Science.gov

Sample records for inelastic nucleus-nucleus scattering

  1. Nucleus-nucleus scattering at high energies

    NASA Technical Reports Server (NTRS)

    Franco, V.; Varma, G. K.

    1977-01-01

    Nucleus-nucleus scattering is treated in the Glauber approximation. The usual optical limit result, generally thought to improve as the number of nucleons in the colliding nuclei increases, is found to be the first term of a series which diverges for large nuclei. Corrections to the optical limit are obtained which provide a means of performing realistic calculations for collisions involving light nuclei. Total cross section predictions agree well with recent measurements.

  2. Convergence of the nucleus-nucleus Glauber multiple scattering series

    SciTech Connect

    Usmani, A.A.; Ahmad, I. )

    1991-05-01

    The Glauber {ital S}-matrix operator for nucleus-nucleus scattering is expressed as a finite series of matrix elements involving Bell's polynomials. Analyzing {alpha}{sup 4}He elastic-scattering data at the incident momentum of 4.32 GeV/{ital c}, we infer that our expansion is appreciably converging. Further, by applying closure over target and projectile states and neglecting a certain class of terms involving intermediate excitations, we arrive at a recurrence relation for nucleus-nucleus multiple scattering series terms, which invites further study as it seems to provide a simple method for calculating the nucleus-nucleus elastic-scattering cross section.

  3. Adiabatic approximation for nucleus-nucleus scattering

    SciTech Connect

    Johnson, R.C.

    2005-10-14

    Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.

  4. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  5. Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering

    SciTech Connect

    Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.

    2009-10-15

    The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of Brueckner theory for nucleon-nucleon (NN) effective interaction (complex G matrix) in the nuclear matter. A new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering. The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with nucleon density distributions in colliding nuclei. We first analyze in detail the {sup 16}O+{sup 16}O elastic scattering at E/A=70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local density have also been tested, but only the FDA prescription gives a proper description of the experimental cross sections as well as the effect of the TBF. The effects of the three-body attraction and the {omega}-rearrangement term are also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the elastic scattering of {sup 16}O by the {sup 12}C, {sup 28}Si, and {sup 40}Ca targets at E/A=93.9 MeV, and in the elastic scattering of {sup 12}C by the {sup 12}C target at E/A=135 MeV with great success. The decisive effect of the TBF is clearly seen also in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the {sup 16}O+{sup 16}O system at various energies.

  6. Multiple-scattering effects in nucleus-nucleus reactions with Glauber theory

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shinya; Ebata, Shuichiro; Horiuchi, Wataru; Kimura, Masaaki

    2014-09-01

    A study of new unstable nuclei has become possible in new radioactive beam facilities. In order to understand the relationship between reaction observables and nuclear structure, we need reaction theory which exactly reflects the nuclear structure. The Glauber theory is a powerful tool of analyzing high energy nuclear reactions. The theory describes the multiple scattering processes, whereas the optical limit approximation (OLA), which is widely used, ignores those processes. Those effects are expected to play an important role in the nuclear collision involving unstable nuclei (see for example Phys. Rev. C 54, 1843 (1996)). Here we apply the Glauber theory to nucleus-nucleus reactions. The wave functions are generated by the Skyrme-Hartree-Fock method and are expressed in a Slater determinant that allows us to evaluate the complete Glauber amplitude easily. We calculate total reaction cross sections, elastic cross sections and differential elastic cross sections for 16~24O, 40~70Ca, 56,58Ni, 100~140Sn, 190~214Pb on proton, 4He, 12C targets and compare with experimental data. The Glauber theory gives much better description than the OLA, especially at larger scattering angles.

  7. Multiple Scattering Theory for Inelastic Processes

    NASA Astrophysics Data System (ADS)

    Braun, V. M.; Shabelski, Yu. M.

    The review is devoted to the description of inelastic interactions of composite systems in the framework of the multiple scattering approach. Quasielastic scattering and multiple hadron production processes are considered for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions at high energies. We show that important information on inelastic processes follows on very general grounds from the classification of various intermediate states in the elastic amplitude, as similarly AGK cutting rules arise for reggeon diagrams. Attention is mainly given to the appropriate technique, which is illustrated with several examples of increasing complexity. The general formalism for the inelastic screening corrections is presented and its particular applications to various reactions. The review does not aim at the systematic study of numerous versions of the multiple scattering calculus confronting each other and to the extensive experimental data. Instead, we concentrate on a few simple examples to make clear the underlying physics and to work out the needed machinery employed in practical calculations.

  8. Inelastic Scattering Form Factors

    Energy Science and Technology Software Center (ESTSC)

    1992-01-01

    ATHENA-IV computes form factors for inelastic scattering calculations, using single-particle wave functions that are eigenstates of motion in either a Woods-Saxon potential well or a harmonic oscillator well. Two-body forces of Gauss, Coulomb, Yukawa, and a sum of cut-off Yukawa radial dependences are available.

  9. Analytic optical potentials for nucleon-nucleus nucleus-nucleus collisions involving light and medium nuclei

    NASA Technical Reports Server (NTRS)

    Bidasaria, H. B.; Townsend, L. W.

    1982-01-01

    Utilizing an optical model potential approximation to the exact nucleus-nucleus multiple-scattering series, optical potentials for nucleon-nucleus and nucleus-nucleus collisions are analytically derived. These expressions are applicable to light and medium cosmic ray nuclei as their single-particle density distributions are analytically determined, without approximation, from their actual harmonic well charge density distributions. Pauli correlation effects are included through the use of a simple Gaussian function to replace the usual expression obtained in the infinite nuclear matter approximation.

  10. Experimental evidence and the Landau-Zener promotion in nucleus-nucleus collisions

    SciTech Connect

    Cindro, N.; Freeman, R.M.; Haas, F.

    1986-04-01

    Recent data from C+O collisions are analyzed in terms of the Landau-Zener promotion in nuclei. Evidence for the presence of this mechanism in nuclear collisions is of considerable interest, since it provides a signature of single-particle orbitals in molecular-type potentials and, at the same time, paves the way to a microscopic understanding of the collision dynamics, in particular of the energy dissipation rate. The analyzed data are of two types: integrated cross sections and angular distributions of inelastically scattered particles. The first set of data shows structure qualitatively consistent with recent calculations of the Landau-Zener effect; for this set of data no other reasonable explanation is presently available. The second set of data, while consistent with the presence of the Landau-Zener promotion, is examined in terms of other possible explanations too. The combined data show evidence favoring the presence of the Landau-Zener promotion in nucleus-nucleus collisions.

  11. Deep and shallow inelastic scattering

    SciTech Connect

    Ray, Heather

    2015-05-15

    In this session we focused on the higher energy deep and shallow inelastic particle interactions, DIS and SIS. DIS interactions occur when the energy of the incident particle beam is so large that the beam is able to penetrate the nucleons inside of the target nuclei. These interactions occur at the smallest level possible, that of the quark-gluon, or parton, level. SIS interactions occur in an intermediate energy range, just below the energy required for DIS interactions. The DIS cross section formula contains structure functions that describe our understanding of the underlying parton structure of nature. The full description of DIS interactions requires three structure functions: two may be measured in charged lepton or neutrino scattering, but one can only be extracted from neutrino DIS data. There are reasons to expect that the impact of nuclear effects could be different for neutrinos engaging in the DIS interaction, vs those felt by leptons. In fact, fits by the nCTEQ collaboration have found that the neutrino-Fe structure functions appear to differ from those extracted from lepton scattering data [1]. To better understand the global picture of DIS and SIS, we chose a three-pronged attack that examined recent experimental results, data fits, and latest theory predictions. Experimental results from neutrino and lepton scattering, as well as collider experiments, were presented.

  12. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  13. Fully microscopic description of elastic and inelastic scattering at intermediate incident energies

    NASA Astrophysics Data System (ADS)

    Minomo, Kosho; Kohno, Michio; Toyokawa, Masakazu; Yahiro, Masanobu; Ogata, Kazuyuki

    2016-06-01

    We aim for fully microscopic understanding of many-body nuclear reactions starting from two- and three-nucleon forces based on chiral effective field theory (Ch-EFT). We first construct a g-matrix with the nuclear forces based on Ch-EFT using Brueckner-Hartree-Fock theory, in which the three-nucleon force effects are represented through the density dependence of the g-matrix. Then, the folding model and microscopic coupled-channels method with the g-matrix are applied to nucleon-nucleus and nucleus-nucleus scattering at intermediate incident energies. This new microscopic framework well describes the elastic and inelastic cross sections with no ad-hoc parameters. In addition, the three-nucleon force and coupled-channels effects on many-body nuclear reactions are clarified.

  14. Inelastic Neutron Scattering from Glass Formers

    NASA Astrophysics Data System (ADS)

    Buchenau, U.

    Neutron spectra below and above the glass transition temperature show a pronounced difference between strong and fragile glass formers in Angell's fragility scheme. The strong anharmonic increase of the inelastic scattering with increasing temperature in fragile substances is absent in the strongest glass former SiO2. That difference is reflected in the temperature dependence of Brillouin sound velocities above the glass transition. Coherent inelastic neutron scattering data indicate a mixture of sound waves and local modes at the low frequency boson peak. A relation between the fragility and the temperature dependence of the transverse hypersound velocity at the glass temperature is derived.

  15. Parity violation in deep inelastic scattering

    SciTech Connect

    Souder, P.

    1994-04-01

    AA beam of polarized electrons at CEBAF with an energy of 8 GeV or more will be useful for performing precision measurements of parity violation in deep inelastic scattering. Possible applications include precision tests of the Standard Model, model-independent measurements of parton distribution functions, and studies of quark correlations.

  16. Neutron inelastic scattering by amino acids

    SciTech Connect

    Thaper, C.L.; Sinha, S.K.; Dasannacharya, B.A.

    1982-01-01

    Inelastic neutron scattering experiments on normal, N-deuterated glycine, normal and N-deuterated alanine, L-valine, L-tyrosine and, L-phenylalanine at 100 K, are reported. Coupling of the external modes to different hydrogens is discussed.

  17. Deep Inelastic Scattering at the Amplitude Level

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2005-08-04

    The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances.

  18. Deep inelastic scattering near the Coulomb barrier

    SciTech Connect

    Gehring, J.; Back, B.; Chan, K.

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  19. Sivers effect in semiinclusive deeply inelastic scattering

    SciTech Connect

    Collins, J.C.; Efremov, A. V.; Goeke, K.; Menzel, S.; Metz, A.; Schweitzer, P.

    2006-01-01

    The Sivers function is extracted from HERMES data on single spin asymmetries in semi-inclusive deeply inelastic scattering. Our analysis use a simple Gaussian model for the distribution of transverse parton momenta, together with the flavor dependence given by the leading 1/N{sub c} approximation and a neglect of the Sivers antiquark distribution. We find that within the errors of the data these approximations are sufficient.

  20. Deep Inelastic Scattering and Related Phenomena

    NASA Astrophysics Data System (ADS)

    D'Agostini, G.; Nigro, A.

    1997-03-01

    The Table of Contents for the book is as follows: * Organization * Foreword * Welcome Address * PLENARY SESSION: "From Paris to Rome" * Deep Inelastic Physics with H1 * Recent Results from ZEUS * Overview of the Status of Polarised Structure Functions * Quarks and Gluons at Hadron Colliders * Deep Inelastic Scattering - Theory and Phenomenology * WORKING GROUP 1: Structure Functions * Inclusive Jet Cross Section Measurement at CDF * Measurement of Direct Photons by the DØ Experiment * MRS Parton Distributions * Global QCD Analysis, the Gluon Distribution, and High Et Inclusive Jet Data * F2 Measurement and QCD Analysis on 94 H1 Data * The ZEUS 1994 F2 Measurement * Measurement of the Total γ*p Cross Section at very Low x and Q2 at HERA * New Results on F2 Structure Functions * Proton Structure Function and Gluon Distribution Functions from Fermilab Experiment E665 * The Transition from the Photoproduction to the DIS Region * The BFKL Pomeron: Can It Be Detected? * BFKL/CCFM Phenomenology * Physics and Mathematics of Dynamical Partons * k⊥-Factorization and Perturbative Invariants at Small x * Double Scaling Violations * On the Asymptotic Behaviour of F2(x, Q2) * Double Logarithmic Scaling of F2 * Differential Charged Current Cross-Sections at HERA * Neutral Current ep Deep Inelastic Scattering at High Q2 and Limits on New Physics * Charm Production in Charged-Current DIS and Extraction of the Strange Sea Density * Extraction of the Gluon Density * On Problems in Extracting the Gluon Density from the Nucleon Structure Function Measurements * Inclusive Measurement of the Strong Coupling at HERA * A Measurement of R = σL/σT in Deep Inelastic Neutrino-Nucleon Scattering at the Tevatron * A Measurement of R = σL/σT in Deep Inelastic μ - p and μ - d Scattering * A Determination of the Longitudinal Proton Structure Function FL(x, Q2) at Low x at HERA * Prospects for Measuring R = σL/σT at HERA in 1966 Low-Energy Running * A Leading Order, in ln(1/x) as well as

  1. On rainbow scattering in inelastic molecular collisions

    SciTech Connect

    Thomas, Lowell D.

    1980-01-01

    The purpose of this letter is to call attention to a growing misinterpretation in the literature on rainbow scattering in inelastic molecular collisions. The importance of rainbow structures in the angular distributions of elastic scattering cross sections is well established. However, use of approximate cross section formulas has led to an incorrect classification of the types of rainbows which are possible. Actually, however, it is possible to identify two classes of rainbows. If the relevant distributions and classifications are clearly stated, there should be little chance of confusion,

  2. Inelastic electron scattering from a moving nucleon

    SciTech Connect

    Kuhn, S.E.; Griffioen, K.

    1994-04-01

    The authors propose to measure inelastically scattered electrons in coincidence with spectator protons emitted backwards relative to the virtual photon direction in the reaction d(e, e{prime}p{sub s})X. In a simple spectator model, the backward proton has equal and opposite momentum to the neutron before it is struck, allowing the authors to study the dependence on kinematics and off-shell behaviour of the electron-nucleon inelastic cross section. If the photon couples to a quark in a 6-quark bag, a different dependence of the cross section on the kinematic variables (x, Q{sup 2}, and p{sub s}) can be observed. This proposed experiment requires large acceptance and beam energies above 6 GeV. It is ideally suited for the CEBAF Large Acceptance Spectrometer (CLAS).

  3. A New Polyethylene Scattering Law Determined Using Inelastic Neutron Scattering

    SciTech Connect

    Lavelle, Christopher M; Liu, C; Stone, Matthew B

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S (Q, E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for T =300 K, and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 300 K which are used to improve the scattering law for HDPE. We describe the experimental methods, review some of the past HDPE scattering laws, and compare computations using these models to the measured S (Q, E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the 1 phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work.

  4. Inclusive Inelastic Electron Scattering from Nuclei

    SciTech Connect

    Fomin, Nadia

    2007-10-26

    Inclusive electron scattering from nuclei at large x and Q{sup 2} is the result of a reaction mechanism that includes both quasi-elastic scattering from nucleons and deep inelastic scattering from the quark consitituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the infiuence of final state interactions and the approach to y-scaling, the strength of nucleon-nucleon correlations, and the approach to x-scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.

  5. Inelastic magnetic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Platzman, P. M.; Tzoar, N.

    1985-04-01

    The theory of magnetic X-ray scattering is used to discuss the possibilities for employing inelastic scattering to probe the magnetic properties of condensed matter systems. In particular, it is shown how the interference between the nonmagnetic (Compton) and magnetic scattering arising from the use of circularly polarized X-rays is absolutely essential in such experiments. The very beautiful preliminary experiments by Sakai and Ono (1976) on Fe which use circularly polarized Moessbauer gamma-rays will be discussed. They already show the sensitivity of the technique to the 'magnetic form factor'. In addition, the physics of a unique quarter wave plate employed in obtaining circularly polarized X-rays is considered, and the implications of this advance for doing such experiments on existing synchrotron X-ray sources are discussed.

  6. Inelastic Scattering Of Electrons By Protons

    DOE R&D Accomplishments Database

    Cone, A. A.; Chen, K. W.; Dunning, J. R. Jr.; Hartwig, G.; Ramsey, N. F.; Walker, J. K.; Wilson, R.

    1966-12-01

    The inelastic scattering of electrons by protons has been measured at incident electron energies up to 5 BeV/c and momentum transfers q{sup 2}=4(BeV/c){sup 2}. Excitation of known nucleon resonances at M=1238, 1512, 1688 and possibly 1920 MeV have been observed. The calculations for the resonance at M=1238 MeV have been compared with calculations by Adler based on the dispersion theory of Chew, Goldberger, Low and Nambu. The agreement is good. Qualitative models are discussed for the other resonances.

  7. Inelastic scattering of atoms in a double well

    SciTech Connect

    Annibale, E. S.; Fialko, O.; Ziegler, K.

    2011-04-15

    We study a mixture of two light spin-1/2 fermionic atoms and two heavy atoms in a double-well potential. Inelastic scattering processes between both atomic species excite the heavy atoms and renormalize the tunneling rate and the interaction of the light atoms (polaron effect). The effective interaction of the light atoms changes its sign and becomes attractive for strong inelastic scattering. This is accompanied by a crossing of the energy levels from singly occupied sites at weak inelastic scattering to a doubly occupied and an empty site for stronger inelastic scattering. We are able to identify the polaron effect and the level crossing in the quantum dynamics.

  8. GiBUU and shallow inelastic scattering

    SciTech Connect

    Lalakulich, O.; Mosel, U.

    2015-05-15

    In this talk we shortly describe the physics contents of the GiBUU transport code, used to describe lepton scattering off nuclei. Particular attention will be given to validation of the GiBUU in pion-, electron- and photon-induced reactions, which serve as a benchmark for neutrino-induced ones. We mainly concentrate on those properties of benchmark reactions, which are relevant to the region of Shallow Inelastic Scattering (SIS). Our results in this region are presented for integrated and differential cross sections. Comparison with recent MINOS inclusive data, as well as predictions for the differential cross sections measurable in Minerνa and NoνA experiments are made.

  9. Onset of deconfinement in nucleus-nucleus collisions

    SciTech Connect

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2012-05-15

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.

  10. Intrinsic radial sensitivity of nucleon inelastic scattering

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.

    1988-02-01

    A linear expansion analysis of the folding model transition amplitude is used to study the intrinsic sensitivity of the inelastic scattering of intermediate energy nucleons to the radial form of the neutron transition density, given known proton transition densities from electron scattering. Realistic density-dependent effective interactions are used to construct pseudodata. These pseudodata are then reanalyzed and the error matrix is used to calculate an error band for the radial transition density. This approach reveals the sensitivity of the extracted transition density to absorption, medium modifications of the interaction, and the extent and quality of the data in a manner that is largely free of the residual inaccuracies in reaction theory that complicate the analysis of real data. We find that the intrinsic radial sensitivity of nucleon inelastic scattering is best for projectile energies between 200 and 500 MeV, but is adequate to resolve the radial dependence of neutron transition densities even in the interior of heavy nuclei throughout the energy regime 100-800 MeV. We have also compared our method with scale-factor analyses which assume proportionality between neutron and proton densities. For states whose transition densities are similar in the surface, we find scaling to be accurate at the 20% level. However, for light nuclei substantial deviations beyond the first peak of the differential cross section reveal sensitivity to shape differences. This sensitivity is reduced for heavy nuclei. The model dependence of radial densities is also studied. A high-q constraint is used to analyze the contribution of incompleteness error to the deduced error bands and to reduce the model dependence.

  11. Field-theoretical description of deep inelastic scattering

    SciTech Connect

    Geyer, B.; Robaschik, D.; Wieczorek, E.

    1980-01-01

    The most important theoretical notions concerning deep inelastic scattering are reviewed. Topics discussed are the model-independent approach, which is based on the general principles of quantum field theory, the application of quantum chromodynamics to deep inelastic scattering, approaches based on the quark--parton model, the light cone algebra, and conformal invariance, and also investigations in the framework of perturbation theory.

  12. High energy-resolution inelastic x-ray scattering

    SciTech Connect

    Hastings, J.B.; Moncton, D.E.; Fujii

    1984-01-01

    A brief review is presented of various aspects of high energy-resolution inelastic x-ray scattering based on synchrotron sources. We show what kinematical advantages are provided by the photon probe and propose mirror and monochromator designs to achieve an optically efficient beam line for inelastic x-ray scattering.

  13. Higgs and Particle Production in Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhe

    We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc

  14. Medical applications of neutron inelastic scattering

    NASA Astrophysics Data System (ADS)

    Kehayias, Joseph J.; Banuk-Waitekus, Anathea; Valtuena, Silvia; Sheahan, Charles A.

    1999-10-01

    A sealed, D-T, pulsed neutron generator is used for the in vivo measurement of body carbon and oxygen by neutron inelastic scattering. The generator is operated at 10 KHz, at a neutron output of about 2 X 107 n/s/4(pi) . Gamma ray spectra are collected with two B4Ge3O12 crystal detectors. The measurements are used to measure fat and lean content and distribution in the body, with minimal radiation exposure (0.08 mSv). When combined with other measurements (such as total body potassium), this whole body scanning device provides us with the `quality of lean mass', a measurable outcome of treatments designed to improve nutritional status and function. The method is used in studies of human nutrition and for assessing the efficacy of new anti-obesity and anti-cachexia pharmaceuticals.

  15. Inelastic Neutron Scattering Study of Mn

    SciTech Connect

    Zhong, Y.; Sarachik, M.P.; Friedman, J.R.; Robinson, R.A.; Kelley, T.M.; Nakotte, H.; Christianson, A.C.; Trouw, F.; Aubin, S.M.J.; Hendrickson, D.N.

    1998-11-09

    The authors report zero-field inelastic neutron scattering experiments on a 14-gram deuterated sample of Mn{sub 12}-Acetate consisting of a large number of identical spin-10 magnetic clusters. Their resolution enables them to see a series of peaks corresponding to transitions between the anisotropy levels within the spin-10 manifold. A fit to the spin Hamiltonian H = {minus}DS{sub z}{sup 2} + {mu}{sub B}B{center_dot}g{center_dot}S-BS{sub z}{sup 4} + C(S{sub +}{sup 4} + S{sub {minus}}{sup 4}) yields an anisotropy constant D = (0.54 {+-} 0.02) K and a fourth-order diagonal anisotropy coefficient B = (1.2 {+-} 0.1) x 10{sup {minus}3}K. Unlike EPR measurements, their experiments do not require a magnetic field and yield parameters that do not require knowledge of the g-value.

  16. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  17. Inelastic neutron scattering in valence fluctuation compounds

    SciTech Connect

    Jon M Lawrence

    2011-02-15

    The valence fluctuation compounds are rare earth intermetallics where hybridization of the nearly-localized 4f electrons with the conduction electrons leads to incorporation of the 4f's into the itinerant states. This hybridization slows down the conduction electrons and hence gives them a heavy effective mass, justifying application of the term 'heavy Fermion' (HF) to these materials. During the project period, we grew large single crystals of several such compounds and measured their properties using both standard thermodynamic probes and state-of-the-art inelastic neutron scattering. We obtained three main results. For the intermediate valence compounds CePd{sub 3} and YbAl{sub 3}, we showed that the scattering of neutrons by the fluctuations of the 4f magnetic moment does not have the momentum dependence expected for the itinerant heavy mass state; rather, the scattering is more typical of a localized spin fluctuation. We believe that incoherent scattering localizes the excitation. For the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sub 0.065}){sub 2}Ge{sub 2}, which sits at a T = 0 critical point for transformation into an antiferromagnetic (AF) phase, we showed that the scattering from the AF fluctuations does not exhibit any of the divergences that are expected at a phase transition. We speculate that alloy disorder profoundly suppresses the growth of the fluctuating AF regions, leading to short range clusters rather than regions of infinite size. Finally, we explored the applicability of key concepts used to describe the behavior of rare earth heavy Fermions to uranium based HF compounds where the 5f electrons are itinerant as opposed to localized. We found that scaling laws relating the spin fluctuation energy measured in neutron scattering to the low temperature specific heat and susceptibility are valid for the uranium compounds, once corrections are made for AF fluctuations; however, the degeneracy of the high temperature moment is smaller than expected

  18. Inclusive inelastic scattering of heavy ions and nuclear correlations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.

    1990-01-01

    Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.

  19. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  20. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  1. Pion inelastic scattering from sup 20 Ne

    SciTech Connect

    Burlein, M. . Dept. of Physics)

    1989-12-01

    Angular distributions for {sup 20}Ne({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime}) were measured on the Energetic Pion Channel and Spectrometer (EPICS) at the Clinton P. Anderson Meson Physics Facility (LAMPF). Data were taken with both {pi}{sup {plus}} and {pi}{sup {minus}} over an angular range of 12{degree} to 90{degree} for T{sub {pi}}=180 MeV and with {pi}{sup +} from 15{degree} to 90{degree} for T{sub {pi}}=120 MeV. The data were analyzed using both the distorted-wave impulse approximation (DWIA) and the coupled-channels impulse approximation (CCIA) with collective transition densities. In addition, microscopic transition densities were used in the DWIA analysis for states in the lowest rotational bands. The transitions to the 6.73-MeV 0{sup +} and several 1{sup {minus}} states, including the states at 5.79 MeV and 8.71 MeV, were studied using several models for the transition density. Strong evidence for the importance of two-step routes in pion inelastic scattering was seen in several angular distributions, including the 5.79-MeV 1{sup {minus}}, the first three 4{sup +} states, and the 8.78-MeV 6{sup +}. 100 refs., 81 figs., 33 tabs.

  2. Hard diffraction and deep inelastic scattering

    SciTech Connect

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the {open_quotes}lego{close_quotes} phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width {Delta}{eta} does not have a power-law decrease with increasing subenergy s=e{sup {Delta}{eta}}, but behaves at most like some power of pseudorapidity {Delta}{eta}{approx}log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space.

  3. Deep inelastic lepton scattering from nucleons and nuclei

    SciTech Connect

    Berger, E.L.

    1986-02-01

    A pedagogical review is presented of results obtained from inclusive deep inelastic scattering of leptons from nucleons and nuclei, with particular emphasis on open questions to be explored in future experiments.

  4. Electric quadrupole excitations in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Calculations are presented for electric quadrupole excitations in relativistic nucleus-nucleus collisions. The theoretical results are compared to an extensive data set and it is found that electric quadrupole effects provide substantial corrections to cross sections, especially for heavier nuclei.

  5. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  6. Scaling phenomenon in relativistic nucleus-nucleus collisions

    SciTech Connect

    Wong, C. Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures.

  7. Elastic and inelastic scattering of He atoms from Bi(111)

    NASA Astrophysics Data System (ADS)

    Tamtögl, A.; Mayrhofer-Reinhartshuber, M.; Balak, N.; Ernst, W. E.; Rieder, K. H.

    2010-08-01

    Elastic and inelastic scattering of helium atoms has been used to study the Bi(111) surface. Sharp diffraction peaks are found with results in excellent agreement with previous structure determinations of the Bi(111) surface. The rather large first order peaks with respect to the zero order peak indicate a stronger surface corrugation than observed in helium scattering from other metallic surfaces. Time-of-flight spectra of scattered He atoms clearly reveal two inelastic scattering maxima, which allow a first report on phonon creation and annihilation events on the Bi(111) surface. An estimate of the group velocity shows that the phonon creation peak is likely to correspond to a Rayleigh mode.

  8. Azimuthal decorrelation of forward jets in deep inelastic scattering

    SciTech Connect

    Sabio Vera, Agustin; Schwennsen, Florian

    2008-01-01

    We study the azimuthal angle decorrelation of forward jets in deep inelastic scattering. We make predictions for this observable at HERA describing the high energy limit of the relevant scattering amplitudes with quasi-multi-Regge kinematics together with a collinearly-improved evolution kernel for multiparton emissions.

  9. Two Neutron Removal in Relativistic Nucleus-Nucleus Reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for double neutron removal via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work examines the cause of these discrepancies and systematically investigates whether the problem might be due to electromagnetic theory, nuclear contributions, or an underestimate of experimental error. Using cross section systematics from other reactions it is found that the discrepancies can be resolved in a plausible manner.

  10. Halo-independent methods for inelastic dark matter scattering

    SciTech Connect

    Bozorgnia, Nassim; Schwetz, Thomas; Herrero-Garcia, Juan; Zupan, Jure E-mail: juan.a.herrero@uv.es E-mail: jure.zupan@cern.ch

    2013-07-01

    We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.

  11. Large volume high-pressure cell for inelastic neutron scattering.

    PubMed

    Wang, W; Sokolov, D A; Huxley, A D; Kamenev, K V

    2011-07-01

    Inelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments. The design and the materials selected for the construction of the cell enable its safe use to a pressure of 1.8 GPa with a sample volume in excess of 400 mm(3). The design of the piston seal eliminates the need for a sample container, thus providing a larger sample volume and reduced absorption. The integrated electrical plug with a manganin pressure gauge offers an accurate measurement of pressure over the whole range of operational temperatures. The performance of the cell is demonstrated by an inelastic neutron scattering study of UGe(2). PMID:21806195

  12. Dynamical and Statistical Aspects in Nucleus--Nucleus Collisions Around the Fermi Energy

    NASA Astrophysics Data System (ADS)

    Tamain, B.; Assenard, M.; Auger, G.; Bacri, C. O.; Benlliure, J.; Bisquer, E.; Bocage, F.; Borderie, B.; Bougault, R.; Buchet, P.; Charvet, J. L.; Chbihi, A.; Colin, J.; Cussol, D.; Dayras, R.; Demeyer, A.; Dore, D.; Durand, D.; Eudes, P.; Frankland, J.; Galichet, E.; Genouin-Duhamel, E.; Gerlic, E.; Germain, M.; Gourio, D.; Guinet, D.; Gulminelli, F.; Lautesse, P.; Laville, J. L.; Lebrun, C.; Lecolley, J. F.; Lefevre, A.; Lefort, T.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Lukasik, J.; Marie, N.; Maskay, M.; Metivier, V.; Nalpas, L.; Nguyen, A.; Parlog, M.; Peter, J.; Plagnol, E.; Rahmani, A.; Reposeur, T.; Rivet, M. F.; Rosato, E.; Saint-Laurent, F.; Salou, S.; Squalli, M.; Steckmeyer, J. C.; Stern, M.; Tabacaru, T.; Tassan-Got, L.; Tirel, O.; Vient, E.; Volan, C.; Wieleczko, J. P.

    1998-01-01

    This contribution is devoted to two important aspects of intermediate energy nucleus-nucleus collisions: the competition of dynamical and statistical features, and the origin of the multifragmentation process. These two questions are discussed in focusing on Indra data. It turns out that most of collisions are binary and reminiscent of deep inelastic collisions observed at low energy. However, intermediate velocity emission is a clear signature of dynamical emission and establishes a link with the participant-spectator picture which applies at high bombarding energies. Multifragmentation is observed when the dissipated energy is large and it turns out that expansion occurs at least for central collisions, as it is expected if this phenomenum has a dynamical origin.

  13. Inelastic x-ray scattering from phonons under multibeam conditions

    NASA Astrophysics Data System (ADS)

    Bosak, Alexey; Krisch, Michael

    2007-03-01

    We report on an experimental observation of a previously neglected multibeam contribution to the inelastic x-ray scattering cross section. Its manifestation is a substantial modification of the apparent phonon selection rules when two (or more) reciprocal lattice points are simultaneously intercepted by the Ewald sphere. The observed multibeam contributions can be treated semi-quantitatively in the frame of Renninger’s “simplest approach.” A few corollaries, relevant for experimental work on inelastic scattering from phonons, are presented.

  14. Deep-inelastic muon scattering from nuclei with hadron detection

    SciTech Connect

    Geesaman, D.; Jackson, H.; Kaufman, S.

    1995-08-01

    Deep-inelastic lepton scattering from nuclei provides a direct look at the quark structure of nuclear matter. These reactions revealed the first convincing evidence that the structure of nucleons is modified in the nuclear medium and had profound implications on the understanding of nuclear dynamics. FNAL experiment E665, using the 490-GeV muon beams at Fermi National Accelerator Laboratory, provides new information on the nuclear effects on nucleon properties by studying deep-inelastic muon scattering with coincident hadron detection. The high beam energy makes the experiment particularly suited to the study of the region of x < 0.1 (where x is the fraction of the momentum of the nucleon carried by the struck quark in the infinite momentum frame), and total center-of-mass hadronic energy > 25 GeV, where hard QCD processes are expected to become evident and there are little data from other deep-inelastic measurements.

  15. In-situ soil carbon analysis using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  16. Resonant inelastic x-ray scattering from molecules and atoms

    SciTech Connect

    Arp, U.; Deslattes, R.D.; Miyano, K.E.; Southworth, S.H.

    1995-12-31

    X-ray fluorescence spectroscopy is one of the most powerful methods for the understanding of the electronic structure of matter. We report here on fluorescence experiments in the 2 to 6 keV photon energy range using tunable synchrotron radiation and the resulting experimental programs on resonant inelastic scattering in atoms and on polarization measurements in resonant molecular excitations.

  17. Inelastic X-ray Scattering Studies of Electronic Excitations

    NASA Astrophysics Data System (ADS)

    Ishii, Kenji; Tohyama, Takami; Mizuki, Jun'ichiro

    2013-02-01

    Inelastic x-ray scattering (IXS) has developed into one of the most powerful momentum-resolved spectroscopies. Especially in the last decade, it has achieved significant progress utilizing brilliant x-rays from third-generation synchrotron radiation facilities. Simultaneously, theoretical efforts have been made to predict or interpret the experimental spectra. One of the scientific fields studied intensively by IXS is strongly correlated electron systems, where the interplay of charge, spin, and orbital degrees of freedom determines their physical properties. IXS can provide a new insight into the electron dynamics of the systems through the observation of charge, spin, and orbital excitations. Focusing on the momentum-resolved electronic excitations in strongly correlated electron systems, we review IXS studies and the present capabilities of IXS for the study of the dynamics of materials. With nonresonant inelastic x-ray scattering (NIXS), one can directly obtain dynamical charge correlation and we discuss its complementary aspects with inelastic neutron scattering. NIXS also has a unique capability of measuring higher multipole transitions, which are usually forbidden in conventional optical absorption. Resonant inelastic x-ray scattering (RIXS) is now established as a valuable tool for measuring charge, spin, and orbital excitations in a momentum-resolved manner. We describe RIXS works on cuprates in detail and show what kind of electronic excitations have been observed. We also discuss RIXS studies on other transition-metal compounds. Finally, we conclude with an outlook on IXS using next-generation x-ray sources.

  18. Benchmarking the inelastic neutron scattering soil carbon method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  19. Energy dependence of pion inelastic scattering from sup 208 Pb

    SciTech Connect

    Oakley, D.S. Lewis and Clark College, Portland, Oregon ); Peterson, R.J. ); Seestrom, S.J.; Morris, C.L.; Plum, M.A. ); Zumbro, J.D. ); Williams, A.L.; Bryan, M.A.; McDonald, J.W.; Moore, C.F. )

    1991-11-01

    Differential cross sections were measured for pion elastic and inelastic scattering from {sup 208}Pb at {ital T}{sub {pi}}=120 and 250 MeV. Energy-dependent neutron- and proton-transition matrix elements for a range of excited states were extracted and tested for consistency, using several structure models.

  20. Inelastic electron scattering on C{sub 60} clusters

    SciTech Connect

    Yabana, K.; Bertsch, G.F.

    1993-12-31

    We calculate the electronic excitation of C{sub 60} by inelastic electron scattering or electron energy loss spectroscopy (EELS). The scattering process is treated in the distorted-wave Born approximation, and the electronic excitations are calculated in a spherical basis model. We find that low energy electrons excite some non-photoactive modes, in agreement with experiment. Spin triplet modes are poorly excited, even at the lowest electron energies.

  1. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    SciTech Connect

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  2. Inclusive Deep Inelastic Scattering at HERA

    SciTech Connect

    Newman, Paul

    2011-07-15

    Recent inclusive charged and neutral current scattering data from HERA are presented. Emphasis is placed on the resulting constraints on the proton parton densities and on the influence of low x proton structure on diffraction.

  3. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    SciTech Connect

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  4. On the geometric nature of high energy nucleus-nucleus reaction cross sections

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.

    1982-01-01

    Within the context of a high energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to investigate the validity of geometric reaction cross sections in relativistic heavy ion collisions. The potential used includes a finite range interaction and nuclear single-particle densities extracted from nuclear charge distributions by unfolding the finite proton charge distribution. Pauli correlation effects are also included in an approximate way. The sensitivity of the predictions to the assumed interaction, Pauli correlation approximation, and nuclear density distributions is investigated. These results are in agreement with early predictions concerning the geometric nature of relativistic heavy ion collisions and in disagreement with a recent analysis, utilizing the zero range approximation, which suggested otherwise. Reasons for the lack of agreement between the analyses are also presented. Finally, approximate applicability limits for geometric reaction cross sections are determined.

  5. [Inelastic electron scattering from surfaces]. [Progress report

    SciTech Connect

    Not Available

    1993-10-01

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned.

  6. DEEPLY INELASTIC SCATTERING OFF NUCLEI AT RHIC.

    SciTech Connect

    VENUGOPALAN, R.

    2001-09-14

    In this talk, we discussed the physics case for an eA collider. We emphasized the novel physics that might be studied at small x. The interesting physics at intermediate x's has been discussed elsewhere [3]. Plans for an electron-ion collider include, as a major part of the program, the possibility of doing polarized electron-polarized proton/light ion scattering. A discussion of the combined case for high energy electron nucleus and polarized electron-polarized proton scattering will be published separately [66].

  7. Inelastic light scattering from a Mott insulator

    SciTech Connect

    Oosten, D. van; Dickerscheid, D.B.M.; Farid, B.; Stoof, H.T.C.; Straten, P. van der

    2005-02-01

    We propose to use Bragg spectroscopy to measure the excitation spectrum of the Mott-insulator state of an atomic Bose gas in an optical lattice. We calculate the structure factor of the Mott insulator taking into account both the self-energy corrections of the atoms and the corresponding dressing of the atom-photon interaction. We determine the scattering rate of photons in the stimulated Raman transition and show that by measuring this scattering rate in an experiment, in particular, the excitation gap of the Mott insulator can be determined.

  8. Modern Techniques for Inelastic Thermal Neutron Scattering Analysis

    NASA Astrophysics Data System (ADS)

    Hawari, A. I.

    2014-04-01

    A predictive approach based on ab initio quantum mechanics and/or classical molecular dynamics simulations has been formulated to calculate the scattering law, S(κ⇀,ω), and the thermal neutron scattering cross sections of materials. In principle, these atomistic methods make it possible to generate the inelastic thermal neutron scattering cross sections of any material and to accurately reflect the physical conditions of the medium (i.e, temperature, pressure, etc.). In addition, the generated cross sections are free from assumptions such as the incoherent approximation of scattering theory and, in the case of solids, crystalline perfection. As a result, new and improved thermal neutron scattering data libraries have been generated for a variety of materials. Among these are materials used for reactor moderators and reflectors such as reactor-grade graphite and beryllium (including the coherent inelastic scattering component), silicon carbide, cold neutron media such as solid methane, and neutron beam filters such as sapphire and bismuth. Consequently, it is anticipated that the above approach will play a major role in providing the nuclear science and engineering community with its needs of thermal neutron scattering data especially when considering new materials where experimental information may be scarce or nonexistent.

  9. Inelastic scattering at the B K edge of hexagonal BN

    SciTech Connect

    Jia, J.J.; Callcott, T.A.; Zhou, L.

    1997-04-01

    Many recent soft x-ray fluorescence (SXF) studies have shown that inelastic scattering processes make important contributions to the observed spectra for excitation near the x-ray threshold. These effects are all attributed to a process, usually called an electronic Raman scattering (ERS) process, in which energy is lost to an electronic excitation. The theory has been described using second order perturbation theory by Tulkki and Aberg. In different materials, the detailed nature of the electronic excitation producing the energy loss may be very different. In crystalline Si, diamond and graphite, changes in spectral shape and dispersion of spectral features with variation of the excitation energy are observed, which are attributed to k conservation between the photoelectron generated in the excitation process and the valence hole remaining after the coupled emission process. Hence the process is strongly localized in k-space. In haxagonal boron nitride, which has a lattice and band structure very similar to graphite, inelastic scattering produces very different effects on the observed spectra. Here, the inelastic losses are coupled to a strong resonant elastic scattering process, in which the intermediate state is a localized core exciton and the final state is a localized valence exciton, so that the electronic excitation is strongly localized in real rather than reciprocal space.

  10. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    PubMed Central

    Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.

    2013-01-01

    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332

  11. Deep inelastic scattering at energies near the Coulomb barrier

    SciTech Connect

    Gehring, J.; Rehm, K.E.; Schiffer, J.P.

    1993-10-01

    A large yield for a process that appears to have many of the features of deep inelastic scattering has been observed at energies, near the Coulomb barrier in the systems {sup 112,124}Sn + {sup 58}Ni by Wolfs et al. In order to better understand the mechanisms by which energy dissipation takes place close to the barrier, we have extended the measurements of Wolfs to the system {sup 136}Xe + {sup 64}Ni. The use of inverse kinematics in the present measurements resulted in better mass and energy resolution due to reduced target effects and in more complete angular coverage. We have obtained angular distributions, mass distributions, and total cross sections for deep inelastic scattering at two energies near the barrier. The results on the closed neutron shell nucleus {sup 136}Xe complement those from the closed proton shell Sn nuclei.

  12. Measurement of azimuthal asymmetries in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Abbiendi, G.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Coppola, N.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Paul, E.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Barret, O.; Brook, N. H.; Foster, B.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Burgard, C.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hasell, D.; Hebbel, K.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Lindemann, L.; Löhr, B.; Martínez, M.; Milite, M.; Monteiro, T.; Moritz, M.; Notz, D.; Pelucchi, F.; Petrucci, M. C.; Rohde, M.; Saull, P. R. B.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Tassi, E.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Straub, P. B.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Benen, A.; Eisenhardt, S.; Markun, P.; Raach, H.; Wölfle, S.; Bussey, P. J.; Doyle, A. T.; Lee, S. W.; Macdonald, N.; McCance, G. J.; Saxon, D. H.; Sinclair, L. E.; Skillicorn, I. O.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Garfagnini, A.; Gialas, I.; Gladilin, L. K.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Zetsche, F.; Goncalo, R.; Long, K. R.; Miller, D. B.; Tapper, A. D.; Walker, R.; Mallik, U.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Park, I. H.; Son, D.; Barreiro, F.; García, G.; Glasman, C.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Barbi, M.; Corriveau, F.; Hanna, D. S.; Ochs, A.; Padhi, S.; Riveline, M.; Stairs, D. G.; Wing, M.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Y. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Große-Knetter, J.; Matsushita, T.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dosselli, U.; Dusini, S.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Okrasiński, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Pavel, N.; Abramowicz, H.; Dagan, S.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Butterworth, J. M.; Catterall, C. D.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Z˙arnecki, A. F.; Adamus, M.; Gadaj, T.; Deppe, O.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Foudas, C.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wildschek, T.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Catterall, C.; Cole, J. E.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.

    2000-05-01

    The distribution of the azimuthal angle for the charged hadrons has been studied in the hadronic centre-of-mass system for neutral current deep inelastic positron-proton scattering with the ZEUS detector at HERA. Measurements of the dependence of the moments of this distribution on the transverse momenta of the charged hadrons are presented. Asymmetries that can be unambiguously attributed to perturbative QCD processes have been observed for the first time.

  13. Hadron mass corrections in semi-inclusive deep inelastic scattering

    SciTech Connect

    A. Accardi, T. Hobbs, W. Melnitchouk

    2009-11-01

    We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron $h$. The hadron mass correction is made by introducing a generalized, finite-$Q^2$ scaling variable $\\zeta_h$ for the hadron fragmentation function, which approaches the usual energy fraction $z_h = E_h/\

  14. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  15. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  16. Dynamical nucleus-nucleus potential at short distances

    SciTech Connect

    Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner

    2010-04-15

    The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.

  17. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    SciTech Connect

    Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  18. Nuclear radii calculations in various theoretical approaches for nucleus-nucleus interactions

    SciTech Connect

    Merino, C.; Novikov, I. S.; Shabelski, Yu.

    2009-12-15

    The information about sizes and nuclear density distributions in unstable (radioactive) nuclei is usually extracted from the data on interaction of radioactive nuclear beams with a nuclear target. We show that in the case of nucleus-nucleus collisions the values of the parameters depend somewhat strongly on the considered theoretical approach and on the assumption about the parametrization of the nuclear density distribution. The obtained values of root-mean-square radii (R{sub rms}) for stable nuclei with atomic weights A=12-40 vary by approximately 0.1 fm when calculated in the optical approximation, in the rigid target approximation, and using the exact expression of the Glauber theory. We present several examples of R{sub rms} radii calculations using these three theoretical approaches and compare these results with the data obtained from electron-nucleus scattering.

  19. Collective microdynamics of liquid lithium: An inelastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskiĭ, N. M.; Novikov, A. G.; Savostin, V. V.

    2010-05-01

    A portion of the dispersion curve for collective modes in liquid lithium has been constructed from experimental data on inelastic scattering of slow neutrons obtained on the DIN-2PI neutron spectrometer (IBR-2 reactor, Joint Institute for Nuclear Research, Dubna, Russia). Measurements have been performed at a temperature of 500 K ( T m (Li) = 453.7 K). The coherent scattering component has been separated from the experimental spectra and analyzed. Information on the characteristics of collective excitations in liquid lithium has been derived.

  20. Coherent inelastic Mössbauer scattering of synchrotron radiation (abstract)

    NASA Astrophysics Data System (ADS)

    Belyakov, V. A.

    2002-03-01

    Recent success of coherent elastic [Nuclear Resonant Scattering of Synchrotron Radiation, Part A edited by E. Gerdau and H. de Woard (Baltzer Science, 2000), Hyperfine Interact. 123/124, Chap. 4] and incoherent inelastic (Hyperfine Interact. 123/124, Chap. 5) Mössbauer scattering of synchrotron radiation (SR) in investigations of very delicate properties of the condensed matter also makes it urgent to perform experiments on coherent inelastic Mössbauer scattering (CIMS) of synchrotron radiation (the common meaning of the term CIMS is coherent inelastic Mössbauer scattering accompanied by creation or annihilation of phonons in the crystal lattice, i.e., by very low energy losses of SR quanta). However up to now there were no publications on experimental observation of CIMS so there is a need in theoretical investigations to reveal the most favorable conditions for CIMS observation. The theory of CIMS is presented below and applied to specific processes of CIMS such as forward scattering, scattering at grazing incidence angles, and scattering via a cascade of Mössbauer transitions. It is shown that the phase matching (between the incident and scattered beam) is very important for the angular and frequency distribution in CIMS and processes where phase matching can be reached, which the best candidates for CIMS experimental investigations. The performed analysis shows that because of the phase matching demands the forward CIMS is suppressed significantly in comparison with the coherent elastic Mössbauer scattering [V. A. Belyakov, JETP Lett. 67, 8 (1998)] and more favorable for observation is CIMS at a nonzero scattering angle. Some examples of CIMS specific geometries are discussed. In particular, it is shown that for the grazing CIMS at isotope interface (a plane interface between regions with different abundance of the Mössbauer isotope) there is enhancement of CIMS at the critical angle of total reflection and suppression of CIMS at angles below the critical

  1. Inelastic x-ray scattering at modest energy resolution

    SciTech Connect

    Finkelstein, K. D.; Tischler, J. Z.; Larson, B. C.

    1997-07-01

    We report results from the development of an inelastic scattering spectrometer designed to take advantage of high energy synchrotron radiation available at CHESS. The device allows a large increase of the effective scattering volume in the sample by permitting measurements to be made in an energy range up to 25 KeV. The highest useable energy appears limited by the efficiency of the analyzers under consideration. At 20 KeV a novel 4-bounce, sagittal focusing monochromator passes 10e11 photons/second with Darwin width limited energy resolution. In the scattering plane, the monochromator images the electron beam producing a small scattering source for the analyzing optics. Analyzer systems under study include a cooled mosaic crystal in para-focusing geometry, and an adjustable spherically bent silicon crystal respectively for parallel and point-by-point collection of the energy loss spectrum. This paper discusses the optical configurations presents results from our early measurements and suggests directions for improvements.

  2. Inelastic pion scattering by /sup 13/C at low energies

    SciTech Connect

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  3. In situ measurement of inelastic light scattering in natural waters

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda < 510nm is negligible for the whole water column, and this percentage increases with depth at /lambda > 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to

  4. Inelastic neutron scattering studies of novel quantum magnets

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp W.

    Inelastic neutron scattering was used to study the magnetic excitation spectrum of three quantum magnets: (i) the double perovskite Ba2FeReO 6; (ii) the two-dimensional square lattice Heisenberg antiferromagnet Sr2CuO2Cl2; and (iii) the quasi-two-dimensional frustrated two-leg ladder BiCu2PO6. We have conducted inelastic neutron scattering measurements on powder samples of the double perovskite compound Ba2FeReO6. The measurements revealed two well defined dispersing spin wave modes. No excitation gap was observable and the spectrum can be explained with a local moment model incorporating the interactions of Fe spins with spin-orbital locked degrees of freedom on the Re site. The results reveal that both significant electronic correlations and spin-orbit coupling on the Re site play a significant role in the spin dynamics of Ba2FeReO6. High resolution neutron scattering measurements of magnetic excitations in the parent cuprate Sr2CuO2Cl2 reveal a significant dispersion and momentum dependent damping of the zone boundary magnons. We directly compare our measurements with previous resonant inelastic x-ray scattering measurements and find a ~25 meV discrepancy between the two techniques for the measured zone boundary energy at (1/2, 0). The deviations are greatest precisely in the region of phase space where the magnon damping is strongest. This comparison shows that the inelastic x-ray spectrum must contain significant contributions from higher energy excitations not previously considered. Our measurements demonstrate that the high energy continuum of magnetic fluctuations is a ubiquitous feature of the magnetic spectrum among insulating monolayer cuprates, and that these excitations couple to both inelastic neutron and light scattering. A comprehensive series of inelastic neutron scattering measurements was used to investigate spin excitations in the frustrated two-leg ladder compound BiCu2PO6. The measurements revealed six branches of steeply dispersing triplon

  5. Probabilistic description of particle transport. III. Inelastic scattering

    SciTech Connect

    Goulet, T.; Keszei, E.; Jay-Gerin, J. Departement de Medecine Nucleaire et de Radiobiologie, Faculte de Medecine, Universite de Sherbrooke, Sherbrooke, PQ )

    1990-06-01

    We extend our probabilistic model of quasielastic particle transport to include possible inelastic scatterings of the particles in the bulk of the studied media. We show that this extended model can be used to describe different types of experiments involving electrons that go through or are reflected by a plane-parallel layer deposited on a substrate. In particular, we reanalyze the experimental results of low-energy ({approx lt}10 eV) electron transmission through solid xenon and solid molecular nitrogen. This analysis shows that the extended model is consistent with the quasielastic one, but is more powerful since we can now determine both the elastic and inelastic electron mean free paths. The analysis allows one to study the threshold creation of excitons that can be observed at about 8.5 and 9.5 eV in solid xenon, and around 7.5 eV in solid molecular nitrogen.

  6. Studies of toxic aerosols via elastic and inelastic light scattering

    SciTech Connect

    Foss, W.; Li, W.; Allen, T.M.; Blair, D.S.; Davis, E.J. )

    1993-02-01

    Evaporation rates and chemical characteristics of potentially toxic aerosols have been determined by elastic and inelastic light-scattering measurements. The aerosol systems examined were a commercial catalyst consisting of a mixture of stannous octanoate (SNO) and 2-ethylhexanoic acid (EHA) and droplets emitted from open tanks of chromic acid solutions used for anodizing aluminum. The heavy metals contained in these aerosols represent a danger to the workplace if such materials are inhaled. Nanogram amounts of the solutions were studied by suspending single microdroplets in electrodynamic balances in a flow of air to measure evaporation rates and to obtain Raman spectra. Elastic scattering data include phase functions and morphological resonance spectra from which droplet sizes are determined. The inelastic light-scattering data or Raman spectra provide molecular vibrational bond information. It was found that EHA spectra agree with bulk data in the literature, and that SNO Raman spectra, which are not available in the literature, are consistent with infrared spectra for bulk SNO. At room temperature the vapor pressure of SNO is on the order of 0.01 Pa while that of EHA is on the order of 0.1 Pa. Raman data for the residue of evaporated chromic acid solutions show the presence of chromium oxides (Cr[sup 6+] compounds), surfactants, and bound (nonvolatile) water. 31 refs., 14 figs.

  7. Elastic and Inelastic Scattering of Neutrons using a CLYC array

    NASA Astrophysics Data System (ADS)

    Brown, Tristan; Doucet, E.; Chowdhury, P.; Lister, C. J.; Wilson, G. L.; Devlin, M.; Mosby, S.

    2015-10-01

    CLYC scintillators, which have dual neutron and gamma response, have recently ushered in the possibility of fast neutron spectroscopy without time-of-flight (TOF). A 16-element array of 1'' x 1'' 6Li-depleted CLYC crystals, where pulse-shape-discrimination is achieved via digital pulse processing, has been commissioned at UMass Lowell. In an experiment at LANSCE, high energy neutrons were used to bombard 56Fe and 238U targets, in order to measure elastic and inelastic neutron scattering cross sections as a function of energy and angle with the array. The array is placed very close to the targets for enhanced geometrical solid angles for scattered neutrons compared to standard neutron-TOF measurements. A pulse-height spectrum of scattered neutrons in the detectors is compared to the energy of the incident neutrons, which is measured via the TOF of the pulsed neutrons from the source to the detectors. Recoil corrections are necessary to combine the energy spectra from all the detectors to obtain angle-integrated elastic and inelastic cross-sections. The detection techniques, analysis procedures and results will be presented. Supported by NNSA-SSAA program through DOE Grant DE-NA00013008.

  8. Semi-inclusive Deep Inelastic Scattering at Small-x

    SciTech Connect

    Marquet, C.; Xiao, B.-W.; Yuan, Feng

    2009-05-29

    We study the semi-inclusive hadron production in deep inelastic scattering at small-x.A transverse momentum dependent factorization is found consistent with the resultscalculated in the color-dipole framework in the appropriate kinematic region. The transverse momentum dependent quark distribution can be studied in this processas a probe for the small-x saturation physics. Especially, the ratio of the quark distributions as functions of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q2 dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method.

  9. Lattice dynamics in copper indium diselenide by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Derollez, P.; Fouret, R.; Laamyem, A.; Hennion, B.; Gonzalez, J.

    1999-05-01

    The phonon dispersion curves along the [100] and [001] directions of CuInSe2 have been measured by inelastic neutron scattering. The neutron measurements reveal the uncertainty of optical measurements because of the large absorption of this material. The lattice dynamics is analysed with a rigid ion model: Born-von Karman short range interactions associated with long range electrostatic forces. The calculated dispersion curves are in good agreement with the experiment. The atomic displacements associated with each vibrational mode are used to discuss the optical phonons. The obtained results provide a strong experimental basis from which we can validate the ab initio methods.

  10. Transition probability functions for applications of inelastic electron scattering.

    PubMed

    Löffler, Stefan; Schattschneider, Peter

    2012-09-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709

  11. NLO QCD corrections to graviton induced deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Stirling, W. J.; Vryonidou, E.

    2011-06-01

    We consider Next-to-Leading-Order QCD corrections to ADD graviton exchange relevant for Deep Inelastic Scattering experiments. We calculate the relevant NLO structure functions by calculating the virtual and real corrections for a set of graviton interaction diagrams, demonstrating the expected cancellation of the UV and IR divergences. We compare the NLO and LO results at the centre-of-mass energy relevant to HERA experiments as well as for the proposed higher energy lepton-proton collider, LHeC, which has a higher fundamental scale reach.

  12. Rotationally inelastic gas--surface scattering: HCl from Au(111)

    SciTech Connect

    Lykke, K.R.; Kay, B.D. )

    1990-02-15

    A quantum-resolved molecular beam--surface scattering study of HCl scattered from Au(111) is described. The HCl is detected in a quantum-resolved manner via (2+1) resonant enhanced multiphoton ionization (REMPI). Greater than 85% of the incident HCl molecules are in a single-quantum state ({ital v}=0, {ital J}=0) with a narrow velocity distribution ({Delta}{upsilon}/{upsilon}{lt}0.10). The scattered HCl is strongly peaked about the specular angle, and both its final velocity and rotational distributions are indicative of direct inelastic scattering. The scattered rotational distributions exhibit features characteristic of rotational rainbows and have a mean rotational energy that displays a bilinear dependence upon the incident normal kinetic energy and surface temperature. The final velocity distributions are largely insensitive to the rotational level and indicate that the energy loss to phonons is small ({lt}20%). Analysis of the scattered data indicates an orientation-averaged attractive well depth of {similar to}5 kcal/mol for the HCl--Au(111) interaction.

  13. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    SciTech Connect

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; Doeppner, T.; Meyerhofer, D. D.; Murphy, C. D.; Sangster, T. C.; Vorberger, J.

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  14. Inelastic x-ray scattering from shocked liquid deuterium.

    PubMed

    Regan, S P; Falk, K; Gregori, G; Radha, P B; Hu, S X; Boehly, T R; Crowley, B J B; Glenzer, S H; Landen, O L; Gericke, D O; Döppner, T; Meyerhofer, D D; Murphy, C D; Sangster, T C; Vorberger, J

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation-driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Ly(α) line emission at 2.96 keV. These first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5  eV, an electron density of 2.2(±0.5)×10(23)  cm(-3), and an ionization of 0.8 (-0.25, +0.15). Two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results. PMID:23368573

  15. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE PAGESBeta

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  16. Inelastic Proton Scattering on 21Na in Inverse Kinematics

    NASA Astrophysics Data System (ADS)

    Austin, Roby

    2009-10-01

    R.A.E. Austin, R. Kanungo, S. Reeve, Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, A.G. Tuff, O. Roberts, University of York, UK; P.J. Woods, T. Davinson, G. J. Lotay, University of Edinburgh; C.-Y. Wu, Lawrence Livermore National Laboratory; H. Al Falou, G.C. Ball, M. Djongolov, A. Garnsworthy, G. Hackman, J.N. Orce, C.J. Pearson, S. Triambak, S.J. Williams, TRIUMF; C. Andreiou, D.S. Cross, N. Galinski, R. Kshetri, Simon Fraser University; C. Sumithrarachchi, M.A. Schumaker, University of Guelph; M.P. Jones, S.V. Rigby, University of Liverpool; D. Cline, A. Hayes, University of Rochester; T.E. Drake, University of Toronto; We describe an experiment and associated technique [1] to measure resonances of interest in astrophysical reactions. At the TRIUMF ISAC-II radioactive beam accelerator facility in Canada, particles inelastically scattered in inverse kinematics are detected with Bambino, a δE-E silicon telescope spanning 15-40 degrees in the lab. We use the TIGRESS to detect gamma rays in coincidence with the charged particles to cleanly select inelastic scattering events. We measured resonances above the alpha threshold in ^22Mg of relevance to the rate of break-out from the hot-CNO cycle via the reaction ^ 18Ne(α,p)^21Na. [1] PJ Woods et al. Rex-ISOLDE proposal 424 Cern (2003).

  17. Inelastic proton scattering of Sn isotopes studied with GRETINA

    NASA Astrophysics Data System (ADS)

    Campbell, Christopher

    2014-03-01

    The chain of semi-magic Sn nuclei, with many stable isotopes, has been a fertile ground for experimental and theoretical studies. Encompassing a major neutron shell from N = 50 to 82, the properties and structure of these nuclei provided important data for the development of the pairing-plus-quadrupole model. Recent experimental information on B(E2) for 106,108,110,112Sn came as a surprise as it indicated a larger collectivity than the predicted parabolic trend of quadrupole collectivity. These data, instead, show an unexpectedly flat trend even as the number of valence particles is reduced from 12 to 6. To fully understand how collectivity is evolving in these isotopes, 108,110,112Sn have been studied using thick-target, inelastic proton scattering with GRETINA tagging inelastic scattering events by detecting gamma-rays from the prompt decay of states excited in the reaction. We will present the trend of 2 + excitation cross-sections, the deduced quadrupole deformation parameters, and observations of other low-lying collective states. Comparison of these (p,p') quadrupole deformation parameters with B(E2) data will provide new insights into the relative importance of proton and neutron contributions to collectivity in these nuclei. GRETINA was funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511(NSCL) and DOE under grant DE-AC02-05CH11231(LBNL).

  18. Inelastic x-ray scattering at modest energy resolution

    SciTech Connect

    Finkelstein, K.D.; Larson, B.C.

    1997-07-01

    We report results from the development of an inelastic scattering spectrometer designed to take advantage of high energy synchrotron radiation available at CHESS. The device allows a large increase of the effective scattering volume in the sample by permitting measurements to be made in an energy range up to 25 KeV. The highest useable energy appears limited by the efficiency of the analyzers under consideration. At 20 KeV a novel 4-bounce, sagittal focusing monochromator passes 10e11 photons/second with Darwin width limited energy resolution. In the scattering plane, the monochromator images the electron beam producing a small scattering source for the analyzing optics. Analyzer systems under study include a cooled mosaic crystal in para-focusing geometry, and an adjustable spherically bent silicon crystal respectively for parallel and point-by-point collection of the energy loss spectrum. This paper discusses the optical configurations presents results from our early measurements and suggests directions for improvements. {copyright} {ital 1997 American Institute of Physics.}

  19. Dynamic color screening in diffractive deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ingelman, Gunnar; Pasechnik, Roman; Werder, Dominik

    2016-05-01

    We present a novel Monte Carlo implementation of dynamic color screening via multiple exchanges of semisoft gluons as a basic QCD mechanism to understand diffractive electron-proton scattering at the HERA collider. Based on the kinematics of individual events in the standard QCD description of deep inelastic scattering at the parton level, which at low x is dominantly gluon initiated, the probability is evaluated for additional exchanges of softer gluons resulting in an overall color singlet exchange leading to a forward proton and a rapidity gap as the characteristic observables for diffractive scattering. The probability depends on the impact parameter of the soft exchanges and varies with the transverse size of the hard scattering subsystem and is therefore influenced by different QCD effects. We account for matrix elements and parton shower evolution either via conventional DGLAP log Q2 evolution with collinear factorization or CCFM small x evolution with k⊥ factorization and discuss the sensitivity to the gluon density distribution in the proton and the importance of large log x contributions. The overall result is, with only two model parameters which have theoretically motivated values, a satisfactory description of the observed diffractive cross section at HERA obtained in a wide kinematical range.

  20. Inelastic X-ray Scattering Studies of Zeolite Collapse

    SciTech Connect

    Greaves, G. Neville; Kargl, Florian; Ward, David; Holliman, Peter; Meneau, Florian

    2009-01-29

    In situ inelastic x-ray scattering (IXS) experiments have been used to probe heterogeneity and deformability in zeolte Y as this thermally collapses to a high density amorphous (HDA) aluminosilicate phase. The Landau-Placzek ratio R{sub LP} falls slowly as amorphisation advances, increasing in the later stages of collapse clearly showing how homogeneity improves non-linearly--behaviour linked closely with the decline in molar volume V{sub Molar}. The Brillouin frequency {omega}{sub Q} also decreases with amorphisation in a similar fashion, signifying a non-uniform decrease in the speed of sound v{sub l}. All of these changes with zeolite amorphisation infer formation of an intermediate low density amorphous (LDA) phase. This low entropy or 'perfect glass' has mechanical properties which are closer to the zeolite rather to the HDA glass--notably a very small value of Poisson's Ratio signifying unusually low resistance to deformation.

  1. Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering

    SciTech Connect

    D. Boer, L. Gamberg, B.U. Musch, A. Prokudin

    2011-10-01

    The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. Advantages of employing these Bessel weights are that they suppress (divergent) contributions from high transverse momentum and that soft factors cancel in (Bessel-) weighted asymmetries. Also, the resulting compact expressions immediately connect to previous work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions and to quantities accessible in lattice QCD. Bessel weighted asymmetries are thus model independent observables that augment the description and our understanding of correlations of spin and momentum in nucleon structure.

  2. INELASTIC X-RAY SCATTERING AT ULTRAHIGH PRESSURES.

    SciTech Connect

    MAO, H.K.; HEMLEY, J.; KAO, C.C.

    2000-08-28

    Inelastic x-ray scattering (IXS) provides high-pressure research with an arsenal of analytical capabilities for key measurements that were previously unattainable, and high pressure research provides IXS with numerous applications where the technique has unique advantages over other methods. High-pressure investigations can now be conducted using non-resonant IXS, resonant IXS, nuclear resonant IXS, and x-ray emission spectroscopy with energy resolutions of 100 meV to 1 eV for electronic transitions and 1 to 10 meV for phonon studies. By pressure-tuning materials over a wide range, we are able to investigate fundamental physics of electron gases, strongly correlated electron systems, high-energy electronic excitations, and phonons in energy and momentum space. The results will have a profound influence on materials applications as well as providing basic information for understanding the deep interior of the Earth and other planets.

  3. Molecular-dynamics study of ionic motions and neutron inelastic scattering in α-AgI

    NASA Astrophysics Data System (ADS)

    Chiarotti, Guido L.; Jacucci, G.; Rahman, A.

    1986-11-01

    Contrary to the current interpretation of inelastic-neutron-scattering data on α-AgI, molecular-dynamics calculations show that inelastic neutron scattering is dominated by coherent scattering from Ag+ ions. The calculations agree with the available data. Ag+ ions diffuse by jumps between tetrahedral sites, the consequences being in complete accord with the Chudley-Elliot model only if the full geometrical complexity of these sites is included. Phonon modes due to I- motions are predicted for certain wave vectors.

  4. Self Organizing Maps for use in Deep Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Askanazi, Evan

    2015-04-01

    Self Organizing Maps are a type of artificial neural network that has been proven to be particularly useful in solving complex problems in neural biology, engineering, robotics and physics. We are attempting to use the Self Organizing Map to solve problems and probe phenomenological patterns in subatomic physics, specifically in Deep Inelastic Scattering (DIS). In DIS there is a cross section in electron hadron scattering that is dependent on the momentum fraction x of the partons in the hadron and the momentum transfer of the virtual photon exchanged. There is a soft cross part of this cross section that currently can only be found through experimentation; this soft part is comprised of Structure Functions which in turn are comprised of the Parton Distribution Functions (PDFs). We aim to use the Self Organizing Process, or SOP, to take theoretical models of these PDFs and fit it to the previous, known data. The SOP will also be used to probe the behavior of the PDFs in particular at large x values, in order to observe how they congregate. The ability of the SOPto take multidimensional data and convert it into two dimensional output is anticipated to be particularly useful in achieving this aim.

  5. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    NASA Astrophysics Data System (ADS)

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-01

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm3, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr2Se4 (V = 12.5 mm3), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  6. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    SciTech Connect

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  7. Elastic and inelastic scattering of neutrons from 56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.

    2015-10-01

    The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.

  8. Inelastic-impurity-scattering-induced spin texture and topological transitions in surface electron waves

    NASA Astrophysics Data System (ADS)

    Fransson, J.

    2015-09-01

    Inelastic scattering off magnetic impurities in a spin-chiral two-dimensional electron gas, e.g., the Rashba system, is shown to generate topological changes in the spin texture of the electron waves emanating from the scattering center. While elastic scattering gives rise to a purely in-plane spin texture for an in-plane magnetic scattering potential, out-of-plane components emerge upon activation of inelastic scattering processes. This property leads to a possibility to make controlled transitions between trivial and nontrivial topologies of the spin texture.

  9. Phonon dynamics and inelastic neutron scattering of sodium niobate

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Gupta, M. K.; Mittal, R.; Zbiri, M.; Rols, S.; Schober, H.; Chaplot, S. L.

    2014-05-01

    Sodium niobate (NaNbO3) exhibits an extremely complex sequence of structural phase transitions in the perovskite family and therefore provides an excellent model system for understanding the mechanism of structural phase transitions. We report temperature dependence of inelastic neutron scattering measurements of phonon densities of states in sodium niobate. The measurements are carried out in various crystallographic phases of this material at various temperatures from 300 to 1048 K. The phonon spectra exhibit peaks centered on 19, 37, 51, 70, and 105 meV. Interestingly, the peak near 70 meV shifts significantly towards lower energy with increasing temperature, while the other peaks do not exhibit any appreciable shift. The phonon spectra at 783 K show prominent change and become more diffusive as compared to those at 303 K. In order to better analyze these features, we have performed first-principles lattice dynamics calculations based on the density functional theory. The computed phonon density of states is found to be in good agreement with the experimental data. Based on our calculation we are able to assign the characteristic Raman modes in the antiferroelectric phase, which are due to the folding of the T (ω = 95 cm-1) and Δ (ω = 129 cm-1) points of the cubic Brillouin zone, to the A1g symmetry.

  10. D* production in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Romeo, G. Cara; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Sartorelli, G.; Garcia, Y. Zamora; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Feld, L.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajac, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Żarnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Utley, M. L.; Waugh, R.; Wilson, A. S.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Nakao, M.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; An, S. H.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Shumilin, A. V.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Harnew, N.; Lancaster, M.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Okrasiński, J. R.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Doeker, T.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Suzuki, I.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1997-02-01

    This paper presents measurements of D*+/- production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D*+ -> (D0 -> K- π+) π+ (+c.c.) has been used in the study. The e+p cross section for inclusive D*+/- production with 5 < Q2 < 100 GeV2 and y < 0.7 is 5.3 +/- 1.0 +/- 0.8 nb in the kinematic region 1.3 < pT(D*+/-) < 9.0 GeV and η(D*+/-) < 1.5. Differential cross sections as functions of pT(D*+/-), η(D*+/-), W and Q2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in pT(D*+/-) and η(D*+/-), the charm contribution Fcc2 (x, Q2) to the proton structure function is determined for Bjorken x between 2.10-4 and 5.10-3.

  11. Multiplicity moments in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Brock, I.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Crittenden, J.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Koch, W.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Wolf, G.; Wollmer, U.; Whitmore, J. J.; Wichmann, R.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Bodmann, B.; Gendner, N.; Holm, U.; Salehi, H.; Wick, K.; Yildirim, A.; Ziegler, A.; Carli, T.; Garfagnini, A.; Gialas, I.; Lohrmann, E.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Corriveau, F.; Padhi, S.; Stairs, D. G.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Y. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Große-Knetter, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Saull, P. R. B.; Toothacker, W. S.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Plucinski, P.; Smalska, B.; Tymieniecka, T.; Ukleja, J.; Zakrzewski, J. A.; Z˙arnecki, A. F.; Adamus, M.; Sztuk, J.; Deppe, O.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kçira, D.; Lammers, S.; Reeder, D. D.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.

    2001-06-01

    Multiplicity moments of charged particles in deep inelastic e+p scattering have been measured with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb-1. The moments for Q2>1000 GeV2 were studied in the current region of the Breit frame. The evolution of the moments was investigated as a function of restricted regions in polar angle and, for the first time, both in the transverse momentum and in absolute momentum of final-state particles. Analytic perturbative QCD predictions in conjunction with the hypothesis of Local Parton-Hadron Duality (LPHD) reproduce the trends of the moments in polar-angle regions, although some discrepancies are observed. For the moments restricted either in transverse or absolute momentum, the analytic results combined with the LPHD hypothesis show considerable deviations from the measurements. The study indicates a large influence of the hadronisation stage on the multiplicity distributions in the restricted phase-space regions studied here, which is inconsistent with the expectations of the LPHD hypothesis.

  12. Inelastic neutron scattering from tetramethylammonium cations occluded within zeolites

    SciTech Connect

    Brun, T.O.; Curtiss, L.A.; Iton, L.E.; Kleb, R.; Newsam, J.M.; Beyerlein, R.A.; Vaughan, D.E.W.

    1987-06-24

    The use of organic bases, for example, tetraalklylammonium hydroxides, and other organic reagents has greatly enhanced the scope of gel/solution synthesis routes to crystalline microporous materials such as zeolites. The role of these organic components, however, continues to be the topic of considerable debate. The organic components first modify the gel structural chemistry. The presence of tetramethylammonium (TMA) hydroxide, for example, promotes the formation of double four-ring units in silicate solutions. Occlusion of organic gel components in zeolite crystal structures, however, leads also to the concept of a templating effect in which the organic component provides a basis around which the developing zeolite cages form. The mechanism of this templating process remains somewhat ill defined and must, at least, be of variable specificity. The authors describe here the use of inelastic neutron scattering (INS) to measure TMA template torsional vibrations, vibrations that provide to be sensitive to the strength of the interaction between the template cation and the enclosing zeolite cage.

  13. Hadron attenuation in deep inelastic lepton-nucleus scattering

    SciTech Connect

    Falter, T.; Cassing, W.; Gallmeister, K.; Mosel, U.

    2004-11-01

    We present a detailed theoretical investigation of hadron attenuation in deep inelastic scattering off complex nuclei in the kinematic regime of the HERMES experiment. The analysis is carried out in the framework of a probabilistic coupled-channel transport model based on the Boltzmann-Uehling-Uhlenbeck equation, which allows for a treatment of the final-state interactions beyond simple absorption mechanisms. Furthermore, our event-by-event simulations account for the kinematic cuts of the experiments as well as the geometrical acceptance of the detectors. We calculate the multiplicity ratios of charged hadrons for various nuclear targets relative to deuterium as a function of the photon energy {nu}, the hadron energy fraction z{sub h}=E{sub h}/{nu}, and the transverse momentum p{sub T}. We also confront our model results on double-hadron attenuation with recent experimental data. Separately, we compare the attenuation of identified hadrons ({pi}{sup {+-}}, {pi}{sup 0}, K{sup {+-}}, p, and p) on {sup 20}Ne and {sup 84}Kr targets with the data from the HERMES Collaboration and make predictions for a {sup 131}Xe target. At the end we turn towards hadron attenuation on {sup 63}Cu nuclei at EMC energies. Our studies demonstrate that (pre-)hadronic final-state interactions play a dominant role in the kinematic regime of the HERMES experiment while our present approach overestimates the attenuation at EMC energies.

  14. On the role of inelastic scattering in phase-plate transmission electron microscopy.

    PubMed

    Hettler, Simon; Wagner, Jochen; Dries, Manuel; Oster, Marco; Wacker, Christian; Schröder, Rasmus R; Gerthsen, Dagmar

    2015-08-01

    The phase contrast of Au nanoparticles on amorphous-carbon films with different thicknesses is analyzed using an electrostatic Zach phase plate in a Zeiss 912 Ω transmission electron microscope with in-column energy filter. Specifically, unfiltered and plasmon-filtered phase-plate transmission electron microscopy (PP TEM) images are compared to gain insight in the role of coherence after inelastic scattering processes. A considerable phase-contrast contribution resulting from a combined elastic-inelastic scattering process is found in plasmon-filtered PP TEM images. The contrast reduction compared to unfiltered images mainly originates from zero-order beam broadening caused by the inelastic scattering process. The effect of the sequence of the elastic and inelastic scattering processes is studied by varying the position of the nanoparticles, which can be either located on top or at the bottom of the amorphous-carbon film with respect to the incident electron beam direction. PMID:25879156

  15. Sivers Effect in Semi-Inclusive Deeply Inelastic Scattering and DRELL-YAN

    NASA Astrophysics Data System (ADS)

    Collins, J. C.; Efremov, A. V.; Goeke, K.; Grosse Perdekamp, M.; Menzel, S.; Meredith, B.; Metz, A.; Schweitzer, P.

    The Sivers function is extracted from HERMES data on single spin asymmetries in semi-inclusive deeply inelastic scattering. The result is used for making predictions for the Sivers effect in the Drell-Yan process.

  16. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    NASA Technical Reports Server (NTRS)

    Aleem, F.; Saleem, M.

    1985-01-01

    An analytic expression for the neutrino charged current structure function F sub 2 (x, Q sup 2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  17. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    SciTech Connect

    Chow, P. Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-07-15

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation.

  18. Forward baryons in relativistic nucleus-nucleus collisions

    SciTech Connect

    Barrette, J.; Bellwied, R.; Braun-Munzinger, P.; Cleland, W.E.; David, G.; Dee, J.; Fatyga, M.; Fox, D.; Greene, S.V.; Hall, J.; Hemmick, T.K.; Heifetz, R.; Herrmann, N.; Hogue, R.W.; Ingold, G.; Jayananda, K.; Kraus, D.; Shiva Kumar, B.; Lisa, M.; Lissauer, D.; Llope, W.J.; Ludlam, T.; Majka, R.; Makowiecki, D.; Mark, S.K.; Mitchell, J.T.; Muthuswamy, M.; O'Brien, E.; Polychronakos, V.; Pruneau, C.; Rotondo, F.; Sandweiss, J.; Simon, J.; Sonnadara, U.; Stachel, J.; Takai, H.; Throwe, T.; Waters, L.; Winter, C.; Woody, C.; Wolf, K.; Wolfe, D.; Zhang, Y. State University of New York, Stony Brook, New York 11794 University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Brookhaven National Laboratory, Upton, New York 11973 Los Alamos National Laboratory, Los Alamos, New Mexico 87545 Yale University, New Haven, Connecticut 06511 University of New Mexico, Albuquerque

    1992-02-01

    We present the rapidity and transverse momentum distributions of protons and neutrons from collisions between 14.6 GeV/nucleon beams of {sup 28}Si and targets of Al, Cu, and Pb. The data were measured in the forward spectrometer/target calorimeter detectors of the E814 apparatus. The results indicate the existence of two distinct domains, one of beam rapidity projectilelike nucleons, and the second of participant nucleons. From the former, the in-medium inelastic nucleon-nucleon cross section is deduced. It is found to agree, within 10%, with the free'' value of 30 mb although under present conditions one of the two colliding nucleons has been struck before with a high probability. We compare with the present data the predictions of a fragmentation model as well as of models dealing explicitly with the heavy-ion collision and particle creation and emission.

  19. Dynamical transition of myoglobin revealed by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Doster, Wolfgang; Cusack, Stephen; Petry, Winfried

    1989-02-01

    Structural fluctuations in proteins on the picosecond timescale have been studied in considerable detail by theoretical methods such as molecular dynamics simulation1,2, but there exist very few experimental data with which to test the conclusions. We have used the technique of inelastic neutron scattering to investigate atomic motion in hydrated myoglobin over the temperature range 4 350 K and on the molecular dynamics timescale 0.1 100 ps. At temperatures below 180 K myglobin behaves as a harmonic solid, with essentially only vibrational motion. Above 180 K there is a striking dynamic transition arising from the excitation of non-vibrational motion, which we interpret as corresponding to tor-sional jumps between states of different energy, with a mean energy asymmetry of KJ mol -1. This extra mobility is reflected in a strong temperature dependence of the mean-square atomic displacements, a phenomenon previously observed specifically for the heme iron by Mossbauer spectroscopy3 5, but on a much slower timescale (10-7 s). It also correlates with a glass-like transition in the hydration shell of myoglobin6 and with the temperature-dependence of ligand-binding rates at the heme iron, as monitored by flash photolysis7. In contrast, the crystal structure of myoglobin determined down to 80 K shows no significant structural transition8 10. The dynamical behaviour we find for myoglobin (and other globular proteins) suggests a coupling of fast local motions to slower collective motions, which is a characteristic feature of other dense glass-forming systems.

  20. Global optical potential for nucleus-nucleus systems from 50 MeV/u to 400 MeV/u

    NASA Astrophysics Data System (ADS)

    Furumoto, T.; Horiuchi, W.; Takashina, M.; Yamamoto, Y.; Sakuragi, Y.

    2012-04-01

    We present a new global optical potential (GOP) for nucleus-nucleus systems, including neutron-rich and proton-rich isotopes, in the energy range of 50-400 MeV/u. The GOP is derived from the microscopic folding model with the complex G-matrix interaction CEG07 and the global density presented by the São Paulo group. The folding model accounts for realistic complex optical potentials of nucleus-nucleus systems well and reproduces the existing elastic scattering data for stable heavy-ion projectiles at incident energies above 50 MeV/u. We then calculate the folding-model potentials (FMPs) for projectiles of even-even isotopes, 8-22C, 12-24O, 16-38Ne, 20-40Mg, 22-48Si, 26-52S, 30-62Ar, and 34-70Ca, scattered by stable target nuclei of 12C, 16O, 28Si, 40Ca 58Ni, 90Zr, 120Sn, and 208Pb at incident energies of 50, 60, 70, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, and 400 MeV/u. The calculated FMP is represented, with a sufficient accuracy, by a linear combination of 10-range Gaussian functions. The expansion coefficients depend on the incident energy, the projectile and target mass numbers, and the projectile atomic number, while the range parameters depend only on the projectile and target mass numbers. The adequate mass region of the present GOP by the global density is inspected in comparison with FMP by realistic density. The full set of the range parameters and the coefficients for all the projectile-target combinations at each incident energy are provided on a permanent open-access website together with a fortran program for calculating the microscopic-basis GOP (MGOP) for a desired projectile nucleus by the spline interpolation over the incident energy and the target mass number.

  1. Computer program for parameterization of nucleus-nucleus electromagnetic dissociation cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.; Badavi, Forooz F.

    1988-01-01

    A computer subroutine parameterization of electromagnetic dissociation cross sections for nucleus-nucleus collisions is presented that is suitable for implementation in a heavy ion transport code. The only inputs required are the projectile kinetic energy and the projectile and target charge and mass numbers.

  2. Inelastic scattering of electrons by metastable hydrogen atoms in a laser field

    NASA Astrophysics Data System (ADS)

    Buica, Gabriela

    2015-09-01

    The inelastic scattering of fast electrons by metastable hydrogen atoms in the presence of a linearly polarized laser field is theoretically studied in the domain of field intensities below 1010 W/cm2. The interaction of the hydrogen atom with the laser field is described by first-order time-dependent perturbation theory, while the projectile electrons interacting with the laser field are described by the Gordon-Volkov wave functions. An analytic expression is obtained for the differential scattering cross section in the first-order Born approximation for laser-assisted inelastic e--H (2 s ) scattering for the 2 s →n l excitation. Detailed analytical and numerical results are presented for inelastic scattering accompanied by one-photon absorption, and the angular dependence and resonance structure of the differential cross sections are discussed for the 2 s →4 l excitation of metastable hydrogen.

  3. Low-lying 1- and 2+ states in 124Sn via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Crespi, F. C. L.

    2016-05-01

    The γ decay of low-lying 1-and 2+ states up to the neutron separation energy in 124Sn populate by the inelastic scattering of 17O was measured. The Angular distributions were measured both for the γ rays and the scattered 17O ions. The results are presented.

  4. Born Hartree Bethe approximation in the theory of inelastic electron molecule scattering

    NASA Astrophysics Data System (ADS)

    Kretinin, I. Yu; Krisilov, A. V.; Zon, B. A.

    2008-11-01

    We propose a new approximation in the theory of inelastic electron atom and electron molecule scattering. Taking into account the completeness property of atomic and molecular wavefunctions, considered in the Hartree approximation, and using Bethe's parametrization for electronic excitations during inelastic collisions via the mean excitation energy, we show that the calculation of the inelastic total integral cross-sections (TICS), in the framework of the first Born approximation, involves only the ground-state wavefunction. The final analytical formula obtained for the TICS, i.e. for the sum of elastic and inelastic ones, contains no adjusting parameters. Calculated TICS for electron scattering by light atoms and molecules (He, Ne, and H2) are in good agreement within the experimental data; results show asymptotic coincidence for heavier ones (Ar, Kr, Xe and N2).

  5. Vibrational density of states of thin films measured by inelastic scattering of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Röhlsberger, R.; Sturhahn, W.; Toellner, T. S.; Quast, K. W.; Alp, E. E.; Bernhard, A.; Metge, J.; Rüffer, R.; Burkel, E.

    1999-03-01

    Vibrational spectra of thin films were measured by inelastic nuclear resonant scattering of synchrotron radiation in grazing incidence geometry. A strong enhancement of the inelastic signal was obtained by designing the layer system as X-ray waveguide and coupling the incident beam into a guided mode. This effect opens the possibility to study vibrational excitations in thin films that were so far impossible to obtain due to flux limitations.

  6. Inelastic scattering in planetary atmospheres. I - The Ring effect, without aerosols

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Young, A. T.; Humphreys, T. J.

    1981-01-01

    The contribution of inelastic molecular scattering (Rayleigh-Brillouin and rotational Raman scattering) to the filling-in of Fraunhofer lines in the light of the blue sky is studied. Aerosol fluorescence is shown to be negligible, and aerosol scattering is ignored. The angular and polarization dependences of the filling-in detail for single scattering are discussed. An approximate treatment of multiple scattering, using a backward Monte Carlo technique, makes it possible to investigate the effects of the ground albedo. As the molecular scatterings alone produce more line-filling than is observed, it seems likely that aerosols dilute the effect by contributing unaltered sunlight to the observed spectra.

  7. Inelastically scattering particles and wealth distribution in an open economy

    NASA Astrophysics Data System (ADS)

    Slanina, František

    2004-04-01

    Using the analogy with inelastic granular gases we introduce a model for wealth exchange in society. The dynamics is governed by a kinetic equation, which allows for self-similar solutions. The scaling function has a power-law tail, the exponent being given by a transcendental equation. In the limit of continuous trading, a closed form of the wealth distribution is calculated analytically.

  8. Definite evidence of the Landau-Zener transition in nucleus-nucleus collisions

    SciTech Connect

    Imanishi, B.; von Oertzen, W.; Voit, H.

    1987-01-01

    It is shown that the Landau-Zener transition mechanism due to the formation of molecular orbitals of the active neutron exists in the inelastic scattering /sup 13/C(/sup 12/C, /sup 12/C)/sup 13/C/sup */ (3.086 MeV, (1/2)/sup +/). The evidence stems from characteristic changes of the angular distributions observed as a function of the incident energy.

  9. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    SciTech Connect

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-23

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe–Fe bonds but stiffens the Au–Au and Au–Fe bonds which results in a net stiffening relative to the elemental components.

  10. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    SciTech Connect

    Erofeev, V. I.

    2015-09-15

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.

  11. Variability of the downwelling diffuse attenuation coefficient with consideration of inelastic scattering.

    PubMed

    Zheng, Xiaobing; Dickey, Tommy; Chang, Grace

    2002-10-20

    In situ time-series measurements of spectral diffuse downwelling irradiance from the Bermuda Testbed Mooring are presented. Averaged diffuse attenuation coefficients of downwelling irradiance, Kd,and their elastic and inelastic components are investigated at seven wavelengths. At shorter wavelengths (<510 nm), Kd is weakly dependent on the solar zenith angle owing to the prevailing scattering effect and therefore can be considered a quasi-inherent optical property. At longer wavelengths (>510 nm), Kd shows a strong dependence on the solar zenith angle. As depth increases, inelastic scattering plays a greater role for the underwater light field at red wavelengths. PMID:12396201

  12. Elastic and inelastic scattering of /sup 16/O by /sup 26/Mg

    SciTech Connect

    Rotberg, V.H.; Mittig, W.

    1980-10-01

    Angular distributions and excitation functions for the elastic and inelastic (2/sup +/,1.81 MeV) scattering of /sup 16/O ions by /sup 26/Mg have been measured in the energy range from 22 up to 50 MeV. The data were analyzed in the coupled channel scheme with different potentials. The inelastic scattering data are found to be important to distinguish between optical model parameter sets. The deformation parameter delta/sub n/=..beta../sub n/R is extracted and found to be potential dependent. It is compared to the Coulomb deformation delta/sub C/.

  13. Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering.

    PubMed

    Ghahari, Fereshte; Xie, Hong-Yi; Taniguchi, Takashi; Watanabe, Kenji; Foster, Matthew S; Kim, Philip

    2016-04-01

    We report the enhancement of the thermoelectric power (TEP) in graphene with extremely low disorder. At high temperature we observe that the TEP is substantially larger than the prediction of the Mott relation, approaching to the hydrodynamic limit due to strong inelastic scattering among the charge carriers. However, closer to room temperature the inelastic carrier-optical-phonon scattering becomes more significant and limits the TEP below the hydrodynamic prediction. We support our observation by employing a Boltzmann theory incorporating disorder, electron interactions, and optical phonons. PMID:27081996

  14. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Titz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Poitrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; Ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10 -4 < xBJ < 6 · 10 -3 and 10 < Q2 < 100 GeV 2.

  15. Conversion method of powder inelastic scattering data for one-dimensional systems

    SciTech Connect

    Tomiyasu, Dr. Keisuke; Fujita, Prof. Masaki; Kolesnikov, Alexander I; Bewley, Robert I.; Bull, Dr. Martyn J.; Bennington, Dr. Stephen M.

    2009-01-01

    Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.

  16. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Erofeev, V. I.

    2015-09-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.

  17. High energy resolution inelastic x-ray scattering at the SRI-CAT

    SciTech Connect

    Macrander, A.T.

    1996-08-01

    This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals.

  18. Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Ghahari, Fereshte; Xie, Hong-Yi; Taniguchi, Takashi; Watanabe, Kenji; Foster, Matthew S.; Kim, Philip

    2016-04-01

    We report the enhancement of the thermoelectric power (TEP) in graphene with extremely low disorder. At high temperature we observe that the TEP is substantially larger than the prediction of the Mott relation, approaching to the hydrodynamic limit due to strong inelastic scattering among the charge carriers. However, closer to room temperature the inelastic carrier-optical-phonon scattering becomes more significant and limits the TEP below the hydrodynamic prediction. We support our observation by employing a Boltzmann theory incorporating disorder, electron interactions, and optical phonons.

  19. Heavy-flavour dynamics in proton-proton and nucleus-nucleus collisions at LHC

    NASA Astrophysics Data System (ADS)

    Nardi, M.; Beraudo, A.; De Pace, A.; Monteno, M.; Prino, F.

    2016-01-01

    We present recent results for heavy-quark observables in nucleus-nucleus collisions at LHC energies, obtained by the POWLANG transport setup. The initial creation of c c ¯ and b b ¯ pairs is simulated with a perturbative QCD approach (POWHEG+PYTHIA) and validated through comparison to experimental data of proton-proton collisions. In the nucleus-nucleus case, the propagation of the heavy quarks in the plasma is studied with the relativistic Langevin equation, here solved using weak-coupling transport-coefficients. Successively, the heavy quarks hadronize in the medium. We compute the nuclear modification factor RAA and the elliptic flow v2 of the final D mesons, as well as D - h correlations, and compare our results to experimental data from the ALICE and CMS Collaborations.

  20. Average transverse momentum and energy density in high-energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1986-01-01

    Emulsion chambers were used to measure the transverse momenta of photons or pi(0) mesons produced in high-energy cosmic-ray nucleus-nucleus collisions. A group of events having large average transverse momenta has been found which apparently exceeds the expected limiting values. Analysis of the events at early interaction times, of the order of 1 fm/c, indicates that the observed transverse momentum increases with both rapidity density and energy density.

  1. Results on ultra-relativistic nucleus-nucleus interactions from balloon-borne emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W.; Meegan, C. A.; Takahashi, Y.; Watts, J. W.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1985-01-01

    The results of balloon-borne emulsion-chamber measurements on high-energy cosmic-ray nuclei (Burnett et al., 1983) are summarized in tables and graphs and briefly characterized. Special consideration is given to seven nucleus-nucleus interaction events at energy in excess of 1 TeV/A with multiplicity greater than 400, and to Fe interactions (53 with CHO, 10 with emulsion, and 14 with Pb) at 20-60 GeV/A.

  2. State-to-state inelastic and reactive molecular beam scattering from surfaces

    SciTech Connect

    Lykke, K.R. ); Kay, B.D. )

    1990-01-01

    Resonantly enhanced multiphoton ionization (REMPI) laser spectroscopic and molecular beam-surface scattering techniques are coupled to study inelastic and reactive gas-surface scattering with state-to-state specificity. Rotational, vibrational, translational and angular distributions have been measured for the inelastic scattering of HCI and N {sub 2} from Au(111). In both cases the scattering is direct-inelastic in nature and exhibits interesting dynamical features such as rotational rainbow scattering. In an effort to elucidate the dynamics of chemical reactions occurring on surfaces we have extended our quantum-resolved scattering studies to include the reactive scattering of a beam of gas phase H-atoms from a chlorinated metal surface M-CI. The nascent rotational and vibrational distributions of the HCI product are determined using REMPI. The thermochemistry for this reaction on Au indicates that the product formation proceeding through chemisorbed H-atoms is slightly endothermic while direct reaction of a has phase H-atom with M-CI is highly exothermic (ca. 50 kcal/mole). Details of the experimental techniques, results and implications regarding the scattering dynamics are discussed. 55 ref., 8 fig.

  3. Nucleus-nucleus total reaction cross sections, and the nuclear interaction radius

    SciTech Connect

    Abu-Ibrahim, Badawy

    2011-04-15

    We study the nucleus-nucleus total reaction cross sections for stable nuclei, in the energy region from 30A MeV to about 1A GeV, and find them to be in proportion to ({radical}({sigma}{sub pp}{sup tot}Z{sub 1}{sup 2/3}+{sigma}{sub pn}{sup tot}N{sub 1}{sup 2/3})+{radical}({sigma}{sub pp}{sup tot}Z{sub 2}{sup 2/3}+{sigma}{sub pn}{sup tot}N{sub 2}{sup 2/3})) {sup 2} in the mass range 8 to 100. Also, we find a parameter-free relation that enables us to predict a total reaction cross section for any nucleus-nucleus within 10% uncertainty at most, using the experimental value of the total reaction cross section of a given nucleus-nucleus. The power of the relation is demonstrated by several examples. The energy dependence of the nuclear interaction radius is deduced; it is found to be almost constant in the energy range from about 200A MeV to about 1A GeV; in this energy range and for nuclei with N=Z, R{sub I}(A)=(1.14{+-}0.02)A{sup 1/3} fm.

  4. NEANSC international evaluation cooperation SG10 activities on inelastic scattering cross sections for weakly absorbing fission-product nuclides

    SciTech Connect

    Kawai, Masayoshi; Chiba, Satoshi; Nakagawa, Tsuneo; Nakajima, Yutaka; Zukeran, Atsushi; Gruppelaar, H.; Hogenbirk, A.; Salvatores, M.; Dietze, K.

    1994-12-31

    An evaluation method of inelastic scattering cross sections of FP nuclides is investigated. The origins of the discrepancy found in the calculated and measured sample reactivity worths are also discussed emphasizing the effect of ambiguity in inelastic scattering cross sections and neutron spectra.

  5. On multiple scatterings of mesons in hot and cold QCD matter

    NASA Astrophysics Data System (ADS)

    Dominguez, Fabio; Marquet, Cyrille; Wu, Bin

    2009-05-01

    We study the propagation of a color singlet qq¯ pair undergoing multiple scatterings in hot and cold QCD matter. The interaction of the dipole with the nucleus or plasma is described with the McLerran-Venugopalan and Gyulassy-Wang models respectively. We find identical results when expressed in terms of the saturation momentum of either the nucleus or the plasma. We compare two kinds of multiple scatterings, elastic and inelastic with respect to the target. When allowing the target to scatter inelastically, the difference with the elastic case is suppressed by a 1/Nc2 factor. We also discuss some implications of our results in the following situations: the survival probability of quarkonia in a hot medium, the production of high- p heavy mesons in nucleus-nucleus collisions, and the production of vector mesons in deep inelastic scattering off nuclei.

  6. Inelastic neutron scattering and raman light scattering from hydrogen-filled clathrates hydrates

    NASA Astrophysics Data System (ADS)

    Ulivi, L.; Celli, M.; Giannasi, A.; Ramirez-Cuesta, A. J.; Zoppi, M.

    2008-07-01

    Several samples of ternary tetrahydrofuran-H2O-H2 and binary H2O-H2 clathrate hydrates have been analysed by high-resolution inelastic neutron scattering and Raman light scattering. The neutron spectrum presents several intense bands due to H2 molecule excitations and in particular to rotational transitions, centre-of-mass translational transitions of either para-or ortho-H2, and to combinations of these. The H2 molecule behaves in the clathrate cage as an almost free rotor, and performs a translational motion (rattling), that is a paradigmatic example of the motion of a quantum particle in a non-harmonic three-dimensional potential well. Both the H2 rotational transition and the fundamental of the rattling transition split into triplets. Raman spectra show a similar splitting of the S0(0) rotational transition, due to a significant anisotropy of the potential with respect to the orientation of the molecule in the cage. The comparison of our experimental values for the transition frequencies to a recent quantum mechanical calculation is discussed.

  7. 26Al+p elastic and inelastic scattering reactions and galactic abundances of 26Al

    NASA Astrophysics Data System (ADS)

    Pittman, S. T.; Bardayan, D. W.; Chae, K. Y.; Chipps, K. A.; Jones, K. L.; Kozub, R. L.; Matei, C.; Matos, M.; Moazen, B. H.; Nesaraja, C. D.; O'Malley, P. D.; Pain, S. D.; Parker, P. D.; Peters, W. A.; Shriner, J. F., Jr.; Smith, M. S.

    2012-06-01

    Galactic 26Al is the first radioactive nucleus to be positively identified by γ-ray astronomy with detection of the 1.809 MeV γ ray associated with its decay. This nucleus is destroyed in astrophysical environments in the 26Al(p,γ)27Si and inelastic 26Al+p scattering reactions where properties of 27Si levels determine reaction rates. To investigate these properties, elastic and inelastic 26Al+p scattering reactions were measured between Ec.m. = 0.5-1.5 MeV at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). A candidate for a new resonance in the 26Al(p,γ)27Si reaction was identified. Upper limits were also set on the strengths of postulated resonances and on the cross section of the inelastic reaction, but there is little effect on current reaction rate calculations.

  8. Shadowing in deep inelastic muon scattering from nuclear targets

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Brüll, A.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Foster, J.; Ftacnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Geddes, N.; Grafström, P.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kaiser, R.; Kellner, G.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Seidel, A.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; De La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.; European Muon Collaboration

    1988-09-01

    Results are presented on the ratio of the inelastic muon-nucleus cross section per nucleon for carbon and calcium relative to that for deuterium. The measurements were made in the kinematic range of low x (0.003-0.1) and low Q2 (0.3-3.2 GeV 2) at an incident muon energy of 280 GeV. The calcium to deuterium ratio shows a significant x dependence which is interpreted as a shadowing effect. No strong Q2 dependence is observed. This suggests that the effect is due at least partially to parton interactions within the nucleus.

  9. Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory

    SciTech Connect

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.

    2012-11-15

    The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.

  10. Longitudinal Polarization of {lambda} and {lambda}-bar Hyperons in Deep-Inelastic Scattering at COMPASS

    SciTech Connect

    Sapozhnikov, M. G.

    2007-06-13

    The longitudinal polarization of {lambda} and {lambda}-bar hyperons produced in deep-inelastic scattering of 160 GeV/c polarized positive muons is studied in the COMPASS (CERN NA58) experiment. Preliminary results on the longitudinal polarization of {lambda} and {lambda}-bar from data collected during the 2003 run are presented.

  11. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  12. Hot background” of the mobile inelastic neutron scattering system for soil carbon analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The problem of gamma spectrum peaks identification arises when conducting soil carbon (and other elements) analysis using the mobile inelastic neutron scattering (MINS) system. Some gamma spectrum peaks could be associated with radioisotopes appearing due to neutron activation of both the MINS syste...

  13. Magnetic relaxation studies on a single-molecule magnet by time-resolved inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Waldmann, O.; Carver, G.; Dobe, C.; Biner, D.; Sieber, A.; Güdel, H. U.; Mutka, H.; Ollivier, J.; Chakov, N. E.

    2006-01-01

    Time-resolved inelastic neutron scattering measurements on an array of single-crystals of the single-molecule magnet Mn12ac are presented. The data facilitate a spectroscopic investigation of the slow relaxation of the magnetization in this compound in the time domain.

  14. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight per...

  15. 4 f excitations in Ce Kondo lattices studied by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Amorese, A.; Dellea, G.; Fanciulli, M.; Seiro, S.; Geibel, C.; Krellner, C.; Makarova, I. P.; Braicovich, L.; Ghiringhelli, G.; Vyalikh, D. V.; Brookes, N. B.; Kummer, K.

    2016-04-01

    The potential of resonant inelastic soft x-ray scattering to measure 4 f crystal electric-field excitation spectra in Ce Kondo lattices has been examined. Spectra have been obtained for several Ce systems and show a well-defined structure determined by crystal-field, spin-orbit, and charge-transfer excitations only. The spectral shapes of the excitation spectra can be well understood in the framework of atomic multiplet calculations. For CeCu2Si2 we found notable disagreement between the inelastic x-ray-scattering spectra and theoretical calculations when using the crystal-field scheme proposed from inelastic neutron scattering. Modified sets of crystal-field parameters yield better agreement. Our results also show that, with the very recent improvements of soft x-ray spectrometers in resolution to below 30 meV at the Ce M4 ,5 edges, resonant inelastic x-ray scattering could be an ideal tool to determine the crystal-field scheme in Ce Kondo lattices and other rare-earth compounds.

  16. Reply to comment by Thomas on ''On rainbow scattering in inelastic molecular collisions''

    SciTech Connect

    Bowman, J.M.; Lee, K.T.

    1981-02-15

    The comments of Thomas/sup 1/ on the location of rainbows in inelastic molecular scattering of Ref. 2 are discussed and evaluated. It is contended that more insight into the nature of reainbows in rotatinally inelstic collisions is obtained by using the arguments in ref. 2. (AIP)

  17. Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering.

    PubMed

    Casco, M E; Cheng, Y Q; Daemen, L L; Fairen-Jimenez, D; Ramos-Fernández, E V; Ramirez-Cuesta, A J; Silvestre-Albero, J

    2016-03-01

    The gate-opening phenomenon in ZIFs is of paramount importance to understand their behavior in industrial molecular separations. Here we show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N2 pressure. PMID:26845644

  18. Resonances in rotationally inelastic scattering of OH(X2Π) with helium and neon.

    PubMed

    Gubbels, Koos B; Ma, Qianli; Alexander, Millard H; Dagdigian, Paul J; Tanis, Dick; Groenenboom, Gerrit C; van der Avoird, Ad; van de Meerakker, Sebastiaan Y T

    2012-04-14

    We present detailed calculations on resonances in rotationally and spin-orbit inelastic scattering of OH (X(2)Π, j = 3/2, F(1), f) radicals with He and Ne atoms. We calculate new ab initio potential energy surfaces for OH-He, and the cross sections derived from these surfaces compare well with the recent crossed beam scattering experiment of Kirste et al. [Phys. Rev. A 82, 042717 (2010)]. We identify both shape and Feshbach resonances in the integral and differential state-to-state scattering cross sections, and we discuss the prospects for experimentally observing scattering resonances using Stark decelerated beams of OH radicals. PMID:22502519

  19. Resource Letter on Stimulated Inelastic X-ray Scattering at an XFEL

    SciTech Connect

    Patterson, Bruce D.; /SLAC

    2010-09-02

    At sufficient X-ray intensity, stimulated effects in inelastic scattering will become important. These coherent, non-linear optical phenomena may be used to impulsively produce a high degree of collective excitation in, for example, correlated electron materials, suitable for performing ultrafast time-resolved spectroscopy. This Resource Letter collects information on fundamental aspects of stimulated X-ray scattering and evaluates the prospect for successful experiments at a present or future X-ray free electron laser (XFEL) facility.

  20. Inelastic and reactive scattering of hyperthermal atomic oxygen from amorphous carbon

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Brinza, David E.; Liang, Ranty H.

    1991-01-01

    The reaction of hyperthermal oxygen atoms with an amorphous carbon-13 surface was studied using a modified universal crossed molecular beams apparatus. Time-of-flight distributions of inelastically scattered O-atoms and reactively scattered CO-13 and CO2-13 were measured with a rotatable mass spectrometer detector. Two inelastic scattering channels were observed, corresponding to a direct inelastic process in which the scattered O-atoms retain 20 to 30 percent of their initial kinetic energy and to a trapping desorption process whereby O-atoms emerge from the surface at thermal velocities. Reactive scattering data imply the formation of two kinds of CO products, slow products whose translational energies are determined by the surface temperature and hyperthermal (Approx. 3 eV) products with translational energies comprising roughly 30 percent of the total available energy (E sub avl), where E sub avl is the sum of the collision energy and the reaction exothermicity. Angular data show that the hyperthermal CO is scattered preferentially in the specular direction. CO2 product was also observed, but at much lower intensities than CO and with only thermal velocities.

  1. Jet production and fragmentation properties in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftàčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlabböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.

    1987-12-01

    Results are presented from a study of deep inelastic 280 GeV muon-nucleon interactions on the transverse momenta and jet properties of the final state hadrons. The results are analysed in a way which attempts to separate the contributions of hard and soft QCD effects from those that arise from the fragmentation process. The fragmentation models with which the data are compared are the Lund string model, the independent jet model, the QCD parton shower model including soft gluon interference effects, and the firestring model. The discrimination between these models is discussed. Various methods of analysis of the data in terms of hard QCD processes are presented. From a study of the properties of the jet profiles a value of α s , to leading order, is determined using the Lund string model, namely α s =0.29±0.01 (stat.) ±0.02 (syst.), for Q 2˜20 GeV2.

  2. Dynamical regimes on the Cl + H2 collisions: Inelastic rainbow scattering

    NASA Astrophysics Data System (ADS)

    González-Sánchez, L.; Aldegunde, J.; Jambrina, P. G.; Aoiz, F. J.

    2011-08-01

    While Cl + H2 reactive collisions have been a subject of numerous experimental and theoretical studies, inelastic collisions leading to rotational energy transfer and/or vibrational excitation have been largely ignored. In this work, extensive quantum mechanical calculations covering the 0.5-1.5 eV total energy range and various initial rovibrational states have been carried out and used to perform a joint study of inelastic and reactive Cl + H2 collisions. Quasiclassical trajectories calculations complement the quantum mechanical results. The analysis of the inelastic transition probabilities has revealed the existence of two distinct dynamical regimes that correlate with low and high impact parameters, b, and are neatly separated by glory scattering. It has been found that while high-b collisions are mainly responsible for |Δj| = 2 transitions which dominate the inelastic scattering, they are very inefficient in promoting higher |Δj| transitions. The effectiveness of this type of collision also drops with rotational excitation of H2. In contrast, reactive scattering, that competes with |Δ j| > 2 inelastic transitions, is exclusively caused by low-b collisions, and it is greatly favored when the reactants get rotationally excited. Previous studies focusing on the reactivity of the Cl + H2 system established that the van der Waals well located in the entrance channel play a key role in determining the mechanism of the collisions. Our results prove this to be also a case for inelastic processes, where the origin of the double dynamical regime can be traced back to the influence exerted by this well that shapes the topology of the entrance channel of the Cl-H2 system.

  3. Precise QCD Predictions for the Production of Dijet Final States in Deep Inelastic Scattering.

    PubMed

    Currie, James; Gehrmann, Thomas; Niehues, Jan

    2016-07-22

    The production of two-jet final states in deep inelastic scattering is an important QCD precision observable. We compute it for the first time to next-to-next-to-leading order (NNLO) in perturbative QCD. Our calculation is fully differential in the lepton and jet variables and allows one to impose cuts on the jets in both the laboratory and the Breit frame. We observe that the NNLO corrections are moderate in size, except at kinematical edges, and that their inclusion leads to a substantial reduction of the scale variation uncertainty on the predictions. Our results will enable the inclusion of deep inelastic dijet data in precision phenomenology studies. PMID:27494466

  4. Precise QCD Predictions for the Production of Dijet Final States in Deep Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Currie, James; Gehrmann, Thomas; Niehues, Jan

    2016-07-01

    The production of two-jet final states in deep inelastic scattering is an important QCD precision observable. We compute it for the first time to next-to-next-to-leading order (NNLO) in perturbative QCD. Our calculation is fully differential in the lepton and jet variables and allows one to impose cuts on the jets in both the laboratory and the Breit frame. We observe that the NNLO corrections are moderate in size, except at kinematical edges, and that their inclusion leads to a substantial reduction of the scale variation uncertainty on the predictions. Our results will enable the inclusion of deep inelastic dijet data in precision phenomenology studies.

  5. Calculation of inelastic electron-nucleus scattering form factors of 29Si

    NASA Astrophysics Data System (ADS)

    Salman, A. D.; Al-Dahan, N.; Sharrad, F. I.; Hossain, I.

    2014-08-01

    Inelastic electron scattering form factors for 29Si nucleus with total angular momentum and positive parity (Jπ) and excited energy (3/2+, 1.273 MeV; 5/2+, 2.028 MeV; 3/2+, 2.425 MeV and 7/2+, 4.079 MeV) have been calculated using higher energy configurations outside the sd-shell. The calculations of inelastic form factors up to the first- and second-order with and without core-polarization (CP) effects were compared with the available experimental data. The calculations of inelastic electron scattering form factors up to the first-order with CP effects are in agreement with the experimental data, excepted for states 3/2+(1.273 MeV) and 5/2+(2.028 MeV) and without this effect are failed for all states. Furthermore, the calculations of inelastic electron scattering form factors up to the second-order with CP effects are in agreement with the experimental data for 3/2+(1.273 MeV) and 5/2+(2.028 MeV).

  6. Inelastic scattering in atom-diatomic molecule collisions. I - Rotational transitions in the sudden approximation

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The impact parameter method and the sudden approximation are applied to determine the total probability of inelastic rotational transitions arising from a collision of an atom and a homonuclear diatomic molecule at large impact parameters. An analytical approximation to this probability is found for conditions where the electron exchange or overlap forces dominate the scattering. An approximate upper bound to the range of impact parameters for which rotational scattering can be important is determined. In addition, an estimate of the total inelastic cross section is found at conditions for which a statistical model describes the scattering well. The results of this analysis are applied to Ar-O2 collisions and may be readily applied to other combinations of atoms and molecules.

  7. Resonant inelastic contact scattering of X-ray photons on atoms and ions

    NASA Astrophysics Data System (ADS)

    Hopersky, A. N.; Nadolinsky, A. M.; Yavna, V. A.

    2006-10-01

    The existence of an extended resonance structure outside the X-ray emission regions is theoretically predicted in the total double differential cross section for the scattering of linearly polarized photons on free atoms (ions). This structure is almost entirely determined by inelastic photon scattering of the contact type. The amplitude of the inelastic contact scattering probability is described using an analytical expression for a non-relativistic transition operator, which was previously obtained by the author outside the dipole and momentum approximations. The resonant inelastic contact scattering of X-ray photons on a neon atom and neonlike ions of argon, titanium, and iron has been studied. Calculations were performed in a nonrelativistic approximation for the wave functions of the scattering states, with allowance for many-body effects of the radial relaxation of one-electron orbitals in the Hartree-Fock field of a deep 1 s vacancy and (for neon atom) the double excitation/ionization of the ground atomic state.

  8. Study of Low Energy Electron Inelastic Scattering Mechanisms Using Spin Sensitive Techniques

    NASA Astrophysics Data System (ADS)

    Hsu, Hongbing

    1995-01-01

    Spin sensitive electron spectroscopies were used to study low energy electron inelastic scattering from metal surfaces and thin films. In these experiments, a beam of spin polarized electrons from a GaAs source is directed on the sample surface, and the spin polarization and intensity are measured as a function of energy loss and scattering angle by a Mott electron polarimeter coupled with a concentric hemispherical energy analyzer. Systematic studies of the angular dependence of inelastically scattered electrons were conducted on a Cu(100) surface, and Mo/Cu(100), non-magnetized Fe/Cu(100), and Co/Cu(100) films. The polarization and intensity of scattered electrons were measured as function of energy loss and scattering angle. Further studies were also conducted on Ag(100) surface and amorphous Cu/Ag(100) films. From the experimental results, the angular distributions of dipole and impact scattered electrons can be determined individually and both are found to peak in the specular scattering direction. Preliminary studies were conducted on magnetized Co/Cu(100) films. The spin dependent scattering intensity asymmetry was measured, with a clearly observable peak at energy loss of ~1 eV, which coincides with the band splitting. The polarizations of secondary electrons produced by an unpolarized primary beam were also measured. The polarizations can be related to the band polarization of magnetized cobalt films.

  9. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  10. a Unified Approach to Hadron-Hadron Hadron-Nucleus and Nucleus-Nucleus Collisions at High Energy

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Nian

    The problem of multiparticle production in high -energy hadron-hadron, hadron-nucleus and nucleus-nucleus collisions are studied systematically in the framework of the Geometrical Branching Model (GBM). The model is based on the geometrical properties of nucleons and the stochastic nature of the interaction among the soft partons. The eikonal formalism is used to relate the elastic and inelastic cross sections and AGK cutting rule is used in connection with the multiparticle production process. The stochastic process of Furry branching is employed to describe the proliferation and hadronization of partons which lead to the produced particles. The approach describes hh, hA and AA collisions in a unified formalism for c.m. energies less than 100 GeV. The result of multiplicity distribution of produced particles exhibits Koba-Nielsen-Olesen (KNO) scaling. The universality of KNO scaling breaks down due to the different geometrical sizes of the hadron and nuclei. For hA and AA collisions, the formalism of GBM allows the hadron to be broken (to h^') by the first collision; indeed, it is the attention given to h^'h and h ^'h^' collisions that distinguishes this work from other earlier investigations on the subject. All of the calculated results are in good agreement with experiments. A general Monte Carlo simulation of GBM for multiparticle production in hh, hA and AA collisions is also given. The particle productivity in particular is studied in detail and is contrasted from the case where quark-gluon plasma (QGP) is produced in the AA collisions. This work forms a definitive description of hadronic and nuclear collisions that can serve as a basis from which exotic features such as the formation of QGP can be recognized as signatures deviating from the normal background.

  11. Elastic and inelastic scattering of positrons in gases and solids

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. W.

    1972-01-01

    Three apparatuses were designed and built: The first, which is now operative, was designed to study the details of positron thermalization in solids and the subsequent emission of the low energy positrons from moderating foils; The second apparatus now under test is a positron bottle similar in design to an electron trap. It was built to store positrons at a fixed energy and to look at the number of stored positrons (storage time) as a function of a scattering gas in the vacuum chamber. The third apparatus is a crossed beam apparatus where positron-, alkali scattering will be studied. Much of the apparatus is now under test with electrons.

  12. Measurement of high energy resolution inelastic proton scattering at and close to zero degrees

    NASA Astrophysics Data System (ADS)

    Tamii, A.; Fujita, Y.; Matsubara, H.; Adachi, T.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.; Hashimoto, H.; Hatanaka, K.; Itahashi, T.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Ninomiya, S.; Perez-Cerdan, A. B.; Popescu, L.; Rubio, B.; Saito, T.; Sakaguchi, H.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Shimizu, Y.; Smit, F. D.; Tameshige, Y.; Yosoi, M.; Zenhiro, J.

    2009-07-01

    Measurements of inelastic proton scattering with high energy resolution at forward scattering angles including 0∘ are described. High-resolution halo-free beams were accelerated by the cyclotron complex at the Research Center for Nuclear Physics. Instrumental background events were minimized using the high-quality beam. The remaining instrumental background events were eliminated by applying a background subtraction method. As a result, clean spectra were obtained even for a heavy target nucleus such as Pb208. A high energy resolution of 20 keV (FWHM) and a scattering angle resolution of ±0.6∘ were achieved at an incident proton energy of 295 MeV.

  13. A 2 m inelastic x-ray scattering spectrometer at CMC-XOR, Advanced Photon Source.

    SciTech Connect

    Hill, J. P.; Coburn, D. S.; Kim, Y. J.; Gog, T.; Casa, D. M.; Kodituwakku, C. N.; Sinn, H.; X-Ray Science Division; BNL; Univ. of Toronto

    2007-07-01

    The design and commissioning of an inelastic X-ray scattering instrument at CMC-XOR at the Advanced Photon Source is reported. The instrument features a 2 m vertical-scattering arm with a novel counterweight design to reduce the twisting moment as the arm is moved in the scattering plane. A Ge(733) spherical analyzer was fabricated and an overall resolution of 118 meV (FWHM) was obtained with a Si(444) monochromator and a Si(111) pre-monochromator. Early results from a representative cuprate, La{sub 2}CuO{sub 4}, are reported.

  14. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering.

    PubMed

    Gao, Xuan; Casa, Diego; Kim, Jungho; Gog, Thomas; Li, Chengyang; Burns, Clement

    2016-08-01

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals. PMID:27587100

  15. High energy factorization in nucleus-nucleus collisions. II. Multigluon correlations

    SciTech Connect

    Gelis, Francois; Lappi, Tuomas

    2008-09-01

    We extend previous results from the preceding paper on factorization in high energy nucleus-nucleus collisions by computing the inclusive multigluon spectrum to next-to-leading order. The factorization formula is strictly valid for multigluon emission in a slice of rapidity of width {delta}Y{<=}{alpha}{sub s}{sup -1}. Our results shows that often neglected disconnected graphs dominate the inclusive multigluon spectrum, and are crucial in order to achieve factorization for this quantity. These results provide a dynamical framework for the Glasma flux tube picture of the striking ''ridge''-like correlation seen in heavy ion collisions.

  16. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  17. The effect of the relative nuclear size on the nucleus-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Erofeeva, I. N.; Murzin, V. S.; Sivoklokov, S. Y.; Smirnova, L. N.

    1985-01-01

    The experimental data on the interactions of light nuclei (d, He(4), C(12)) at the momentum 4.2 GeV/cA with the carbon nuclei were taken in the 2-m propane bubble chamber. The distributions in the number of interacting nucleons, the spectra of protons, the mean energies of secondary pions and protons, the mean fractions of energy transferred to the pion and nucleon components are presented. The results of the investigation of the mechanism of nucleus-nucleus interactions can be used to calculate the nuclear cascades in the atmosphere.

  18. Nucleus-nucleus interactions between 20 and 65 GeV per nucleon

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Derrickson, J. H.; Fountain, W. F.; Meegan, C. A.; Parnell, T. A.; Roberts, F. E.; Watts, J. W.; Oda, H.; Takahashi, Y.; Jones, W. V.

    1987-01-01

    A hybrid electronic-counter/emulsion-chamber instrument was exposed to high-energy cosmic rays on a balloon. The data on 105 nucleus-nucleus collisions in the energy range 20-65 GeV/nucleon and for incident nuclear charges Zp in the range of 22 to 28 are presented. Inclusive characteristics of particle production on different targets (plastic, emulsion, and lead) are shown and compared with models based on the superposition of nucleon-nucleus interactions. Features of a subset of the more central collisions with a plastic target and some characteristics of individual events with the highest multiplicity of produced particles are described.

  19. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  20. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Jurak, A.; Hayashi, T.; Iwai, J.; Jones, W. V.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  1. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program.

  2. CT14QED parton distribution functions from isolated photon production in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl; Pumplin, Jon; Stump, Daniel; Yuan, C.-P.

    2016-06-01

    We describe the implementation of quantum electrodynamic (QED) evolution at leading order (LO) along with quantum chromodynamic (QCD) evolution at next-to-leading order (NLO) in the CTEQ-TEA global analysis package. The inelastic contribution to the photon parton distribution function (PDF) is described by a two-parameter ansatz, coming from radiation off the valence quarks, and based on the CT14 NLO PDFs. Setting the two parameters to be equal allows us to completely specify the inelastic photon PDF in terms of the inelastic momentum fraction carried by the photon, p0γ, at the initial scale Q0=1.295 GeV . We obtain constraints on the photon PDF by comparing with ZEUS data [S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 687, 16 (2010)] on the production of isolated photons in deep inelastic scattering, e p →e γ +X . For this comparison we present a new perturbative calculation of the process that consistently combines the photon-initiated contribution with the quark-initiated contribution. Comparison with the data allows us to put a constraint at the 90% confidence level of p0γ≲0.14 % for the inelastic photon PDF at the initial scale of Q0=1.295 GeV in the one-parameter radiative ansatz. The resulting inelastic CT14QED PDFs will be made available to the public. In addition, we also provide CT14QEDinc PDFs, in which the inclusive photon PDF at the scale Q0 is defined by the sum of the inelastic photon PDF and the elastic photon distribution obtained from the equivalent photon approximation.

  3. Phase interference and sub-femtosecond time dynamics of resonant inelastic X-ray scattering from Mott insulators

    NASA Astrophysics Data System (ADS)

    Wray, L. Andrew; Huang, Shih-Wen; Xia, Yuqi; Hasan, M. Zahid; Mathy, Charles; Eisaki, Hiroshi; Hussain, Zahid; Chuang, Yi-De

    2014-03-01

    Resonant inelastic X-ray scattering (RIXS) is a powerful technique for observing the energy states of many-body quantum materials. The core hole resonance states that make RIXS possible are strongly correlated, and undergo complex time evolution that shapes scattering spectra. However, current inelastic scattering measurements cannot be converted to a time resolved picture, because techniques that determine relative phase information from elastic scattering have not been adapted to the greater complexity of inelastic spectra. We will show that inelastic scattering phases can be identified from quantum interference in sharply resolved (dE < 35meV) M-edge RIXS spectra of Mott insulators (e.g. SrCuO2 and NiO), and provide new information for identifying excitation symmetries and many-body time dynamics.

  4. State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms.

    PubMed

    Scharfenberg, Ludwig; Kłos, Jacek; Dagdigian, Paul J; Alexander, Millard H; Meijer, Gerard; van de Meerakker, Sebastiaan Y T

    2010-09-28

    The Stark deceleration method exploits the concepts of charged particle accelerator physics to produce molecular beams with a tunable velocity. These tamed molecular beams offer interesting perspectives for precise crossed beam scattering studies as a function of the collision energy. The method has advanced sufficiently to compete with state-of-the-art beam methods that are used for scattering studies throughout. This is demonstrated here for the scattering of OH radicals (X(2)Pi(3/2), J = 3/2, f) with Ar atoms, a benchmark system for the scattering of open-shell molecules with atoms. Parity-resolved integral state-to-state inelastic scattering cross sections are measured at collision energies between 80 and 800 cm(-1). The threshold behavior and collision energy dependence of 13 inelastic scattering channels is accurately determined. Excellent agreement is obtained with the cross sections predicted by close-coupling scattering calculations based on the most accurate ab initio OH + Ar potential energy surfaces to date. PMID:20657906

  5. Rotationally Inelastic Scattering of Quantum-State-Selected ND3 with Ar.

    PubMed

    Tkáč, Ondřej; Saha, Ashim K; Loreau, Jérôme; Parker, David H; van der Avoird, Ad; Orr-Ewing, Andrew J

    2015-06-11

    Rotationally inelastic scattering of ND3 with Ar is studied at mean collision energies of 410 and 310 cm(–1). In the experimental component of the study, ND3 molecules are prepared by supersonic expansion and subsequent hexapole state selection in the ground electronic and vibrational levels and in the jk(±) = 1(1) rotational level. A beam of state-selected ND3 molecules is crossed with a beam of Ar, and scattered ND3 molecules are detected in single final j′k′(±) quantum states using resonance enhanced multiphoton ionization spectroscopy. State-to-state differential cross sections for rotational-level changing collisions are obtained by velocity map imaging. The experimental measurements are compared with close-coupling quantum-mechanical scattering calculations performed using an ab initio potential energy surface. The computed DCSs agree well with the experimental measurements, confirming the high quality of the potential energy surface. The angular distributions are dominated by forward scattering for all measured final rotational and vibrational inversion symmetry states. This outcome is in contrast to our recent results for inelastic scattering of ND3 with He, where we observed significant amount of sideways and backward scattering for some final rotational levels of ND3. The differences between He and Ar collision partners are explained by differences in the potential energy surfaces that govern the scattering dynamics. PMID:25532415

  6. Applicability of fluid-dynamical modeling of nucleus-nucleus collisions at relativistic energies

    NASA Astrophysics Data System (ADS)

    Hazineh, Dean; Auvinen, Jussi; Nahrgang, Marlene; Bass, Steffen

    2015-10-01

    At sufficiently high temperatures and densities, similar to the conditions found in the early universe, QCD matter forms a deconfined state called the quark gluon plasma (QGP). This state of matter can be created in collisions of ultra-relativistic heavy-ions, and RHIC data suggests that this QGP behaves similar to an ideal fluid. Viscous relativistic fluid dynamics therefore is one of the preferred theoretical tools to model the time-evolution and properties of the QGP. As the collision energy or the system size is decreased, the range of applicability of viscous fluid dynamics becomes smaller as the length scale of the interaction among the basic constituents is similar to the overall scale of the collision system itself. In order to investigate the validity of fluid-dynamical modeling of proton-nucleus and nucleus-nucleus collisions at LHC and RHIC, we conduct an analysis of the spatial and temporal evolution of the Knudsen number, i.e. the ratio of the microscopic mean free path to the macroscopic length scale of the system. We show results for large and small collision systems, as a function of the specific shear viscosity, and discuss the range of applicability of fluid-dynamical modeling in relativistic proton-nucleus and nucleus-nucleus collisions at different energies.

  7. Self-dynamics of hydrogen gas as probed by means of inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Guarini, Eleonora; Orecchini, Andrea; Formisano, Ferdinando; Demmel, Franz; Petrillo, Caterina; Sacchetti, Francesco; Bafile, Ubaldo; Barocchi, Fabrizio

    2005-12-01

    The neutron double-differential cross-section of molecular hydrogen at low density has been measured at two rather low scattering angles and different final neutron energies by means of three-axis spectrometry. This first inelastic scattering determination of the single-particle roto-translational dynamics of room temperature H2 allows for a detailed test of the theoretical modelling of the spectral line-shapes of such a fundamental molecule, performed by referring both to a careful quantum-mechanical treatment and to a simpler semi-classical approximation. A comprehensive report on the neutron measurements and data analysis is presented, along with an overview of the theories used for comparison with the experimental results. An encouraging picture of the present capabilities in the calculation of the true dynamic response of hydrogen gas to slow and thermal neutrons is obtained, opening new perspectives for accurate data calibration in inelastic neutron spectroscopy, with special relevance for small-angle experiments.

  8. D^* production in deep-inelastic scattering at low Q^2

    SciTech Connect

    Jung, Andreas W.; /Fermilab

    2011-07-01

    Inclusive production of D* mesons in deep-inelastic scattering at HERA is studied in the range 5 < Q{sup 2} < 100 GeV{sup 2} of the photon virtuality and 0.02 < y < 0.70 of the inelasticity of the scattering process. The visible range for the D* meson is p{sub T} (D*) > 1.25 GeV and |{eta}(D*)| < 1.8. The data were taken with the H1 detector in the years 2004 to 2007 and correspond to an integrated luminosity of 347 pb{sup -1}. Single and double differential cross sections are measured. The results are compared to QCD predictions.

  9. Highly efficient beamline and spectrometer for inelastic soft X-ray scattering at high resolution.

    PubMed

    Lai, C H; Fung, H S; Wu, W B; Huang, H Y; Fu, H W; Lin, S W; Huang, S W; Chiu, C C; Wang, D J; Huang, L J; Tseng, T C; Chung, S C; Chen, C T; Huang, D J

    2014-03-01

    The design, construction and commissioning of a beamline and spectrometer for inelastic soft X-ray scattering at high resolution in a highly efficient system are presented. Based on the energy-compensation principle of grating dispersion, the design of the monochromator-spectrometer system greatly enhances the efficiency of measurement of inelastic soft X-rays scattering. Comprising two bendable gratings, the set-up effectively diminishes the defocus and coma aberrations. At commissioning, this system showed results of spin-flip, d-d and charge-transfer excitations of NiO. These results are consistent with published results but exhibit improved spectral resolution and increased efficiency of measurement. The best energy resolution of the set-up in terms of full width at half-maximum is 108 meV at an incident photon energy tuned about the Ni L3-edge. PMID:24562553

  10. Two Photon Exchange in Quasi-elastic and Deep-inelastic Scattering

    SciTech Connect

    Averett, Todd D.; Katich, Joseph; Zhao Bo

    2011-10-24

    In this paper, I present an overview and preliminary results from three experiments at Jefferson Lab that were recently completed using a {sup 3}He gas target with polarization oriented normal to the scattering plane of unpolarized incident electrons. A target single spin asymmetry was formed by periodically flipping the direction of the target spin. In the reaction {up_arrow}{sup 3}He(e,e'), the Born contribution is expected to be zero, giving direct sensitivity to two photon exchange. This asymmetry was measured in the quasi-elastic and deep-inelastic regimes with 0.1 < Q{sup 2} < 1.0 GeV{sup 2}. The asymmetry is predicted to decrease by two-orders of magnitude for deep-inelastic versus quasi-elastic scattering. Preliminary results from these experiments will be presented.

  11. Perturbative QCD effects observed in 490 GeV deep-inelastic muon scattering

    SciTech Connect

    Adams, M.R.; Aied, S.; Anthony, P.L.; Baker, M.D.; Bartlett, J.; Bhatti, A.A.; Braun, H.M.; Busza, W.; Conrad, J.M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S.K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H.J.; Geesaman, D.F.; Gilman, R.; Green, M.C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V.W.; Jackson, H.E.; Jaffe, D.E.; Jancso, G.; Jansen, D.M.; Kaufman, S.; Kennedy, R.D.; Kirk, T.; Kobrak, H.G.E.; Krzywdzinski, S.; Kunori, S.; Lord, J.J.; Lubatti, H.J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D.G.; Mohr, W.; Montgomery, H.E.; Morfin, J.G.; Nickerson, R.B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F.M.; Ramberg, E.J.; Roeser, A.; Ryan, J.J.; Salgado, C.W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schueler, K.P.; Skuja, A.; Snow, G.A.; Soeldner-Rembold, S.; Steinberg, P.H.; Stier, H.E.; Stopa, P.; Swanso

    1993-12-01

    Results on forward charged hadrons in 490 GeV deep-inelastic muon scattering are presented. The transverse momenta, azimuthal asymmetry, and energy flow of events with four or more forward charged hadrons are studied. The range of the invariant hadronic mass squared 300[lt][ital W][sup 2][lt]900 GeV[sup 2]/[ital c][sup 4] extends higher than previous deep-inelastic muon scattering experiments. Data are compared to the predictions of the Lund Monte Carlo model with perturbative QCD simulated by matrix elements, parton showers, and color dipole radiation. All of the QCD-based models are consistent with the data while a model without QCD processes is not. Correlations with the multiplicity-independent event variable [Pi][congruent][summation][vert bar][ital p][sub [ital T

  12. Producing a compound Nucleus via Inelastic Scattering: The 90Zr(alpha,alpha')90Zr* Case

    SciTech Connect

    Escher, J E; Dietrich, F S

    2008-05-23

    In a Surrogate reaction a compound nucleus is produced via a direct reaction (pickup, stripping, or inelastic scattering). For a proper application of the Surrogate approach it is necessary to predict the resulting angular momentum and parity distribution in the compound nucleus. A model for determining these distributions is developed for the case of inelastic alpha scattering off a spherical nucleus. The focus is on obtaining a first, simple description of the direct-reaction process that produces the compound nucleus and on providing the basis for a more complete treatment of the problem. The approximations employed in the present description are discussed and the extensions required for a more rigorous treatment of the problem are outlined. To illustrate the formalism, an application to {sup 90}Zr({alpha},{alpha}{prime}){sup 90}Zr* is presented.

  13. Inelastic scattering of 72,74Ni off a proton target

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Doornenbal, P.; Obertelli, A.; Pietralla, N.; Werner, V.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Louchart, C.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Niikura, M.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Zs; Franchoo, S.; Giacoppo, F.; Gottardo, A.; Hadynska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Olivier, L.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C. M.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Vajta, Zs; Wu, J.; Xu, Z.

    2016-06-01

    Inelastic scattering of 72,74Ni off a proton target was performed at RIBF, RIKEN, Japan. The isotopes were produced by the fission of 238U on a thick Beryllium target and were then selected and identified on an event-by-event basis using the BigRIPS separator. Selected isotopes were focused onto the liquid hydrogen target of the MINOS device and gamma rays from the reactions were measured with the DALI2 array. The energy of the ions in the middle of the target was 213 MeV/u. Outgoing particles were identified using the ZeroDegree spectrometer. Here, we report on the current status of the data analysis and preliminary results for the proton inelastic scattering cross sections for both isotopes.

  14. Deep Inelastic Scattering from the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Taliotis, Anastasios

    2009-11-01

    We calculate [J.L. Albacete, Y.V. Kovchegov, and A. Taliotis, JHEP07, 074 (2008), 0806.1484] the cross section of an ultra relativistic nucleus scattering on a qq OverBar pair at large coupling in N=4 SUSY gauge theory. We study the problem in the context of the AdS/CFT correspondence [J.M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231-252]. The nucleus is modeled as a gravitational shockwave in an AdS5 background moving along the light cone. The dipole (qq OverBar) is represented by a Wilson loop moving in the opposite direction. Due to the correspondence, calculating the scattering amplitude of the Wilson loop with the nucleus, reduces to calculating the extreme value of the Nambu-Goto action for an open string. Its two end points are attached to the qq OverBar respectively and it hangs in an AdS5 shockwave spacetime. Six solutions are found two of which are physically meaningful. Both solutions predict that the saturation scale Q at high enough energies becomes energy independent; in particular it behaves as Q∝A1 where A is the atomic number. One solution predicts pomeron intercept α=2 and agrees with [R.C. Brower, J. Polchinski, M.J. Strassler, and C.-I. Tan, JHEP12 (2007) 005, [hep-th/0603115

  15. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect

    Niedziela, Jennifer L; Stone, Matthew B

    2014-01-01

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  16. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect

    Niedziela, J. L.; Stone, M. B.

    2014-09-08

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80 K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  17. Toward a QCD analysis of jet rates in deep-inelastic Muon-Proton scattering

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-08-01

    Measurements of multi-jet production rates in deep-inelastic Muon-Proton scattering at Fermilab-E665 are presented. Jet rates defined by the JADE clustering algorithm are compared to perturbative Quantum chromodynamics (PQCD) and different Monte Carlo model predictions. The applicability of the jet-parton duality hypothesis is studied. We obtain hadronic jet rates which are approximately a factor of two higher than PQCD predictions at the parton level. Possible causes for this discrepancy are discussed.

  18. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W. )

    1992-02-01

    Measurements of forward multi-jet production rates in deep-inelastic muon-proton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, [ital y][sub [ital cut

  19. Differences between the deformed-potential and folding-model descriptions of inelastic nuclear scattering

    SciTech Connect

    Hnizdo, V. )

    1994-08-01

    The differences between the deformed-potential and folding-model descriptions of inelastic nuclear scattering, attention to which has been called recently by Beene, Horen, and Satchler [Phys. Rev. C 48, 3128 (1993)], were pointed out already some time ago by contrasting the rules of equal deformation lengths and equal normalized multipole moments for the optical potential and the underlying nucleon distribution of the excited nucleus.

  20. Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.

    1992-10-01

    A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.

  1. Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA

    SciTech Connect

    Polifka, Richard

    2015-04-10

    The QCD factorization theorem in diffraction is tested by comparing diffractive jet production data to QCD predictions based on fits to inclusive diffractive cross section data. H1 measured dijet production with a leading proton detected in the Very Forward Proton Spectrometer (VFPS), both in deep-inelastic scattering and in photoproduction. The DIS measurements are complemented by measurements of dijet production with an associated rapidity gap and in a data sample selected with a leading proton in the Forward Proton Spectrometer (FPS)

  2. Shadowing in the muon-xenon inelastic scattering cross section at 490 GeV

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Fang, G.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Vidal, M.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.; Fermilab E665 Collaboration

    1992-08-01

    Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for xBj> s.001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with xBj, with a depletion in the kinematic range 0.001 < xBj < 0.025 which exhibits no significant Q2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.

  3. Measurements of transverse momentum in semi-inclusive deep-inelastic scattering at CLAS

    SciTech Connect

    K.A. Griffioen

    2012-12-01

    With mounting experimental evidence that only a small fraction of the proton's spin comes from the spins of its quarks and gluons, the quest for orbital angular momentum has begun. The parton distributions relevant to this depend on transverse quark momenta. Recent CLAS semi-inclusive deep-inelastic scattering measurements probe these new transverse-momentum-dependent parton distributions using longitudinally polarized beams and targets and detecting {pi}{sup +},{pi}{sup -} and {pi}{sup 0} in the final state.

  4. "Hot background" of the mobile inelastic neutron scattering system for soil carbon analysis.

    PubMed

    Kavetskiy, Aleksandr; Yakubova, Galina; Prior, Stephen A; Torbert, H Allen

    2016-01-01

    The problem of gamma spectrum peak identification arises when conducting soil carbon analysis using the inelastic neutron scattering (INS) system. Some spectral peaks could be associated with radioisotopes appearing due to neutron activation of both the measurement system and soil samples. The investigation of "hot background" gamma spectra from the construction materials, whole measurement system, and soil samples over time showed that activation of (28)Al isotope can contribute noticeable additions to the soil neutron stimulated gamma spectra. PMID:26595773

  5. Inelastic He-atom scattering from the MgO(001) surface

    NASA Astrophysics Data System (ADS)

    Cui, Jinhe; Jung, David R.; Frankl, Daniel R.

    1990-11-01

    Dispersion curves of Rayleigh phonons on an in situ cleaved, room-temperature surface of MgO(001) are determined by time-of-flight measurements of inelastically scattered He atoms. Along both the Γ¯ X¯ and Γ¯ M¯ directions, the measured phonon frequencies agree fairly well with a shell-model calculation for an unrelaxed MgO(001) surface.

  6. Analysis of inelastic neutron scattering spectra from a time-of-flight spectrometer with filter detector

    SciTech Connect

    Vorderwisch, P.; Mezei, F.; Eckert, J.; Goldstone, J.A.

    1986-01-01

    Inelastic neutron scattering spectra obtained from time-of-flight spectrometers with filter detector suffer in energy resolution from a long time-of-flight tail in the filter response function. A mathematical method is described which removes this tail in measured spectra. The energy resolution can thereby be adapted for each part of the spectrum. Applications of the method to data taken at the LANSCE pulsed spallation source are presented.

  7. Inelastic neutron scattering investigation of crystal-field splittings in UBr 3

    NASA Astrophysics Data System (ADS)

    Murasik, A.; Furrer, A.

    1980-10-01

    An inelastic neutron scattering technique was used to measure the crystal-field splittings in UBr 3 at various temperatures and momentum transfers. In the interpretation of the observed energy spectra it turns out that the Russell-Saunders coupling scheme is a reasonable approximation. The crystal-field level scheme could be unambiguously assigned. The detailed nature of the crystal-field transition from the ground state to the first-excited state is not yet fully understood.

  8. High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science

    PubMed Central

    Shvyd’ko, Yuri; Stoupin, Stanislav; Shu, Deming; Collins, Stephen P.; Mundboth, Kiran; Sutter, John; Tolkiehn, Martin

    2014-01-01

    Photon and neutron inelastic scattering spectrometers are microscopes for imaging condensed matter dynamics on very small length and time scales. Inelastic X-ray scattering permitted the first quantitative studies of picosecond nanoscale dynamics in disordered systems almost 20 years ago. However, the nature of the liquid-glass transition still remains one of the great unsolved problems in condensed matter physics. It calls for studies at hitherto inaccessible time and length scales, and therefore for substantial improvements in the spectral and momentum resolution of the inelastic X-ray scattering spectrometers along with a major enhancement in spectral contrast. Here we report a conceptually new spectrometer featuring a spectral resolution function with steep, almost Gaussian tails, sub-meV (≃620 μeV) bandwidth and improved momentum resolution. The spectrometer opens up uncharted space on the dynamics landscape. New results are presented on the dynamics of liquid glycerol, in the regime that has become accessible with the novel spectrometer. PMID:24953338

  9. Differential Cross Sections for Neutron Elastic and Inelastic Scattering on 23Na

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Chakraborty, A.; Champine, B. R.; Combs, B.; Crider, B. P.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Sidwell, L.; Sigillito, A.; Watts, D. W.; Yates, S. W.

    2014-03-01

    Measurements of neutron elastic and inelastic scattering from 23Na have been performed for sixteen incident neutron energies above 1.5 MeV with the 7-MV University of Kentucky Accelerator using the 3H(p,n) reaction as the neutron source. These measurements were complemented by γ-ray excitation functions using the (n,n'γ) reaction. The time-of-flight technique is employed for background reduction in both neutron and γ- ray measurements and for determining the energy of the scattered neutrons. Cross section determinations support fuel cycle and structural materials research and development. Previous reaction model evaluations [1] relied primarily on total cross sections and four (n,n0) and (n,n1) angular distributions in the En = 5 to 9 MeV range. The inclusion of more inelastic channels at lower neutron energies provides additional information on direct couplings between elastic and inelastic scattering as a function of angular momentum transfer. Reaction model calculations examining direct collective and statistical properties were performed.

  10. Inelastic scattering in the trajectory approximation and its improvements

    NASA Astrophysics Data System (ADS)

    Himes, D.; Celli, V.

    We analyze several versions of the trajectory approximation for He scattering from non-corrugated surfaces. We find that under typical conditions used in the study of simple metal surfaces all the formulations we consider lead to similar results. However, the exponentiated DWBA and various eikonal approximations correctly predict a shift of the average energy transfer with surface temperature, while the simple specular TA does not. We obtain a modified Brako-Newns formula for the energy and momentum distribution in the classical limit. We report calculations carried out for Pt(111) and Cu(111) under conditions of experimental interest and we discuss the importance of multiphonon processes and the contribution of various surface correlation functions.

  11. Inelastic cross sections for positron scattering from atomic hydrogen

    SciTech Connect

    Weber, M.; Hofmann, A.; Raith, W.; Sperber, W.; Jacobsen, F.; Lynn, K.G.

    1994-12-31

    Positronium formation (Ps) cross sections for positrons impinging on atomic hydrogen were measured in the impact energy range from 13eV to 255eV at the High Intensity Positron (HIP) beam at Brookhaven National Laboratory (BNL). The Ps-formation cross section was found to rise rapidly from the threshold at 6.8eV to a maximum value of (2.98 {plus_minus} 0.18) {times} 10{sup {minus}16} cm{sup 2} for {approx} 15eV positrons. By 75eV it drops below the detection limit of 0.17 {times} 10{sup {minus}16} cm{sup 2} which is the present level of statistical uncertainty. The experiment was modified to enable the measurement of doubly differential scattering cross sections.

  12. Inelastic microwave photon scattering off a quantum impurity in a Josephson-junction array.

    PubMed

    Goldstein, Moshe; Devoret, Michel H; Houzet, Manuel; Glazman, Leonid I

    2013-01-01

    Quantum fluctuations in an anharmonic superconducting circuit enable frequency conversion of individual incoming photons. This effect, linear in the photon beam intensity, leads to ramifications for the standard input-output circuit theory. We consider an extreme case of anharmonicity in which photons scatter off a small set of weak links within a Josephson junction array. We show that this quantum impurity displays Kondo physics and evaluate the elastic and inelastic photon scattering cross sections. These cross sections reveal many-body properties of the Kondo problem that are hard to access in its traditional fermionic version. PMID:23383827

  13. Systematic failure of static nucleus-nucleus potential to explore sub-barrier fusion dynamics

    NASA Astrophysics Data System (ADS)

    Singh Gautam, Manjeet

    2015-05-01

    This paper addresses the validity of the static Woods-Saxon potential and the energy dependent Woods-Saxon potential (EDWSP) for description of sub-barrier fusion dynamics. The low lying surface vibrations of colliding nuclei and neutron transfer channels are found to be major factors responsible for fusion enhancement at sub-barrier energies. Theoretical calculations based upon the static Woods-Saxon potential obtained using the one-dimensional Wong formula fail to explain the energy dependence of the sub-barrier fusion cross-section of {}2040C{}{}a+{}2246,48,50T{}{}i systems. The role of inelastic surface vibrations is properly entertained within the context of coupled channel calculations performed using the CCFULL code. However, the EDWSP model, in conjunction with the one-dimensional Wong formula, accurately explains the sub-barrier fusion enhancement of {}2040C{}{}a+{}2246,48,50T{}{}i systems and simulates the influence of nuclear structure degrees of freedom, such as the inelastic surface vibrational states of colliding pairs. In EDWSP model calculations, a wide range of diffuseness parameters, ranging from a=0.96 fm to a=0.85 fm, which is much larger than a value ≤ft( a=0.65 fm \\right) extracted from the elastic scattering data, is required to bring the observed fusion enhancement.

  14. Elastic and inelastic scattering of 15N ions by 9Be at 84 MeV

    NASA Astrophysics Data System (ADS)

    Rudchik, A. T.; Chercas, K. A.; Kemper, K. W.; Rusek, K.; Rudchik, A. A.; Herashchenko, O. V.; Koshchy, E. I.; Pirnak, Val. M.; Piasecki, E.; Trzcińska, A.; Sakuta, S. B.; Siudak, R.; Strojek, I.; Stolarz, A.; Ilyin, A. P.; Ponkratenko, O. A.; Stepanenko, Yu. M.; Shyrma, Yu. O.; Szczurek, A.; Uleshchenko, V. V.

    2016-03-01

    Angular distributions of the 9Be + 15N elastic and inelastic scattering were measured at Elab(15N) = 84 MeV (Ec.m. = 31.5 MeV) for the 0-6.76 MeV states of 9Be and 0-6.32 MeV states of 15N. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of 9Be in ground and excited states and 15N in excited states as well as the most important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of the 9Be + 15N optical potential of Woods-Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the 9Be + 15N pure potential elastic scattering dominates at the forward angles whereas the ground state spin reorientation of 9Be gives a major contribution to the elastic scattering cross sections at the large angles. Contributions from particle transfers are found to be negligible for the present scattering system.

  15. Study of the soft dipole modes in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Ciemała, M.; Fornal, B.; Grȩbosz, J.; Mazurek, K.; Mȩczyński, W.; Ziȩbliński, M.; Crespi, F. C. L.; Bracco, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; De Angelis, G.; Napoli, D. R.; Valiente-Dobon, J. J.; Bazzacco, D.; Farnea, E.; Gottardo, A.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Recchia, F.; Ur, C.; Gadea, A.; Huyuk, T.; Barrientos, D.; Birkenbach, B.; Geibel, K.; Hess, H.; Reiter, P.; Steinbach, T.; Wiens, A.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Siem, S.

    2014-05-01

    The main aim of this study was a deeper understanding of the nuclear structure properties of the soft dipole modes in 140Ce, excited via inelastic scattering of weakly bound 17O projectiles. An important aim was to investigate the ‘splitting’ of the PDR into two parts: a low-energy isoscalar component dominated by neutron-skin oscillations and a higher-energy component lying on the tail of the giant dipole resonance of a rather isovector character. This was already observed for this nucleus, investigated in (α, α‧) and (γ, γ‧) experiments. The experiment was performed at Laboratori Nazionali di Legnaro, Italy. Inelastic scattering of 17O ion beam at 20 MeV A-1 was used to excite the resonance modes in the 140Ce target. Gamma-rays were registered by five triple clusters of AGATA-Demonstrator and nine large volume scintillators (LaBr3). The scattered 17O ions were identified by two ΔE - E Si telescopes of the TRACE array mounted inside the scattering chamber. The telescopes consisted of two segmented Si-pad detectors, each of 60 pixels. Very preliminary data have shown a strong domination of the E1 transitions in the ‘pygmy’ region with a character more similar to the one obtained in alpha scattering experiment.

  16. [Inelastic electron scattering from surfaces]. [Annual] progress report

    SciTech Connect

    Not Available

    1993-10-01

    This program is aimed at the quantitative study of surface dynamical processes (vibrational, magnetic excitations) in crystalline slabs, ultrathin-layered materials, and chemisorbed systems on substrates, and of the geometric structure connected to these dynamical excitations. High-resolution electron-energy loss spectroscopy (HREELS) is a powerful probe. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50-300 eV). The analyses has been used to study surfaces of ordered alloys (NiAl). Ab-initio surface lattice dynamical results were combined with phonon-loss cross sections to achieve a more accurate microscopic description. First-principles phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross-section calculations. The combined microscopic approach was used to analyze EELS data of Cu(0001) and Ag(001) at two points. Positron diffraction is discussed as a structural and imaging tool. The relation between geometric structure of a film and its local magnetic properties will be studied in the future, along with other things.

  17. Neutron Elastic and Inelastic Scattering Cross Sections on ^NatFe and ^23Na

    NASA Astrophysics Data System (ADS)

    Kersting, Luke; Lueck, Collin J.; Hicks, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Vanhoy, J. R.

    2010-10-01

    Neutron elastic and inelastic scattering angular distributions from ^NatFe and ^23Na at incident neutron energies of 3.57 and 3.81 MeV have been measured at the University of Kentucky 7 MV Van de Graaff laboratory using neutron time-of-flight techniques. The neutron beam was produced using the ^3H(p,n)He^3reaction. The scattered neutrons were detected at angles between 20 and 150 in 10 intervals with a hexafluorbenzene detector located approximately 3 m from the scattering samples. Neutron scattering differential cross sections were deduced. These cross sections and their uncertainties are important for understanding neutron-induced reactions in fission reactors and are important for fission reactor criticality calculations.

  18. Development of a graphite polarization analyzer for resonant inelastic x-ray scattering

    SciTech Connect

    Gao Xuan; Burns, Clement; Li Chengyang; Casa, Diego; Upton, Mary; Gog, Thomas; Kim, Jungho

    2011-11-15

    Resonant inelastic x-ray scattering (RIXS) is a powerful technique for studying electronic excitations in correlated electron systems. Current RIXS spectrometers measure the changes in energy and momentum of the photons scattered by the sample. A powerful extension of the RIXS technique is the measurement of the polarization state of the scattered photons which contains information about the symmetry of the excitations. This long-desired addition has been elusive because of significant technical challenges. This paper reports the development of a new diffraction-based polarization analyzer which discriminates between linear polarization components of the scattered photons. The double concave surface of the polarization analyzer was designed as a good compromise between energy resolution and throughput. Such a device was fabricated using highly oriented pyrolytic graphite for measurements at the Cu K-edge incident energy. Preliminary measurements on a CuGeO{sub 3} sample are presented.

  19. Inelastic electron tunneling spectrum from surface magnon and magnetic impurity scatterings in magnetic tunnel junctions

    SciTech Connect

    Wei, H. X.; Qin, Q. H.; Ma, Q. L.; Zhang, Xiaoguang; Han, Prof. X. F.

    2010-01-01

    Analytic expressions for contributions to the inelastic electron tunneling spectrum (IETS) from surface magnon scattering and magnetic impurity scattering are obtained. It is shown that surface magnon scattering alone does not lead to peaks in the IETS. The peaks at small bias often observed in the IETS of magnetic junctions are due to magnetic impurity scattering, in agreement with the traditional model for zero bias anomaly. These impurity resonance peaks can sometimes split due to the impurities' magnetic coupling to the electrodes. Measurements of AlO and MgO barrier junctions yield excellent agreement to the theory. The experiment further shows that the magnetic impurities in MgO barriers are strongly coupled to the electrodes but those in AlO barriers are not magnetically coupled to the electrodes.

  20. Pygmy dipole resonance in 124Sn populated by inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Crespi, F. C. L.; Leoni, S.; Camera, F.; Lanza, E. G.; Kmiecik, M.; Maj, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Nicolini, R.; Vandone, V.; Wieland, O.; Bazzacco, D.; Bednarczyk, P.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Cederwall, B.; Charles, L.; Ciemala, M.; De Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Gernhäuser, R.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocrate, R.; Jolie, J.; Judson, D.; Jungclaus, A.; Karkour, N.; Krzysiek, M.; Litvinova, E.; Lunardi, S.; Mazurek, K.; Mengoni, D.; Michelagnoli, C.; Menegazzo, R.; Molini, P.; Napoli, D. R.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente Dobon, J. J.; Zieblinski, M.

    2014-11-01

    The γ decay from the high-lying states of 124Sn was measured using the inelastic scattering of 17O at 340 MeV. The emitted γ rays were detected with high resolution with the AGATA demonstrator array and the scattered ions were detected in two segmented ΔE- E silicon telescopes. The angular distribution was measured both for the γ rays and the scattered 17O ions. An accumulation of E1 strength below the particle threshold was found and compared with previous data obtained with (γ ,γ‧) and (α ,α‧ γ) reactions. The present results of elastic scattering, and excitation of E2 and E1 states were analysed using the DWBA approach. From this comprehensive description the isoscalar component of the 1- excited states was extracted. The obtained values are based on the comparison of the data with DWBA calculations including a form factor deduced using a microscopic transition density.

  1. Recent Advances in Development and Applications of the Mixed Quantum/Classical Theory for Inelastic Scattering.

    PubMed

    Babikov, Dmitri; Semenov, Alexander

    2016-01-28

    A mixed quantum/classical approach to inelastic scattering (MQCT) is developed in which the relative motion of two collision partners is treated classically, and the rotational and vibrational motion of each molecule is treated quantum mechanically. The cases of molecule + atom and molecule + molecule are considered including diatomics, symmetric-top rotors, and asymmetric-top rotor molecules. Phase information is taken into consideration, permitting calculations of elastic and inelastic, total and differential cross sections for excitation and quenching. The method is numerically efficient and intrinsically parallel. The scaling law of MQCT is favorable, which enables calculations at high collision energies and for complicated molecules. Benchmark studies are carried out for several quite different molecular systems (N2 + Na, H2 + He, CO + He, CH3 + He, H2O + He, HCOOCH3 + He, and H2 + N2) in a broad range of collision energies, which demonstrates that MQCT is a viable approach to inelastic scattering. At higher collision energies it can confidently replace the computationally expensive full-quantum calculations. At low collision energies and for low-mass systems results of MQCT are less accurate but are still reasonable. A proposal is made for blending MQCT calculations at higher energies with full-quantum calculations at low energies. PMID:26618533

  2. Nonmonotonic Target Excitation Dependence of Pion Clans in Relativistic Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipak; Deb, Argha; Dutta, Srimonti

    Target excitation dependence of fluctuation of produced pions (i.e. classifying data of the fluctuation pattern on pions on the basis of the number of gray tracks) is studied for nucleus-nucleus collisions at different projectile energies. In each set the experimental multiplicity distribution is compared with the negative binomial distribution (NBD), which is found to describe the experimental distribution quite well. Target excitation dependence is studied in respect of the clan model parameters bar {n}c and bar {N}, which are extracted from the NBD fit parameters bar {n} and k. A detailed comparison between different interactions at the same energy and the same interactions at different energies is also drawn. A nonmonotonic dependence of D2/bar {n} on is revealed, which is also a characteristic of multiplicity fluctuations at RHIC data.

  3. Recent developments in the study of deconfinement in nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2014-05-01

    Deconfinement refers to the creation of a state of quasi-free quarks and gluons in strongly interacting matter. Model predictions and experimental evidence for the onset of deconfinement in nucleus-nucleus collisions were discussed in our first review on this subject. These results motivated further experimental and theoretical studies. This review addresses two subjects. First, a summary of the past, present and future experimental programmes related to discovery and study of properties of the onset of deconfinement are presented. Second, recent progress is reviewed on analysis methods and preliminary experimental results for new strongly intensive fluctuation measures are discussed, which are relevant for current and future studies of the onset of deconfinement and searches for the critical point of strongly interacting matter.

  4. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  5. Photon correlations generated by inelastic scattering in a one-dimensional waveguide coupled to three-level systems

    NASA Astrophysics Data System (ADS)

    Fang, Yao-Lung L.; Baranger, Harold U.

    2016-04-01

    We study photon correlations generated by scattering from three-level systems (3LS) in one dimension. The two systems studied are a 3LS in a semi-infinite waveguide (3LS plus a mirror) and two 3LS in an infinite waveguide (double 3LS). Our two-photon scattering approach naturally connects photon correlation effects with inelastically scattered photons; it corresponds to input-output theory in the weak-probe limit. At the resonance where electromagnetically induced transparency (EIT) occurs, we find that no photons are scattered inelastically and hence there are no induced correlations. Slightly away from EIT, the total inelastically scattered flux is large, being substantially enhanced due to the additional interference paths. This enhancement carries over to the two-photon correlation function, which exhibits non-classical behavior such as strong bunching with a very long time-scale. The long time scale originates from the slow-light effect associated with EIT.

  6. Reprint of : Photon correlations generated by inelastic scattering in a one-dimensional waveguide coupled to three-level systems

    NASA Astrophysics Data System (ADS)

    Fang, Yao-Lung L.; Baranger, Harold U.

    2016-08-01

    We study photon correlations generated by scattering from three-level systems (3LS) in one dimension. The two systems studied are a 3LS in a semi-infinite waveguide (3LS plus a mirror) and two 3LS in an infinite waveguide (double 3LS). Our two-photon scattering approach naturally connects photon correlation effects with inelastically scattered photons; it corresponds to input-output theory in the weak-probe limit. At the resonance where electromagnetically induced transparency (EIT) occurs, we find that no photons are scattered inelastically and hence there are no induced correlations. Slightly away from EIT, the total inelastically scattered flux is large, being substantially enhanced due to the additional interference paths. This enhancement carries over to the two-photon correlation function, which exhibits non-classical behavior such as strong bunching with a very long time-scale. The long time scale originates from the slow-light effect associated with EIT.

  7. Analysis of subthreshold antiproton production in [ital p]-nucleus and nucleus-nucleus collisions in the relativistic Boltzmann-Uehling-Uhlenbeck approach

    SciTech Connect

    Teis, S.; Cassing, W.; Maruyama, T.; Mosel, U. )

    1994-07-01

    We calculate the subthreshold production of antiprotons in the Lorentz-covariant relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) approach employing a weighted testparticle method to treat the antiproton propagation and absorption nonperturbatively. We find that the antiproton differential cross sections are highly sensitive to the baryon and antiproton self-energies in the dense baryonic environment. Adopting the baryon scalar and vector self-energies from the empirical optical potential for proton-nucleus elastic scattering and from Dirac-Brueckner calculations at higher density [rho][gt][rho][sub 0] we examine the differential antiproton spectra as a function of the antiproton self-energy. A detailed comparison with the available experimental data for [ital p]-nucleus and nucleus-nucleus reactions shows that the antiproton feels a moderately attractive mean field at normal nuclear matter density [rho][sub 0] which is in line with a dispersive potential extracted from the free annihilation cross section.

  8. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    NASA Astrophysics Data System (ADS)

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; de Leo, R.; Deconinck, W.; Deng, X.; Deur, A.; Dutta, C.; Fassi, L. El; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; Lerose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Mesick, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman, Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Širca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.; Pvdis Collaboration

    2015-04-01

    The parity-violating asymmetries between a longitudinally polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep-inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

  9. Spin relaxation of conduction electrons by inelastic scattering with neutral donors

    NASA Astrophysics Data System (ADS)

    Qing, Lan; Dery, Hanan; Li, Jing; Appelbaum, Ian

    2015-03-01

    At low temperatures in n-doped semiconductors, a significant fraction of shallow donor sites are occupied by electrons, neutralizing the impurity core charge in equilibrium. Inelastic scattering by externally-injected conduction electrons accelerated by electric fields can excite transitions within the manifold of these localized states. Promotion into highly spin-mixed excited states results in spin relaxation that couples strongly to the conduction electrons by exchange interaction. Through experiments with silicon spin transport devices and complementary theory, we reveal the consequences of this previously unknown depolarization mechanism both below and above the impact ionization threshold and into the ``deep inelastic'' regime. This work is supported by NSF under Contracts ECCS-1231570 and ECCS-1231855, by DTRA under Contract HDTRA1-13-1-0013, and by ONR under Contract N000141410317.

  10. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    SciTech Connect

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Deng, X.; Deur, A.; Dutta, C.; Fassi, L. El; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Mesick, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman, none; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

  11. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE PAGESBeta

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; et al

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less

  12. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  13. Calibration and absolute normalization procedure of a new Deep Inelastic Neutron Scattering spectrometer

    NASA Astrophysics Data System (ADS)

    Rodríguez Palomino, L. A.; Blostein, J. J.; Dawidowski, J.

    2011-08-01

    We describe the calibration process of a new Deep Inelastic Neutron Scattering (DINS) spectrometer, recently implemented at the Bariloche Electron LINAC (Argentina), consisting in the determination of the incident neutron spectrum, dead-time and electronic delay of the data acquisition line, and detector bank efficiency. For this purpose, samples of lead, polyethylene and graphite of different sizes were employed. Their measured spectra were corrected by multiple scattering, attenuation and detector efficiency effects, by means of an ad hoc Monte Carlo code. We show that the corrected spectra are correctly scaled with respect to the scattering power of the tested materials within a 2% of experimental error, thus allowing us to define an experimental constant that links the arbitrary experimental scale (number of recorded counts per monitor counts) with the involved cross-sections. The present work also serves to analyze the existence of possible sources of systematic errors.

  14. Direct inelastic scattering of oriented NO from Ag(111) and Pt(111)

    NASA Astrophysics Data System (ADS)

    Tenner, Manfred G.; Kuipers, Edgar W.; Kleyn, Aart W.; Stolte, Steven

    1991-04-01

    A pulsed supersonic and cold oriented beam of NO molecules is incident upon the (111) face of clean Ag and Pt single crystal surfaces. The steric effect in the scattered density distributions is determined by a quadrupole mass spectrometer. It is found that the steric effect in the peak in the distribution of direct inelastically scattered molecules depends linearly on the reflection angle. In all circumstances O-end collisions lead to scattering angles more inclined towards the surface than N-end collisions. For the Pt(111) surface a much stronger steric effect is measured than for the Ag(111) surface. The steric effect seems to scale with the incident normal velocity. These strong steric effects can be explained by the larger trapping probability for the N-end orientation and a leverage effect due to the high trapping probability.

  15. Pygmy dipole resonance in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Bracco, A.; Crespi, F. C. L.; Lanza, E. G.; Litvinova, E.; Paar, N.; Avigo, R.; Bazzacco, D.; Benzoni, G.; Birkenbach, B.; Blasi, N.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Ciemała, M.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocarte, R.; Jungclaus, A.; Leoni, S.; Ljungvall, J.; Lunardi, S.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Milion, B.; Morales, A. I.; Napoli, D. R.; Nicolini, R.; Pellegri, L.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Salsac, M. D.; Siebeck, B.; Siem, S.; Söderström, P.-A.; Ur, C.; Valiente-Dobon, J. J.; Wieland, O.; Ziebliński, M.

    2016-04-01

    The γ decay from the high-lying states of 140Ce excited via inelastic scattering of 17O at a bombarding energy of 340 MeV was measured using the high-resolution AGATA-demonstrator array in coincidence with scattered ions detected in two segmented Δ E -E silicon detectors. Angular distributions of scattered ions and emitted γ rays were measured, as well as their differential cross sections. The excitation of 1- states below the neutron separation energy is similar to the one obtained in reactions with the α isoscalar probe. The comparison between the experimental differential cross sections and the corresponding predictions using the distorted-wave Born approximation allowed us to extract the isoscalar component of identified 1- pygmy states. For this analysis the form factor obtained by folding microscopically calculated transition densities and optical potentials was used.

  16. Nucleon emission via electromagnetic excitation in relativistic nucleus-nucleus collisions: Re-analysis of the Weizsacker-Williams method

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Previous analyses of the comparison of Weizsacker-Williams (WW) theory to experiment for nucleon emission via electromagnetic (EM) excitations in nucleus-nucleus collisions were not definitive because of different assumptions concerning the value of the minimum impact parameter. This situation is corrected by providing criteria that allows definitive statements to be made concerning agreement or disagreement between WW theory and experiment.

  17. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  18. Probing Scattering Resonances in (Ultra)Cold Inelastic NO-He Collisions.

    PubMed

    Onvlee, Jolijn; Avoird, Ad van der; Groenenboom, Gerrit; van de Meerakker, Sebastiaan Y T

    2016-07-14

    We theoretically study inelastic collisions between NO radicals and He atoms at low collision energies, focusing on the occurrence of scattering resonances. We specifically investigate de-excitation of rotationally excited NO radicals (X (2)Π1/2, v = 0, j = 3/2, f) at collision energies ranging from 10(-3) to 20 cm(-1) and compute integral and differential cross sections using quantum mechanical close-coupling calculations. Although unconventional, we show that the measurement of rotational de-excitation cross sections brings several advantages to experiments that aim to study rotational energy transfer at temperatures approaching zero kelvin. We analyze the nature and partial wave composition of the quasi-bound states associated with each individual resonance and compute the scattering wave functions. The differential cross sections contain the partial wave fingerprints of the scattering process and are found to change drastically as the collision energy is varied over the resonances. The prospects for measuring these differential cross sections in inelastic de-excitation collisions at low energies are discussed. PMID:26760050

  19. Final-state interactions in semi-inclusive deep inelastic scattering off the Deuteron

    SciTech Connect

    Wim Cosyn, Misak Sargsian

    2011-07-01

    Semi-inclusive deep inelastic scattering off the Deuteron with production of a slow nucleon in recoil kinematics is studied in the virtual nucleon approximation, in which the final state interaction (FSI) is calculated within general eikonal approximation. The cross section is derived in a factorized approach, with a factor describing the virtual photon interaction with the off-shell nucleon and a distorted spectral function accounting for the final-state interactions. One of the main goals of the study is to understand how much the general features of the diffractive high energy soft rescattering accounts for the observed features of FSI in deep inelastic scattering (DIS). Comparison with the Jefferson Lab data shows good agreement in the covered range of kinematics. Most importantly, our calculation correctly reproduces the rise of the FSI in the forward direction of the slow nucleon production angle. By fitting our calculation to the data we extracted the W and Q{sup 2} dependences of the total cross section and slope factor of the interaction of DIS products, X, off the spectator nucleon. This analysis shows the XN scattering cross section rising with W and decreasing with an increase of Q{sup 2}. Finally, our analysis points at a largely suppressed off-shell part of the rescattering amplitude.

  20. Neutron Inelastic Scattering Mechanism and Measurement of Neutron Asymmetry Using Time of Flight Technique

    NASA Astrophysics Data System (ADS)

    Al Azzawe, A. J. M.

    2007-02-01

    Inelastic scattering is an essential reaction for other nuclear reactions to detect the optical model and compound nucleus formation within the range of (0.4- 5.0) MeV neutron incident energy by using time of flight technique. The time of flight system (TOFS) installed on the horizontal channel reactor RRA has been used to measure the asymmetry of scattered fast neutrons, when data acquisition and system control were recorded event by event by HP — computer via CAMAC system. Eight NE 213 neutron counters were used in order to detect neutron inelastic scattering in the forward direction (4 neutron counters at 0° angle) and in the backward direction (4 neutron counters at 180° angle) to measure the asymmetry of fast neutron. Each neutron counter was 50cm in length and 8cm in diameter, viewed by two (58 — DVP) photomultiplier tubes. The contribution of direct interaction to the compound nucleus formation was deduced from the asymmetry in the neutron detection at the same direction of these eight neutron counters. A time resolution of 8.2 ns between the eight neutron counters and one of the two Ge(Li) detectors has been obtained.

  1. Cross sections for inelastic scattering of electrons by atoms: selected topics related to electron microscopy

    SciTech Connect

    Inokuti, M.; Manson, S.T.

    1982-01-01

    We begin with a resume of the Bethe theory, which provides a general framework for discussing the inelastic scattering of fast electrons and leads to powerful criteria for judging the reliability of cross-section data. The central notion of the theory is the generalized oscillator strength as a function of both the energy transfer and the momentum transfer, and is the only non-trivial factor in the inelastic-scattering cross section. Although the Bethe theory was initially conceived for free atoms, its basic ideas apply to solids, with suitable generalizations; in this respect, the notion of the dielectric response function is the most fundamental. Topics selected for discussion include the generalized oscillator strengths for the K-shell and L-shell ionization for all atoms with Z less than or equal to 30, evaluated by use of the Hartree-Slater potential. As a function of the energy transfer, the generalized oscillator strength most often shows a non-monotonic structure near the K-shell and L-shell thresholds, which has been interpreted as manifestations of electron-wave propagation through atomic fields. For molecules and solids, there are additional structures due to the scattering of ejected electrons by the fields of other atoms.

  2. The SEXTANTS beamline at SOLEIL: a new facility for elastic, inelastic and coherent scattering of soft X-rays

    NASA Astrophysics Data System (ADS)

    Sacchi, M.; Jaouen, N.; Popescu, H.; Gaudemer, R.; Tonnerre, J. M.; Chiuzbaian, S. G.; Hague, C. F.; Delmotte, A.; Dubuisson, J. M.; Cauchon, G.; Lagarde, B.; Polack, F.

    2013-03-01

    SEXTANTS is a new SOLEIL beamline dedicated to soft X-ray scattering techniques. The beamline, covering the 50-1700 eV energy range, features two Apple-II undulators for polarization control and a fixed-deviation monochromator. Two branch-lines host three end-stations for elastic, inelastic and coherent scattering experiments.

  3. Phonon dispersion in uranium measured using inelastic x-ray scattering.

    SciTech Connect

    Manley, M. E.; Lander, G. H.; Sinn, H.; Alatas, A.; Hults, W. L.; McQueeney, R. J.; Smith, J. L.; Wilt, J.; XFD

    2003-02-01

    Phonon-dispersion curves were obtained from inelastic x-ray scattering measurements on high-purity uranium single crystals at room temperature. Modes displacing atoms along [00{zeta}] and propagating in all three high-symmetry directions were measured. Whereas the acoustic modes agree with the neutron measurements, the longitudinal-optic branch is about 10% higher in energy, but consistent with higher cutoff energies observed in phonon density-of-states measurements on polycrystals. The application of this x-ray technique, which requires only very small samples, opens possibilities in actinide science.

  4. Novel rhenium gasket design for nuclear resonant inelastic x-ray scattering at high pressure

    SciTech Connect

    Tanis, Elizabeth A.; Giefers, Hubertus; Nicol, Malcolm F.

    2008-02-15

    For the first time, a highly absorbing element, rhenium, has been proven to be a strong, reliable, and safe gasket material for achieving high pressure in nuclear resonant inelastic x-ray scattering (NRIXS) experiments. Rhenium foil was cut into rectangular slices and in order to reduce absorption, the elevated imprint due to preindenting of the gasket is removed using electrical discharge machining. By utilizing this novel gasket design, transmission losses were mitigated while performing NRIXS experiments conducted on the {sup 119}Sn and {sup 57}Fe Moessbauer isotopes.

  5. Jet production in deep-inelastic muon scattering at 490 GeV

    SciTech Connect

    Melanson, H.L.

    1993-06-01

    Measurements of jet rates in deep-inelastic muon scattering are presented. The JADE algorithm is used to define jets in the kinematic region 9 < W < 33 GeV. Data taken on a proton target are analyzed within the QCD framework, with the goal of extracting [alpha][sub s]. Results on the Q[sup 2] dependence of the average transverse momentum of jets are used to demonstrate the running of the strong coupling constant [alpha][sub s]. In addition, first measurements of the production of jets from heavy nuclei in the region x[sub B[sub j

  6. Measurement of diffractive production of D*+/-(2010) mesons in deep-inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Chekanov, S.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Giusti, P.; Iacobucci, G.; Margotti, A.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Crittenden, J.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Renner, R.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Kim, Y. K.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Piotrzkowski, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Grabowska-Bold, I.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotański, A.; Slomiński, W.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Dannheim, D.; Derrick, M.; Drews, G.; Fourletova, J.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Gutsche, O.; Haas, T.; Hain, W.; Hartner, G. F.; Hillert, S.; Kötz, U.; Kowalski, H.; Labes, H.; Lelas, D.; Löhr, B.; Mankel, R.; Martínez, M.; Moritz, M.; Notz, D.; Pellmann, I.-A.; Petrucci, M. C.; Polini, A.; Raval, A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Wessoleck, H.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Raach, H.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Hanlon, S.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Bodmann, B.; Carli, T.; Holm, U.; Klimek, K.; Krumnack, N.; Lohrmann, E.; Milite, M.; Salehi, H.; Stonjek, S.; Wick, K.; Ziegler, A.; Ziegler, Ar.; Collins-Tooth, C.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Lim, H.; Son, D.; Barreiro, F.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D. G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Pellegrino, A.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Grzelak, G.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Heaphy, E. A.; Oh, B. Y.; Saull, P. R. B.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Heusch, C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hall-Wilton, R.; Jones, T. W.; Lane, J. B.; Lightwood, M. S.; Loizides, J. H.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Nowak, R. J.; Pawlak, J. M.; Smalska, B.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Kçira, D.; Lammers, S.; Li, L.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Fourletov, S.; Menary, S.; Soares, M.; Standage, J.

    2002-10-01

    Diffractive production of D*+/-(2010) mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 44.3pb-1. Diffractive charm production is identified by the presence of a large rapidity gap in the final state of events in which a D*+/-(2010) meson is reconstructed in the decay channel D*+-->(D0-->K- π+)π+s (/+ charge conjugate). Differential cross sections when compared with theoretical predictions indicate the importance of gluons in such diffractive interactions.

  7. Resonant inelastic x-ray scattering studies of the organic semiconductor copper phthalocyanine

    SciTech Connect

    Kodituwakku, C. N.; Burns, C. A.; Said, A. H.; Sinn, H.; Wang, X.; Gog, T.; Casa, D. M.; Tuel, M.; Western Michigan Univ.; DESY, Hasylab

    2008-01-01

    We report resonant inelastic x-ray scattering (RIXS) measurements on polycrystalline and single crystal samples of the organic semiconductor {beta}-copper phthalocyanine (CuPc) as well as time dependent density functional theory calculations of the electronic properties of the CuPc molecule. Resonant and nonresonant excitations were measured along the three crystal axes with 120 meV resolution. We observe molecular excitations as well as charge-transfer excitons along certain crystal directions and compare our data with the calculations. Our results demonstrate that RIXS is a powerful tool for studying excitons and other electronic excitations in organic semiconductors.

  8. Inelastic X-ray scattering experiments on B[subscript 4]C under high static pressures

    SciTech Connect

    Kumar, Ravhi S.; Dandekar, Dattatraya; Leithe-Jasper, Andres; Tanaka, Takaho; Xiao, Yuming; Chow, Paul; Nicol, Malcolm F.; Cornelius, Andrew L.

    2010-05-04

    Boron K-edge inelastic X-ray scattering experiments were performed on clean B{sub 4}C and shock impact recovered boron carbide up to 30 GPa and at ambient temperature to understand the pressure induced bonding changes. The spectral features corresponding to the boron site in the interlinking chain remained unchanged up to 30 GPa. The results of our experiments indicate that pressure induces less distortion to the boron sites and the local amorphization observed in the previous reports are due to the rearrangement of carbon atoms under extreme conditions without affecting the boron environment.

  9. Spherical momentum distribution of the protons in hexagonal ice from modeling of inelastic neutron scattering data

    NASA Astrophysics Data System (ADS)

    Flammini, D.; Pietropaolo, A.; Senesi, R.; Andreani, C.; McBride, F.; Hodgson, A.; Adams, M. A.; Lin, L.; Car, R.

    2012-01-01

    The spherical momentum distribution of the protons in ice is extracted from a high resolution deep inelastic neutron scattering experiment. Following a recent path integral Car-Parrinello molecular dynamics study, data were successfully interpreted in terms of an anisotropic Gaussian model, with a statistical accuracy comparable to that of the model independent scheme used previously, but providing more detailed information on the three dimensional potential energy surface experienced by the proton. A recently proposed theoretical concept is also employed to directly calculate the mean force from the experimental neutron Compton profile, and to evaluate the accuracy required to unambiguously resolve and extract the effective proton potential from the experimental data.

  10. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer.

    PubMed

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-01

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%. PMID:19044359