Sample records for industry process challenges

  1. New challenges and opportunities for industrial biotechnology

    PubMed Central

    2012-01-01

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al. PMID:22905695

  2. New challenges and opportunities for industrial biotechnology.

    PubMed

    Chen, Guo-Qiang

    2012-08-20

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  3. Potato processing scenario in India: Industrial constraints, future projections, challenges ahead and remedies - A review.

    PubMed

    Marwaha, R S; Pandey, S K; Kumar, Dinesh; Singh, S V; Kumar, Parveen

    2010-03-01

    Indian potato (Solanum tuberosum L.) processing industry has emerged fast due to economic liberalization coupled with growing urbanization, expanding market options and development of indegenous processing varieties. India's first potato processing varieties 'Kufri Chipsona-1' and 'Kufri Chipsona-2' were developed in 1998, followed by an improved processing variety 'Kufri Chipsona-3' in 2005 for the Indian plains and first chipping variety 'Kufri Himsona' for the hills. These varieties have >21% tuber dry matter content, contain low reducing sugars (<0.1% on fresh wt) and are most suitable for producing chips, French fries and dehydrated products. The availability of these varieties and standardization of storage techniques for processing potatoes at 10-12°C with sprout suppressant isopropyl N-(3-chlorophenyl) carbamate have revolutionized the processing scenario within a short span of 10 years. Currently about 4% of total potato produce is being processed in organized and unorganized sector. Potato processing industry mainly comprises 4 segments: potato chips, French fries, potato flakes/powder and other processed products. However, potato chips still continue to be the most popular processed product. The major challenge facing the industries lies in arranging round the year supply of processing varieties at reasonable price for their uninterrupted operation, besides several others which have been discussed at length and addressed with concrete solutions.

  4. Challenges in industrial fermentation technology research.

    PubMed

    Formenti, Luca Riccardo; Nørregaard, Anders; Bolic, Andrijana; Hernandez, Daniela Quintanilla; Hagemann, Timo; Heins, Anna-Lena; Larsson, Hilde; Mears, Lisa; Mauricio-Iglesias, Miguel; Krühne, Ulrich; Gernaey, Krist V

    2014-06-01

    Industrial fermentation processes are increasingly popular, and are considered an important technological asset for reducing our dependence on chemicals and products produced from fossil fuels. However, despite their increasing popularity, fermentation processes have not yet reached the same maturity as traditional chemical processes, particularly when it comes to using engineering tools such as mathematical models and optimization techniques. This perspective starts with a brief overview of these engineering tools. However, the main focus is on a description of some of the most important engineering challenges: scaling up and scaling down fermentation processes, the influence of morphology on broth rheology and mass transfer, and establishing novel sensors to measure and control insightful process parameters. The greatest emphasis is on the challenges posed by filamentous fungi, because of their wide applications as cell factories and therefore their relevance in a White Biotechnology context. Computational fluid dynamics (CFD) is introduced as a promising tool that can be used to support the scaling up and scaling down of bioreactors, and for studying mixing and the potential occurrence of gradients in a tank. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. EDITORIAL: Sixth World Congress on Industrial Process Tomography (WCIPT6) Sixth World Congress on Industrial Process Tomography (WCIPT6)

    NASA Astrophysics Data System (ADS)

    Takei, Masahiro; Xu, Lijun

    2011-10-01

    We are pleased to publish this special feature on the Sixth World Congress on Industrial Process Tomography (WCIPT6) in Measurement Science and Technology. The international congress was successfully held in the campus of Beihang University, Beijing, China, from 6-9 September 2010. It was jointly organized by International Society for Industrial Process Tomography (ISIPT), North China Electric Power University (NCEPU) and Beihang University (BUAA). Process tomography is a tangible tool to visualize and determine the material distribution inside a process non-intrusively in real time. The internal features that can be monitored by process tomography are frequently encountered and required in the design of processes and industrial plants in the fields of chemical, oil, power and metallurgical engineering as well as many other activities such as food, material handling and combustion systems. One of the key characteristics of process tomography is to provide a direct impression and instant and clear understanding of a complex phenomenon. From the viewpoint of practical applications, industries all over the world are currently facing a number of daunting challenges including many wide-range and complex technical problems. The innovative technology of process tomography consistently contributes to providing better and better solutions to the problems as 'seeing is believing'. As a regular event, WCIPT is playing a more and more important role in addressing the challenges to overcome these problems. We are glad to see that this special feature provides a great opportunity for world-wide top-level researchers to discuss and make further developments in process tomography and its applications. The 20 articles included in this issue cover a wide range of relevant topics including sensors and sensing mechanisms, data acquisition systems and instrumentation, electrical, optical, acoustic and hybrid systems, image reconstruction and system evaluation, data and sensor fusion

  6. Technology Challenges and Opportunities in Commercialing Industrial Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, Brian H.; Lievense, Jeff

    Industrial biotechnology is at a pivotal point, with tremendous and ongoing growth in technology contributing to a rich pipeline of opportunities: new products; new and more sustainable ways to make established products; and improvements to existing products and processes. The trillion-dollar questions are: When will there be a commercial breakout in industrial biotech as there has been in biopharma and ag biotech? What advances in technology are needed to make that happen? This article is drawn from the Workshop on Technology Challenges and Opportunities in Commercializing Industrial Biotechnology, sponsored by AIChE’s Society for Biological Engineering (SBE) and held Sept. 28–29,more » 2015, in San Diego. The workshop brought together industrial biotech stakeholders to share — through presentations, case studies, interactive discussions, and exhibits — perspectives on the state of industrial biotech, as well as to address key areas for technology advancement to benefit commercialization.« less

  7. Technology Challenges and Opportunities in Commercialing Industrial Biotechnology

    DOE PAGES

    Davison, Brian H.; Lievense, Jeff

    2016-06-01

    Industrial biotechnology is at a pivotal point, with tremendous and ongoing growth in technology contributing to a rich pipeline of opportunities: new products; new and more sustainable ways to make established products; and improvements to existing products and processes. The trillion-dollar questions are: When will there be a commercial breakout in industrial biotech as there has been in biopharma and ag biotech? What advances in technology are needed to make that happen? This article is drawn from the Workshop on Technology Challenges and Opportunities in Commercializing Industrial Biotechnology, sponsored by AIChE’s Society for Biological Engineering (SBE) and held Sept. 28–29,more » 2015, in San Diego. The workshop brought together industrial biotech stakeholders to share — through presentations, case studies, interactive discussions, and exhibits — perspectives on the state of industrial biotech, as well as to address key areas for technology advancement to benefit commercialization.« less

  8. Programmatic and economic challenges for commercial space processing

    NASA Astrophysics Data System (ADS)

    Overfelt, Tony; Watkins, John

    1997-01-01

    The International Space Station is the largest cooperative space project in history and is likely to be industry's most viable access to the low-g environment for long duration materials processing experiments. Such access will provide unique and competitive research capabilities to industry if private sector entities can commercially utilize the Space Station for their industrial projects. Although ``commercial utilization'' implies a variety of things to different people, the key industrial issues are frequent, reliable, and economical access to space as well as protection of private sector intellectual property rights. This paper discusses how these key issues will influence the programmatic and economic challenges for commercial space processing in the future Space Station era.

  9. The evolution of and challenges for industrial radiation processing—2012

    NASA Astrophysics Data System (ADS)

    Berejka, A. J.; Cleland, M. R.; Walo, M.

    2014-01-01

    The evolution of industrial radiation processing is traced from Roentgen's discovery of X-radiation in 1895 by following the development of high current, electron beam accelerators (EB) throughout the twentieth century. Although Becquerel soon followed Roentgen with his discovery of what became to be known as radioactivity, electrical sources for ionizing radiation dominate industrial processing with there being more than ten times as many industrial installations using high current EB equipment than the facilities relying upon large concentrations of radioactive isotopes. In the 1950s, the discovery that ionizing radiation would enhance the value of what has become the world's largest volume commodity plastic, polyethylene (PE), opened the way for full scale commercial use of high current EB equipment. While the crosslinking of the PE insulation on wire became one of the first major industrial applications, other uses of EB processing soon followed. In the 1970s, low-energy, self-shielded EB equipment made the surface curing of inks, coatings and adhesives more industrially viable. In the early part of the twenty-first century, new market applications involving the low-energy EB surface decontamination of packaging materials emerged. This new area poses challenges for the metrology needed to control industrial processes, in that there is limited EB penetration into what have been used as dosimeters by industry. Major industrial use of radiation process is now over 50 years old. Because of the diversity of end-uses and the fact that the use of ionizing radiation in industry is a process technique, it is hard to quantify the value-added to numerous commercial products that benefit from this energy efficient process. It may be in excess of a trillion Euros in value-added to articles of commerce. In this milieu, there are some broad-based opportunities for research which are noted.

  10. Industrial Adoption of Model-Based Systems Engineering: Challenges and Strategies

    NASA Astrophysics Data System (ADS)

    Maheshwari, Apoorv

    As design teams are becoming more globally integrated, one of the biggest challenges is to efficiently communicate across the team. The increasing complexity and multi-disciplinary nature of the products are also making it difficult to keep track of all the information generated during the design process by these global team members. System engineers have identified Model-based Systems Engineering (MBSE) as a possible solution where the emphasis is placed on the application of visual modeling methods and best practices to systems engineering (SE) activities right from the beginning of the conceptual design phases through to the end of the product lifecycle. Despite several advantages, there are multiple challenges restricting the adoption of MBSE by industry. We mainly consider the following two challenges: a) Industry perceives MBSE just as a diagramming tool and does not see too much value in MBSE; b) Industrial adopters are skeptical if the products developed using MBSE approach will be accepted by the regulatory bodies. To provide counter evidence to the former challenge, we developed a generic framework for translation from an MBSE tool (Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling, ABM). The translation is demonstrated using a simplified air traffic management problem and provides an example of a potential quite significant value: the ability to use MBSE representations directly in an analysis setting. For the latter challenge, we are developing a reference model that uses SysML to represent a generic infusion pump and SE process for planning, developing, and obtaining regulatory approval of a medical device. This reference model demonstrates how regulatory requirements can be captured effectively through model-based representations. We will present another case study at the end where we will apply the knowledge gained from both case studies to a UAV design problem.

  11. Industrial application of semantic process mining

    NASA Astrophysics Data System (ADS)

    Espen Ingvaldsen, Jon; Atle Gulla, Jon

    2012-05-01

    Process mining relates to the extraction of non-trivial and useful information from information system event logs. It is a new research discipline that has evolved significantly since the early work on idealistic process logs. Over the last years, process mining prototypes have incorporated elements from semantics and data mining and targeted visualisation techniques that are more user-friendly to business experts and process owners. In this article, we present a framework for evaluating different aspects of enterprise process flows and address practical challenges of state-of-the-art industrial process mining. We also explore the inherent strengths of the technology for more efficient process optimisation.

  12. Challenges in Materials Transformation Modeling for Polyolefins Industry

    NASA Astrophysics Data System (ADS)

    Lai, Shih-Yaw; Swogger, Kurt W.

    2004-06-01

    Unlike most published polymer processing and/or forming research, the transformation of polyolefins to fabricated articles often involves non-confined flow or so-called free surface flow (e.g. fiber spinning, blown films, and cast films) in which elongational flow takes place during a fabrication process. Obviously, the characterization and validation of extensional rheological parameters and their use to develop rheological constitutive models are the focus of polyolefins materials transformation research. Unfortunately, there are challenges that remain with limited validation for non-linear, non-isothermal constitutive models for polyolefins. Further complexity arises in the transformation of polyolefins in the elongational flow system as it involves stress-induced crystallization process. The complicated nature of elongational, non-linear rheology and non-isothermal crystallization kinetics make the development of numerical methods very challenging for the polyolefins materials forming modeling. From the product based company standpoint, the challenges of materials transformation research go beyond elongational rheology, crystallization kinetics and its numerical modeling. In order to make models useful for the polyolefin industry, it is critical to develop links between molecular parameters to both equipment and materials forming parameters. The recent advances in the constrained geometry catalysis and materials sciences understanding (INSITE technology and molecular design capability) has made industrial polyolefinic materials forming modeling more viable due to the fact that the molecular structure of the polymer can be well predicted and controlled during the polymerization. In this paper, we will discuss inter-relationship (models) among molecular parameters such as polymer molecular weight (Mw), molecular weight distribution (MWD), long chain branching (LCB), short chain branching (SCB or comonomer types and distribution) and their affects on shear and

  13. China's meat industry revolution: challenges and opportunities for the future.

    PubMed

    Zhou, Guanghong; Zhang, Wangang; Xu, Xinglian

    2012-11-01

    From a very limited ration of meat only for urban citizens to the world's largest meat-producing country, from a handful of processing facilities in major cities to thousands of modern meat packing and processing plants throughout the country, the Chinese meat industry has gone through drastic revolutionary changes particularly in the last three decades. Before the national economic reform in the late 1970s, meat production in China was extremely limited; hence, meat was rationed, treated as a highly precious food, and was highly valued. However, new processing technology developments, as related to meat animal production, slaughtering, processing, and distribution have transformed the inefficient Chinese meat industry that prepared only a handful of traditional products into a vast enterprise today that is manufacturing a huge variety of fresh and further processed items enjoyed by the average Chinese household. Along with this evolution, there has been the emergence of mega-scale meat companies and rapid advances in meat science and technology that address many aspects of meat. This review will highlight some milestone changes of the Chinese meat industry and discuss challenges and opportunities ahead in the global market for China. Copyright © 2012. Published by Elsevier Ltd.

  14. Towards an optimal adaptation of exposure to NOAA assessment methodology in Multi-Source Industrial Scenarios (MSIS): the challenges and the decision-making process

    NASA Astrophysics Data System (ADS)

    López de Ipiña, JM; Vaquero, C.; Gutierrez-Cañas, C.

    2017-06-01

    It is expected a progressive increase of the industrial processes that manufacture of intermediate (iNEPs) and end products incorporating ENMs (eNEPs) to bring about improved properties. Therefore, the assessment of occupational exposure to airborne NOAA will migrate, from the simple and well-controlled exposure scenarios in research laboratories and ENMs production plants using innovative production technologies, to much more complex exposure scenarios located around processes of manufacture of eNEPs that, in many cases, will be modified conventional production processes. Here will be discussed some of the typical challenging situations in the process of risk assessment of inhalation exposure to NOAA in Multi-Source Industrial Scenarios (MSIS), from the basis of the lessons learned when confronted to those scenarios in the frame of some European and Spanish research projects.

  15. Challenges in sensor development for the electric utility industry

    NASA Astrophysics Data System (ADS)

    Ward, Barry H.

    1999-01-01

    The electric utility industry is reducing operating costs in order to prepare for deregulation. The reduction in operating cost has meant a reduction in manpower. The ability to utilize remaining maintenance staff more effectively and to stay competitive in a deregulated environment has therefore become critical. In recent years, the industry has moved away from routine or periodic maintenance to predictive or condition based maintenance. This requires the assessment of equipment condition by frequent testing and inspection; a requirement that is incompatible with cost reduction. To overcome this dilemma, industry trends are toward condition monitoring, whereby the health of apparatus is monitored continuously. This requires the installation of sensors hr transducers on power equipment and the data taken forwarded to an intelligent device for further processing. These devices then analyze the data and make evaluations based on parameter levels or trends, in an attempt to predict possible deterioration. This continuous monitoring allows the electric utility to schedule maintenance on an as needed basis. The industry has been faced with many challenges in sensor design. The measurement of physical, chemical and electrical parameters under extreme conditions of electric fields, magnetic fields, temperature, corrosion, etc. is extensive. This paper will give an overview of these challenges and the solutions adopted for apparatus such as power transformers, circuit breakers, boilers, cables, batteries, and rotating machinery.

  16. Industrial Health—Meeting the Challenge*

    PubMed Central

    Meiklejohn, A.

    1959-01-01

    are recognized as the growing points of the challenge to health by the Industrial Revolution. The means whereby the challenge was met are discussed. Towards the end of the nineteenth century scientists increasingly concentrated their studies on the elements. This culminated in the isolation of the atom. During the last 10 years atomic power has become a reality and the foundation of the second Industrial Revolution. While the potential hazards of ionizing radiations had long been known and proved at Hiroshima, the inherent dangers for the general population only became impressed on the public mind by a breakdown at the Windscale No. 1 plutonium pile on October 10, 1957. Radio-active iodine escaped, contaminating the atmosphere as far afield as western Europe. A committee under the chairmanship of Sir Alexander Fleck was appointed to investigate the cause of the accident and its consequences and to make recommendations. The report, which laid special emphasis on safety and health, was published early in 1958. So by analogy, Windscale, Fleck, and atomic power are identified as the growing points of the challenge of the Second Industrial Revolution. How this challenge is to be met by doctors is discussed. It is submitted that the urgent need is to formulate now a basic philosophy for future development of industrial medicine. Continuation of the old order will not suffice: ideas must again become revolutionary. The responsibility for leadership rests on the Industrial Health Advisory Committee established in 1955 under the chairmanship of the Minister of Labour and National Service. PMID:13618514

  17. Conducting a paediatric multi-centre RCT with an industry partner: challenges and lessons learned.

    PubMed

    Maskell, Jessica; Newcombe, Peter; Martin, Graham; Kimble, Roy

    2012-11-01

    There are many benefits of multi-centred research including large sample sizes, statistical power, timely recruitment and generalisability of results. However, there are numerous considerations when planning and implementing a multi-centred study. This article reviews the challenges and successes of planning and implementing a multi-centred prospective randomised control trial involving an industry partner. The research investigated the impact on psychosocial functioning of a cosmetic camouflage product for children and adolescents with burn scarring. Multi-centred studies commonly have many stakeholders. Within this study, six Australian and New Zealand paediatric burn units as well as an industry partner were involved. The inclusion of an industry partner added complexities as they brought different priorities and expectations to the research. Further, multifaceted ethical and institutional approval processes needed to be negotiated. The challenges, successes, lessons learned and recommendations from this study regarding Australian and New Zealand ethics and research governance approval processes, collaboration with industry partners and the management of differing expectations will be outlined. Recommendations for future multi-centred research with industry partners include provision of regular written reports for the industry partner; continual monitoring and prompt resolution of concerns; basic research practices education for industry partners; minimisation of industry partner contact with participants; clear roles and responsibilities of all stakeholders and utilisation of single ethical review if available. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  18. Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff

    The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cientmore » industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.« less

  19. Foundations for Excellence in the Chemical Process Industries. Voluntary Industry Standards for Chemical Process Industries Technical Workers.

    ERIC Educational Resources Information Center

    Hofstader, Robert; Chapman, Kenneth

    This document discusses the Voluntary Industry Standards for Chemical Process Industries Technical Workers Project and issues of relevance to the education and employment of chemical laboratory technicians (CLTs) and process technicians (PTs). Section 1 consists of the following background information: overview of the chemical process industries,…

  20. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  1. Public relations and the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Coates, T. Donna

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the "enemy". Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. Clearly it is a challenge we cannot afford to ignore.

  2. Nanotechnology in the Chemical Industry - Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Qiu Zhao, Qian; Boxman, Arthur; Chowdhry, Uma

    2003-12-01

    The traditional chemical industry has become a largely mature industry with many commodity products based on established technologies. Therefore, new product and market opportunities will more likely come from speciality chemicals, and from new functionalities obtained from new processing technologies as well as new microstructure control methodologies. It is a well-known fact that in addition to its molecular structure, the microstructure of a material is key to determining its properties. Controlling structures at the micro- and nano-levels is therefore essential to new discoveries. For this article, we define nanotechnology as the controlled manipulation of nanomaterials with at least one dimension less than 100nm. Nanotechnology is emerging as one of the principal areas of investigation that is integrating chemistry and materials science, and in some cases integrating these with biology to create new and yet undiscovered properties that can be exploited to gain new market opportunities. In this article market opportunities for nanotechnology will be presented from an industrial perspective covering electronic, biomedical, performance materials, and consumer products. Manufacturing technology challenges will be identified, including operations ranging from particle formation, coating, dispersion, to characterization, modeling, and simulation. Finally, a nanotechnology innovation roadmap is proposed wherein the interplay between the development of nanoscale building blocks, product design, process design, and value chain integration is identified. A suggestion is made for an R&D model combining market pull and technology push as a way to quickly exploit the advantages in nanotechnology and translate these into customer benefits.

  3. The Eighth Industrial Fluids Properties Simulation Challenge

    PubMed Central

    Schultz, Nathan E.; Ahmad, Riaz; Brennan, John K.; Frankel, Kevin A.; Moore, Jonathan D.; Moore, Joshua D.; Mountain, Raymond D.; Ross, Richard B.; Thommes, Matthias; Shen, Vincent K.; Siderius, Daniel W.; Smith, Kenneth D.

    2016-01-01

    The goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. In particular, the eighth challenge focused on the adsorption of perfluorohexane in the activated carbon BAM-109. Entrants were challenged to predict the adsorption in the carbon at 273 K and relative pressures of 0.1, 0.3, and 0.6. The predictions were judged by comparison to a benchmark set of experimentally determined values. Overall good agreement and consistency were found between the predictions of most entrants. PMID:27840542

  4. Industrial process surveillance system

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  5. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  6. Using smart materials to solve new challenges in the automotive industry

    NASA Astrophysics Data System (ADS)

    Gath, Kerrie K.; Maranville, Clay; Tardiff, Janice

    2018-03-01

    Ford has an extensive history of developing and utilizing smart and innovative materials in its vehicles. In this paper, we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart material have had technical challenges that limit their use. We also look at how smart materials such as gecko inspired adhesion is providing opportunities during the vehicle assembly process by improving manufacturing quality, environmental sustainability, and worker safety. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations are migrating toward a seamless and adaptive experience leading to new expectations for an enhanced journey. Another area where smart materials are influencing change is interior and exterior design including smart textiles, photochromatic dyes, and thermochromatic materials. The key to advancing smart materials in automotive industry is to capitalize on the smaller niche applications where there will be an advantage over traditional methods. Ford has an extensive history of developing and utilizing smart and innovative materials. Magnetorheological fluids, thermoelectric materials, piezoelectric actuators, and shape memory alloys are all in production. In this paper we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart materials have had technical challenges that limit their use. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations may require a seamless and adaptive experience for users having various

  7. Industrial process surveillance system

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  8. Emerging Food Processing Technologies and Factors Impacting their Industrial Adoption.

    PubMed

    Priyadarshini, Anushree; Rajauria, Gaurav; O'Donnell, Colm P; Tiwari, Brijesh K

    2018-06-04

    Innovative food processing technologies have been widely investigated in food processing research in recent years. These technologies offer key advantages for advancing the preservation and quality of conventional foods, for combatting the growing challenges posed by globalization, increased competitive pressures and diverse consumer demands. However, there is a need to increase the level of adoption of novel technologies to ensure the potential benefits of these technologies are exploited more by the food industry. This review outlines emerging thermal and non-thermal food processing technologies with regard to their mechanisms, applications and commercial aspects. The level of adoption of novel food processing technologies by the food industry is outlined and the factors that impact their industrial adoption are discussed. At an industry level, the technological capabilities of individual companies, their size, market share as well as their absorptive capacity impact adoption of a novel technology. Characteristics of the technology itself such as costs involved in its development and commercialization, associated risks and relative advantage, its level of complexity and compatibility influence the technology's adoption. The review concludes that a deep understanding of the development and application of a technology along with the factors influencing its acceptance are critical for its commercial adoption.

  9. Challenges and Strategies in Thermal Processing of Amorphous Solid Dispersions: A Review.

    PubMed

    LaFountaine, Justin S; McGinity, James W; Williams, Robert O

    2016-02-01

    Thermal processing of amorphous solid dispersions continues to gain interest in the pharmaceutical industry, as evident by several recently approved commercial products. Still, a number of pharmaceutical polymer carriers exhibit thermal or viscoelastic limitations in thermal processing, especially at smaller scales. Additionally, active pharmaceutical ingredients with high melting points and/or that are thermally labile present their own specific challenges. This review will outline a number of formulation and process-driven strategies to enable thermal processing of challenging compositions. These include the use of traditional plasticizers and surfactants, temporary plasticizers utilizing sub- or supercritical carbon dioxide, designer polymers tailored for hot-melt extrusion processing, and KinetiSol® Dispersing technology. Recent case studies of each strategy will be described along with potential benefits and limitations.

  10. Workshop proceedings: challenges and opportunities in evaluating protein allergenicity across biotechnology industries.

    PubMed

    Stagg, Nicola J; Ghantous, Hanan N; Ladics, Gregory S; House, Robert V; Gendel, Steven M; Hastings, Kenneth L

    2013-01-01

    A workshop entitled "Challenges and Opportunities in Evaluating Protein Allergenicity across Biotechnology Industries" was held at the 51st Annual Meeting of the Society of Toxicology (SOT) in San Francisco, California. The workshop was sponsored by the Biotechnology Specialty Section of SOT and was designed to present the science-based approaches used in biotechnology industries to evaluate and regulate protein allergenicity. A panel of experts from industry and government highlighted the allergenicity testing requirements and research in the agricultural, pharmaceutical/biopharma, and vaccine biotechnology industries and addressed challenges and opportunities for advancing the science of protein allergenicity. The main learning from the workshop was that immunoglobulin E-mediated allergenicity of biotechnology-derived products is difficult to assess without human data. The approaches currently being used to evaluate potential for allergenicity across biotechnology industries are very different and range from bioinformatics, in vitro serology, in vivo animal testing, in vitro and in vivo functional assays, and "biosimilar" assessments (ie, biotherapeutic equivalents to innovator products). The challenge remains with regard to the different or lack of regulatory requirements for allergenicity testing across industries, but the novel approaches being used with bioinformatics and biosimilars may lead to opportunities in the future to collaborate across biotechnology industries.

  11. Learning process in fashion design students: link with industry and social media

    NASA Astrophysics Data System (ADS)

    Marques, A. D.; Moschatou, A.

    2017-10-01

    Portugal is today an important player in the European fashion industry. The Portuguese footwear industry, “low-tech”, mature and traditional, dominated by SMEs, is also a success case in the Portuguese economy. With own brands, own collections and own products, the quality, innovation and international image of the Portuguese clothes, accessories and shoes is increasing year by year in the most sophisticated markets worldwide. The new information economy and social media presents a new set of opportunities and threats to established companies, new challenges and new markets, and demanding to all the companies to rethink their strategy and to prepare new business plans. Portuguese companies in the fashion industry are starting to perceive that the brand’s transition to social media means a transformation of the customer relationship, wherein social media and the community members is an ally of the brand and not an “audience”. Also the universities are preparing new professionals to the fashion industry and the learning process has to be managed according these new challenges. And the University of Minho has the Bachelor in Fashion Design and Marketing, an excellent course to prepare new skills to these fashion companies: textile, clothing and footwear industries.

  12. Academia-Industry-Government Linkages in Tanzania: Trends, Challenges and Prospects

    ERIC Educational Resources Information Center

    Mpehongwa, Gasper

    2013-01-01

    This paper analyzed trends, challenges and prospects of academia-industry-government linkages in Tanzania. Using case study design, and documentary review to gather the required data, the study sought to answer three research questions: (1) what are the trends of academia-industry-government linkages in Tanzania?, (2) what are the challenges…

  13. Challenging Ties between State and Tobacco Industry: Advocacy Lessons from India

    PubMed Central

    Bhojani, Upendra; Venkataraman, Vidya; Manganawar, Bheemaray

    2013-01-01

    Background: Globally, tobacco use is a major public health concern given its huge morbidity and mortality burden that is inequitably high in low- and middle-income countries. The World Health Organization has suggested banning the advertisement, promotion and sponsorship of tobacco. However, governments in some countries, including India, are either directly engaged in tobacco industry operations or have a mandate to promote tobacco industry development. This paper analyses a short-term advocacy campaign that challenged the state-tobacco industry ties to draw lessons for effective public health advocacy. Method: This paper uses a case study method to analyze advocacy efforts in India to thwart the state-tobacco industry partnership: the Indian government’s sponsorship and support to a global tobacco industry event. The paper explores multiple strategies employed in the five-month advocacy campaign (May to October 2010) to challenge this state-industry tie. In doing so, we describe the challenges faced and the lessons learnt for effective advocacy. Results: Government withdrew participation and financial sponsorship from the tobacco industry event. Use of multiple strategies including engaging all concerned government agencies from the beginning, strategic use of media, presence and mobilization of civil society, and use of legal tools to gain information and judicial action, were complementary in bringing desired outcomes. Conclusion: Use of multiple and complementary advocacy strategies could lead to positive outcomes in a short-time campaign. The Framework Convention on Tobacco Control could form an important advocacy tool, especially in countries that have ratified it, to advocate for improvements in national tobacco control regulations. PMID:24688958

  14. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    PubMed

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Railroad industry modal profile: an outline of the railroad industry workforce trends, challenges, and opportunities - update : final report.

    DOT National Transportation Integrated Search

    2016-04-01

    In 2011, the Federal Railroad Administration (FRA) Office of Research, Development, and Technology (RD&T) published the : first edition of the Railroad Industry Modal Profile: An Outline of the Railroad Industry Workforce Trends, Challenges, and :...

  16. EDITORIAL: Industrial Process Tomography

    NASA Astrophysics Data System (ADS)

    Anton Johansen, Geir; Wang, Mi

    2008-09-01

    There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen

  17. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  18. Industry and government perspectives on First Nations' participation in the British Columbia environmental assessment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Annie L., E-mail: annie@unbc.ca; Skelton, Norm W.

    2011-04-15

    Research was conducted with West Moberly First Nations, Halfway First Nation and the Treaty 8 Tribal Association (located in northeastern British Columbia, Canada) on effective engagement in environmental assessment processes. As part of this research, we examined the perspectives of a subset of resource industry proponents and their consultants, as well as staff from the British Columbia Environmental Assessment Office on their experiences with the requirement to consult with Canada's indigenous peoples. Research into the perspectives of industry proponents and consultants is almost non-existent, yet industry and governments are key participants within environmental assessments. This research found that industry proponentsmore » were disenfranchised by the British Columbia environmental assessment process and its mechanisms for consulting with First Nations, and that they sought changes to that process. Their concerns and their implications are documented and some recommendations are offered for addressing those concerns. Understanding industry and government views on First Nations engagement could suggest not only potential improvements in EA processes that facilitate all parties but provide common grounds for mutually engaging to resolve challenges.« less

  19. Big Data Analytics Solutions: The Implementation Challenges in the Financial Services Industry

    ERIC Educational Resources Information Center

    Ojo, Michael O.

    2016-01-01

    The challenges of Big Data (BD) and Big Data Analytics (BDA) have attracted disproportionately less attention than the overwhelmingly espoused benefits and game-changing promises. While many studies have examined BD challenges across multiple industry verticals, very few have focused on the challenges of implementing BDA solutions. Fewer of these…

  20. Process analytical technology in the pharmaceutical industry: a toolkit for continuous improvement.

    PubMed

    Scott, Bradley; Wilcock, Anne

    2006-01-01

    Process analytical technology (PAT) refers to a series of tools used to ensure that quality is built into products while at the same time improving the understanding of processes, increasing efficiency, and decreasing costs. It has not been widely adopted by the pharmaceutical industry. As the setting for this paper, the current pharmaceutical manufacturing paradigm and PAT guidance to date are discussed prior to the review of PAT principles and tools, benefits, and challenges. The PAT toolkit contains process analyzers, multivariate analysis tools, process control tools, and continuous improvement/knowledge management/information technology systems. The integration and implementation of these tools is complex, and has resulted in uncertainty with respect to both regulation and validation. The paucity of staff knowledgeable in this area may complicate adoption. Studies to quantitate the benefits resulting from the adoption of PAT within the pharmaceutical industry would be a valuable addition to the qualitative studies that are currently available.

  1. Litigation in Argentina: challenging the tobacco industry.

    PubMed

    Flores, M L; Barnoya, J; Mejia, R; Alderete, E; Pérez-Stable, E J

    2006-04-01

    To evaluate the processes and outcomes of tobacco litigation in Argentina and to analyse the strategies of the tobacco industry to oppose litigation using tobacco industry documents. A systematic search of tobacco industry documents on the internet dating from 1978 to 2002. Law library searches using Argentinean official and unofficial reports systems were combined with computerised online searches. There have been at least 15 failed litigation cases in Argentina and the tobacco industry presented a concerted defence in every claim regardless of cost. We categorised 11 cases as product liability and nicotine addiction, two as health care reimbursement, and two as criminal law and secondhand smoke. Industry strategies included hiring legal consultants from prestigious international and Argentinean law firms and developing litigation prevention programmes. Industry monitored legal academic meetings, controlled the development of new product liability legislation, obtained favourable opinions from experts, and closely observed the development of litigation in Argentina. The strategies used by the industry have been successful in preventing recovery for tobacco injuries through litigation. Argentinean health advocates and lawyers need to be aware of the roles and strategies of the tobacco industry in order to develop effective litigation in Argentina.

  2. Success in challenging time: Important lessons learned from the US beekeeping industry

    USDA-ARS?s Scientific Manuscript database

    The United States plays a leadership role in the global beekeeping and honey industries. This article summarizes the roles of honey bees in agriculture and the key challenges facing the US beekeeping industry as well as innovative solutions to existing problems. The article also provides a review ...

  3. Chemical process research and development in the 21st century: challenges, strategies, and solutions from a pharmaceutical industry perspective.

    PubMed

    Federsel, Hans-Jürgen

    2009-05-19

    In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a

  4. Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry.

    PubMed

    von Stosch, Moritz; Davy, Steven; Francois, Kjell; Galvanauskas, Vytautas; Hamelink, Jan-Martijn; Luebbert, Andreas; Mayer, Martin; Oliveira, Rui; O'Kennedy, Ronan; Rice, Paul; Glassey, Jarka

    2014-06-01

    This report highlights the drivers, challenges, and enablers of the hybrid modeling applications in biopharmaceutical industry. It is a summary of an expert panel discussion of European academics and industrialists with relevant scientific and engineering backgrounds. Hybrid modeling is viewed in its broader sense, namely as the integration of different knowledge sources in form of parametric and nonparametric models into a hybrid semi-parametric model, for instance the integration of fundamental and data-driven models. A brief description of the current state-of-the-art and industrial uptake of the methodology is provided. The report concludes with a number of recommendations to facilitate further developments and a wider industrial application of this modeling approach. These recommendations are limited to further exploiting the benefits of this methodology within process analytical technology (PAT) applications in biopharmaceutical industry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Litigation in Argentina: challenging the tobacco industry

    PubMed Central

    Flores, M L; Barnoya, J; Mejia, R; Alderete, E; Pérez‐Stable, E J

    2006-01-01

    Objective To evaluate the processes and outcomes of tobacco litigation in Argentina and to analyse the strategies of the tobacco industry to oppose litigation using tobacco industry documents. Methods A systematic search of tobacco industry documents on the internet dating from 1978 to 2002. Law library searches using Argentinean official and unofficial reports systems were combined with computerised online searches. Results There have been at least 15 failed litigation cases in Argentina and the tobacco industry presented a concerted defence in every claim regardless of cost. We categorised 11 cases as product liability and nicotine addiction, two as health care reimbursement, and two as criminal law and secondhand smoke. Industry strategies included hiring legal consultants from prestigious international and Argentinean law firms and developing litigation prevention programmes. Industry monitored legal academic meetings, controlled the development of new product liability legislation, obtained favourable opinions from experts, and closely observed the development of litigation in Argentina. Conclusion The strategies used by the industry have been successful in preventing recovery for tobacco injuries through litigation. Argentinean health advocates and lawyers need to be aware of the roles and strategies of the tobacco industry in order to develop effective litigation in Argentina. PMID:16565455

  6. Bridging the Gap: The Challenges of Employing Entrepreneurial Processes within University Settings

    ERIC Educational Resources Information Center

    Wardale, Dorothy; Lord, Linley

    2016-01-01

    In Australia and elsewhere, universities face increasing pressure to improve research output and quality, particularly through partnerships with industry. This raises interesting challenges for academic staff with considerable industry experience who are "new" to academe. Some of these challenges were faced by the authors who have been…

  7. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process.

    PubMed

    Jin, Huaiping; Chen, Xiangguang; Yang, Jianwen; Wu, Lei; Wang, Li

    2014-11-01

    The lack of accurate process models and reliable online sensors for substrate measurements poses significant challenges for controlling substrate feeding accurately, automatically and optimally in fed-batch fermentation industries. It is still a common practice to regulate the feeding rate based upon manual operations. To address this issue, a hybrid intelligent control method is proposed to enable automatic substrate feeding. The resulting control system consists of three modules: a presetting module for providing initial set-points; a predictive module for estimating substrate concentration online based on a new time interval-varying soft sensing algorithm; and a feedback compensator using expert rules. The effectiveness of the proposed approach is demonstrated through its successful applications to the industrial fed-batch chlortetracycline fermentation process. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Brilliant gamma beams for industrial applications: new opportunities, new challenges

    NASA Astrophysics Data System (ADS)

    Iancu, V.; Suliman, G.; Turturica, G. V.; Iovea, M.; Daito, I.; Ohgaki, H.; Matei, C.; Ur, C. A.; Balabanski, D. L.

    2016-10-01

    The Nuclear Physics oriented pillar of the pan-European Extreme Light Infrastructure (ELI-NP) will host an ultra-bright, energy tunable, and quasi-monochromatic gamma-ray beam system in the range of 0.2-19.5 MeV produced by laser-Compton backscattering technique. The applied research program envisioned at ELI-NP targets to use nuclear resonance fluorescence (NRF) and computed tomography to provide new opportunities for industry and society. High sensitivity NRF-based investigations can be successfully applied to safeguard applications and management of radioactive wastes as well as to uncharted fields like cultural heritage and medical imaging. Gamma-ray radioscopy and computed tomography performed at ELI-NP has the potential to achieve high resolution in industrial-sized objects provided the detection challenges introduced by the unique characteristics of the gamma beam are overcome. Here we discuss the foreseen industrial applications that will benefit from the high quality and unique characteristics of ELI-NP gamma beam and the challenges they present. We present the experimental setups proposed to be implemented for this goal, discuss their performance based on analytical calculations and numerical Monte-Carlo simulations, and comment about constrains imposed by the limitation of current scintillator detectors. Several gamma-beam monitoring devices based on scintillator detectors will also be discussed.

  9. Extraterrestrial materials processing and construction. [space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.; Mckenzie, J. D.

    1980-01-01

    Three different chemical processing schemes were identified for separating lunar soils into the major oxides and elements. Feedstock production for space industry; an HF acid leach process; electrorefining processes for lunar free metal and metal derived from chemical processing of lunar soils; production and use of silanes and spectrally selective materials; glass, ceramics, and electrochemistry workshops; and an econometric model of bootstrapping space industry are discussed.

  10. The World Cancer Research Fund report 2007: A challenge for the meat processing industry.

    PubMed

    Demeyer, Daniël; Honikel, Karl; De Smet, Stefaan

    2008-12-01

    One of the 10 universal guidelines for healthy nutrition in a report of the World Cancer Research Fund released at the end of 2007 is to "limit intake of red meat and avoid processed meat", as a result of the "convincing evidence" for an association with an increased risk of colorectal cancer development. In the present paper, the scientific evidence for the association between processed meats intake and colorectal cancer development is explored and the most probable hypothesis on the mechanism underlying this relationship formulated. It seems that the present state of knowledge is not well understood but relates to a combination of haem iron, oxidative stress, formation of N-nitroso compounds and related residues in the digestive tract as the causal factors. Although criticisms of the inaccurate definition of processed meats and the insufficient accounting for the large variability in composition of meat products have been expressed, it is clear that the report urges proper action by the meat and nutrition research community and the meat industry. Research items that in our view should be addressed are discussed. They include: (1) evaluating the health risks associated with processed meats intake within the context of the supply of beneficial nutrients and other nutrition associated health risks; (2) definition of the role of nitrites and nitrates in meat processing; (3) investigating the role of red and processed meats on the endogenous formation of N-nitroso compounds in the digestive tract; and (4) developing improved processed meats using new ingredients.

  11. System for monitoring an industrial or biological process

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  12. System for monitoring an industrial or biological process

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  13. Critical challenges in ERP implementation: A qualitative case study in the Canadian oil and gas industry

    NASA Astrophysics Data System (ADS)

    Menon, Sreekumar A.

    This exploratory qualitative single-case study examines critical challenges encountered during ERP implementation based on individual perspectives in four project roles: senior leaders, project managers, project team members, and business users, all specifically in Canadian oil and gas industry. Data was collected by interviewing participants belonging to these categories, and by analyzing project documentation about ERP implementation. The organization for the case study was a leading multinational oil and gas company having a substantial presence in the energy sector in Canada. The study results were aligned with the six management questions regarding critical challenges in ERP: (a) circumstances to implement ERP, (b) benefits and process improvements achieved, (c) best practices implemented, (d) critical challenges encountered, (e) strategies and mitigating actions used, and (f) recommendations to improve future ERP implementations. The study results highlight six key findings. First, the study provided valid circumstances for implementing ERP systems. Second, the study underscored the importance of benefits and process improvements in ERP implementation. Third, the study highlighted that adoption of best practices is crucial for ERP Implementation. Fourth, the study found that critical challenges are encountered in ERP Implementation and are significant during ERP implementation. Fifth, the study found that strategies and mitigating actions can overcome challenges in ERP implementation. Finally, the study provided ten major recommendations on how to improve future ERP implementations.

  14. Expert systems in the process industries

    NASA Technical Reports Server (NTRS)

    Stanley, G. M.

    1992-01-01

    This paper gives an overview of industrial applications of real-time knowledge based expert systems (KBES's) in the process industries. After a brief overview of the features of a KBES useful in process applications, the general roles of KBES's are covered. A particular focus is diagnostic applications, one of the major applications areas. Many applications are seen as an expansion of supervisory control. The lessons learned from numerous online applications are summarized.

  15. Opportunities and challenges for collaborative funding with industry

    NASA Astrophysics Data System (ADS)

    Thompson, J. F.

    2014-12-01

    The discovery and extraction of natural resources represents major challenges on both technical and socio-political fronts. Societal demand for commodities continues to increase as population, infrastructure, energy demands and standards of living increase. In parallel, society expects more efficient, cleaner and more sustainable practices. There are therefore multiple incentives for industry to invest in research and innovation to meet these fundamental goals. Natural resource companies fund research internally and externally but the focus, approach and level of funding varies considerably among sectors, companies and disciplines. The wide variety of philosophies creates difficulties for those who seek to work with industry. Most funding arrangement are built through extensive engagement, opportunities to leverage funds particularly in higher risk or less well defined areas (e.g., geoscience), and the attraction of meeting potential new high quality employees. Barriers to funding include unrealistic perceptions of confidentiality issues in industry, bureaucracy and unrealistic IP constraints in academia, and onerous overhead charges by universities that vastly exceed those charged by consulting and contract researchers. Academics and students can benefit immensely from productive research arrangements with industry, but understanding realistic expectations on both sides is critical. Although funding from industry may introduce constraints, some companies are willing to take a virtual hands-off approach in support of quality science. Selecting the appropriate researchers and methodology is important; it takes time for students to become effective and some problems are simply not suited to graduate research, or even academia. Some Governments play an enormous role in facilitating collaborative research with industry while others struggle to differentiate programs that encourage investment from those that unfairly subsidize industry. The traditional Government role

  16. Challenges Towards Employability: Higher Education's Engagement to Industrial Needs in Japan

    ERIC Educational Resources Information Center

    Ito, Hiroshi

    2014-01-01

    This paper examines the challenges and strategies of twenty-three Japanese universities working towards the improvement of employability skills. These universities have been selected for the national project "Improving Higher Education for Meeting Industrial Needs" funded by Japan's Ministry of Education, Culture, Sports, Science and…

  17. Building Information Modelling: Challenges and Barriers in Implement of BIM for Interior Design Industry in Malaysia

    NASA Astrophysics Data System (ADS)

    Hamid, A. B. Abd; Taib, M. Z. Mohd; Razak, A. H. N. Abdul; Embi, M. R.

    2018-04-01

    Building Information Modelling (BIM) is an innovative approach that has developed crossways the global in architecture, engineering and construction (AEC) industry. The construction industry of Malaysia has undergone a rapid development and dynamic technology adoption in advance and methods between the players industry and stakeholders. Consequently, limited technologies and devices have not been successful as it should have been. This study will be emphasizing scenarios of challenges and barriers in adopting BIM in interior design industry in Malaysia. The study was emphasizing the challenges and barriers in BIM usage from the designer’s perspective. The data are collected through the questionnaires as to identifying the barriers, knowledge, readiness and awareness and distributed to interior design firms were selected randomly. The finding of this research is to examine the barriers and causes of variables BIM usage for interior design industry in Malaysia. The outcome of this study is to identify the constraint of adoption BIM in interior design industry compare to others players in same industry.

  18. Interface design in the process industries

    NASA Technical Reports Server (NTRS)

    Beaverstock, M. C.; Stassen, H. G.; Williamson, R. A.

    1977-01-01

    Every operator runs his plant in accord with his own mental model of the process. In this sense, one characteristic of an ideal man-machine interface is that it be in harmony with that model. With this theme in mind, the paper first reviews the functions of the process operator and compares them with human operators involved in control situations previously studied outside the industrial environment (pilots, air traffic controllers, helmsmen, etc.). A brief history of the operator interface in the process industry and the traditional methodology employed in its design is then presented. Finally, a much more fundamental approach utilizing a model definition of the human operator's behavior is presented.

  19. Challenges in Liquid-Phase Exfoliation, Processing, and Assembly of Pristine Graphene.

    PubMed

    Parviz, Dorsa; Irin, Fahmida; Shah, Smit A; Das, Sriya; Sweeney, Charles B; Green, Micah J

    2016-10-01

    Recent developments in the exfoliation, dispersion, and processing of pristine graphene (i.e., non-oxidized graphene) are described. General metrics are outlined that can be used to assess the quality and processability of various "graphene" products, as well as metrics that determine the potential for industrial scale-up. The pristine graphene production process is categorized from a chemical engineering point of view with three key steps: i) pretreatment, ii) exfoliation, and iii) separation. How pristine graphene colloidal stability is distinct from the exfoliation step and is dependent upon graphene interactions with solvents and dispersants are extensively reviewed. Finally, the challenges and opportunities of using pristine graphene as nanofillers in polymer composites, as well as as building blocks for macrostructure assemblies are summarized in the context of large-scale production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Process evaluation of knowledge transfer across industries: Leveraging Coca-Cola's supply chain expertise for medicine availability in Tanzania.

    PubMed

    Linnander, Erika; Yuan, Christina T; Ahmed, Shirin; Cherlin, Emily; Talbert-Slagle, Kristina; Curry, Leslie A

    2017-01-01

    Persistent gaps in the availability of essential medicines have slowed the achievement of global health targets. Despite the supply chain knowledge and expertise that ministries of health might glean from other industries, limited empirical research has examined the process of knowledge transfer from other industries into global public health. We examined a partnership designed to improve the availability of medical supplies in Tanzania by transferring knowledge from The Coca-Cola system to Tanzania's Medical Stores Department (MSD). We conducted a process evaluation including in-depth interviews with 70 participants between July 2011 and May 2014, corresponding to each phase of the partnership, with focus on challenges and strategies to address them, as well as benefits perceived by partners. Partners faced challenges in (1) identifying relevant knowledge to transfer, (2) translating operational solutions from Coca-Cola to MSD, and (3) maintaining momentum between project phases. Strategies to respond to these challenges emerged through real-time problem solving and included (1) leveraging the receptivity of MSD leadership, (2) engaging a boundary spanner to identify knowledge to transfer, (3) promoting local recognition of commonalities across industries, (4) engaging external technical experts to manage translation activities, (5) developing tools with visible benefits for MSD, (6) investing in local relationships, and (7) providing time and space for the partnership model to evolve. Benefits of the partnership perceived by MSD staff included enhanced collaboration and communication, more proactive orientations in managing operations, and greater attention to performance management. Benefits perceived by Coca-Cola staff included strengthened knowledge transfer capability and enhanced job satisfaction. Linking theoretical constructs with practical experiences from the field, we highlight the challenges, emergent strategies, and perceived benefits of a partnership

  1. The industrial processing of unidirectional fiber prepregs

    NASA Technical Reports Server (NTRS)

    Laird, B.

    1981-01-01

    Progress made in the industrial processing of preimpregnated composites with unidirectional fibers is discussed, with particular emphasis on applications within the aerospace industry. Selection of industrial materials is considered. Attention is given to the conditions justifying the use of composites and the properties required of industrial prepregs. The hardening cycle is examined for the cases of nonmodified and polymer modified resins, with attention given to the stabilization of flow, the necessary changes of state, viscosity control, and the elimination of porosity. The tooling necessary for the fabrication of a laminated plate is illustrated, and the influence of fabrication and prepreg properties on the mechanical characteristics of a laminate are indicated. Finally, the types of prepregs available and the processing procedures necessary for them are summarized.

  2. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges.

    PubMed

    Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel

    2016-02-06

    The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.

  3. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges

    PubMed Central

    Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel

    2016-01-01

    The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well. PMID:26861345

  4. The international aerospace industry - New challenges and opportunities for translation suppliers

    NASA Technical Reports Server (NTRS)

    Rowe, T.

    1986-01-01

    Attention is given to the recent trend toward internationalization in the aerospace industry and its effects on commercial and governmental translation programs. The aerospace industry, once dominated by organizations from a small number of countries, is now widely international in scope. In effect, there has been in increase in the demand for translations from German, Japanese, Chinese, French and Spanish source material while that for translation from Russian source material has remained constant. The impact of the Challenger disaster on aerospace translation programs is discussed as well as the impact of international participation in Space Station research.

  5. A Knowledge Management Model for Firms in the Financial Services Industry

    ERIC Educational Resources Information Center

    Held, Carsten; Duncan, Glen; Yanamandram, Venkat

    2013-01-01

    The financial services industry faces many demanding challenges. Firms within this industry are predominantly knowledge-based, as are most of the industry's products, processes and services. The application of knowledge management represents a clear opportunity for financial services firms to confront challenges. However, no industry specific…

  6. Industrial uses of radiation processing in Belgium

    NASA Astrophysics Data System (ADS)

    Lacroix, J. P.

    Since 1979, the Irradiation Department of IRE, in conjunction with universities and the industrial sector, has set up an extensive programme of research, development and promotion of the radiation process applied to cross-linking and polymerization of plastics, to waste treatment and to food preservation. Starting from scratch, it is thanks to our research in this last-mentioned field that we have been able to develop and to increase the application of the irradiation process within the food industry. At present, two irradiation facilities of a total design capacity of 2.5 10 6 Ci irradiate 24 hours per day mostly for the agro-industry.

  7. Biorefinery integration of microalgae production into cassava processing industry: Potential and perspectives.

    PubMed

    de Carvalho, Júlio Cesar; Borghetti, Ivo Alberto; Cartas, Liliana Carrilo; Woiciechowski, Adenise Lorenci; Soccol, Vanete Thomaz; Soccol, Carlos Ricardo

    2018-01-01

    Cassava, the 5th most important staple crop, generates at least 600L of wastewater per ton of processed root. This residue, cassava processing wastewater (CPW) has a high chemical oxygen demand, that can reach 56 g/L, and has also high concentrations of several mineral nutrients. The cultivation of microalgae such as Chlorella, Spirulina and wild strains was evaluated in the last years in raw, minimally processed and partially digested CPW. Concentrations of 2-4 g/L of these microalgae, comparable to those obtained in synthetic media, could be reached. The BOD of the residue was reduced by up to 92%. This process can be integrated into cassava processing industries, if challenges such as the toxicity of the concentrated residue, bacterial contamination, and the isolation of robust strains are addressed. Because CPW carries about 11% of the crop energy, integrating biogas production and microalgal cultivation into the cassava processing chain is promising. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Process evaluation of knowledge transfer across industries: Leveraging Coca-Cola’s supply chain expertise for medicine availability in Tanzania

    PubMed Central

    Yuan, Christina T.; Ahmed, Shirin; Cherlin, Emily; Talbert-Slagle, Kristina; Curry, Leslie A.

    2017-01-01

    Persistent gaps in the availability of essential medicines have slowed the achievement of global health targets. Despite the supply chain knowledge and expertise that ministries of health might glean from other industries, limited empirical research has examined the process of knowledge transfer from other industries into global public health. We examined a partnership designed to improve the availability of medical supplies in Tanzania by transferring knowledge from The Coca-Cola system to Tanzania’s Medical Stores Department (MSD). We conducted a process evaluation including in-depth interviews with 70 participants between July 2011 and May 2014, corresponding to each phase of the partnership, with focus on challenges and strategies to address them, as well as benefits perceived by partners. Partners faced challenges in (1) identifying relevant knowledge to transfer, (2) translating operational solutions from Coca-Cola to MSD, and (3) maintaining momentum between project phases. Strategies to respond to these challenges emerged through real-time problem solving and included (1) leveraging the receptivity of MSD leadership, (2) engaging a boundary spanner to identify knowledge to transfer, (3) promoting local recognition of commonalities across industries, (4) engaging external technical experts to manage translation activities, (5) developing tools with visible benefits for MSD, (6) investing in local relationships, and (7) providing time and space for the partnership model to evolve. Benefits of the partnership perceived by MSD staff included enhanced collaboration and communication, more proactive orientations in managing operations, and greater attention to performance management. Benefits perceived by Coca-Cola staff included strengthened knowledge transfer capability and enhanced job satisfaction. Linking theoretical constructs with practical experiences from the field, we highlight the challenges, emergent strategies, and perceived benefits of a

  9. Efficiency analysis of wood processing industry in China during 2006-2015

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Yuan, Baolong; Li, Yanxuan

    2018-03-01

    The wood processing industry is an important industry which affects the national economy and social development. The data envelopment analysis model (DEA) is a quantitative evaluation method for studying industrial efficiency. In this paper, the wood processing industry of 8 provinces in southern China is taken as the study object, and the efficiency of each province in 2006 to 2015 was measured and calculated with the DEA method, and the efficiency changes, technological changes and Malmquist index were analyzed dynamically. The empirical results show that there is a widening gap in the efficiency of wood processing industry of the 8 provinces, and the technological progress has shown a lag in the promotion of wood processing industry. According to the research conclusion, along with the situation of domestic and foreign wood processing industry development, the government must introduce relevant policies to strengthen the construction of the wood processing industry technology innovation policy system and the industrial coordinated development system.

  10. Industrial Development and Challenges of Water Pollution in Coastal Areas: The Case of Surat, India

    NASA Astrophysics Data System (ADS)

    Bansal, Neeru

    2018-03-01

    Industrialisation plays an important role in the economic development of a country, however, pollution is the inevitable price paid for this development. Surat, a major industrial hub in western India, is located on the bank of the river Tapi and extends up to the Arabian Sea. The city is characterised by the presence of a number of creeks (known as ‘khadis’ in local language). This paper focusses on the industrial development in Surat and the challenges faced by the city due to water pollution. A constant deterioration in the quality of surface water resources has been observed due to discharge of treated or partially treated effluents from the industries. The problem of water pollution becomes critical due to increase in frequency of flooding, risks faced by the city due to climate change and the ineffective environmental governance. The paper provides insights into the challenges faced by the city and the learnings can lead to adoption of policy initiatives and other measures which can effectively address these challenges.

  11. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  12. Production process stability - core assumption of INDUSTRY 4.0 concept

    NASA Astrophysics Data System (ADS)

    Chromjakova, F.; Bobak, R.; Hrusecka, D.

    2017-06-01

    Today’s industrial enterprises are confronted by implementation of INDUSTRY 4.0 concept with basic problem - stabilised manufacturing and supporting processes. Through this phenomenon of stabilisation, they will achieve positive digital management of both processes and continuously throughput. There is required structural stability of horizontal (business) and vertical (digitized) manufacturing processes, supported through digitalised technologies of INDUSTRY 4.0 concept. Results presented in this paper based on the research results and survey realised in more industrial companies. Following will described basic model for structural process stabilisation in manufacturing environment.

  13. Identifying the Ethical Challenges Encountered by Information Technology Professionals Working within the Nevada Casino Industry

    ERIC Educational Resources Information Center

    Essig, Michael R.

    2014-01-01

    A thematic analysis qualitative study was used to identify the unethical challenges encountered by Information Technology (IT) professionals working within the Nevada casino industry. Fourteen current and former IT leaders working or who worked in the Nevada casino industry were interviewed. Using thematic analysis, nine themes regarding ethical…

  14. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  15. Readiness Assessment Towards Smart Manufacturing System for Tuna Processing Industry in Indonesia

    NASA Astrophysics Data System (ADS)

    Anggrahini, D.; Kurniati, N.; Karningsih, P. D.; Parenreng, S. M.; Syahroni, N.

    2018-04-01

    Marine product processing is one of the top priority clusters in the national development. Tuna, as a kind of deep ocean fishes, has the highest number of production that significantly increased throughout the years. Indonesia government encourages tuna processing industry, which are mostly dominated by small to medium enterprises, to grow continuously. Nowadays, manufacturers are facing substantial challenges in adopting modern system and technology that will lead a significant improvement through the internet of things (IoT). A smart factory transform integrated manufacturing process, in a high speed processing to respond customer needs. It has some positive impacts, such as increasing productivity, reducing set up time, shortening marketing and other support activities, hence the process is being more flexible and efficient. To implement smart manufacturing system, factories should know the readiness at any level of them, technology capability and strategy appropriateness. This exploratory study aims to identify the criterias, and develop an assessment tools to measure the level towards smart factory.

  16. Solar energy for industrial process heat

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  17. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  18. Development of an Industry Training Strategy for the Abattoir Industry in New South Wales.

    ERIC Educational Resources Information Center

    Clements, Andrew; Speers, Geoff

    The abattoir (meat processing) industry is facing a number of challenges in Australia, including introduction of technology, safety standards, restructuring, and development and implementation of an effective training culture. The training strategy will effectively target existing training resources for the industry and upskill employees in a…

  19. Challenges of Remote Sensing and Spatial Information Education and Technology Transfer in a Fast Developing Industry

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chen, L.-C.

    2014-04-01

    During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.

  20. Society of the plastic industry process emission initiatives

    NASA Technical Reports Server (NTRS)

    Mcdermott, Joseph

    1994-01-01

    At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.

  1. Course Development: Industrial or Social Process.

    ERIC Educational Resources Information Center

    Kaufman, David

    The development of course materials at the Open Learning Institute, British Columbia, Canada, is examined from two perspectives: as an industrial process and as a social process. The public institute provides distance education through paced home-study courses. The course team model used at the Institute is a system approach. Course development…

  2. Optimizing the availability of a buffered industrial process

    DOEpatents

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  3. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 30. THE ELECTRONIC COMPONENT MANUFACTURING INDUSTRY

    EPA Science Inventory

    This report is one of a series constituting the catalog of Industrial Process Profiles for Environmental Use. Each industry sector is addressed as a separate chapter of the study. The catalog was developed for the purpose of compiling relevant information concerning air, water, a...

  4. Offshore industry: management of health hazards in the upstream petroleum industry.

    PubMed

    Niven, Karen; McLeod, Ron

    2009-08-01

    Upstream oil and gas operations involve a range of activities, including exploration and drilling, conventional oil and gas production, extraction and processing of 'tar sands', heavy oil processing and pipeline operations. Firstly, to outline the nature of health risks in the offshore oil and gas industry to date. Secondly, to outline the commercial, technical and social challenges that could influence the future context of health management in the industry. Thirdly, to speculate how the health function within the industry needs to respond to these challenges. A review of the published literature was supplemented with industry subject matter and expert opinion. There was a relatively light peer-reviewed published literature base in an industry which is perceived as having changed little over three decades, so far as offshore health hazards for physical, chemical, biological hazards are concerned. Recent focus has been on musculoskeletal disorders and stress. The relative stability of the knowledge base regarding health hazards offshore may change as more innovative methods are employed to develop hydrocarbon resources in more 'difficult' environments. Society's willingness to accept risk is changing. Addressing potential health risks should be done much earlier in the planning process of major projects. This may reveal a skills gap in health professionals as a consequence of needing to employ more anticipatory tools, such as modelling exposure estimations and the skills and willingness to engage effectively with engineers and other HSSE professionals.

  5. Effects of wireless packet loss in industrial process control systems.

    PubMed

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the

  6. Effects of Wireless Packet Loss in Industrial Process Control Systems

    PubMed Central

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-01-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100 % reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100 % reliable communications. The sensitivity of

  7. Future supply chains enabled by continuous processing--opportunities and challenges. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Srai, Jagjit Singh; Badman, Clive; Krumme, Markus; Futran, Mauricio; Johnston, Craig

    2015-03-01

    This paper examines the opportunities and challenges facing the pharmaceutical industry in moving to a primarily "continuous processing"-based supply chain. The current predominantly "large batch" and centralized manufacturing system designed for the "blockbuster" drug has driven a slow-paced, inventory heavy operating model that is increasingly regarded as inflexible and unsustainable. Indeed, new markets and the rapidly evolving technology landscape will drive more product variety, shorter product life-cycles, and smaller drug volumes, which will exacerbate an already unsustainable economic model. Future supply chains will be required to enhance affordability and availability for patients and healthcare providers alike despite the increased product complexity. In this more challenging supply scenario, we examine the potential for a more pull driven, near real-time demand-based supply chain, utilizing continuous processing where appropriate as a key element of a more "flow-through" operating model. In this discussion paper on future supply chain models underpinned by developments in the continuous manufacture of pharmaceuticals, we have set out; The significant opportunities to moving to a supply chain flow-through operating model, with substantial opportunities in inventory reduction, lead-time to patient, and radically different product assurance/stability regimes. Scenarios for decentralized production models producing a greater variety of products with enhanced volume flexibility. Production, supply, and value chain footprints that are radically different from today's monolithic and centralized batch manufacturing operations. Clinical trial and drug product development cost savings that support more rapid scale-up and market entry models with early involvement of SC designers within New Product Development. The major supply chain and industrial transformational challenges that need to be addressed. The paper recognizes that although current batch operational

  8. Multimodal inspection in power engineering and building industries: new challenges and solutions

    NASA Astrophysics Data System (ADS)

    Kujawińska, Małgorzata; Malesa, Marcin; Malowany, Krzysztof

    2013-09-01

    Recently the demand and number of applications of full-field, optical measurement methods based on noncoherent light sources increased significantly. They include traditional image processing, thermovision, digital image correlation (DIC) and structured light methods. However, there are still numerous challenges connected with implementation of these methods to in-situ, long-term monitoring in industrial, civil engineering and cultural heritage applications, multimodal measurements of a variety of object features or simply adopting instruments to work in hard environmental conditions. In this paper we focus on 3D DIC method and present its enhancements concerning software modifications (new visualization methods and a method for automatic merging of data distributed in time) and hardware improvements. The modified 3D DIC system combined with infrared camera system is applied in many interesting cases: measurements of boiler drum during annealing and of pipelines in heat power stations and monitoring of different building steel struts at construction site and validation of numerical models of large building structures constructed of graded metal plate arches.

  9. Meat packaging solutions to current industry challenges: A review.

    PubMed

    Holman, Benjamin W B; Kerry, Joseph P; Hopkins, David L

    2018-04-30

    Many advances have occurred in the field of smart meat packaging, and the potential for these to be used as tools that respond to challenges faced by industry is exciting. Here, we review packaging solutions to several immediate concerns, encompassing dark cutting, purge and yield losses, product traceability and provenance, packaging durability, microbial spoilage and safety, colour stability, environmental impacts, and the preservation of eating quality. Different active and intelligent packaging approaches to each of these were identified and are discussed in terms of their usefulness - to processors, retailers and/or consumers. From this, it became apparent that prior to selecting a packaging solution, industry should first define their criteria for success (e.g. How much purge is too much? What is a reasonable shelf-life to facilitate product turnover? Is the customer willing to pay for this?), and understand that packaging is not the sole solution, but acts as part of a holistic response to these issues. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  10. A case in support of implementing innovative bio-processes in the metal mining industry.

    PubMed

    Sánchez-Andrea, Irene; Stams, Alfons J M; Weijma, Jan; Gonzalez Contreras, Paula; Dijkman, Henk; Rozendal, Rene A; Johnson, D Barrie

    2016-06-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally 'rock-eating') bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Electron beam irradiation processing for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Ozer, Zehra Nur

    2017-09-01

    In recent years, electron beam processing has been widely used for medical and industrial applications. Electron beam accelerators are reliable and durable equipments that can produce ionizing radiation when it is needed for a particular commercial use. On the industrial scale, accelerators are used to generate electrons in between 0.1-100 MeV energy range. These accelerators are used mainly in plastics, automotive, wire and electric cables, semiconductors, health care, aerospace and environmental industries, as well as numerous researches. This study presents the current applications of electron beam processing in medicine and industry. Also planned study of a design for such a system in the energy range of 200-300 keV is introduced.

  12. Integrating science and business models of sustainability for environmentally-challenging industries such as secondary lead smelters: a systematic review and analysis of findings.

    PubMed

    Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Wallace, S; Rinder, M

    2010-09-01

    Secondary lead smelters (SLS) represent an environmentally-challenging industry as they deal with toxic substances posing potential threats to both human and environmental health, consequently, they operate under strict government regulations. Such challenges have resulted in the significant reduction of SLS plants in the last three decades. In addition, the domestic recycling of lead has been on a steep decline in the past 10 years as the amount of lead recovered has remained virtually unchanged while consumption has increased. Therefore, one may wonder whether sustainable development can be achieved among SLS. The primary objective of this study was to determine whether a roadmap for sustainable development can be established for SLS. The following aims were established in support of the study objective: (1) to conduct a systematic review and an analysis of models of sustainable systems with a particular emphasis on SLS; (2) to document the challenges for the U.S. secondary lead smelting industry; and (3) to explore practices and concepts which act as vehicles for SLS on the road to sustainable development. An evidence-based methodology was adopted to achieve the study objective. A comprehensive electronic search was conducted to implement the aforementioned specific aims. Inclusion criteria were established to filter out irrelevant scientific papers and reports. The relevant articles were closely scrutinized and appraised to extract the required information and data for the possible development of a sustainable roadmap. The search process yielded a number of research articles which were utilized in the systematic review. Two types of models emerged: management/business and science/mathematical models. Although the management/business models explored actions to achieve sustainable growth in the industrial enterprise, science/mathematical models attempted to explain the sustainable behaviors and properties aiming at predominantly ecosystem management. As such

  13. Challenging Transitions: Trades and Trade-Offs for Racialised Youth in Canada's Mining Industry

    ERIC Educational Resources Information Center

    Hodgkins, Andrew

    2016-01-01

    This article examines the precarious learning-to-work transitions experienced by aboriginal youth in the Canadian oil sands mining industry. Drawing from an empirical case study of a mine-sponsored, pre-apprenticeship training programme, challenges experienced by programme participants, as well as their socialisation into the world of work are…

  14. Major challenges loom for natural gas industry, study says

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Driscoll, M.

    The 1994 edition of Natural Gas Trends, the annual joint study by Cambridge Energy Research Associates and Arthur Anderson Co., says that new oil-to-gas competition, price risks and the prospect of unbundling for local distribution companies loom as major challenges for the natural gas industry. With a tighter supply-demand balance in the past two years compounded by the fall in oil prices, gas is in head-to-head competition with oil for marginal markets, the report states. And with higher gas prices in 1993, industrial demand growth slowed while utility demand for gas fell. Some of this was related to fuel switching,more » particularly in the electric utility sector. Total electric power demand for gas has risen slightly due to the growth in industrial power generation, but there has yet to be a pronounced surge in gas use during the 1990s - a decade in which many had expected gas to make major inroads into the electric power sector, the report states. And while utilities still have plans to add between 40,000 and 45,000 megawatts of gas-fired generating capacity, gas actually has lost ground in the utility market to coal and nuclear power: In 1993, electricity output from coal and nuclear rose, while gas-fired generation fell to an estimated 250 billion kilowatt-hours - the lowest level since 1986, when gas generated 246 billion kwh.« less

  15. Challenging the epidemiologic evidence on passive smoking: tactics of tobacco industry expert witnesses.

    PubMed

    Francis, John A; Shea, Amy K; Samet, Jonathan M

    2006-12-01

    To analyse the statements given by tobacco industry defence witnesses during trial testimonies and depositions in second-hand smoke cases and in parallel, to review criticisms of epidemiology in industry-funded publications in order to identify strategies for discrediting epidemiologic evidence on passive smoking health effects. A collection of depositions and trial testimony transcripts from tobacco industry-related lawsuits filed in the United States during the 1990s, was compiled and indexed by the Tobacco Deposition and Trial Testimony Archive (DATTA). Statements in DATTA made by expert witnesses representing the tobacco industry relating to the health effects of passive smoking were identified and reviewed. Industry-supported publications within the peer-reviewed literature were also examined for statements on exposure misclassification, meta-analysis, and confounding. The witnesses challenged causation of adverse health effects of passive smoking by citing limitations of epidemiologic research, raising methodological and statistical issues, and disputing biological plausibility. Though not often cited directly by the witnesses, the defence tactics mirrored the strategies used in industry-funded reports in the peer-reviewed literature. The tobacco industry attempted to redirect the focus and dialogue related to the epidemiologic evidence on passive smoking. This approach, used by industry experts in trial testimony and depositions, placed bias as a certain alternative to causation of diseases related to passive smoking and proposed an unachievable standard for establishing the mechanism of disease.

  16. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  17. Computer integrated manufacturing/processing in the HPI. [Hydrocarbon Processing Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, J.S.

    1993-05-01

    Hydrocarbon Processing and Systemhouse Inc., developed a comprehensive survey on the status of computer integrated manufacturing/processing (CIM/CIP) targeted specifically to the unique requirements of the hydrocarbon processing industry. These types of surveys and other benchmarking techniques can be invaluable in assisting companies to maximize business benefits from technology investments. The survey was organized into 5 major areas: CIM/CIP planning, management perspective, functional applications, integration and technology infrastructure and trends. The CIM/CIP planning area dealt with the use and type of planning methods to plan, justify implement information technology projects. The management perspective section addressed management priorities, expenditure levels and implementationmore » barriers. The functional application area covered virtually all functional areas of organization and focused on the specific solutions and benefits in each of the functional areas. The integration section addressed the needs and integration status of the organization's functional areas. Finally, the technology infrastructure and trends section dealt with specific technologies in use as well as trends over the next three years. In February 1993, summary areas from preliminary results were presented at the 2nd International Conference on Productivity and Quality in the Hydrocarbon Processing Industry.« less

  18. Vision Systems Illuminate Industrial Processes

    NASA Technical Reports Server (NTRS)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  19. Conceptual design of industrial process displays.

    PubMed

    Pedersen, C R; Lind, M

    1999-11-01

    Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display design method that matches the industrial practice of modular plant design and satisfies the needs of reusability of display design solutions. The main considerations in display design in the industry are to specify the operator's activities in detail, to extract the information the operators need from the plant design specification and documentation, and finally to present this information. The form of the display is selected from existing standardized display elements such as trend curves, mimic diagrams, ecological interfaces, etc. Further knowledge is required to invent new display elements. That is, knowledge about basic visual means of presenting information and how humans perceive and interpret these means and combinations. This knowledge is required in the systematic selection of graphical items for a given display content. The industrial part of the method is first illustrated in the paper by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad categories of display types are proposed. The problems involved in specification and invention of a supervisory display are analysed and conclusions from these problems are made. It is

  20. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    PubMed

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  1. U.S. Fruit and Vegetable Processing Industries.

    ERIC Educational Resources Information Center

    Buckley, Katharine C.; And Others

    Because of shifts in consumer tastes and preferences, demographics, technology, government regulation, and the expanding interdependence of world markets, the United States fruit and vegetable processing industries must operate in a constantly changing and uncertain economic environment. U.S. per capita use of processed fruits and vegetables is…

  2. Developing and Managing University-Industry Research Collaborations through a Process Methodology/Industrial Sector Approach

    ERIC Educational Resources Information Center

    Philbin, Simon P.

    2010-01-01

    A management framework has been successfully utilized at Imperial College London in the United Kingdom to improve the process for developing and managing university-industry research collaborations. The framework has been part of a systematic approach to increase the level of research contracts from industrial sources, to strengthen the…

  3. Smart factory in the context of 4th industrial revolution: challenges and opportunities for Romania

    NASA Astrophysics Data System (ADS)

    Pîrvu, B. C.; Zamfirescu, C. B.

    2017-08-01

    Manufacturing companies, independent of operation sector and size, must be able to produce lot size one products, just-in-time at a competitive cost. Coping with this high adaptability and short reaction times proves to be very challenging. New approaches must be taken into consideration for designing modular, intelligent and cooperative production systems which are easy to integrate with the entire factory. The coined term for this network of intelligent interacting artefacts system is cyber-physical systems (CPS). CPS is often used in the context of Industry 4.0 - or what many consider the forth industrial revolution. The paper presents an overview of key technological and social requirements to map the Smart Factory vision into reality. Finally, global and Romanian specific challenges hindering the vision of a true Smart Factory to become reality are presented.

  4. Challenges facing the North American iron ore industry

    USGS Publications Warehouse

    Jorgenson, J.D.

    2005-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through several periods of transformation. The beginning of the 21st century has seen yet another period of transformation, with the economic failure of a number of steel companies, the acquisition of their facilities by more viable steelmakers, and the consolidation of control within the North American iron ore industry. Changes in Canadian and United States iron ore production and the market control structure involved are analysed. The consolidation of ownership, formation of foreign joint ventures within Nordi America, planned divestitures of upstream activities by steelmakers, and industry changes made to ensure availability of feedstocks will be reviewed. The ttaditional isolation of the Canadian and United States iron ore operations and their strong linkage to downstream steel production will be discussed in the context of a changing global economy. Management-labour conflicts that have taken place and agreements made during 2000 through 2004 will be discussed in the context of the economic environment leading up to these agreements. Cooperative agreements between competing Canadian and United States companies to resolve client needs in processing and blending will be examined. A joint industry-government project designed to use new technology to produce direct reduced iron nuggets of 96 - 98 per cent iron content using non-coking coals will also be assessed. Changes in iron ore transportation methods, ownership and infrastructure will be reviewed for both rail and inland waterway transport between Canadian and United States companies. A brief analysis of social and environmental issues relating to sustainable development of the Canadian-United States iron ore industry will be included.

  5. Digital Image Processing in Private Industry.

    ERIC Educational Resources Information Center

    Moore, Connie

    1986-01-01

    Examines various types of private industry optical disk installations in terms of business requirements for digital image systems in five areas: records management; transaction processing; engineering/manufacturing; information distribution; and office automation. Approaches for implementing image systems are addressed as well as key success…

  6. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  7. Advances toward industrialization of novel molten salt electrochemical processes.

    PubMed

    Ito, Yasuhiko; Nishikiori, Tokujiro; Tsujimura, Hiroyuki

    2016-08-15

    We have invented various novel molten salt electrochemical processes, that can be put to practical use in the fields of energy and materials. These processes are promising from both technological and commercial viewpoints, and they are currently under development for industrial application. To showcase current developments in work toward industrialization, we focus here on three of these processes: (1) electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure, (2) electrochemical formation of carbon film, and (3) plasma-induced discharge electrolysis to produce nanoparticles.

  8. Current Computational Challenges for CMC Processes, Properties, and Structures

    NASA Technical Reports Server (NTRS)

    DiCarlo, James

    2008-01-01

    In comparison to current state-of-the-art metallic alloys, ceramic matrix composites (CMC) offer a variety of performance advantages, such as higher temperature capability (greater than the approx.2100 F capability for best metallic alloys), lower density (approx.30-50% metal density), and lower thermal expansion. In comparison to other competing high-temperature materials, CMC are also capable of providing significantly better static and dynamic toughness than un-reinforced monolithic ceramics and significantly better environmental resistance than carbon-fiber reinforced composites. Because of these advantages, NASA, the Air Force, and other U.S. government agencies and industries are currently seeking to implement these advanced materials into hot-section components of gas turbine engines for both propulsion and power generation. For applications such as these, CMC are expected to result in many important performance benefits, such as reduced component cooling air requirements, simpler component design, reduced weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Although much progress has been made recently in the development of CMC constituent materials and fabrication processes, major challenges still remain for implementation of these advanced composite materials into viable engine components. The objective of this presentation is to briefly review some of those challenges that are generally related to the need to develop physics-based computational approaches to allow CMC fabricators and designers to model (1) CMC processes for fiber architecture formation and matrix infiltration, (2) CMC properties of high technical interest such as multidirectional creep, thermal conductivity, matrix cracking stress, damage accumulation, and degradation effects in aggressive environments, and (3) CMC component life times when all of these effects are interacting in a complex stress and service

  9. Industrial Materials Processing Laser Markets

    NASA Astrophysics Data System (ADS)

    Followwill, Dorman

    1989-03-01

    The way I would like to handle this morning is first, to give you an overview before I put anything up in terms of slides. An overview of the study that we produced a couple of months ago. It is entitled "Industrial Materials Processing Laser Markets", and if you want information on that particular study, then you can speak with me at the coffee break.

  10. Future Supply Chains Enabled by Continuous Processing-Opportunities Challenges May 20-21 2014 Continuous Manufacturing Symposium.

    PubMed

    Srai, Jagjit Singh; Badman, Clive; Krumme, Markus; Futran, Mauricio; Johnston, Craig

    2015-03-01

    This paper examines the opportunities and challenges facing the pharmaceutical industry in moving to a primarily "continuous processing"-based supply chain. The current predominantly "large batch" and centralized manufacturing system designed for the "blockbuster" drug has driven a slow-paced, inventory heavy operating model that is increasingly regarded as inflexible and unsustainable. Indeed, new markets and the rapidly evolving technology landscape will drive more product variety, shorter product life-cycles, and smaller drug volumes, which will exacerbate an already unsustainable economic model. Future supply chains will be required to enhance affordability and availability for patients and healthcare providers alike despite the increased product complexity. In this more challenging supply scenario, we examine the potential for a more pull driven, near real-time demand-based supply chain, utilizing continuous processing where appropriate as a key element of a more "flow-through" operating model. In this discussion paper on future supply chain models underpinned by developments in the continuous manufacture of pharmaceuticals, we have set out; The paper recognizes that although current batch operational performance in pharma is far from optimal and not necessarily an appropriate end-state benchmark for batch technology, the adoption of continuous supply chain operating models underpinned by continuous production processing, as full or hybrid solutions in selected product supply chains, can support industry transformations to deliver right-first-time quality at substantially lower inventory profiles. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Using emulsion inversion in industrial processes.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana; Márquez, Laura; Peña, Alejandro; Pizzino, Aldo; Rodriguez, María P; Rondón-González, Marianna

    2004-05-20

    Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.

  12. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  13. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40 percent of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement are discussed. Potential annual fuel savings, with large scale implementation of near-term TES systems for these three industries, is nearly 9,000,000 bbl of oil.

  14. Determinants of job stress in chemical process industry: A factor analysis approach.

    PubMed

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  15. New lidar challenges for gas hazard management in industrial environments

    NASA Astrophysics Data System (ADS)

    Cézard, Nicolas; Liméry, Anasthase; Bertrand, Johan; Le Méhauté, Simon; Benoit, Philippe; Fleury, Didier; Goular, Didier; Planchat, Christophe; Valla, Matthieu; Augère, Béatrice; Dolfi-Bouteyre, Agnès.

    2017-10-01

    The capability of Lidars to perform range-resolved gas profiles makes them an appealing choice for many applications. In order to address new remote sensing challenges, arising from industrial contexts, Onera currently develops two lidar systems, one Raman and one DIAL. On the Raman side, a high spatial-resolution multi-channel Raman Lidar is developed in partnership with the French National Radioactive Waste Management Agency (Andra). This development aims at enabling future monitoring of hydrogen gas and water vapor profiles inside disposal cells containing radioactive wastes. We report on the development and first tests of a three-channel Raman Lidar (H2, H2O, N2) designed to address this issue. Simultaneous hydrogen and water vapor profiles have been successfully performed along a 5m-long gas cell with 1m resolution at a distance of 85 m. On the DIAL side, a new instrumental concept is being explored and developed in partnership with Total E and P. The objective is to perform methane plume monitoring and flux assessment in the vicinity of industrials plants or platforms. For flux assessment, both gas concentration and air speed must be profiled by lidar. Therefore, we started developing a bi-function, all-fiber, coherent DIAL/Doppler Lidar. The first challenge was to design and build an appropriate fiber laser source. The achieved demonstrator delivers 200 W peak power, polarized, spectrally narrow (<15 MHz), 110 ns pulses of light out of a monomode fiber at 1645 nm. It fulfills the requirements for a future implementation in a bi-function Dial/Doppler lidar with km-range expectation. We report on the laser and lidar architecture, and on first lidar tests at 1645 nm.

  16. 76 FR 66078 - Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ...-0087] Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer... and gas exploration and production in deep and ultra-deep OCS waters. Through this workshop, BSEE will... structured venue for consultation among offshore deepwater oil and gas industry and regulatory experts in...

  17. Work process and task-based design of intelligent assistance systems in German textile industry

    NASA Astrophysics Data System (ADS)

    Löhrer, M.; Ziesen, N.; Altepost, A.; Saggiomo, M.; Gloy, Y. S.

    2017-10-01

    The mid-sized embossed German textile industry must face social challenges e.g. demographic change or technical changing processes. Interaction with intelligent systems (on machines) and increasing automation changes processes, working structures and employees’ tasks on all levels. Work contents are getting more complex, resulting in the necessity for diversified and enhanced competencies. Mobile devices like tablets or smartphones are increasingly finding their way into the workplace. Employees who grew up with new forms of media have certain advantages regarding the usage of modern technologies compared to older employees. Therefore, it is necessary to design new systems which help to adapt the competencies of both younger and older employees to new automated production processes in the digital work environment. The key to successful integration of technical assistance systems is user-orientated design and development that includes concepts for competency development under consideration of, e.g., ethical and legal aspects.

  18. Gravity-dependent transport in industrial processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1994-01-01

    Gravity-dependent transport phenomena in various industrial processes are investigated in order to address a broader range of microgravity phenomena and to develop new applications of microgravity. A number of important topics are identified and analyzed in detail. The present article describes results on coating flow, zeolite growth, and rotating electrochemical system.

  19. Additive manufacturing in production: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  20. [Food processing industry--the salt shock to the consumers].

    PubMed

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  1. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products.

    PubMed

    Khan, Muhammad Imran; Shin, Jin Hyuk; Kim, Jong Deog

    2018-03-05

    Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO 2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.

  2. Meeting the Challenge: Between Depopulation and New Industrialization. Innovations in VET in Eastern Germany

    ERIC Educational Resources Information Center

    Barabasch, Antje

    2012-01-01

    Despite the heavy investments in the economic development of East German industry, the region still faces immanent structural challenges that affect the provision of vocational education and training (VET), in particular apprenticeships, and the availability of a well skilled workforce. In this article the situation of the economy as well as new…

  3. Challenges associated with the implementation of the nursing process: A systematic review.

    PubMed

    Zamanzadeh, Vahid; Valizadeh, Leila; Tabrizi, Faranak Jabbarzadeh; Behshid, Mojghan; Lotfi, Mojghan

    2015-01-01

    Nursing process is a scientific approach in the provision of qualified nursing cares. However, in practice, the implementation of this process is faced with numerous challenges. With the knowledge of the challenges associated with the implementation of the nursing process, the nursing processes can be developed appropriately. Due to the lack of comprehensive information on this subject, the current study was carried out to assess the key challenges associated with the implementation of the nursing process. To achieve and review related studies on this field, databases of Iran medix, SID, Magiran, PUBMED, Google scholar, and Proquest were assessed using the main keywords of nursing process and nursing process systematic review. The articles were retrieved in three steps including searching by keywords, review of the proceedings based on inclusion criteria, and final retrieval and assessment of available full texts. Systematic assessment of the articles showed different challenges in implementation of the nursing process. Intangible understanding of the concept of nursing process, different views of the process, lack of knowledge and awareness among nurses related to the execution of process, supports of managing systems, and problems related to recording the nursing process were the main challenges that were extracted from review of literature. On systematically reviewing the literature, intangible understanding of the concept of nursing process has been identified as the main challenge in nursing process. To achieve the best strategy to minimize the challenge, in addition to preparing facilitators for implementation of nursing process, intangible understanding of the concept of nursing process, different views of the process, and forming teams of experts in nursing education are recommended for internalizing the nursing process among nurses.

  4. Waste management in the meat processing industry: Conversion of paunch and DAF sludge into solid fuel.

    PubMed

    Hamawand, Ihsan; Pittaway, Pam; Lewis, Larry; Chakrabarty, Sayan; Caldwell, Justin; Eberhard, Jochen; Chakraborty, Arpita

    2017-02-01

    This article addresses the novel dewatering process of immersion-frying of paunch and dissolved air flotation (DAF) sludge to produce high energy pellets. Literature have been analysed to address the feasibility of replacing conventional boiler fuel at meat processing facilities with high energy paunch-DAF sludge pellets (capsules). The value proposition of pelleting and frying this mixture into energy pellets is based on a Cost-Benefit Analysis (CBA). The CBA is based on information derived from the literature and consultation with the Australian Meat Processing Industry. The calorific properties of a mixture of paunch cake solids and DAF sludge were predicted from literature and industry consultation to validate the product. This study shows that the concept of pelletizing and frying paunch is economically feasible. The complete frying and dewatering of the paunch and DAF sludge mixture produces pellets with energy content per kilogram equivalent to coal. The estimated cost of this new product is half the price of coal and the payback period is estimated to be between 1.8 and 3.2years. Further research is required for proof of concept, and to identify the technical challenges associated with integrating this technology into existing meat processing plants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. Electron-processing technology: A promising application for the viscose industry

    NASA Astrophysics Data System (ADS)

    Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.

    1998-06-01

    In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.

  6. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    PubMed

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A Survey of Terrestrial Approaches to the Challenge of Lunar Dust Containment

    NASA Technical Reports Server (NTRS)

    Aguilera, Tatiana; Perry, Jay L.

    2009-01-01

    Numerous technical challenges exist to successfully extend lunar surface exploration beyond the tantalizing first steps of Apollo. Among these is the challenge of lunar dust intrusion into the cabin environment. Addressing this challenge includes the design of barriers to intrusion as well as techniques for removing the dust from the cabin atmosphere. Opportunities exist for adapting approaches employed in dusty industrial operations and pristine manufacturing environments to cabin environmental quality maintenance applications. A survey of process technologies employed by the semiconductor, pharmaceutical, food processing, and mining industries offers insight into basic approaches that may be suitable for adaptation to lunar surface exploration applications.

  8. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants.

    PubMed

    Tomas, Merve; Beekwilder, Jules; Hall, Robert D; Sagdic, Osman; Boyacioglu, Dilek; Capanoglu, Esra

    2017-04-01

    The effect of industrial and home processing, in vitro gastrointestinal digestion, individual phenolic content, and antioxidant capacity of tomato into tomato sauce were investigated. Industrial processing of tomato fruit into sauce had an overall positive effect on the total antioxidant capacity (∼1.2-fold higher) compared to tomato fruit whereas home processing of tomato fruit into sauce led to a decrease in these values. Untargeted LC-QTOF-MS analysis revealed 31 compounds in tomato that changed upon processing, of which 18 could be putatively identified. Naringenin chalcone is only detectable in the fruit, while naringenin is strongly increased in the sauces. Rutin content increased by 36% in the industrial processed sauce whereas decreased by 26% in the home processed sauce when compared to fruit. According to the results of an in vitro gastrointestinal digestion model, industrial processing may lead to enhanced bioaccessibility of antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Challenges associated with the implementation of the nursing process: A systematic review

    PubMed Central

    Zamanzadeh, Vahid; Valizadeh, Leila; Tabrizi, Faranak Jabbarzadeh; Behshid, Mojghan; Lotfi, Mojghan

    2015-01-01

    Background: Nursing process is a scientific approach in the provision of qualified nursing cares. However, in practice, the implementation of this process is faced with numerous challenges. With the knowledge of the challenges associated with the implementation of the nursing process, the nursing processes can be developed appropriately. Due to the lack of comprehensive information on this subject, the current study was carried out to assess the key challenges associated with the implementation of the nursing process. Materials and Methods: To achieve and review related studies on this field, databases of Iran medix, SID, Magiran, PUBMED, Google scholar, and Proquest were assessed using the main keywords of nursing process and nursing process systematic review. The articles were retrieved in three steps including searching by keywords, review of the proceedings based on inclusion criteria, and final retrieval and assessment of available full texts. Results: Systematic assessment of the articles showed different challenges in implementation of the nursing process. Intangible understanding of the concept of nursing process, different views of the process, lack of knowledge and awareness among nurses related to the execution of process, supports of managing systems, and problems related to recording the nursing process were the main challenges that were extracted from review of literature. Conclusions: On systematically reviewing the literature, intangible understanding of the concept of nursing process has been identified as the main challenge in nursing process. To achieve the best strategy to minimize the challenge, in addition to preparing facilitators for implementation of nursing process, intangible understanding of the concept of nursing process, different views of the process, and forming teams of experts in nursing education are recommended for internalizing the nursing process among nurses. PMID:26257793

  10. The New Drug Conditional Approval Process in China: Challenges and Opportunities.

    PubMed

    Yao, Xuefang; Ding, Jinxi; Liu, Yingfang; Li, Penghui

    2017-05-01

    Our aim was to characterize the newly established new drug conditional approval process in China and discuss the challenges and opportunities with respect to new drug research and development and registration. We examined the new approval program through literature review, law analysis, and data analysis. Data were derived from published materials, such as journal articles, government publications, press releases, and news articles, along with statistical data from INSIGHT-China Pharma Databases, the China Food and Drug Administration website, the Center for Drug Evaluation website, the US Food and Drug Administration website, and search results published by Google. Currently, there is a large backlog of New Drug Applications in China, mainly because of the prolonged review time at the China Food and Drug Administration, resulting in a lag in drug approvals. In 2015, the Chinese government implemented the drug review and registration system reform and tackled this issue through various approaches, such as setting up a drug review fee system, adjusting the drug registration classification, and establishing innovative review pathways, including the conditional approval process. In Europe and the United States, programs comparable to the conditional approval program in China have been well developed. The conditional approval program recently established in China is an expedited new drug approval process that is expected to affect new drug development at home and abroad and profoundly influence the public health and the pharmaceutical industry in China. Like any program in its initial stage, the conditional approval program is facing several challenges, including setting up a robust system, formatting new drug clinical research requirements, and improving the regulatory agency's function for drug review and approval. The program is expected to evolve and improve as part of the government mandate of the drug registration system reform. Copyright © 2017 Elsevier HS

  11. Expert system for testing industrial processes and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Singer, Ralph M.

    1998-01-01

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  12. Microbial Cellulases and Their Industrial Applications

    PubMed Central

    Kuhad, Ramesh Chander; Gupta, Rishi; Singh, Ajay

    2011-01-01

    Microbial cellulases have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Due to the complexity of enzyme system and immense industrial potential, cellulases have been a potential candidate for research by both the academic and industrial research groups. Nowadays, significant attentions have been devoted to the current knowledge of cellulase production and the challenges in cellulase research especially in the direction of improving the process economics of various industries. Scientific and technological developments and the future prospects for application of cellulases in different industries are discussed in this paper. PMID:21912738

  13. Challenges of the Open Source Component Marketplace in the Industry

    NASA Astrophysics Data System (ADS)

    Ayala, Claudia; Hauge, Øyvind; Conradi, Reidar; Franch, Xavier; Li, Jingyue; Velle, Ketil Sandanger

    The reuse of Open Source Software components available on the Internet is playing a major role in the development of Component Based Software Systems. Nevertheless, the special nature of the OSS marketplace has taken the “classical” concept of software reuse based on centralized repositories to a completely different arena based on massive reuse over Internet. In this paper we provide an overview of the actual state of the OSS marketplace, and report preliminary findings about how companies interact with this marketplace to reuse OSS components. Such data was gathered from interviews in software companies in Spain and Norway. Based on these results we identify some challenges aimed to improve the industrial reuse of OSS components.

  14. Industrial application of thermal image processing and thermal control

    NASA Astrophysics Data System (ADS)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  15. Safety Considerations in the Chemical Process Industries

    NASA Astrophysics Data System (ADS)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  16. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Expert system for testing industrial processes and determining sensor status

    DOEpatents

    Gross, K.C.; Singer, R.M.

    1998-06-02

    A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.

  18. Patient level costing in Ireland: process, challenges and opportunities.

    PubMed

    Murphy, A; McElroy, B

    2015-03-01

    In 2013, the Department of Health released their policy paper on hospital financing entitled Money Follows the Patient. A fundamental building block for the proposed financing model is patient level costing. This paper outlines the patient level costing process, identifies the opportunities and considers the challenges associated with the process in the Irish hospital setting. Methods involved a review of the existing literature which was complemented with an interview with health service staff. There are considerable challenges associated with implementing patient level costing including deficits in information and communication technologies and financial expertise as well as timeliness of coding. In addition, greater clinical input into the costing process is needed compared to traditional costing processes. However, there are long-term benefits associated with patient level costing; these include empowerment of clinical staff, improved transparency and price setting and greater fairness, especially in the treatment of outliers. These can help to achieve the Government's Health Strategy. The benefits of patient level costing need to be promoted and a commitment to investment in overcoming the challenges is required.

  19. Practical Use of Operation Data in the Process Industry

    NASA Astrophysics Data System (ADS)

    Kano, Manabu

    This paper aims to reveal real problems in the process industry and introduce recent development to solve such problems from the viewpoint of effective use of operation data. Two topics are discussed: virtual sensor and process control. First, in order to clarify the present state and problems, a part of our recent questionnaire survey of process control is quoted. It is emphasized that maintenance is a key issue not only for soft-sensors but also for controllers. Then, new techniques are explained. The first one is correlation-based just-in-time modeling (CoJIT), which can realize higher prediction performance than conventional methods and simplify model maintenance. The second is extended fictitious reference iterative tuning (E-FRIT), which can realize data-driven PID control parameter tuning without process modeling. The great usefulness of these techniques are demonstrated through their industrial applications.

  20. Presidential Green Chemistry Challenge: 2002 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2002 award winner, Professor Eric J. Beckman, developed fluorine-free detergents that help supercritical carbon dioxide (CO2) dissolve many chemicals, so it can be a solvent for industrial processes.

  1. IMPROVING INDUSTRIAL WASTEWATER TREATMENT PROCESS RELIABILITY TO ENHANCE SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Sustainable development includes the recovery of resources from industrial manufacturing processes. One valuable resource that can often be purified and reused is process wastewater. Typically, pollutants are removed from process wastewater using physical, chemical, and biologica...

  2. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    EPA Science Inventory

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  3. Energy determination in industrial X-ray processing facilities

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.

    2005-12-01

    In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.

  4. Market development directory for solar industrial process heat systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Sincemore » industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).« less

  5. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application.

  6. Biologics industry challenges for developing diagnostic tests for the National Veterinary Stockpile.

    PubMed

    Hardham, J M; Lamichhane, C M

    2013-01-01

    Veterinary diagnostic products generated ~$3 billion US dollars in global sales in 2010. This industry is poised to undergo tremendous changes in the next decade as technological advances move diagnostic products from the traditional laboratory-based and handheld immunologic assays towards highly technical, point of care devices with increased sensitivity, specificity, and complexity. Despite these opportunities for advancing diagnostic products, the industry continues to face numerous challenges in developing diagnostic products for emerging and foreign animal diseases. Because of the need to deliver a return on the investment, research and development dollars continue to be focused on infectious diseases that have a negative impact on current domestic herd health, production systems, or companion animal health. Overcoming the administrative, legal, fiscal, and technological barriers to provide veterinary diagnostic products for the National Veterinary Stockpile will reduce the threat of natural or intentional spread of foreign diseases and increase the security of the food supply in the US.

  7. Super-sensing technology: industrial applications and future challenges of electrical tomography.

    PubMed

    Wei, Kent Hsin-Yu; Qiu, Chang-Hua; Primrose, Ken

    2016-06-28

    Electrical tomography is a relatively new imaging technique that can image the distribution of the passive electrical properties of an object. Since electrical tomography technology was proposed in the 1980s, the technique has evolved rapidly because of its low cost, easy scale-up and non-invasive features. The technique itself can be sensitive to all passive electrical properties, such as conductivity, permittivity and permeability. Hence, it has a huge potential to be applied in many applications. Owing to its ill-posed nature and low image resolution, electrical tomography attracts more attention in industrial fields than biomedical fields. In the past decades, there have been many research developments and industrial implementations of electrical tomography; nevertheless, the awareness of this technology in industrial sectors is still one of the biggest limitations for technology implementation. In this paper, the authors have summarized several representative applications that use electrical tomography. Some of the current tomography research activities will also be discussed. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  8. Applications of sonochemistry in Russian food processing industry.

    PubMed

    Krasulya, Olga; Shestakov, Sergey; Bogush, Vladimir; Potoroko, Irina; Cherepanov, Pavel; Krasulya, Boris

    2014-11-01

    In food industry, conventional methodologies such as grinding, mixing, and heat treatment are used for food processing and preservation. These processes have been well studied for many centuries and used in the conversion of raw food materials to consumable food products. This report is dedicated to the application of a cost-efficient method of energy transfer caused by acoustic cavitation effects in food processing, overall, having significant impacts on the development of relatively new area of food processing such as food sonochemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. [Development and innovation of traditional Chinese medicine processing discipline and Chinese herbal pieces industry].

    PubMed

    Xiao, Yong-Qing; Li, Li; Liu, Ying; Ma, Yin-Lian; Yu, Ding-Rong

    2016-01-01

    To elucidate the key issues in the development and innovation of traditional Chinese medicine processing discipline and Chinese herbal pieces industry Chinese herbal pieces industry. According to the author's accumulated experience over years and demand of the development of the Chinese herbal pieces industry, the key issues in the development and innovation on the Chinese herbal pieces industry were summarized. According to the author, the traditional Chinese medicine processing discipline shall focus on a application basis research. The development of this discipline should be closely related to the development of Chinese herbal pieces. The traditional Chinese medicine processing discipline can be improved and its results can be transformed only if this discipline were correlated with the Chinese herbal pieces industry, matched with the development of the Chinese herbal pieces industry, and solved the problems in the development on the Chinese herbal pieces industry. The development of traditional Chinese medicine processing discipline and the Chinese herbal pieces industry also requires scientific researchers to make constant innovations, realize the specialty of the researches, and innovate based on inheritance. Copyright© by the Chinese Pharmaceutical Association.

  10. eHealth and Global Health: Investments Opportunities and Challenges for Industry in Developing Countries

    NASA Astrophysics Data System (ADS)

    Iluyemi, Adesina; Briggs, Jim

    eHealth investments from developed countries to developing countries are expected to follow the emerging trend of eHealth for meeting global health problems. However, eHealth industry from developed countries will need to learn to make this impending venture a ‘win-win’ situation with profitable return on investments. This short paper highlights some of these challenges that must be overcome in order to achieve these objectives.

  11. Process industries - graphic arts, paint, plastics, and textiles: all cousins under the skin

    NASA Astrophysics Data System (ADS)

    Simon, Frederick T.

    2002-06-01

    The origin and selection of colors in the process industries is different depending upon how the creative process is applied and what are the capabilities of the manufacturing process. The fashion industry (clothing) with its supplier of textiles is the leader of color innovation. Color may be introduced into textile products at several stages in the manufacturing process from fiber through yarn and finally into fabric. The paint industry is divided into two major applications: automotive and trades sales. Automotive colors are selected by stylists who are in the employ of the automobile manufacturers. Trade sales paint on the other hand can be decided by paint manufactureres or by invididuals who patronize custom mixing facilities. Plastics colors are for the most part decided by the industrial designers who include color as part of the design. Graphic Arts (painting) is a burgeoning industry that uses color in image reproduction and package design. Except for text, printed material in color today has become the norm rather than an exception.

  12. Predictive maintenance of critical equipment in industrial processes

    NASA Astrophysics Data System (ADS)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  13. Selected US building industry processes and characteristics. A Project SAGE report

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Schoen, R.

    1978-01-01

    Selected multifamily processes were examined using a primarily graphic approach to clarify some of the operational modes into which Project SAGE (solar-assisted gas energy) must fit, both as a product and a process in the U.S. building industry. What SAGE must have or do in order to fit the building industry in the short term, that is, the multifamily submarket as it is presently configured, is delineated.

  14. Presidential Green Chemistry Challenge: 2012 Greener Reaction Conditions Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2012 award winner, Cytec Industries, developed the MAX HT sodalite scale inhibitor for heat exchangers and pipes in the Bayer process, which converts bauxite into alumina.

  15. Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting.

    PubMed

    da Silva-Filho, Eurípedes Alves; Brito dos Santos, Scheila Karina; Resende, Alecsandra do Monte; de Morais, José Otamar Falcão; de Morais, Marcos Antonio; Ardaillon Simões, Diogo

    2005-07-01

    Yeast population used in industrial production of fuel-ethanol may vary according to the plant process condition and to the environmental stresses imposed to yeast cells. Therefore, yeast strains isolated from a particular industrial process may be adapted to such conditions and should be used as starter strain instead of less adapted commercial strains. This work reports the use of PCR-fingerprinting method based on microsatellite primer (GTG)5 to characterize the yeast population dynamics along the fermentation period in six distilleries. The results show that indigenous fermenting strains present in the crude substrate can be more adapted to the industrial process than commercial strains. We also identified new strains that dominate the yeast population and were more present either in molasses or sugar cane fermenting distilleries. Those strains were proposed to be used as starters in those industrial processes. This is the first report on the use of molecular markers to discriminate Saccharomyces cerevisiae strains from fuel-ethanol producing process.

  16. The Bioethanol Industry in Sub-Saharan Africa: History, Challenges, and Prospects

    PubMed Central

    Deenanath, Evanie Devi; Iyuke, Sunny; Rumbold, Karl

    2012-01-01

    Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation feedstock), lignocellulose (second generation feedstock), or algae (third generation feedstock) feedstocks. To date, USA and Brazil are the leading contributors to global bioethanol production. In sub-Saharan Africa, bioethanol production is stagnant. During the 1980s, bioethanol production has been successful in several countries including Zimbabwe, Malawi, and Kenya. However, because of numerous challenges such as food security, land availability, and government policies, achieving sustainability was a major hurdle. This paper examines the history and challenges of bioethanol production in sub-Saharan Africa (SSA) and demonstrates the bioethanol production potential in SSA with a focus on using bitter sorghum and cashew apple juice as unconventional feedstocks for bioethanol production. PMID:22536020

  17. Remote detection of carbon monoxide by FTIR for simulating field detection in industrial process

    NASA Astrophysics Data System (ADS)

    Gao, Qiankun; Liu, Wenqing; Zhang, Yujun; Gao, Mingguang; Xu, Liang; Li, Xiangxian; Jin, Ling

    2016-10-01

    In order to monitor carbon monoxide in industrial production, we developed a passive gas radiation measurement system based on Fourier transform infrared spectroscopy and carried out infrared radiation measurement experiment of carbon monoxide detection in simulated industrial production environment by this system. The principle, condition, device and data processing method of the experiment are introduced in this paper. In order to solve the problem of light path jitter in the actual industrial field, we simulated the noise in the industrial environment. We combine the advantages of MATHEMATICA software in the aspects of graph processing and symbolic computation to data processing to improve the signal noise ratio and noise suppression. Based on the HITRAN database, the nonlinear least square fitting method was used to calculate the concentration of the CO spectra before and after the data processing. By comparing the calculated concentration, the data processed by MATHEMATICA is reliable and necessary in the industrial production environment.

  18. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Processing Challenges and Opportunities of Camel Dairy Products

    PubMed Central

    Seifu, Eyassu; Ipsen, Richard; Kurtu, Mohamed Y.; Hansen, Egon Bech

    2017-01-01

    A review on the challenges and opportunities of processing camel milk into dairy products is provided with an objective of exploring the challenges of processing and assessing the opportunities for developing functional products from camel milk. The gross composition of camel milk is similar to bovine milk. Nonetheless, the relative composition, distribution, and the molecular structure of the milk components are reported to be different. Consequently, manufacturing of camel dairy products such as cheese, yoghurt, or butter using the same technology as for dairy products from bovine milk can result in processing difficulties and products of inferior quality. However, scientific evidence points to the possibility of transforming camel milk into products by optimization of the processing parameters. Additionally, camel milk has traditionally been used for its medicinal values and recent scientific studies confirm that it is a rich source of bioactive, antimicrobial, and antioxidant substances. The current literature concerning product design and functional potential of camel milk is fragmented in terms of time, place, and depth of the research. Therefore, it is essential to understand the fundamental features of camel milk and initiate detailed multidisciplinary research to fully explore and utilize its functional and technological properties. PMID:29109953

  20. Robotics: A New Challenge For Industrial Arts.

    ERIC Educational Resources Information Center

    Lovedahl, Gerald G.

    1983-01-01

    The author argues that jobs in the future will depend less on manual skill and more on perceptual aptitude, formal knowledge, and precision. Industrial arts classes must include robotics in their curriculum if they intend to reflect accurately American industry. (Author/SSH)

  1. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    EPA Pesticide Factsheets

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  2. Tissue engineering and regenerative medicine: manufacturing challenges.

    PubMed

    Williams, D J; Sebastine, I M

    2005-12-01

    Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.

  3. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  4. Gravity-Dependent Transport in Industrial Processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1996-01-01

    Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.

  5. Biocatalysis: applications and potentials for the chemical industry.

    PubMed

    Thomas, Stuart M; DiCosimo, Robert; Nagarajan, Vasantha

    2002-06-01

    The chemical industry is exploring the use of renewable feed stocks to improve sustainability, prompting the exploration of bioprocesses for the production of chemicals. Attractive features of biological systems include versatility, substrate selectivity, regioselectivity, chemoselectivity, enantioselectivity and catalysis at ambient temperatures and pressures. However, a challenge facing bioprocesses is cost competitiveness with chemical processes because capital assets associated with the existing commercial processes are high. The chemical industry will probably use biotechnology with existing feed stocks and processes to extract higher values from feed stocks, process by-products and waste streams. In this decade, bioprocesses that offer either a process or a product advantage over traditional chemical routes will become more widely used.

  6. A Largely Unsatisfied Need: Continuing Professional Development for Process and Process Plant Industries. A Summary. FEU/PICKUP Project Report.

    ERIC Educational Resources Information Center

    Geldhart, D.; Brown, A. S.

    This summary report outlines the aims of a project that focused on provision of short courses for technical professionals in the chemical and allied process industry and the process plant industry. Continuing education needs of both companies and individuals, as well as corporate policies and attitudes toward continuing education and constraints…

  7. How to turn industrial biotechnology into reality.

    PubMed

    Kircher, Manfred

    2012-01-15

    The emerging bioeconomy is pulled by consumers asking for sustainable products and processes, governments enforcing climate protection and industries demanding feedstock flexibility and last but not least it is pushed by progress in basic and applied science. It will use renewable carbon sources not only from agri- and silviculture, but potentially also from industrial flue gases - for example, from power generation and steel production. Connecting such industries with the future bio-chemical industry results in a challenging new value chain which connects thus far separated industries. Realising this value chain needs disruptive technologies in providing sustainable carbon sources and transforming them into precursors for biochemical production up to consumer products. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A corporate product integrity assurance process.

    PubMed

    Weiler, E D; Keener, R

    1991-10-01

    One of the more difficult challenges that confronts the chemical industry throughout the industrialized world is how to effectively manage the various and often diverse regulatory requirements. What follows is a description of a process designed to help with new product introductions. The process is generic and is applicable to almost any corporate environment and structure.

  9. Supply Chain Management on IBS Implementation in Klang Valley Construction Industry: Challenges and Issues

    NASA Astrophysics Data System (ADS)

    Azrizal Fauzi, Mohd; Hasim, Sulaiman; Awang, Anizah; Ridzuan, Ahmad Ruslan Mohd; Nur Yunus, Juzailah

    2017-12-01

    Industrialized Building System (IBS) is a system where the components of the building are manufactured in a factory and it will be transported to the site to form the structures. The supply chain management (SCM) is a system where the delivery flows of the IBS products from manufacturers to the site. The aim of this research is to identify the major challenges and to analyze the issues on IBS implementation in SCM in Klang Valley from the manufacturers perspective. The methodology used in this paper is based on primary data through questionnaire and interview. Questionnaires were sent to the Manufacturers. It can be concluded that this paper attempts to present more on the challenges and issues that those companies of manufacturers faced during their success journey in finding integration in their supply chain. The main contributions of this paper are integrating all the supply chain integration challenges and issues on IBS. Therefore, these contributions will be helpful for the organization of manufacturers and IBS players that establish the integration in their SCM.

  10. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements

    NASA Astrophysics Data System (ADS)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2017-02-01

    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization

  11. Driver development of IFE power plant in Japan Collaborative process with industry and industrial applications

    NASA Astrophysics Data System (ADS)

    Nakai, S.; Yamanaka, M.; Kitagawa, Y.; Fujita, K.; Heya, M.; Mima, K.; Izawa, Y.; Nakatsuka, M.; Murakami, M.; Ueda, K.; Sasaki, T.; Mori, Y.; Kanabe, T.; Hiruma, T.; Kan, H.; Kawashima, T.

    2006-06-01

    The typical specifications of the laser driver for a commercial IFE power plant are (1) total energy (MJ/pulse) with a tailored 20-40 ns pulse, (2) repetition operation (˜ 10 Hz), (3) efficiency (˜ 10%) with enough robustness and low cost. The key elements of the DPSSL driver technology are under development with HALNA. The HALNA 10 (High Average-power Laser for Nuclear-fusion Application) demonstrated 10 J × 10 Hz operation and the HALNA 100 (100 J × 10 Hz) is now under construction. By using the high average power and high intensity lasers, new industrial applications are being proceeded. The collaborative process for the development of high power laser with industry and for the industrial applications is effective and essential in the development of the laser driver for IFE power plant.

  12. Ising Processing Units: Potential and Challenges for Discrete Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffrin, Carleton James; Nagarajan, Harsha; Bent, Russell Whitford

    The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, presents new opportunities for hybrid-optimization algorithms that leverage these kinds of specialized hardware. In this work, we propose the idea of an Ising processing unit as a computational abstraction for these emerging tools. Challenges involved in using and bench- marking these devices are presented, and open-source software tools are proposed to address some of these challenges. The proposed benchmarking tools and methodology are demonstrated by conducting a baseline study of established solution methods to a D-Wave 2X adiabatic quantum computer, one examplemore » of a commercially available Ising processing unit.« less

  13. Industrial hazardous waste management in Turkey: current state of the field and primary challenges.

    PubMed

    Salihoglu, Güray

    2010-05-15

    A holistic evaluation of a country's hazardous waste management (HWM) practices is useful in identifying the necessary actions to focus on. Based on an analysis of industrial hazardous waste (HW) generation in Turkey, this paper attempts to critically evaluate and report current Turkish HWM practices and discuss the primary challenges to be addressed. The generation of industrial HW for Turkey reported in 2004 was 1.195 million tons, which accounted for 7% of the total industrial solid waste (ISW) generated by the manufacturing industry, and for nearly 4.9% of the total solid waste generated in the country. The HW generated by the top five manufacturing product categories--basic metals, chemicals and chemical products, food and beverages, coke and refined petroleum, motor vehicles and trailers--accounted for 89.0% of total industrial HW. 21% of the HW generated in 2004 was recycled or reused, and 6% was sold or donated, whereas 73% was sent to ultimate disposal. 67% of the HW sent to ultimate disposal was disposed of at municipal landfills. The total capacity of the existing regional HW facilities is 212,500 tons/year, which accounts for about 24% of the HW to be disposed. Turkey has identified the HW problem in the country and enacted legislation, designated a lead agency, and promulgated rules and regulations. Several new initiatives are planned for improving HW management nationally; however, some HWM problems will be persistent due to previous and existing industrial development plans. These development policies led to the concentration of industry in regions marked by precious agricultural fields and high population density. This occurred because the government previously exhibited a default prioritization towards industrial development, leading to insufficient implementation of regulations on HW generators. Some of the problems may also be rooted in other countries that allow illegal trans boundary HW movements despite international regulations. Copyright (c

  14. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    PubMed

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  15. Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste

    NASA Astrophysics Data System (ADS)

    Ishak, Aulia; Ali, Amir Yazid bin

    2017-12-01

    The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.

  16. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    NASA Astrophysics Data System (ADS)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  17. Challenges of Engaging Local Stakeholders for Statewide Program Development Process

    ERIC Educational Resources Information Center

    Martin, Michael J.; Leuci, Mary; Stewart, Mark

    2014-01-01

    The University of Missouri Extension needed to develop an annual program review process that collaboratively engaged county-level stakeholders. The results from the first 2 years highlight the results, challenges, and implications of the design process. The annual review process needs to be adaptive, responsive, and reflective from year to year…

  18. 5 MV 30 mA industrial electron processing system

    NASA Astrophysics Data System (ADS)

    Hoshi, Y.; Mizusawa, K.

    1991-05-01

    Industrial electron beam processing systems have been in use in various application fields such as: improving heat resistivity of wire insulation; controlling quality of automobile rubber tires and melt index characteristics of PE foams; and curing paintings or printing inks. Recently, there has come up a need for electron beam with an energy higher than 3 MV in order to disinfect salmonella in chicken meat, to kill bugs in fruits, and to sterilize medical disposables. To meet this need we developed a 5 MV 30 mA electron processing system with an X-ray conversion target. The machine was tested in NHV's plant in Kyoto at continuous operation of full voltage and full current. It proved to be very steady in operation with a high efficiency (as much as 72%). Also, the X-ray target was tested in a continuous run of 5 MV 30 mA (150 kW). It proved to be viable in industrial utilization. This paper introduces the process and the results of the development.

  19. Curbing variations in packaging process through Six Sigma way in a large-scale food-processing industry

    NASA Astrophysics Data System (ADS)

    Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar

    2015-03-01

    Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.

  20. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE PAGES

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    2016-10-23

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  1. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  2. Quality assessment of baby food made of different pre-processed organic raw materials under industrial processing conditions.

    PubMed

    Seidel, Kathrin; Kahl, Johannes; Paoletti, Flavio; Birlouez, Ines; Busscher, Nicolaas; Kretzschmar, Ursula; Särkkä-Tirkkonen, Marjo; Seljåsen, Randi; Sinesio, Fiorella; Torp, Torfinn; Baiamonte, Irene

    2015-02-01

    The market for processed food is rapidly growing. The industry needs methods for "processing with care" leading to high quality products in order to meet consumers' expectations. Processing influences the quality of the finished product through various factors. In carrot baby food, these are the raw material, the pre-processing and storage treatments as well as the processing conditions. In this study, a quality assessment was performed on baby food made from different pre-processed raw materials. The experiments were carried out under industrial conditions using fresh, frozen and stored organic carrots as raw material. Statistically significant differences were found for sensory attributes among the three autoclaved puree samples (e.g. overall odour F = 90.72, p < 0.001). Samples processed from frozen carrots show increased moisture content and decrease of several chemical constituents. Biocrystallization identified changes between replications of the cooking. Pre-treatment of raw material has a significant influence on the final quality of the baby food.

  3. [Quality improvement potential in the pharmaceutical industry].

    PubMed

    Nusser, Michael

    2007-01-01

    The performance of the German pharmaceutical industry, future challenges and obstacles to quality improvement are assessed from a systems-of-innovation perspective, using appropriate innovation indicators. The current close-to-market performance indicators paint an unfavourable picture. Early R&D indicators (e.g., publications, patents), however, reveal a positive trend. A lot of obstacles to quality improvements are identified with respect to knowledge base, knowledge/technology transfer, industrial R&D processes, capital markets, market attractiveness and both regulatory and political framework conditions. On this basis, recommendations will finally be derived to improve quality in the pharmaceutical industry.

  4. Post-processing procedure for industrial quantum key distribution systems

    NASA Astrophysics Data System (ADS)

    Kiktenko, Evgeny; Trushechkin, Anton; Kurochkin, Yury; Fedorov, Aleksey

    2016-08-01

    We present algorithmic solutions aimed on post-processing procedure for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of classical public communication channel is also considered.

  5. Weaknesses in Applying a Process Approach in Industry Enterprises

    NASA Astrophysics Data System (ADS)

    Kučerová, Marta; Mĺkva, Miroslava; Fidlerová, Helena

    2012-12-01

    The paper deals with a process approach as one of the main principles of the quality management. Quality management systems based on process approach currently represents one of a proofed ways how to manage an organization. The volume of sales, costs and profit levels are influenced by quality of processes and efficient process flow. As results of the research project showed, there are some weaknesses in applying of the process approach in the industrial routine and it has been often only a formal change of the functional management to process management in many organizations in Slovakia. For efficient process management it is essential that companies take attention to the way how to organize their processes and seek for their continuous improvement.

  6. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    PubMed

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  7. Concepts for laser beam parameter monitoring during industrial mass production

    NASA Astrophysics Data System (ADS)

    Harrop, Nicholas J.; Maerten, Otto; Wolf, Stefan; Kramer, Reinhard

    2017-02-01

    In today's industrial mass production, lasers have become an established tool for a variety of processes. As with any other tool, mechanical or otherwise, the laser and its ancillary components are prone to wear and ageing. Monitoring of these ageing processes at full operating power of an industrial laser is challenging for a range of reasons. Not only the damage threshold of the measurement device itself, but also cycle time constraints in industrial processing are just two of these challenges. Power measurement, focus spot size or full beam caustic measurements are being implemented in industrial laser systems. The scope of the measurement and the amount of data collected is limited by the above mentioned cycle time, which in some cases can only be a few seconds. For successful integration of these measurement systems into automated production lines, the devices must be equipped with standardized communication interfaces, enabling a feedback loop from the measurement device to the laser processing systems. If necessary these measurements can be performed before each cycle. Power is determined with either static or dynamic calorimetry while camera and scanning systems are used for beam profile analysis. Power levels can be measured from 25W up to 20 kW, with focus spot sizes between 10μm and several millimeters. We will show, backed by relevant statistical data, that defects or contamination of the laser beam path can be detected with applied measurement systems, enabling a quality control chain to prevent process defects.

  8. Industrial applications of enzyme biocatalysis: Current status and future aspects.

    PubMed

    Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung

    2015-11-15

    Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception thatmore » the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.« less

  10. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  11. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1995-10-17

    A method and system for monitoring an industrial process and a sensor are disclosed. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  12. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1997-05-13

    A method and system are disclosed for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  13. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1995-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  14. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1997-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  15. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    NASA Astrophysics Data System (ADS)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  16. Antibiotic resistance: the challenge from an industry perspective.

    PubMed

    Tillotson, Glenn S

    2009-03-01

    Trained in medical microbiology and infectious diseases in the UK, Glenn Tillotson has over 20 years pharmaceutical experience in various areas, including clinical research, marketing, scientific communications, strategic development and global launch programs. Mainly in the field of anti-infectives, Tillotson has been instrumental in the development of ciprofloxacin and moxifloxacin, as well as other drugs in the Bayer portfolio. After leaving Bayer, he worked as a consultant microbiologist and, in 2003, consulted with Genesoft to help with the commercialization and launch of gemifloxacin, leading to the development of Oscient following the merger of Genesoft and Genome Therapeutics. From late 2003 to early 2006, he focused his efforts on the launch of gemifloxacin into US clinical practice, as well as comarketing and business development deals globally. In April 2006, Tillotson joined Replidyne Inc. as Executive Director of Scientific Affairs working on faropenem, REP 8839 and REP 3123. Presently, Tillotson is Head of Medical Affairs at ViroPharma Inc., where he oversees educational, publication and other related activities for Vancocin(®), maribavir and Cinryze™. Most recently, Tillotson was a member of the Scientific Steering Committee for the International Society of Chemotherapy's Symposium on Clostridium difficile in Leipzig, Germany. Here, he talks with Expert Review of Clinical Pharmacology about the challenge of antibiotic resistance from an industry perspective.

  17. Best practices in incident investigation in the chemical process industries with examples from the industry sector and specifically from Nova Chemicals.

    PubMed

    Morrison, Lisa M

    2004-07-26

    This paper will summarize best practices in incident investigation in the chemical process industries and will provide examples from both the industry sector and specifically from NOVA Chemicals. As a sponsor of the Center for Chemical Process Safety (CCPS), an industry technology alliance of the American Institute of Chemical Engineers, NOVA Chemicals participates in a number of working groups to help develop best practices and tools for the chemical process and associated industries in order to advance chemical process safety. A recent project was to develop an update on guidelines for investigating chemical process incidents. A successful incident investigation management system must ensure that all incidents and near misses are reported, that root causes are identified, that recommendations from incident investigations identify appropriate preventive measures, and that these recommendations are resolved in a timely manner. The key elements of an effective management system for incident investigation will be described. Accepted definitions of such terms as near miss, incident, and root cause will be reviewed. An explanation of the types of incident classification systems in use, along with expected levels of follow-up, will be provided. There are several incident investigation methodologies in use today by members of the CCPS; most of these methodologies incorporate the use of several tools. These tools include: timelines, sequence diagrams, causal factor identification, brainstorming, checklists, pre-defined trees, and team-defined logic trees. Developing appropriate recommendations and then ensuring their resolution is the key to prevention of similar events from recurring, along with the sharing of lessons learned from incidents. There are several sources of information on previous incidents and lessons learned available to companies. In addition, many companies in the chemical process industries use their own internal databases to track recommendations from

  18. Trends and developments in industrial machine vision: 2013

    NASA Astrophysics Data System (ADS)

    Niel, Kurt; Heinzl, Christoph

    2014-03-01

    When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own

  19. Acid emissions monitoring needs in ceramic tile industry: challenges derived from new policy trends

    NASA Astrophysics Data System (ADS)

    Celades, Irina; Gomar, Salvador; Romero, Fernando; Chauhan, Amisha; Delpech, Bertrand; Jouhara, Hussam

    2017-11-01

    The emission of acid compounds during the manufacture of ceramic tiles is strongly related to the presence of precursors in the raw materials and/or fuels used, with some exceptions such as the production of thermal NOX. The stages with the potential to produce significant emissions of these compounds have been identified as the suspension spray drying and tile firing stages. The monitoring of emission levels of acid pollutants in these stages has turned in a great importance issue from a regulatory and industrial aspect. The DREAM project (https://www.spire2030.eu/dream) will tackle the regulation of acidic emissions focusing in the firing stage. The initial stages of the project have made it possible to identify the design requirements for the monitoring system. This will allow the control of acid pollutants emissions and other key parameters such as pressure, flow, temperature and humidity. One of the tasks developed has been the review and compilation of current emissions monitoring systems detailing technical specifications such as: position (in situ or extractive), measurement principle and frequency. The future policy trends in air pollution are encouraging the continuous monitoring across the European industry. The present document assesses the advantages regarding environmental impact control, highlighting the main challenges for the ceramic tile industry.

  20. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    PubMed

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Managing Information in Law Firms: Changes and Challenges

    ERIC Educational Resources Information Center

    Evans, Nina; Price, James

    2017-01-01

    Introduction. Data, information and knowledge together constitute a vital business asset for every organization that enables every business activity, every business process and every business decision. The global legal industry is facing unprecedented change, which inevitably creates challenges for individual law firms. These global changes affect…

  2. Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey.

    PubMed

    Alyuz, Ummugulsum; Alp, Kadir

    2014-08-01

    The broad objective of this study was to develop CO2, PM, SOx, CO, NOx, VOC, NH3 and N2O emission inventory of organic and inorganic chemicals, mineral products, metallurgical, petroleum refining, wood products, food industries of Turkey for 2010 for both co]ntrolled and uncontrolled conditions. In this study, industries were investigated in 7 main categories and 53 sub-sectors and a representative number of pollutants per sub-sector were considered. Each industry was evaluated in terms of emitted emissions only from industrial processes, and fuel combustion activities were excluded (except cement industry). The study employed an approach designed in four stages; identification of key categories; activity data & emission factor search; emission factor analyzing; calculation of emissions. Emission factor analyzing required aggregate and firm analysis of sectors and sub-sectors and deeper insights into underlying specific production methods used in the industry to decide on the most representative emission factor. Industry specific abatement technologies were considered by using open-source documents and industry specific reports. Regarding results of this study, mineral industry and iron & steel industry were determined as important contributors of industrial emissions in Turkey in 2010. Respectively, organic chemicals, petroleum refining, and pulp & paper industries had serious contributions to Turkey's air pollutant emission inventory from industrial processes. The results showed that calculated CO2 emissions for year 2010 was 55,124,263 t, also other emissions were 48,853 t PM, 24,533 t SOx, 79,943 t NOx, 31,908 t VOC, 454 t NH3 and 2264 t N2O under controlled conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Tackling optimization challenges in industrial load control and full-duplex radios

    NASA Astrophysics Data System (ADS)

    Gholian, Armen

    In price-based demand response programs in smart grid, utilities set the price in accordance with the grid operating conditions and consumers respond to price signals by conducting optimal load control to minimize their energy expenditure while satisfying their energy needs. Industrial sector consumes a large portion of world electricity and addressing optimal load control of energy-intensive industrial complexes, such as steel industry and oil-refinery, is of practical importance. Formulating a general industrial complex and addressing issues in optimal industrial load control in smart grid is the focus of the second part of this dissertation. Several industrial load details are considered in the proposed formulation, including those that do not appear in residential or commercial load control problems. Operation under different smart pricing scenarios, namely, day-ahead pricing, time-of-use pricing, peak pricing, inclining block rates, and critical peak pricing are considered. The use of behind-the-meter renewable generation and energy storage is also considered. The formulated optimization problem is originally nonlinear and nonconvex and thus hard to solve. However, it is then reformulated into a tractable linear mixed-integer program. The performance of the design is assessed through various simulations for an oil refinery and a steel mini-mill. In the third part of this dissertation, a novel all-analog RF interference canceler is proposed. Radio self-interference cancellation (SIC) is the fundamental enabler for full-duplex radios. While SIC methods based on baseband digital signal processing and/or beamforming are inadequate, an all-analog method is useful to drastically reduce the self-interference as the first stage of SIC. It is shown that a uniform architecture with uniformly distributed RF attenuators has a performance highly dependent on the carrier frequency. It is also shown that a new architecture with the attenuators distributed in a clustered

  4. Corporate Universities in China: Processes, Issues and Challenges

    ERIC Educational Resources Information Center

    Qiao, June Xuejun

    2009-01-01

    Purpose: This study is intended to investigate the current status of corporate universities in China. It aims to explore the processes and practices of corporate universities in China, and discover the issues and challenges involved in building and running a corporate university in China. Design/methodology/approach: The heads of 11 well-known…

  5. Unfulfilled translation opportunities in industry sponsored clinical trials.

    PubMed

    Smed, Marie; Getz, Kenneth A

    2013-05-01

    Knowledge generated by site representatives through their participation in clinical trials is valuable for testing new products in use and obtaining final market approval. The leverage of this important knowledge is however challenged as the former direct relationships between in-house staff in the industry and site representatives are changing. The process of clinical trials has increased in complexity over the years, resulting in additional management layers. Besides an increase in internal management layers, sponsors often also outsource various tasks related to clinical trials to a CRO (Contract Research Organization) and thereby adding another link in the relationships between site and sponsor. These changes are intended to optimize the time-consuming and costly trial phases; however, there is a need to study whether valuable knowledge and experience is compromised in the process. Limited research exists on the full range of clinical practice insights obtained by investigators during and after clinical trials and how well these insights are transferred to study sponsors. This study explores the important knowledge-transfer processes between sites and sponsors and to what extent sites' knowledge gained in clinical trials is utilized by the industry. Responses from 451 global investigative site representatives are included in the study. The analysis of the extensive dataset reveals that the current processes of collaboration between sites and the industry restrict the leverage of valuable knowledge gained by physicians in the process of clinical trials. These restrictions to knowledge-transfer between site and sponsor are further challenged if CRO partners are integrated in the trial process. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Assessment of critical-fluid extractions in the process industries

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.

  7. Identifying carcinogens: the tobacco industry and regulatory politics in the United States.

    PubMed

    Cook, Daniel M; Bero, Lisa A

    2006-01-01

    The process of identifying carcinogens for purposes of health and safety regulation has been contested internationally. The U.S. government produces a "Report on Carcinogens" every two years, which lists known and likely human carcinogenic substances. In the late 1990s the tobacco industry responded to the proposed listing of secondhand smoke with a multi-part strategy. Despite industry efforts to challenge both the substance of the report and the agency procedures, environmental tobacco smoke was declared by the agency in 2000 to be a known human carcinogen. A subsequent lawsuit, launched by chemical interests but linked to the tobacco industry, failed, but it produced a particular legal precedent of judicial review that is favorable to all regulated industries. The authors argue that, in this case, tobacco industry regulation contradicts academic expectations of business regulatory victories. However, the tobacco industry's participation in the regulatory process influenced the process in favor of all regulated industry.

  8. The Perceived Influence of Industry-Sponsored Credentials on the Recruitment Process in the Information Technology Industry: Employer and Employee Perspectives

    ERIC Educational Resources Information Center

    Bartlett, Kenneth R.; Horwitz, Sujin K.; Ipe, Minu; Liu, Yuwen

    2005-01-01

    The increase in the number of industry-sponsored credential programs raises many questions for career and technical education. This study investigated the perceived influence of industry-sponsored credentials on the recruitment process in the information technology (IT) field. Influence is examined from the perspective of Human Resource (HR)…

  9. Error-proofing test system of industrial components based on image processing

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Huang, Tao

    2018-05-01

    Due to the improvement of modern industrial level and accuracy, conventional manual test fails to satisfy the test standards of enterprises, so digital image processing technique should be utilized to gather and analyze the information on the surface of industrial components, so as to achieve the purpose of test. To test the installation parts of automotive engine, this paper employs camera to capture the images of the components. After these images are preprocessed including denoising, the image processing algorithm relying on flood fill algorithm is used to test the installation of the components. The results prove that this system has very high test accuracy.

  10. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries

    PubMed Central

    Panesar, Parmjit S.; Kumari, Shweta; Panesar, Reeba

    2010-01-01

    The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry. PMID:21234407

  11. Status review and prospects for solar industrial process heat (SIPH)

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Davenport, R.; Feustel, J.

    1983-11-01

    Solar energy systems and components are presently available for industrial process hot air, hot water, and steam applications at temperatures up to about 300 C. Systems capable of operating at temperatures up to about 1000 C are approaching commercialization. A careful matching of the characteristics of the solar system and the industrial process in question has been found by field tests to be an important determinant of the amount of useful energy that can be delivered. While the thermal performance of solar collectors is not expected to improve significantly, better manufacturing, plumbing, and installation techniques may reduce both system and delivered energy costs significantly. Tax credits for solar installations, together with limited partnership financing, can offset the high initial cost of solar energy systems and provide equity between solar and fossil-fueled systems.

  12. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  13. Systems biology of industrial microorganisms.

    PubMed

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    2010-01-01

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  14. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges.

    PubMed

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2015-02-01

    The utilisation of non-feed lignocellulosic biomass as a source of renewable bio-energy and synthesis of fine chemical products is necessary for the sustainable development. The methods for the dissolution of lignocellulosic biomass in conventional solvents are complex and tedious due to the complex chemical ultra-structure of biomass. In view of this, recent developments for the use of ionic liquid solvent (IL) has received great attention, as ILs can solubilise such complex biomass and thus provides industrial scale-up potential. In this review, we have discussed the state-of-art for the dissolution of lignocellulosic material in representative ILs. Furthermore, various process parameters and their influence for biomass dissolution were reviewed. In addition to this, overview of challenges and opportunities related to this interesting area is presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Solar industrial process heat: A study of applications and attitudes

    NASA Astrophysics Data System (ADS)

    Wilson, V.

    1981-04-01

    Data were gathered through site visits to 100 industrial plants. The site specific data suggests several possible near term market opportunities for solar thermal energy systems. Plants using electricity as their primary fuel for industrial process heat were identified, on the basis of their high fuel prices, as attractive early entry markets for solar energy. Additional opportunities were reflected in plants that had accomplished much of their conservation plans, or bad sizeable percentages of their operating budgets committed to energy expenses. A suitability analysis identified eleven industrial plants as highly suitable for solar thermal applications, they included producers of fluid milk, pottery, canned and bottled soft drinks, fabricated structural metal, refined petroleum, aluminum cans, chrome and nickel plating and stamped frame metal and metal finishings.

  16. In situ control of industrial processes using laser light scattering and optical rotation

    NASA Astrophysics Data System (ADS)

    Mendoza Sanchez, Patricia Judith; López Echevarria, Daniel; Huerta Ruelas, Jorge Adalberto

    2006-02-01

    We present results of optical measurements in products or processes usually found in industrial processes, which can be used to control them. Laser light scattering was employed during semiconductor epitaxial growth by molecular beam epitaxy. With this technique, it was possible to determine growth rate, roughness and critical temperatures related to substrate degradation. With the same scattering technique, oil degradation as function of temperature was monitored for different automotive lubricants. Clear differences can be studied between monograde and multigrade oils. Optical rotation measurements as function of temperature were performed in apple juice in a pasteurization process like. Average variations related to optical rotation dependence of sugars were measured and monitored during heating and cooling process, finding a reversible behavior. As opposite behavior, sugar-protein solution was measured in a similar heating and cooling process. Final result showed a non-reversible behavior related to protein denaturation. Potential applications are discussed for metal-mechanic, electronic, food, and pharmaceutical industry. Future improvements in optical systems to make them more portable and easily implemented under typical industry conditions are mentioned.

  17. The CNES Gaia Data Processing Center: A Challenge and its Solutions

    NASA Astrophysics Data System (ADS)

    Chaoul, Laurence; Valette, Veronique

    2011-08-01

    After a brief reminder of the ESA Gaia project, this paper presents the data processing consortium (DPAC) and then the CNES data processing centre (DPCC). We focus on the challenge in terms of organisational aspects, processing capabilities, databases volumetry, and how we deal with these topics.

  18. Picosecond and femtosecond lasers for industrial material processing

    NASA Astrophysics Data System (ADS)

    Mayerhofer, R.; Serbin, J.; Deeg, F. W.

    2016-03-01

    Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.

  19. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.

    PubMed

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.

  20. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    PubMed Central

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  1. Process variation challenges and resolution in the negative-tone develop double patterning for 20nm and below technology node

    NASA Astrophysics Data System (ADS)

    Mehta, Sohan S.; Ganta, Lakshmi K.; Chauhan, Vikrant; Wu, Yixu; Singh, Sunil; Ann, Chia; Subramany, Lokesh; Higgins, Craig; Erenturk, Burcin; Srivastava, Ravi; Singh, Paramjit; Koh, Hui Peng; Cho, David

    2015-03-01

    Immersion based 20nm technology node and below becoming very challenging to chip designers, process and integration due to multiple patterning to integrate one design layer . Negative tone development (NTD) processes have been well accepted by industry experts for enabling technologies 20 nm and below. 193i double patterning is the technology solution for pitch down to 80 nm. This imposes tight control in critical dimension(CD) variation in double patterning where design patterns are decomposed in two different masks such as in litho-etch-litho etch (LELE). CD bimodality has been widely studied in LELE double patterning. A portion of CD tolerance budget is significantly consumed by variations in CD in double patterning. The objective of this work is to study the process variation challenges and resolution in the Negative Tone Develop Process for 20 nm and Below Technology Node. This paper describes the effect of dose slope on CD variation in negative tone develop LELE process. This effect becomes even more challenging with standalone NTD developer process due to q-time driven CD variation. We studied impact of different stacks with combination of binary and attenuated phase shift mask and estimated dose slope contribution individually from stack and mask type. Mask 3D simulation was carried out to understand theoretical aspect. In order to meet the minimum insulator requirement for the worst case on wafer the overlay and critical dimension uniformity (CDU) budget margins have slimmed. Besides the litho process and tool control using enhanced metrology feedback, the variation control has other dependencies too. Color balancing between the two masks in LELE is helpful in countering effects such as iso-dense bias, and pattern shifting. Dummy insertion and the improved decomposition techniques [2] using multiple lower priority constraints can help to a great extent. Innovative color aware routing techniques [3] can also help with achieving more uniform density and

  2. Revisiting Parabolic Trough Concentrators for Industrial Process Heat in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig S.; Kurup, Parthiv; Zhu, Guangdong

    After significant interest in the 1970s, but relatively few deployments, the use of concentrating solar collectors for thermal applications, including enhanced oil recovery, desalination, and industrial process heat (IPH), is again increasing in global interest. In particular, recent advances in collector design and manufacturing have led to reduced cost per square meter of aperture area. In this study, analysis of a modern parabolic trough that is suited for use in small solar IPH (SIPH) applications predicts that the installed solar field cost can be as low as $170/m2. A slightly higher cost of $200/m2 is estimated for facilities typical ofmore » a SIPH plant size. Full project costs will include additional costs for contingency, piping and heat exchanger interface, and project indirect costs. The cost for solar-generated heat by SIPH is quantified by defining the levelized cost of heat (LCOH). California offers a favorable environment for SIPH given its good insolation, gas prices typically higher than the national average, and policies promoting solar-thermal deployment. Given historically low gas prices, competing with natural gas remains the primary challenge to deployment. However, this study finds that the solar LCOH for many regions in California is lower than the LCOH from natural gas, using a representative installed solar hardware price and the average price for industrial natural gas in California. Lastly, modification are in progress to the parabolic trough model within NREL's System Advisor Model (SAM) to allow users to more easily predict performance for these steam-generation applications.« less

  3. Wood industrial application for quality control using image processing

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J. O.; Neves, J. A. C.

    1994-11-01

    This paper describes an application of image processing for the furniture industry. It uses an input data, images acquired directly from wood planks where defects were previously marked by an operator. A set of image processing algorithms separates and codes each defect and detects a polygonal approach of the line representing them. For such a purpose we developed a pattern classification algorithm and a new technique of segmenting defects by carving the convex hull of the binary shape representing each isolated defect.

  4. Industrial Process Cooling Towers: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    Standards limiting discharge of chromium compound air emissions from industrial process cooling towers (IPCT's). Includes rule history, Federal Registry citations, implementation information and additional resources.

  5. Lignocellulosic ethanol production at high-gravity: challenges and perspectives.

    PubMed

    Koppram, Rakesh; Tomás-Pejó, Elia; Xiros, Charilaos; Olsson, Lisbeth

    2014-01-01

    In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The use of exergetic indicators in the food industry - A review.

    PubMed

    Zisopoulos, Filippos K; Rossier-Miranda, Francisco J; van der Goot, Atze Jan; Boom, Remko M

    2017-01-02

    Assessment of sustainability will become more relevant for the food industry in the years to come. Analysis based on exergy, including the use of exergetic indicators and Grassmann diagrams, is a useful tool for the quantitative and qualitative assessment of the efficiency of industrial food chains. In this paper, we review the methodology of exergy analysis and the exergetic indicators that are most appropriate for use in the food industry. The challenges of applying exergy analysis in industrial food chains and the specific features of food processes are also discussed.

  7. Lasers for industrial production processing: tailored tools with increasing flexibility

    NASA Astrophysics Data System (ADS)

    Rath, Wolfram

    2012-03-01

    High-power fiber lasers are the newest generation of diode-pumped solid-state lasers. Due to their all-fiber design they are compact, efficient and robust. Rofin's Fiber lasers are available with highest beam qualities but the use of different process fiber core sizes enables the user additionally to adapt the beam quality, focus size and Rayleigh length to his requirements for best processing results. Multi-mode fibers from 50μm to 600μm with corresponding beam qualities of 2.5 mm.mrad to 25 mm.mrad are typically used. The integrated beam switching modules can make the laser power available to 4 different manufacturing systems or can share the power to two processing heads for parallel processing. Also CO2 Slab lasers combine high power with either "single-mode" beam quality or higher order modes. The wellestablished technique is in use for a large number of industrial applications, processing either metals or non-metallic materials. For many of these applications CO2 lasers remain the best choice of possible laser sources either driven by the specific requirements of the application or because of the cost structure of the application. The actual technical properties of these lasers will be presented including an overview over the wavelength driven differences of application results, examples of current industrial practice as cutting, welding, surface processing including the flexible use of scanners and classical optics processing heads.

  8. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system

    PubMed Central

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed. PMID:24294221

  9. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system.

    PubMed

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed.

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur waits to begin the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. Characterization of process air emissions in automotive production plants.

    PubMed

    D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W

    2016-01-01

    During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.

  12. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi.

    PubMed

    Souza Filho, Pedro F; Nair, Ramkumar B; Andersson, Dan; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2018-01-01

    Currently around one billion people in the world do not have access to a diet which provides enough protein and energy. However, the production of one of the main sources of protein, animal meat, causes severe impacts on the environment. The present study investigates the production of a vegan-mycoprotein concentrate from pea-industry byproduct (PpB), using edible filamentous fungi, with potential application in human nutrition. Edible fungal strains of Ascomycota ( Aspergillus oryzae , Fusarium venenatum , Monascus purpureus , Neurospora intermedia ) and Zygomycota ( Rhizopus oryzae ) phyla were screened and selected for their protein production yield. A. oryzae had the best performance among the tested fungi, with a protein yield of 0.26 g per g of pea-processing byproduct from the bench scale airlift bioreactor cultivation. It is estimated that by integrating the novel fungal process at an existing pea-processing industry, about 680 kg of fungal biomass attributing to about 38% of extra protein could be produced for each 1 metric ton of pea-processing byproduct. This study is the first of its kind to demonstrate the potential of the pea-processing byproduct to be used by filamentous fungi to produce vegan-mycoprotein for human food applications. The pea-processing byproduct (PpB) was proved to be an efficient medium for the growth of filamentous fungi to produce a vegan-protein concentrate. Moreover, an industrial scenario for the production of vegan-mycoprotein concentrate for human nutrition is proposed as an integrated process to the existing PPI production facilities.

  13. An overview of knowledge management (KM) issues for implementation in consultant firms in Malaysian construction industry

    NASA Astrophysics Data System (ADS)

    Othman, Azlan; Ismail, Syuhaida; Yahya, Khairulzan

    2017-12-01

    In the past few years, there has been a growing interest in treating knowledge as a significant organisational resource. Thus, effective development and implementation of KM requires a foundation in several rich literatures. As a preparation for the competitive industrial nation, KM is an important countenance that should be the point of convergence for the industry players. This paper wishes to draw the attention on the current situation of KM practice, focusing on consultant firms in Malaysian construction industry. Questionnaires were distributed to about 200 respondents working in the industry, with the objective of appraising the KM implementation amongst consultant firms working in construction industry in Malaysia. This paper also gives the overview on KM definition, process, understanding and challenges in construction industry, besides the critical success factor of KM implementation. The literature is restricted on the recent KM study of 17 years research from 2000 to 2017. Finally, this paper proposes the conceptual ideas of relationship between KM process, KM understanding and KM challenges with critical success factor of KM implementation.

  14. Stress Responses of the Industrial Workhorse Bacillus licheniformis to Osmotic Challenges

    PubMed Central

    Schroeter, Rebecca; Hoffmann, Tamara; Voigt, Birgit; Meyer, Hanna; Bleisteiner, Monika; Muntel, Jan; Jürgen, Britta; Albrecht, Dirk; Becher, Dörte; Lalk, Michael; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Putzer, Harald; Hecker, Michael; Schweder, Thomas; Bremer, Erhard

    2013-01-01

    The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress. PMID:24348917

  15. Potential for solar industrial process heat in the United States: A look at California

    NASA Astrophysics Data System (ADS)

    Kurup, Parthiv; Turchi, Craig

    2016-05-01

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendly policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.

  16. Potential for Solar Industrial Process Heat in the United States: A Look at California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurup, Parthiv; Turchi, Craig

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendlymore » policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.« less

  17. Solar Program Assessment: Environmental Factors - Solar Agricultural and Industrial Process Heat.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of solar energy as a source of process heat in the industrial and agricultural sectors. To provide a background for this environmental analysis, the basic concepts and technologies of solar process heating are reviewed.…

  18. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    PubMed

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  19. Health hazards of China's lead-acid battery industry: a review of its market drivers, production processes, and health impacts.

    PubMed

    van der Kuijp, Tsering Jan; Huang, Lei; Cherry, Christopher R

    2013-08-03

    Despite China's leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children's blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China's lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world's leading producer, refiner, and consumer of both lead and lead-acid batteries.This review assesses the role of China's rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure.This paper is the first to integrate the market factors, production processes, and health impacts of China's growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health impacts of the lead

  20. Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge.

    PubMed

    Mo, Wing Yin; Man, Yu Bon; Wong, Ming Hung

    2018-02-01

    China's aquaculture industry is growing dramatically in recent years and now accounts for 60.5% of global aquaculture production. Fish protein is expected to play an important role in China's food security. Formulated feed has become the main diet of farmed fish. The species farmed have been diversified, and a large amount of 'trash fish' is directly used as feed or is processed into fishmeal for fish feed. The use of locally available food waste as an alternative protein source for producing fish feed has been suggested as a means of tackling the problem of sourcing safe and sustainable feed. This paper reviews the feasibility of using locally available waste materials, including fish waste, okara and food waste. Although the fishmeal derived from fish waste, okara or food waste is less nutritious than fishmeal from whole fish or soybean meal, most fish species farmed in China, such as tilapia and various Chinese carp, grow well on diets with minimal amounts of fishmeal and 40% digestible carbohydrate. It can be concluded that food waste is suitable as a component of the diet of farmed fish. However, it will be necessary to revise regulations on feed and feed ingredients to facilitate the use of food waste in the manufacture of fish feed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Systems metabolic engineering in an industrial setting.

    PubMed

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  2. Challenges of Integrating NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  3. Challenges of Integrating NASAs Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  4. Challenges of socio-economically evaluating wildfire management on non-industrial private and public forestland in the western United States

    Treesearch

    Tyron J. Venn; David E. Calkin

    2009-01-01

    Non-industrial private forests (NIPFs) and public forests in the United States generate many non-market benefits for landholders and society generally. These values can be both enhanced and diminished by wildfire management. This paper considers the challenges of supporting economically efficient allocation of wildfire suppression resources in a social cost-benefit...

  5. Laser processing of thin films for industrial packaging

    NASA Astrophysics Data System (ADS)

    Sozzi, Michele; Lutey, Adrian H. A.; Cucinotta, Annamaria; Selleri, Stefano; Molari, Pier Gabriele

    2014-05-01

    Single layer thin-film materials such as aluminum, polyethylene, polypropylene, and their multi-layer combinations such as aluminum-paper have been exposed to different laser radiation. A wide number of samples have been processed with 10 - 12.5 ns IR and Green, and 500 - 800 ps IR laser radiation at different translating speeds ranging from 50 mm/s to 1 m/s. High quality incisions have been obtained for all tested materials within the experimental conditions. The presented results provide the necessary parameters for an efficient cut and processing of the tested materials, for the employment of pulsed laser sources in the packaging industry, allowing the laser to prevail in lieu of more costly and energy intensive methods.

  6. Tobacco industry litigation to deter local public health ordinances: the industry usually loses in court

    PubMed Central

    Nixon, M; Mahmoud, L; Glantz, S

    2004-01-01

    Background: The tobacco industry uses claims of state preemption or violations of the US Constitution in litigation to overturn local tobacco control ordinances. Methods: Collection of lawsuits filed or threatened against local governments in the USA; review of previously secret tobacco industry documents; interviews with key informants. Results: The industry is most likely to prevail when a court holds that there is explicit preemption language by the state legislature to exclusively regulate tobacco. The industry has a much weaker record on claims of implied preemption and has lost all challenges brought under equal protection claims in the cases we located. Although the tobacco industry is willing to spend substantial amounts of money on these lawsuits, it never won on constitutional equal protection grounds and lost or dropped 60% (16/27) of the cases it brought claiming implied state preemption. Conclusions: Municipalities should continue to pass ordinances and be prepared to defend them against claims of implied preemption or on constitutional grounds. If the ordinance is properly prepared they will likely prevail. Health advocates should be prepared to assist in this process. PMID:14985600

  7. Challenges and prospects of xylitol production with whole cell bio-catalysis: A review.

    PubMed

    Dasgupta, Diptarka; Bandhu, Sheetal; Adhikari, Dilip K; Ghosh, Debashish

    2017-04-01

    Xylitol, as an alternative low calorie sweetener is well accepted in formulations of various confectioneries and healthcare products. Worldwide it is industrially produced by catalytic hydrogenation of pure d-xylose solution under high temperature and pressure. Biotechnological xylitol production is a potentially attractive replacement for chemical process, as it occurs under much milder process conditions and can be based on sugar mixtures derived from low-cost industrial and agri-waste. However, microbial fermentation route of xylitol production is not so far practiced industrially. This review highlights the challenges and prospects of biotechnological xylitol production considering possible genetic modifications of fermenting microorganisms and various aspects of industrial bioprocessing and product downstreaming. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. How the Food Processing Industry Is Diversifying Rural Minnesota. JSRI Working Paper.

    ERIC Educational Resources Information Center

    Fennelly, Katherine; Leitner, Helga

    The diversification of rural Minnesota is largely the result of the restructuring of the food processing industry and its recruitment of low-wage laborers. The relocation and expansion of food processing plants into rural areas of Minnesota creates a demand for low-wage labor that can not be met locally. Food processing businesses attract…

  9. Microencapsulation Processes

    NASA Astrophysics Data System (ADS)

    Whateley, T. L.; Poncelet, D.

    2005-06-01

    Microencapsulation by solvent evaporation is a novel technique to enable the controlled delivery of active materials.The controlled release of drugs, for example, is a key challenge in the pharmaceutical industries. Although proposed several decades ago, it remains largely an empirical laboratory process.The Topical Team has considered its critical points and the work required to produce a more effective technology - better control of the process for industrial production, understanding of the interfacial dynamics, determination of the solvent evaporation profile, and establishment of the relation between polymer/microcapsule structures.The Team has also defined how microgravity experiments could help in better understanding microencapsulation by solvent evaporation, and it has proposed a strategy for a collaborative project on the topic.

  10. Business Education Students' Evaluation of the Benefits and Challenges Confronting Student Industrial Works Experience Scheme in Edo and Delta States

    ERIC Educational Resources Information Center

    Olumese, H. A.; Ediagbonya, Kennedy

    2016-01-01

    This research paper specifically investigated Business Education students' evaluation of the benefits and challenges confronting Student Industrial Works Experience Scheme (SIWES) in Edo and Delta States. Two research questions were raised to guide the study and were answered descriptively. The descriptive survey research design was adopted for…

  11. Spectroscopy for Industrial Applications: High-Temperature Processes

    NASA Astrophysics Data System (ADS)

    Fateev, Alexander; Grosch, Helge; Clausen, Sonnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2014-06-01

    The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spectral absorption features gases of interest for a specific instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However use of HITRAN is limited to low-temperature processes (< 400 K) and therefor can be used for absorption spectra calculations at limited temperature/pressure ranges. For higher temperatures, the HITEMP-2010 database is available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a development of hot line lists have been made; those have been implemented in the latest HITRAN2012 database1. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV, 0.019 nm) on a flow gas cell2 up to 800 K are presented. Molecules are of great interest in various high-temperature environments including exoplanets, combustion and gasification. Measured NH3 hot lines have been assigned and spectra have been compared with that obtained by calculations based on the BYTe hot line list1. High-temperature NH3 absorption spectra have been used in the analysis of in situ high-resolution IR absorption measurements on the producer gas in low-temperature gasification process on a large scale. High-resolution UV temperature-dependent absorption cross-sections of phenol are reported for the first time. All UV data have been calibrated by relevant GC/MS measurements. Use of the data is demonstrated by the analysis of in situ UV absorption measurements on a

  12. Industrial wastewater treatment with a bioelectrochemical process: assessment of depuration efficiency and energy production.

    PubMed

    Molognoni, Daniele; Chiarolla, Stefania; Cecconet, Daniele; Callegari, Arianna; Capodaglio, Andrea G

    2018-01-01

    Development of renewable energy sources, efficient industrial processes, energy/chemicals recovery from wastes are research issues that are quite contemporary. Bioelectrochemical processes represent an eco-innovative technology for energy and resources recovery from both domestic and industrial wastewaters. The current study was conducted to: (i) assess bioelectrochemical treatability of industrial (dairy) wastewater by microbial fuel cells (MFCs); (ii) determine the effects of the applied organic loading rate (OLR) on MFC performance; (iii) identify factors responsible for reactor energy recovery losses (i.e. overpotentials). For this purpose, an MFC was built and continuously operated for 72 days, during which the anodic chamber was fed with dairy wastewater and the cathodic chamber with an aerated mineral solution. The study demonstrated that industrial effluents from agrifood facilities can be treated by bioelectrochemical systems (BESs) with >85% (average) organic matter removal, recovering power at an observed maximum density of 27 W m -3 . Outcomes were better than in previous (shorter) analogous experiences, and demonstrate that this type of process could be successfully used for dairy wastewater with several advantages.

  13. Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction.

    PubMed

    Gomes, Lúcio de Moura; Duarte, José Leandro da Silva; Pereira, Nathalia Marcelino; Martínez-Huitle, Carlos A; Tonholo, Josealdo; Zanta, Carmen Lúcia de Paiva E Silva

    2014-01-01

    The coconut processing industry generates a significant amount of liquid waste. New technologies targeting the treatment of industrial effluents have emerged, including advanced oxidation processes, the Fenton reaction, and electrochemical processes, which produce strong oxidizing species to remove organic matter. In this study we combined the Fenton reaction and electrochemical process to treat wastewater generated by the coconut industry. We prepared a synthetic wastewater consisting of a mixture of coconut milk and water and assessed how the Fenton reagents' concentration, the cathode material, the current density, and the implementation of associated technologies affect its treatment. Electrochemical treatment followed by the Fenton reaction diminished turbidity and chemical oxygen demand (COD) by 85 and 95%, respectively. The Fenton reaction followed by the electrochemical process reduced turbidity and COD by 93 and 85%, respectively. Therefore, a combination of the Fenton and electrochemical technologies can effectively treat the effluent from the coconut processing industry.

  14. Disinfection efficacy over yeast biofilms of juice processing industries.

    PubMed

    Tarifa, María C; Lozano, Jorge E; Brugnoni, Lorena I

    2018-03-01

    Membrane separation systems represent a hot - spot for biofilm formation in juice industries. Sodium hypochlorite (NaOCl) has been traditionally the disinfectant of choice; however, its effectiveness over well-established biofilms is limited. In this work the study of biofilm formation on ultrafiltration membranes was proposed. The effectiveness of cleaning and disinfection procedures commonly used in juice industry was tested on the removal and killing of cells. The species used (Rhodotorula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from ultrafiltration modules of a clarified apple juice industry. Industrial concentrations of NaOCl (200mgCL∙L -1 ) showed to be effective against planktonic cultures with >4 log reductions, whereas their overall efficiency against adhered cells was smaller. Recovery of viable cell counts to initial numbers was evidenced regardless of the time of colonization. The topography of the surface showed to have an impact on the efficiency of the disinfectant, presenting membranes smaller log reductions than stainless steel (~1.09-1.53logCFU). At 200mgCl∙L -1 only membrane's cross flow recovery was reached with no long-term effect over the attached cells. The overall results demonstrated the recalcitrance of these biofilms to typical cleaning and disinfection process which may confer them with a selective advantage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 78 FR 42085 - Draft Guidance for Industry on Pediatric Study Plans: Content of and Process for Submitting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ...] Draft Guidance for Industry on Pediatric Study Plans: Content of and Process for Submitting Initial... a draft guidance for industry entitled ``Pediatric Study Plans: Content of and Process for... Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Pediatric Study...

  16. Re-thinking Innovation in Organizations in the Industry 4.0 Scenario: New Challenges in a Primary Prevention Perspective.

    PubMed

    Palazzeschi, Letizia; Bucci, Ornella; Di Fabio, Annamaria

    2018-01-01

    In organizations, innovation is considered a relevant aspect of success and long-term survival. Organizations recognize that innovation contributes to creating competitive advantages in a more competitive, challenging and changing labor market. The present contribution addresses innovation in organizations in the scenario of Industry 4.0, including technological innovation and psychological innovation. Innovation is a core concept in this framework to face the challenge of globalized and fluid labor market in the 21st century. Reviewing the definition of innovation, the article focuses on innovative work behaviors and the relative measures. This perspective article also suggests new directions in a primary prevention perspective for future research and intervention relative to innovation and innovative work behaviors in the organizational context.

  17. New Product Development (NPD) Process - An Example of Industrial Sector

    NASA Astrophysics Data System (ADS)

    Kazimierska, Marianna; Grębosz-Krawczyk, Magdalena

    2017-12-01

    This aim of this article is to present the process of new product introduction on example of industrial sector in context of new product development (NPD) concept. In the article, the concept of new product development is discussed and the different stages of the process of new electric motor development are analysed taking into account its objectives, implemented procedures, functions and responsibilities division. In the article, information from secondary sources and the results of empirical research - conducted in an international manufacturing company - are used. The research results show the significance of project leader and regular cooperation with final client in the NPD process.

  18. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  19. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview.

    PubMed

    Vivek, Narisetty; Sindhu, Raveendran; Madhavan, Aravind; Anju, Alphonsa Jose; Castro, Eulogio; Faraco, Vincenza; Pandey, Ashok; Binod, Parameswaran

    2017-09-01

    One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    PubMed

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  1. Breakthrough delivery systems: applying business process innovation.

    PubMed

    Nackel, J G

    1995-01-01

    The way the health care industry conducts business today has been ingrained by over fifty years of tradition. This tradition includes physician training concepts, physician/nurse/patient relationships, and overall organization of the health care delivery system. The industry is now beginning to understand that viewing its operations from an organizational process perspective can provide tremendous competitive advantage. The industry faces perhaps the greatest challenge, because business process innovation requires rethinking the way an organization conducts business. It requires a rediscovery of customer expectations and new revelations about how to provide them with value-added service.

  2. Inactivation of Salmonella Enteritidis on lettuces used by minimally processed vegetable industries.

    PubMed

    Silveira, Josete Bailardi; Hessel, Claudia Titze; Tondo, Eduardo Cesar

    2017-01-30

    Washing and disinfection methods used by minimally processed vegetable industries of Southern Brazil were reproduced in laboratory in order to verify their effectiveness to reduce Salmonella Enteritidis SE86 (SE86) on lettuce. Among the five industries investigated, four carried out washing with potable water followed by disinfection with 200 ppm sodium hypochlorite during different immersion times. The washing procedure alone decreased approximately 1 log CFU/g of SE86 population and immersion times of 1, 2, 5, and 15 minutes in disinfectant solution demonstrated reduction rates ranging from 2.06±0.10 log CFU/g to 3.01±0.21 log CFU/g. Rinsing alone was able to reduce counts from 0.12±0.63 log CFU/g to 1.90±1.07 log CFU/g. The most effective method was washing followed by disinfection with 200 ppm sodium hypochlorite for 15 minutes and final rinse with potable water, reaching 5.83 log CFU/g of reduction. However, no statistical differences were observed on the reduction rates after different immersion times. A time interval of 1 to 2 minutes may be an advantage to the minimally vegetable processed industries in order to optimize the process without putting at risk food safety.

  3. Critical ICT-Inhibiting Factors on IBS Production Management Processes in the Malaysia Construction Industry

    NASA Astrophysics Data System (ADS)

    Ern, Peniel Ang Soon; Kasim, Narimah; Hamid, Zuhairi Abd; Chen, Goh Kai

    2017-10-01

    Industrialized Building System (IBS) is one of the approaches that had been introduced as an alternative to conventional building method where it becomes the new strategy of enhancing the sustainable construction in current industries while spearheading a huge advancement of benefits with green constructions into the existing industries. The IBS approach is actively promoted through several strategies and incentives as an alternative to conventional building methods. Extensive uptakes of modern Information Communication Technology (ICT) applications are able to support the different IBS processes for effective production. However, it is argued that ICT uptake at the organisational level is still in its infancy. This raises the importance to identify critical inhibitors which are inhibing the effective uptake of ICT in the IBS production management process. Critical inhibitors to ICT uptake were identified through questionnaire survey with the IBS industry stakeholders. The mean index and critical t-values are generated with the use of the quantitative tool, Statistical Package for Social Sciences (SPSS). The top ten priority ranked inhibitors reflect the Cost, People and Process elements to ICT uptake. High costs in acquiring the technologies and resistance to change were some main concerns from the findings.

  4. Critical elements in implementations of just-in-time management: empirical study of cement industry in Pakistan.

    PubMed

    Qureshi, Muhammad Imran; Iftikhar, Mehwish; Bhatti, Mansoor Nazir; Shams, Tauqeer; Zaman, Khalid

    2013-01-01

    In recent years, inventory management is continuous challenge for all organizations not only due to heavy cost associated with inventory holding, but also it has a great deal to do with the organizations production process. Cement industry is a growing sector of Pakistan's economy which is now facing problems in capacity utilization of their plants. This study attempts to identify the key strategies for successful implementation of just-in-time (JIT) management philosophy on the cement industry of Pakistan. The study uses survey responses from four hundred operations' managers of cement industry in order to know about the advantages and benefits that cement industry have experienced by Just in time (JIT) adoption. The results show that implementing the quality, product design, inventory management, supply chain and production plans embodied through the JIT philosophy which infect enhances cement industry competitiveness in Pakistan. JIT implementation increases performance by lower level of inventory, reduced operations & inventory costs was reduced eliminates wastage from the processes and reduced unnecessary production which is a big challenge for the manufacturer who are trying to maintain the continuous flow processes. JIT implementation is a vital manufacturing strategy that reaches capacity utilization and minimizes the rate of defect in continuous flow processes. The study emphasize the need for top management commitment in order to incorporate the necessary changes that need to take place in cement industry so that JIT implementation can take place in an effective manner.

  5. Manufacturing and Machining Challenges of Hybrid Aluminium Metal Matix Composites

    NASA Astrophysics Data System (ADS)

    Baburaja, Kammuluri; Sainadh Teja, S.; Karthik Sri, D.; Kuldeep, J.; Gowtham, V.

    2017-08-01

    Manufacturing which involves material removal processes or material addition processes or material transformation processes. One or all the processes to obtain the final desired properties for a material with desired shape which meets the required precision and accuracy values for the expected service life of a material in working conditions. Researchers found the utility of aluminium to be the second largest after steel. Aluminium and its metal matrix composite possess wide applications in various applications in aerospace industry, automobile industry, Constructions and even in kitchen utensils. Hybrid Al-MMCconsist of two different materials, and one will be from organic origin along with the base material. In this paper an attempt is made to bring out the importance of utilization of aluminium and the challenges concerned in manufacturing and machining of hybrid aluminium MMC.

  6. Implementation of Haccp in the Mexican Poultry Processing Industry

    NASA Astrophysics Data System (ADS)

    Maldonado-Siman, Ema; Martínez-Hernández, Pedro Arturo; Ruíz-Flores, Agustín; García-Muñiz, José G.; Cadena-Meneses, José A.

    Hazard Analysis and Critical Control Point (HACCP) is a safety and quality management tool used as major issue in international and domestic trade in food industry. However, detailed information on costs and benefits of HACCP implementation is needed to provide appropriate advice to food processing plants. This paper reports on the perceptions of costs and benefits by the Mexican poultry processing plants and sale destinations. The results suggest that the major costs of implementing and operating HACCP within poultry processing plants are record keeping and external technical advice. The main benefit indicated by the majority of processing plants is a reduction in microbial counts. Over 39% of poultry production is sent to nation-wide chains of supermarkets, and less than 13% is sent to international markets. It was concluded that the adoption of HACCP by the Mexican poultry processing sector is based on the concern to increase and keep the domestic market, rather than to compete in the international market.

  7. Industry challenge to best practice risk communication.

    PubMed

    McEntire, J; Boateng, A

    2012-04-01

    Effective food safety and food defense risk communication helps to inform consumers without causing panic and alarm. The Risk Communication Team of the Natl. Center for Food Protection and Defense has developed a list of 11 best practices recommended for effective risk communication. These practices, designed for a food defense crisis, are currently applied to food safety issues, since fortunately a food defense crisis has yet to occur. IFT examined the utility of these best practices and the limitations on their use during food safety and food defense crises by academics, trade associations, and the government. It was hypothesized that legal and business considerations as well as the nature of the event would determine the implementation of the best practices. Through the use of focus group meetings, it was discovered that there was a low level of awareness of the best practices. However, stakeholders practiced some aspects of the recommended practices. Participants felt some of the practices were related and could be consolidated. They also agreed that a food defense event will increase the urgency of the communication and include players not typically involved in food safety issues. The challenges reported by the stakeholders varied, but legal liability, as well as the impact their communications could have on an industry, were often cited. From the government perspective, their need to act within their authorities drove some of their actions with respect to communication. Determining the differences in communication limitations during food safety against food defense events can provide key information to further developing and refining risk communications and specific messages targeted for a food defense incident. Effective food safety and food defense risk communication helps to inform consumers without causing panic and alarm. Determining the differences in communication limitations during food safety against food defense events can provide key information to

  8. Twenty-First Century Research Needs in Electrostatic Processes Applied to Industry and Medicine

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Sims, R. A.; Biris, A. S.; Srirama, P. K.; Saini, D.; Yurteri, C. U.; Trigwell, S.; De, S.; Sharma, R.

    2005-01-01

    From the early century Nobel Prize winning (1923) experiments with charged oil droplets, resulting in the discovery of the elementary electronic charge by Robert Millikan, to the early 21st century Nobel Prize (2002) awarded to John Fenn for his invention of electrospray ionization mass spectroscopy and its applications to proteomics, electrostatic processes have been successfully applied to many areas of industry and medicine. Generation, transport, deposition, separation, analysis, and control of charged particles involved in the four states of matter: solid, liquid, gas, and plasma are of interest in many industrial and biomedical processes. In this paper, we briefly discuss some of the applications and research needs involving charged particles in industrial and medical applications including: (1) Generation and deposition of unipolarly charged dry powder without the presence of ions or excessive ozone, (2) Control of tribocharging process for consistent and reliable charging, (3) Thin film (less than 25 micrometers) powder coating and Powder coating on insulative surfaces, (4) Fluidization and dispersion of fine powders, (5) Mitigation of Mars dust, (6) Effect of particle charge on the lung deposition of inhaled medical aerosols, (7) Nanoparticle deposition, and (8) Plasma/Corona discharge processes. A brief discussion on the measurements of charged particles and suggestions for research needs are also included.

  9. 76 FR 28662 - Industrial, Commercial, and Institutional Boilers and Process Heaters and Commercial and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2002-0058; EPA-HQ-2003-0119; FRL-9308-6] RIN 2060-AQ25; 2060-AO12 Industrial, Commercial, and Institutional Boilers and Process Heaters and Commercial and Industrial Solid Waste Incineration Units AGENCY: Environmental Protection...

  10. Performance improvement CME for quality: challenges inherent to the process.

    PubMed

    Vakani, Farhan Saeed; O'Beirne, Ronan

    2015-01-01

    The purpose of this paper is to discuss the perspective debates upon the real-time challenges for a three-staged Performance Improvement Continuing Medical Education (PI-CME) model, an innovative and potential approach for future CME, to inform providers to think, prepare and to act proactively. In this discussion, the challenges associated for adopting the American Medical Association's three-staged PI-CME model are reported. Not many institutions in USA are using a three-staged performance improvement model and then customizing it to their own healthcare context for the specific targeted audience. They integrate traditional CME methods with performance and quality initiatives, and linking with CME credits. Overall the US health system is interested in a structured PI-CME model with the potential to improve physicians practicing behaviors. Knowing the dearth of evidence for applying this structured performance improvement methodology into the design of CME activities, and the lack of clarity on challenges inherent to the process that learners and providers encounter. This paper establishes all-important first step to render the set of challenges for a three-staged PI-CME model.

  11. Re-thinking Innovation in Organizations in the Industry 4.0 Scenario: New Challenges in a Primary Prevention Perspective

    PubMed Central

    Palazzeschi, Letizia; Bucci, Ornella; Di Fabio, Annamaria

    2018-01-01

    In organizations, innovation is considered a relevant aspect of success and long-term survival. Organizations recognize that innovation contributes to creating competitive advantages in a more competitive, challenging and changing labor market. The present contribution addresses innovation in organizations in the scenario of Industry 4.0, including technological innovation and psychological innovation. Innovation is a core concept in this framework to face the challenge of globalized and fluid labor market in the 21st century. Reviewing the definition of innovation, the article focuses on innovative work behaviors and the relative measures. This perspective article also suggests new directions in a primary prevention perspective for future research and intervention relative to innovation and innovative work behaviors in the organizational context. PMID:29445349

  12. Challenges in Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Campbell, Donald C.

    1995-01-01

    Aeropropulsion technologies must progress to satisfy increasingly stringent global environmental requirements with economically viable air transportation systems. In this paper, key propulsion technologies to meet future needs are identified and the associated challenges are briefly discussed. Also discussed are NASA's vision, NASA's changing role in meeting today's challenge of a shrinking research budget, and propulsion technology impacts on the environment and air transport economics. Critical aeropropulsion technology drivers are identified and their impact evaluated. The aviation industry is critical to the nation's economy, job creation, and national security. NASA's advanced aeropropulsion technology programs and their relation to the aviation industry are discussed.

  13. A system for classifying wood-using industries and recording statistics for automatic data processing.

    Treesearch

    E.W. Fobes; R.W. Rowe

    1968-01-01

    A system for classifying wood-using industries and recording pertinent statistics for automatic data processing is described. Forms and coding instructions for recording data of primary processing plants are included.

  14. Linking Effective Project Management to Business Strategy in Oil and Gas Industry through Decision-making Processes

    NASA Astrophysics Data System (ADS)

    Adeleke, Adeyinka

    The construction project in the oil and gas industry covers the entire spectrum of hydrocarbon production from the wellhead (upstream) to downstream facilities. In each of these establishments, the activities in a construction project include: consulting, studies, front-end engineering, detail engineering, procurement, program management, construction, installation, commissioning and start-up. Efficient management of each of the activities involved in construction projects is one of the driving forces for the successful completion of the project. Optimizing the crucial factors in project management during each phase of a project in an oil and gas industry can assist managers to maximize the use of available resources and drive the project to successful conclusions. One of these factors is the decision-making process in the construction project. Current research effort investigated the relationship between decision-making processes and business strategy in oil and gas industry using employee surveys. I recruited employees of different races, age group, genders, and years of experience in order understand their influence on the implementation of the decision-making process in oil and gas industry through a quantitative survey. Decision-making was assessed using five decision measures: (a) rational, (b) intuitive, (c) dependent, (d) avoidant, and (e) spontaneous. The findings indicated gender, age, years of work experience and job titles as primary variables with a negative relationship with decision-making approach for employees working in a major oil and gas industry. The study results revealed that the two most likely decision-making methods in oil and gas industry include: making a decision in a logical and systematic way and seek assistance from others when making a decision. Additionally, the two leading management approaches to decision-making in the oil and gas industry include: decision analysis is part of organization culture and management is committed to

  15. Precooking as a Control for Histamine Formation during the Processing of Tuna: An Industrial Process Validation.

    PubMed

    Adams, Farzana; Nolte, Fred; Colton, James; De Beer, John; Weddig, Lisa

    2018-02-23

    An experiment to validate the precooking of tuna as a control for histamine formation was carried out at a commercial tuna factory in Fiji. Albacore tuna ( Thunnus alalunga) were brought on board long-line catcher vessels alive, immediately chilled but never frozen, and delivered to an on-shore facility within 3 to 13 days. These fish were then allowed to spoil at 25 to 30°C for 21 to 25 h to induce high levels of histamine (>50 ppm), as a simulation of "worst-case" postharvest conditions, and subsequently frozen. These spoiled fish later were thawed normally and then precooked at a commercial tuna processing facility to a target maximum core temperature of 60°C. These tuna were then held at ambient temperatures of 19 to 37°C for up to 30 h, and samples were collected every 6 h for histamine analysis. After precooking, no further histamine formation was observed for 12 to 18 h, indicating that a conservative minimum core temperature of 60°C pauses subsequent histamine formation for 12 to 18 h. Using the maximum core temperature of 60°C provided a challenge study to validate a recommended minimum core temperature of 60°C, and 12 to 18 h was sufficient to convert precooked tuna into frozen loins or canned tuna. This industrial-scale process validation study provides support at a high confidence level for the preventive histamine control associated with precooking. This study was conducted with tuna deliberately allowed to spoil to induce high concentrations of histamine and histamine-forming capacity and to fail standard organoleptic evaluations, and the critical limits for precooking were validated. Thus, these limits can be used in a hazard analysis critical control point plan in which precooking is identified as a critical control point.

  16. Probiotics and prebiotics--perspectives and challenges.

    PubMed

    Figueroa-González, Ivonne; Quijano, Guillermo; Ramírez, Gerardo; Cruz-Guerrero, Alma

    2011-06-01

    Owing to their health benefits, probiotics and prebiotics are nowadays widely used in yogurts and fermented milks, which are leader products of functional foods worldwide. The world market for functional foods has grown rapidly in the last three decades, with an estimated size in 2003 of ca US$ 33 billion, while the European market estimation exceeded US$ 2 billion in the same year. However, the production of probiotics and prebiotics at industrial scale faces several challenges, including the search for economical and abundant raw materials for prebiotic production, the low-cost production of probiotics and the improvement of probiotic viability after storage or during the manufacturing process of the functional food. In this review, functional foods based on probiotics and prebiotics are introduced as a key biotechnological field with tremendous potential for innovation. A concise state of the art addressing the fundamentals and challenges for the development of new probiotic- and prebiotic-based foods is presented, the niches for future research being clearly identified and discussed. Copyright © 2011 Society of Chemical Industry.

  17. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor.

    PubMed

    Głuszcz, Paweł; Petera, Jerzy; Ledakowicz, Stanisław

    2011-03-01

    The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic mercury bioreduction to Hg(0) by immobilized microorganisms. Model calculations were verified using experimental data obtained during the process of industrial wastewater bioremediation in the bioreactor of 1 m³ volume. It was found that the presented model reflects the properties of the real system quite well. Numerical simulation of the bioremediation process confirmed the experimentally observed positive effect of the integration of ionic mercury adsorption and bioreduction in one apparatus.

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA program manager of Centennial Challenges, watches as robots attempt the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sample Return Robot Challenge staff members confer before the team Survey robots makes it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. Workplace Basic Skills in the Metal Casting Industry for World Class Process and Technology.

    ERIC Educational Resources Information Center

    Rasmussen, Bonnie

    A workplace basic skills project for the metal casting industry was established jointly by Central Alabama Community College and Robinson Foundry, Inc. Evaluation of the project was made through a commercial test of hourly workers' general literacy level gains, instructor-developed pre- and posttests of mastery of the industrial process and…

  1. Competent statistical programmer: Need of business process outsourcing industry

    PubMed Central

    Khan, Imran

    2014-01-01

    Over the last two decades Business Process Outsourcing (BPO) has evolved as much mature practice. India is looked as preferred destination for pharmaceutical outsourcing over a cost arbitrage. Among the biometrics outsourcing, statistical programming and analysis required very niche skill for service delivery. The demand and supply ratios are imbalance due to high churn out rate and less supply of competent programmer. Industry is moving from task delivery to ownership and accountability. The paradigm shift from an outsourcing to consulting is triggering the need for competent statistical programmer. Programmers should be trained in technical, analytical, problem solving, decision making and soft skill as the expectations from the customer are changing from task delivery to accountability of the project. This paper will highlight the common issue SAS programming service industry is facing and skills the programmers need to develop to cope up with these changes. PMID:24987578

  2. Competent statistical programmer: Need of business process outsourcing industry.

    PubMed

    Khan, Imran

    2014-07-01

    Over the last two decades Business Process Outsourcing (BPO) has evolved as much mature practice. India is looked as preferred destination for pharmaceutical outsourcing over a cost arbitrage. Among the biometrics outsourcing, statistical programming and analysis required very niche skill for service delivery. The demand and supply ratios are imbalance due to high churn out rate and less supply of competent programmer. Industry is moving from task delivery to ownership and accountability. The paradigm shift from an outsourcing to consulting is triggering the need for competent statistical programmer. Programmers should be trained in technical, analytical, problem solving, decision making and soft skill as the expectations from the customer are changing from task delivery to accountability of the project. This paper will highlight the common issue SAS programming service industry is facing and skills the programmers need to develop to cope up with these changes.

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is seen during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Retrievers team robot is seen as it attempts the level one challenge the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. Antibiotic-resistant bacteria: a challenge for the food industry.

    PubMed

    Capita, Rosa; Alonso-Calleja, Carlos

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.

  6. Energy saving processes for nitrogen removal in organic wastewater from food processing industries in Thailand.

    PubMed

    Johansen, N H; Suksawad, N; Balslev, P

    2004-01-01

    Nitrogen removal from organic wastewater is becoming a demand in developed communities. The use of nitrite as intermediate in the treatment of wastewater has been largely ignored, but is actually a relevant energy saving process compared to conventional nitrification/denitrification using nitrate as intermediate. Full-scale results and pilot-scale results using this process are presented. The process needs some additional process considerations and process control to be utilized. Especially under tropical conditions the nitritation process will round easily, and it must be expected that many AS treatment plants in the food industry already produce NO2-N. This uncontrolled nitrogen conversion can be the main cause for sludge bulking problems. It is expected that sludge bulking problems in many cases can be solved just by changing the process control in order to run a more consequent nitritation. Theoretically this process will decrease the oxygen consumption for oxidation by 25% and the use of carbon source for the reduction will be decreased by 40% compared to the conventional process.

  7. Treatment of sugar processing industry effluent up to remittance limits: Suitability of hybrid electrode for electrochemical reactor.

    PubMed

    Sahu, Omprakash

    2017-01-01

    Sugar industry is an oldest accommodates industry in the world. It required and discharges a large amount of water for processing. Removal of chemical oxygen demand and color through the electrochemical process including hybrid iron and aluminum electrode was examined for the treatment of cane-based sugar industry wastewater. Most favorable condition at pH 6.5, inter-electrode gap 20 mm, current density 156 A m -2 , electrolyte concentration 0.5 M and reaction time 120 min, 90% COD and 93.5% color removal was achieved. The sludge generated after treatment has less organic contain, which can be used as manure in agricultural crops. Overall the electrocoagulation was found to be reliable, efficient and economically fit to treat the sugar industry wastewater. •Electrocoagulation method for sugar processing industry wastewater treatment Optimization of operating parameters for maximum efficiency.•Physicochemical analysis of sludge and scum.•Significance of hydride metal electrode for pollutant removal.

  8. Applications of multi-spectral imaging: failsafe industrial flame detector

    NASA Astrophysics Data System (ADS)

    Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath

    2016-05-01

    Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.

  9. Challenge and Change

    ERIC Educational Resources Information Center

    Mehaffy, George L.

    2012-01-01

    In the past twenty years, various industries have been forever altered by technology: newspapers, book publishing, the photography business, and many more. Higher education too faces unprecedented challenges primarily driven by rapid changes in technology. To meet these challenges and adapt to these changes, new models are needed. Six challenges…

  10. Grand Challenges and Chemical Engineering Curriculum--Developments at TU Dortmund University

    ERIC Educational Resources Information Center

    Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej

    2016-01-01

    Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…

  11. Freeform Optics: current challenges for future serial production

    NASA Astrophysics Data System (ADS)

    Schindler, C.; Köhler, T.; Roth, E.

    2017-10-01

    One of the major developments in optics industry recently is the commercial manufacturing of freeform surfaces for optical mid- and high performance systems. The loss of limitation on rotational symmetry enables completely new optical design solutions - but causes completely new challenges for the manufacturer too. Adapting the serial production from radial-symmetric to freeform optics cannot be done just by the extension of machine capabilities and software for every process step. New solutions for conventional optics productions or completely new process chains are necessary.

  12. Process model economics of xanthan production from confectionery industry wastewaters.

    PubMed

    Bajić, Bojana Ž; Vučurović, Damjan G; Dodić, Siniša N; Grahovac, Jovana A; Dodić, Jelena M

    2017-12-01

    In this research a process and cost model for a xanthan production facility was developed using process simulation software (SuperPro Designer ® ). This work represents a novelty in the field for two reasons. One is that xanthan gum has been produced from several wastes but never from wastewaters from confectionery industries. The other more important is that the aforementioned software, which in intended exclusively for bioprocesses, is used for generating a base case, i.e. starting point for transferring the technology to industrial scales. Previously acquired experimental knowledge about using confectionery wastewaters from five different factories as substitutes for commercially used cultivation medium have been incorporated into the process model in order to obtain an economic viability of implementing such substrates. A lower initial sugar content in the medium based on wastewater (28.41 g/L) compared to the synthetic medium (30.00 g/L) gave a lower xanthan content at the end of cultivation (23.98 and 26.27 g/L, respectively). Although this resulted in somewhat poorer economic parameters, they were still in the range of being an investment of interest. Also the possibility of utilizing a cheap resource (waste) and reducing pollution that would result from its disposal has a positive effect on the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Generic antibiotic industries: Challenges and implied strategies with regulatory perspectives

    PubMed Central

    Venkatesh, M.; Bairavi, V. G.; Sasikumar, K. C.

    2011-01-01

    Ever since the discovery of antibiotics, the quality of human life greatly improved in the 20th century. The discovery of penicillin transformed the medicine industry and initiated a search for a better antibiotic every time resulting in several synthetic and semi-synthetic antibiotics. Beginning with the 1937 sulfa drug tragedy, the drug regulations had a parallel growth along with the antibiotics and the antibiotic-based generic Pharma industries. This review article is focused on the scenario depicting current global Pharma industries based on generic antibiotics. Several regulatory aspects involved with these industries have been discussed along with the complexity of the market, issues that could affect their growth, their struggle for quality, and their compliance with the tightened regulations. With the skyrocketing commercialization of antibiotics through generics and the leveraging technologic renaissance, generic industries are involved in providing maximum safer benefits for the welfare of the people, highlighting its need today.. PMID:21430959

  14. Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia.

    PubMed

    Kehili, Mouna; Schmidt, Lisa Marie; Reynolds, Wienke; Zammel, Ayachi; Zetzl, Carsten; Smirnova, Irina; Allouche, Noureddine; Sayadi, Sami

    2016-01-01

    In today's consumer perception of industrial processes and food production, aspects like food quality, human health, environmental safety, and energy security have become the keywords. Therefore, much effort has been extended toward adding value to biowastes of agri-food industries through biorefinery processing approaches. This study focused, for the first time, on the valorization of tomato by-products of a Tunisian industry for the recovery of value-added compounds using biorefinery cascade processing. The process integrated supercritical CO 2 extraction of carotenoids within the oil fractions from tomato seeds (TS) and tomato peels (TP), followed by a batch isolation of protein from the residues. The remaining lignocellulosic matter from both fractions was then submitted to a liquid hot water (LHW) hydrolysis. Supercritical CO 2 experiments extracted 5.79% oleoresin, 410.53 mg lycopene/kg, and 31.38 mg β-carotene/kg from TP and 26.29% oil, 27.84 mg lycopene/kg, and 5.25 mg β-carotene/kg from TS, on dry weights. Protein extraction yields, nearing 30% of the initial protein contents equal to 13.28% in TP and 39.26% in TS, revealed that TP and TS are a rich source of essential amino acids. LHW treatment run at 120-200 °C, 50 bar for 30 min showed that a temperature of 160 °C was the most convenient for cellulose and hemicellulose hydrolysis from TP and TS, while keeping the degradation products low. Results indicated that tomato by-products are not only a green source of lycopene-rich oleoresin and tomato seed oil (TSO) and of protein with good nutritional quality but also a source of lignocellulosic matter with potential for bioethanol production. This study would provide an important reference for the concept and the feasibility of the cascade fractionation of valuable compounds from tomato industrial by-products.Graphical abstractSchema of biorefinery cascade processing of tomato industrial by-products toward isolation of valuable fractions.

  15. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  16. Effects of industrial cashew nut processing on anacardic acid content and allergen recognition by IgE.

    PubMed

    Mattison, Christopher P; Malveira Cavalcante, Jéfferson; Izabel Gallão, Maria; Sousa de Brito, Edy

    2018-02-01

    Cashew nuts are important both nutritionally and industrially, but can also cause food allergies in some individuals. The present study aimed to assess the effect(s) of industrial processing on anacardic acids and allergens present in cashew nuts. Sample analyses were performed using liquid chromatography coupled with mass spectrometry, SDS-PAGE and immunoassay. The anacardic acid concentration ranged from 6.2 to 82.6mg/g during processing, and this variation was attributed to cashew nut shell liquid incorporation during storage and humidification. Dehydrated and selected samples did not significantly differ in anacardic acid content, having values similar to the raw sample. SDS-PAGE and immunoassay analysis with rabbit polyclonal sera and human IgE indicated only minor differences in protein solubility and antibody binding following processing steps. The findings indicate that appreciable amounts of anacardic acid remain in processed nuts, and that changes to cashew allergens during industrial processing may only mildly affect antibody recognition. Published by Elsevier Ltd.

  17. Sustainable Materials Management (SMM) Web Academy Webinar: An Introduction to Lithium Batteries and the Challenges that they Pose to the Waste and Recycling Industry

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled, An Introduction to Lithium Batteries and the Challenges that they Pose to the Waste and Recycling Industry.

  18. Commercial Nuclear Power Industry: Assessing and Meeting the Radiation Protection Workforce Needs.

    PubMed

    Hiatt, Jerry W

    2017-02-01

    This paper will provide an overview of the process used by the commercial nuclear power industry in assessing the status of existing industry staffing and projecting future supply demand needs. The most recent Nuclear Energy Institute-developed "Pipeline Survey Results" will be reviewed with specific emphasis on the radiation protection specialty. Both radiation protection technician and health physicist specialties will be discussed. The industry-initiated Nuclear Uniform Curriculum Program will be reviewed as an example of how the industry has addressed the need for developing additional resources. Furthermore, the reality of challenges encountered in maintaining the needed number of health physicists will also be discussed.

  19. VerifEYE: a real-time meat inspection system for the beef processing industry

    NASA Astrophysics Data System (ADS)

    Kocak, Donna M.; Caimi, Frank M.; Flick, Rick L.; Elharti, Abdelmoula

    2003-02-01

    Described is a real-time meat inspection system developed for the beef processing industry by eMerge Interactive. Designed to detect and localize trace amounts of contamination on cattle carcasses in the packing process, the system affords the beef industry an accurate, high speed, passive optical method of inspection. Using a method patented by United States Department of Agriculture and Iowa State University, the system takes advantage of fluorescing chlorophyll found in the animal's diet and therefore the digestive track to allow detection and imaging of contaminated areas that may harbor potentially dangerous microbial pathogens. Featuring real-time image processing and documentation of performance, the system can be easily integrated into a processing facility's Hazard Analysis and Critical Control Point quality assurance program. This paper describes the VerifEYE carcass inspection and removal verification system. Results indicating the feasibility of the method, as well as field data collected using a prototype system during four university trials conducted in 2001 are presented. Two successful demonstrations using the prototype system were held at a major U.S. meat processing facility in early 2002.

  20. Analysis of the physiotherapy industry: challenges for marketing.

    PubMed

    Sheppard, L

    1996-01-01

    The physiotherapy industry can be analysed using Porter's (1979) five forces. Physiotherapy uses medical, geographic and funding segmentation. The power of the buyers in these segments is considerable. Substitutes are posing a threat to physiotherapy with few barriers to entry to operate in the health care environment. The suppliers, particularly doctors, have significant power in referring clients. Competitive rivalry for these clients can exist between individual physiotherapists and multi-disciplinary clinics. The difference in orientation of private and public physiotherapy can also be a basis for rivalry. Repositioning to view the client as both the supplier and recipients enables the physiotherapy industry to gain competitive advantage and ensures long term growth.

  1. Challenging/interesting lignin times

    DOE PAGES

    Ragauskas, Arthur J.

    2016-08-31

    Anyone who is working in the fuels industry knows that we are living in challenging times. On a personal note, I recall that ~5 years ago, some of my children's friends headed out into the petroleum industry to start their careers and several have now returned because of the retrenching work force. Despite these challenging times, the cellulosic ethanol industry continues to develop commercial operations, but with today's cost structure, biofuels production facilities have certainly slowed their pace of development and roll-out. Furthermore, the biological technology platform for biorefining plant polysaccharides to biofuels has been reported to have an intrinsicmore » advantage, if it can convert its waste lignin stream to value-added components.[1]« less

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis.

    PubMed

    Wohlgemuth, Roland; Plazl, Igor; Žnidaršič-Plazl, Polona; Gernaey, Krist V; Woodley, John M

    2015-05-01

    Despite the expanding presence of microscale technology in chemical synthesis and energy production as well as in biomedical devices and analytical and diagnostic tools, its potential in biocatalytic processes for pharmaceutical and fine chemicals, as well as related industries, has not yet been fully exploited. The aim of this review is to shed light on the strategic advantages of this promising technology for the development and realization of biocatalytic processes and subsequent product recovery steps, demonstrated with examples from the literature. Constraints, opportunities, and the future outlook for the implementation of these key green engineering methods and the role of supporting tools such as mathematical models to establish sustainable production processes are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. High Power Laser Hybrid Welding - Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Nielsen, Steen Erik

    High power industrial lasers at power levels up to 100 kW is now available on the market. Therefore, welding of thicker materials has become of interest for the heavy metal industry e.g. shipyards and wind mill producers. Further, the power plant industry, producers of steel pipes, heavy machinery and steel producers are following this new technology with great interest. At Lindø Welding Technology (LWT), which is a subsidiary to FORCE Technology, a 32-kwatt disc laser is installed. At this laser facility, welding procedures related to thick section steel applications are developed. Material thicknesses between 40 and 100 mm are currently of interest. This paper describes some of the challenges that are related to the development of the high power hybrid laser welding process as well as to the perspectives for the technology as a production tool for the heavy metal industry.

  6. ASME Material Challenges for Advanced Reactor Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at highermore » temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.« less

  7. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    PubMed

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.

  8. Health hazards of China’s lead-acid battery industry: a review of its market drivers, production processes, and health impacts

    PubMed Central

    2013-01-01

    Despite China’s leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children’s blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China’s lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world’s leading producer, refiner, and consumer of both lead and lead-acid batteries. This review assesses the role of China’s rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure. This paper is the first to integrate the market factors, production processes, and health impacts of China’s growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health

  9. Homogeneous sonophotolysis of food processing industry wastewater: Study of synergistic effects, mineralization and toxicity removal.

    PubMed

    Durán, A; Monteagudo, J M; Sanmartín, I; Gómez, P

    2013-03-01

    The mineralization of industrial wastewater coming from food industry using an emerging homogeneous sonophotolytic oxidation process was evaluated as an alternative to or a rapid pretreatment step for conventional anaerobic digestion with the aim of considerably reducing the total treatment time. At the selected operation conditions ([H(2)O(2)]=11,750ppm, pH=8, amplitude=50%, pulse length (cycles)=1), 60% of TOC is removed after 60min and 98% after 180min when treating an industrial effluent with 2114ppm of total organic carbon (TOC). This process removed completely the toxicity generated during storing or due to intermediate compounds. An important synergistic effect between sonolysis and photolysis (H(2)O(2)/UV) was observed. Thus the sonophotolysis (ultrasound/H(2)O(2)/UV) technique significantly increases TOC removal when compared with each individual process. Finally, a preliminary economical analysis confirms that the sono-photolysis with H(2)O(2) and pretreated water is a profitable system when compared with the same process without using ultrasound waves and with no pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot retrieves a sample during a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team prepares their rover for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Team Cephal's robot is seen on the starting platform during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the Intrepid Systems team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot is seen as it begins the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team Mountaineers robot is seen as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Stellar Automation Systems team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    All four of team KuuKulgur's robots are seen as they attempt the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Spectators watch as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team Middleman's robot, Ro-Bear, is seen as it starts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The team Mountaineers robot is seen after picking up the sample during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Two of team KuuKulgur's robots are seen as they attempt a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the University of Waterloo Robotics Team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Members of team Survey follow their robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The entrance to Institute Park is seen during the level one challenge as during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA Centennial Challenges Program Manager, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot approaches the sample as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team survey robot is seen on the starting platform before begging it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Mountaineers team from West Virginia University, watches as their robot attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Team Survey's robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. Industrialization of the ion plating process

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    A new process referred to as ion plating by induction heating (IPIH) is described, which combines the advantages of both ion plating and induction heating. The IPIH apparatus consists of the specimen (cathode) to be coated and the evaporation heating source, which is a ceramic crucible containing the metal to be heated. The specimen is an internal part of the high-voltage ceramic-metal vacuum feedthrough and is connected to the negative terminal of the high-voltage power supply, the positive terminal of the power supply being grounded. The plating conditions are the same as those most commonly used in industrial ion plating. A number of metals - such as nickel, iron, platinum - which were practically impossible to deposit by resistance heating evaporation can now be effectively evaporated and deposited to any desired thickness. Excellent adherence is observed for many metals deposited on various metal surfaces in thicknesses from 0.15 to 50 microns, regardless of the materials selected for coating and substrate.

  13. Near-miss incident management in the chemical process industry.

    PubMed

    Phimister, James R; Oktem, Ulku; Kleindorfer, Paul R; Kunreuther, Howard

    2003-06-01

    This article provides a systematic framework for the analysis and improvement of near-miss programs in the chemical process industries. Near-miss programs improve corporate environmental, health, and safety (EHS) performance through the identification and management of near misses. Based on more than 100 interviews at 20 chemical and pharmaceutical facilities, a seven-stage framework has been developed and is presented herein. The framework enables sites to analyze their own near-miss programs, identify weak management links, and implement systemwide improvements.

  14. Determination of the toxic variability of lipophilic biotoxins in marine bivalve and gastropod tissues treated with an industrial canning process.

    PubMed

    García, Carlos; Oyaneder-Terrazas, Javiera; Contreras, Cristóbal; Del Campo, Miguel; Torres, Rafael; Contreras, Héctor R

    2016-11-01

    Contamination of shellfish with lipophilic marine biotoxins (LMB), pectenotoxins (PTXs), yessotoxins (YTXs) and okadaic acid (OA) toxin groups in southern Chile is a constant challenge for the development of miticulture considering the high incidence of toxic episodes that tend to occur. This research is focused on using methodologies for assessing the decrease in toxins of natural resources in Chile with high value, without altering the organoleptic properties of the shellfish. The species were processed through steaming (1 min at 121°C) and subsequent canning (5 min at 121°C). Changes in the profiles of toxins and total toxicity levels of LMB in endemic bivalves and gastropods were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total reduction of toxicity (≈ 15%) was not related to the destruction of the toxin, but rather to the loss of LMB on removing the shells and packing media of canned products (***p < 0.001). Industrial processing of shellfish reduces LMB contents by up to 15% of the total initial contents, concomitant only with the interconversion of PTX-group toxins into PTX-2sa. In soft bottom-dwelling species with toxicities beyond the standard for safe human consumption (≥ 160 μg OA-eq kg - 1 ), toxicity can be reduced to safe levels through industrial preparation procedures.

  15. Assessment Study on Sensors and Automation in the Industries of the Future. Reports on Industrial Controls, Information Processing, Automation, and Robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Bonnie; Boddy, Mark; Doyle, Frank

    This report presents the results of an expert study to identify research opportunities for Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The research opportunities are prioritized by realizable energy savings. The study encompasses the technology areas of industrial controls, information processing, automation, and robotics. These areas have been central areas of focus of many Industries of the Future (IOF) technology roadmaps. This report identifies opportunities for energy savings as a direct result of advances in these areas and also recognizes indirect means of achieving energy savings, such as product quality improvement,more » productivity improvement, and reduction of recycle.« less

  16. Industrial Processes to Reduce Generation of Hazardous Waste at DoD facilities. Phase Report. Appendix A

    DTIC Science & Technology

    1985-12-01

    ITASK IWORK UNIT Roo 2󈧆 DELEMENT NO. NO. NO. IACCESSION NO ~2sI DC tn 200061 1 ift E (include Security Classification) Industrit I Processes to Reduice...SCRT LSIIAINO HSPG Bes Av ia l ther editions are obsolete. I iN 1 ALSs I F1 1- Bs Available INDUSTRIAL PROCESSES TO REDUCE GENERATION OF HAZARDOUS...Defense (DOD) by CH2M HILL and PEER Consultants, Inc., for the purpose of reducing hazardous waste generation from DOD industrial processes . It is not

  17. Rice industrial processing worldwide and impact on macro- and micronutrient content, stability, and retention

    USDA-ARS?s Scientific Manuscript database

    Various processing methods are used in the food industry worldwide to produce numerous rice products with desirable sensory qualities based on cultural and cooking preferences and nutritional considerations. The processes result in variable degrees of macro- and micronutrient content, stability, and...

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey speaks with Sample Return Robot Challenge staff members after the team's robot failed to leave the starting platform during it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. Industrial biomanufacturing: The future of chemical production.

    PubMed

    Clomburg, James M; Crumbley, Anna M; Gonzalez, Ramon

    2017-01-06

    The current model for industrial chemical manufacturing employs large-scale megafacilities that benefit from economies of unit scale. However, this strategy faces environmental, geographical, political, and economic challenges associated with energy and manufacturing demands. We review how exploiting biological processes for manufacturing (i.e., industrial biomanufacturing) addresses these concerns while also supporting and benefiting from economies of unit number. Key to this approach is the inherent small scale and capital efficiency of bioprocesses and the ability of engineered biocatalysts to produce designer products at high carbon and energy efficiency with adjustable output, at high selectivity, and under mild process conditions. The biological conversion of single-carbon compounds represents a test bed to establish this paradigm, enabling rapid, mobile, and widespread deployment, access to remote and distributed resources, and adaptation to new and changing markets. Copyright © 2017, American Association for the Advancement of Science.

  20. The globalization of the arms industry: The next proliferation challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitzinger, R.A.

    1994-12-31

    The globalization of the arms industry entails a significant shift away from traditional, single-country patterns of weapons production toward internationalization of the development, production, and marketing of arms. While wholly indigenous armaments production may be on the decline, multinational arms production - through collaboration on individual weapon systems and increasingly via interfirm linkages across the international arms industry - appears actually to be expanding. In several instances, in fact, multinational armaments production is increasingly supplementing or even supplanting indigenous or autonomous weapons production or arms imports. The emergence of an increasingly transnational defense technology and industrial base is fundamentally affectingmore » the shape and content of much of the global arms trade. This changing defense market, in turn, will have a profound impact on a number of national security issues concerning the Western industrialized nations. 3 figs., 2 tabs.« less

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur watches as their robots attempt the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. Corrosion Challenges for the Oil and Gas Industry in the State of Qatar

    NASA Astrophysics Data System (ADS)

    Johnsen, Roy

    In Qatar oil and gas has been produced from onshore fields in more than 70 years, while the first offshore field delivered its first crude oil in 1965. Due to the atmospheric conditions in Qatar with periodically high humidity, high chloride content, dust/sand combined with the temperature variations, external corrosion is a big treat to the installations and connecting infrastructure. Internal corrosion in tubing, piping and process systems is also a challenge due to high H2S content in the hydrocarbon mixture and exposure to corrosive aquifer water. To avoid corrosion different type of mitigations like application of coating, chemical treatment and material selection are important elements. This presentation will review the experiences with corrosion challenges for oil & gas installations in Qatar including some examples of corrosion failures that have been seen.

  3. Microwave processing of cement and concrete materials – towards an industrial reality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttress, Adam, E-mail: adam.buttress@nottingham.ac.uk; Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  4. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation.

    PubMed

    Jansen, Mickel L A; Bracher, Jasmine M; Papapetridis, Ioannis; Verhoeven, Maarten D; de Bruijn, Hans; de Waal, Paul P; van Maris, Antonius J A; Klaassen, Paul; Pronk, Jack T

    2017-08-01

    The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions. © FEMS 2017.

  5. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation

    PubMed Central

    Jansen, Mickel L. A.; Bracher, Jasmine M.; Papapetridis, Ioannis; Verhoeven, Maarten D.; de Bruijn, Hans; de Waal, Paul P.; van Maris, Antonius J. A.; Klaassen, Paul

    2017-01-01

    Abstract The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions. PMID:28899031

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Ahti Heinla, left, and Sulo Kallas, right, from Estonia, prepare team KuuKulgur's robot for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    A sample can be seen on the competition field as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Jascha Little of team Survey is seen as he follows the teams robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of California Santa Cruz Rover Team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team's robot is seen prior to starting it's second attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team poses for a picture with their robot following their attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of Waterloo Robotics Team, from Canada, prepares to place their robot on the start platform during the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is interviewed by a member of the media before the start of level two competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jerry Waechter of team Middleman from Dunedin, Florida, speaks about his team's robot, Ro-Bear, as it makes it attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. Parallel programming of industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, M; Koniges, A; Simon, H

    1998-07-21

    In the introductory material, we overview the typical MPP environment for real application computing and the special tools available such as parallel debuggers and performance analyzers. Next, we draw from a series of real applications codes and discuss the specific challenges and problems that are encountered in parallelizing these individual applications. The application areas drawn from include biomedical sciences, materials processing and design, plasma and fluid dynamics, and others. We show how it was possible to get a particular application to run efficiently and what steps were necessary. Finally we end with a summary of the lessons learned from thesemore » applications and predictions for the future of industrial parallel computing. This tutorial is based on material from a forthcoming book entitled: "Industrial Strength Parallel Computing" to be published by Morgan Kaufmann Publishers (ISBN l-55860-54).« less

  16. Theory and Practice Meets in Industrial Process Design -Educational Perspective-

    NASA Astrophysics Data System (ADS)

    Aramo-Immonen, Heli; Toikka, Tarja

    Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.

  17. Skills Planning for Industry Growth: A Case Study of the Katherine Arts Industry. Occasional Paper

    ERIC Educational Resources Information Center

    Curry, Catherine

    2009-01-01

    The findings of a cultural industries skills audit undertaken in 2008 in Katherine, Northern Territory, are explored. The case study focusses in particular on the practical challenges and implications of auditing skills in a diverse industry sector and considers the usefulness of such an audit in preparing an industry for predicted change. This…

  18. Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry.

    PubMed

    Sáiz-Abajo, María-José; González-Ferrero, Carolina; Moreno-Ruiz, Ana; Romo-Hualde, Ana; González-Navarro, Carlos J

    2013-06-01

    β-Carotene is a carotenoid usually applied in the food industry as a precursor of vitamin A or as a colourant. β-Carotene is a labile compound easily degraded by light, heat and oxygen. Casein micelles were used as nanostructures to encapsulate, stabilise and protect β-carotene from degradation during processing in the food industry. Self-assembly method was applied to re-assemble nanomicelles containing β-carotene. The protective effect of the nanostructures against degradation during the most common industrial treatments (sterilisation, pasteurisation, high hydrostatic pressure and baking) was proven. Casein micelles protected β-carotene from degradation during heat stabilisation, high pressure processing and the processes most commonly used in the food industry including baking. This opens new possibilities for introducing thermolabile ingredients in bakery products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Advances in industrial biopharmaceutical batch process monitoring: Machine-learning methods for small data problems.

    PubMed

    Tulsyan, Aditya; Garvin, Christopher; Ündey, Cenk

    2018-04-06

    Biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. The state-of-the-art real-time multivariate statistical batch process monitoring (BPM) platforms have been in use in recent years to ensure comprehensive monitoring is in place as a complementary tool for continued process verification to detect weak signals. This article addresses a longstanding, industry-wide problem in BPM, referred to as the "Low-N" problem, wherein a product has a limited production history. The current best industrial practice to address the Low-N problem is to switch from a multivariate to a univariate BPM, until sufficient product history is available to build and deploy a multivariate BPM platform. Every batch run without a robust multivariate BPM platform poses risk of not detecting potential weak signals developing in the process that might have an impact on process and product performance. In this article, we propose an approach to solve the Low-N problem by generating an arbitrarily large number of in silico batches through a combination of hardware exploitation and machine-learning methods. To the best of authors' knowledge, this is the first article to provide a solution to the Low-N problem in biopharmaceutical manufacturing using machine-learning methods. Several industrial case studies from bulk drug substance manufacturing are presented to demonstrate the efficacy of the proposed approach for BPM under various Low-N scenarios. © 2018 Wiley Periodicals, Inc.

  20. Managing large energy and mineral resources (EMR) projects in challenging environments

    NASA Astrophysics Data System (ADS)

    Chanmeka, Arpamart

    The viability of energy mineral resources (EMR) construction projects is contingent upon the state of the world economic climate. Oil sands projects in Alberta, Canada exemplify large EMR projects that are highly sensitive to fluctuations in the world market. Alberta EMR projects are constrained by high fixed production costs and are also widely recognized as one of the most challenging construction projects to successfully deliver due to impacts from extreme weather conditions, remote locations and issues with labor availability amongst others. As indicated in many studies, these hardships strain the industry's ability to execute work efficiently, resulting in declining productivity and mounting cost and schedule overruns. Therefore, to enhance the competitiveness of Alberta EMR projects, project teams are targeting effective management strategies to enhance project performance and productivity by countering the uniquely challenging environment in Alberta. The main purpose of this research is to develop industry wide benchmarking tailored to the specific constraints and challenges of Alberta. Results support quantitative assessments and identify the root causes of project performance and ineffective field productivity problems in the heavy industry sector capital projects. Customized metrics produced from the data collected through a web-based survey instrument were used to quantitatively assess project performance in the following dimensions: cost, schedule, change, rework, safety, engineering and construction productivity and construction practices. The system enables the industry to measure project performance more accurately, get meaningful comparisons, while establishing credible norms specific to Alberta projects. Data analysis to identify the root cause of performance problems was conducted. The analysis of Alberta projects substantiated lessons of previous studies to create an improved awareness of the abilities of Alberta-based companies to manage their

  1. Instructional Materials: The Changing Industry

    ERIC Educational Resources Information Center

    Brodinsky, Ben

    1975-01-01

    The beleaguered educational publishing industry is making a valiant stand against a storm of challenges. From eradicating bias in textbooks to verifying textbook effectiveness, many problems must be faced. The industry responds by cooperating with educators. (Editor)

  2. Enzymes- An Existing and Promising Tool of Food Processing Industry.

    PubMed

    Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata

    2016-01-01

    The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.

  3. Challenges for Australia's Bio/Nanopharma Policies: trade deals, public goods and reference pricing in sustainable industrial renewal

    PubMed Central

    Faunce, Thomas A

    2007-01-01

    controversial interpretations of reward of pharmaceutical 'innovation' provisions in the Australia-US Free Trade Agreement (AUSFTA) through the policy-development mechanisms of the AUSFTA Medicines Working Group and most recently an Innovative Medicines Working Group with the Department of Health and Ageing. This paper critically analyses such arguments in the context of emerging challenges for sustainable industrial renewal in Australia's bio/nanopharma sector. PMID:17543114

  4. Small enterprises' importance to the U.S. secondary wood processing industry

    Treesearch

    Urs Buehlmann; Omar Espinoza; Matthew Bumgardner; Michael Sperber

    2013-01-01

    The past decades have seen numerous U.S. secondary wood processing companies shift their production to overseas locations, mainly in Southeast Asia. The remaining companies have been hit hard by the downturn in housing markets and the following recession. Thus, many large customers of the U.S. hardwood lumber industry have reduced or stopped the purchase of products,...

  5. Tobacco industry interference with tobacco control policies in Poland: legal aspects and industry practices

    PubMed Central

    Balwicki, Łukasz; Stokłosa, Michał; Balwicka-Szczyrba, Małgorzata; Tomczak, Wioleta

    2016-01-01

    Background Since 2006, when Poland ratified the WHO Framework Convention on Tobacco Control (FCTC), there have been efforts to improve tobacco control regulation in the country. At the same time, at the European Union level, Poland took part in discussions over revision of the Tobacco Tax Directive and the Tobacco Products Directive. This study aims to explore the tobacco industry's tactics to interfere with the creation of those policies. Methods Analysis of 257 documents obtained through freedom of information request. Results We identified three means that the tobacco industry used to interfere with tobacco control policies: creating a positive attitude, expressing a will to be a part of the policymaking process, and exerting pressure. We found that those tactics have often been used unethically, with the industry providing the government with ready legislation proposals, overstating its contribution to the economy and the government revenues, misrepresenting the illicit cigarette problem and misusing scientific evidence. The industry also used legal threats, including use of bilateral trade agreements, against implementation of tobacco control measures. The companies lobbied together directly and through third parties, with the cigarette excise tax structure being the only area of disagreement among the companies. The industry also pushed the Polish government to challenge tobacco control policies in countries with stronger public policy standards, including UK display bans and the Australian plain-packaging law. Conclusions From an object of regulation, the tobacco industry in Poland became a partner with the government in legislative work. Implementation of provisions of Article 5.3 of the WHO FCTC could prevent further industry interference. PMID:26418616

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Members of team Mountaineers pose with officials from the 2014 NASA Centennial Challenges Sample Return Robot Challenge on Saturday, June 14, 2014 at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineer was the only team to complete the level one challenge this year. Team Mountaineer members, from left (in blue shirts) are: Ryan Watson, Marvin Cheng, Scott Harper, Jarred Strader, Lucas Behrens, Yu Gu, Tanmay Mandal, Alexander Hypes, and Nick Ohi Challenge judges and competition staff (in white and green polo shirts) from left are: Sam Ortega, NASA Centennial Challenge program manager; Ken Stafford, challenge technical advisor, WPI; Colleen Shaver, challenge event manager, WPI. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A team KuuKulgur Robot from Estonia is seen on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Worcester Polytechnic Institute (WPI) President Laurie Leshin, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team AERO robot drives off the starting platform during the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    David Miller, NASA Chief Technologist, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team's robot is seen during level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    Jerry Waechter of team Middleman from Dunedin, Florida, works on their robot named Ro-Bear during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Middleman is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Members of the Oregon State University Mars Rover Team prepare their robot to attempt the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. High-risk medical devices, children and the FDA: regulatory challenges facing pediatric mechanical circulatory support devices.

    PubMed

    Almond, Christopher S D; Chen, Eric A; Berman, Michael R; Less, Joanne R; Baldwin, J Timothy; Linde-Feucht, Sarah R; Hoke, Tracey R; Pearson, Gail D; Jenkins, Kathy; Duncan, Brian W; Zuckerman, Bram D

    2007-01-01

    Pediatric mechanical circulatory support is a critical unmet need in the United States. Infant- and child-sized ventricular assist devices are currently being developed largely through federal contracts and grants through the National Heart, Lung, and Blood Institute (NHLBI). Human testing and marketing of high-risk devices for children raises epidemiologic and regulatory issues that will need to be addressed. Leaders from the US Food and Drug Administration (FDA), NHLBI, academic pediatric community, and industry convened in January 2006 for the first FDA Workshop on the Regulatory Process for Pediatric Mechanical Circulatory Support Devices. The purpose was to provide the pediatric community with an overview of the federal regulatory process for high-risk medical devices and to review the challenges specific to the development and regulation of pediatric mechanical circulatory support devices. Pediatric mechanical circulatory support present significant epidemiologic, logistic, and financial challenges to industry, federal regulators, and the pediatric community. Early interactions with the FDA, shared appreciation of challenges, and careful planning will be critical to avoid unnecessary delays in making potentially life-saving devices available for children. Collaborative efforts to address these challenges are warranted.

  15. Technical and economical evaluation of water recycling in the carwash industry with membrane processes.

    PubMed

    Boussu, K; Eelen, D; Vanassche, S; Vandecasteele, C; Van der Bruggen, B; Van Baelen, G; Colen, W; Vanassche, S

    2008-01-01

    In the carwash industry, water recycling is necessary to be in accordance with present and upcoming environmental laws. As this is not possible with traditional techniques, membrane processes (like ultrafiltration (UF) and nanofiltration (NF)) are technically and economically evaluated in this study. Concerning the technical part, there needs to be a compromise between a high permeate permeability on the one hand and a high permeate purity on the other hand. Depending on the use of the purified wastewater, ultrafiltration (to recycle wastewater in the main wash cycle) or nanofiltration (to recycle wastewater in the rinsing step) would be the optimal choice. Concerning the financial part, the implementation of membrane processes in the wastewater purification installation is economically feasible, especially when expensive tap water is used as pure water. These positive evaluations imply that membrane processes can be useful to recycle wastewater in the carwash industry, on condition that the right membrane type (with the least membrane fouling) and the right process format (e.g., hybrid process of UF and/or NF with a biological treatment) is selected. Copyright IWA Publishing 2008.

  16. Benchmarking initiatives in the water industry.

    PubMed

    Parena, R; Smeets, E

    2001-01-01

    Customer satisfaction and service care are every day pushing professionals in the water industry to seek to improve their performance, lowering costs and increasing the provided service level. Process Benchmarking is generally recognised as a systematic mechanism of comparing one's own utility with other utilities or businesses with the intent of self-improvement by adopting structures or methods used elsewhere. The IWA Task Force on Benchmarking, operating inside the Statistics and Economics Committee, has been committed to developing a general accepted concept of Process Benchmarking to support water decision-makers in addressing issues of efficiency. In a first step the Task Force disseminated among the Committee members a questionnaire focused on providing suggestions about the kind, the evolution degree and the main concepts of Benchmarking adopted in the represented Countries. A comparison among the guidelines adopted in The Netherlands and Scandinavia has recently challenged the Task Force in drafting a methodology for a worldwide process benchmarking in water industry. The paper provides a framework of the most interesting benchmarking experiences in the water sector and describes in detail both the final results of the survey and the methodology focused on identification of possible improvement areas.

  17. The Opportunity and Challenge of The Age of Big Data

    NASA Astrophysics Data System (ADS)

    Yunguo, Hong

    2017-11-01

    The arrival of large data age has gradually expanded the scale of information industry in China, which has created favorable conditions for the expansion of information technology and computer network. Based on big data the computer system service function is becoming more and more perfect, and the efficiency of data processing in the system is improving, which provides important guarantee for the implementation of production plan in various industries. At the same time, the rapid development of fields such as Internet of things, social tools, cloud computing and the widen of information channel, these make the amount of data is increase, expand the influence range of the age of big data, we need to take the opportunities and challenges of the age of big data correctly, use data information resources effectively. Based on this, this paper will study the opportunities and challenges of the era of large data.

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Kenneth Stafford, Assistant Director of Robotics Engineering and Director of the Robotics Resource Center at the Worcester Polytechnic Institute (WPI), verifies the location of the target sample during the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Members of the Mountaineers team from West Virginia University celebrate after their robot returned to the starting platform after picking up the sample during a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. [Psychosocial Factors and Burnout Syndrome Found in Workers in the Dough Processing Industry, Tepic, Mexico].

    PubMed

    Beltrán, Carolina Aranda; Gónzalez, José Luis López; Barraza Salas, José Horacio

    2013-06-01

    The workers in the dough processing industry are a population exposed to psychosocial risk factors due to the conditions in the workplace; therefore, they are likely to suffer from one of the consequences of chronic stress to which a worker is exposed daily: burnout syndrome. The aim of this study was to analyze the relationship between psychosocial factors and the burnout syndrome in workers in the dough processing industry in the city of Tepic, Mexico. A cross-sectional and descriptive study was conducted in five companies from the dough processing industry. The total population consisted of 122 workers who were administered the scale of Psychosocial Factors Identification of the Mexican Social Security Institute and the Maslach Burnout Inventory scale, in order to gather information. The presence of adverse psychosocial factors was reported in 18.3%, and 79.8% with the syndrome. There were several variables that behaved as risk factors, specifically, the system of working with the emotional exhaustion. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  1. Human Resource Planning: Challenges for Industrial/Organizational Psychologists.

    ERIC Educational Resources Information Center

    Jackson, Susan E.; Schuler, Randall S.

    1990-01-01

    Describes activities that industrial/organizational psychologists engage in as they seek to improve the competitiveness of organizations through effective human resource planning. Presents a model for describing human resource short-term, intermediate-term, and long-term planning. (JS)

  2. Extra-terrestrial construction processes - Advancements, opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Lim, Sungwoo; Prabhu, Vibha Levin; Anand, Mahesh; Taylor, Lawrence A.

    2017-10-01

    Government space agencies, including NASA and ESA, are conducting preliminary studies on building alternative space-habitat systems for deep-space exploration. Such studies include development of advanced technologies for planetary surface exploration, including an in-depth understanding of the use of local resources. Currently, NASA plans to land humans on Mars in the 2030s. Similarly, other space agencies from Europe (ESA), Canada (CSA), Russia (Roscosmos), India (ISRO), Japan (JAXA) and China (CNSA) have already initiated or announced their plans for launching a series of lunar missions over the next decade, ranging from orbiters, landers and rovers for extended stays on the lunar surface. As the Space Odyssey is one of humanity's oldest dreams, there has been a series of research works for establishing temporary or permanent settlement on other planetary bodies, including the Moon and Mars. This paper reviews current projects developing extra-terrestrial construction, broadly categorised as: (i) ISRU-based construction materials; (ii) fabrication methods; and (iii) construction processes. It also discusses four categories of challenges to developing an appropriate construction process: (i) lunar simulants; (ii) material fabrication and curing; (iii) microwave-sintering based fabrication; and (iv) fully autonomous and scaled-up construction processes.

  3. Survey of business process management: challenges and solutions

    NASA Astrophysics Data System (ADS)

    Alotaibi, Youseef; Liu, Fei

    2017-09-01

    The current literature shows that creating a good framework on business process model (PM) is not an easy task. A successful business PM should have the ability to ensure accurate alignment between business processes (BPs) and information technology (IT) designs, provide security protection, manage the rapidly changing business environment and BPs, manage customer power, be flexible for reengineering and ensure that IT goals can be easily derived from business goals and hence an information system (IS) can be easily implemented. This article presents an overview of research in the business PM domain. We have presented a review of the challenges facing business PMs, such as misalignment between business and IT, difficulty of deriving IT goals from business goals, creating secured business PM, reengineering BPs, managing the rapidly changing BP and business environment and managing customer power. Also, it presents the limitations of existing business PM frameworks. Finally, we outline several guidelines to create good business PM and the possible further research directions in the business PM domain.

  4. Cold and Hot Extremozymes: Industrial Relevance and Current Trends

    PubMed Central

    Sarmiento, Felipe; Peralta, Rocío; Blamey, Jenny M.

    2015-01-01

    The development of enzymes for industrial applications relies heavily on the use of microorganisms. The intrinsic properties of microbial enzymes, e.g., consistency, reproducibility, and high yields along with many others, have pushed their introduction into a wide range of products and industrial processes. Extremophilic microorganisms represent an underutilized and innovative source of novel enzymes. These microorganisms have developed unique mechanisms and molecular means to cope with extreme temperatures, acidic and basic pH, high salinity, high radiation, low water activity, and high metal concentrations among other environmental conditions. Extremophile-derived enzymes, or extremozymes, are able to catalyze chemical reactions under harsh conditions, like those found in industrial processes, which were previously not thought to be conducive for enzymatic activity. Due to their optimal activity and stability under extreme conditions, extremozymes offer new catalytic alternatives for current industrial applications. These extremozymes also represent the cornerstone for the development of environmentally friendly, efficient, and sustainable industrial technologies. Many advances in industrial biocatalysis have been achieved in recent years; however, the potential of biocatalysis through the use of extremozymes is far from being fully realized. In this article, the adaptations and significance of psychrophilic, thermophilic, and hyperthermophilic enzymes, and their applications in selected industrial markets will be reviewed. Also, the current challenges in the development and mass production of extremozymes as well as future prospects and trends for their biotechnological application will be discussed. PMID:26539430

  5. Monitoring industrial pharmaceutical crystallization processes using acoustic emission in pure and impure media.

    PubMed

    Gherras, Nesrine; Serris, Eric; Fevotte, Gilles

    2012-12-15

    Acoustic emission (AE) which has been successfully applied for monitoring a rather wide variety of solids elaboration processes was almost never evaluated in the field of industrial pharmaceutical crystallization. Few papers reported that solution crystallization processes give rise to acoustic emission signals that could be related to the development of the basic crystallization phenomena. This study is intended to demonstrate new perspectives opened up by the possible use of acoustic emission (AE) as a non-intrusive and non destructive sensor for monitoring solution crystallization with a particular focus being put on the presence of impurities in real industrial processes. The wealth of acquired AE information is highlighted and it is suggested that such information could allow the design of innovative multipurpose sensing strategies. It is shown notably that AE provides a very early detection of nucleation events, much before the onset of the so-called "nucleation burst". It is also shown that AE brings new insight into the effect of impurities on both the development of the crystallization process and the quality of the crystallized product. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Harmonic reduction by using single-tuned passive filter in plastic processing industry

    NASA Astrophysics Data System (ADS)

    Fahmi, M. I.; Baafai, U.; Hazmi, A.; Nasution, T. H.

    2018-02-01

    The using of non-linear loads generated by industrial machines may result inconsistent harmonics that do not reach the IEEE 519 - 1992 standards. This study discusses the use of single-tuned passive filters in reducing harmonics in the plastics processing industry. The system modeling using matlab / simulink simulation resulted in total harmonic distortion (THD) of 15.55%, can be reduced to 4.77% harmonics in accordance with IEEE 519 - 1992 standards. From the simulation results also seen that single-tuned passive filter can reduce the harmonics of the current 82.23% harmonic that wants to be reduced and also can reduce other orders harmonics between 7% to 8%.

  7. Analytical evaluation of current starch methods used in the international sugar industry: Part I

    USDA-ARS?s Scientific Manuscript database

    Several analytical starch methods currently exist in the international sugar industry that are used to prevent or mitigate starch-related processing challenges as well as assess the quality of traded end-products. These methods use simple iodometric chemistry, mostly potato starch standards, and uti...

  8. [The user oriented hospital - chances and challenges for the healthcare industry].

    PubMed

    Borchers, Uwe; Evans, Michaela

    2011-01-01

    Hardly any other part of the healthcare sector is under such a pressure to change as the hospital sector. Hospitals are high-performers in coping with complex changes in modernising patient care, process design, quality, cost-effectiveness and service orientation. But, what really makes value to the patient? Currently, this question is raised with new seriousness. Those hospitals which consequently align their portfolio to value based and 'patient driven' healthcare delivery will succeed by both quality and cost-effectiveness. We receive such messages from the USA. In Germany there are on-going and admonishing pleas since the end of the 1990s not to lose sight of the patients' needs while designing new concepts for healthcare delivery. Future challenges imply not only the renaissance of patient centred care, but also demand for a comprehensive user orientation as a key factor to successful hospital modernisation. This is particularly true of concepts of structured, integrated and regional healthcare delivery. But a consequent alignment of healthcare with value for patients clearly exceeds the focus on integrating hospital and outpatient care. In designing new services of coordinated regional healthcare, hospitals gain strategic options for a single-source healthcare delivery. In terms of business development, user orientation does not only yield important impulses for stronger patient centred care, but also opens up chances for better quality and competitive advantages. Nevertheless, it requires a new understanding of innovation processes which considers value for patients and quality of results and outcome as a relevant scale for measuring effects of change management. Finally, the methods of the assessment of user oriented healthcare delivery are an essential challenge for the evaluation of cooperative healthcare services. Copyright © 2011. Published by Elsevier GmbH.

  9. 77 FR 24722 - Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ...] Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes... Substances, Including Food Ingredients That Are Color Additives; Availability AGENCY: Food and Drug... Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food...

  10. Shifting post production patterns: exploring changes in New Zealand's seafood processing industry.

    PubMed

    Stringer, Christina; Simmons, Glenn; Rees, Eugene

    2011-01-01

    This paper examines the changing nature of New Zealand's seafood companies' production practices. The past 15 years has seen the offshore outsourcing of post-harvest fish gain unprecedented momentum. The growth in offshore processing is a further stage in an increasingly globalised fisheries value chain. Fish is head and gutted, frozen and then transported to processing sites in China where it is thawed, value-added processed and refrozen for export to the original sourcing country or third country markets. Reasons advanced by the industry for this shift in production practices include quota reductions, increasing production costs and the sale of trawlers.

  11. Nanotechnology in meat processing and packaging: potential applications - a review.

    PubMed

    Ramachandraiah, Karna; Han, Sung Gu; Chin, Koo Bok

    2015-02-01

    Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.

  12. Halophiles, coming stars for industrial biotechnology.

    PubMed

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Terahertz thickness measurements for real industrial applications: from automotive paints to aerospace industry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Krimi, Soufiene; Beigang, René

    2017-02-01

    In this contribution, we present a highly accurate approach for real-time thickness measurements of multilayered coatings using terahertz time domain spectroscopy in reflection geometry. The proposed approach combines the benefits of a model-based material parameters extraction method to calibrate the specimen under test, a generalized modeling method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity and the precision of the minimum thickness measurement limit. Furthermore, a novel self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the car painting process and the influence of the spraying conditions and the sintering process on ceramic thermal barrier coatings (TBCs) in aircraft industry. In addition, the developed approach enables for some applications the simultaneous determination of the complex refractive index and the coating thickness. Hence, a pre-calibration of the specimen under test is not required for such cases. Due to the high robustness of the self-calibration method and the genetic optimization algorithms, the approach has been successfully applied to resolve individual layer thicknesses within multi-layered coated samples down to less than 10 µm. The regression method can be applied in time-domain, frequency-domain or in both the time and frequency-domain simultaneously. The data evaluation uses general-purpose computing on graphics processing units and thanks to the developed highly parallelized algorithm lasts less than 300 ms. Thus, industrial requirements for fast thickness measurements with an "every-second-cycle" can be fulfilled.

  14. Applied Geophysics Opportunities in the Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Olgaard, D. L.; Tikku, A.; Roberts, J. C.; Martinez, A.

    2012-12-01

    Meeting the increasing global demand for energy over the next several decades presents daunting challenges to engineers and scientists, including geoscientists of all disciplines. Many opportunities exist for geophysicists to find and produce oil and gas in a safe, environmentally responsible and affordable manner. Successful oil and gas exploration involves a 'Plates to Pores' approach that integrates multi-scale data from satellites, marine and land seismic and non-seismic field surveys, lab experiments, and even electron microscopy. The petroleum industry is at the forefront of using high performance computing to develop innovative methods to process and analyze large volumes of seismic data and perform realistic numerical modeling, such as finite element fluid flow and rock deformation simulations. Challenging and rewarding jobs in exploration, production and research exist for students with BS/BA, MS and PhD degrees. Geophysics students interested in careers in the petroleum industry should have a broad foundation in science, math and fundamental geosciences at the BS/BA level, as well as mastery of the scientific method, usually gained through thesis work at MS and PhD levels. Field geology or geophysics experience is also valuable. Other personal attributes typical for geoscientists to be successful in industry include a passion for solving complex geoscience problems, the flexibility to work on a variety of assignments throughout a career and skills such as teamwork, communication, integration and leadership. In this presentation we will give examples of research, exploration and production opportunities for geophysicists in petroleum companies and compare and contrast careers in academia vs. industry.

  15. Strategic Industry Attack.

    DTIC Science & Technology

    1980-01-15

    Code B364078464 V99QAXNH30303 H2590D. IS KEY WORDS fCo.. e.1 Odn Od It -C.eWV WHO Idnlif b 61-k n 0ber) Strategic Targeting Copper Industry INDATAK 20...develop, debug and test an industrial simulation model (INDATAK) using the LOGATAK model as a point of departure. The copper processing industry is...significant processes in the copper industry, including the transportation network connecting the processing elements, have been formatted for use in

  16. A Process for Determining What Business and Industry Want and Need from Our Graduates.

    ERIC Educational Resources Information Center

    Burgess, Michael; And Others

    Columbus State Community College (CSCC) in Ohio has developed a process and model for assuring that technical programs and individual course outcomes meet the needs of the industries being served. Initially undertaken as part of a project with Honda of America to provide two new technology programs, the process included surveys of representative…

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey, center, works on a laptop to prepare the team's robot for a demonstration run after the team's robot failed to leave the starting platform during it's attempt at the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. Changing gender roles and health impacts among female workers in export-processing industries in Sri Lanka.

    PubMed

    Attanapola, Chamila T

    2004-06-01

    Since the economic liberalization in 1977, a large number of Sri Lankan women have entered the labour market and engaged in income-generating activities. Some women choose to travel abroad as domestic workers, while others choose to work in export-processing industries. This process has a profound impact on gender and gender roles in Sri Lanka. Young rural women have changed their traditional women's roles to become independent daughters, efficient factory workers and partially modernized women. Even though changing gender roles are identified as a positive impact of industrial work, the new social, cultural, and legal environments of industrial work have negative impacts on these women's lives. This paper explores health impacts of changing gender roles and practices of young rural women, focusing on the experiences of female workers in export-processing industries. Further, it contributes to the literature on gender and health, and on qualitative approaches within health geographic studies. A model is formulated to suggest a conceptual framework for studying women's health. The model describes the determinant factors of individual health status based on the question of who (personal attributes) does what (type of work) where (place), when and how (behaviours). These are also determinant factors of gender and gender roles of a society. The three types of health problems (reproductive, productive and mental health) of a woman, in this case a female industrial worker, are determined by her gender roles and practices associated with these roles.

  19. Hands on Education Through Student-Industry Partnerships

    NASA Astrophysics Data System (ADS)

    Brown, J.; Wolfson, M.; Morris, K.

    2013-09-01

    Lockheed Martin Space Systems Company has invested in the future generation of engineers by partially funding and mentoring CubeSat projects around the country. One CubeSat in particular, ALL-STAR, has shown how this industry/university partnership benefits both the students and their mentors. Students gain valuable insight into aspects of spacecraft design that aren't taught in classes. They also start learning about industry processes for designing, building, and testing satellites before ever working in that environment. Because of this experience, industry is getting more qualified engineers starting fresh out of college. In addition Lockheed Martin's partnership with the university will allow them to use the students to help build affordable CubeSats for internal and customer's research and development projects. The mentoring also challenges the engineers to think differently about similar problems they face every day with their larger programs in order to make the solution simple and affordable.

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team AERO, from the Worcester Polytechnic Institute (WPI) transports their robot to the competition field for the level one of the competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Robots that will be competing in the Level one competition are seen as they sit in impound prior to the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate, speaks at the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The University of Waterloo Robotics Team, from Ontario, Canada, prepares their robot for the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The team from the University of Waterloo is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jim Rothrock, left, and Carrie Johnson, right, of the Wunderkammer Laboratory team pose for a picture with their robot after attempting the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team, from Corvallis, Oregon, follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. Industrial transformation and shrimp aquaculture in Thailand and Vietnam: pathways to ecological, social, and economic sustainability?

    PubMed

    Lebel, Louis; Tri, Nguyen Hoang; Saengnoree, Amnuay; Pasong, Suparb; Buatama, Urasa; Thoa, Le Kim

    2002-06-01

    Shrimp aquaculture in Vietnam is in the process of being transformed into a major industry around the intensification of the production system. The experiences of other countries in the region, especially in Thailand where high input production systems dominate, suggests that now is a critical time for intervention to redirect industry into pathways that are more sustainable ecologically, socially, and economically. In Thailand, years of experience with intensified systems and a complex industrial organization has not led to sustainable solutions. The challenge here is for society to regain control and then to redirect the transformation along more efficient and benign pathways. Our analyses suggest that current pathways in both countries are unlikely to lead to a sustainable industry. A complete transformation of the way shrimp are grown, fed, processed, distributed, and regulated is needed.

  8. Modernizing Our Industrial Base: The National Security Challenge of Our Time

    DTIC Science & Technology

    2015-08-01

    situational awareness tools and applications, au- tonomy and robotics that we need to harness and fully develop for DoD missions . With this type of...to work for the DoD or its industrial base; rather they go to work in the commercial industry for companies such as Facebook, Google and Tesla . This...partnership with industry. The DoD continues talking to indus- try, communicating our vision for the future, to facilitate the best business decisions that

  9. Technology, Applications, and Process Challenges of Dual Chamber Systems.

    PubMed

    Werk, Tobias; Ludwig, Imke S; Luemkemann, Joerg; Mahler, Hanns-Christian; Huwyler, Joerg; Hafner, Mathias

    2016-01-01

    Dual-chamber systems provide an option as a drug and device combination product, when home care and emergency lyophilized products are intended. Nevertheless, until today, there are only a few products on the market, due to the challenges and limitations in manufacturability, product formulation, and product stability in a dual-chamber configuration, as well as economic considerations. This review serves to describe currently available dual-chamber systems and to discuss factors to be considered for appropriate selection and establishing fill-finish processes. Copyright © 2016. Published by Elsevier Inc.

  10. Ten years of industrial and municipal membrane bioreactor (MBR) systems - lessons from the field.

    PubMed

    Larrea, Asun; Rambor, Andre; Fabiyi, Malcolm

    2014-01-01

    The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).

  11. Capability challenges of facility management (FM) personnel toward sustainability agenda

    NASA Astrophysics Data System (ADS)

    Halim, Ahmad Ilyas Ahmad; Sarpin, Norliana; Kasim, Narimah Binti; Zainal, Rozlin Binti

    2017-10-01

    The industries business play a significant role to contribute toward economic growth in develop and developing country. However, they always face serious problems such as time overrun, waste generation, and cost overrun during their operation and maintenance. Traditional practice is found unable to control that situation. These challenges accent the need for practitioners to rethink and improve their process management. This show that industries business has major potential when applying sustainable development by focusing on three pillars (economic, environment, and social). By adopting sustainability, it can reduce energy consumption and waste, while increasing productivity, financial return and corporate standing in community. FM personnel are most suitable position to lead organizations toward sustainability implementation. However, lack of skill and capability among FM personnel to achieve sustainable goal had become barrier that need to overcome. This paper focus to identify capability challenges of FM personnel toward sustainability. A multiple researches were conducted and data were gathered through literature review from previous studies.

  12. Emergency response vaccines--a challenge for the public sector and the vaccine industry.

    PubMed

    Milstien, Julie; Lambert, Scott

    2002-11-22

    In partnership with industry, WHO has developed a number of strategies to facilitate access to vaccines recommended for use in national immunization programs. These strategies have been necessitated by the increasing fragility of vaccine supply for developing markets. The potential global spread of epidemic disease has made it imperative to expand these efforts. A new concept is proposed, that of essential vaccines, defined as "vaccines of public health importance that should be accessible to all people at risk". Essential vaccines will include emergency response vaccines that have become important due to resurgent outbreaks, threatening global pandemics, and situations where a global emergency immunization response may be needed. While some of the approaches already developed will be applicable to emergency response vaccines, other novel approaches requiring public sector intervention will be necessary. Procurement, financing and allocation of these emergency response vaccines, if left to governments or private individuals based on ability to pay, will threaten equitable access. The challenge will be to ensure development of and equitable access to these vaccines while not threatening the already fragile supply of other essential vaccines.

  13. Fault detection and isolation in the challenging Tennessee Eastman process by using image processing techniques.

    PubMed

    Hajihosseini, Payman; Anzehaee, Mohammad Mousavi; Behnam, Behzad

    2018-05-22

    The early fault detection and isolation in industrial systems is a critical factor in preventing equipment damage. In the proposed method, instead of using the time signals of sensors, the 2D image obtained by placing these signals next to each other in a matrix has been used; and then a novel fault detection and isolation procedure has been carried out based on image processing techniques. Different features including texture, wavelet transform, mean and standard deviation of the image accompanied with MLP and RBF neural networks based classifiers have been used for this purpose. Obtained results indicate the notable efficacy and success of the proposed method in detecting and isolating faults of the Tennessee Eastman benchmark process and its superiority over previous techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Sustainable Agro-Industrial Ecology Concept of the Madura Island

    NASA Astrophysics Data System (ADS)

    Widjaya, Joyce Martha; Tanuwidjaja, Gunawan

    2017-07-01

    Madura as one small island in East Java Province, Indonesia faced many challenges due to limited transportation connectivity, limited water resources and karst geology. Due to this reasons, the Government of Indonesia proposed a strategic plan to improve the development of the island to Surabaya, the largest port for the Eastern of Indonesia. It was started with building the Surabaya - Madura (SuraMadu) Bridge with 5.7 km length in 2003. The bridge was finally completed in 2009, improving the traffic flow into the island and development of Madura Island. Unfortunately, the strategy would not be comprehensive without strategic development of the Madura Island, especially in Bangkalan District (Kabupaten Bangkalan). The Central Government has proposed a Green Industry with zero waste and clean energy concept. This industry and port would process the agriculture products from Madura for the export and Eastern part of Indonesia market. Therefore, an industrial ecology concept was needed to achieve the sustainable green industry for Eastern of Indonesia.

  15. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    PubMed

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A macrosonic system for industrial processing

    PubMed

    Gallego-Juarez; Rodriguez-Corral; Riera-Franco de Sarabia E; Campos-Pozuelo; Vazquez-Martinez; Acosta-Aparicio

    2000-03-01

    The development of high-power applications of sonic and ultrasonic energy in industrial processing requires a great variety of practical systems with characteristics which are dependent on the effect to be exploited. Nevertheless, the majority of systems are basically constituted of a treatment chamber and one or several transducers coupled to it. Therefore, the feasibility of the application mainly depends on the efficiency of the transducer-chamber system. This paper deals with a macrosonic system which is essentially constituted of a high-power transducer with a double stepped-plate radiator coupled to a chamber of square section. The radiator, which has a rectangular shape, is placed on one face of the chamber in order to drive the inside fluid volume. The stepped profile of the radiator allows a piston-like radiation to be obtained. The radiation from the back face of the radiator is also applied to the chamber by using adequate reflectors. Transducer-chamber systems for sonic and ultrasonic frequencies have been developed with power capacities up to about 5 kW for the treatment of fluid volumes of several cubic meters. The characteristics of these systems are presented in this paper.

  17. Signal processing and control challenges for smart vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Braun, Simon G.

    2017-03-01

    Smart phones have changed not only the mobile phone market but also our society during the past few years. Could the next potential intelligent device may be the vehicle? Judging by the visibility, in all media, of the numerous attempts to develop autonomous vehicles, this is certainly one of the logical outcomes. Smart vehicles would be equipped with an advanced operating system such that the vehicles could communicate with others, optimize the operation to reduce fuel consumption and emissions, enhance safety, or even become self-driving. These combined new features of vehicles require instrumentation and hardware developments, fast signal processing/fusion, decision making and online optimization. Meanwhile, the inevitable increasing system complexity would certainly challenges the control unit design.

  18. Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges.

    PubMed

    Wen, Ming Ming; El-Salamouni, Noha S; El-Refaie, Wessam M; Hazzah, Heba A; Ali, Mai M; Tosi, Giovanni; Farid, Ragwa M; Blanco-Prieto, Maria J; Billa, Nashiru; Hanafy, Amira S

    2017-01-10

    Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from 'paper to clinic' and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fault detection and diagnosis in an industrial fed-batch cell culture process.

    PubMed

    Gunther, Jon C; Conner, Jeremy S; Seborg, Dale E

    2007-01-01

    A flexible process monitoring method was applied to industrial pilot plant cell culture data for the purpose of fault detection and diagnosis. Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal, were available. A principal component analysis (PCA) model was constructed from 19 NOC batches, and the remaining NOC batch was used for model validation. Subsequently, the model was used to successfully detect (both offline and online) abnormal process conditions and to diagnose the root causes. This research demonstrates that data from a relatively small number of batches (approximately 20) can still be used to monitor for a wide range of process faults.

  20. Solar thermal central receivers for industrial process heat generation: User views and recommendations for commercialization

    NASA Astrophysics Data System (ADS)

    Fish, M. J.

    1981-08-01

    Results of recent meetings with several private industrial groups in which solar thermal central receivers were discussed in depth as a potential for industrial process heat generation are summarized. Topics covering potential economics, technical requirements, and actions to promote commercialization of the technology are presented. These findings are then translated into recommendations for commercialization in private industrial markets. Key points include the need for small scale systems integration projects in addition to the 10 MW/sub e/ plant under construction at Barstow, CA, and the adoption of financial incentives, such as tax credits, for getting the early commercial plants built.

  1. Solar industrial process heat systems: An assessment of standards for materials and components

    NASA Astrophysics Data System (ADS)

    Rossiter, W. J.; Shipp, W. E.

    1981-09-01

    A study was conducted to obtain information on the performance of materials and components in operational solar industrial process heat (PH) systems, and to provide recommendations for the development of standards including evaluative test procedures for materials and components. An assessment of the needs for standards for evaluating the long-term performance of materials and components of IPH systems was made. The assessment was based on the availability of existing standards, and information obtained from a field survey of operational systems, the literature, and discussions with individuals in the industry. Field inspections of 10 operational IPH systems were performed.

  2. Nanotechnology in Meat Processing and Packaging: Potential Applications — A Review

    PubMed Central

    Ramachandraiah, Karna; Han, Sung Gu; Chin, Koo Bok

    2015-01-01

    Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food. PMID:25557827

  3. Industrial Wasteland as Faced with Contemporary Landscape Architects’ Challenges

    NASA Astrophysics Data System (ADS)

    Tubielewicz-Michalczuk, Malwina

    2017-10-01

    The following article describes the problem of regeneration of industrial wasteland. It is illustrated with examples selected form various design projects created by outstanding contemporary landscape architects. It also shows how a correctly planned and performed project concerning regeneration of derelict industrial sites serves multiple functions, i. e. it serves as recreational zone as well as activates people. Moreover, it significantly enhances environmental value of a given area as well as stimulates emergence of innovative landscape investments. The paper presents innovative compositional arrangements used in creating projects concerning brownfields; balanced proportions of spatial elements, the possibility of approaching the area from different levels and perspectives and, also, the possibility of engaging fully with nature by physical contact with it.

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A pair of Worcester Polytechnic Institute (WPI) students walk past a pair of team KuuKulgur's robots on the campus quad, during a final tuneup before the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. Direction of CRT waste glass processing: Electronics recycling industry communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Julia R., E-mail: mueller.143@osu.edu; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, andmore » the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass

  6. Delivering a National Process Design Unit with Industry Support

    NASA Astrophysics Data System (ADS)

    Ibana, Don

    Supported by the Minerals Council of Australia (MCA) through the Minerals Tertiary Education Council (MTEC), three Australian universities-Curtin University, Murdoch University and the University of Queensland-have formed the Metallurgical Education Partnership (MEP) to jointly develop and deliver an engineering design capstone unit-Metallurgical Process and Plant Design-in their respective undergraduate programs in extractive metallurgy, in order to enhance the students' educational experience. A unique feature of the program is the close interaction of the students in all three universities and a significant involvement of industry professionals. Now in its sixth year, it is clear that this unit is achieving its objectives.

  7. The ultimate mineral processing challenge: Recovery of rare earths, phosphorus and uranium from Florida phosphatic clay

    DOE PAGES

    Zhang, Patrick; Liang, Haijun; Jin, Zhen; ...

    2017-11-01

    We report phosphate beneficiation in Florida generates more than one tonne of phosphatic clay, or slime, per tonne of phosphate rock produced. Since the start of the practice of large-scale washing and desliming for phosphate beneficiation, more than 2 Gt of slime has accumulated, containing approximately 600 Mt of phosphate rock, 600 kt of rare earth elements (REEs) and 80 million kilograms of uranium. The recovery of these valuable elements from the phosphatic clay is one of the most challenging endeavors in mineral processing, because the clay is extremely dilute, with an average solids concentration of 3 percent, and finemore » in size, with more than 50 percent having particle size smaller than 2 μm, and it contains nearly 50 percent clay minerals as well as large amounts of magnesium, iron and aluminum. With industry support and under funding from the Critical Materials Institute, the Florida Industrial and Phosphate Research Institute in conjunction with the Oak Ridge National Laboratory undertook the task to recover phosphorus, rare earths and uranium from Florida phosphatic clay. This paper presents the results from the preliminary testing of two approaches. The first approach involves three-stage cycloning using cyclones with diameters of 12.4 cm (5 in.), 5.08 cm (2 in.) and 2.54 cm (1 in.), respectively, to remove clay minerals followed by flotation and leaching. The second approach is a two-step leaching process. In the first step, selective leaching was conducted to remove magnesium, thus allowing the production of phosphoric acid suitable for the manufacture of diammonium phosphate (DAP) in the second leaching step. The results showed that multistage cycloning with small cyclones is necessary to remove clay minerals. Finally, selective leaching at about pH 3.2 using sulfuric acid was found to be effective for removing more than 80 percent of magnesium from the feed with minimal loss of phosphorus.« less

  8. The ultimate mineral processing challenge: Recovery of rare earths, phosphorus and uranium from Florida phosphatic clay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Patrick; Liang, Haijun; Jin, Zhen

    We report phosphate beneficiation in Florida generates more than one tonne of phosphatic clay, or slime, per tonne of phosphate rock produced. Since the start of the practice of large-scale washing and desliming for phosphate beneficiation, more than 2 Gt of slime has accumulated, containing approximately 600 Mt of phosphate rock, 600 kt of rare earth elements (REEs) and 80 million kilograms of uranium. The recovery of these valuable elements from the phosphatic clay is one of the most challenging endeavors in mineral processing, because the clay is extremely dilute, with an average solids concentration of 3 percent, and finemore » in size, with more than 50 percent having particle size smaller than 2 μm, and it contains nearly 50 percent clay minerals as well as large amounts of magnesium, iron and aluminum. With industry support and under funding from the Critical Materials Institute, the Florida Industrial and Phosphate Research Institute in conjunction with the Oak Ridge National Laboratory undertook the task to recover phosphorus, rare earths and uranium from Florida phosphatic clay. This paper presents the results from the preliminary testing of two approaches. The first approach involves three-stage cycloning using cyclones with diameters of 12.4 cm (5 in.), 5.08 cm (2 in.) and 2.54 cm (1 in.), respectively, to remove clay minerals followed by flotation and leaching. The second approach is a two-step leaching process. In the first step, selective leaching was conducted to remove magnesium, thus allowing the production of phosphoric acid suitable for the manufacture of diammonium phosphate (DAP) in the second leaching step. The results showed that multistage cycloning with small cyclones is necessary to remove clay minerals. Finally, selective leaching at about pH 3.2 using sulfuric acid was found to be effective for removing more than 80 percent of magnesium from the feed with minimal loss of phosphorus.« less

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ken Stafford, WPI Challenge technical advisor; Colleen Shaver, WPI Challenge Manager; Ryan Watson, Team Mountaineers; Marvin Cheng, Team Mountaineers; Alexander Hypes, Team Mountaineers; Jarred Strader, Team Mountaineers; Lucas Behrens, Team Mountaineers; Yu Gu, Team Mountaineers; Nick Ohi, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Scott Harper, Team Mountaineers; Tanmay Mandal, Team Mountaineers; David Miller, NASA Chief Technologist; Sam Ortega, NASA Program Manager for Centennial Challenges, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. Feasible Application Area Study for Linear Laser Cutting in Paper Making Processes

    NASA Astrophysics Data System (ADS)

    Happonen, A.; Stepanov, A.; Piili, H.

    Traditional industry sectors, like paper making industry, tend to stay within well-known technology rather than going forward towards promising, but still quite new technical solutions and applications. This study analyses the feasibility of the laser cutting in large-scale industrial paper making processes. Aim was to reveal development and process related challenges and improvement potential in paper making processes by utilizing laser technology. This study has been carried out, because there still seems to be only few large-scale industrial laser processing applications in paper converting processes worldwide, even in the beginning of 2010's. Because of this, the small-scale use of lasers in paper material manufacturing industry is related to a shortage of well-known and widely available published research articles and published measurement data (e.g. actual achieved cut speeds with high quality cut edges, set-up times and so on). It was concluded that laser cutting has strong potential in industrial applications for paper making industries. This potential includes quality improvements and a competitive advantage for paper machine manufacturers and industry. The innovations have also added potential, when developing new paper products. An example of these kinds of products are ones with printed intelligence, which could be a new business opportunity for the paper industries all around the world.

  11. Challenges and requirements of mask data processing for multi-beam mask writer

    NASA Astrophysics Data System (ADS)

    Choi, Jin; Lee, Dong Hyun; Park, Sinjeung; Lee, SookHyun; Tamamushi, Shuichi; Shin, In Kyun; Jeon, Chan Uk

    2015-07-01

    To overcome the resolution and throughput of current mask writer for advanced lithography technologies, the platform of e-beam writer have been evolved by the developments of hardware and software in writer. Especially, aggressive optical proximity correction (OPC) for unprecedented extension of optical lithography and the needs of low sensitivity resist for high resolution result in the limit of variable shaped beam writer which is widely used for mass production. The multi-beam mask writer is attractive candidate for photomask writing of sub-10nm device because of its high speed and the large degree of freedom which enable high dose and dose modulation for each pixel. However, the higher dose and almost unlimited appetite for dose modulation challenge the mask data processing (MDP) in aspects of extreme data volume and correction method. Here, we discuss the requirements of mask data processing for multi-beam mask writer and presents new challenges of the data format, data flow, and correction method for user and supplier MDP tool.

  12. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  13. Natural radionuclide concentrations in processed materials from Thai mineral industries.

    PubMed

    Chanyotha, S; Kranrod, C; Chankow, N; Kritsananuwat, R; Sriploy, P; Pangza, K

    2012-11-01

    The naturally occurring radioactive materials (NORMs) distributed in products, by-products and waste produced from Thai mineral industries were investigated. Samples were analysed for radioactivity concentrations of two principal NORM isotopes: (226)Ra and (228)Ra. The enrichment of NORM was found to occur during the treatment process of some minerals. The highest activity of (226)Ra (7 × 10(7) Bq kg(-1)) was in the scale from tantalum processing. The radium concentration in the discarded by-product material from metal ore dressing was also enriched by 3-10 times. Phosphogypsum, a waste produced from the production of phosphate fertilisers, contained 700 times the level of (226)Ra concentration found in phosphate ore. Hence, these residues were also sources of exposure to workers and the public, which needed to be controlled.

  14. Development of graphene process control by industrial optical spectroscopy setup

    NASA Astrophysics Data System (ADS)

    Fursenko, O.; Lukosius, M.; Lupina, G.; Bauer, J.; Villringer, C.; Mai, A.

    2017-06-01

    The successful integration of graphene into microelectronic devices depends strongly on the availability of fast and nondestructive characterization methods of graphene grown by CVD on large diameter production wafers [1-3] which are in the interest of the semiconductor industry. Here, a high-throughput optical metrology method for measuring the thickness and uniformity of large-area graphene sheets is demonstrated. The method is based on the combination of spectroscopic ellipsometry and normal incidence reflectometry in UV-Vis wavelength range (200-800 nm) with small light spots ( 30 μm2) realized in wafer optical metrology tool. In the first step graphene layers were transferred on a SiO2/Si substrate in order to determine the optical constants of graphene by the combination of multi-angle ellipsometry and reflectometry. Then these data were used for the development of a process control recipe of CVD graphene on 200 mm Ge(100)/Si(100) wafers. The graphene layer quality was additionally monitored by Raman spectroscopy. Atomic force microscopy measurements were performed for micro topography evaluation. In consequence, a robust recipe for unambiguous thickness monitoring of all components of a multilayer film stack, including graphene, surface residuals or interface layer underneath graphene and surface roughness is developed. Optical monitoring of graphene thickness uniformity over a wafer has shown an excellent long term stability (s=0.004 nm) regardless of the growth of interfacial GeO2 and surface roughness. The sensitivity of the optical identification of graphene during microelectronic processing was evaluated. This optical metrology technique with combined data collection exhibit a fast and highly precise method allowing one an unambiguous detection of graphene after transferring as well as after the CVD deposition process on a Ge(100)/Si(100) wafer. This approach is well suited for industrial applications due to its repeatability and flexibility.

  15. Performance evaluation of functioning of natural-industrial system of mining-processing complex with help of analytical and mathematical models

    NASA Astrophysics Data System (ADS)

    Bosikov, I. I.; Klyuev, R. V.; Revazov, V. Ch; Pilieva, D. E.

    2018-03-01

    The article describes research and analysis of hazardous processes occurring in the natural-industrial system and effectiveness assessment of its functioning using mathematical models. Studies of the functioning regularities of the natural and industrial system are becoming increasingly relevant in connection with the formulation of the task of modernizing production and the economy of Russia as a whole. In connection with a significant amount of poorly structured data, it is complicated by regulations for the effective functioning of production processes, social and natural complexes, under which a sustainable development of the natural-industrial system of the mining and processing complex would be ensured. Therefore, the scientific and applied problems, the solution of which allows one to formalize the hidden structural functioning patterns of the natural-industrial system and to make managerial decisions of organizational and technological nature to improve the efficiency of the system, are very relevant.

  16. CERN openlab: Engaging industry for innovation in the LHC Run 3-4 R&D programme

    NASA Astrophysics Data System (ADS)

    Girone, M.; Purcell, A.; Di Meglio, A.; Rademakers, F.; Gunne, K.; Pachou, M.; Pavlou, S.

    2017-10-01

    LHC Run3 and Run4 represent an unprecedented challenge for HEP computing in terms of both data volume and complexity. New approaches are needed for how data is collected and filtered, processed, moved, stored and analysed if these challenges are to be met with a realistic budget. To develop innovative techniques we are fostering relationships with industry leaders. CERN openlab is a unique resource for public-private partnership between CERN and leading Information Communication and Technology (ICT) companies. Its mission is to accelerate the development of cutting-edge solutions to be used by the worldwide HEP community. In 2015, CERN openlab started its phase V with a strong focus on tackling the upcoming LHC challenges. Several R&D programs are ongoing in the areas of data acquisition, networks and connectivity, data storage architectures, computing provisioning, computing platforms and code optimisation and data analytics. This paper gives an overview of the various innovative technologies that are currently being explored by CERN openlab V and discusses the long-term strategies that are pursued by the LHC communities with the help of industry in closing the technological gap in processing and storage needs expected in Run3 and Run4.

  17. Phage therapy in the food industry.

    PubMed

    Endersen, Lorraine; O'Mahony, Jim; Hill, Colin; Ross, R Paul; McAuliffe, Olivia; Coffey, Aidan

    2014-01-01

    Despite advances in modern technologies, the food industry is continuously challenged with the threat of microbial contamination. The overuse of antibiotics has further escalated this problem, resulting in the increasing emergence of antibiotic-resistant foodborne pathogens. Efforts to develop new methods for controlling microbial contamination in food and the food processing environment are extremely important. Accordingly, bacteriophages (phages) and their derivatives have emerged as novel, viable, and safe options for the prevention, treatment, and/or eradication of these contaminants in a range of foods and food processing environments. Whole phages, modified phages, and their derivatives are discussed in terms of current uses and future potential as antimicrobials in the traditional farm-to-fork context, encompassing areas such as primary production, postharvest processing, biosanitation, and biodetection. The review also presents some safety concerns to ensure safe and effective exploitation of bacteriophages in the future.

  18. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    NASA Astrophysics Data System (ADS)

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-10-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.

  19. Measuring Cognitive and Metacognitive Regulatory Processes during Hypermedia Learning: Issues and Challenges

    ERIC Educational Resources Information Center

    Azevedo, Roger; Moos, Daniel C.; Johnson, Amy M.; Chauncey, Amber D.

    2010-01-01

    Self-regulated learning (SRL) with hypermedia environments involves a complex cycle of temporally unfolding cognitive and metacognitive processes that impact students' learning. We present several methodological issues related to treating SRL as an event and strengths and challenges of using online trace methodologies to detect, trace, model, and…

  20. Minor Planet Center Data Processing Challenges

    NASA Astrophysics Data System (ADS)

    Rudenko, Michael

    2015-08-01

    The Minor Planet Center (MPC) is the single worldwide location for receipt and distribution of positional measurements of minor planets, comets and outer irregular natural satellites of the major planets. The MPC is responsible for the identification, designation and orbit computation for all of these objects.Over 2 million observations are received each month via the internet, and are validated and processed in near real time. The observations come in batches whose formats are checked and whose observations are run through a number of other routine checks such as departure from great circle motion, prior publication, single observations, near duplicates, etc. Some or all of a batch of observations may be returned to its sender if they fail one or more of the checks. After the observations have been validated, they are processed to produce orbits of newly discovered objects or used to update the orbits of known objects.Given the volume of observations, the sheer number of known objects against which to possibly match, the shortness of the time interval over which each object was likely observed, and the uncertainties in the positions, and occasionally possible errors in times, reported, a number of data processing challenges face the MPC. These include the following: Identifying observations of objects reported as new with already known objects; linking together sets of observations from different nights (possibly at different apparitions) which may belong to the same object; determining if a set of observations has been assigned to the wrong object; determining if an object with a very short arc is possibly a Near-Earth object; determining and examining the range of possible variant orbits of newly discovered Near-Earth objects with very short observation arcs for cases which indicate an object is potentially on a collision course with Earth; linking observations to known artificial satellites and/or booster stages and other space "junk"; prioritizing newly

  1. A modified indirect mathematical model for evaluation of ethanol production efficiency in industrial-scale continuous fermentation processes.

    PubMed

    Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M

    2016-10-01

    To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.

  2. Direction of CRT waste glass processing: electronics recycling industry communication.

    PubMed

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. 2011 Special Operations Forces Industry Conference

    DTIC Science & Technology

    2011-05-19

    to USSOCOM acquisition objectives and challenges . The Forum is designed to be an informative discussion, with audience participation, between... Challenge UNCLASSIFIED UNCLAS IF ED UNCLASSIFIED UNCLASSIFIED Acquisition Enterprise DOD and Service Labs, International Partners, Industry IR&D SOF...Experimentation • Mission – Support Concept & Solution Development for SOF Capability Gaps, Technology Thrust Areas & Warfighter Challenges • Objectives

  4. Two Decades of Laccases: Advancing Sustainability in the Chemical Industry

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2016-08-05

    Given the current state of environmental affairs and that our future on this planet as we know it is in jeopardy, research and development into greener and more sustainable technologies within the chemical and forest products industries is at its peak. The need for environmentally benign practices is propelling new green processes, given the global scale of these industries. These challenges are also impacting academic research and our reagents of interest are laccases. Furthermore, these enzymes are employed in a variety of biotechnological applications due to their native function as catalytic oxidants. They are about as green as it getsmore » when it comes to chemical processes, requiring O 2 as their only co-substrate and producing H 2O as the sole by-product. The following account will review our twenty year journey on the use of these enzymes within our research group, from their initial use in biobleaching of kraft pulps and for fiber modification within the pulp and paper industry, to their current application as green catalytic oxidants in the field of synthetic organic chemistry.« less

  5. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes.

    PubMed

    Santiago, Margarita; Ramírez-Sarmiento, César A; Zamora, Ricardo A; Parra, Loreto P

    2016-01-01

    Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.

  6. Opportunities and Challenges in Application of Forward Osmosis in Food Processing.

    PubMed

    Rastogi, Navin K

    2016-01-01

    Food processing and preservation technologies must maintain the fresh-like characteristics of food while providing an acceptable and convenient shelf life as well as assuring safety and nutritional value. Besides, the consumers' demand for the highest quality convenience foods in terms of natural flavor and taste, free from additives and preservatives necessitated the development of a number of membrane-based non-thermal approaches to the concentration of liquid foods, of which forward osmosis has proven to be the most valuable one. A series of recent publications in scientific journals have demonstrated novel and diverse uses of this technology for food processing, desalination, pharmaceuticals as well as for power generation. Its novel features, which include the concentration of liquid foods at ambient temperature and pressure without significant fouling of membrane, made the technology commercially attractive. This review aims to identify the opportunities and challenges associated with this technology. At the same time, it presents a comprehensive account of recent advances in forward osmosis technology as related to the major issues of concern in its rapidly growing applications in food processing such as concentration of fruit and vegetable juices (grape, pineapple, red raspberry, orange, and tomato juice and red radish juice) and natural food colorants (anthocyanin and betalains extracts). Several vibrant and vital issues such as recent developments in the forward osmosis membrane and concentration polarization aspects have been also addressed. The asymmetric membrane used for forward osmosis poses newer challenges to account both external and internal concentration polarization leading to significant reduction in flux. The recent advances and developments in forward osmosis membrane processes, mechanism of water transport, characteristics of draw solution and membranes as well as applications of forward osmosis in food processing have been discussed.

  7. Solid recovered fuel production from biodegradable waste in grain processing industry.

    PubMed

    Kliopova, Irina; Staniskis, Jurgis Kazimieras; Petraskiene, Violeta

    2013-04-01

    Management of biodegradable waste is one of the most important environmental problems in the grain-processing industry since this waste cannot be dumped anymore due to legal requirements. Biodegradable waste is generated in each stage of grain processing, including the waste-water and air emissions treatment processes. Their management causes some environmental and financial problems. The majority of Lithuanian grain-processing enterprises own and operate composting sites, but in Lithuania the demand for compost is not given. This study focused on the analysis of the possibility of using biodegradable waste for the production of solid recovered fuel, as a local renewable fuel with the purpose of increasing environmental performance and decreasing the direct costs of grain processing. Experimental research with regard to a pilot grain-processing plant has proven that alternative fuel production will lead to minimizing of the volume of biodegradable waste by 75% and the volume of natural gas for heat energy production by 62%. Environmental indicators of grain processing, laboratory analysis of the chemical and physical characteristics of biodegradable waste, mass and energy balances of the solid recovered fuel production, environmental and economical benefits of the project are presented and discussed herein.

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    James Leopore, of team Fetch, from Alexandria, Virginia, speaks with judges as he prepares for the NASA 2014 Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Fetch is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. NORM Management in the Oil & Gas Industry

    NASA Astrophysics Data System (ADS)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-01

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil & gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  10. MERCURY REDUCTION IN PRODUCTS AND PROCESSES: A REVIEW OF THE ELECTRICAL AND ELECTRONIC INDUSTRIES

    EPA Science Inventory

    The electrical and electronics industries have significantly reduced the amount of mercury from various products and processes. However, the unique electromechanical and photoelectronic properties of mercury and mercury compounds have made replacement of mercury difficult in some...

  11. MERCURY REDUCTION IN PRODUCTS AND PROCESSES: A REVIEW OF THE ELECTRICAL AND ELECTRONIC INDUSTRIES

    EPA Science Inventory

    The electrical and electronics industries have significantly reduced the amount of mercury from various products and processes. owever, the unique electromechanical and photoelectronic properties of mercury and mercury compounds have made replacement of mercury difficult in some ...

  12. Nanocharacterization Challenges in a Changing Microelectronics Landscape

    NASA Astrophysics Data System (ADS)

    Brilloüt, Michel

    2011-11-01

    As the microelectronics industry enters the "nano"-era new challenges emerge. Traditional scaling of the MOS transistor faces major obstacles in fulfilling "Moore's law". New features like strain and new materials (e.g. high k—metal gate stack) are introduced in order to sustain performance increases. For a better electrostatic control, devices will use the third dimension, e.g., in gate-all-around nanowire structures. Due to the escalating cost and complexity of sub-28 nm technologies fewer industrial players can afford the development and production of advanced CMOS processes and many companies acknowledge the fact that the value in products can also be obtained in using more diversified non-digital technologies (the so-called "More-than-Moore" domain). This evolving landscape brings new requirements—discussed in this paper—in terms of physical characterization of technologies and devices.

  13. Challenges to a blow/fill/seal process with airborne microorganisms having different resistances to dry heat.

    PubMed

    Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan

    2006-01-01

    Controlled challenges with air dispersed microorganisms having widely different resistances to dry heat, carried out on 624 BFS machine processing growth medium, have shown that higher the heat resistance, the greater the extent of vial contamination. Differences in heat resistance affected also the extent of vial contamination when parison and vial formation were knowingly manipulated through changes made to each of three process variables, provision of ballooning air, mould vacuum delay, and parison extrusion rate. The findings demonstrate that, in this investigational system, exposure of challenge micoorganisms to heat inherent in the process has a controlling influence on vial contamination, an influence that could also control microbiological risk in production environments.

  14. Regionalization in the SUS: implementation process, challenges and perspectives in the critical view of system managers.

    PubMed

    Carvalho, Andre Luis Bonifácio de; Jesus, Washington Luiz Abreu de; Senra, Isabel Maria Vilas Boas

    2017-04-01

    This article examines the regionalization process in the Brazilian Health System, identifying frameworks and challenges of this process from critical dialogue on the subject, contextualized by the experience of the management system and in the light of an established theoretical debate in the last decade. We used the thematic content analysis of legal and documentary surveys of the regionalization process in SUS, collated by elements of the historical and political context in the period. As evidence, it appears that the regionalization process has been incremental decentralization/deconcentration of management and health actions and services. There are important challenges, particularly in relation to ensuring access and system governance structure, which contributes to critical thinking and construction of new perspectives by those who lead their implementation.

  15. Affairs of power: Restructuring California's electric utility industry, 1968-1998

    NASA Astrophysics Data System (ADS)

    Myers, William Allan

    This dissertation studies the process of change in the political economy of electric utilities. Following two decades of continual growth during the nation's post-World War Two economic and population boom, the electric power industry confronted increasing challenges to its traditional operating practices and cultural values, nowhere with greater intensity than in California. Pressure for change came from outside forces who opposed utilities' business practices, assailed their traditional vertically-integrated structure, questioned the political assumptions that sustained their monopoly status, and ultimately wrested away access to the once tightly controlled technology of electric generation and transmission. Because managers of both investor-owned and publicly-owned utilities continued to rely upon long-standing economic and technical assumptions derived from deeply held cultural values sustained by decades of business success, they were rendered unable to comprehend and unwilling to accommodate change. Persistent mistrust between the publicly-owned and privately-owned sectors further weakened the industry's ability to work cooperatively in the face of crucial challenges. Thus encumbered by endemic structural jealousy, technological path dependency, and organizational stasis, the industry did not respond with sufficient innovation to new social values and altering economic conditions, ultimately resulting in the discarding of the old political economy of regulated monopolism. Five precepts of economic history are identified as crucial elements of the process of change. First, the tension between protection and entry, and the related issue of access to technology, contributes to creation and modification of the political economy in which economic institutions function. Second, submission to governmental regulatory powers allows certain industries to control entry, restrict access, and protect themselves from the dynamics of competitive change. Third, an

  16. Potentials for win-win alliances among animal agriculture and forest products industries: application of the principles of industrial ecology and sustainable development.

    PubMed

    Cowling, Ellis B; Furiness, Carl S

    2005-12-01

    Commercial forests in many parts of the world are deficient in nitrogen and phosphorus. These nutrient-deficient forests often exist in close proximity to large animal feeding operations, meat processing and other food, textile, or other biomass-processing plants, and municipal waste treatment facilities. Many of these facilities produce large surpluses of nitrogen, phosphorus, and organic matter as gaseous ammonia, urea, uric acid, phosphorus compounds, bacterial sludges, and partially treated municipal wastewaters. These co-existing and substantial nutrient deficiencies and surpluses offer ready-made opportunities for discovery, demonstration, and commercial development of science-based, technology-facilitated, environmentally sound, economically viable, and socially acceptable "win-win alliances" among these major industries based on the principles of industrial ecology and sustainable development. The major challenge is to discover practical means to capture the surplus nutrients and put them to work in forest stands from which value-added products can be produced and sold at a profit.

  17. Technological innovation, human capital and social change for sustainability. Lessons learnt from the industrial technologies theme of the EU's Research Framework Programme.

    PubMed

    Sabadie, Jesús Alquézar

    2014-05-15

    Europe is facing a twofold challenge. It must maintain or even increase its competitiveness, a basic requirement in a globalised economy and under the current demographic threat. It needs also to tackle the so-called "grand challenges", especially environmental issues, through a sustainable model of production and consumption. Such challenges should lead to new business and industrial models, based on more sustainable production and consumption chains, from design to end of life. This implies a need for new industrial materials and processes, new skills and, indeed, new values and life-styles. Sustainability and innovation are key elements of EU's Research and Innovation Framework Programmes, particularly in the field of industrial technologies (nanotechnologies, materials and industrial technologies), which objective is to "improve the competitiveness of the European industry and generate knowledge to ensure its transformation from a resource intensive to a knowledge intensive industry". Sustainability and innovation are interrelated challenges for R&D. Research can develop technical solutions to tackle environmental or societal challenges, but such technologies need to be successfully commercialised to have a real environmental impact. Several socio-economic studies carried-out by the European Commission show not only the emerging technological and industrial trends, but they also emphasise the need for linking sustainable technologies with social change. Human capital and new social behaviours are critical factors to combine economic competitiveness and sustainability: technology alone is no longer able to solve global challenges. But what kind of human capital (skills, behaviours, and values) are we referring to? How to encourage the shift towards a greener society through human capital? Which reforms are needed in education systems to move towards a sustainable economy? Are there examples of social innovation to be extrapolated and/or generalised? © 2013

  18. Advanced process control framework initiative

    NASA Astrophysics Data System (ADS)

    Hill, Tom; Nettles, Steve

    1997-01-01

    The semiconductor industry, one the world's most fiercely competitive industries, is driven by increasingly complex process technologies and global competition to improve cycle time, quality, and process flexibility. Due to the complexity of these problems, current process control techniques are generally nonautomated, time-consuming, reactive, nonadaptive, and focused on individual fabrication tools and processes. As the semiconductor industry moves into higher density processes, radical new approaches are required. To address the need for advanced factory-level process control in this environment, Honeywell, Advanced Micro Devices (AMD), and SEMATECH formed the Advanced Process Control Framework Initiative (APCFI) joint research project. The project defines and demonstrates an Advanced Process Control (APC) approach based on SEMATECH's Computer Integrated Manufacturing (CIM) Framework. Its scope includes the coordination of Manufacturing Execution Systems, process control tools, and wafer fabrication equipment to provide necessary process control capabilities. Moreover, it takes advantage of the CIM Framework to integrate and coordinate applications from other suppliers that provide services necessary for the overall system to function. This presentation discusses the key concept of model-based process control that differentiates the APC Framework. This major improvement over current methods enables new systematic process control by linking the knowledge of key process settings to desired product characteristics that reside in models created with commercial model development tools The unique framework-based approach facilitates integration of commercial tools and reuse of their data by tying them together in an object-based structure. The presentation also explores the perspective of each organization's involvement in the APCFI project. Each has complementary goals and expertise to contribute; Honeywell represents the supplier viewpoint, AMD represents the user

  19. Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets.

    PubMed

    Cai, Congxi; Miao, Huiying; Qian, Hongmei; Yao, Leishuan; Wang, Bingliang; Wang, Qiaomei

    2016-11-01

    The effects of industrial pre-freezing processing and freezing handling on the contents of glucosinolates and antioxidants (vitamin C, polyphenols, carotenoid and chlorophyll), as well as the antioxidant capacity in broccoli (Brassica oleracea L. var. italica) florets were investigated in the present study. Our results showed that the glucosinolate accumulations were significantly decreased after pre-freezing processing, whereas elevated levels of phenols, carotenoids, chlorophyll, and also antioxidant capacity were observed in frozen broccoli florets. The contents of vitamin C remained constant during above mentioned processing. In conclusion, the current industrial freezing processing method is a good practice for the preservation of main antioxidant nutrients in broccoli florets, although some improvements in pre-freezing processing, such as steam blanching and ice-water cooling, are needed to attenuate the decrease in glucosinolate content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Industrial wastewater platform: upgrading of the biological process and operative configurations for best performance.

    PubMed

    Eusebi, Anna Laura; Massi, Alessandro; Sablone, Emiliano; Santinelli, Martina; Battistoni, Paolo

    2012-01-01

    The treatment of industrial liquid wastes is placed in a wide context of technologies and is related to the high variability of the influent physical-chemical characteristics. In this condition, the achievement of satisfactory biological unit efficiency could be complicated. An alternate process (AC) with aerobic and anoxic phases fed in a continuous way was evaluated as an operative solution to optimize the performance of the biological reactor in a platform for the treatment of industrial liquid wastes. The process application has determined a stable quality effluent with an average concentration of 25 mg TN L(-1), according to the law limits. The use of discharged wastewaters as rapid carbon sources to support the anoxic phase of the alternate cycle, realizes a reduction of TN of 95% without impact on the total operative costs. The evaluation of the micro-pollutants behaviour has highlighted a bio-adsorption phenomenon in the first reactor. The implementation of the process defined 31% of energy saving during period 1 and 19% for the periods 2, 3 and 4.

  1. Facets of Nanotechnology as Seen in Food Processing, Packaging, and Preservation Industry.

    PubMed

    Pradhan, Neha; Singh, Surjit; Ojha, Nupur; Shrivastava, Anamika; Barla, Anil; Rai, Vivek; Bose, Sutapa

    2015-01-01

    Nanotechnology has proven its competence in almost all possible fields we are aware of. However, today nanotechnology has evolved in true sense by contributing to a very large extent to the food industry. With the growing number of mouths to feed, production of food is not adequate. It has to be preserved in order to reach to the masses on a global scale. Nanotechnology made the idea a reality by increasing the shelf life of different kinds of food materials. It is not an entirely full-proof measure; however it has brought down the extent of wastage of food due to microbial infestation. Not only fresh food but also healthier food is being designed with the help of nano-delivery systems which act as a carrier for the food supplements. There are regulations to follow however as several of them pose serious threats to the wellbeing of the population. In coming days, newer modes of safeguarding food are going to be developed with the help of nanotechnology. In this paper, an overview has been given of the different methods of food processing, packaging, and preservation techniques and the role nanotechnology plays in the food processing, packaging, and preservation industry.

  2. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    PubMed Central

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707

  3. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    NASA Astrophysics Data System (ADS)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  4. Reduction of Multi-pollutant Emissions from Industrial Sectors: The U.S. Cement Industry – A Case Study

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Carbon dioxide (CO2) accounts for more than 90% of worldwide CO2-eq green-house gas (GHG) emissions from industrial sectors other than power generation. Amongst these sectors, the cement industry is one ...

  5. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurup, Parthiv; Turchi, Craig

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies ofmore » interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.« less

  6. Characteristics of extraction and functionality of protein from tomato pomace produced with different industrial processing methods

    USDA-ARS?s Scientific Manuscript database

    The seeds from tomato pomace, a by-product of tomato processing, contains valuable but underutilized protein with unique functional properties. The objectives of this research were to study the impact of industrial hot and cold break tomato processing on protein extraction from defatted tomato seeds...

  7. Defects Associated with Soldification of Melt Processed Superalloys for the Aerospace Industry

    DTIC Science & Technology

    2008-07-23

    resulting computational model will be in a form that is usable in their efforts to design new alloys and processing routes. Given the broad research...thermodynamics modeling by Asta and Woodward. The permeability of dendritic arrays in superalloys has been determined using three-dimensional reconstructions of...the solid-liquid mush and finite-element fluid simulations by Pollock and Spowart. Close interaction with industry ensured that computational

  8. Adaptation of a Control Center Development Environment for Industrial Process Control

    NASA Technical Reports Server (NTRS)

    Killough, Ronnie L.; Malik, James M.

    1994-01-01

    In the control center, raw telemetry data is received for storage, display, and analysis. This raw data must be combined and manipulated in various ways by mathematical computations to facilitate analysis, provide diversified fault detection mechanisms, and enhance display readability. A development tool called the Graphical Computation Builder (GCB) has been implemented which provides flight controllers with the capability to implement computations for use in the control center. The GCB provides a language that contains both general programming constructs and language elements specifically tailored for the control center environment. The GCB concept allows staff who are not skilled in computer programming to author and maintain computer programs. The GCB user is isolated from the details of external subsystem interfaces and has access to high-level functions such as matrix operators, trigonometric functions, and unit conversion macros. The GCB provides a high level of feedback during computation development that improves upon the often cryptic errors produced by computer language compilers. An equivalent need can be identified in the industrial data acquisition and process control domain: that of an integrated graphical development tool tailored to the application to hide the operating system, computer language, and data acquisition interface details. The GCB features a modular design which makes it suitable for technology transfer without significant rework. Control center-specific language elements can be replaced by elements specific to industrial process control.

  9. U.S. Team Green Building Challenge 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2002-09-01

    Flier about the U.S. Team and its projects participating in the International Green Building Challenge. Along with many other countries, the United States accepted the Green Building Challenge (GBC), an international effort to evaluate and improve the performance of buildings worldwide. GBC started out in 1996 as a competition to determine which country had the greenest buildings; it evolved into a cooperative process among the countries to measure the performance of green buildings. Although the auto industry can easily measure efficiency in terms of miles per gallon, the buildings industry has no standard way to quantify energy and environmental performance.more » The Green Building Challenge participants hope that better tools for measuring the energy and environmental performance of buildings will be an outcome of their efforts and that these tools will lead to higher and better performance levels in buildings around the world. The ultimate goal is to design, construct, and operate buildings that contribute to global sustainability by conserving and/or regenerating natural resources and minimizing nonrenewable energy use. The United States' Green Building Challenge Team '02 selected five buildings from around the country to serve as case studies; each of the five U.S. building designs (as well as all international case studies) were assessed using an in-depth evaluation tool, called the Green Building Assessment Tool (GBTool). The GBTool was specifically created and refined by international teams, for the GBC efforts. The goal of this collaborative effort is to improve this evaluation software tool so that it can be used globally, while taking into account regional and national conditions. The GBTool was used by the U.S. Team to assess and evaluate the energy and environmental performance of these five buildings: (1) Retail (in operation): BigHorn Home Improvement Center, Silverthorne, Colorado; (2) Office (in operation), Philip Merrill Environmental; (3

  10. Translating cell-based regenerative medicines from research to successful products: challenges and solutions.

    PubMed

    Bayon, Yves; Vertès, Alain A; Ronfard, Vincent; Egloff, Matthieu; Snykers, Sarah; Salinas, Gabriella Franco; Thomas, Robert; Girling, Alan; Lilford, Richard; Clermont, Gaelle; Kemp, Paul

    2014-08-01

    The Tissue Engineering & Regenerative Medicine International Society-Europe (TERMIS-EU) Industry Committee as well as its TERMIS-Americas (AM) counterpart intend to address the specific challenges and needs facing the industry in translating academic research into commercial products. Over the last 3 years, the TERMIS-EU Industry Committee has worked with commercial bodies to deliver programs that encourage academics to liaise with industry in proactive collaborations. The TERMIS-EU 2013 Industry Symposium aimed to build on this commercial agenda by focusing on two topics: Operations Management (How to move a process into the good manufacturing practice [GMP] environment) and Clinical Translation (Moving a GMP process into robust trials). These topics were introduced by providing the synergistic business perspective of partnering between the multiple regenerative medicine stakeholders, throughout the life cycle of product development. Seven industry leaders were invited to share their experience, expertise, and strategies. Due to the complex nature of regenerative medicine products, partnering for their successful commercial development seems inevitable to overcome all obstacles by sharing experiences and expertise of all stakeholders. When ideally implemented, the "innovation quotient" of a virtual team resulting from the combination of internal and external project teams can be maximized through maximizing the three main dimensions: core competences, technology portfolio, and alliance management.

  11. Orbiter processing facility: Access platforms Kennedy Space Center, Florida, from challenge to achievement

    NASA Technical Reports Server (NTRS)

    Haratunian, M.

    1985-01-01

    A system of access platforms and equipment within the space shuttle orbiter processing facility at Kennedy Space Center is described. The design challenges of the platforms, including clearance envelopes, load criteria, and movement, are discussed. Various applications of moveable platforms are considered.

  12. MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling.

    PubMed

    Chen, T K; Ni, C H; Chan, Y C; Lu, M C

    2005-01-01

    This research is mainly to explore the treatment capacity for TFT-LCD industrial wastewater recycling by the processes combined with membrane bioreactor (MBR), reverse osmosis (RO) and ozone(O3). The organic wastewater from the TFT-LCD industry was selected as the target. MBR, RO and ozone plants were established for evaluation. An MBR plant consisted of a 2-stage anoxic/aerobic bioreactor and an immersed UF membrane unit was employed. The effluent of MBR was conducted into the RO system then into the ozone system. The RO system consisted of a spiral membrane in the vessel. One bubble column, 75 cm high and diameter 5 cm, were used as the ozonation reactor. On the bottom of ozonation reactor is a porous diffuser for releasing gas, with an aperture of 100 microm (0.1 cm). Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 98.5%. For the TOC item, the average removal efficiency was 97.4%. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of an immersed UF membrane device incorporated with the biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After the treatment of RO, excellent water quality was found. The water quality of permeate was under 5 mg/I, 2 mg/l and 50 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled and reused for the cooling tower make-up water or other purposes. After the treatment of ozone, the treated water quality was under 5 mg/l and 0.852 mg/l for COD and TOC respectively. The test results of MBR, MBR/RO and MBR/RO/ozone processes were compared as possible appropriate treatment technologies applied in TFT-LCD industrial wastewater reuse and recycling.

  13. Potential application of quantitative microbiological risk assessment techniques to an aseptic-UHT process in the food industry.

    PubMed

    Pujol, Laure; Albert, Isabelle; Johnson, Nicholas Brian; Membré, Jeanne-Marie

    2013-04-01

    Aseptic ultra-high-temperature (UHT)-type processed food products (e.g., milk or soup) are ready to eat products which are consumed extensively globally due to a combination of their comparative high quality and long shelf life, with no cold chain or other preservation requirements. Due to the inherent microbial vulnerability of aseptic-UHT product formulations, the safety and stability-related performance objectives (POs) required at the end of the manufacturing process are the most demanding found in the food industry. The key determinants to achieving sterility, and which also differentiates aseptic-UHT from in-pack sterilised products, are the challenges associated with the processes of aseptic filling and sealing. This is a complex process that has traditionally been run using deterministic or empirical process settings. Quantifying the risk of microbial contamination and recontamination along the aseptic-UHT process, using the scientifically based process quantitative microbial risk assessment (QMRA), offers the possibility to improve on the currently tolerable sterility failure rate (i.e., 1 defect per 10,000 units). In addition, benefits of applying QMRA are (i) to implement process settings in a transparent and scientific manner; (ii) to develop a uniform common structure whatever the production line, leading to a harmonisation of these process settings, and; (iii) to bring elements of a cost-benefit analysis of the management measures. The objective of this article is to explore how QMRA techniques and risk management metrics may be applied to aseptic-UHT-type processed food products. In particular, the aseptic-UHT process should benefit from a number of novel mathematical and statistical concepts that have been developed in the field of QMRA. Probabilistic techniques such as Monte Carlo simulation, Bayesian inference and sensitivity analysis, should help in assessing the compliance with safety and stability-related POs set at the end of the manufacturing

  14. Academic-industry Collaborations in Translational Stroke Research.

    PubMed

    Boltze, Johannes; Wagner, Daniel-Christoph; Barthel, Henryk; Gounis, Matthew J

    2016-08-01

    Academic-industry collaborations are an emerging format of translational stroke research. Next to classic contract research models, a multitude of collaboration models has been developed, some of which even allowing for multinational or intercontinental research programs. This development has recently been paralleled by first successful attempts to overcome the translational stroke research road block, such as the unprecedented success of novel endovascular approaches or the advent of the multicenter preclinical trial concept. While the first underlines the role of the industry as a major innovation driver in stroke research, the latter will require enrollment of industrial partners for optimal output. Moreover, academic-industry partnerships are invaluable to bridge the translational "valley of death" as well as funding gaps in times of dwindling public funding and declining high risk capital investments. However, these collaborations are also subject to relevant challenges because interests, values, and aims often significantly differ between cademia and industry. Here, we describe common academic-industry collaboration models as well as associated benefits and challenges in the stroke research arena. We also suggest strategies for improved planning, implementation, guidance, and utilization of academic-industry collaborations to the maximum mutual benefit.

  15. Afghanistans Oil, Gas, and Minerals Industries: $488 Million in U.S. Efforts Show Limited Progress Overall, and Challenges Prevent Further Investment and Growth

    DTIC Science & Technology

    2016-01-01

    488 Million in U.S. Efforts Show Limited Progress Overall, and Challenges Prevent Further Investment and Growth SIGAR 16-11-AR/Afghanistan’s...of revenue for the Afghan government. WHAT SIGAR FOUND Most TFBSO and USAID assistance to Afghanistan’s extractive industries has been directed ...toward developing capacity at the MoMP and its component organizations, and toward making regulatory reforms to attract private sector investment

  16. [Microbiological assessment of the Gouda-type cheese-making process in a Venezuelan industry].

    PubMed

    Dáivila, Jacqueline; Reyes, Genara; Corzo, Otoniel

    2006-03-01

    The adoption of the Hazard Analysis and Critical Control Point (HACCP) system is necessary to assure the safety of the product in the cheese-making industry. The compliment of pre-requisite programs as Good Manufacture Practices (GMPs) and Sanitation Standard Operating Procedures (SSOPs) are required before the implementation of the HACCP plan. GMPs are the standards related to equipments, tools, personnel, etc. SSOPs are the procedures related to hygiene and sanitation of the plant and workers. The aim of this study was to assess the compliment of the pre-requisite programs and the microbiological conditions of the Gouda type cheese-making process in a Venezuelan processing plant before designing a HACCP plan. Samples were: (a) raw milk, pasteurized milk, curd and ripened cheese, (b) water, (c) environment of the production areas and ripening premises, (d) equipments before and after sanitation, (e) food handlers. Microbiological analyses were done according to COVENIN standards. This study showed that even though pasteurization process was effective to kill pathogen bacteria of the raw milk and the water was safe, however there are deficient manufacture practices in the hygiene as well as in sanitation of the plant and food handlers. Prerequisite programs (GMP-SSOP) of this industry need to be well established, controlled and evaluated.

  17. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-07-01

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  18. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.

    2017-12-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  19. Unpacking team process dynamics and emergent phenomena: Challenges, conceptual advances, and innovative methods.

    PubMed

    Kozlowski, Steve W J; Chao, Georgia T

    2018-01-01

    Psychologists have studied small-group and team effectiveness for decades, and although there has been considerable progress, there remain significant challenges. Meta-analyses and systematic research have provided solid evidence for core team cognitive, motivational, affective, and behavioral processes that contribute to team effectiveness and empirical support for interventions that enhance team processes (e.g., team design, composition, training, and leadership); there has been substantial evidence for a science of team effectiveness. Nonetheless, there have also been concerns that team processes, which are inherently dynamic, have primarily been assessed as static constructs. Team-level processes and outcomes are multilevel phenomena that emerge, bottom-up from the interactions among team members over time, under the shifting demands of a work context. Thus, theoretical development that appropriately conceptualizes the multiple levels, process dynamics, and emergence of team phenomena over time are essential to advance understanding. Moreover, these conceptual advances necessitate innovative research methodologies to better capture team process dynamics. We explicate this foundation and then describe 2 promising streams of scientific inquiry-team interaction sensors and computational modeling-that are advancing new, unobtrusive measurement techniques and process-oriented research methods focused on understanding the dynamics of cohesion and cognition in teamwork. These are distinct lines of research, each endeavoring to advance the science, but doing so through the development of very different methodologies. We close by discussing the near-term research challenges and the potential long-term evolution of these innovative methods, with an eye toward the future for process-oriented theory and research on team effectiveness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Functionally Approached Body (FAB) Strategies for Young Children Who Have Behavioral and Sensory Processing Challenges

    ERIC Educational Resources Information Center

    Pagano, John

    2005-01-01

    Functionally Approached Body (FAB) Strategies offer a clinical approach to help parents of young children with behavioral and sensory processing strategies. This article introduces the FAB Strategies, clinical strategies developed by the author for understanding and addressing young children's behavioral and sensory processing challenges. The FAB…

  1. A survey of size-fractionated dust levels in the U.S. wood processing industry.

    PubMed

    Kalliny, Medhat I; Brisolara, Joseph A; Glindmeyer, Henry; Rando, Roy

    2008-08-01

    A survey of size-fractionated dust exposure was carried out in 10 wood processing plants across the United States as part of a 5-year longitudinal respiratory health study. The facilities included a sawmill, plywood assembly plants, secondary wood milling operations, and factories producing finished wood products such as wood furniture and cabinets. Size-fractionated dust exposures were determined using the RespiCon Personal Particle Sampler. There were 2430 valid sets of respirable, thoracic, and inhalable dust samples collected. Overall, geometric mean (geometric standard deviation) exposure levels were found to be 1.44 (2.67), 0.35 (2.65), and 0.18 (2.54) mg/m, for the inhalable, thoracic, and respirable fractions, respectively. Averaged across all samples, the respirable fraction accounted for 16.7% of the inhalable dust mass, whereas the corresponding figure for thoracic fraction as a percentage of the inhalable fraction was 28.7%. Exposures in the furniture manufacturing plants were significantly higher than those in sawmill and plywood assembly plants, wood milling plants, and cabinet manufacturing plants, whereas the sawmill and plywood assembly plants exhibited significantly lower dust levels than the other industry segments. Among work activities, cleaning with compressed air and sanding processes produced the highest size-fractionated dust exposures, whereas forklift drivers demonstrated the lowest respirable and inhalable dust fractions and shipping processes produced the lowest thoracic dust fraction. Other common work activities such as sawing, milling, and clamping exhibited intermediate exposure levels, but there were significant differences in relative ranking of these across the various industry segments. Processing of hardwood and mixed woods generally were associated with higher exposures than were softwood and plywood, although these results were confounded with industry segment also.

  2. High Throughput Atomic Layer Deposition Processes: High Pressure Operations, New Reactor Designs, and Novel Metal Processing

    NASA Astrophysics Data System (ADS)

    Mousa, MoatazBellah Mahmoud

    Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor

  3. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.

    PubMed

    Brentner, Laura B; Eckelman, Matthew J; Zimmerman, Julie B

    2011-08-15

    The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways.

  4. Decline in lung function related to exposure and selection processes among workers in the grain processing and animal feed industry.

    PubMed

    Post, W; Heederik, D; Houba, R

    1998-05-01

    To follow up workers in the grain processing and animal feed industry five years after an initial survey, and to monitor exposures to organic dust and endotoxin and changes in prevalence of respiratory symptoms and lung function. Outcome measures in the present survey were decline in lung function over five years, rapid annual decline in forced expiratory volume in one second (FEV1) above 90 ml.s-1, and loss to follow up. Among 140 workers included in the longitudinal analysis, annual decline in FEV1 and maximal mid-expiratory flow (MMEF) were significantly related to occupational exposure to dust and endotoxin in the grain processing and animal feed industry. Assuming a cumulative exposure over a working life of 40 years with an exposure of 5 mg.m-3, the estimated effect on the FEV1 would be a decline of 157 ml.s-1 (95% CI 13 to 300)--that is, about 4% of the group mean FEV1 and 473 ml.s-1 (95% CI 127 to 800) of the MMEF (about 12%). Workers with a dust exposure > 4 mg.m-3 or endotoxin concentrations > 20 ng.m-3 at the 1986-8 survey had significantly higher risk of rapid decline in FEV1 (odds ratio (OR) 3.3, 95% CI 1.02 to 10.3). The relations between occupational exposure and decline in lung function in this study occurred, despite the selection through the healthy worker effect that occurred as well. Increasing working years was related to decreasing annual decline in FEV1 and fewer people with rapid decline in FEV1 (OR 0.04, 95% CI 0 to 0.61 for over 20 v < 5 working years in the grain processing and animal feed industry). The presence of respiratory symptoms at baseline was a strong predictor of subsequent loss to follow up. Baseline lung function was not found to be predictive of subsequent loss to follow up. However, among workers lost to follow up the number of working years was more strongly negatively related to baseline lung function than among the workers who were studied longitudinally. The existence of the healthy worker effect implies that an

  5. Decline in lung function related to exposure and selection processes among workers in the grain processing and animal feed industry

    PubMed Central

    Post, W.; Heederik, D.; Houba, R.

    1998-01-01

    OBJECTIVES: To follow up workers in the grain processing and animal feed industry five years after an initial survey, and to monitor exposures to organic dust and endotoxin and changes in prevalence of respiratory symptoms and lung function. METHODS: Outcome measures in the present survey were decline in lung function over five years, rapid annual decline in forced expiratory volume in one second (FEV1) above 90 ml.s-1, and loss to follow up. RESULTS: Among 140 workers included in the longitudinal analysis, annual decline in FEV1 and maximal mid- expiratory flow (MMEF) were significantly related to occupational exposure to dust and endotoxin in the grain processing and animal feed industry. Assuming a cumulative exposure over a working life of 40 years with an exposure of 5 mg.m-3, the estimated effect on the FEV1 would be a decline of 157 ml.s-1 (95% CI 13 to 300)--that is, about 4% of the group mean FEV1 and 473 ml.s-1 (95% CI 127 to 800) of the MMEF (about 12%). Workers with a dust exposure > 4 mg.m-3 or endotoxin concentrations > 20 ng.m-3 at the 1986-8 survey had significantly higher risk of rapid decline in FEV1 (odds ratio (OR) 3.3, 95% CI 1.02 to 10.3). The relations between occupational exposure and decline in lung function in this study occurred, despite the selection through the healthy worker effect that occurred as well. Increasing working years was related to decreasing annual decline in FEV1 and fewer people with rapid decline in FEV1 (OR 0.04, 95% CI 0 to 0.61 for over 20 v < 5 working years in the grain processing and animal feed industry). The presence of respiratory symptoms at baseline was a strong predictor of subsequent loss to follow up. Baseline lung function was not found to be predictive of subsequent loss to follow up. However, among workers lost to follow up the number of working years was more strongly negatively related to baseline lung function than among the workers who were studied longitudinally. CONCLUSIONS: The existence of the

  6. Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review.

    PubMed

    Chatha, Shahzad Ali Shahid; Asgher, Muhammad; Iqbal, Hafiz M N

    2017-06-01

    The textile industry, as recognized conformist and stake industry in the world's economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based "classical/conventional" treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.

  7. Stability assessment of lycopene microemulsion prepared using tomato industrial waste against various processing conditions.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2017-11-01

    Green separation techniques are growing at a greater rate than solvent extraction as a result of the constant consumer drive to 'go natural'. Considering the increasing evidence of the health benefits of lycopene and massive tomato industrial waste, in the present study, lycopene was extracted from tomato industrial waste using microemulsion technique and its mean droplet size and size distribution was determined. Moreover, the effects of pasteurization, sterilization, freeze-thaw cycles and ultraviolet (UV) irradiation on the thermodynamic stability, turbidity and lycopene concentration of the lycopene microemulsion were monitored. Freeze-thaw cycles, pasteurization and short exposure to UV irradiation showed no or negligible influence on lycopene content and turbidity of the microemulsion. However, long exposure to UV (260 min) reduced the lycopene content and turbidity by 34% and 10%, respectively. HHST (higher-heat shorter-time) and sterilization also reduced lycopene content (25%) and increased turbidity (32%). The lycopene microemulsion showed satisfactory stability over a process where its monodispersity and nanosize could be of potential advantage to the food and related industries. Regarding the carcinogenicity of synthetic colourants, potential applications of the lycopene microemulsion include in soft drinks and minced meat, which would result in a better colour and well-documented health-promoting qualities. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Environmental management practices in the Lebanese pharmaceutical industries: implementation strategies and challenges.

    PubMed

    Massoud, May A; Makarem, N; Ramadan, W; Nakkash, R

    2015-03-01

    This research attempts to provide an understanding of the Lebanese pharmaceutical industries' environmental management strategies, priorities, and perceptions as well as drivers, barriers, and incentives regarding the implementation of the voluntary ISO 14001 Environmental Management System. Accordingly, a semistructured in-depth interview was conducted with the pharmaceutical industries. The findings revealed a significant lack of knowledge about the standard among the industries. The main perceived drivers for adopting the ISO 14001 are improving the companies' image and overcoming international trade. The main perceived barriers for acquiring the standard are the lack of government support and the fact that ISO 14001 is not being legally required or enforced by the government. Moreover, results revealed that adopting the ISO 14001 standard is not perceived as a priority for the Lebanese pharmaceutical industries. Although the cost of certification was not considered as a barrier for the implementation of ISO 14001, the majority of the pharmaceutical industries are neither interested nor willing to adopt the Standard if they are not exposed to any regulatory pressure or external demand. They are more concerned with quality and safety issues with the most adopted international standard among the industries being the ISO 9001 quality management system. This study highlights the aspect that financial barriers are not always the hurdles for implementing environmental management strategies in developing countries and underscores the need for regulatory frameworks and enforcement.

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ryan Watson, Team Mountaineers; Lucas Behrens, Team Mountaineers; Jarred Strader, Team Mountaineers; Yu Gu, Team Mountaineers; Scott Harper, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Laurie Leshin, Worcester Polytechnic Institute (WPI) President; David Miller, NASA Chief Technologist; Alexander Hypes, Team Mountaineers; Nick Ohi,Team Mountaineers; Marvin Cheng, Team Mountaineers; Sam Ortega, NASA Program Manager for Centennial Challenges; and Tanmay Mandal, Team Mountaineers;, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. Synthesizing Equivalence Indices for the Comparative Evaluation of Technoeconomic Efficiency of Industrial Processes at the Design/Re-engineering Level

    NASA Astrophysics Data System (ADS)

    Fotilas, P.; Batzias, A. F.

    2007-12-01

    The equivalence indices synthesized for the comparative evaluation of technoeconomic efficiency of industrial processes are of critical importance since they serve as both, (i) positive/analytic descriptors of the physicochemical nature of the process and (ii) measures of effectiveness, especially helpful for investigated competitiveness in the industrial/energy/environmental sector of the economy. In the present work, a new algorithmic procedure has been developed, which initially standardizes a real industrial process, then analyzes it as a compromise of two ideal processes, and finally synthesizes the index that can represent/reconstruct the real process as a result of the trade-off between the two ideal processes taking as parental prototypes. The same procedure makes fuzzy multicriteria ranking within a set of pre-selected industrial processes for two reasons: (a) to analyze the process most representative of the production/treatment under consideration, (b) to use the `second best' alternative as a dialectic pole in absence of the two ideal processes mentioned above. An implantation of this procedure is presented, concerning a facility of biological wastewater treatment with six alternatives: activated sludge through (i) continuous-flow incompletely-stirred tank reactors in series, (ii) a plug flow reactor with dispersion, (iii) an oxidation ditch, and biological processing through (iv) a trickling filter, (v) rotating contactors, (vi) shallow ponds. The criteria used for fuzzy (to count for uncertainty) ranking are capital cost, operating cost, environmental friendliness, reliability, flexibility, extendibility. Two complementary indices were synthesized for the (ii)-alternative ranked first and their quantitative expressions were derived, covering a variety of kinetic models as well as recycle/bypass conditions. Finally, analysis of estimating the optimal values of these indices at maximum technoeconomic efficiency is presented and the implications

  11. [Innovation in pharmaceutical and health biotechnology industries: challenges for a virtuous agenda].

    PubMed

    Vargas, Marco; Gadelha, Carlos Augusto Grabois; Costa, Laís Silveira; Maldonado, José

    2012-12-01

    Pharmaceutical and biotechnology industries comprise a major production subsystem of the health industrial complex in Brazil. It stands out for both its economic importance and its prominent role in developing new technologies in strategic areas. Strengthening the local production of generic drugs in the last decade has significantly increased the number of Brazilian companies in the local pharmaceutical market and has been an important turning point for this industry's growth. However, there remain major structural bottlenecks both in terms of production and continuous innovation. These bottlenecks reveal the high vulnerability of the Brazilian National Health System and point to the need of public policies that promote strengthening the production base and innovation in the pharmaceutical industry and that at the same time meet health-related social demands in health in Brazil.

  12. Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review

    NASA Astrophysics Data System (ADS)

    Singh, K.; Sultan, I.

    2017-07-01

    Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.

  13. Challenges of climate change

    PubMed Central

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  14. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    NASA Astrophysics Data System (ADS)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  15. Changes in Tennessee's secondary hardwood processing and sawmill industries from 2005 to 2009

    Treesearch

    William G. Luppold; Delton Alderman; Doug. Schnabel

    2012-01-01

    Tennessee is in the center of the Eastern hardwood region and has experienced large declines in employment by primary and secondary hardwood processors since 2005 in a pattern similar to the one these processors have experienced nationally. The objective of this article is to examine changes in national hardwood processing industries between 2005 and 2009 and compare...

  16. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    PubMed Central

    Daramola, Michael O.; Aransiola, Elizabeth F.; Ojumu, Tunde V.

    2012-01-01

    Future production of chemicals (e.g., fine and specialty chemicals) in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  17. A fuzzy model for assessing risk of occupational safety in the processing industry.

    PubMed

    Tadic, Danijela; Djapan, Marko; Misita, Mirjana; Stefanovic, Miladin; Milanovic, Dragan D

    2012-01-01

    Managing occupational safety in any kind of industry, especially in processing, is very important and complex. This paper develops a new method for occupational risk assessment in the presence of uncertainties. Uncertain values of hazardous factors and consequence frequencies are described with linguistic expressions defined by a safety management team. They are modeled with fuzzy sets. Consequence severities depend on current hazardous factors, and their values are calculated with the proposed procedure. The proposed model is tested with real-life data from fruit processing firms in Central Serbia.

  18. Veterinary clinical pathologists in the biopharmaceutical industry.

    PubMed

    Schultze, A Eric; Bounous, Denise I; Bolliger, Anne Provencher

    2008-06-01

    There is an international shortage of veterinary clinical pathologists in the workplace. Current trainees in veterinary clinical pathology may choose to pursue careers in academe, diagnostic laboratories, government health services, biopharmaceutical companies, or private practice. Academic training programs attempt to provide trainees with an exposure to several career choices. However, due to the proprietary nature of much of the work in the biopharmaceutical industry, trainees may not be fully informed regarding the nature of work for veterinary clinical pathologists and the myriad opportunities that await employment in the biopharmaceutical industry. The goals of this report are to provide trainees in veterinary clinical pathology and other laboratory personnel with an overview of the work-life of veterinary clinical pathologists employed in the biopharmaceutical industry, and to raise the profile of this career choice for those seeking to enter the workforce. Biographical sketches, job descriptions, and motivation for 3 successful veterinary clinical pathologists employed in the biopharmaceutical industry are provided. Current and past statistics for veterinary clinical pathologists employed in the biopharmaceutical industry are reviewed. An overview of the drug development process and involvement of veterinary clinical pathologists in the areas of discovery, lead optimization, and candidate evaluation are discussed. Additional duties for veterinary clinical pathologists employed in the biopharmaceutical industry include development of biomarkers and new technologies, service as scientific resources, diagnostic support services, and laboratory management responsibilities. There are numerous opportunities available for trainees in veterinary clinical pathology to pursue employment in the biopharmaceutical industry and enjoy challenging and rewarding careers.

  19. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  20. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE PAGES

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...

    2017-07-11

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less