material for In solder. This test also shows that Au dissolution into the In-Sn solder raises its melting point; however, Ag addition to In-Sn solder prevents melting point rise. Experimental results show that In-alloy solders are suitable for fabricating reliable interconnections.

  15. Anomalous behavior of silver doped indium sulfide thin films

    SciTech Connect

    Mathew, Meril; Jayakrishnan, R.; Ratheesh Kumar, P. M.; Sudha Kartha, C.; Vijayakumar, K. P.; Kashiwaba, Y.; Abe, T.

    2006-08-01

    The effect of doping spray pyrolyzed thin films of In{sub 2}S{sub 3} with silver is discussed. It was observed that silver diffused into In{sub 2}S{sub 3} films in as deposited condition itself. Depth profile using x-ray photoelectron spectroscopy clearly showed diffusion of silver into In{sub 2}S{sub 3} layer without any annealing. X-ray analysis revealed significant enhancement in crystallinity and grain size up to an optimum percentage of doping concentration. This optimum value showed dependence on thickness and atomic ratio of indium and sulfur in the film. Band gap decreased up to the optimum value of doping and thereafter it increased. Electrical studies showed a drastic decrease in resistivity from 1.2x10{sup 3} to 0.06 {omega} cm due to doping. A sample having optimum doping was found to be more photosensitive and low resistive when compared with a pristine sample. Improvement in crystallinity, conductivity, and photosensitivity due to doping of spray pyrolyzed In{sub 2}S{sub 3} films with Ag helped to attain efficiency of 9.5% for Ag/In{sub 2}S{sub 3}/CuInS{sub 2}/ITO (indium tin oxide) solar cell.

  16. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ochterbeck, J. M.; Peterson, G. P.; Fletcher, L. S.

    1992-02-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silver-coated nickel substrates at all coating thicknesses.

  17. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    SciTech Connect

    Ochterbeck, J.M.; Peterson, G.P.; Fletcher, L.S. )

    1992-02-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2,000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silvercoated nickel substrates at all coating thicknesses.

  18. Formation of Flexible and Transparent Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Film

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ho; Kim, Da-Som; Kim, Sun-Kyung; Yoo, Young-Zo; Lee, Jeong Hwan; Kim, Sang-Woo; Seong, Tae-Yeon

    2016-08-01

    In this study, the electrical, optical, and bending characteristics of amorphous indium gallium zinc oxide (IGZO)/Ag/IGZO (39 nm/19 nm/39 nm) multilayer films deposited on polyethylene terephthalate (PET) substrate at room temperature were investigated and compared with those of Sn-doped indium oxide (ITO) (100 nm thick) films. At 500 nm the ITO film transmitted 91.3% and the IGZO/Ag/IGZO multilayer film transmitted 88.8%. The calculated transmittance spectrum of the multilayer film was similar to the experimental result. The ITO film and IGZO/Ag/IGZO multilayer film, respectively, showed carrier concentrations of 1.79 × 1020 and 7.68 × 1021 cm-3 and mobilities of 27.18 cm2/V s and 18.17 cm2/V s. The ITO film had a sheet resistance of 134.9 Ω/sq and the IGZO/Ag/IGZO multilayer film one of 5.09 Ω/sq. Haacke's figure of merit (FOM) was calculated to be 1.94 × 10-3 for the ITO film and 45.02 × 10-3 Ω-1 for the IGZO/Ag/IGZO multilayer film. The resistance change of 100 nm-thick ITO film was unstable even after five cycles, while that of the IGZO/Ag/IGZO film was constant up to 1000 cycles.

  19. Formation of Flexible and Transparent Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Film

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ho; Kim, Da-Som; Kim, Sun-Kyung; Yoo, Young-Zo; Lee, Jeong Hwan; Kim, Sang-Woo; Seong, Tae-Yeon

    2016-05-01

    In this study, the electrical, optical, and bending characteristics of amorphous indium gallium zinc oxide (IGZO)/Ag/IGZO (39 nm/19 nm/39 nm) multilayer films deposited on polyethylene terephthalate (PET) substrate at room temperature were investigated and compared with those of Sn-doped indium oxide (ITO) (100 nm thick) films. At 500 nm the ITO film transmitted 91.3% and the IGZO/Ag/IGZO multilayer film transmitted 88.8%. The calculated transmittance spectrum of the multilayer film was similar to the experimental result. The ITO film and IGZO/Ag/IGZO multilayer film, respectively, showed carrier concentrations of 1.79 × 1020 and 7.68 × 1021 cm-3 and mobilities of 27.18 cm2/V s and 18.17 cm2/V s. The ITO film had a sheet resistance of 134.9 Ω/sq and the IGZO/Ag/IGZO multilayer film one of 5.09 Ω/sq. Haacke's figure of merit (FOM) was calculated to be 1.94 × 10-3 for the ITO film and 45.02 × 10-3 Ω-1 for the IGZO/Ag/IGZO multilayer film. The resistance change of 100 nm-thick ITO film was unstable even after five cycles, while that of the IGZO/Ag/IGZO film was constant up to 1000 cycles.

  20. Pillar Initiated Growth of High Indium Content Bulk Indium Gallium Nitride to Improve the Material Quality for Photonic Devices

    NASA Astrophysics Data System (ADS)

    McFelea, Heather Dale

    The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and density were optimized to facilitate coalescence on top of the pillars. It was expected that dislocations within the pillars would bend to side facets, thereby reducing the dislocation density in the bulk overgrowth, however this was not observed. It was also expected that pillars would be completely relaxed at the interface with the substrate. It was shown that pillars are mostly relaxed, but not completely. Mechanisms are proposed to explain why threading dislocations did not bend and how complete relaxation may have been achieved by mechanisms outside of interfacial misfit dislocation formation. Phase separation was not observed by TEM but may be related to the limitations of the sample or measurements. High indium observed at facets and stacking faults could be related to the extra photoluminescence peaks measured. This research focused on the InGaN pillars and first stages of coalescence on top of the pillars, saving bulk growth and device optimization for future research.

  1. The chemical transformation of copper in aluminium oxide during heating

    NASA Astrophysics Data System (ADS)

    Wei, Yu-Ling; Wang, Hsi-Chih; Yang, Yaw-Wen; Lee, Jyh-Fu

    2004-08-01

    Thermal treatment has recently been emerging as a promising environmental technology to stabilize heavy metal-containing industrial sludge. This study used x-ray absorption spectroscopy (XAS) to identify the species of copper contaminant contained in aluminium oxide that is one of the main compositions of sludge and soil. Results indicate that the originally loaded copper nitrate was transformed into Cu(OH)2 after its dissolution in the aluminium oxide slurry. Extended x-ray absorption fine structure (EXAFS) fitting indicates that the main copper species in the 105 °C dried Cu(NO3)2-loaded aluminium oxide is Cu(OH)2 which accounts for ca. 75% of the loaded copper. After thermal treatment at 500 °C for 1 h, both x-ray absorption near-edge structure (XANES) and EXAFS fitting results show that CuO became the prevailing copper species (about 85%); the rest of the copper consisted of {\\sim }15{%} Cu(OH)2 and a negligible amount of Cu(NO3)2. It was found that most Cu(OH)2 and Cu(NO3)2 decomposed into CuO at 500 °C. Further increase of the heating temperature from 500 to 900 °C resulted in more decomposition of Cu(OH)2 and Cu(NO3)2; therefore CuO remained as the main copper species. However, it was suggested that about 15% of the loaded copper formed CuAl2O4 through the chemical reaction between CuO and Al2O3 at 900 °C.

  2. Estimating dermal transfer of copper particles from the surfaces of pressure-treated lumber and implications for exposure.

    PubMed

    Platten, William E; Sylvest, Nicholas; Warren, Casey; Arambewela, Mahendranath; Harmon, Steve; Bradham, Karen; Rogers, Kim; Thomas, Treye; Luxton, Todd Peter

    2016-04-01

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper based formulations. Micronized copper (nano to micron sized particles) has become the preferred treatment formulation. There is a lack of information on the release of copper, the fate of the particles during dermal contact, and the copper exposure level to children from hand-to-mouth transfer. For the current study, three treated lumber products, two micronized copper and one ionic copper, were purchased from commercial retailers. The boards were left to weather outdoors for approximately 1year. Over the year time period, hand wipe samples were collected periodically to determine copper transfer from the wood surfaces. The two micronized formulations and the ionic formulation released similar levels of total copper. The amount of copper released was high initially, but decreased to a constant level (~1.5mgm(-2)) after the first month of outdoor exposure. Copper particles were identified on the sampling cloths during the first two months of the experiment, after which the levels of copper were insufficient to collect interpretable data. After 1month, the particles exhibited minimal changes in shape and size. At the end of 2-months, significant deterioration of the particles was evident. Based on the wipe sample data, a playground visit may result in a potential exposure to 2.58mg of copper, which is near or exceeds the daily tolerable upper intake limits for children under the age of 8, if completely ingested through hand-to-mouth transfer. While nanoparticles were found, there is not enough information to estimate the exposure from the released particles due to a lack of published literature on copper carbonate. PMID:26826852

  3. New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis.

    PubMed

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-02-01

    Acidithiobacillus ferrooxidans is an extremophilic bacterium used in biomining processes to recover metals. The presence in A. ferrooxidans ATCC 23270 of canonical copper resistance determinants does not entirely explain the extremely high copper concentrations this microorganism is able to stand, suggesting the existence of other efficient copper resistance mechanisms. New possible copper resistance determinants were searched by using 2D-PAGE, real time PCR (qRT-PCR) and quantitative proteomics with isotope-coded protein labeling (ICPL). A total of 594 proteins were identified of which 120 had altered levels in cells grown in the presence of copper. Of this group of proteins, 76 were up-regulated and 44 down-regulated. The up-regulation of RND-type Cus systems and different RND-type efflux pumps was observed in response to copper, suggesting that these proteins may be involved in copper resistance. An overexpression of most of the genes involved in histidine synthesis and several of those annotated as encoding for cysteine production was observed in the presence of copper, suggesting a possible direct role for these metal-binding amino acids in detoxification. Furthermore, the up-regulation of putative periplasmic disulfide isomerases was also seen in the presence of copper, suggesting that they restore copper-damaged disulfide bonds to allow cell survival. Finally, the down-regulation of the major outer membrane porin and some ionic transporters was seen in A. ferrooxidans grown in the presence of copper, indicating a general decrease in the influx of the metal and other cations into the cell. Thus, A. ferrooxidans most likely uses additional copper resistance strategies in which cell envelope proteins are key components. This knowledge will not only help to understand the mechanism of copper resistance in this extreme acidophile but may help also to select the best fit members of the biomining community to attain more efficient industrial metal leaching

  4. Type Zero Copper Proteins

    PubMed Central

    Lancaster, Kyle M.; DeBeer George, Serena; Yokoyama, Keiko; Richards, John H.; Gray, Harry B.

    2009-01-01

    Copper proteins play key roles in biological processes such as electron transfer and dioxygen activation; the active site of each of these proteins is classified as either type 1, 2, or 3, depending on its optical and electron paramagnetic resonance properties. We have built a new type of site that we call “type zero copper” by incorporating leucine, isoleucine, or phenylalanine in place of methionine at position 121 in C112D Pseudomonas aeruginosa azurin. X-ray crystallographic analysis shows that these sites adopt distorted tetrahedral geometries, with an unusually short Cu-O(G45 carbonyl) bond (2.35–2.55 Å). Relatively weak absorption near 800 nm and narrow parallel hyperfine splittings in EPR spectra are the spectroscopic signatures of type zero copper. Copper K-edge x-ray absorption spectra suggest elevated Cu(II) 4p character in the d-electron ground state. Cyclic voltammetric experiments demonstrate that the electron transfer reactivities of type zero azurins are enhanced relative to that of the corresponding type 2 (C112D) protein. PMID:20305734

  5. [Determination of gold in copper matte and sintered copper material].

    PubMed

    Ge, Yu-wei; Xiao, Li-mei; Suo, Jin-ling; Wang, Cheng; Hu, Xiao-min; Zhao, Shu-yun

    2011-05-01

    Ore sample, pretreated at 650 degrees C, was decomposed with aqua regia. Gold in the sample solution was then pre-concentrated by adsorbing with polyurethane foam plastic, released with thiourea solution, and determined by inductively coupled plasma-atomic emission spectrometry and flame atomic absorption spectrometry. Based on the characteristic of the copper matte and sinter containing copper, the effects of sample dissolving condition, matrix effect and interference of coexisting elements were investigated. The accuracy, precision and detection limit were discussed. The results of test show that both of the two methods were suitable for determining the contents of gold in copper matte and sintered copper material. PMID:21800614

  6. Growth of indium oxide nanowalls on patterned conducting substrates: towards direct fabrication of gas sensors.

    PubMed

    Chen, Changlong; Wei, Yuling; Sun, Guoxin; Shao, Baiqi

    2012-05-01

    Nanowall materials are ideal two-dimensional structures with high surface-to-volume ratios and open edge geometries. We first report on the growth and characterization of indium oxide nanowalls on transparent and conducting indium tin oxide substrates. The nanosheets that compose the nanowalls are single-crystalline and are approximately 8 nm in thickness. The density and the lateral dimensions of the nanosheets on the substrate can be controlled by the growth time. Adopting a bridgework-like strategy, we directly construct indium oxide nanowall gas sensors on the patterned indium tin oxide substrates. The pattern lines on the substrates are etched using transparent plastic adhesive tape as shadow mask, which is both simple and cheap in comparison with the conventional photolithography technique. The sensors exhibit fast response/recovery behavior and good reproducibility to NO(2) gas under mild testing conditions, such as room temperature, ambient pressure, dry air background, and 1.5 V dc bias, and can achieve a detection limit as low as 50 ppb. We propose an assumption that the gas adsorption is composed of deep adsorption and probe adsorption to explain the interesting gas-sensing behavior of the indium oxide nanowalls. We suggest that the work reported herein, including the facile growth of indium oxide nanowalls, the bridgework-like strategy to directly construct electronic devices, and the high gas-sensing performance of the indium oxide nanowalls sensors, is a significant step towards the real applications of novel semiconductor nanostructures. PMID:22328146

  7. 111Indium labeling of hepatocytes for analysis of short-term biodistribution of transplanted cells.

    PubMed

    Gupta, S; Lee, C D; Vemuru, R P; Bhargava, K K

    1994-03-01

    Hepatocyte transplantation is useful for ex vivo gene therapy and liver repopulation. Methods for hepatic reconstitution have recently been developed but optimization of hepatocyte transplantation systems is necessary. To develop systems for noninvasive assessment of the biodistribution of transplanted cells, we labeled hepatocytes with 111indium-oxine. Our initial studies showed that hepatocytes incorporated 111indium-oxine with an efficiency of approximately 20%. After labeling, cell viability was unchanged and 111indium was present in hepatocytes after overnight culture, as well as after intrasplenic transplantation. Transplanted cells were successfully localized by means of scintigraphic imaging. The scintigraphic patterns of cell distribution were different when hepatocytes were transplanted by means of either spleen or internal jugular vein, which deposit cells into separate vascular beds. Quantitative analysis of the biodistribution of 111indium-labeled hepatocytes indicated that within 2 hr of intrasplenic transplantation, cells were predominantly localized in liver and spleen, and occasionally in lungs. To determine whether the rate of intrasplenic cell injection influenced translocation of hepatocytes, we transplanted cells in normal rats. Despite intrasplenic cell injection at a variety of rates, organ-specific distribution of 111indium-labeled hepatocytes remained unchanged. Labeling with 111indium did not affect long-term survival of transplanted hepatocytes. These results indicate that 111indium-labeling of hepatocytes should greatly assist noninvasive analysis in the short-term of the biodistribution of transplanted hepatocytes. PMID:8119703

  8. Optimizing galvanic pulse plating parameters to improve indium bump to bump bonding

    NASA Astrophysics Data System (ADS)

    Coleman, Jonathan J.; Rowen, Adam; Mani, Seethambal S.; Yelton, W. Graham; Arrington, Christian; Gillen, Rusty; Hollowell, Andrew E.; Okerlund, Daniel; Ionescu, Adrian

    2010-02-01

    The plating characteristics of a commercially available indium plating solution are examined and optimized to help meet the increasing performance demands of integrated circuits requiring substantial numbers of electrical interconnections over large areas. Current fabrication techniques rely on evaporation of soft metals, such as indium, into lift-off resist profiles. This becomes increasingly difficult to accomplish as pitches decrease and aspect ratios increase. To minimize pixel dimensions and maximize the number of pixels per unit area, lithography and electrochemical deposition (ECD) of indium has been investigated. Pulse ECD offers the capability of improving large area uniformity ideal for large area device hybridization. Electrochemical experimentation into lithographically patterned molds allow for large areas of bumps to be fabricated for low temperature indium to indium bonds. The galvanic pulse profile, in conjunction with the bath configuration, determines the uniformity of the plated array. This pulse is manipulated to produce optimal properties for hybridizing arrays of aligned and bonded indium bumps. The physical properties of the indium bump arrays are examined using a white light interferometer, a SEM and tensile pull testing. This paper provides details from the electroplating processes as well as conclusions leading to optimized plating conditions.

  9. Design rule of indium bump in infrared focal plane array for longer cycling life

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Meng, Chao; Zhang, Wei; Lv, Yanqiu; Si, Junjie; Meng, Qingduan

    2016-05-01

    In light of the proposed equivalent method, a three-dimensional structural modeling of InSb infrared focal plane arrays (IRFPAs) is created, and the simulated strain distribution is identical to the deformation distribution on the top surface of InSb IRFPAs. After comparing the deformation features at different regions with the structural characteristics of IRFPAs, we infer that the flatness of InSb IRFPAs will be improved with a thinner indium bump array, and this inference is verified by subsequent simulation results. That is, when the diameter of indium bump is smaller than 20 μm, the simulated Z-components of strain on the whole top surface of InSb IRFPAs is uniform, and the deformation amplitude is small. When the diameter of indium bump is larger than 28 μm, the simulated Z-components of strain increases rapidly with the thicker indium bump, and the flatness of InSb IRFPAs is worsened rapidly. According to the changing trend of deformation amplitude with diameters of indium bump, and employing element pitches normalization method, a design rule of indium bump is proposed. That is, when the diameter of indium bump is shorter than 0.4 times the element pitch, the flatness of InSb IRFPAs is in an acceptable range. This design rule was supported by different IRFPAs with different formats delivered by several main research groups for achieving a longer cycling life.

  10. Amorphous Indium Selenide Thin Films Prepared by RF Sputtering: Thickness-Induced Characteristics.

    PubMed

    Han, Myoung Yoo; Park, Yong Seob; Kim, Nam-Hoon

    2016-05-01

    The influence of indium composition, controlled by changing the film thickness, on the optical and electrical properties of amorphous indium selenide thin films was studied for the application of these materials as Cd-free buffer layers in CI(G)S solar cells. Indium selenide thin films were prepared using RF magnetron sputtering method. The indium composition of the amorphous indium selenide thin films was varied from 94.56 to 49.72 at% by increasing the film thickness from 30 to 70 nm. With a decrease in film thickness, the optical transmittance increased from 87.63% to 96.03% and Eg decreased from 3.048 to 2.875 eV. Carrier concentration and resistivity showed excellent values of ≥1015 cm(-3) and ≤ 10(4) Ω x cm, respectively. The conductivity type of the amorphous indium selenide thin films could be controlled by changing the film-thickness-induced amount of In. These results indicate the possibility of tuning the properties of amorphous indium selenide thin films by changing their composition for use as an alternate buffer layer material in CI(G)S solar cells. PMID:27483886

  11. Indium 111-labeled white blood cell scans after vascular prosthetic reconstruction

    SciTech Connect

    Sedwitz, M.M.; Davies, R.J.; Pretorius, H.T.; Vasquez, T.E.

    1987-11-01

    The clinical value of indium 111-labeled white blood cell (WBC) scanning done after vascular graft procedures was investigated to differentiate noninfectious postoperative inflammation associated with graft incorporation from early prosthetic graft infection. Indium 111-labeled WBC scans were initially obtained in 30 patients before discharge from the hospital and during the subsequent follow-up period (334 days). Fourteen of 30 patients (47%) had normal predischarge scans that included all 10 patients who had grafts confined to the abdomen and 4 of 20 patients (20%) who had grafts arising or terminating at the femoral arteries (p less than 0.05). Sixteen of 30 patients (53%) discharged with abnormal initial indium 111 WBC scans underwent serial scanning until the scan normalized or a graft complication developed. All of the 16 patients had grafts involving the groin region. Abnormal indium 111 uptake in the femoral region continued for a mean 114 days without the development of prosthetic graft infections. The sensitivity of indium 111-labeled WBC scans for detecting wound complications was 100%, whereas the specificity was 50%. Thus, the accuracy of the test was only 53%. We conclude that (1) abnormal indium 111 WBC scans are common after graft operations involving the groin region but are unusual after vascular procedures confined to the abdomen, and (2) in the absence of clinical suspicion, the indium 111-labeled WBC scan does not reliably predict prosthetic graft infection because of the low specificity of the test in the early postoperative period.

  12. Laser direct imaging of transparent indium tin oxide electrodes using high speed stitching techniques

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ying; Hsiao, Wen-Tse; Chung, Chien-Kai; Tseng, Shih-Feng; Liao, Ien-Chang

    2014-09-01

    To accomplish an electrode patterning in large area, we present a high speed stitching technique used in an ultraviolet laser processing system and investigate the interaction between laser beams and indium tin oxide (ITO) thin films deposited on glass substrates. After optimizing the process parameters of the laser direct imaging (LDI) for the large-area electrode patterning, the ablated lines looked like regularly fish-scale marks of about a 40 μm diameter and a 120 nm depth around the processing path. The parameters includes the laser power of 1W, the scanning speed of galvanometers of 800 mm/s, and the laser pulse repetition frequency of 50 kHz. Moreover, the resistance value of the ablated ITO thin film is larger than 200MΩ that is electrically insulated from the other regions of electrode structure. LDI technology with UV laser beam has great potential applications in patterning on wafer or sapphire substrates and patterning a conductive layer deposited on the touch panels for semiconductor and optoelectric industries, respectively.

  13. FOAM FLOTATION TREATMENT OF HEAVY METALS AND FLUORIDE-BEARING INDUSTRIAL WASTEWATERS

    EPA Science Inventory

    Laboratory studies demonstrated that the floc foam flotation techniques are effective in removing lead, cadmium, mercury, copper, zinc, arsenic, and fluoride from dilute wastewaters to very low levels. Simulated as well as real industrial wastewaters were studied. Industrial wast...

  14. A view of aqueous electrochemical carbon dioxide reduction to formate at indium electrodes, and the reversible electrodeposition of silver in ionic liquids through the lens of fundamental surface science

    NASA Astrophysics Data System (ADS)

    Detweiler, Zachary M.

    Two systems were studied using in situ measurement techniques, demonstrating the importance of creative experimental design. The electroreduction of CO2 at heterogeneous indium electrodes in aqueous solution was analyzed by cyclic voltammetry. Bulk electrolyses showed that increased indium oxide presence prior to electrolysis improved the Faradaic efficiency of CO 2 reduction to formate in 0.5 M K2SO2 aqueous solutions at a pH of 4.4. In order to more accurately assign speciation at the electrode surface ex situ O2 and H2O dosing of metallic indium under UHV was studied with XPS, HREELS and TPD. Ambient pressure XPS showed that the ratio of oxide to hydroxide at the indium interface is strongly dependent on the partial pressure of water; decreasing as P(H2O) increases. Using this information, a qualitative picture of the indium interface could be generated. In situ ATR-FTIR with an indium thin film as the working electrode showed that bulk oxide quickly reduces with applied potential, but an interfacial oxide is still present at high reductive overpotential. Additionally, an adsorbed carbonate at the thin film interface was observed upon introducing CO 2 to the cell. The implication of a surface bound carbonate as the CO 2 reduction intermediate draws on a mechanism that has not previously been discussed in the electrochemical reduction of CO2. The previous study of this mechanism from Ficscher-Tropsch literature helps to predict the further reduced products found at more electropositive metals, such as copper or magnesium, the latter of which is described here. Additionaly described here is a series of ILs that were employed as electrolyte for reversible silver deposition. BMIM N(TfO)2 was found to be the most promising of those studied, intrinsically giving a more uniform deposit that was bright and reversible. Deposit formation was studied using SEM and EDX as a function of deposition potential and deposition time. In situ reflectometry was employed to get a

  15. Aging, stressing and solderability of electroplated and electroless copper

    SciTech Connect

    Sorensen, N.R.; Hosking, F.M.

    1995-08-01

    Organic inhibitors can be used to prevent corrosion of metals have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by the molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper but provides a vast improvement relative to oxidized copper.

  16. Compositional disorder and transport peculiarities in the amorphous indium oxides

    NASA Astrophysics Data System (ADS)

    Givan, U.; Ovadyahu, Z.

    2012-10-01

    We present results of the disorder-induced metal-insulator transition (MIT) in three-dimensional amorphous indium-oxide films. The amorphous version studied here differs from the one reported by Shahar and Ovadyahu [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.46.10917 46, 10917 (1992)] in that it has a much lower carrier concentration. As a measure of the static disorder we use the dimensionless parameter kFℓ. Thermal annealing is employed as the experimental handle to tune the disorder. On the metallic side of the transition, the low temperature transport exhibits weak-localization and electron-electron correlation effects characteristic of disordered electronic systems. These include a fractional power-law conductivity versus temperature behavior anticipated to occur at the critical regime of the transition. The MIT occurs at a kFℓ≈0.3 for both versions of the amorphous material. However, in contrast with the results obtained on the electron-rich version of this system, no sign of superconductivity is seen down to ≈0.3 K even for the most metallic sample used in the current study. This demonstrates that using kFℓ as a disorder parameter for the superconductor-insulator transition (SIT) is an ill defined procedure. A microstructural study of the films, employing high resolution chemical analysis, gives evidence for spatial fluctuations of the stoichiometry. This brings to light that, while the films are amorphous and show excellent uniformity in transport measurements of macroscopic samples, they contain compositional fluctuations that extend over mesoscopic scales. These, in turn, reflect prominent variations of carrier concentrations thus introducing an unusual type of disorder. It is argued that this compositional disorder may be the reason for the apparent violation of the Ioffe-Regel criterion in the two versions of the amorphous indium oxide. However, more dramatic effects due to this disorder are expected when superconductivity sets in, which are

  17. Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization.

    PubMed

    Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii

    2016-10-01

    Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. PMID:27290656

  18. Some studies on successive ionic layer adsorption and reaction (SILAR) grown indium sulphide thin films

    SciTech Connect

    Pathan, H.M.; Lokhande, C.D. . E-mail: l_chandrakant@yahoo.com; Kulkarni, S.S.; Amalnerkar, D.P.; Seth, T.; Han, Sung-Hwan . E-mail: shhan@hanyang.ac.kr

    2005-06-15

    Indium sulphide (In{sub 2}S{sub 3}) thin films were grown on amorphous glass substrate by the successive ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, optical absorption, scanning electron microscopy (SEM) and Rutherford back scattering (RBS) were applied to study the structural, optical, surface morphological and compositional properties of the indium sulphide thin films. Utilization of triethanolamine and hydrazine hydrate complexed indium sulphate and sodium sulphide as precursors resulted in nanocrystalline In{sub 2}S{sub 3} thin film. The optical band gap was found to be 2.7 eV. The film appeared to be smooth and homogeneous from SEM study.

  19. Positron trapping in vacancies in indium doped CdTe crystals

    NASA Astrophysics Data System (ADS)

    Gély-Sykes, C.; Corbel, C.; Triboulet, R.

    1991-10-01

    In weakly n-type CdTe(In) crystals grown by the travelling heater method, positrons annihilate in vacancy-type defects with a lifetime of 320 ± 4 ps. The concentration of these native defects varies with the concentration of indium and electron in agreement with the model of self-compensation where the indium donors are compensated by indium-vacancy complexes. These defects are assumed to be (V CdIn) - complexes. The positron trapping in these complexes disappears at low temperature. This phenomenon is attributed to competing trapping of positrons by negative ions which are either residual impurities or intrinsic defects.

  20. Local structure of indium oxynitride from x-ray absorption spectroscopy

    SciTech Connect

    T-Thienprasert, J.; Onkaw, D.; Rujirawat, S.; Limpijumnong, S.; Nukeaw, J.; Sungthong, A.; Porntheeraphat, S.; Singkarat, S.

    2008-08-04

    Synchrotron x-ray absorption near edge structures (XANES) measurements of In L{sub 3} edge is used in conjunction with first principles calculations to characterize rf magnetron sputtered indium oxynitride at different O contents. Good agreement between the measured and the independently calculated spectra are obtained. Calculations show that the XANES spectra of this alloy are sensitive to the coordination numbers of the In atoms, i.e., fourfold for indium nitride-like structures and sixfold for indium oxide-like structures, but not to the substitution of nearest neighbor N by O or vice versa.

  1. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, Carleton H.; Evans, Jr., Joseph Tate

    1998-01-01

    A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.

  2. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, C.H.; Evans, J.T. Jr.

    1998-11-24

    A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.

  3. Highly conductive indium nanowires deposited on silicon by dip-pen nanolithography

    SciTech Connect

    Kozhukhov, Anton; Volodin, Vladimir; Klimenko, Anatoliy; Shcheglov, Dmitriy; Karnaeva, Natalya; Latyshev, Alexander

    2015-04-14

    In this paper, we developed a new dip-pen nanolithography (DPN) method. Using this method, we fabricated conductive nanowires with diameters of 30–50 nm on silicon substrates. To accomplish this, indium was transferred from an atomic force microscopy tip to the surface by applying a potential difference between the tip and substrate. The fabricated indium nanowires were several micrometers in length. Unlike thermal DPN, our DPN method hardly oxidized the indium, producing nanowires with conductivities from 5.7 × 10{sup −3} to 4 × 10{sup −2} Ω cm.

  4. Indium phosphide solar cells - Recent developments and estimated performance in space

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving; Brinker, David J.

    1990-01-01

    The current status of indium phosphide solar cell research is reviewed. In the NASA research program, efficiencies of 18.8 percent were achieved for standard n/p homojunction InP cells while 17 percent was achieved for ITO/InP cells processed by sputtering n-type indium tin oxide onto p-type indium phosphide. The latter represents a cheaper, simpler processing alternative. Computer modeling calculations indicate that efficiencies of over 21 percent are feasible. Relatively large area cells are produced in Japan with a maximum efficiency of 16.6 percent.

  5. Clinical imaging with indium 111 oxine-labeled leukocyte scan: review and case report

    SciTech Connect

    Simon, W.H.; Joseph, W.S.

    1988-04-01

    The clinical use and mechanisms of action of technetium 99m pyrophosphate, gallium 67 citrate, and indium 111 oxine have been presented. The diagnosis of osteomyelitis in the lower extremity can often be made on the basis of clinical, laboratory, and conventional radiographic evaluations. In the case report of diabetic osteolysis, initial evaluations revealed osteomyelitis. The use of scanning involving leukocytes labeled with technetium and indium 111 oxine lessened the possibilities of an osseous infection. Studies show the sensitivity, specificity, and accuracy of scans using leukocytes labeled with indium 111 oxine to be superior to those of any other form of nucleotide imaging, but further clinical research is needed.20 references.

  6. Low-pressure indium-halide discharges for fluorescent illumination applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Daiyu; Hilbig, Rainer; Körber, Achim; Schwan, Stefan; Scholl, Robert; Boerger, Martin; Huppertz, Maria

    2010-02-01

    Low-pressure gas discharges of molecular radiators were studied for fluorescent lighting applications with a goal of reducing the energy loss due to the large Stokes shift in phosphors of conventional mercury-based fluorescent lamp technology. Indium halides (InCl, InBr, and InI) were chosen as the molecular radiators that generate ultraviolet to blue light emissions. The electrical characteristics and optical emission intensities were measured in discharges containing gaseous indium halides (InCl, InBr, and InI) as molecular radiators. The low-pressure discharges in indium halide vapor showed potential as a highly efficient gas discharge system for fluorescent lighting application.

  7. Indium-111-labeled leukocyte localization in hematomas: a pitfall in abscess detection

    SciTech Connect

    Wing, V.W.; vanSonnenberg, E.; Kipper, S.; Bieberstein, M.P.

    1984-07-01

    Indium-111-labeled white-blood-cell scanning is a useful modality in abscess detection and has replaced gallium scanning in many institutions. Sensitivities of 72% to 90% and specificities of 90% to 100% have been reported. In searching for abscesses seven cases of indium-111-labeled leukocyte uptake were encountered in collections subsequently proved to be noninfected hematomas. Abundant red blood cells with few or no white blood cells, no bacteria, and a benign clinical course identified these noninfected hematomas. Five of the patients were being treated with hemodialysis and three were recent allograft recipients. The results indicate some limitation and nonspecificity in indium-111 scanning, despite its many benefits.

  8. "Myelodysplasia," myeloneuropathy, and copper deficiency.

    PubMed

    Kumar, Neeraj; Elliott, Michelle A; Hoyer, James D; Harper, Charles M; Ahlskog, J Eric; Phyliky, Robert L

    2005-07-01

    We describe a patient with a suspected myelodysplastic syndrome that developed in association with a neurologic disorder resembling subacute combined degeneration but without vitamin B12 deficiency. Ultimately, the hematologic manifestations and the neurologic syndrome were linked to severe copper deficiency. Prompt and complete reversal of the hematologic abnormalities occurred with copper replacement. Serum copper determination should be included in the work-up of patients with anemia and leukopenia of unclear etiology who have associated myeloneuropathy. The hematologic picture can resemble sideroblastic anemia or myelodysplastic syndrome. Hyperzincemia can be an accompanying abnormality even without exogenous zinc ingestion. The reason for the copper deficiency may not be evident. PMID:16007901

  9. Oxidation Mechanism of Copper Selenide

    NASA Astrophysics Data System (ADS)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  10. Stem cell recovering effect of copper-free GHK in skin.

    PubMed

    Choi, Hye-Ryung; Kang, Youn-A; Ryoo, Sun-Jong; Shin, Jung-Won; Na, Jung-Im; Huh, Chang-Hun; Park, Kyoung-Chan

    2012-11-01

    The peptide Gly-His-Lys (GHK) is a naturally occurring copper(II)-chelating motifs in human serum and cerebrospinal fluid. In industry, GHK (with or without copper) is used to make hair and skin care products. Copper-GHK plays a physiological role in the process of wound healing and tissue repair by stimulating collagen synthesis in fibroblasts. We also reported that copper-GHK promotes the survival of basal stem cells in the skin. However, the effects of copper-free GHK (GHK) have not been investigated well. In this study, the effects of GHK were studied using cultured normal human keratinocytes and skin equivalent (SE) models. In monolayer cultured keratinocytes, GHK increased the proliferation of keratinocytes. When GHK was added during the culture of SE models, the basal cells became more cuboidal than control model. In addition, there was linear and intense staining of α6 and β1 integrin along the basement membrane. The number of p63 and proliferating cell nuclear antigen positive cells was also significantly increased in GHK-treated SEs than in control SEs. Western blot and slide culture experiment showed that GHK increased the expression of integrin by keratinocytes. All these results showed that GHK increased the stemness and proliferative potential of epidermal basal cells, which is associated with increased expression of integrin. In conclusion, copper-free GHK showed similar effects with copper-GHK. Thus, it can be said that copper-free GHK can be used in industry to obtain the effects of copper-GHK in vivo. Further study is necessary to explore the relationship between copper-free GHK and copper-GHK. PMID:23019153

  11. Reversible superconductivity in electrochromic indium-tin oxide films

    NASA Astrophysics Data System (ADS)

    Aliev, Ali E.; Xiong, Ka; Cho, Kyeongjae; Salamon, M. B.

    2012-12-01

    Transparent conductive indium tin oxide (ITO) thin films, electrochemically intercalated with sodium or other cations, show tunable superconducting transitions with a maximum Tc at 5 K. The transition temperature and the density of states, D(EF) (extracted from the measured Pauli susceptibility χp) exhibit the same dome shaped behavior as a function of electron density. Optimally intercalated samples have an upper critical field ≈ 4 T and Δ/kBTc ≈ 2.0. Accompanying the development of superconductivity, the films show a reversible electrochromic change from transparent to colored and are partially transparent (orange) at the peak of the superconducting dome. This reversible intercalation of alkali and alkali earth ions into thin ITO films opens diverse opportunities for tunable, optically transparent superconductors.

  12. Synthesis of indium sulphide quantum dots in perfluoronated ionomer membrane

    SciTech Connect

    Sumi, R.; Warrier, Anita R.; Vijayan, C.

    2014-01-28

    In this paper, we demonstrate a simple and efficient method for synthesis of β-indium sulphide (In{sub 2}S{sub 3}) nanoparticles embedded in an ionomer matrix (nafion membrane). The influence of reaction temperature on structural, compositional and optical properties of these films were analysed using X-Ray Diffraction, EDAX, UV-Vis absorption spectroscopy and photoluminescence studies. Average particle diameter was estimated using modified effective mass approximation method. Absorption spectra of In{sub 2}S{sub 3} nanoparticles show blue shift compared to bulk In{sub 2}S{sub 3}, indicating strong quantum size confinement effects. PL emission in the wavelength range 530–600 nm was recorded using a 488 nm line from an Ar{sup +} laser as the excitation source.

  13. Josephson Vortex in Indium Monatomic Superconductor on Silicon Terraces

    NASA Astrophysics Data System (ADS)

    Kawakami, Takuto; Nagai, Yuki; Yoshizawa, Shunusuke; Kim, Howon; Nakayama, Tomonobu; Hasegawa, Yukio; Uchihashi, Takashi; Hu, Xiao

    2015-03-01

    Superconductivity in Indium monatomic layer on a surface of Silicon substrate is intriguing where the terraces and steps exist. Recently, elliptic vortices trapped at steps have been observed by STM/STS measurement under magnetic field. Motivated by this experiment, we clarify the quasiparticle excitation by using Bogoliubov-de Gennes approach. The current distribution and zero energy density of states at vortex core show elliptic shape with longer axis parallel to the step. Moreover, the order parameter is restored at the vortex core. By comparing theoretical results with experiments, we conclude that the recent STS measurement has directly detected Josephson vortex. This work is supported by WPI Initiative on Materials Nanoarchitectonics, MEXT, Japan.

  14. Single-point diamond turning of lead indium phosphate glass

    SciTech Connect

    Allison, S.W.; Cunningham, J.P.; Rajic, S.; Boatner, L.A.; Sales, B.C.

    1996-08-01

    The development of the ability to routinely machine glass materials to optical tolerances is highly desirable and, in particular, could provide new degrees of control over the precise shape of complex and unusual optical surfaces. Of particular interest in this regard is the formation of non-spherical shapes where there is a need to fabricate both inexpensive, low-precision optics as well as specialized high-precision aspheric components. This work describes the initial feasibility tests of the machining of a new type of glass, lead indium phosphate (LIP), a material which transmits from the visible to 2.8 micrometers (for thin samples). Glossy surfaces were produced with a root-mean-square surface roughness of less than 100 nm (with 200 micrometer filter). The results indicate that this approach offers the potential for producing high-quality aspheric optical shapes based on the use of LIP glass.

  15. Unusual insulating phase at low temperature in thin indium films

    NASA Astrophysics Data System (ADS)

    Okuma, S.; Kokubo, N.

    1995-06-01

    We have prepared a series of thin indium films whose disorder is systematically introduced, and measured the temperature-dependent and magnetic-field-dependent Hall resistance Rxy as well as the longitudinal resistance Rxx at low temperatures. By increasing the field at fixed disorder, we have found, in addition to a usual critical field BxxC where Rxx(T-->0)-->∞, another critical field BxyC (>~BxxC) where Rxy(T-->0) diverges. With increasing disorder, BxxC decreases faster than BxyC, thus the region BxxC

  16. Tunable morphologies of indium tin oxide nanostructures using nanocellulose templates

    DOE PAGESBeta

    Aytug, Tolga; Meyer, III, Harry M.; Ozcan, Soydan; Lu, Yuan; Poole, II, Joseph E.

    2015-01-01

    Metal oxide nanostructures have emerged as an important family of materials for various device applications. The performance is highly dependent on the morphology of the metal oxide nanostructures. Here we report a completely green approach to prepare indium tin oxide (ITO) nanoparticles using only water and cellulose nanofibril (CNF) in addition to the ITO precursor. Surface hydroxyl groups of the CNFs allow for efficient conjugation of ITO precursors (e.g., metal ions) in aqueous solution. The resulting CNF film allows for controllable spatial arrangement of metal oxide precursors, which results in tunable particle morphology (e.g., nanowires, nanospheres, and octahedral nanoparticles). Thesemore » ITO nanoparticles can also form conductive and transparent ITO films. This study opens a new perspective on developing metal oxide nanostructures.« less

  17. Solvent effects on two-line atomic fluorescence of indium.

    PubMed

    Chan, Qing N; Medwell, Paul R; Kalt, Peter A M; Alwahabi, Zeyad T; Dally, Bassam B; Nathan, Graham J

    2010-03-10

    We aim to investigate the potential of four different organic solvents, namely, acetone, ethanol, methanol, and isopropanol, and the organic-solvent-water mixtures as a seeding medium for the two-line atomic fluorescence technique. Water is used as the reference case. Indium, which has been previously shown to have suitable spectroscopic attributes, is chosen as the thermometry species in the present study. Acetone and methanol are shown to enhance the fluorescence signal intensity the most (approximately threefold to fivefold at stoichiometric conditions) when used. Acetone and methanol are shown to improve the fluorescence emission over the entire stoichiometric envelope of flame, most significantly in the rich combustion region, as well as a twofold enhancement in the signal-to-noise ratio. PMID:20220881

  18. Tunable morphologies of indium tin oxide nanostructures using nanocellulose templates

    SciTech Connect

    Aytug, Tolga; Meyer, III, Harry M.; Ozcan, Soydan; Lu, Yuan; Poole, II, Joseph E.

    2015-01-01

    Metal oxide nanostructures have emerged as an important family of materials for various device applications. The performance is highly dependent on the morphology of the metal oxide nanostructures. Here we report a completely green approach to prepare indium tin oxide (ITO) nanoparticles using only water and cellulose nanofibril (CNF) in addition to the ITO precursor. Surface hydroxyl groups of the CNFs allow for efficient conjugation of ITO precursors (e.g., metal ions) in aqueous solution. The resulting CNF film allows for controllable spatial arrangement of metal oxide precursors, which results in tunable particle morphology (e.g., nanowires, nanospheres, and octahedral nanoparticles). These ITO nanoparticles can also form conductive and transparent ITO films. This study opens a new perspective on developing metal oxide nanostructures.

  19. Macro- and microscopic properties of strontium doped indium oxide

    SciTech Connect

    Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I.; Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A.

    2014-07-28

    Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In{sub 2}O{sub 3}:(SrO){sub x} were investigated for materials with different doping levels at different temperatures (T = 20–300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn{sub 2}O{sub 4}. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100–200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10{sup −13} cm{sup 2}/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

  20. Characterization of reliability of printed indium tin oxide thin films.

    PubMed

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments. PMID:24245331

  1. A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity.

    PubMed

    Tsai, Chia-Yang; Chang, Wei-Chen; Chen, Guan-Lin; Chung, Cheng-Huan; Liang, Jun-Xiang; Ma, Wei-Yang; Yang, Tsun-Neng

    2015-12-01

    Conductive ink using copper nanoparticles has attracted much attention in the printed electronics industry because of its low cost and high electrical conductivity. However, the problem of easy oxidation under heat and humidity conditions for copper material limits the wide applications. In this study, antioxidative copper inks were prepared by dispersing the nanoparticles in the solution, and then conductive copper films can be obtained after calcining the copper ink at 250 °C in nitrogen atmosphere for 30 min. A low sheet resistance of 47.6 mΩ/□ for the copper film was measured by using the four-point probe method. Importantly, we experimentally demonstrate that the electrical conductivity of copper films can be improved by increasing the calcination temperature. In addition, these highly conductive copper films can be placed in an atmospheric environment for more than 6 months without the oxidation phenomenon, which was verified by energy-dispersive X-ray spectroscopy (EDS). These observations strongly show that our conductive copper ink features high antioxidant properties and long-term stability and has a great potential for many printed electronics applications, such as flexible display systems, sensors, photovoltaic cells, and radio frequency identification. PMID:26370132

  2. Regulation of Gene Expression in Neurospora crassa with a Copper Responsive Promoter

    PubMed Central

    Lamb, Teresa M.; Vickery, Justin; Bell-Pedersen, Deborah

    2013-01-01

    Precise control of gene expression is a powerful method to elucidate biological function, and protein overexpression is an important tool for industry and biochemistry. Expression of the Neurospora crassa tcu-1 gene (NCU00830), encoding a high-affinity copper transporter, is tightly controlled by copper availability. Excess copper represses, and copper depletion, via the use of a copper chelator, activates expression. The kinetics of induction and repression of tcu-1 are rapid, and the effects are long lived. We constructed a plasmid carrying the bar gene (for glufosinate selection) fused to the tcu-1 promoter. This plasmid permits the generation of DNA fragments that can direct integration of Ptcu-1 into any desired locus. We use this strategy to integrate Ptcu-1 in front of wc-1, a circadian oscillator and photoreceptor gene. The addition of excess copper to the Ptcu-1::wc-1 strain phenocopies a Δwc-1 strain, and the addition of the copper chelator, bathocuproinedisulfonic acid, phenocopies a wc-1 overexpression strain. To test whether copper repression can recapitulate the loss of viability that an essential gene knockout causes, we placed Ptcu-1 upstream of the essential gene, hpt-1. The addition of excess copper drastically reduced the growth rate as expected. Thus, this strategy will be useful to probe the biological function of any N. crassa gene through controlled expression. PMID:24142928

  3. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  4. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1990-05-15

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  5. Removal of copper from ferrous scrap

    DOEpatents

    Blander, Milton; Sinha, Shome N.

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  6. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1987-07-30

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  7. Copper and zinc recycling from copper alloys` spent pickling solutions

    SciTech Connect

    Roman-Moguel, G.J.; Plascencia, G.; Perez, J.

    1995-12-31

    The precipitation of copper and zinc as cements from a copper alloys` spent pickling solution has been studied at laboratory and pilot scale, with the objective of designing an economic process to recover both metals and render a solution to be either recycled to the pickling process or treated in a standard fashion and produce a non-hazardous sludge. The sulfuric acid spent pickling solution already containing copper and zinc was used first to dissolve another solid residue originated in the copper alloys foundry to neutralize part of the acidity. The resulting enriched solution was treated separately with two reductants: sodium borohydride and iron powder varying pH and excess of reductant under constant agitation. Under the best conditions, precipitation of over 95 percent of zinc and copper was achieved together with the reduction of lead and cadmium contents respectively. A process for the combined residues treatment is proposed.

  8. An evaluation of the potential yield of indium recycled from end-of-life LCDs: A case study in China.

    PubMed

    Wang, Hengguang; Gu, Yifan; Wu, Yufeng; Zhang, Yi-Nan; Wang, Wei

    2015-12-01

    With the advances in electronics and information technology, China has gradually become the largest consumer of household appliances (HAs). Increasingly, end-of-life (EOL) HAs are generated in China. EOL recycling is a promising strategy to reduce dependence on virgin production, and indium is one of the recycled substances. The potential yield of indium recycling has not been systematically evaluated in China thus far. This paper estimates the potential yield of recycled indium from waste liquid crystal displays (LCDs) in China during the period from 2015 to 2030. The quantities of indium that will be used to produce LCDs are also predicted. The estimates focus on the following three key LCD waste sources: LCD TVs, desktop computers and portable computers. The results show that the demand for indium will be increasing in the near future. It is expected that 350 tonnes of indium will be needed to produce LCDs in China in 2035. The indium recycled from EOL LCDs, however, is much less than the demand and only accounts for approximately 48% of the indium demand. The sustainable index of indium is always less than 0.5. Therefore, future indium recycling efforts should focus on the development of recycling technology and the improvement of the relevant policy. PMID:26277718

  9. Copper mediated carbometalation reactions.

    PubMed

    Müller, D S; Marek, I

    2016-08-01

    Since the first discovery of carbocupration of alkynes in the 1970s a tremendous amount of research has been carried out in this field. The exceptionally high selectivities obtained attribute to the great synthetic value of carbocupration reactions. This tutorial review will present the most important features of carbocupration of alkynes and highlight the most relevant reviews. Then a comprehensive review of copper mediated carbometalation of cyclopropenes will follow. The latter method has received much attention over the last decade as it allows the highly selective construction of poly-substituted cyclopropanes which can be transformed into acyclic derivatives bearing one or multiple tertiary or quaternary carbon stereocenters. PMID:26808300

  10. Flow stress of copper

    SciTech Connect

    Pedersen, O.B.

    1987-10-01

    The reverse microflow associated with the Bauschinger effect in copper strained into stage II is characterized experimentally and analyzed in terms of the theory of obstacle-controlled flow and established composite theory. The results are discussed in the light of observations by electron microscopy, deformation calorimetry and X-ray diffraction. It is suggested that the overall flow resistance arises from an interplay of two modes of obstacle controlled glide, none of which dominate the flow stress. One mode occurs inside regions of high local dislocation density (inclusions) where individual forest dislocations oppose glide on the primary slip system. The second mode is bowing of dislocations between the inclusions.

  11. Hydrometallurgical Recovery of Indium from Flat-Panel Displays of Spent Liquid Crystal Televisions

    NASA Astrophysics Data System (ADS)

    Inoue, Katsutoshi; Alam, Shafiq

    2015-02-01

    A recovery process for indium from waste liquid crystal display panels was developed on the basis of hydrometallurgical technology. The powdered sample was leached with 3 M HCl to extract its various metal constituents (indium, aluminum, tin, etc.). The mutual separation and subsequent recovery of the dissolved metals was achieved using two column adsorption tests: The first column was packed with a porous resin impregnated with Aliquat 336, a commercially available solvent extraction reagent based on a quaternary ammonium compound, and the resin contained in the second column was impregnated with Cyanex 923, also a commercially available solvent extraction reagent based on trialkylphosphine oxide. In the first column, tin, iron, and zinc were removed from the leach liquor. In the second column, only indium was selectively recovered. The metal ions trapped in these columns were eluted with 0.1 M H2SO4, yielding a solution purified indium solution with a concentration 10 times that of the feed solution.

  12. Indium Oxide-Single-Walled Carbon Nanotube Composite for Ethanol Sensing at Room Temperature.

    PubMed

    Ellis, James E; Green, Uri; Sorescu, Dan C; Zhao, Yong; Star, Alexander

    2015-02-19

    Utilizing a sol-gel synthesis, indium oxide is grown on the surface of oxidized single-walled carbon nanotubes (SWCNT) to form a hybrid material with high conductivity and sensitivity toward certain organic vapors. The room-temperature sensing of dilute ethanol and acetone vapors on the surface of indium oxide/SWCNT hybrid material is studied using electrical conductance experiments in a nonoxidizing environment. Through testing of variously calcinated materials, it was observed that the degree of annealing greatly affects the material's response to acetone and ethanol, such that the intermediate calcination condition yields the best sensitivity. DFT simulations are used to study the interface between defective SWCNT and indium oxide, as well as the interaction between ethanol and acetone molecules with the indium oxide/SWCNT hybrid material. PMID:26262491

  13. Indium bump array fabrication on small CMOS circuit for flip-chip bonding

    NASA Astrophysics Data System (ADS)

    Yuyang, Huang; Yuxiang, Zhang; Zhizhen, Yin; Guoxin, Cui; C, Liu H.; Lifeng, Bian; Hui, Yang; Yaohui, Zhang

    2011-11-01

    We demonstrate a novel method for indium bump fabrication on a small CMOS circuit chip that is to be flip-chip bonded with a GaAs/AlGaAs multiple quantum well spatial light modulator. A chip holder with a via hole is used to coat the photoresist for indium bump lift-off. The 1000 μm-wide photoresist edge bead around the circuit chip can be reduced to less than 500 μm, which ensures the integrity of the indium bump array. 64 × 64 indium arrays with 20 μm-high, 30 μm-diameter bumps are successfully formed on a 5 × 6.5 mm2 CMOS chip.

  14. Optimal design study of high efficiency indium phosphide space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.

  15. Structural and electrical properties of sol-gel spin coated indium doped cadmium oxide thin films

    SciTech Connect

    Rajammal, R.; Savarimuthu, E. Arumugam, S.

    2014-04-24

    The indium doped CdO thin films have been prepared by the sol-gel spin coating technique and the influence of indium doping concentration on the structural and electrical properties of the deposited films has been investigated. The indium doping concentration in the solution has been varied from 0-10 wt% insteps of 2wt%. A indium doping concentration of 6wt% has been found to be optimum for preparing the films and at this stage a minimum resistivity of 5.92×10{sup −4}Ω cm and a maximum carrier concentration of 1.20×10{sup 20}cm{sup −3} have been realized.

  16. Experimental study of the orientation dependence of indium incorporation in GaInN

    NASA Astrophysics Data System (ADS)

    Bhat, Rajaram; Guryanov, Giorgiy M.

    2016-01-01

    Indium incorporation was studied on a wide variety of planes tilted from the c-plane towards either the a-plane or the m-plane, as well as on two additional planes that were tilted with respect to the a- and m-planes but normal to the c-plane. It was found that the indium content and the photoluminescence wavelength variation patterns are similar. The growth rates do not vary significantly with orientation except for (10-13) and (10-1-3). Indium incorporation was found to increase with reactor pressure except for (10-1-2) and (20-2-7). The change in indium incorporation efficiency with growth temperature is found to depend on the orientation.

  17. Detection of a prosthetic aortic valvular abscess with indium-111-labeled leukocytes

    SciTech Connect

    Oates, E.; Sarno, R.C.

    1988-10-01

    An unsuspected annular abscess at the base of a prosthetic aortic valve in a patient with endocarditis was identified by indium-111-labeled leukocyte scintigraphy alone. This highly sensitive and specific technique expediently demonstrated the surgically proven inflammatory focus.

  18. Band Offset Characterization of the Atomic Layer Deposited Aluminum Oxide on m-Plane Indium Nitride

    NASA Astrophysics Data System (ADS)

    Jia, Ye; Wallace, Joshua S.; Qin, Yueling; Gardella, Joseph A.; Dabiran, Amir M.; Singisetti, Uttam

    2016-04-01

    In this letter, we report the band offset characterization of the atomic layer deposited aluminum oxide on non-polar m-plane indium nitride grown by plasma-assisted molecular beam epitaxy by using x-ray photoelectron spectroscopy. The valence band offset between aluminum oxide and m-plane indium nitride was determined to be 2.83 eV. The Fermi level of indium nitride was 0.63 eV above valence band maximum, indicated a reduced band bending in comparison to polar indium nitride. The band gap of aluminum oxide was found to be to 6.7 eV, which gave a conduction band offset of 3.17 eV.

  19. Investigation of buried homojunctions in p-InP formed during sputter deposition of both indium tin oxide and indium oxide

    NASA Technical Reports Server (NTRS)

    Gessert, T. A.; Li, X.; Wanlass, M. W.; Nelson, A. J.; Coutts, T. J.

    1990-01-01

    While dc magnetron sputter deposition of indium tin oxide leads to the formation of a buried homojunction in single crystal p-type InP, the mechanism of type conversion of the InP surface is not apparent. In view of the recent achievement of nearly 17-percent global efficiencies for cells fabricated solely by sputter deposition of In2O3, it is presently surmised that tin may not be an essential element in type conversion. A variety of electrical and optical techniques are presently used to evaluate the changes at both indium tin oxide/InP and indium oxide/InP interfaces. Such mechanisms as the passivation of acceptors by hydrogen, and sputter damage, are found to occur simultaneously.

  20. Lead and Copper Control 101

    EPA Science Inventory

    This presentation is an overview of the most important water treatment strategies for the control of lead and copper release from drinking water corrosion. In addition to the sections specifically on lead and copper treatment, sections are included that cover sampling to find le...

  1. Diagnosis of Copper Transport Disorders

    PubMed Central

    Møller, Lisbeth B.; Hicks, Julia D.; Holmes, Courtney S.; Goldstein, David S.; Brendl, Cornelia; Huppke, Peter; Kaler, Stephen G.

    2011-01-01

    Techniques for the diagnosis of copper transport disorders are increasingly important due to recent recognition of previously unappreciated clinical phenotypes and emerging advances in the treatment of these conditions. Here, we collate the diagnostic approaches and techniques currently employed for biochemical and molecular assessment of at-risk individuals in whom abnormal copper metabolism is suspected. PMID:21735378

  2. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes.

    PubMed

    Zhou, Nanjia; Buchholz, Donald B; Zhu, Guang; Yu, Xinge; Lin, Hui; Facchetti, Antonio; Marks, Tobin J; Chang, Robert P H

    2014-02-01

    Polymer solar cells are fabricated on highly conductive, transparent amorphous zinc indium tin oxide (a-ZITO) electrodes. For two representative active layer donor polymers, P3HT and PTB7, the power conversion efficiencies (PCEs) are comparable to reference devices using polycrystalline indium tin oxide (ITO) electrodes. Benefitting from the amorphous character of a-ZITO, the new devices are highly flexible and can be repeatedly bent to a radius of 5 mm without significant PCE reduction. PMID:24123578

  3. Role of TBATB in nano indium oxide catalyzed C-S bond formation

    PubMed Central

    Gogoi, Prasanta; Hazarika, Sukanya; Barman, Pranjit

    2015-01-01

    Nano sized indium oxide is found to be an efficient catalyst for the conversion of thiols to sulfides using Na2CO3 as base and TBATB as reagent in DMSO at 110 °C. Here in situ generation of bromo intermediate by TBATB takes place through indium surface. A variety of aryl sulfides can be synthesized in excellent yields from less reactive chlorides, boronic acids and thiols. PMID:26415729

  4. Development of Indium bump bonding for the ATLAS Insertable B-Layer (IBL)

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Andreazza, A.; Corda, G.; Darbo, G.; Di Gioia, S.; Fiorello, A.; Gariano, G.; Gemme, C.; Meroni, C.; Rovani, A.; Ruscino, E.

    2013-01-01

    About half of the ATLAS pixel modules have been assembled with the Selex indium bump bonding process. The requirements of the ATLAS Insertable B-Layer (IBL) detector ask for larger and thinner chips, two critical parameters for bonding processes. We report on the research and development carried on with Selex to produce modules with 100 μm thick and 18.8 × 20.2 mm2 area read out chips bonded with indium bumps.

  5. Dual-energy subtraction imaging utilizing indium as a contrast agent

    SciTech Connect

    Le Duc, G.; Zhong, Z.; Warkentien, L.; Laster, B.; Thomlinson, W.

    1997-10-01

    The purpose of our current work is to establish the minimum detection, of indium contrast agent using dual-energy subtraction imaging above and below indium K-edge. Experiments were performed on the X12 and X17B2 beamlines at the National Synchrotron Light Source using the same method but with two different set-ups. Experiments were first carried out on InCl{sub 3} solutions, then on V79 Chinese hamster cells and on BALB/c mice excised tumors, labeled with indium. For each experiment, several layers of Lucite were placed in front of the phantom to ensure a 43 mm thickness, dose to that of a mammography examination. Results were the same on X12 and X17B2. As expected, indium-free materials disappeared on subtracted images (water, steel reference and screw). Indium samples were easily distinguishable for the following concentrations: 10-5-2-1 mg/cm{sup 2}. Smaller concentrations were not clearly distinguishable and we were unable to see cell samples and tumors. To conclude, the lowest concentration we can image is around 1 mg/cm{sup 2}. These results agree with theoretical results. Such results also suggest that indium concentration in both cells and tumors is lower than 0.5 mg/cm{sup 2}. Since the current detection is dose to optimum, we conclude that dual energy subtraction imaging using indium to label tumors cells and tumors is not possible unless the indium uptake is increased by more than an order of magnitude.

  6. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    A general overview of the industrial garnet industry is provided. About 20 percent of global industrial garnet production takes place in the U.S. During 2000, an estimated 300 kt of industrial garnets were produced worldwide. The U.S. is the world's largest consumer of industrial garnet, consuming 56.9 kt in 2000.

  7. Enhanced optical properties due to indium incorporation in zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Farid, S.; Mukherjee, S.; Sarkar, K.; Mazouchi, M.; Stroscio, M. A.; Dutta, M.

    2016-01-01

    Indium-doped zinc oxide nanowires grown by vapor-liquid-solid technique with 1.6 at. % indium content show intense room temperature photoluminescence (PL) that is red shifted to 20 meV from band edge. We report on a combination of nanowires and nanobelts-like structures with enhanced optical properties after indium doping. The near band edge emission shift gives an estimate for the carrier density as high as 5.5 × 1019 cm-3 for doped nanowires according to Mott's critical density theory. Quenching of the visible green peak is seen for doped nanostructures indicating lesser oxygen vacancies and improved quality. PL and transmission electron microscopy measurements confirm indium doping into the ZnO lattice, whereas temperature dependent PL data give an estimation of the donor and acceptor binding energies that agrees well with indium doped nanowires. This provides a non-destructive technique to estimate doping for 1D structures as compared to the traditional FET approach. Furthermore, these indium doped nanowires can be a potential candidate for transparent conducting oxides applications and spintronic devices with controlled growth mechanism.

  8. Influence of Indium Segregation on InGaN/GaN QD Band Alignment

    NASA Astrophysics Data System (ADS)

    Greenhill, Christian; Chang, Alexander; Walrath, Jenna; Frost, T.; Bhattacharya, P. K.; Goldman, Rachel

    InGaN/GaN QD systems are promising for optoelectronic devices, such as photovoltaics, light emitters, and lasers due to their high mobility, high absorption coefficient, and direct wide bandgap. However, indium segregation within InGaN quantum structures can lead to inefficiencies in device performance and has not been investigated in InGaN/GaN QD systems. Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we have investigated the influence of indium nanostructure on the band structure of single or multi-layered InGaN/GaN QDs. We observe a mixture of indium mounds and QDs in the single layered InGaN/GaN QD system, where local STS measurements suggest a gradient in indium concentration across the indium mound. Furthermore, STM imaging suggests a higher density of InGaN/GaN QDs for multi-layered InGaN/GaN QDs compared to that of a single layered InGaN/GaN QDs, where STS measurements suggest indium clustering within InGaN QDs. We discuss the comparison of the band structure of InGaN/GaN mounds vs. QD systems.

  9. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  10. Detection of copper ions from aqueous solutions using layered double hydroxides thin films deposited by PLD

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Birjega, R.; Matei, A.; Luculescu, C.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2015-10-01

    Layered double hydroxides (LDHs) thin films with Mg-Al were deposited using pulsed laser deposition (PLD) technique. We studied the ability of our films to detect copper ions in aqueous solutions. Copper is known to be a common pollutant in water, originating from urban and industrial waste. Clay minerals, including layered double hydroxides (LDHs), can reduce the toxicity of such wastes by adsorbing copper. We report on the uptake of copper ions from aqueous solution on LDH thin films obtained via PLD. The obtained thin films were characterized using X-ray Diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results in this study indicate that LDHs thin films obtained by PLD have potential as an efficient adsorbent for removing copper from aqueous solution.

  11. Copper: from neurotransmission to neuroproteostasis

    PubMed Central

    Opazo, Carlos M.; Greenough, Mark A.; Bush, Ashley I.

    2014-01-01

    Copper is critical for the Central Nervous System (CNS) development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP) and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (“neuroproteostasis”) in the CNS with focus in the Ubiquitin Proteasome System (UPS), which is particularly relevant to neurological disorders such as Alzheimer’s disease (AD) where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients. PMID:25071552

  12. Kinetic modeling of copper biosorption by immobilized biomass

    SciTech Connect

    Veglio, F.; Beolchini, F.; Toro, L.

    1998-03-01

    Biosorption of heavy metals is one of the most promising technologies involved in the removal of toxic metals from industrial waste streams and natural waters. The kinetic modeling of copper biosorption by Arthrobacter sp. immobilized in a hydroxyethyl methacrylate-based matrix is reported in this work. The resin-biomass complex (RBC) has been used for copper biosorption in different conditions according to a factorial experiment. Factors investigated were cross-linker (trimethylolpropane trimethacrylate) concentration, biomass concentration in the solid, and particles` granulometry. A maximum copper specific uptake of abut 7 mg of Cu/g of biomass (dry weight) has been observed, in the case of a RBC with the following characteristics: 2% (w/w) cross-linker concentration, 8% (w/w) biomass concentration, and 425--750 {micro}m granulometry. The shrinking core model has been used for the fitting of experimental data. A good fit has been found in the case of controlling intraparticle diffusion in all experimental trials. The copper diffusion coefficient in RBC has been estimated from the slope of the regression lines. Values obtained for the diffusion coefficients do not differ from one another with respect to the estimated standard error. An average apparent copper diffusion coefficient of about 3 {times} 10{sup {minus}6} cm{sup 2}/s has been found.

  13. Adsorption of copper cyanide on chemically active adsorbents

    SciTech Connect

    Lee, J.S.; Deorkar, N.V.; Tavlarides, L.L.

    1998-07-01

    An inorganic chemically active adsorbent (ICAA), SG(1)-TEPA (tetraethylenepentaamine)-propyl, is developed for removal, recovery, and recycling of copper cyanide from industrial waste streams. Equilibrium studies are executed to determine and model adsorption of the copper cyanide complex from aqueous solutions in a batch and packed column. It appears that adsorption is dependent on anionic copper cyanide species and the basicity of the ligand. Aqueous-phase equilibrium modeling shows that monovalent (Cu(CN){sub 2}{sup {minus}}), divalent (Cu(CN){sub 3}{sup 2{minus}}), and trivalent (Cu(CN){sub 4}{sup 3{minus}}) species of copper cyanide exist in the solution, depending on the pH and the concentration of total cyanide ions. Batch adsorption data are modeled using a modified multicomponent Langmuir isotherm which includes aqueous-phase speciation and basicity of the SG(1)-TEPA-propyl. This developed model is applied with a mass balance equation to describe the adsorption of copper cyanide complexes in a packed column.

  14. High rate copper and energy recovery in microbial fuel cells

    PubMed Central

    Rodenas Motos, Pau; ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J. N.; Sleutels, Tom H. J. A.

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L-1 Cu2+) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m-2 in combination with a power density of 5.5 W m-2 was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery. PMID:26150802

  15. Copper removal from oil-field brine by coprecipitation.

    PubMed

    Khosravi, Jafar; Alamdari, Abdolmohammad

    2009-07-30

    The present study aims at investigation of copper removal from oil-field brine by coprecipitation process. The produced brine containing heavy metals is usually returned to the reservoir for water flooding or is discarded to the surroundings. Therefore, surface waters or underground waters may be polluted due to probable contact to these discarded waters. Removal experiments were carried out at room temperature in a bench-scale crystallizer equipped with a draft tube. In order to gain an insight into the influence of soluble compounds in the industrial natural brine on the precipitation process, some comparative experiments were performed both on a sample of natural brine and on a synthetic simulated brine in the absence of natural impurities. A metal removal practice by coprecipitation of copper through CaCO(3) precipitates induced by reaction of Na(2)CO(3) and CaCl(2) reduced the copper concentration (Cu(2+)) from 0.27 ppm in the synthetic brine to 0.06 ppm. This removal of 78% required only 1g of precipitate per 0.15 mg copper metal. Analysis of the experimental results suggested that about 5% of the copper removal from the synthetic brine was through the mechanism of incorporation into the crystal lattice, and around 95% was through the adsorption on the crystal faces. PMID:19157701

  16. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization.

    PubMed

    Tang, Yuanyuan; Lee, Po-Heng; Shih, Kaimin

    2013-08-01

    The fast development of electronic industries and stringent requirement of recycling waste electronics have produced a large amount of metal-containing waste sludge. This study developed a waste-to-resource strategy to beneficially use such metal-containing sludge from the production and recycling processes of printed circuit board (PCBs). To observe the metal incorporation mechanisms and phase transformation processes, mixtures of copper industrial waste sludge and kaolinite-based materials (kaolinite and mullite) were fired between 650 and 1250 °C for 3 h. The different copper-hosting phases were identified by powder X-ray diffraction (XRD) in the sintered products, and CuAl2O4 was found to be the predominant hosting phase throughout the reactions, regardless of the strong reduction potential of copper expected at high temperatures. The experimental results indicated that CuAl2O4 was generated more easily and in larger quantities at low-temperature processing when using the kaolinite precursor. Maximum copper transformations reached 86% and 97% for kaolinite and mullite systems, respectively, when sintering at 1000 °C. To monitor the stabilization effect after thermal process, prolonged leaching tests were carried out using acetic acid with an initial pH value of 2.9 to leach the sintered products for 20 days. The results demonstrated the decrease of copper leachability with the formation of CuAl2O4, despite different sintering behavior in kaolinite and mullite systems. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering copper sludge with aluminosilicate materials, and suggests a promising and reliable technique for reusing metal-containing sludge as ceramic materials. PMID:23796110

  17. Non-communicable disease risk factor patterns among mining industry workers in Papua, Indonesia: longitudinal findings from the Cardiovascular Outcomes in a Papuan Population and Estimation of Risk (COPPER) Study

    PubMed Central

    Rodriguez-Fernandez, Rodrigo; Rahajeng, Ekowati; Viliani, Francesca; Kushadiwijaya, Haripurnomo; Amiya, Rachel M; Bangs, Michael J

    2015-01-01

    Objectives Non-communicable diseases (NCDs) constitute an increasing slice of the global burden of disease, with the South-East Asia region projected to see the highest increase in NCD-related deaths over the next decade. Mining industry employees may be exposed to various factors potentially elevating their NCD risk. This study aimed to assess the distribution and 5-year longitudinal trends of key metabolic NCD risk factors in a cohort of copper–gold mining company workers in Papua, Indonesia. Methods Metabolic indicators of NCD risk were assessed among employees (15 580 at baseline, 6496 prospectively) of a large copper–gold mining operation in Papua, Indonesia, using routinely collected 5-year medical surveillance data. The study cohort comprised individuals aged 18–68 years employed for ≥1 year during 2008–2013. Assessed risk factors were based on repeat measures of cholesterol, blood glucose, blood pressure and body weight, using WHO criteria. Results Metabolic risk indicator rates were markedly high and increased significantly from baseline through 5-year follow-up (p<0.001). Adjusting for gender and age, longer duration of employment (≥10 years) predicted raised cholesterol (adjusted OR (AOR)=1.13, p=0.003), raised blood pressure (AOR=1.16, p=0.009) and overweight/obesity (AOR=1.14, p=0.001) at baseline; and persistent raised cholesterol (AOR=1.26, p=0.003), and both incident (AOR=1.33, p=0.014) and persistent raised blood glucose (AOR=1.62, p=0.044) at 3-year follow-up. Conclusions Individuals employed for longer periods in a mining operations setting in Papua, Indonesia, may face elevated NCD risk through various routes. Workplace health promotion interventions and policies targeting modifiable lifestyle patterns and environmental exposures present an important opportunity to reduce such susceptibilities and mitigate associated health risks. PMID:26231573

  18. Regulation of extracellular copper-binding proteins in copper-resistant and copper-sensitive mutants of Vibrio alginolyticus.

    PubMed Central

    Harwood, V J; Gordon, A S

    1994-01-01

    Extracellular proteins of wild-type Vibrio alginolyticus were compared with those of copper-resistant and copper-sensitive mutants. One copper-resistant mutant (Cu40B3) constitutively produced an extracellular protein with the same apparent molecular mass (21 kDa) and chromatographic behavior as copper-binding protein (CuBP), a copper-induced supernatant protein which has been implicated in copper detoxification in wild-type V. alginolyticus. Copper-sensitive V. alginolyticus mutants displayed a range of alterations in supernatant protein profiles. CuBP was not detected in supernatants of one copper-sensitive mutant after cultures had been stressed with 50 microM copper. Increased resistance to copper was not induced by preincubation with subinhibitory levels of copper in the wild type or in the copper-resistant mutant Cu40B3. Copper-resistant mutants maintained the ability to grow on copper-amended agar after 10 or more subcultures on nonselective agar, demonstrating the stability of the phenotype. A derivative of Cu40B3 with wild-type sensitivity to copper which no longer constitutively expressed CuBP was isolated. The simultaneous loss of both constitutive CuBP production and copper resistance in Cu40B3 indicates that constitutive CuBP production is necessary for copper resistance in this mutant. These data support the hypothesis that the extracellular, ca. 20-kDa protein(s) of V. alginolyticus is an important factor in survival and growth of the organism at elevated copper concentrations. The range of phenotypes observed in copper-resistant and copper-sensitive V. alginolyticus indicate that altered sensitivity to copper was mediated by a variety of physiological changes. Images PMID:8031076

  19. Comparative transcriptome analysis of grapevine in response to copper stress.

    PubMed

    Leng, Xiangpeng; Jia, Haifeng; Sun, Xin; Shangguan, Lingfei; Mu, Qian; Wang, Baoju; Fang, Jinggui

    2015-01-01

    Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars. PMID:26673527

  20. Comparative transcriptome analysis of grapevine in response to copper stress

    PubMed Central

    Leng, Xiangpeng; Jia, Haifeng; Sun, Xin; Shangguan, Lingfei; Mu, Qian; Wang, Baoju; Fang, Jinggui

    2015-01-01

    Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars. PMID:26673527

  1. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2003-01-01

    Statistics on the production, consumption, cost, trade, and government stockpile of natural and synthetic industrial diamond are provided. The outlook for the industrial diamond market is also considered.

  2. Apparatus for Precise Indium-Bump Bonding of Microchips

    NASA Technical Reports Server (NTRS)

    Wild, Larry; Mulder, Jerry; Alvarado, Nicholas

    2005-01-01

    An improved apparatus has been designed and built for use in precise positioning and pressing of a microchip onto a substrate (which could, optionally, be another microchip) for the purpose of indium-bump bonding. The apparatus (see figure) includes the following: A stereomicroscope, A stage for precise positioning of the microchip in rotation angle (theta) about the nominally vertical pressing axis and in translation along two nominally horizontal coordinate axes (x and y), and An actuator system that causes a bonding tip to press the microchip against the substrate with a precisely controlled force. In operation, the microscope and the stage are used to position the microchip under the bonding tip and to align the indium bumps on the chip and the substrate, then the actuator system is used to apply a prescribed bonding force for a prescribed time. The improved apparatus supplants a partly similar prior apparatus that operated with less precision and repeatability, producing inconsistent and unreliable bonds. Results of the use of the prior apparatus included broken microchips, uneven bonds, and bonds characterized, variously, by overcompression or undercompression. In that apparatus, the bonding force was generated and controlled by use of a micrometer head positioned over the center of a spring-loaded scale, and the force was applied to the microchip via the scale, which was equipped for digital readout of the force. The inconsistency of results was attributed to the following causes: It was not possible to control the bonding force with sufficient precision or repeatability. Particularly troublesome was the inability to control the force at levels less than the weight of 150 g. Excessive compliance in the spring-loaded scale, combined with deviations from parallelarity of the substrate and bonding-tip surfaces, gave rise to nonuniformity in the pressure applied to the microchip, thereby generating excessive stresses and deformations in the microchip. In the

  3. Low-temperature mechanical dissipation of thermally evaporated indium film for use in interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Murray, Peter G.; Martin, Iain W.; Cunningham, Liam; Craig, Kieran; Hammond, Giles D.; Hofmann, Gerd; Hough, James; Nawrodt, Ronny; Reifert, David; Rowan, Sheila

    2015-06-01

    Indium bonding is under consideration for use in the construction of cryogenic mirror suspensions in future gravitational wave detectors. This paper presents measurements of the mechanical loss of a thermally evaporated indium film over a broad range of frequencies and temperatures. It provides an estimate of the resulting thermal noise at 20 K for a typical test mass geometry for a cryogenic interferometric gravitational wave detector from an indium layer between suspension elements.

  4. Removal of copper from carbon-saturated iron with an aluminum sulfide ferrous sulfide flux.

    SciTech Connect

    Cohen, A.; Blander, M.; Energy Technology

    1998-04-01

    Scrap iron and steel have long been considered as resources in the steelmaking industry, and their value is largely determined by the impurity content. Copper is a particularly troublesome impurity because of its role in causing hot shortness and should be kept below ==0.1 wt pct. A method for reducing copper content in steel to <0.1 wt pct could lead to increased use of lower-quality scrap.

  5. Regional interrelationships of zinc, copper, and lead in the brain following lead intoxication. [Rabbits

    SciTech Connect

    Rehman, S.; Chandra, O.

    1984-02-01

    Among heavy metals of industrial and toxicological importance, lead, zinc and copper have probably the widest distribution in the human environment. These metal ions have a non-homogeneous pattern of distribution in the central nervous system (CNS). It has been shown that the normal concentration of these metal ions in the CNS is disturbed following zinc-intoxication. In the present study, the authors have demonstrated the effect of lead alone and in combination with zinc or copper on the regional concentration of zinc, copper and lead ions in the CNS and blood.

  6. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Copper gluconate. 184.1260 Section 184.1260 Food... Specific Substances Affirmed as GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate... practice. Copper gluconate may be used in infant formula in accordance with section 412(g) of the...

  7. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  8. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  9. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Copper gluconate. 184.1260 Section 184.1260 Food... Specific Substances Affirmed as GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate... practice. Copper gluconate may be used in infant formula in accordance with section 412(g) of the...

  10. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Copper gluconate. 184.1260 Section 184.1260 Food... Specific Substances Affirmed as GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate... practice. Copper gluconate may be used in infant formula in accordance with section 412(g) of the...

  11. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper gluconate. 184.1260 Section 184.1260 Food... Specific Substances Affirmed as GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate... practice. Copper gluconate may be used in infant formula in accordance with section 412(g) of the...

  12. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  13. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  14. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Copper gluconate. 184.1260 Section 184.1260 Food... GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate (CH2OH(CHOH)4COO)2Cu, CAS Reg... ingredient is used in food at levels not to exceed current good manufacturing practice. Copper gluconate...

  15. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  16. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  17. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  18. NID Copper Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  19. The effects of post-processing on the surface and the optical properties of copper indium sulfide quantum dots.

    PubMed

    Akdas, Tugce; Distaso, Monica; Kuhri, Susanne; Winter, Benjamin; Birajdar, Balaji; Spiecker, Erdmann; Guldi, Dirk M; Peukert, Wolfgang

    2015-05-01

    In the current contribution we report on investigations regarding the surface of CuInS2 quantum dots and on different strategies to control the amount of surface ligands in a post-processing step. In particular, the reactivity of the organic components, that is, 1-dodecanthiol and 1-octadecene as ligand and solvent, respectively, during nanocrystal formation was studied. A new method to remove residuals from the reaction mixture and to detach excess organics from the surface of the nanocrystals is reported. Our new method, which is based on the utilization of acids, is compared with standard purification procedures by means of thermogravimetric analysis (TGA) with particular focus on its efficiency to remove organics. As a complement, the surface chemistry is analyzed by nuclear magnetic resonance spectroscopy (NMR) to shed light on the nature of the organic components still present after purification. Further analysis of the product by inductively coupled plasma optical emission spectroscopy (ICP-OES) is performed to verify the influence of the new purification method on surface composition and properties. Moreover, steady state and time resolved spectroscopies give insights into excitonic behavior as well as recombination processes. Finally, the new method is optimized for the purification of CuInS2-ZnS nanocrystals, which show enhanced optical properties. PMID:25643961

  20. Copper indium disulfide nanocrystals supported on carbonized chicken eggshell membranes as efficient counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Lidan; He, Jianxin; Zhou, Mengjuan; Zhao, Shuyuan; Wang, Qian; Ding, Bin

    2016-05-01

    A domestic waste, chicken eggshell membrane (ESM), is used as a raw material to fabricate carbonized ESM loaded with chalcopyrite CuInS2 nanocrystals (denoted CESM-CuInS2) by a simple liquid impregnation and carbonization method. The CESM-CuInS2 composite possesses a natural three-dimensional macroporous network structure in which numerous CuInS2 nanocrystals with a size of about 25 nm are inlaid in carbon submicron fibers that form a microporous network. The CESM-CuInS2 composite is used as the counter electrode in a dye-sensitized solar cell (DSSC) and its photoelectric performance is tested. The DSSC with a CESM-CuInS2 counter electrode exhibits a short-circuit current density of 12.48 mA cm-2, open-circuit voltage of 0.78 V and power conversion efficiency of 5.8%; better than the corresponding values for a DSSC with a CESM counter electrode, and comparable to that of a reference DSSC with a platinum counter electrode. The favorable photoelectric performance of the CESM-CuInS2 counter electrode is attributed to its hierarchical structure, which provides a large specific surface area and numerous catalytically active sites to facilitate the oxidation of the electrolyte. This new composite material has many advantages, such as low cost and simple preparation, compared with Pt and pure CuInS2 counter electrodes.

  1. Copper indium disulfide nanocrystals supported on carbonized chicken eggshell membranes as efficient counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Lidan; He, Jianxin; Zhou, Mengjuan; Zhao, Shuyuan; Wang, Qian; Ding, Bin

    2016-05-01

    A domestic waste, chicken eggshell membrane (ESM), is used as a raw material to fabricate carbonized ESM loaded with chalcopyrite CuInS2 nanocrystals (denoted CESM-CuInS2) by a simple liquid impregnation and carbonization method. The CESM-CuInS2 composite possesses a natural three-dimensional macroporous network structure in which numerous CuInS2 nanocrystals with a size of about 25 nm are inlaid in carbon submicron fibers that form a microporous network. The CESM-CuInS2 composite is used as the counter electrode in a dye-sensitized solar cell (DSSC) and its photoelectric performance is tested. The DSSC with a CESM-CuInS2 counter electrode exhibits a short-circuit current density of 12.48 mA cm-2, open-circuit voltage of 0.78 V and power conversion efficiency of 5.8%; better than the corresponding values for a DSSC with a CESM counter electrode, and comparable to that of a reference DSSC with a platinum counter electrode. The favorable photoelectric performance of the CESM-CuInS2 counter electrode is attributed to its hierarchical structure, which provides a large specific surface area and numerous catalytically active sites to facilitate the oxidation of the electrolyte. This new composite material has many advantages, such as low cost and simple preparation, compared with Pt and pure CuInS2 counter electrodes.

  2. Fabrication and Characterisation of Copper, Indium, SELENIUM(2) Films on Large Area Substrates for Solar Cell Devices

    NASA Astrophysics Data System (ADS)

    Oumous, Hassan

    Available from UMI in association with The British Library. This project involved research on large area, low cost methods for the production of CuInSe_2 thin films. The approach used in this work was thermal evaporation, together with post deposition annealing in some cases. Firstly, the growth techniques and properties of single crystal CuInSe_2 are presented. Secondly, some features of the high vacuum thermal deposition are described. Sources suitable for large area deposition have been developed. The geometry of the evaporation system for large area deposition by the coevaporation method has been investigated. The conventional co-evaporation of the elements was taken as a starting point, since it was the most advanced technique when the project commenced. The scaling up of this technique has been investigated using strip sources to evaporate Cu and In. The main problem with this method is the difficulty in controlling the elemental fluxes without involving expensive equipment. None of the three methods investigated; control of power input to sources, control of source temperatures and feed back control using a conventional gas analyser, has provided the degree of control required. A new method has been developed, which will probably replace the coevaporation. The deposition of a stack of elemental layers was found to yield good quality CuInSe _2 films after processing in vacuum or under an inert gas ambient. Rapid thermal annealing of the SEL structures in Argon ambient resulted in CuInSe _2 formation at 300^ circC. A single phase chalcopyrite structure has been obtained at 350^circC. Annealing at higher temperatures enhanced crystalline growth and improved material quality. The final properties of the processed films were found to be very sensitive to the elemental layer thicknesses. The products of reaction at temperatures below 300^circC have been determined. The processed SEL films were homogeneous and all the devices fabricated were operational. The solar cells were sensitive to heat treatment in air. As a result, all cell parameters increased. The highest efficiency was obtained after 45 minutes of annealing at 220 ^circC. The cell parameters were Voc = 260 mV, Jsc = 25 mAcm^{-2} and FF = 45% under 85 mW cm^{-2} illumination. Quantum efficiency and C-V measurements of the cells allowed some recommendations for the improvement of CuInSe_2 quality to be made.

  3. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  4. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation.

    PubMed

    Glöser, Simon; Soulier, Marcel; Tercero Espinoza, Luis A

    2013-06-18

    We present a dynamic model of global copper stocks and flows which allows a detailed analysis of recycling efficiencies, copper stocks in use, and dissipated and landfilled copper. The model is based on historical mining and refined copper production data (1910-2010) enhanced by a unique data set of recent global semifinished goods production and copper end-use sectors provided by the copper industry. To enable the consistency of the simulated copper life cycle in terms of a closed mass balance, particularly the matching of recycled metal flows to reported historical annual production data, a method was developed to estimate the yearly global collection rates of end-of-life (postconsumer) scrap. Based on this method, we provide estimates of 8 different recycling indicators over time. The main indicator for the efficiency of global copper recycling from end-of-life (EoL) scrap--the EoL recycling rate--was estimated to be 45% on average, ± 5% (one standard deviation) due to uncertainty and variability over time in the period 2000-2010. As uncertainties of specific input data--mainly concerning assumptions on end-use lifetimes and their distribution--are high, a sensitivity analysis with regard to the effect of uncertainties in the input data on the calculated recycling indicators was performed. The sensitivity analysis included a stochastic (Monte Carlo) uncertainty evaluation with 10(5) simulation runs. PMID:23725041

  5. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples. PMID:25982723

  6. Interpulse kinetics in copper and copper halide lasers

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1983-01-01

    The various rate processes that govern the interpulse relaxation in metal vapor and metal halide vapor lasers are considered. Computer calculations indicate that the rapid metastable levels relaxation observed in copper and copper halide laser experiments requires the existence of a relatively small resonance in the cross section for metastable excitation or deexcitation near threshold. The accurate calculation of interpulse relaxation requires knowledge of rate constants presently not well known; this is especially so for metal halide lasers.

  7. Finite-size effects in amorphous indium oxide

    NASA Astrophysics Data System (ADS)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-04-01

    We study the low-temperature magnetotransport properties of several highly disordered amorphous indium oxide (a:InO) samples. Simultaneously fabricated devices comprising a two-dimensional (2D) film and 10 -μ m -long wires of different widths were measured to investigate the effect of size as we approach the 1D limit, which is around 4 times the correlation length, and happens to be around 100 nm for a:InO. The film and the wires showed magnetic field (B )-induced superconductor to insulator transition (SIT). In the superconducting side, the resistance increased with decrease in wire width, whereas an opposite trend is observed in the insulating side. We find that this effect can be explained in light of charge-vortex duality picture of the SIT. Resistance of the 2D film follows an activated behavior over the temperature (T ), whereas, the wires show a crossover from the high-T -activated to a T -independent behavior. At high-temperature regime the wires' resistance follow the film's until they deviate and became independent of T . We find that the temperature at which this deviation occurs evolves with the magnetic field and the width of the wire, which show the effect of finite size on the transport.

  8. Photonic integration in indium-phosphide membranes on silicon (IMOS)

    NASA Astrophysics Data System (ADS)

    van der Tol, Jos; Pello, Josselin; Bhat, Shrivatsa; Jiao, Yuqing; Heiss, Dominik; Roelkens, Gunther; Ambrosius, Huub; Smit, Meint

    2014-03-01

    A new photonic integration technique is presented, based on the use of an indium phosphide membrane on top of a silicon chip. This can provide electronic chips (CMOS) with an added optical layer (IMOS) for resolving the communication bottleneck. A major advantage of InP is the possibility to integrate passive and active components (SOAs, lasers) in a single membrane. In this paper we describe progress achieved in both the passive and active components. For the passive part of the circuit we succeeded to bring the propagation loss of our circuits close to the values obtained with silicon; we achieved propagation loss as low as 3.3 dB/cm through optimization of the lithography and the introduction of C60 (fullerene) in an electro resist. Further we report the smallest polarisation converter reported for membrane waveguides ( <10 μm) with low-loss (< 1 dB from 1520- 1550 nm), > 95% polarisation conversion efficiency over the whole C-band and tolerant fabrication. We also demonstrate an InP-membrane wavelength demultiplexer with a loss of 2.8 dB, a crosstalk level of better than 18 dB and a uniformity over the 8 channels of better than 1.2 dB. For the integration of active components we are testing a twin guide integration scheme. We present our design based on optical and electrical simulations and the fabrication techniques.

  9. Comparative performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.; Parat, K. K.

    1987-01-01

    A comparison is made between indium phosphide solar cells whose p-n junctions were processed by open tube capped diffusion, and closed tube uncapped diffusion, of sulfur into Czochralski grown p-type substrates. Air mass zero, total area, efficiencies ranged from 10 to 14.2 percent, the latter value attributed to cells processed by capped diffusion. The radiation resistance of these latter cells was slightly better, under 1 MeV electron irradiation. However, rather than being process dependent, the difference in radiation resistance could be attributed to the effects of increased base dopant concentration. In agreement with previous results, both cells exhibited radiation resistance superior to that of gallium arsenide. The lowest temperature dependency of maximum power was exhibited by the cells prepared by open tube capped diffusion. Contrary to previous results, no correlation was found between open circuit voltage and the temperature dependency of Pmax. It was concluded that additional process optimization was necessary before concluding that one process was better than another.

  10. Indium phosphide nanowires and their applications in optoelectronic devices

    PubMed Central

    Zafar, Fateen

    2016-01-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II–VI and I–VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III–V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core–shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed. PMID:27118920

  11. Structural Properties of Amorphous Indium-Based Oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Medvedeva, Julia

    2014-03-01

    Amorphous transparent conducting and semiconducting oxides exhibit similar or even superior properties to those observed in their crystalline counterparts. To understand how the structural properties change upon amorphization and how chemical composition affects the local and long-range structure of the amorphous oxides, we employ first-principles molecular dynamics to generate amorphous In-X-O with X =Zn, Ga, Sn, Ge, Y, or Sc, and compare their local structure features to those obtained for amorphous and crystalline indium oxide. The results reveal that the short-range structure of the Metal-O polyhedra is generally preserved in the amorphous oxides; however, different metals (In and X) show quantitatively or qualitatively different behavior. Some of the metals retain their natural distances and/or coordination; while others allow for a highly distorted environment and thus favor ``defect'' formation under variable oxygen conditions. At the same time, we find that the presence of X increases both the average In-O coordination and the number of the 6-coordinated In atoms as compared to those in IO. The improved In coordination may be responsible for the observed reduction in the carrier concentration as the substitution level in In-X-O increases.

  12. Growth and electrical properties of mercury indium telluride single crystals

    SciTech Connect

    Wang Linghang Dong Yangchun; Jie Wanqi

    2007-11-06

    A novel photoelectronic single crystal, mercury indium telluride (MIT), has been successfully grown by using vertical Bridgman method (VB). The crystallinity, thermal and electrical properties of the MIT crystal were investigated. The results of X-ray rocking curve show that the as-grown MIT crystal has good crystal quality with the FWHM on (3 1 1) face of about 173 in. DSC measurement reveals that the Hg element is easy to solely evaporate from the compound when the temperature is higher than 387.9 deg. C in the open system. Hall measurements at room temperature show that the resistivity, carrier density and mobility of the MIT crystal were 4.79 x 10{sup 2} {omega} cm, 2.83 x 10{sup 13} cm{sup -3} and 4.60 x 10{sup 2} cm{sup 2} V{sup -1} s{sup -1}, respectively. The reduction of carrier mobility and the increase of the resistivity are related to the adding of In{sub 2}Te{sub 3} into HgTe, which changes the energy band structure of the crystal.

  13. A conductometric indium oxide semiconducting nanoparticle enzymatic biosensor array.

    PubMed

    Lee, Dongjin; Ondrake, Janet; Cui, Tianhong

    2011-01-01

    We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I-V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4-12 nA/mM for channel lengths of 5-20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. PMID:22163696

  14. Magnetic properties of samples containing small indium particles

    NASA Astrophysics Data System (ADS)

    Perenboom, J. A. A. J.; Wyder, P.; Meier, F.

    1981-01-01

    Earlier measurements of the magnetization of small indium particles embedded in paraffin were extended in order to observe the transition from a regime of quantum size effects to a regime with normal bulk behavior. Static-magnetization data have been collected in applied magnetic fields up to 8 T in the temperature range from 3 to 300 K for samples with a mean particle diameter in the range from 2 to 10 nm. The measured temperature dependence at different values of the applied magnetic field reveals a paramagnetic contribution to the magnetization which can be accurately described with the magnetization of a spin triplet level, S=1. The Curie constant is orders of magnitude in excess of one spin per particle and seems to be strongly correlated with the sample handling procedure. In some of our samples we have found also a contribution to the magnetization highly nonlinear with the magnetic field, essentially temperature independent up to room temperature, and saturating at fields around 0.6 T. This contribution resembles strongly the magnetization behavior of ferromagnets. No quantum size effects have been observed in the present data.

  15. Broadband resonances in indium-tin-oxide nanorod arrays

    SciTech Connect

    Li, Shi-Qiang E-mail: r-chang@northwestern.edu; Sakoda, Kazuaki; Ketterson, John B.; Chang, Robert P. H. E-mail: r-chang@northwestern.edu

    2015-07-20

    There is currently much discussion within the nanophotonics community regarding the origin of wavelength selective absorption/scattering of light by the resonances in nanorod arrays. Here, we report a study of resonances in ordered indium-tin-oxide nanorod arrays resulting from waveguide-like modes. We find that with only a 2.4% geometrical coverage, micron-length nanorod arrays interact strongly with light across a surprisingly wide band from the visible to the mid-infrared, resulting in less than 10% transmission. Simulations show excellent agreement with our experimental observations. The field profile in the vicinity of the rods obtained from simulations shows that the electric field is mainly localized on the surfaces of the nanorods for all resonances. Based on our analysis, the resonances in the visible are different in character from those in the infrared. When light is incident on the array, part of it propagates in the space between the rods and part of it is guided within the rods. The phase difference (interference) at the ends of the rods forms the basis for the resonances in the visible region. The resonances in the infrared are Fabry-Perot-like resonances involving standing surface waves between the opposing ends of the rods. Simple analytical formulae predict the spectral positions of these resonances. It is suggested that these phenomena can be utilized for wavelength-selective photodetectors, modulators, and nanorod-based solar cells.

  16. Experiments with the low melting indium-bismuth alloy system

    NASA Technical Reports Server (NTRS)

    Krepski, Richard P.

    1992-01-01

    The following is a laboratory experiment designed to create an interest in and to further understanding of materials science. The primary audience for this material is the junior high school or middle school science student having no previous familiarity with the material, other than some knowledge of temperature and the concepts of atoms, elements, compounds, and chemical reactions. The objective of the experiment is to investigate the indium-bismuth alloy system. Near the eutectic composition, the liquidus is well below the boiling point of water, allowing simple, minimal hazard casting experiments. Such phenomena as metal oxidation, formation of intermetallic compound crystals, and an unusual volume increase during solidification could all be directly observed. A key concept for students to absorb is that properties of an alloy (melting point, mechanical behavior) may not correlate with simple interpolation of properties of the pure components. Discussion of other low melting metals and alloys leads to consideration of environmental and toxicity issues, as well as providing some historical context. Wetting behavior can also be explored.

  17. Indium tin oxide for solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Weijtens, Christianus Hermanus L.

    Solid State Image Sensors (SSIS) which convert light into an electrical signal are introduced and transparent conductive materials and their deposition methods are reviewed as a solution to imager problems. The development of basic tools to enable replacement of poly-Si by Indium Tin Oxide (ITO) in SSIS is addressed. The installation and optimization of deposition equipment, the development of deposition and process technology of ITO, and the implementation and application of ITO in an image sensor are studied. Deposition rate and homogeneity and morphology and parameters like gas composition, power, pressure and substrate temperature are considered. Scope is limited to a first generation frame transfer imager with only one ITO layer although some concepts of an all ITO imager are discussed. The sensor used is a redesign of the accordion imager. All requirements imposed on ITO were met and the usefulness of the developed technology was demonstrated by implementing ITO in an imager. The characteristics of a constructed frame-transfer image sensor in which half the gates in the light sensitive part were replaced by ITO gates are discussed.

  18. Physical properties of vapour grown indium monotelluride platelets

    NASA Astrophysics Data System (ADS)

    Kunjomana, A. G.; Chandrasekharan, K. A.; Teena, M.

    2015-02-01

    Indium monotelluride (InTe) crystals were grown from vapour phase under different temperature gradients by employing physical vapour deposition (PVD) method. The morphology of these crystals such as whiskers, needles, platelets etc., strongly depends on the temperature distribution in the horizontal dual zone furnace. InTe platelets were deposited by setting the temperature of the charge (TC) and growth (TS) zones at 1073 K and 773 K (ΔT=300 K), respectively, for different growth periods (24 h, 48 h, 72 h and 96 h). The surface growth features have been analyzed by scanning electron microscopes, which indicate layer growth mechanism for all the crystals. Various crystals grown under ΔT=200 K and 300 K (retaining TS invariant) were examined by X-ray diffraction and elemental analysis. InTe samples exhibited consistent lattice parameters, density and atomic percentage, establishing stoichiometry and chemical homogeneity. The results obtained for Seebeck coefficient, electrical conductivity, power factor, dislocation density and microhardness are found to be reproducible as well. The vapour deposited InTe platelets are mechanically stable and possess high value of TEP, which ensure their practical application in thermoelectric power generation.

  19. Pulsed laser deposition of nanostructured indium-tin-oxide film

    NASA Astrophysics Data System (ADS)

    Yong, Thian Kok; Nee, Chen Hon; Yap, Seong Shan; Siew, Wee Ong; Sáfran, György; Yap, Yoke Kin; Tou, Teck Yong

    2010-08-01

    Effects of O2, N2, Ar and He on the formation of micro- and nanostructured indium tin oxide (ITO) thin films were investigated in pulsed Nd:YAG laser deposition on glass substrate. For O2 and Ar, ITO resistivity of <= 4 × 10-4 Ωcm and optical transmittance of > 90% were obtained with substrate temperature of 250 °C. For N2 and He, low ITO resisitivity could be obtained but with poor optical transmittance. SEM images show nano-structured ITO thin films for all gases, where dense, larger and highly oriented, microcrystalline structures were obtained for deposition in O2 and He, as revealed from the XRD lines. EDX results indicated the inclusion of Ar and N2 at the expense of reduced tin (Sn) content. When the ITO films were applied for fabrication of organic light emitting devices (OLED), only those deposited in Ar and O2 produced comparable performance to single-layer OLED fabricated on the commercial ITO.

  20. Using Indium Tin Oxide To Mitigate Dust on Viewing Ports

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA plans to use a number of onboard viewing ports to measure lunar regolith in situ and to monitor robotic and human activities on the lunar or Martian surface. Because of the size and abundance of dust particles on these bodies, the potential for dust to occlude viewing ports and windows is high enough to threaten system lifetime and reliability, especially when activities rely on relaying video to either a habitat module or controllers on Earth. This project uses a technology being developed by KSC's Electrostatics and Surface Physics Laboratory to remove dust from windowlike surfaces. The technology applies an alternating electric potential to interlaced electrodes. In this application, we use indium tin oxide (ITO) to create various electrode patterns in order to determine the most reliable pattern for dust removal. This technology has application to systems where optical clarity is important. Specifically, this project considers the in situ resource utilization (ISRU) application of a viewing port for Raman spectroscopy, where the electrode pattern on glass would be coated with a scratch-resistant sapphire film (Al2O3).