Science.gov

Sample records for inelastic scattering effects

  1. Sivers effect in semiinclusive deeply inelastic scattering

    SciTech Connect

    Collins, J.C.; Efremov, A. V.; Goeke, K.; Menzel, S.; Metz, A.; Schweitzer, P.

    2006-01-01

    The Sivers function is extracted from HERMES data on single spin asymmetries in semi-inclusive deeply inelastic scattering. Our analysis use a simple Gaussian model for the distribution of transverse parton momenta, together with the flavor dependence given by the leading 1/N{sub c} approximation and a neglect of the Sivers antiquark distribution. We find that within the errors of the data these approximations are sufficient.

  2. Sivers Effect in Semi-Inclusive Deeply Inelastic Scattering and DRELL-YAN

    NASA Astrophysics Data System (ADS)

    Collins, J. C.; Efremov, A. V.; Goeke, K.; Grosse Perdekamp, M.; Menzel, S.; Meredith, B.; Metz, A.; Schweitzer, P.

    The Sivers function is extracted from HERMES data on single spin asymmetries in semi-inclusive deeply inelastic scattering. The result is used for making predictions for the Sivers effect in the Drell-Yan process.

  3. Inelastic Scattering Form Factors

    Energy Science and Technology Software Center (ESTSC)

    1992-01-01

    ATHENA-IV computes form factors for inelastic scattering calculations, using single-particle wave functions that are eigenstates of motion in either a Woods-Saxon potential well or a harmonic oscillator well. Two-body forces of Gauss, Coulomb, Yukawa, and a sum of cut-off Yukawa radial dependences are available.

  4. Inelastic scattering in planetary atmospheres. I - The Ring effect, without aerosols

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Young, A. T.; Humphreys, T. J.

    1981-01-01

    The contribution of inelastic molecular scattering (Rayleigh-Brillouin and rotational Raman scattering) to the filling-in of Fraunhofer lines in the light of the blue sky is studied. Aerosol fluorescence is shown to be negligible, and aerosol scattering is ignored. The angular and polarization dependences of the filling-in detail for single scattering are discussed. An approximate treatment of multiple scattering, using a backward Monte Carlo technique, makes it possible to investigate the effects of the ground albedo. As the molecular scatterings alone produce more line-filling than is observed, it seems likely that aerosols dilute the effect by contributing unaltered sunlight to the observed spectra.

  5. Deep and shallow inelastic scattering

    SciTech Connect

    Ray, Heather

    2015-05-15

    In this session we focused on the higher energy deep and shallow inelastic particle interactions, DIS and SIS. DIS interactions occur when the energy of the incident particle beam is so large that the beam is able to penetrate the nucleons inside of the target nuclei. These interactions occur at the smallest level possible, that of the quark-gluon, or parton, level. SIS interactions occur in an intermediate energy range, just below the energy required for DIS interactions. The DIS cross section formula contains structure functions that describe our understanding of the underlying parton structure of nature. The full description of DIS interactions requires three structure functions: two may be measured in charged lepton or neutrino scattering, but one can only be extracted from neutrino DIS data. There are reasons to expect that the impact of nuclear effects could be different for neutrinos engaging in the DIS interaction, vs those felt by leptons. In fact, fits by the nCTEQ collaboration have found that the neutrino-Fe structure functions appear to differ from those extracted from lepton scattering data [1]. To better understand the global picture of DIS and SIS, we chose a three-pronged attack that examined recent experimental results, data fits, and latest theory predictions. Experimental results from neutrino and lepton scattering, as well as collider experiments, were presented.

  6. Deep inelastic scattering near the endpoint in soft-collinear effective theory

    SciTech Connect

    Chay, Junegone; Kim, Chul

    2007-01-01

    We apply the soft-collinear effective theory to deep inelastic scattering near the endpoint region. The forward scattering amplitude and the structure functions are shown to factorize as a convolution of the Wilson coefficients, the jet functions, and the parton distribution functions. The behavior of the parton distribution functions near the endpoint region is considered. It turns out that it evolves with the Altarelli-Parisi kernel even in the endpoint region, and the parton distribution function can be factorized further into a collinear part and the soft Wilson line. The factorized form for the structure functions is obtained by the two-step matching, and the radiative corrections or the evolution for each factorized part can be computed in perturbation theory. We present the radiative corrections of each factorized part to leading order in {alpha}{sub s}, including the zero-bin subtraction for the collinear part.

  7. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    SciTech Connect

    Mousseau, Joel A.

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  8. Parity violating asymmetry with nuclear medium effects in deep inelastic e → scattering

    NASA Astrophysics Data System (ADS)

    Haider, H.; Sajjad Athar, M.; Singh, S. K.; Ruiz Simo, I.

    2015-08-01

    Recently parity violating asymmetry (APV) in the Deep Inelastic Scattering (DIS) of polarized electrons (e →) from deuterons has been measured at JLab and there exist future plans to measure this asymmetry from nuclear targets. In view of this we study nuclear medium effects in APV in the DIS of e → from some nuclear targets like 12C, 56Fe and 208Pb. The effects of Fermi motion, binding energy and nucleon correlations are taken into account through the nucleon spectral function calculated in a local density approximation for nuclei. The pion and rho cloud contributions have also been taken into account. This model has been earlier used to study nuclear medium effects in the electromagnetic and weak interaction induced processes. The results are presented and discussed in view of the future JLab experiments.

  9. Inelastic scattering of atoms in a double well

    SciTech Connect

    Annibale, E. S.; Fialko, O.; Ziegler, K.

    2011-04-15

    We study a mixture of two light spin-1/2 fermionic atoms and two heavy atoms in a double-well potential. Inelastic scattering processes between both atomic species excite the heavy atoms and renormalize the tunneling rate and the interaction of the light atoms (polaron effect). The effective interaction of the light atoms changes its sign and becomes attractive for strong inelastic scattering. This is accompanied by a crossing of the energy levels from singly occupied sites at weak inelastic scattering to a doubly occupied and an empty site for stronger inelastic scattering. We are able to identify the polaron effect and the level crossing in the quantum dynamics.

  10. Comparison of inelastic and quasielastic scattering effects on nonlinear electron transport in quantum wires

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Gumbs, Godfrey

    2010-05-01

    When impurity and phonon scattering coexist, the Boltzmann equation has been solved accurately for nonlinear electron transport in a quantum wire. Based on the calculated nonequilibrium distribution of electrons in momentum space, the scattering effects on both the nondifferential (for a fixed dc field) and differential (for a fixed temperature) mobilities of electrons as functions of temperature and dc field have been demonstrated. The nondifferential mobility of electrons is switched from a linearly increasing function of temperature to a paraboliclike temperature dependence as the quantum wire is tuned from an impurity-dominated system to a phonon-dominated one, as described by Fang et al. [Phys. Rev. B 78, 205403 (2008)]. In addition, a maximum has been obtained in the dc field dependence of the differential mobility of electrons. The low-field differential mobility is dominated by the impurity scattering, whereas the high-field differential mobility is limited by the phonon scattering as described by Hauser et al. [Semicond. Sci. Technol. 9, 951 (1994)]. Once a quantum wire is dominated by quasielastic scattering, the peak of the momentum-space distribution function becomes sharpened and both tails of the equilibrium electron distribution centered at the Fermi edges are raised by the dc field after a redistribution of the electrons is fulfilled in a symmetric way in the low-field regime. If a quantum wire is dominated by inelastic scattering, on the other hand, the peak of the momentum-space distribution function is unchanged while both shoulders centered at the Fermi edges shift leftward correspondingly with increasing dc field through an asymmetric redistribution of the electrons even in low-field regime as described by Wirner et al. [Phys. Rev. Lett. 70, 2609 (1993)].

  11. Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering.

    PubMed

    Casco, M E; Cheng, Y Q; Daemen, L L; Fairen-Jimenez, D; Ramos-Fernández, E V; Ramirez-Cuesta, A J; Silvestre-Albero, J

    2016-03-01

    The gate-opening phenomenon in ZIFs is of paramount importance to understand their behavior in industrial molecular separations. Here we show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N2 pressure. PMID:26845644

  12. Polarization transfer in inelastic scattering and pionic models of the EMC effect

    SciTech Connect

    Moss, J.M.

    1985-01-01

    At the 1982 Telluride Conference Magda Ericson spoke about the interest in a measurement of the sigma vector . q vector or spin-longitudinal nuclear response function. It inspired our collaboration to propose a LAMPF experiment, which was subsequently approved, and run in September 1983. In the intervening time the interest has increased dramatically in connection with the European Muon Collaboration (EMC) effect, and the exciting possibility that this ultra high-energy physics result may have to do with nuclear pions - and, hence, the isovector sigma vector . q vector nuclear response function. In this talk I will give a brief introduction to the EMC effect and its interpretation in terms of excess nuclear pions. This model establishes a connection between the vastly different scales of the EMC experiment (approx. 200 GeV deep-inelastic muon scattering) and the Los Alamos experiment (500 MeV polarized-proton quasifree scattering). Following this I will describe the Los Alamos experiment and its interpretation in terms of excess nuclear pions. Finally I will indulge in some speculation about quark effects in nuclei based on the EMC and Los Alamos experimental results. 29 refs.

  13. Polarization transfer in inelastic scattering and pionic models of the EMC effect

    SciTech Connect

    Carey, T.A.; Jones, K.W.; McClelland, J.B.; Moss, J.M.; Rees, L.B.; Tanaka, N.; Bacher, A.D.

    1985-01-01

    The aim of the experiment reported was to make a precise test of the enhanced pion field model in a medium-energy scattering experiment. The quantity probed is the spin-longitudinal response function, a measure of the nuclear pion density which is used explicitly in the pion-excess models of the EMC effect. The point of reference used is deuterium. The spin-dependent response functions for heavy targets and /sup 2/H are compared using identical experimental techniques. The technique of complete polarization transfer is used to separate the spin-longitudinal and spin-transverse response in the continuum. The experiment consisted of precise determinations of the polarization transfer coefficients for 500 MeV protons inelastically scattered from Pb, Ca, and /sup 2/H. The experiment utilized longitudinal, sideways, and normal polarized beams in conjunction with final polarization analysis from the focal-plane polarimeter of the high-resolution spectrometer. Quantities constructed from these data are the longitudinal and transverse spin-flip probabilities. Calculations were performed of the ratio of longitudinal to transverse response functions and of the EMC effect with the same model. No evidence was found for collectivity in the isovector spin-longitudinal response function. 10 refs. (LEW)

  14. Perturbative QCD effects observed in 490 GeV deep-inelastic muon scattering

    SciTech Connect

    Adams, M.R.; Aied, S.; Anthony, P.L.; Baker, M.D.; Bartlett, J.; Bhatti, A.A.; Braun, H.M.; Busza, W.; Conrad, J.M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S.K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H.J.; Geesaman, D.F.; Gilman, R.; Green, M.C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V.W.; Jackson, H.E.; Jaffe, D.E.; Jancso, G.; Jansen, D.M.; Kaufman, S.; Kennedy, R.D.; Kirk, T.; Kobrak, H.G.E.; Krzywdzinski, S.; Kunori, S.; Lord, J.J.; Lubatti, H.J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D.G.; Mohr, W.; Montgomery, H.E.; Morfin, J.G.; Nickerson, R.B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F.M.; Ramberg, E.J.; Roeser, A.; Ryan, J.J.; Salgado, C.W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schueler, K.P.; Skuja, A.; Snow, G.A.; Soeldner-Rembold, S.; Steinberg, P.H.; Stier, H.E.; Stopa, P.; Swanso

    1993-12-01

    Results on forward charged hadrons in 490 GeV deep-inelastic muon scattering are presented. The transverse momenta, azimuthal asymmetry, and energy flow of events with four or more forward charged hadrons are studied. The range of the invariant hadronic mass squared 300[lt][ital W][sup 2][lt]900 GeV[sup 2]/[ital c][sup 4] extends higher than previous deep-inelastic muon scattering experiments. Data are compared to the predictions of the Lund Monte Carlo model with perturbative QCD simulated by matrix elements, parton showers, and color dipole radiation. All of the QCD-based models are consistent with the data while a model without QCD processes is not. Correlations with the multiplicity-independent event variable [Pi][congruent][summation][vert bar][ital p][sub [ital T

  15. Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    SciTech Connect

    Diener, K.-P.O.; Dittmaier, S.; Hollik, W.

    2005-11-01

    A previous calculation of electroweak O({alpha}) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from {delta}{alpha} and {delta}{rho} as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O({alpha})-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS-like. As a technical by-product, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by nonuniversal two-loop effects and is of the order 0.0003 when translated into a shift in sin{sup 2}{theta}{sub W}=1-M{sub W}{sup 2}/M{sub Z}{sup 2}. The O({alpha}) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.

  16. Signatures of strong correlation effects in resonant inelastic x-ray scattering studies on cuprates

    NASA Astrophysics Data System (ADS)

    Li, Wan-Ju; Lin, Cheng-Ju; Lee, Ting-Kuo

    2016-08-01

    Recently, spin excitations in doped cuprates have been measured using resonant inelastic x-ray scattering. The paramagnon dispersions show the large hardening effect in the electron-doped systems and seemingly doping independence in the hole-doped systems, with the energy scales comparable to that of the antiferromagnetic (AFM) magnons. This anomalous hardening effect and the lack of softening were partially explained by using the strong-coupling t -J model but with a three-site term [Nat. Commun. 5, 3314 (2014), 10.1038/ncomms4314], although the hardening effect is already present even without the latter. By considering the t -t'-t''-J model and using the slave-boson mean-field theory, we obtain, via the spin-spin susceptibility, the spin excitations in qualitative agreement with the experiments. The doping-dependent bandwidth due to the strong correlation physics is the origin of the hardening effect. We also show that dispersions in the AFM regime, different from those in the paramagnetic (PM) regime, hardly vary with dopant density. These excitations are mainly collective in nature instead of particle-hole-like. We further discuss the interplay and different contributions of these two kinds of excitations in the PM phase and show that the dominance of the collective excitation increases with decreasing dopant concentrations.

  17. Deep Inelastic Scattering and Related Phenomena

    NASA Astrophysics Data System (ADS)

    D'Agostini, G.; Nigro, A.

    1997-03-01

    Color Dipole BFKL pomeron * Recent Results on Diffractive Scattering in Muon-Proton Interactions from the E665 Experiment * Jets in Diffractive ep Interactions * Energy Flow and Open Charm Production in Diffractive Deep Inelastic Scattering * Photoproduction of ρ0, ω and ∫ Mesons at ZEUS * Diffractive Photoproduction of ρ and ∫ at Large |t| * Photoproduction of Vector Mesons at H1 * Vector Meson Production at High Q2 * Diffractive Production of coverline c Systems at HERA * Diffractive Light Vector Meson Production at Large Momentum Transfer * Observation of High Energy Forward Neutrons in Deep Inelastic Scattering at HERA * Diffractive Hard Scattering - Report from the HERA Workshop * Monte Carlo Generators for Diffractive Processes * Thrust Jet Analysis of Diffractive Deep Inelastic Scattering Events at HERA * Diffractive Deep Inelastic Scattering with a Logarithmic Pomeron Trajectory * Odd C Parity Effects in Diffraction * Fracture Functions * WORKING GROUP 4: Final States * Confronting QCD Models with DIS Events at HERA * The Measurement of Fragmentation Functions in the Breit Frame * Thrust Analysis in Deep Inelastic Scattering * NLO Corrections to Jet Cross-sections in DIS * Measurement of αs from Jet Rates in Deep Inelastic Scattering at HERA * Dijet Production in Neutral Current Deep Inelastic Scattering and Determination of the Gluon Density * A Direct Determination of αs (Q2) and fg/p (ξ, Q2) in Next-to-leading-order from (2+1)-jet Rates in the H1-Experiment * A Measurement of αs from Differential Jet Rates * QCD Jet Calculations in DIS Based on the Subtraction Method and Dipole Formalism * Jet Production at DØ * Rapidity Gaps in Hard Photoproduction with ZEUS * Diffraction in Charged Current DIS * Diquark Jets in DIS Diffraction Dissociation * Large Rapidity Gaps between Jets at HERA and at the Tevatron * Jet Production with Double Pomeron Exchange * Rapidity Gaps in Hard Processes at DØ * Onium Production * Tracing QCD-Instantons in Deep

  18. Collins effect in semiinclusive deeply inelastic scattering and in electron-positron-annihilation

    SciTech Connect

    Efremov, A.V.; Goeke, K.; Schweitzer, P.

    2006-05-01

    The Collins fragmentation function is extracted from HERMES data on azimuthal single spin asymmetries in semi-inclusive deeply inelastic scattering, and BELLE data on azimuthal asymmetries in e{sup +}e{sup -}-annihilations. A Gaussian model is assumed for the distribution of transverse parton momenta and predictions are used from the chiral quark-soliton model for the transversity distribution function. We find that the HERMES and BELLE data yield a consistent picture of the Collins fragmentation function which is compatible with COMPASS data and the information previously obtained from an analysis of DELPHI data. Estimates for future experiments are made.

  19. Perturbative QCD effects observed in 490 GeV deep-inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1993-12-01

    Results on forward charged hadrons in 490 GeV deep-inelastic muon scattering are presented. The transverse momenta, azimuthal asymmetry, and energy flow of events with four or more forward charged hadrons are studied. The range of the invariant hadronic mass squared 300inelastic muon scattering experiments. Data are compared to the predictions of the Lund Monte Carlo model with perturbative QCD simulated by matrix elements, parton showers, and color dipole radiation. All of the QCD-based models are consistent with the data while a model without QCD processes is not. Correlations with the multiplicity-independent event variable Π~=J||pT|| are studied. The relationship between the azimuthal asymmetry and transverse momentum of forward hadrons is also presented. The data are most consistent with intrinsic parton transverse momentum squared k2T of 0.25 GeV2/c2.

  20. Inclusive inelastic scattering of heavy ions and nuclear correlations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.

    1990-01-01

    Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.

  1. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    DOE PAGESBeta

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy.more » However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.« less

  2. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    NASA Astrophysics Data System (ADS)

    Mousseau, J.; Wospakrik, M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Minerν A Collaboration

    2016-04-01

    The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5-50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x <0.1 . This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice et al. (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  3. Twist-four effects in deep inelastic neutrino scattering and sinStheta/sub w/

    SciTech Connect

    Fajfer, S.; Oakes, R.J.

    1985-07-01

    In addition to the standard perturbative QCD corrections to deep inelastic scattering, there are nonperturbative twist-four corrections which behave like 1/QS relative to the lnQS leading log corrections. We have calculated the twist-four, spin-one and spin-two corrections to sigma/sub NC/, sigma/sub CC/, R/sub nu/ and R/sub anti nu/ using the following procedure: The bilocal product of the weak currents is expanded into local operators using the Wilson operator product expansion. The coefficient functions obey the renormalization group equations and, neglecting the anomalous dimensions of the operators, were calculated using perturbative techniques. The nucleon matrix elements of the local operators can then be evaluated assuming some quark confinement model. We found that twist-four, spin-two corrections to the neutral current neutrino scattering decreases sinStheta/sub w/ by about 1%. Taking into account the twist-four, spin-two corrections for the charged current cross section, we found that they give a dominant contribution to the ratio R/sub nu/ and increased sinStheta/sub w/ by about 0.5%. We also have studied the model dependence of our results, and we have found that the twist-four, spin-two corrections to sinStheta/sub w/ are quite model dependent. The twist-four, spin-one corrections to the neutrino scattering were also calculated. These corrections come from two-quark, one-gluon operators and even at low QS their contribution was found to be considerably smaller than the twist-four, spin-two corrections.

  4. Multiple Scattering Theory for Inelastic Processes

    NASA Astrophysics Data System (ADS)

    Braun, V. M.; Shabelski, Yu. M.

    The review is devoted to the description of inelastic interactions of composite systems in the framework of the multiple scattering approach. Quasielastic scattering and multiple hadron production processes are considered for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions at high energies. We show that important information on inelastic processes follows on very general grounds from the classification of various intermediate states in the elastic amplitude, as similarly AGK cutting rules arise for reggeon diagrams. Attention is mainly given to the appropriate technique, which is illustrated with several examples of increasing complexity. The general formalism for the inelastic screening corrections is presented and its particular applications to various reactions. The review does not aim at the systematic study of numerous versions of the multiple scattering calculus confronting each other and to the extensive experimental data. Instead, we concentrate on a few simple examples to make clear the underlying physics and to work out the needed machinery employed in practical calculations.

  5. Inelastic Neutron Scattering from Glass Formers

    NASA Astrophysics Data System (ADS)

    Buchenau, U.

    Neutron spectra below and above the glass transition temperature show a pronounced difference between strong and fragile glass formers in Angell's fragility scheme. The strong anharmonic increase of the inelastic scattering with increasing temperature in fragile substances is absent in the strongest glass former SiO2. That difference is reflected in the temperature dependence of Brillouin sound velocities above the glass transition. Coherent inelastic neutron scattering data indicate a mixture of sound waves and local modes at the low frequency boson peak. A relation between the fragility and the temperature dependence of the transverse hypersound velocity at the glass temperature is derived.

  6. Intrinsic radial sensitivity of nucleon inelastic scattering

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.

    1988-02-01

    A linear expansion analysis of the folding model transition amplitude is used to study the intrinsic sensitivity of the inelastic scattering of intermediate energy nucleons to the radial form of the neutron transition density, given known proton transition densities from electron scattering. Realistic density-dependent effective interactions are used to construct pseudodata. These pseudodata are then reanalyzed and the error matrix is used to calculate an error band for the radial transition density. This approach reveals the sensitivity of the extracted transition density to absorption, medium modifications of the interaction, and the extent and quality of the data in a manner that is largely free of the residual inaccuracies in reaction theory that complicate the analysis of real data. We find that the intrinsic radial sensitivity of nucleon inelastic scattering is best for projectile energies between 200 and 500 MeV, but is adequate to resolve the radial dependence of neutron transition densities even in the interior of heavy nuclei throughout the energy regime 100-800 MeV. We have also compared our method with scale-factor analyses which assume proportionality between neutron and proton densities. For states whose transition densities are similar in the surface, we find scaling to be accurate at the 20% level. However, for light nuclei substantial deviations beyond the first peak of the differential cross section reveal sensitivity to shape differences. This sensitivity is reduced for heavy nuclei. The model dependence of radial densities is also studied. A high-q constraint is used to analyze the contribution of incompleteness error to the deduced error bands and to reduce the model dependence.

  7. Inelastic photon scattering: Effects and applications in biomedical science and industry

    NASA Astrophysics Data System (ADS)

    Harding, G.

    1997-07-01

    Compton scattering is widely used to analyse electron momentum distributions in solid state systems. Perhaps less well-known is its role as the major cause of image contrast in medical and industrial radiography. This article discusses the principles and applications of a technique, known as Compton scatter imaging (CSI), which is based on direct registration of the Compton scatter radiation. Following a historical survey of the major developments in this field, the strengths and weaknesses of transmission radiography and Compton scatter imaging are compared in order to determine those measurement situations to which the latter is best suited. A description is given of several disturbing effects to which CSI is prone and ways in which these may be accounted for to yield quantitative density data are presented. The most important types of imaging system based on Compton scatter are discussed and compared. The ComScan (an acronym for Compton scatter scanner) is a commercially-available backscatter imaging system which is discussed here in some detail. ComScan images taken from applications of topical and historical interest are presented.

  8. Parity violation in deep inelastic scattering

    SciTech Connect

    Souder, P.

    1994-04-01

    AA beam of polarized electrons at CEBAF with an energy of 8 GeV or more will be useful for performing precision measurements of parity violation in deep inelastic scattering. Possible applications include precision tests of the Standard Model, model-independent measurements of parton distribution functions, and studies of quark correlations.

  9. Neutron inelastic scattering by amino acids

    SciTech Connect

    Thaper, C.L.; Sinha, S.K.; Dasannacharya, B.A.

    1982-01-01

    Inelastic neutron scattering experiments on normal, N-deuterated glycine, normal and N-deuterated alanine, L-valine, L-tyrosine and, L-phenylalanine at 100 K, are reported. Coupling of the external modes to different hydrogens is discussed.

  10. Deep Inelastic Scattering at the Amplitude Level

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2005-08-04

    The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances.

  11. Deep inelastic scattering near the Coulomb barrier

    SciTech Connect

    Gehring, J.; Back, B.; Chan, K.

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  12. Nucleon-nucleon correlations and multiquark cluster effects in semi-inclusive deep inelastic lepton scattering off

    SciTech Connect

    Simula, S.

    1994-04-01

    Semi-inclusive deep inelastic lepton scattering off nuclei is investigated assuming that virtual boson absorption occurs on a hadronic cluster which can be either a two-nucleon correlated pair or a six-quark bag. The differences in the energy distribution of nucleons produced in backward and forward directions are analyzed both at x<1 and x>1.

  13. Inelastic neutron scattering in valence fluctuation compounds

    SciTech Connect

    Jon M Lawrence

    2011-02-15

    The valence fluctuation compounds are rare earth intermetallics where hybridization of the nearly-localized 4f electrons with the conduction electrons leads to incorporation of the 4f's into the itinerant states. This hybridization slows down the conduction electrons and hence gives them a heavy effective mass, justifying application of the term 'heavy Fermion' (HF) to these materials. During the project period, we grew large single crystals of several such compounds and measured their properties using both standard thermodynamic probes and state-of-the-art inelastic neutron scattering. We obtained three main results. For the intermediate valence compounds CePd{sub 3} and YbAl{sub 3}, we showed that the scattering of neutrons by the fluctuations of the 4f magnetic moment does not have the momentum dependence expected for the itinerant heavy mass state; rather, the scattering is more typical of a localized spin fluctuation. We believe that incoherent scattering localizes the excitation. For the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sub 0.065}){sub 2}Ge{sub 2}, which sits at a T = 0 critical point for transformation into an antiferromagnetic (AF) phase, we showed that the scattering from the AF fluctuations does not exhibit any of the divergences that are expected at a phase transition. We speculate that alloy disorder profoundly suppresses the growth of the fluctuating AF regions, leading to short range clusters rather than regions of infinite size. Finally, we explored the applicability of key concepts used to describe the behavior of rare earth heavy Fermions to uranium based HF compounds where the 5f electrons are itinerant as opposed to localized. We found that scaling laws relating the spin fluctuation energy measured in neutron scattering to the low temperature specific heat and susceptibility are valid for the uranium compounds, once corrections are made for AF fluctuations; however, the degeneracy of the high temperature moment is smaller than expected

  14. On rainbow scattering in inelastic molecular collisions

    SciTech Connect

    Thomas, Lowell D.

    1980-01-01

    The purpose of this letter is to call attention to a growing misinterpretation in the literature on rainbow scattering in inelastic molecular collisions. The importance of rainbow structures in the angular distributions of elastic scattering cross sections is well established. However, use of approximate cross section formulas has led to an incorrect classification of the types of rainbows which are possible. Actually, however, it is possible to identify two classes of rainbows. If the relevant distributions and classifications are clearly stated, there should be little chance of confusion,

  15. Deep-inelastic muon scattering from nuclei with hadron detection

    SciTech Connect

    Geesaman, D.; Jackson, H.; Kaufman, S.

    1995-08-01

    Deep-inelastic lepton scattering from nuclei provides a direct look at the quark structure of nuclear matter. These reactions revealed the first convincing evidence that the structure of nucleons is modified in the nuclear medium and had profound implications on the understanding of nuclear dynamics. FNAL experiment E665, using the 490-GeV muon beams at Fermi National Accelerator Laboratory, provides new information on the nuclear effects on nucleon properties by studying deep-inelastic muon scattering with coincident hadron detection. The high beam energy makes the experiment particularly suited to the study of the region of x < 0.1 (where x is the fraction of the momentum of the nucleon carried by the struck quark in the infinite momentum frame), and total center-of-mass hadronic energy > 25 GeV, where hard QCD processes are expected to become evident and there are little data from other deep-inelastic measurements.

  16. Inelastic electron scattering from a moving nucleon

    SciTech Connect

    Kuhn, S.E.; Griffioen, K.

    1994-04-01

    The authors propose to measure inelastically scattered electrons in coincidence with spectator protons emitted backwards relative to the virtual photon direction in the reaction d(e, e{prime}p{sub s})X. In a simple spectator model, the backward proton has equal and opposite momentum to the neutron before it is struck, allowing the authors to study the dependence on kinematics and off-shell behaviour of the electron-nucleon inelastic cross section. If the photon couples to a quark in a 6-quark bag, a different dependence of the cross section on the kinematic variables (x, Q{sup 2}, and p{sub s}) can be observed. This proposed experiment requires large acceptance and beam energies above 6 GeV. It is ideally suited for the CEBAF Large Acceptance Spectrometer (CLAS).

  17. A New Polyethylene Scattering Law Determined Using Inelastic Neutron Scattering

    SciTech Connect

    Lavelle, Christopher M; Liu, C; Stone, Matthew B

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S (Q, E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for T =300 K, and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 300 K which are used to improve the scattering law for HDPE. We describe the experimental methods, review some of the past HDPE scattering laws, and compare computations using these models to the measured S (Q, E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the 1 phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work.

  18. Inclusive Inelastic Electron Scattering from Nuclei

    SciTech Connect

    Fomin, Nadia

    2007-10-26

    Inclusive electron scattering from nuclei at large x and Q{sup 2} is the result of a reaction mechanism that includes both quasi-elastic scattering from nucleons and deep inelastic scattering from the quark consitituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the infiuence of final state interactions and the approach to y-scaling, the strength of nucleon-nucleon correlations, and the approach to x-scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.

  19. Inelastic magnetic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Platzman, P. M.; Tzoar, N.

    1985-04-01

    The theory of magnetic X-ray scattering is used to discuss the possibilities for employing inelastic scattering to probe the magnetic properties of condensed matter systems. In particular, it is shown how the interference between the nonmagnetic (Compton) and magnetic scattering arising from the use of circularly polarized X-rays is absolutely essential in such experiments. The very beautiful preliminary experiments by Sakai and Ono (1976) on Fe which use circularly polarized Moessbauer gamma-rays will be discussed. They already show the sensitivity of the technique to the 'magnetic form factor'. In addition, the physics of a unique quarter wave plate employed in obtaining circularly polarized X-rays is considered, and the implications of this advance for doing such experiments on existing synchrotron X-ray sources are discussed.

  20. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    SciTech Connect

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  1. Inelastic Scattering Of Electrons By Protons

    DOE R&D Accomplishments Database

    Cone, A. A.; Chen, K. W.; Dunning, J. R. Jr.; Hartwig, G.; Ramsey, N. F.; Walker, J. K.; Wilson, R.

    1966-12-01

    The inelastic scattering of electrons by protons has been measured at incident electron energies up to 5 BeV/c and momentum transfers q{sup 2}=4(BeV/c){sup 2}. Excitation of known nucleon resonances at M=1238, 1512, 1688 and possibly 1920 MeV have been observed. The calculations for the resonance at M=1238 MeV have been compared with calculations by Adler based on the dispersion theory of Chew, Goldberger, Low and Nambu. The agreement is good. Qualitative models are discussed for the other resonances.

  2. GiBUU and shallow inelastic scattering

    SciTech Connect

    Lalakulich, O.; Mosel, U.

    2015-05-15

    In this talk we shortly describe the physics contents of the GiBUU transport code, used to describe lepton scattering off nuclei. Particular attention will be given to validation of the GiBUU in pion-, electron- and photon-induced reactions, which serve as a benchmark for neutrino-induced ones. We mainly concentrate on those properties of benchmark reactions, which are relevant to the region of Shallow Inelastic Scattering (SIS). Our results in this region are presented for integrated and differential cross sections. Comparison with recent MINOS inclusive data, as well as predictions for the differential cross sections measurable in Minerνa and NoνA experiments are made.

  3. Inelastic scattering at the B K edge of hexagonal BN

    SciTech Connect

    Jia, J.J.; Callcott, T.A.; Zhou, L.

    1997-04-01

    Many recent soft x-ray fluorescence (SXF) studies have shown that inelastic scattering processes make important contributions to the observed spectra for excitation near the x-ray threshold. These effects are all attributed to a process, usually called an electronic Raman scattering (ERS) process, in which energy is lost to an electronic excitation. The theory has been described using second order perturbation theory by Tulkki and Aberg. In different materials, the detailed nature of the electronic excitation producing the energy loss may be very different. In crystalline Si, diamond and graphite, changes in spectral shape and dispersion of spectral features with variation of the excitation energy are observed, which are attributed to k conservation between the photoelectron generated in the excitation process and the valence hole remaining after the coupled emission process. Hence the process is strongly localized in k-space. In haxagonal boron nitride, which has a lattice and band structure very similar to graphite, inelastic scattering produces very different effects on the observed spectra. Here, the inelastic losses are coupled to a strong resonant elastic scattering process, in which the intermediate state is a localized core exciton and the final state is a localized valence exciton, so that the electronic excitation is strongly localized in real rather than reciprocal space.

  4. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    PubMed Central

    Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.

    2013-01-01

    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332

  5. Field-theoretical description of deep inelastic scattering

    SciTech Connect

    Geyer, B.; Robaschik, D.; Wieczorek, E.

    1980-01-01

    The most important theoretical notions concerning deep inelastic scattering are reviewed. Topics discussed are the model-independent approach, which is based on the general principles of quantum field theory, the application of quantum chromodynamics to deep inelastic scattering, approaches based on the quark--parton model, the light cone algebra, and conformal invariance, and also investigations in the framework of perturbation theory.

  6. High energy-resolution inelastic x-ray scattering

    SciTech Connect

    Hastings, J.B.; Moncton, D.E.; Fujii

    1984-01-01

    A brief review is presented of various aspects of high energy-resolution inelastic x-ray scattering based on synchrotron sources. We show what kinematical advantages are provided by the photon probe and propose mirror and monochromator designs to achieve an optically efficient beam line for inelastic x-ray scattering.

  7. Deep inelastic scattering at energies near the Coulomb barrier

    SciTech Connect

    Gehring, J.; Rehm, K.E.; Schiffer, J.P.

    1993-10-01

    A large yield for a process that appears to have many of the features of deep inelastic scattering has been observed at energies, near the Coulomb barrier in the systems {sup 112,124}Sn + {sup 58}Ni by Wolfs et al. In order to better understand the mechanisms by which energy dissipation takes place close to the barrier, we have extended the measurements of Wolfs to the system {sup 136}Xe + {sup 64}Ni. The use of inverse kinematics in the present measurements resulted in better mass and energy resolution due to reduced target effects and in more complete angular coverage. We have obtained angular distributions, mass distributions, and total cross sections for deep inelastic scattering at two energies near the barrier. The results on the closed neutron shell nucleus {sup 136}Xe complement those from the closed proton shell Sn nuclei.

  8. Observation of the naive-T-odd Sivers effect in deep-inelastic scattering.

    PubMed

    Airapetian, A; Akopov, N; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avetissian, A; Avetisyan, E; Bacchetta, A; Ball, B; Bianchi, N; Blok, H P; Böttcher, H; Bonomo, C; Borissov, A; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gharibyan, V; Giordano, F; Gliske, S; Hadjidakis, C; Hartig, M; Hasch, D; Hill, G; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Lagamba, L; Lamb, R; Lapikás, L; Lehmann, I; Lenisa, P; Linden-Levy, L A; López Ruiz, A; Lorenzon, W; Lu, X-G; Lu, X-R; Ma, B-Q; Mahon, D; Makins, N C R; Manaenkov, S I; Manfré, L; Mao, Y; Marianski, B; Martinez de la Ossa, A; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W-D; Pappalardo, L L; Perez-Benito, R; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shibata, T-A; Shutov, V; Stancari, M; Statera, M; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; van der Nat, P B; Van Haarlem, Y; Van Hulse, C; Varanda, M; Veretennikov, D; Vikhrov, V; Vilardi, I; Vogel, C; Wang, S; Yaschenko, S; Ye, H; Ye, Z; Yen, S; Yu, W; Zeiler, D; Zihlmann, B; Zupranski, P

    2009-10-01

    Azimuthal single-spin asymmetries of leptoproduced pions and charged kaons were measured on a transversely polarized hydrogen target. Evidence for a naive-T-odd, transverse-momentum-dependent parton distribution function is deduced from nonvanishing Sivers effects for pi(+), pi(0), and K(+/-), as well as in the difference of the pi(+) and pi(-) cross sections. PMID:19905623

  9. Medical applications of neutron inelastic scattering

    NASA Astrophysics Data System (ADS)

    Kehayias, Joseph J.; Banuk-Waitekus, Anathea; Valtuena, Silvia; Sheahan, Charles A.

    1999-10-01

    A sealed, D-T, pulsed neutron generator is used for the in vivo measurement of body carbon and oxygen by neutron inelastic scattering. The generator is operated at 10 KHz, at a neutron output of about 2 X 107 n/s/4(pi) . Gamma ray spectra are collected with two B4Ge3O12 crystal detectors. The measurements are used to measure fat and lean content and distribution in the body, with minimal radiation exposure (0.08 mSv). When combined with other measurements (such as total body potassium), this whole body scanning device provides us with the `quality of lean mass', a measurable outcome of treatments designed to improve nutritional status and function. The method is used in studies of human nutrition and for assessing the efficacy of new anti-obesity and anti-cachexia pharmaceuticals.

  10. Inelastic Neutron Scattering Study of Mn

    SciTech Connect

    Zhong, Y.; Sarachik, M.P.; Friedman, J.R.; Robinson, R.A.; Kelley, T.M.; Nakotte, H.; Christianson, A.C.; Trouw, F.; Aubin, S.M.J.; Hendrickson, D.N.

    1998-11-09

    The authors report zero-field inelastic neutron scattering experiments on a 14-gram deuterated sample of Mn{sub 12}-Acetate consisting of a large number of identical spin-10 magnetic clusters. Their resolution enables them to see a series of peaks corresponding to transitions between the anisotropy levels within the spin-10 manifold. A fit to the spin Hamiltonian H = {minus}DS{sub z}{sup 2} + {mu}{sub B}B{center_dot}g{center_dot}S-BS{sub z}{sup 4} + C(S{sub +}{sup 4} + S{sub {minus}}{sup 4}) yields an anisotropy constant D = (0.54 {+-} 0.02) K and a fourth-order diagonal anisotropy coefficient B = (1.2 {+-} 0.1) x 10{sup {minus}3}K. Unlike EPR measurements, their experiments do not require a magnetic field and yield parameters that do not require knowledge of the g-value.

  11. Simple model of bulk and surface excitation effects to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes

    SciTech Connect

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Garcia-Molina, Rafael; Abril, Isabel; Kostarelos, Kostas

    2011-09-01

    The effect of bulk and surface excitations to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes (MWNTs) is studied using the dielectric formalism. Calculations are based on a semiempirical dielectric response function for MWCNTs determined by means of a many-pole plasmon model with parameters adjusted to available experimental spectroscopic data under theoretical sum-rule constrains. Finite-size effects are considered in the context of electron gas theory via a boundary correction term in the plasmon dispersion relations, thus, allowing a more realistic extrapolation of the electronic excitation spectrum over the whole energy-momentum plane. Energy-loss differential and total inelastic scattering cross sections as a function of electron energy and distance from the surface, valid over the energy range {approx}50-30,000 eV, are calculated with the individual contribution of bulk and surface excitations separated and analyzed for the case of normally incident and escaping electrons. The sensitivity of the results to the various approximations for the spatial dispersion of the electronic excitations is quantified. Surface excitations are shown to have a strong influence upon the shape and intensity of the energy-loss differential cross section in the near surface region whereas the general notion of a spatially invariant inelastic mean free path inside the material is found to be of good approximation.

  12. Simple model of bulk and surface excitation effects to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Garcia-Molina, Rafael; Abril, Isabel; Kostarelos, Kostas

    2011-09-01

    The effect of bulk and surface excitations to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes (MWNTs) is studied using the dielectric formalism. Calculations are based on a semiempirical dielectric response function for MWCNTs determined by means of a many-pole plasmon model with parameters adjusted to available experimental spectroscopic data under theoretical sum-rule constrains. Finite-size effects are considered in the context of electron gas theory via a boundary correction term in the plasmon dispersion relations, thus, allowing a more realistic extrapolation of the electronic excitation spectrum over the whole energy-momentum plane. Energy-loss differential and total inelastic scattering cross sections as a function of electron energy and distance from the surface, valid over the energy range ˜50-30,000 eV, are calculated with the individual contribution of bulk and surface excitations separated and analyzed for the case of normally incident and escaping electrons. The sensitivity of the results to the various approximations for the spatial dispersion of the electronic excitations is quantified. Surface excitations are shown to have a strong influence upon the shape and intensity of the energy-loss differential cross section in the near surface region whereas the general notion of a spatially invariant inelastic mean free path inside the material is found to be of good approximation.

  13. Isotope Effects in the Resonant Inelastic Soft X-ray Scattering Maps of Gas-Phase Methanol.

    PubMed

    Benkert, A; Meyer, F; Hauschild, D; Blum, M; Yang, W; Wilks, R G; Bär, M; Reinert, F; Heske, C; Weinhardt, L

    2016-04-14

    The electronic structure of gas-phase methanol molecules (H3COH, H3COD, and D3COD) at atmospheric pressure was investigated using resonant inelastic soft X-ray scattering (RIXS) at the O K and C K edges. We observe strong changes of the relative emission intensities of all valence orbitals as a function of excitation energy, which can be related to the symmetries of the involved orbitals causing an angularly anisotropic RIXS intensity. Furthermore, all observed emission lines are subject to strong spectator shifts of up to -0.9 eV at the O K edge and up to -0.3 eV at the C K edge. At the lowest O K resonance, we find clear evidence for dissociation of the methanol molecule on the time scale of the RIXS process, which is illustrated by comparing X-ray emission spectra of regular and deuterated methanol. PMID:27003748

  14. Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules

    SciTech Connect

    Weinhardt, Lothar; Benkert, Andreas; Meyer, Frank; Blum, Monika; Wilks, Regan G.; Yang, Wanli; Baer, Marcus; Reinert, Friedrich; and others

    2012-04-14

    The electronic structure of gas-phase H{sub 2}O and D{sub 2}O molecules has been investigated using resonant inelastic soft x-ray scattering (RIXS). We observe spectator shifts for all valence orbitals when exciting into the lowest three absorption resonances. Strong changes of the relative valence orbital emission intensities are found when exciting into the different absorption resonances, which can be related to the angular anisotropy of the RIXS process. Furthermore, excitation into the 4a{sub 1} resonance leads to nuclear dynamics on the time scale of the RIXS process; we find evidence for vibrational coupling and molecular dissociation in both, the spectator and the participant emission.

  15. Inelastic x-ray scattering at modest energy resolution

    SciTech Connect

    Finkelstein, K. D.; Tischler, J. Z.; Larson, B. C.

    1997-07-01

    We report results from the development of an inelastic scattering spectrometer designed to take advantage of high energy synchrotron radiation available at CHESS. The device allows a large increase of the effective scattering volume in the sample by permitting measurements to be made in an energy range up to 25 KeV. The highest useable energy appears limited by the efficiency of the analyzers under consideration. At 20 KeV a novel 4-bounce, sagittal focusing monochromator passes 10e11 photons/second with Darwin width limited energy resolution. In the scattering plane, the monochromator images the electron beam producing a small scattering source for the analyzing optics. Analyzer systems under study include a cooled mosaic crystal in para-focusing geometry, and an adjustable spherically bent silicon crystal respectively for parallel and point-by-point collection of the energy loss spectrum. This paper discusses the optical configurations presents results from our early measurements and suggests directions for improvements.

  16. Pion inelastic scattering from sup 20 Ne

    SciTech Connect

    Burlein, M. . Dept. of Physics)

    1989-12-01

    Angular distributions for {sup 20}Ne({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime}) were measured on the Energetic Pion Channel and Spectrometer (EPICS) at the Clinton P. Anderson Meson Physics Facility (LAMPF). Data were taken with both {pi}{sup {plus}} and {pi}{sup {minus}} over an angular range of 12{degree} to 90{degree} for T{sub {pi}}=180 MeV and with {pi}{sup +} from 15{degree} to 90{degree} for T{sub {pi}}=120 MeV. The data were analyzed using both the distorted-wave impulse approximation (DWIA) and the coupled-channels impulse approximation (CCIA) with collective transition densities. In addition, microscopic transition densities were used in the DWIA analysis for states in the lowest rotational bands. The transitions to the 6.73-MeV 0{sup +} and several 1{sup {minus}} states, including the states at 5.79 MeV and 8.71 MeV, were studied using several models for the transition density. Strong evidence for the importance of two-step routes in pion inelastic scattering was seen in several angular distributions, including the 5.79-MeV 1{sup {minus}}, the first three 4{sup +} states, and the 8.78-MeV 6{sup +}. 100 refs., 81 figs., 33 tabs.

  17. Hard diffraction and deep inelastic scattering

    SciTech Connect

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the {open_quotes}lego{close_quotes} phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width {Delta}{eta} does not have a power-law decrease with increasing subenergy s=e{sup {Delta}{eta}}, but behaves at most like some power of pseudorapidity {Delta}{eta}{approx}log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space.

  18. In situ measurement of inelastic light scattering in natural waters

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda < 510nm is negligible for the whole water column, and this percentage increases with depth at /lambda > 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to

  19. Deep inelastic lepton scattering from nucleons and nuclei

    SciTech Connect

    Berger, E.L.

    1986-02-01

    A pedagogical review is presented of results obtained from inclusive deep inelastic scattering of leptons from nucleons and nuclei, with particular emphasis on open questions to be explored in future experiments.

  20. Elastic and inelastic scattering of He atoms from Bi(111)

    NASA Astrophysics Data System (ADS)

    Tamtögl, A.; Mayrhofer-Reinhartshuber, M.; Balak, N.; Ernst, W. E.; Rieder, K. H.

    2010-08-01

    Elastic and inelastic scattering of helium atoms has been used to study the Bi(111) surface. Sharp diffraction peaks are found with results in excellent agreement with previous structure determinations of the Bi(111) surface. The rather large first order peaks with respect to the zero order peak indicate a stronger surface corrugation than observed in helium scattering from other metallic surfaces. Time-of-flight spectra of scattered He atoms clearly reveal two inelastic scattering maxima, which allow a first report on phonon creation and annihilation events on the Bi(111) surface. An estimate of the group velocity shows that the phonon creation peak is likely to correspond to a Rayleigh mode.

  1. On the role of inelastic scattering in phase-plate transmission electron microscopy.

    PubMed

    Hettler, Simon; Wagner, Jochen; Dries, Manuel; Oster, Marco; Wacker, Christian; Schröder, Rasmus R; Gerthsen, Dagmar

    2015-08-01

    The phase contrast of Au nanoparticles on amorphous-carbon films with different thicknesses is analyzed using an electrostatic Zach phase plate in a Zeiss 912 Ω transmission electron microscope with in-column energy filter. Specifically, unfiltered and plasmon-filtered phase-plate transmission electron microscopy (PP TEM) images are compared to gain insight in the role of coherence after inelastic scattering processes. A considerable phase-contrast contribution resulting from a combined elastic-inelastic scattering process is found in plasmon-filtered PP TEM images. The contrast reduction compared to unfiltered images mainly originates from zero-order beam broadening caused by the inelastic scattering process. The effect of the sequence of the elastic and inelastic scattering processes is studied by varying the position of the nanoparticles, which can be either located on top or at the bottom of the amorphous-carbon film with respect to the incident electron beam direction. PMID:25879156

  2. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    SciTech Connect

    Chow, P. Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-07-15

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation.

  3. Azimuthal decorrelation of forward jets in deep inelastic scattering

    SciTech Connect

    Sabio Vera, Agustin; Schwennsen, Florian

    2008-01-01

    We study the azimuthal angle decorrelation of forward jets in deep inelastic scattering. We make predictions for this observable at HERA describing the high energy limit of the relevant scattering amplitudes with quasi-multi-Regge kinematics together with a collinearly-improved evolution kernel for multiparton emissions.

  4. NEANSC international evaluation cooperation SG10 activities on inelastic scattering cross sections for weakly absorbing fission-product nuclides

    SciTech Connect

    Kawai, Masayoshi; Chiba, Satoshi; Nakagawa, Tsuneo; Nakajima, Yutaka; Zukeran, Atsushi; Gruppelaar, H.; Hogenbirk, A.; Salvatores, M.; Dietze, K.

    1994-12-31

    An evaluation method of inelastic scattering cross sections of FP nuclides is investigated. The origins of the discrepancy found in the calculated and measured sample reactivity worths are also discussed emphasizing the effect of ambiguity in inelastic scattering cross sections and neutron spectra.

  5. Halo-independent methods for inelastic dark matter scattering

    SciTech Connect

    Bozorgnia, Nassim; Schwetz, Thomas; Herrero-Garcia, Juan; Zupan, Jure E-mail: juan.a.herrero@uv.es E-mail: jure.zupan@cern.ch

    2013-07-01

    We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.

  6. Band effects on inelastic scattering of low-energy ions from metallic and ionic surfaces: A formalism beyond the adiabatic molecular-orbitals calculation

    NASA Astrophysics Data System (ADS)

    García, Evelina A.; Goldberg, E. C.

    1998-03-01

    Charge exchange and inelastic excitation processes have been analyzed in the scattering of low-energy He+ from metallic and ionic surfaces. An Anderson-like Hamiltonian is proposed, where the parameters are defined taking into account the electronic band structure of the surface as well as the atomic nature of the interaction between the projectile and the target atoms. The time-dependent collisional process is solved by using a Green-function formalism, which allows us to calculate not only the charge-state probabilities but also the one-electron interband excitations in the solid. Competitive effects of the hybridizations among the localized state at the projectile site and the localized and extended surface states are contemplated. In this way we can explain the observed energy dependences of the neutralization probability, as well as the occurrence of energy-loss processes due to the excitation of valence and core surface electrons induced by the collision.

  7. Large volume high-pressure cell for inelastic neutron scattering.

    PubMed

    Wang, W; Sokolov, D A; Huxley, A D; Kamenev, K V

    2011-07-01

    Inelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments. The design and the materials selected for the construction of the cell enable its safe use to a pressure of 1.8 GPa with a sample volume in excess of 400 mm(3). The design of the piston seal eliminates the need for a sample container, thus providing a larger sample volume and reduced absorption. The integrated electrical plug with a manganin pressure gauge offers an accurate measurement of pressure over the whole range of operational temperatures. The performance of the cell is demonstrated by an inelastic neutron scattering study of UGe(2). PMID:21806195

  8. Inelastic x-ray scattering from phonons under multibeam conditions

    NASA Astrophysics Data System (ADS)

    Bosak, Alexey; Krisch, Michael

    2007-03-01

    We report on an experimental observation of a previously neglected multibeam contribution to the inelastic x-ray scattering cross section. Its manifestation is a substantial modification of the apparent phonon selection rules when two (or more) reciprocal lattice points are simultaneously intercepted by the Ewald sphere. The observed multibeam contributions can be treated semi-quantitatively in the frame of Renninger’s “simplest approach.” A few corollaries, relevant for experimental work on inelastic scattering from phonons, are presented.

  9. Inelastic x-ray scattering at modest energy resolution

    SciTech Connect

    Finkelstein, K.D.; Larson, B.C.

    1997-07-01

    We report results from the development of an inelastic scattering spectrometer designed to take advantage of high energy synchrotron radiation available at CHESS. The device allows a large increase of the effective scattering volume in the sample by permitting measurements to be made in an energy range up to 25 KeV. The highest useable energy appears limited by the efficiency of the analyzers under consideration. At 20 KeV a novel 4-bounce, sagittal focusing monochromator passes 10e11 photons/second with Darwin width limited energy resolution. In the scattering plane, the monochromator images the electron beam producing a small scattering source for the analyzing optics. Analyzer systems under study include a cooled mosaic crystal in para-focusing geometry, and an adjustable spherically bent silicon crystal respectively for parallel and point-by-point collection of the energy loss spectrum. This paper discusses the optical configurations presents results from our early measurements and suggests directions for improvements. {copyright} {ital 1997 American Institute of Physics.}

  10. Dynamic color screening in diffractive deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ingelman, Gunnar; Pasechnik, Roman; Werder, Dominik

    2016-05-01

    We present a novel Monte Carlo implementation of dynamic color screening via multiple exchanges of semisoft gluons as a basic QCD mechanism to understand diffractive electron-proton scattering at the HERA collider. Based on the kinematics of individual events in the standard QCD description of deep inelastic scattering at the parton level, which at low x is dominantly gluon initiated, the probability is evaluated for additional exchanges of softer gluons resulting in an overall color singlet exchange leading to a forward proton and a rapidity gap as the characteristic observables for diffractive scattering. The probability depends on the impact parameter of the soft exchanges and varies with the transverse size of the hard scattering subsystem and is therefore influenced by different QCD effects. We account for matrix elements and parton shower evolution either via conventional DGLAP log Q2 evolution with collinear factorization or CCFM small x evolution with k⊥ factorization and discuss the sensitivity to the gluon density distribution in the proton and the importance of large log x contributions. The overall result is, with only two model parameters which have theoretically motivated values, a satisfactory description of the observed diffractive cross section at HERA obtained in a wide kinematical range.

  11. IOSA investigations of the effects of potential surface topography upon elastic and inelastic scattering and rotational relaxation in the (He, CO2) system

    NASA Astrophysics Data System (ADS)

    Agrawal, P. M.; Raff, L. M.

    1981-09-01

    The effect of potential surface topography upon elastic and inelastic scattering has been investigated using the infinite-order sudden approximation (IOSA) to compute total differential and integral cross sections, state-to-state cross sections, and the relaxation rates of depleted levels in the (He, CO2) and (3He, CO2) rigid rotor systems on six different potential energy surfaces that include three surfaces obtained from electrom-gas type calculations, two ab initio SCF surfaces, and one surface (KPK) obtained by empirical fitting to the measured total differential cross section. It is found that the total elastic, inelastic, and differential cross sections are very sensitive to the long-range attractive terms in the potential, and the differential cross sections are also found to be significantly dependent upon the topography of the repulsive regions of the surface. Consequently, differential cross sections are very sensitive probes of surface topography and should be the data of choice for purpose of empirical adjustment of a surface. In contrast, the relaxation rates of a depleted rotational level are found to be insensitive to the details of the surface. In addition, the relaxation rate and total inelastic cross section out of state j are found to be almost independent of the particular j state involved. Consideration of the microscopic details leading to these results suggests that similar behavior will be observed in other systems that are nearly classical with closely spaced energy levels. Of the surfaces investigated, the KPK surface gives results that are in closest agreement with experiment. The electron-gas and SCF surfaces, when augmented by a van der Waals attractive term, give similar results which are almost as good as those obtained on the empirically adjusted KPK surface. This suggests that a reasonable surface for a closed-shell system can be obtained by either procedure. The IOSA results for the relaxation rates and total inelastic cross

  12. Vibrational density of states of thin films measured by inelastic scattering of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Röhlsberger, R.; Sturhahn, W.; Toellner, T. S.; Quast, K. W.; Alp, E. E.; Bernhard, A.; Metge, J.; Rüffer, R.; Burkel, E.

    1999-03-01

    Vibrational spectra of thin films were measured by inelastic nuclear resonant scattering of synchrotron radiation in grazing incidence geometry. A strong enhancement of the inelastic signal was obtained by designing the layer system as X-ray waveguide and coupling the incident beam into a guided mode. This effect opens the possibility to study vibrational excitations in thin films that were so far impossible to obtain due to flux limitations.

  13. In-situ soil carbon analysis using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  14. Resonant inelastic x-ray scattering from molecules and atoms

    SciTech Connect

    Arp, U.; Deslattes, R.D.; Miyano, K.E.; Southworth, S.H.

    1995-12-31

    X-ray fluorescence spectroscopy is one of the most powerful methods for the understanding of the electronic structure of matter. We report here on fluorescence experiments in the 2 to 6 keV photon energy range using tunable synchrotron radiation and the resulting experimental programs on resonant inelastic scattering in atoms and on polarization measurements in resonant molecular excitations.

  15. Inelastic X-ray Scattering Studies of Electronic Excitations

    NASA Astrophysics Data System (ADS)

    Ishii, Kenji; Tohyama, Takami; Mizuki, Jun'ichiro

    2013-02-01

    Inelastic x-ray scattering (IXS) has developed into one of the most powerful momentum-resolved spectroscopies. Especially in the last decade, it has achieved significant progress utilizing brilliant x-rays from third-generation synchrotron radiation facilities. Simultaneously, theoretical efforts have been made to predict or interpret the experimental spectra. One of the scientific fields studied intensively by IXS is strongly correlated electron systems, where the interplay of charge, spin, and orbital degrees of freedom determines their physical properties. IXS can provide a new insight into the electron dynamics of the systems through the observation of charge, spin, and orbital excitations. Focusing on the momentum-resolved electronic excitations in strongly correlated electron systems, we review IXS studies and the present capabilities of IXS for the study of the dynamics of materials. With nonresonant inelastic x-ray scattering (NIXS), one can directly obtain dynamical charge correlation and we discuss its complementary aspects with inelastic neutron scattering. NIXS also has a unique capability of measuring higher multipole transitions, which are usually forbidden in conventional optical absorption. Resonant inelastic x-ray scattering (RIXS) is now established as a valuable tool for measuring charge, spin, and orbital excitations in a momentum-resolved manner. We describe RIXS works on cuprates in detail and show what kind of electronic excitations have been observed. We also discuss RIXS studies on other transition-metal compounds. Finally, we conclude with an outlook on IXS using next-generation x-ray sources.

  16. Benchmarking the inelastic neutron scattering soil carbon method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  17. Energy dependence of pion inelastic scattering from sup 208 Pb

    SciTech Connect

    Oakley, D.S. Lewis and Clark College, Portland, Oregon ); Peterson, R.J. ); Seestrom, S.J.; Morris, C.L.; Plum, M.A. ); Zumbro, J.D. ); Williams, A.L.; Bryan, M.A.; McDonald, J.W.; Moore, C.F. )

    1991-11-01

    Differential cross sections were measured for pion elastic and inelastic scattering from {sup 208}Pb at {ital T}{sub {pi}}=120 and 250 MeV. Energy-dependent neutron- and proton-transition matrix elements for a range of excited states were extracted and tested for consistency, using several structure models.

  18. Inelastic electron scattering on C{sub 60} clusters

    SciTech Connect

    Yabana, K.; Bertsch, G.F.

    1993-12-31

    We calculate the electronic excitation of C{sub 60} by inelastic electron scattering or electron energy loss spectroscopy (EELS). The scattering process is treated in the distorted-wave Born approximation, and the electronic excitations are calculated in a spherical basis model. We find that low energy electrons excite some non-photoactive modes, in agreement with experiment. Spin triplet modes are poorly excited, even at the lowest electron energies.

  19. Inclusive Deep Inelastic Scattering at HERA

    SciTech Connect

    Newman, Paul

    2011-07-15

    Recent inclusive charged and neutral current scattering data from HERA are presented. Emphasis is placed on the resulting constraints on the proton parton densities and on the influence of low x proton structure on diffraction.

  20. [Inelastic electron scattering from surfaces]. [Progress report

    SciTech Connect

    Not Available

    1993-10-01

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned.

  1. DEEPLY INELASTIC SCATTERING OFF NUCLEI AT RHIC.

    SciTech Connect

    VENUGOPALAN, R.

    2001-09-14

    In this talk, we discussed the physics case for an eA collider. We emphasized the novel physics that might be studied at small x. The interesting physics at intermediate x's has been discussed elsewhere [3]. Plans for an electron-ion collider include, as a major part of the program, the possibility of doing polarized electron-polarized proton/light ion scattering. A discussion of the combined case for high energy electron nucleus and polarized electron-polarized proton scattering will be published separately [66].

  2. Inelastic light scattering from a Mott insulator

    SciTech Connect

    Oosten, D. van; Dickerscheid, D.B.M.; Farid, B.; Stoof, H.T.C.; Straten, P. van der

    2005-02-01

    We propose to use Bragg spectroscopy to measure the excitation spectrum of the Mott-insulator state of an atomic Bose gas in an optical lattice. We calculate the structure factor of the Mott insulator taking into account both the self-energy corrections of the atoms and the corresponding dressing of the atom-photon interaction. We determine the scattering rate of photons in the stimulated Raman transition and show that by measuring this scattering rate in an experiment, in particular, the excitation gap of the Mott insulator can be determined.

  3. Variability of the downwelling diffuse attenuation coefficient with consideration of inelastic scattering.

    PubMed

    Zheng, Xiaobing; Dickey, Tommy; Chang, Grace

    2002-10-20

    In situ time-series measurements of spectral diffuse downwelling irradiance from the Bermuda Testbed Mooring are presented. Averaged diffuse attenuation coefficients of downwelling irradiance, Kd,and their elastic and inelastic components are investigated at seven wavelengths. At shorter wavelengths (<510 nm), Kd is weakly dependent on the solar zenith angle owing to the prevailing scattering effect and therefore can be considered a quasi-inherent optical property. At longer wavelengths (>510 nm), Kd shows a strong dependence on the solar zenith angle. As depth increases, inelastic scattering plays a greater role for the underwater light field at red wavelengths. PMID:12396201

  4. Conversion method of powder inelastic scattering data for one-dimensional systems

    SciTech Connect

    Tomiyasu, Dr. Keisuke; Fujita, Prof. Masaki; Kolesnikov, Alexander I; Bewley, Robert I.; Bull, Dr. Martyn J.; Bennington, Dr. Stephen M.

    2009-01-01

    Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.

  5. Modern Techniques for Inelastic Thermal Neutron Scattering Analysis

    NASA Astrophysics Data System (ADS)

    Hawari, A. I.

    2014-04-01

    A predictive approach based on ab initio quantum mechanics and/or classical molecular dynamics simulations has been formulated to calculate the scattering law, S(κ⇀,ω), and the thermal neutron scattering cross sections of materials. In principle, these atomistic methods make it possible to generate the inelastic thermal neutron scattering cross sections of any material and to accurately reflect the physical conditions of the medium (i.e, temperature, pressure, etc.). In addition, the generated cross sections are free from assumptions such as the incoherent approximation of scattering theory and, in the case of solids, crystalline perfection. As a result, new and improved thermal neutron scattering data libraries have been generated for a variety of materials. Among these are materials used for reactor moderators and reflectors such as reactor-grade graphite and beryllium (including the coherent inelastic scattering component), silicon carbide, cold neutron media such as solid methane, and neutron beam filters such as sapphire and bismuth. Consequently, it is anticipated that the above approach will play a major role in providing the nuclear science and engineering community with its needs of thermal neutron scattering data especially when considering new materials where experimental information may be scarce or nonexistent.

  6. Effect of suppression of the inelastic scattering rate on the penetration depth and conductivity in a d{sub x{sup 2}{minus}y{sup 2}} superconductor

    SciTech Connect

    Schachinger, E.; Carbotte, J.P.; Marsiglio, F.

    1997-08-01

    We use a separable d-wave model to describe the momentum dependence of the pairing interaction in the gap channel. We include the inelastic scattering through a spectral density which describes the fluctuation spectrum responsible for superconductivity. The collapse of the scattering rate observed in microwave experiments is modeled through a low-frequency cutoff on the fluctuation spectrum. The effect of this cutoff on the temperature dependence of the magnetic-field penetration depth and on the infrared conductivity and associated scattering rates is calculated. {copyright} {ital 1997} {ital The American Physical Society}

  7. Measurement of azimuthal asymmetries in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Abbiendi, G.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Coppola, N.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Paul, E.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Barret, O.; Brook, N. H.; Foster, B.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Burgard, C.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hasell, D.; Hebbel, K.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Lindemann, L.; Löhr, B.; Martínez, M.; Milite, M.; Monteiro, T.; Moritz, M.; Notz, D.; Pelucchi, F.; Petrucci, M. C.; Rohde, M.; Saull, P. R. B.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Tassi, E.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Straub, P. B.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Benen, A.; Eisenhardt, S.; Markun, P.; Raach, H.; Wölfle, S.; Bussey, P. J.; Doyle, A. T.; Lee, S. W.; Macdonald, N.; McCance, G. J.; Saxon, D. H.; Sinclair, L. E.; Skillicorn, I. O.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Garfagnini, A.; Gialas, I.; Gladilin, L. K.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Zetsche, F.; Goncalo, R.; Long, K. R.; Miller, D. B.; Tapper, A. D.; Walker, R.; Mallik, U.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Park, I. H.; Son, D.; Barreiro, F.; García, G.; Glasman, C.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Barbi, M.; Corriveau, F.; Hanna, D. S.; Ochs, A.; Padhi, S.; Riveline, M.; Stairs, D. G.; Wing, M.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Y. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Große-Knetter, J.; Matsushita, T.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dosselli, U.; Dusini, S.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Okrasiński, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Pavel, N.; Abramowicz, H.; Dagan, S.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Butterworth, J. M.; Catterall, C. D.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Z˙arnecki, A. F.; Adamus, M.; Gadaj, T.; Deppe, O.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Foudas, C.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wildschek, T.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Catterall, C.; Cole, J. E.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.

    2000-05-01

    The distribution of the azimuthal angle for the charged hadrons has been studied in the hadronic centre-of-mass system for neutral current deep inelastic positron-proton scattering with the ZEUS detector at HERA. Measurements of the dependence of the moments of this distribution on the transverse momenta of the charged hadrons are presented. Asymmetries that can be unambiguously attributed to perturbative QCD processes have been observed for the first time.

  8. Hadron mass corrections in semi-inclusive deep inelastic scattering

    SciTech Connect

    A. Accardi, T. Hobbs, W. Melnitchouk

    2009-11-01

    We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron $h$. The hadron mass correction is made by introducing a generalized, finite-$Q^2$ scaling variable $\\zeta_h$ for the hadron fragmentation function, which approaches the usual energy fraction $z_h = E_h/\

  9. Collective microdynamics of liquid lithium: An inelastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskiĭ, N. M.; Novikov, A. G.; Savostin, V. V.

    2010-05-01

    A portion of the dispersion curve for collective modes in liquid lithium has been constructed from experimental data on inelastic scattering of slow neutrons obtained on the DIN-2PI neutron spectrometer (IBR-2 reactor, Joint Institute for Nuclear Research, Dubna, Russia). Measurements have been performed at a temperature of 500 K ( T m (Li) = 453.7 K). The coherent scattering component has been separated from the experimental spectra and analyzed. Information on the characteristics of collective excitations in liquid lithium has been derived.

  10. Coherent inelastic Mössbauer scattering of synchrotron radiation (abstract)

    NASA Astrophysics Data System (ADS)

    Belyakov, V. A.

    2002-03-01

    Recent success of coherent elastic [Nuclear Resonant Scattering of Synchrotron Radiation, Part A edited by E. Gerdau and H. de Woard (Baltzer Science, 2000), Hyperfine Interact. 123/124, Chap. 4] and incoherent inelastic (Hyperfine Interact. 123/124, Chap. 5) Mössbauer scattering of synchrotron radiation (SR) in investigations of very delicate properties of the condensed matter also makes it urgent to perform experiments on coherent inelastic Mössbauer scattering (CIMS) of synchrotron radiation (the common meaning of the term CIMS is coherent inelastic Mössbauer scattering accompanied by creation or annihilation of phonons in the crystal lattice, i.e., by very low energy losses of SR quanta). However up to now there were no publications on experimental observation of CIMS so there is a need in theoretical investigations to reveal the most favorable conditions for CIMS observation. The theory of CIMS is presented below and applied to specific processes of CIMS such as forward scattering, scattering at grazing incidence angles, and scattering via a cascade of Mössbauer transitions. It is shown that the phase matching (between the incident and scattered beam) is very important for the angular and frequency distribution in CIMS and processes where phase matching can be reached, which the best candidates for CIMS experimental investigations. The performed analysis shows that because of the phase matching demands the forward CIMS is suppressed significantly in comparison with the coherent elastic Mössbauer scattering [V. A. Belyakov, JETP Lett. 67, 8 (1998)] and more favorable for observation is CIMS at a nonzero scattering angle. Some examples of CIMS specific geometries are discussed. In particular, it is shown that for the grazing CIMS at isotope interface (a plane interface between regions with different abundance of the Mössbauer isotope) there is enhancement of CIMS at the critical angle of total reflection and suppression of CIMS at angles below the critical

  11. 26Al+p elastic and inelastic scattering reactions and galactic abundances of 26Al

    NASA Astrophysics Data System (ADS)

    Pittman, S. T.; Bardayan, D. W.; Chae, K. Y.; Chipps, K. A.; Jones, K. L.; Kozub, R. L.; Matei, C.; Matos, M.; Moazen, B. H.; Nesaraja, C. D.; O'Malley, P. D.; Pain, S. D.; Parker, P. D.; Peters, W. A.; Shriner, J. F., Jr.; Smith, M. S.

    2012-06-01

    Galactic 26Al is the first radioactive nucleus to be positively identified by γ-ray astronomy with detection of the 1.809 MeV γ ray associated with its decay. This nucleus is destroyed in astrophysical environments in the 26Al(p,γ)27Si and inelastic 26Al+p scattering reactions where properties of 27Si levels determine reaction rates. To investigate these properties, elastic and inelastic 26Al+p scattering reactions were measured between Ec.m. = 0.5-1.5 MeV at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). A candidate for a new resonance in the 26Al(p,γ)27Si reaction was identified. Upper limits were also set on the strengths of postulated resonances and on the cross section of the inelastic reaction, but there is little effect on current reaction rate calculations.

  12. Resource Letter on Stimulated Inelastic X-ray Scattering at an XFEL

    SciTech Connect

    Patterson, Bruce D.; /SLAC

    2010-09-02

    At sufficient X-ray intensity, stimulated effects in inelastic scattering will become important. These coherent, non-linear optical phenomena may be used to impulsively produce a high degree of collective excitation in, for example, correlated electron materials, suitable for performing ultrafast time-resolved spectroscopy. This Resource Letter collects information on fundamental aspects of stimulated X-ray scattering and evaluates the prospect for successful experiments at a present or future X-ray free electron laser (XFEL) facility.

  13. Inelastic pion scattering by /sup 13/C at low energies

    SciTech Connect

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  14. Inelastic neutron scattering from tetramethylammonium cations occluded within zeolites

    SciTech Connect

    Brun, T.O.; Curtiss, L.A.; Iton, L.E.; Kleb, R.; Newsam, J.M.; Beyerlein, R.A.; Vaughan, D.E.W.

    1987-06-24

    The use of organic bases, for example, tetraalklylammonium hydroxides, and other organic reagents has greatly enhanced the scope of gel/solution synthesis routes to crystalline microporous materials such as zeolites. The role of these organic components, however, continues to be the topic of considerable debate. The organic components first modify the gel structural chemistry. The presence of tetramethylammonium (TMA) hydroxide, for example, promotes the formation of double four-ring units in silicate solutions. Occlusion of organic gel components in zeolite crystal structures, however, leads also to the concept of a templating effect in which the organic component provides a basis around which the developing zeolite cages form. The mechanism of this templating process remains somewhat ill defined and must, at least, be of variable specificity. The authors describe here the use of inelastic neutron scattering (INS) to measure TMA template torsional vibrations, vibrations that provide to be sensitive to the strength of the interaction between the template cation and the enclosing zeolite cage.

  15. Inelastic neutron scattering studies of novel quantum magnets

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp W.

    Inelastic neutron scattering was used to study the magnetic excitation spectrum of three quantum magnets: (i) the double perovskite Ba2FeReO 6; (ii) the two-dimensional square lattice Heisenberg antiferromagnet Sr2CuO2Cl2; and (iii) the quasi-two-dimensional frustrated two-leg ladder BiCu2PO6. We have conducted inelastic neutron scattering measurements on powder samples of the double perovskite compound Ba2FeReO6. The measurements revealed two well defined dispersing spin wave modes. No excitation gap was observable and the spectrum can be explained with a local moment model incorporating the interactions of Fe spins with spin-orbital locked degrees of freedom on the Re site. The results reveal that both significant electronic correlations and spin-orbit coupling on the Re site play a significant role in the spin dynamics of Ba2FeReO6. High resolution neutron scattering measurements of magnetic excitations in the parent cuprate Sr2CuO2Cl2 reveal a significant dispersion and momentum dependent damping of the zone boundary magnons. We directly compare our measurements with previous resonant inelastic x-ray scattering measurements and find a ~25 meV discrepancy between the two techniques for the measured zone boundary energy at (1/2, 0). The deviations are greatest precisely in the region of phase space where the magnon damping is strongest. This comparison shows that the inelastic x-ray spectrum must contain significant contributions from higher energy excitations not previously considered. Our measurements demonstrate that the high energy continuum of magnetic fluctuations is a ubiquitous feature of the magnetic spectrum among insulating monolayer cuprates, and that these excitations couple to both inelastic neutron and light scattering. A comprehensive series of inelastic neutron scattering measurements was used to investigate spin excitations in the frustrated two-leg ladder compound BiCu2PO6. The measurements revealed six branches of steeply dispersing triplon

  16. Probabilistic description of particle transport. III. Inelastic scattering

    SciTech Connect

    Goulet, T.; Keszei, E.; Jay-Gerin, J. Departement de Medecine Nucleaire et de Radiobiologie, Faculte de Medecine, Universite de Sherbrooke, Sherbrooke, PQ )

    1990-06-01

    We extend our probabilistic model of quasielastic particle transport to include possible inelastic scatterings of the particles in the bulk of the studied media. We show that this extended model can be used to describe different types of experiments involving electrons that go through or are reflected by a plane-parallel layer deposited on a substrate. In particular, we reanalyze the experimental results of low-energy ({approx lt}10 eV) electron transmission through solid xenon and solid molecular nitrogen. This analysis shows that the extended model is consistent with the quasielastic one, but is more powerful since we can now determine both the elastic and inelastic electron mean free paths. The analysis allows one to study the threshold creation of excitons that can be observed at about 8.5 and 9.5 eV in solid xenon, and around 7.5 eV in solid molecular nitrogen.

  17. Calculation of inelastic electron-nucleus scattering form factors of 29Si

    NASA Astrophysics Data System (ADS)

    Salman, A. D.; Al-Dahan, N.; Sharrad, F. I.; Hossain, I.

    2014-08-01

    Inelastic electron scattering form factors for 29Si nucleus with total angular momentum and positive parity (Jπ) and excited energy (3/2+, 1.273 MeV; 5/2+, 2.028 MeV; 3/2+, 2.425 MeV and 7/2+, 4.079 MeV) have been calculated using higher energy configurations outside the sd-shell. The calculations of inelastic form factors up to the first- and second-order with and without core-polarization (CP) effects were compared with the available experimental data. The calculations of inelastic electron scattering form factors up to the first-order with CP effects are in agreement with the experimental data, excepted for states 3/2+(1.273 MeV) and 5/2+(2.028 MeV) and without this effect are failed for all states. Furthermore, the calculations of inelastic electron scattering form factors up to the second-order with CP effects are in agreement with the experimental data for 3/2+(1.273 MeV) and 5/2+(2.028 MeV).

  18. Studies of toxic aerosols via elastic and inelastic light scattering

    SciTech Connect

    Foss, W.; Li, W.; Allen, T.M.; Blair, D.S.; Davis, E.J. )

    1993-02-01

    Evaporation rates and chemical characteristics of potentially toxic aerosols have been determined by elastic and inelastic light-scattering measurements. The aerosol systems examined were a commercial catalyst consisting of a mixture of stannous octanoate (SNO) and 2-ethylhexanoic acid (EHA) and droplets emitted from open tanks of chromic acid solutions used for anodizing aluminum. The heavy metals contained in these aerosols represent a danger to the workplace if such materials are inhaled. Nanogram amounts of the solutions were studied by suspending single microdroplets in electrodynamic balances in a flow of air to measure evaporation rates and to obtain Raman spectra. Elastic scattering data include phase functions and morphological resonance spectra from which droplet sizes are determined. The inelastic light-scattering data or Raman spectra provide molecular vibrational bond information. It was found that EHA spectra agree with bulk data in the literature, and that SNO Raman spectra, which are not available in the literature, are consistent with infrared spectra for bulk SNO. At room temperature the vapor pressure of SNO is on the order of 0.01 Pa while that of EHA is on the order of 0.1 Pa. Raman data for the residue of evaporated chromic acid solutions show the presence of chromium oxides (Cr[sup 6+] compounds), surfactants, and bound (nonvolatile) water. 31 refs., 14 figs.

  19. Elastic and Inelastic Scattering of Neutrons using a CLYC array

    NASA Astrophysics Data System (ADS)

    Brown, Tristan; Doucet, E.; Chowdhury, P.; Lister, C. J.; Wilson, G. L.; Devlin, M.; Mosby, S.

    2015-10-01

    CLYC scintillators, which have dual neutron and gamma response, have recently ushered in the possibility of fast neutron spectroscopy without time-of-flight (TOF). A 16-element array of 1'' x 1'' 6Li-depleted CLYC crystals, where pulse-shape-discrimination is achieved via digital pulse processing, has been commissioned at UMass Lowell. In an experiment at LANSCE, high energy neutrons were used to bombard 56Fe and 238U targets, in order to measure elastic and inelastic neutron scattering cross sections as a function of energy and angle with the array. The array is placed very close to the targets for enhanced geometrical solid angles for scattered neutrons compared to standard neutron-TOF measurements. A pulse-height spectrum of scattered neutrons in the detectors is compared to the energy of the incident neutrons, which is measured via the TOF of the pulsed neutrons from the source to the detectors. Recoil corrections are necessary to combine the energy spectra from all the detectors to obtain angle-integrated elastic and inelastic cross-sections. The detection techniques, analysis procedures and results will be presented. Supported by NNSA-SSAA program through DOE Grant DE-NA00013008.

  20. Semi-inclusive Deep Inelastic Scattering at Small-x

    SciTech Connect

    Marquet, C.; Xiao, B.-W.; Yuan, Feng

    2009-05-29

    We study the semi-inclusive hadron production in deep inelastic scattering at small-x.A transverse momentum dependent factorization is found consistent with the resultscalculated in the color-dipole framework in the appropriate kinematic region. The transverse momentum dependent quark distribution can be studied in this processas a probe for the small-x saturation physics. Especially, the ratio of the quark distributions as functions of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q2 dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method.

  1. Lattice dynamics in copper indium diselenide by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Derollez, P.; Fouret, R.; Laamyem, A.; Hennion, B.; Gonzalez, J.

    1999-05-01

    The phonon dispersion curves along the [100] and [001] directions of CuInSe2 have been measured by inelastic neutron scattering. The neutron measurements reveal the uncertainty of optical measurements because of the large absorption of this material. The lattice dynamics is analysed with a rigid ion model: Born-von Karman short range interactions associated with long range electrostatic forces. The calculated dispersion curves are in good agreement with the experiment. The atomic displacements associated with each vibrational mode are used to discuss the optical phonons. The obtained results provide a strong experimental basis from which we can validate the ab initio methods.

  2. Transition probability functions for applications of inelastic electron scattering.

    PubMed

    Löffler, Stefan; Schattschneider, Peter

    2012-09-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709

  3. NLO QCD corrections to graviton induced deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Stirling, W. J.; Vryonidou, E.

    2011-06-01

    We consider Next-to-Leading-Order QCD corrections to ADD graviton exchange relevant for Deep Inelastic Scattering experiments. We calculate the relevant NLO structure functions by calculating the virtual and real corrections for a set of graviton interaction diagrams, demonstrating the expected cancellation of the UV and IR divergences. We compare the NLO and LO results at the centre-of-mass energy relevant to HERA experiments as well as for the proposed higher energy lepton-proton collider, LHeC, which has a higher fundamental scale reach.

  4. Photon correlations generated by inelastic scattering in a one-dimensional waveguide coupled to three-level systems

    NASA Astrophysics Data System (ADS)

    Fang, Yao-Lung L.; Baranger, Harold U.

    2016-04-01

    We study photon correlations generated by scattering from three-level systems (3LS) in one dimension. The two systems studied are a 3LS in a semi-infinite waveguide (3LS plus a mirror) and two 3LS in an infinite waveguide (double 3LS). Our two-photon scattering approach naturally connects photon correlation effects with inelastically scattered photons; it corresponds to input-output theory in the weak-probe limit. At the resonance where electromagnetically induced transparency (EIT) occurs, we find that no photons are scattered inelastically and hence there are no induced correlations. Slightly away from EIT, the total inelastically scattered flux is large, being substantially enhanced due to the additional interference paths. This enhancement carries over to the two-photon correlation function, which exhibits non-classical behavior such as strong bunching with a very long time-scale. The long time scale originates from the slow-light effect associated with EIT.

  5. Reprint of : Photon correlations generated by inelastic scattering in a one-dimensional waveguide coupled to three-level systems

    NASA Astrophysics Data System (ADS)

    Fang, Yao-Lung L.; Baranger, Harold U.

    2016-08-01

    We study photon correlations generated by scattering from three-level systems (3LS) in one dimension. The two systems studied are a 3LS in a semi-infinite waveguide (3LS plus a mirror) and two 3LS in an infinite waveguide (double 3LS). Our two-photon scattering approach naturally connects photon correlation effects with inelastically scattered photons; it corresponds to input-output theory in the weak-probe limit. At the resonance where electromagnetically induced transparency (EIT) occurs, we find that no photons are scattered inelastically and hence there are no induced correlations. Slightly away from EIT, the total inelastically scattered flux is large, being substantially enhanced due to the additional interference paths. This enhancement carries over to the two-photon correlation function, which exhibits non-classical behavior such as strong bunching with a very long time-scale. The long time scale originates from the slow-light effect associated with EIT.

  6. Dynamical regimes on the Cl + H2 collisions: Inelastic rainbow scattering

    NASA Astrophysics Data System (ADS)

    González-Sánchez, L.; Aldegunde, J.; Jambrina, P. G.; Aoiz, F. J.

    2011-08-01

    While Cl + H2 reactive collisions have been a subject of numerous experimental and theoretical studies, inelastic collisions leading to rotational energy transfer and/or vibrational excitation have been largely ignored. In this work, extensive quantum mechanical calculations covering the 0.5-1.5 eV total energy range and various initial rovibrational states have been carried out and used to perform a joint study of inelastic and reactive Cl + H2 collisions. Quasiclassical trajectories calculations complement the quantum mechanical results. The analysis of the inelastic transition probabilities has revealed the existence of two distinct dynamical regimes that correlate with low and high impact parameters, b, and are neatly separated by glory scattering. It has been found that while high-b collisions are mainly responsible for |Δj| = 2 transitions which dominate the inelastic scattering, they are very inefficient in promoting higher |Δj| transitions. The effectiveness of this type of collision also drops with rotational excitation of H2. In contrast, reactive scattering, that competes with |Δ j| > 2 inelastic transitions, is exclusively caused by low-b collisions, and it is greatly favored when the reactants get rotationally excited. Previous studies focusing on the reactivity of the Cl + H2 system established that the van der Waals well located in the entrance channel play a key role in determining the mechanism of the collisions. Our results prove this to be also a case for inelastic processes, where the origin of the double dynamical regime can be traced back to the influence exerted by this well that shapes the topology of the entrance channel of the Cl-H2 system.

  7. Rotationally inelastic gas--surface scattering: HCl from Au(111)

    SciTech Connect

    Lykke, K.R.; Kay, B.D. )

    1990-02-15

    A quantum-resolved molecular beam--surface scattering study of HCl scattered from Au(111) is described. The HCl is detected in a quantum-resolved manner via (2+1) resonant enhanced multiphoton ionization (REMPI). Greater than 85% of the incident HCl molecules are in a single-quantum state ({ital v}=0, {ital J}=0) with a narrow velocity distribution ({Delta}{upsilon}/{upsilon}{lt}0.10). The scattered HCl is strongly peaked about the specular angle, and both its final velocity and rotational distributions are indicative of direct inelastic scattering. The scattered rotational distributions exhibit features characteristic of rotational rainbows and have a mean rotational energy that displays a bilinear dependence upon the incident normal kinetic energy and surface temperature. The final velocity distributions are largely insensitive to the rotational level and indicate that the energy loss to phonons is small ({lt}20%). Analysis of the scattered data indicates an orientation-averaged attractive well depth of {similar to}5 kcal/mol for the HCl--Au(111) interaction.

  8. Resonant inelastic contact scattering of X-ray photons on atoms and ions

    NASA Astrophysics Data System (ADS)

    Hopersky, A. N.; Nadolinsky, A. M.; Yavna, V. A.

    2006-10-01

    The existence of an extended resonance structure outside the X-ray emission regions is theoretically predicted in the total double differential cross section for the scattering of linearly polarized photons on free atoms (ions). This structure is almost entirely determined by inelastic photon scattering of the contact type. The amplitude of the inelastic contact scattering probability is described using an analytical expression for a non-relativistic transition operator, which was previously obtained by the author outside the dipole and momentum approximations. The resonant inelastic contact scattering of X-ray photons on a neon atom and neonlike ions of argon, titanium, and iron has been studied. Calculations were performed in a nonrelativistic approximation for the wave functions of the scattering states, with allowance for many-body effects of the radial relaxation of one-electron orbitals in the Hartree-Fock field of a deep 1 s vacancy and (for neon atom) the double excitation/ionization of the ground atomic state.

  9. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    SciTech Connect

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; Doeppner, T.; Meyerhofer, D. D.; Murphy, C. D.; Sangster, T. C.; Vorberger, J.

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  10. Inelastic x-ray scattering from shocked liquid deuterium.

    PubMed

    Regan, S P; Falk, K; Gregori, G; Radha, P B; Hu, S X; Boehly, T R; Crowley, B J B; Glenzer, S H; Landen, O L; Gericke, D O; Döppner, T; Meyerhofer, D D; Murphy, C D; Sangster, T C; Vorberger, J

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation-driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Ly(α) line emission at 2.96 keV. These first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5  eV, an electron density of 2.2(±0.5)×10(23)  cm(-3), and an ionization of 0.8 (-0.25, +0.15). Two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results. PMID:23368573

  11. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE PAGESBeta

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  12. Inelastic Proton Scattering on 21Na in Inverse Kinematics

    NASA Astrophysics Data System (ADS)

    Austin, Roby

    2009-10-01

    R.A.E. Austin, R. Kanungo, S. Reeve, Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, A.G. Tuff, O. Roberts, University of York, UK; P.J. Woods, T. Davinson, G. J. Lotay, University of Edinburgh; C.-Y. Wu, Lawrence Livermore National Laboratory; H. Al Falou, G.C. Ball, M. Djongolov, A. Garnsworthy, G. Hackman, J.N. Orce, C.J. Pearson, S. Triambak, S.J. Williams, TRIUMF; C. Andreiou, D.S. Cross, N. Galinski, R. Kshetri, Simon Fraser University; C. Sumithrarachchi, M.A. Schumaker, University of Guelph; M.P. Jones, S.V. Rigby, University of Liverpool; D. Cline, A. Hayes, University of Rochester; T.E. Drake, University of Toronto; We describe an experiment and associated technique [1] to measure resonances of interest in astrophysical reactions. At the TRIUMF ISAC-II radioactive beam accelerator facility in Canada, particles inelastically scattered in inverse kinematics are detected with Bambino, a δE-E silicon telescope spanning 15-40 degrees in the lab. We use the TIGRESS to detect gamma rays in coincidence with the charged particles to cleanly select inelastic scattering events. We measured resonances above the alpha threshold in ^22Mg of relevance to the rate of break-out from the hot-CNO cycle via the reaction ^ 18Ne(α,p)^21Na. [1] PJ Woods et al. Rex-ISOLDE proposal 424 Cern (2003).

  13. Inelastic proton scattering of Sn isotopes studied with GRETINA

    NASA Astrophysics Data System (ADS)

    Campbell, Christopher

    2014-03-01

    The chain of semi-magic Sn nuclei, with many stable isotopes, has been a fertile ground for experimental and theoretical studies. Encompassing a major neutron shell from N = 50 to 82, the properties and structure of these nuclei provided important data for the development of the pairing-plus-quadrupole model. Recent experimental information on B(E2) for 106,108,110,112Sn came as a surprise as it indicated a larger collectivity than the predicted parabolic trend of quadrupole collectivity. These data, instead, show an unexpectedly flat trend even as the number of valence particles is reduced from 12 to 6. To fully understand how collectivity is evolving in these isotopes, 108,110,112Sn have been studied using thick-target, inelastic proton scattering with GRETINA tagging inelastic scattering events by detecting gamma-rays from the prompt decay of states excited in the reaction. We will present the trend of 2 + excitation cross-sections, the deduced quadrupole deformation parameters, and observations of other low-lying collective states. Comparison of these (p,p') quadrupole deformation parameters with B(E2) data will provide new insights into the relative importance of proton and neutron contributions to collectivity in these nuclei. GRETINA was funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511(NSCL) and DOE under grant DE-AC02-05CH11231(LBNL).

  14. A high-statistics measurement of transverse spin effects in dihadron production from muon-proton semi-inclusive deep-inelastic scattering

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Akhunzyanov, R.; Alekseev, M. G.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.

    2014-09-01

    A measurement of the azimuthal asymmetry in dihadron production in deep-inelastic scattering of muons on transversely polarised proton (NH3) targets is presented. They provide independent access to the transversity distribution functions through the measurement of the Collins asymmetry in single hadron production. The data were taken in the year 2010 with the COMPASS spectrometer using a 160 GeV/c muon beam of the CERN SPS, increasing by a factor of about four the overall statistics with respect to the previously published data taken in the year 2007. The measured sizeable asymmetry is in good agreement with the published data. An approximate equality of the Collins asymmetry and the dihadron asymmetry is observed, suggesting a common physical mechanism in the underlying fragmentation.

  15. Highly efficient beamline and spectrometer for inelastic soft X-ray scattering at high resolution.

    PubMed

    Lai, C H; Fung, H S; Wu, W B; Huang, H Y; Fu, H W; Lin, S W; Huang, S W; Chiu, C C; Wang, D J; Huang, L J; Tseng, T C; Chung, S C; Chen, C T; Huang, D J

    2014-03-01

    The design, construction and commissioning of a beamline and spectrometer for inelastic soft X-ray scattering at high resolution in a highly efficient system are presented. Based on the energy-compensation principle of grating dispersion, the design of the monochromator-spectrometer system greatly enhances the efficiency of measurement of inelastic soft X-rays scattering. Comprising two bendable gratings, the set-up effectively diminishes the defocus and coma aberrations. At commissioning, this system showed results of spin-flip, d-d and charge-transfer excitations of NiO. These results are consistent with published results but exhibit improved spectral resolution and increased efficiency of measurement. The best energy resolution of the set-up in terms of full width at half-maximum is 108 meV at an incident photon energy tuned about the Ni L3-edge. PMID:24562553

  16. Intrinsic Gilbert Damping in Metallic Ferromagnets in Ballistic Regime and the Effect of Inelastic Electron Scattering from Magnetic Moments: A Time Dependent Keldysh Green Function Approach

    NASA Astrophysics Data System (ADS)

    Mahfouzi, Farzad; Kioussis, Nicholas

    Gilbert damping in metallic ferromagnets is mainly governed by the exchange coupling between the electrons and the magnetic degree of freedom, where the time dependent evolution of the magnetization leads to the excitation of electrons and loss of energy as a result of flow of spin and charge currents. However, it turns out that when the magnetization evolves slowly in time, in the presence of spin-orbit interaction (SOI), the resonant electronic excitations has a major contribution to the damping which leads to infinite result in ballistic regime. In this work we consider the inelastic spin-flip scattering of electrons from the magnetic moments and show that in the presence of SOI it leads to the relaxation of the excited electrons. We show that in the case of clean crystal systems such scattering leads to a linear dependence of the Gilbert on the SOI strength and in the limit of diffusive systems we get the Gilbert damping expression obtained from Kambersky's Fermi breathing approach. This research was supported by NSF-PREM Grant No. DMR-1205734

  17. Inelastic X-ray Scattering Studies of Zeolite Collapse

    SciTech Connect

    Greaves, G. Neville; Kargl, Florian; Ward, David; Holliman, Peter; Meneau, Florian

    2009-01-29

    In situ inelastic x-ray scattering (IXS) experiments have been used to probe heterogeneity and deformability in zeolte Y as this thermally collapses to a high density amorphous (HDA) aluminosilicate phase. The Landau-Placzek ratio R{sub LP} falls slowly as amorphisation advances, increasing in the later stages of collapse clearly showing how homogeneity improves non-linearly--behaviour linked closely with the decline in molar volume V{sub Molar}. The Brillouin frequency {omega}{sub Q} also decreases with amorphisation in a similar fashion, signifying a non-uniform decrease in the speed of sound v{sub l}. All of these changes with zeolite amorphisation infer formation of an intermediate low density amorphous (LDA) phase. This low entropy or 'perfect glass' has mechanical properties which are closer to the zeolite rather to the HDA glass--notably a very small value of Poisson's Ratio signifying unusually low resistance to deformation.

  18. Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering

    SciTech Connect

    D. Boer, L. Gamberg, B.U. Musch, A. Prokudin

    2011-10-01

    The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. Advantages of employing these Bessel weights are that they suppress (divergent) contributions from high transverse momentum and that soft factors cancel in (Bessel-) weighted asymmetries. Also, the resulting compact expressions immediately connect to previous work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions and to quantities accessible in lattice QCD. Bessel weighted asymmetries are thus model independent observables that augment the description and our understanding of correlations of spin and momentum in nucleon structure.

  19. INELASTIC X-RAY SCATTERING AT ULTRAHIGH PRESSURES.

    SciTech Connect

    MAO, H.K.; HEMLEY, J.; KAO, C.C.

    2000-08-28

    Inelastic x-ray scattering (IXS) provides high-pressure research with an arsenal of analytical capabilities for key measurements that were previously unattainable, and high pressure research provides IXS with numerous applications where the technique has unique advantages over other methods. High-pressure investigations can now be conducted using non-resonant IXS, resonant IXS, nuclear resonant IXS, and x-ray emission spectroscopy with energy resolutions of 100 meV to 1 eV for electronic transitions and 1 to 10 meV for phonon studies. By pressure-tuning materials over a wide range, we are able to investigate fundamental physics of electron gases, strongly correlated electron systems, high-energy electronic excitations, and phonons in energy and momentum space. The results will have a profound influence on materials applications as well as providing basic information for understanding the deep interior of the Earth and other planets.

  20. Inelastic microwave photon scattering off a quantum impurity in a Josephson-junction array.

    PubMed

    Goldstein, Moshe; Devoret, Michel H; Houzet, Manuel; Glazman, Leonid I

    2013-01-01

    Quantum fluctuations in an anharmonic superconducting circuit enable frequency conversion of individual incoming photons. This effect, linear in the photon beam intensity, leads to ramifications for the standard input-output circuit theory. We consider an extreme case of anharmonicity in which photons scatter off a small set of weak links within a Josephson junction array. We show that this quantum impurity displays Kondo physics and evaluate the elastic and inelastic photon scattering cross sections. These cross sections reveal many-body properties of the Kondo problem that are hard to access in its traditional fermionic version. PMID:23383827

  1. Direct inelastic scattering of oriented NO from Ag(111) and Pt(111)

    NASA Astrophysics Data System (ADS)

    Tenner, Manfred G.; Kuipers, Edgar W.; Kleyn, Aart W.; Stolte, Steven

    1991-04-01

    A pulsed supersonic and cold oriented beam of NO molecules is incident upon the (111) face of clean Ag and Pt single crystal surfaces. The steric effect in the scattered density distributions is determined by a quadrupole mass spectrometer. It is found that the steric effect in the peak in the distribution of direct inelastically scattered molecules depends linearly on the reflection angle. In all circumstances O-end collisions lead to scattering angles more inclined towards the surface than N-end collisions. For the Pt(111) surface a much stronger steric effect is measured than for the Ag(111) surface. The steric effect seems to scale with the incident normal velocity. These strong steric effects can be explained by the larger trapping probability for the N-end orientation and a leverage effect due to the high trapping probability.

  2. Shadowing in deep inelastic muon scattering from nuclear targets

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Brüll, A.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Foster, J.; Ftacnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Geddes, N.; Grafström, P.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kaiser, R.; Kellner, G.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Seidel, A.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; De La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.; European Muon Collaboration

    1988-09-01

    Results are presented on the ratio of the inelastic muon-nucleus cross section per nucleon for carbon and calcium relative to that for deuterium. The measurements were made in the kinematic range of low x (0.003-0.1) and low Q2 (0.3-3.2 GeV 2) at an incident muon energy of 280 GeV. The calcium to deuterium ratio shows a significant x dependence which is interpreted as a shadowing effect. No strong Q2 dependence is observed. This suggests that the effect is due at least partially to parton interactions within the nucleus.

  3. Expression of a momentum-transfer scattering at an inelastic collision on electron transport in a collisional plasma

    NASA Astrophysics Data System (ADS)

    Makabe, Toshiaki

    2015-09-01

    An expression for the inelastic momentum-transfer scattering on the collision integral of the Boltzmann equation is derived in order to reflect the effect of the inelastic collision of an electron with a molecule on the electron kinetics in gases and collisional plasmas. To our knowledge, this is the first attempt to formulate the effect of the momentum-transfer scattering of an inelastic collision. The present procedure is a traditional one in which the Boltzmann equation of electrons is expanded by the Spherical-harmonics in velocity space. It is shown that the effect of the inelastic momentum-transfer on the electron transport is expressed only when we consider the first anisotropic part of the velocity distribution in the expanded Boltzmann equation. In addition, case studies are performed by considering the dependence of the scattering angle and the magnitude distribution. The influence of the inelastic momentum-transfer scattering on the electron transport should be further investigated, particularly in the case of a Ramsauer gas having the relation Qvib (v) >Qm (v) in the vicinity of the Ramsauer-minimum in SiH4, CH4, and CF4 etc.

  4. Molecular-dynamics study of ionic motions and neutron inelastic scattering in α-AgI

    NASA Astrophysics Data System (ADS)

    Chiarotti, Guido L.; Jacucci, G.; Rahman, A.

    1986-11-01

    Contrary to the current interpretation of inelastic-neutron-scattering data on α-AgI, molecular-dynamics calculations show that inelastic neutron scattering is dominated by coherent scattering from Ag+ ions. The calculations agree with the available data. Ag+ ions diffuse by jumps between tetrahedral sites, the consequences being in complete accord with the Chudley-Elliot model only if the full geometrical complexity of these sites is included. Phonon modes due to I- motions are predicted for certain wave vectors.

  5. Self Organizing Maps for use in Deep Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Askanazi, Evan

    2015-04-01

    Self Organizing Maps are a type of artificial neural network that has been proven to be particularly useful in solving complex problems in neural biology, engineering, robotics and physics. We are attempting to use the Self Organizing Map to solve problems and probe phenomenological patterns in subatomic physics, specifically in Deep Inelastic Scattering (DIS). In DIS there is a cross section in electron hadron scattering that is dependent on the momentum fraction x of the partons in the hadron and the momentum transfer of the virtual photon exchanged. There is a soft cross part of this cross section that currently can only be found through experimentation; this soft part is comprised of Structure Functions which in turn are comprised of the Parton Distribution Functions (PDFs). We aim to use the Self Organizing Process, or SOP, to take theoretical models of these PDFs and fit it to the previous, known data. The SOP will also be used to probe the behavior of the PDFs in particular at large x values, in order to observe how they congregate. The ability of the SOPto take multidimensional data and convert it into two dimensional output is anticipated to be particularly useful in achieving this aim.

  6. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    NASA Astrophysics Data System (ADS)

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-01

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm3, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr2Se4 (V = 12.5 mm3), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  7. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    SciTech Connect

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  8. Elastic and inelastic scattering of neutrons from 56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.

    2015-10-01

    The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.

  9. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    NASA Astrophysics Data System (ADS)

    Mani, Arjun; Benjamin, Colin

    2016-04-01

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  10. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    NASA Astrophysics Data System (ADS)

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; de Leo, R.; Deconinck, W.; Deng, X.; Deur, A.; Dutta, C.; Fassi, L. El; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; Lerose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Mesick, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman, Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Širca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.; Pvdis Collaboration

    2015-04-01

    The parity-violating asymmetries between a longitudinally polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep-inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

  11. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    SciTech Connect

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Deng, X.; Deur, A.; Dutta, C.; Fassi, L. El; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Mesick, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman, none; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

  12. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE PAGESBeta

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; et al

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less

  13. Inelastic-impurity-scattering-induced spin texture and topological transitions in surface electron waves

    NASA Astrophysics Data System (ADS)

    Fransson, J.

    2015-09-01

    Inelastic scattering off magnetic impurities in a spin-chiral two-dimensional electron gas, e.g., the Rashba system, is shown to generate topological changes in the spin texture of the electron waves emanating from the scattering center. While elastic scattering gives rise to a purely in-plane spin texture for an in-plane magnetic scattering potential, out-of-plane components emerge upon activation of inelastic scattering processes. This property leads to a possibility to make controlled transitions between trivial and nontrivial topologies of the spin texture.

  14. Phonon dynamics and inelastic neutron scattering of sodium niobate

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Gupta, M. K.; Mittal, R.; Zbiri, M.; Rols, S.; Schober, H.; Chaplot, S. L.

    2014-05-01

    Sodium niobate (NaNbO3) exhibits an extremely complex sequence of structural phase transitions in the perovskite family and therefore provides an excellent model system for understanding the mechanism of structural phase transitions. We report temperature dependence of inelastic neutron scattering measurements of phonon densities of states in sodium niobate. The measurements are carried out in various crystallographic phases of this material at various temperatures from 300 to 1048 K. The phonon spectra exhibit peaks centered on 19, 37, 51, 70, and 105 meV. Interestingly, the peak near 70 meV shifts significantly towards lower energy with increasing temperature, while the other peaks do not exhibit any appreciable shift. The phonon spectra at 783 K show prominent change and become more diffusive as compared to those at 303 K. In order to better analyze these features, we have performed first-principles lattice dynamics calculations based on the density functional theory. The computed phonon density of states is found to be in good agreement with the experimental data. Based on our calculation we are able to assign the characteristic Raman modes in the antiferroelectric phase, which are due to the folding of the T (ω = 95 cm-1) and Δ (ω = 129 cm-1) points of the cubic Brillouin zone, to the A1g symmetry.

  15. D* production in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Romeo, G. Cara; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Sartorelli, G.; Garcia, Y. Zamora; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Feld, L.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajac, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Żarnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Utley, M. L.; Waugh, R.; Wilson, A. S.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Nakao, M.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; An, S. H.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Shumilin, A. V.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Harnew, N.; Lancaster, M.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Okrasiński, J. R.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Doeker, T.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Suzuki, I.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1997-02-01

    This paper presents measurements of D*+/- production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D*+ -> (D0 -> K- π+) π+ (+c.c.) has been used in the study. The e+p cross section for inclusive D*+/- production with 5 < Q2 < 100 GeV2 and y < 0.7 is 5.3 +/- 1.0 +/- 0.8 nb in the kinematic region 1.3 < pT(D*+/-) < 9.0 GeV and η(D*+/-) < 1.5. Differential cross sections as functions of pT(D*+/-), η(D*+/-), W and Q2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in pT(D*+/-) and η(D*+/-), the charm contribution Fcc2 (x, Q2) to the proton structure function is determined for Bjorken x between 2.10-4 and 5.10-3.

  16. Multiplicity moments in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Brock, I.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Crittenden, J.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Koch, W.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Wolf, G.; Wollmer, U.; Whitmore, J. J.; Wichmann, R.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Bodmann, B.; Gendner, N.; Holm, U.; Salehi, H.; Wick, K.; Yildirim, A.; Ziegler, A.; Carli, T.; Garfagnini, A.; Gialas, I.; Lohrmann, E.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Corriveau, F.; Padhi, S.; Stairs, D. G.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Y. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Große-Knetter, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Saull, P. R. B.; Toothacker, W. S.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Plucinski, P.; Smalska, B.; Tymieniecka, T.; Ukleja, J.; Zakrzewski, J. A.; Z˙arnecki, A. F.; Adamus, M.; Sztuk, J.; Deppe, O.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kçira, D.; Lammers, S.; Reeder, D. D.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.

    2001-06-01

    Multiplicity moments of charged particles in deep inelastic e+p scattering have been measured with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb-1. The moments for Q2>1000 GeV2 were studied in the current region of the Breit frame. The evolution of the moments was investigated as a function of restricted regions in polar angle and, for the first time, both in the transverse momentum and in absolute momentum of final-state particles. Analytic perturbative QCD predictions in conjunction with the hypothesis of Local Parton-Hadron Duality (LPHD) reproduce the trends of the moments in polar-angle regions, although some discrepancies are observed. For the moments restricted either in transverse or absolute momentum, the analytic results combined with the LPHD hypothesis show considerable deviations from the measurements. The study indicates a large influence of the hadronisation stage on the multiplicity distributions in the restricted phase-space regions studied here, which is inconsistent with the expectations of the LPHD hypothesis.

  17. Hadron attenuation in deep inelastic lepton-nucleus scattering

    SciTech Connect

    Falter, T.; Cassing, W.; Gallmeister, K.; Mosel, U.

    2004-11-01

    We present a detailed theoretical investigation of hadron attenuation in deep inelastic scattering off complex nuclei in the kinematic regime of the HERMES experiment. The analysis is carried out in the framework of a probabilistic coupled-channel transport model based on the Boltzmann-Uehling-Uhlenbeck equation, which allows for a treatment of the final-state interactions beyond simple absorption mechanisms. Furthermore, our event-by-event simulations account for the kinematic cuts of the experiments as well as the geometrical acceptance of the detectors. We calculate the multiplicity ratios of charged hadrons for various nuclear targets relative to deuterium as a function of the photon energy {nu}, the hadron energy fraction z{sub h}=E{sub h}/{nu}, and the transverse momentum p{sub T}. We also confront our model results on double-hadron attenuation with recent experimental data. Separately, we compare the attenuation of identified hadrons ({pi}{sup {+-}}, {pi}{sup 0}, K{sup {+-}}, p, and p) on {sup 20}Ne and {sup 84}Kr targets with the data from the HERMES Collaboration and make predictions for a {sup 131}Xe target. At the end we turn towards hadron attenuation on {sup 63}Cu nuclei at EMC energies. Our studies demonstrate that (pre-)hadronic final-state interactions play a dominant role in the kinematic regime of the HERMES experiment while our present approach overestimates the attenuation at EMC energies.

  18. Study of 180 Mev Proton Inelastic Scattering from SILICON-28 and SILICON-30.

    NASA Astrophysics Data System (ADS)

    Chen, Quan

    This thesis reports the measurement of cross section and analyzing power angular distribution of elastic and inelastic scattering of 180 MeV proton for ^ {28}Si and ^{30} Si. Measurements were carried out using the proton beam available at the Indiana University Cyclotron Facility. The scattered protons were detected using the QDDM magnetic spectrometer. The DWIA framework, in which most inelastic proton scattering observables are analyzed, has three ingredients, (1) NN-effective interaction, (2) transition density, and (3) distorted waves. The procedure used here to obtain effective NN-interaction empirically is that first suggested by J. J. Kelly. It models effective NN-interaction guided by the nuclear matter theory(G-matrix) and employs the local density approximation(LDA). By using the transitions, for which transition densities are known, it fits the inelastic observable to determine the parameters used to model the momentum transfer(q) and density(k_{F }) dependence of the effective interaction (here reference to as empirical interaction). The distorted waves are calculated in a self-consistent manner from the model empirical interaction. The salient results are: (1) It is observed that, although the data base was increased by combining the ^{16}O observable with those of ^{28}Si, it still was not large enough to determine all the parameters without ambiguity in terms of which the effective NN-interaction was modeled. (2) The model prediction of cross section and analyzing power in terms of DWIA, using both the Paris -g and empirical interaction, with the observed are compared. It is clear that the results and the technique used to obtain effective NN-interaction shows that there is substantial potential to gain both qualitative and quantitative insight into how the interaction between two nucleons is modified within the nuclear medium. In particular, at low-q effective interaction is reduced and at high-q repulsion is enhanced compared to free interaction

  19. Jet production and fragmentation properties in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftàčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlabböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.

    1987-12-01

    Results are presented from a study of deep inelastic 280 GeV muon-nucleon interactions on the transverse momenta and jet properties of the final state hadrons. The results are analysed in a way which attempts to separate the contributions of hard and soft QCD effects from those that arise from the fragmentation process. The fragmentation models with which the data are compared are the Lund string model, the independent jet model, the QCD parton shower model including soft gluon interference effects, and the firestring model. The discrimination between these models is discussed. Various methods of analysis of the data in terms of hard QCD processes are presented. From a study of the properties of the jet profiles a value of α s , to leading order, is determined using the Lund string model, namely α s =0.29±0.01 (stat.) ±0.02 (syst.), for Q 2˜20 GeV2.

  20. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    NASA Technical Reports Server (NTRS)

    Aleem, F.; Saleem, M.

    1985-01-01

    An analytic expression for the neutrino charged current structure function F sub 2 (x, Q sup 2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  1. Calibration and absolute normalization procedure of a new Deep Inelastic Neutron Scattering spectrometer

    NASA Astrophysics Data System (ADS)

    Rodríguez Palomino, L. A.; Blostein, J. J.; Dawidowski, J.

    2011-08-01

    We describe the calibration process of a new Deep Inelastic Neutron Scattering (DINS) spectrometer, recently implemented at the Bariloche Electron LINAC (Argentina), consisting in the determination of the incident neutron spectrum, dead-time and electronic delay of the data acquisition line, and detector bank efficiency. For this purpose, samples of lead, polyethylene and graphite of different sizes were employed. Their measured spectra were corrected by multiple scattering, attenuation and detector efficiency effects, by means of an ad hoc Monte Carlo code. We show that the corrected spectra are correctly scaled with respect to the scattering power of the tested materials within a 2% of experimental error, thus allowing us to define an experimental constant that links the arbitrary experimental scale (number of recorded counts per monitor counts) with the involved cross-sections. The present work also serves to analyze the existence of possible sources of systematic errors.

  2. Inelastic scattering measurements of low energy x-ray photons by organics, soil, water, wood, and metals

    NASA Astrophysics Data System (ADS)

    Paki Amouzou, P.; Gertsenshteyn, M.; Jannson, T.; Shnitser, P.; Savant, G.

    2006-08-01

    The angular distribution of the inelastic scattering of photons at low energies (<=80 KeV) has been measured in organic material, soil, rocks, wood, steel sheet, and water. The measurements have been performed under air inside an X-ray shield cabinet using X-rays tube as a photon source and a thermoelectrically cooled CdTe detector. Measurements have been taken for both single and combined materials. The contributions of inelastic scattering of photons for the lower Z material in a given configuration have been extracted. The measured signal is primarily Compton scattering. The measured inelastic scattering contributions were compared with the calculated inelastic scattering cross sections according to the Klein-Nishina theory, updated to include a practical energy distribution of an X-ray tube beam. Relatively good agreement was found for all targets under investigation. The slight discrepancy is attributed to photoelectric effect and sample configuration. Present results may act as a guide for optimization of X-ray imaging sensors and in particular of those based on lobster eye X-ray optics suitable for cargo inspection, improvised explosives detection, non-destructive evaluation, and medical imaging.

  3. Spherical momentum distribution of the protons in hexagonal ice from modeling of inelastic neutron scattering data

    NASA Astrophysics Data System (ADS)

    Flammini, D.; Pietropaolo, A.; Senesi, R.; Andreani, C.; McBride, F.; Hodgson, A.; Adams, M. A.; Lin, L.; Car, R.

    2012-01-01

    The spherical momentum distribution of the protons in ice is extracted from a high resolution deep inelastic neutron scattering experiment. Following a recent path integral Car-Parrinello molecular dynamics study, data were successfully interpreted in terms of an anisotropic Gaussian model, with a statistical accuracy comparable to that of the model independent scheme used previously, but providing more detailed information on the three dimensional potential energy surface experienced by the proton. A recently proposed theoretical concept is also employed to directly calculate the mean force from the experimental neutron Compton profile, and to evaluate the accuracy required to unambiguously resolve and extract the effective proton potential from the experimental data.

  4. Resonant inelastic x-ray scattering at the limit of subfemtosecond natural lifetime

    SciTech Connect

    Marchenko, T.; Journel, L.; Marin, T.; Guillemin, R.; Carniato, S.; Simon, M.; Zitnik, M.; Kavcic, M.; Bucar, K.; Mihelic, A.; Hoszowska, J.; Cao, W.

    2011-04-14

    We present measurements of the resonant inelastic x-ray scattering (RIXS) spectra of the CH{sub 3}I molecule in the hard-x-ray region near the iodine L{sub 2} and L{sub 3} absorption edges. We show that dispersive RIXS spectral features that were recognized as a fingerprint of dissociative molecular states can be interpreted in terms of ultrashort natural lifetime of {approx}200 attoseconds in the case of the iodine L-shell core-hole. Our results demonstrate the capacity of the RIXS technique to reveal subtle dynamical effects in molecules with sensitivity to nuclear rearrangement on a subfemtosecond time scale.

  5. Measurement of hadron azimuthal distributions in deep inelastic muon proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pavel, N.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Sandacz, A.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-09-01

    A study of the distribution of the azimuthal angle ϕ of charged hadrons in deep inelastic μ- p scattering is presented. The dependence of the moments of this distribution on the Feynman x variable and the momentum transverse to the virtual photon indicates that non-zero moments arise mainly from the effects of the intrinsic K T of the struck quark with < K {/T 2}>>≳(0.44 GeV)2, and to a lesser extent from QCD processes. No significant variation with Q 2 or W 2 is observed.

  6. Dynamical transition of myoglobin revealed by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Doster, Wolfgang; Cusack, Stephen; Petry, Winfried

    1989-02-01

    Structural fluctuations in proteins on the picosecond timescale have been studied in considerable detail by theoretical methods such as molecular dynamics simulation1,2, but there exist very few experimental data with which to test the conclusions. We have used the technique of inelastic neutron scattering to investigate atomic motion in hydrated myoglobin over the temperature range 4 350 K and on the molecular dynamics timescale 0.1 100 ps. At temperatures below 180 K myglobin behaves as a harmonic solid, with essentially only vibrational motion. Above 180 K there is a striking dynamic transition arising from the excitation of non-vibrational motion, which we interpret as corresponding to tor-sional jumps between states of different energy, with a mean energy asymmetry of KJ mol -1. This extra mobility is reflected in a strong temperature dependence of the mean-square atomic displacements, a phenomenon previously observed specifically for the heme iron by Mossbauer spectroscopy3 5, but on a much slower timescale (10-7 s). It also correlates with a glass-like transition in the hydration shell of myoglobin6 and with the temperature-dependence of ligand-binding rates at the heme iron, as monitored by flash photolysis7. In contrast, the crystal structure of myoglobin determined down to 80 K shows no significant structural transition8 10. The dynamical behaviour we find for myoglobin (and other globular proteins) suggests a coupling of fast local motions to slower collective motions, which is a characteristic feature of other dense glass-forming systems.

  7. Res-Parity: Parity Violation in Inelastic scattering at Low Q2

    SciTech Connect

    Reimer, Paul; Bosted, Peter; Arrington, John; Mkrtchyan, Hamlet; Zheng, Xiaochao

    2006-05-16

    Parity violating electron scattering has become a well established tool which has been used, for example, to probe the Standard Model and the strange-quark contribution to the nucleon. While much of this work has focused on elastic scattering, the RES-Parity experiment, which has been proposed to take place at Jefferson Laboratory, would focus on inelastic scattering in the low-Q2, low-W domain. RES-Parity would search for evidence of quark-hadron duality and resonance structure with parity violation in the resonance region. In terms of parity violation, this region is essentially unexplored, but the interpretation of other high-precision electron scattering experiments will rely on a reasonable understanding of scattering at lower energy and low-W through the effects of radiative corrections. RES-Parity would also study nuclear effects with the weak current. Because of the intrinsic broad band energy spectrum of neutrino beams, neutrino experiments are necessarily dependent on an untested, implicit assumption that these effects are identical to electromagnetic nuclear effects. RES-Parity is a relatively straight forward experiment. With a large expected asymmetry (~ 0.5 × 10-4) these studies may be completed with in a relatively brief period.

  8. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  9. Investigation of the domain wall dynamic by the inelastic light scattering method (abstract)

    NASA Astrophysics Data System (ADS)

    Kreines, N. M.

    1991-04-01

    Light scattering by a moving domain wall (DW) has been investigated by means of Brillouin-Mandel'stam spectroscopy for the first time.1,2 The proportional to the DW velocity frequency shift due to Doppler effect has been observed in the light scattering spectra in the weak ferromagnets. The DW velocity (till 13 km/s) and the intensity of the scattered light as a function of pulsed magnetic field are determined from the spectra at different temperatures. As the DW velocity approaches that of sound (transversal or longitudinal) the scattered light intensity increases dramatically due to phonons emitted by the DW (Cherenkov radiation). Regions of the nonstationary DW motion are observed wherein scattering spectra have complicated character. The inelastic light scattering directly by the excited sound soliton (or phonons) has been observed. The space and time spreading of this soliton was investigated.3 The mean free path l of the acoustic phonons was determined. For YFeO3 at T=2 K l≂300 μm for transversal sound with ν≂12 GHz. The temperature dependence of the DW mobility was studied.

  10. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    SciTech Connect

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-15

    We have determined ''effective'' Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  11. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-01

    We have determined "effective" Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  12. Lattice dynamics in spin-crossover nanoparticles through nuclear inelastic scattering

    NASA Astrophysics Data System (ADS)

    Félix, Gautier; Mikolasek, Mirko; Peng, Haonan; Nicolazzi, William; Molnár, Gábor; Chumakov, Aleksandr I.; Salmon, Lionel; Bousseksou, Azzedine

    2015-01-01

    We used nuclear inelastic scattering (NIS) to investigate the lattice dynamics in [Fe(pyrazine)(Ni(CN)4)] spin crossover nanoparticles. The vibrational density of states of iron was extracted from the NIS data, which allowed to determine characteristic thermodynamical and lattice dynamical parameters as well as their spin-state dependence. The optical part of the NIS spectra compares well with the Raman scattering data reflecting the expansion/contraction of the coordination octahedron during the spin transition. From the acoustic part, we extracted the sound velocity in the low-spin (vLS=2073 ±31 m s-1) and high-spin (vHS=1942 ±23 m s-1) states of the particles. The spin-state dependence of this parameter is of primary interest to rationalize the spin-transition behavior in solids as well as its dynamics and finite size effects.

  13. Inelastic scattering of electrons by metastable hydrogen atoms in a laser field

    NASA Astrophysics Data System (ADS)

    Buica, Gabriela

    2015-09-01

    The inelastic scattering of fast electrons by metastable hydrogen atoms in the presence of a linearly polarized laser field is theoretically studied in the domain of field intensities below 1010 W/cm2. The interaction of the hydrogen atom with the laser field is described by first-order time-dependent perturbation theory, while the projectile electrons interacting with the laser field are described by the Gordon-Volkov wave functions. An analytic expression is obtained for the differential scattering cross section in the first-order Born approximation for laser-assisted inelastic e--H (2 s ) scattering for the 2 s →n l excitation. Detailed analytical and numerical results are presented for inelastic scattering accompanied by one-photon absorption, and the angular dependence and resonance structure of the differential cross sections are discussed for the 2 s →4 l excitation of metastable hydrogen.

  14. Low-lying 1- and 2+ states in 124Sn via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Crespi, F. C. L.

    2016-05-01

    The γ decay of low-lying 1-and 2+ states up to the neutron separation energy in 124Sn populate by the inelastic scattering of 17O was measured. The Angular distributions were measured both for the γ rays and the scattered 17O ions. The results are presented.

  15. Born Hartree Bethe approximation in the theory of inelastic electron molecule scattering

    NASA Astrophysics Data System (ADS)

    Kretinin, I. Yu; Krisilov, A. V.; Zon, B. A.

    2008-11-01

    We propose a new approximation in the theory of inelastic electron atom and electron molecule scattering. Taking into account the completeness property of atomic and molecular wavefunctions, considered in the Hartree approximation, and using Bethe's parametrization for electronic excitations during inelastic collisions via the mean excitation energy, we show that the calculation of the inelastic total integral cross-sections (TICS), in the framework of the first Born approximation, involves only the ground-state wavefunction. The final analytical formula obtained for the TICS, i.e. for the sum of elastic and inelastic ones, contains no adjusting parameters. Calculated TICS for electron scattering by light atoms and molecules (He, Ne, and H2) are in good agreement within the experimental data; results show asymptotic coincidence for heavier ones (Ar, Kr, Xe and N2).

  16. Inelastic X-ray scattering from 6H-SiC

    SciTech Connect

    Macrander, A.T.; Blasdell, B.; Montano, P.A. |; Kao, C.C.

    1995-07-01

    The authors have studied electronic excitations in 6H-SiC using inelastic x-ray scattering. Inelastic scattering spectra were measured at momentum transfers ranging from 0.47 {angstrom}{sup {minus}1} to 2.00 {angstrom}{sup {minus}1} along the c-axis in the hexagonal lattice, i.e. , along [00{center_dot}1], and from 0.67 {angstrom}{sup {minus}1} to 2.00 {angstrom}{sup {minus}1} along the a-axis, i.e., alone, [10{center_dot}0]. Comparison of the two sets of data reveals an orientation dependence of the spectra, except for a characteristic peak at 22--23 eV that occurs for both directions at low Q. This peak has also been observed in electron energy loss spectroscopy studies and is identified as a bulk plasmon. The orientation dependence of the other spectral features is indicative of band structure effects. These data were obtained using a Ge(444) analyzer in a near backscattering geometry.

  17. General-mass treatment for deep inelastic scattering at NNLO in CTEQ PDF analysis

    NASA Astrophysics Data System (ADS)

    Guzzi, Marco; Lai, Hung-Liang; Nadolsky, Pavel M.; Yuan, C.-P.

    2011-10-01

    We present an NNLO realization of the general mass scheme S-ACOT-χ for the treatment of heavy-flavour production in neutral current deep-inelastic scattering. Practical implementation of the NNLO calculation is illustrated on the example of semi-inclusive structure functions F2c(x,Q) and FLc(x,Q). In a modern global QCD analysis of parton distribution functions (PDFs), several factors are comparable in magnitude to next-to-next-to-leading order (NNLO) radiative contributions in the QCD coupling strength αs. Among these factors, dependence of QCD cross sections on masses of heavy quarks, mc and mb, can be significant. Global fits are sensitive to two types of mass effects, kinematical suppression of production of c and b quarks near respective mass thresholds in deep inelastic scattering (DIS), and large radiative contributions to collinear production of c c or bb pairs at large collider energy. It is therefore natural to evaluate all fitted cross sections in a ``general-mass'' (GM) factorization scheme, which assumes that the number of (nearly) massless quark flavors varies with energy, and at the same time includes dependence on heavy-quark masses in relevant kinematical regions. The S-ACOT-χ scheme that we present, is motivated by the QCD factorization theorem for DIS with massive quarks and we show it is valid to all orders of αs.

  18. Parity Violation Inelastic Scattering Experiments at 6 GeV and 12 GeV Jefferson Lab

    SciTech Connect

    Sulkosky, Vincent A.; et. al.,

    2015-03-01

    We report on the measurement of parity-violating asymmetries in the deep inelastic scattering and nucleon resonance regions using inclusive scattering of longitudinally polarized electrons from an unpolarized deuterium target. The effective weak couplings C$_{2q}$ are accessible through the deep-inelastic scattering measurements. Here we report a measurement of the parity-violating asymmetry, which yields a determination of 2C$_{2u}$ - C$_{2d}$ with an improved precision of a factor of five relative to the previous result. This result indicates evidence with 95% confidence that the 2C$_{2u}$ - C$_{2d}$ is non-zero. This experiment also provides the first parity-violation data covering the whole resonance region, which provide constraints on nucleon resonance models. Finally, the program to extend these measurements at Jefferson Lab in the 12 GeV era using the Solenoidal Large Intensity Device was also discussed.

  19. Elastic and inelastic scattering of 16O and 18O ions from 64Zn at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Salém-Vasconcelos, S.; Takagui, E. M.; Bechara, M. J.; Koide, K.; Dietzsch, O.; Bairrio Nuevo, A., Jr.; Takai, H.

    1994-08-01

    Coulomb-nuclear interference effects were investigated in the inelastic scattering of 16O and 18O by 64Zn. Measurements of elastic and inelastic angular distributions of 18O were performed at a laboratory energy of 49 MeV, over the angular range from θlab~30° to 85°. The excitation functions of 16O and 18O ions were measured at incident energies between 29 and 46 MeV at θlab=174°. The experimental angular distributions show structures which are more pronounced for projectile excitation than for target excitation. The interference minimum for the excitation of the 18O first 2+ state was found to be shifted towards forward angles by approximately 5° (c.m.) with respect to the distorted-wave Born approximation calculations and by approximately 3.5° (c.m.) with respect to the coupled-channels calculations. A pronounced Coulomb-nuclear interference minimum was seen in the excitation of 64Zn(2+) state by inelastic scattering of 16O projectiles, whereas no pronounced minimum was observed in target excitation by 18O projectiles. The elastic scattering data were analyzed with the optical model. The inelastic differential cross sections for the excitation of the first 2+ states in the target and in the 18O projectile were analyzed using the distorted-wave Born approximation and also the coupled-channels approach with collective form factors.

  20. Inelastically scattering particles and wealth distribution in an open economy

    NASA Astrophysics Data System (ADS)

    Slanina, František

    2004-04-01

    Using the analogy with inelastic granular gases we introduce a model for wealth exchange in society. The dynamics is governed by a kinetic equation, which allows for self-similar solutions. The scaling function has a power-law tail, the exponent being given by a transcendental equation. In the limit of continuous trading, a closed form of the wealth distribution is calculated analytically.

  1. Fully microscopic description of elastic and inelastic scattering at intermediate incident energies

    NASA Astrophysics Data System (ADS)

    Minomo, Kosho; Kohno, Michio; Toyokawa, Masakazu; Yahiro, Masanobu; Ogata, Kazuyuki

    2016-06-01

    We aim for fully microscopic understanding of many-body nuclear reactions starting from two- and three-nucleon forces based on chiral effective field theory (Ch-EFT). We first construct a g-matrix with the nuclear forces based on Ch-EFT using Brueckner-Hartree-Fock theory, in which the three-nucleon force effects are represented through the density dependence of the g-matrix. Then, the folding model and microscopic coupled-channels method with the g-matrix are applied to nucleon-nucleus and nucleus-nucleus scattering at intermediate incident energies. This new microscopic framework well describes the elastic and inelastic cross sections with no ad-hoc parameters. In addition, the three-nucleon force and coupled-channels effects on many-body nuclear reactions are clarified.

  2. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    SciTech Connect

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-23

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe–Fe bonds but stiffens the Au–Au and Au–Fe bonds which results in a net stiffening relative to the elemental components.

  3. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    SciTech Connect

    Erofeev, V. I.

    2015-09-15

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.

  4. Elastic and inelastic scattering of /sup 16/O by /sup 26/Mg

    SciTech Connect

    Rotberg, V.H.; Mittig, W.

    1980-10-01

    Angular distributions and excitation functions for the elastic and inelastic (2/sup +/,1.81 MeV) scattering of /sup 16/O ions by /sup 26/Mg have been measured in the energy range from 22 up to 50 MeV. The data were analyzed in the coupled channel scheme with different potentials. The inelastic scattering data are found to be important to distinguish between optical model parameter sets. The deformation parameter delta/sub n/=..beta../sub n/R is extracted and found to be potential dependent. It is compared to the Coulomb deformation delta/sub C/.

  5. Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering.

    PubMed

    Ghahari, Fereshte; Xie, Hong-Yi; Taniguchi, Takashi; Watanabe, Kenji; Foster, Matthew S; Kim, Philip

    2016-04-01

    We report the enhancement of the thermoelectric power (TEP) in graphene with extremely low disorder. At high temperature we observe that the TEP is substantially larger than the prediction of the Mott relation, approaching to the hydrodynamic limit due to strong inelastic scattering among the charge carriers. However, closer to room temperature the inelastic carrier-optical-phonon scattering becomes more significant and limits the TEP below the hydrodynamic prediction. We support our observation by employing a Boltzmann theory incorporating disorder, electron interactions, and optical phonons. PMID:27081996

  6. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Titz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Poitrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; Ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10 -4 < xBJ < 6 · 10 -3 and 10 < Q2 < 100 GeV 2.

  7. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Erofeev, V. I.

    2015-09-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.

  8. High energy resolution inelastic x-ray scattering at the SRI-CAT

    SciTech Connect

    Macrander, A.T.

    1996-08-01

    This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals.

  9. Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Ghahari, Fereshte; Xie, Hong-Yi; Taniguchi, Takashi; Watanabe, Kenji; Foster, Matthew S.; Kim, Philip

    2016-04-01

    We report the enhancement of the thermoelectric power (TEP) in graphene with extremely low disorder. At high temperature we observe that the TEP is substantially larger than the prediction of the Mott relation, approaching to the hydrodynamic limit due to strong inelastic scattering among the charge carriers. However, closer to room temperature the inelastic carrier-optical-phonon scattering becomes more significant and limits the TEP below the hydrodynamic prediction. We support our observation by employing a Boltzmann theory incorporating disorder, electron interactions, and optical phonons.

  10. Quark initial state interaction in deep inelastic scattering and the Drell-Yan process

    SciTech Connect

    Linnyk, O.; Leupold, S.; Mosel, U.

    2005-02-01

    We pursue a phenomenological study of higher-twist effects in high-energy processes by taking into account the off-shellness (virtuality) of partons bound in the nucleon. The effect of parton off-shellness in deep inelastic ep{yields}eX scattering (DIS) and the Drell-Yan process (pp{yields}llX) is examined. Assuming factorization and a single-parameter Breit-Wigner form for the parton spectral function, we develop a model to calculate the corresponding off-shell cross sections. Allowing for a finite parton width {approx_equal}100 MeV, we reproduce the data of both DIS and the triple-differential Drell-Yan cross section without an additional K-factor. The results are compared to those from perturbative QCD and the intrinsic-k{sub T} approach.

  11. Parity Violation in Deep Inelastic Scattering at JLab 6 GeV

    SciTech Connect

    Xiaochao Zheng

    2006-05-16

    The parity-violating asymmetry in e-$^2$H deep inelastic scattering (DIS) can be used to extract the weak neutral-current coupling constants $C_{2q}$. A measurement of this asymmetry at two $Q^2$ values is planned at Jefferson Lab. Results from this experiment will provide a value of $2C_{2u}-C_{2d}$ to a precision of $\\pm 0.03$, a factor of eight improvement over our current knowledge. If all hadronic effects can be understood, this results will provide information on possible extensions of the Standard Model, complementary to other experiments dedicated to new physics searches. Presented here are the physics motivation, experimental setup, potential hadronic effects and their implications, and the future of PV DIS at Jefferson Lab.

  12. Phenomenological analysis of azimuthal asymmetries in unpolarized semi-inclusive deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Barone, V.; Boglione, M.; Gonzalez Hernandez, J. O.; Melis, S.

    2015-04-01

    We present a phenomenological analysis of the cos ϕ and cos 2 ϕ asymmetries in unpolarized semi-inclusive deep inelastic scattering, based on the recent multidimensional data released by the COMPASS and HERMES collaborations. In the transverse-momentum-dependent framework, valid at relatively low transverse momenta, these asymmetries arise from intrinsic transverse momentum and transverse spin effects, and from their correlations. The role of the Cahn and Boer-Mulders effects in both azimuthal moments is explored up to order 1 /Q . As the kinematics of the present experiments is dominated by the low-Q2 region, higher-twist contributions turn out to be important, affecting the results of our fits.

  13. Parity violation in deep inelastic scattering at JLab 6 GeV.

    SciTech Connect

    Zheng, X.; Arrington, J.; Geesaman, D. F.; Hafidi, K.; Holt, R. J.; Jackson, H. E.; Potterveld, D. H.; Reimer, P. E.; Schulte, E.; Zeidman, B.; Physics

    2007-01-01

    The parity-violating asymmetry in e-2H deep inelastic scattering (DIS) can be used to extract the weak neutral-current coupling constants C 2q . A measurement of this asymmetry at two Q 2 values is planned at Jefferson Lab. Results from this experiment will provide a value of 2C 2u - C 2d to a precision of {+-}0.03, a factor of eight improvement over our current knowledge. If all hadronic effects can be understood, this result will provide information on possible extensions of the Standard Model, complementary to other experiments dedicated to new physics searches. Presented here are the physics motivation, experimental setup, potential hadronic effects and their implications, and the future of PV DIS at Jefferson Lab.

  14. State-to-state inelastic and reactive molecular beam scattering from surfaces

    SciTech Connect

    Lykke, K.R. ); Kay, B.D. )

    1990-01-01

    Resonantly enhanced multiphoton ionization (REMPI) laser spectroscopic and molecular beam-surface scattering techniques are coupled to study inelastic and reactive gas-surface scattering with state-to-state specificity. Rotational, vibrational, translational and angular distributions have been measured for the inelastic scattering of HCI and N {sub 2} from Au(111). In both cases the scattering is direct-inelastic in nature and exhibits interesting dynamical features such as rotational rainbow scattering. In an effort to elucidate the dynamics of chemical reactions occurring on surfaces we have extended our quantum-resolved scattering studies to include the reactive scattering of a beam of gas phase H-atoms from a chlorinated metal surface M-CI. The nascent rotational and vibrational distributions of the HCI product are determined using REMPI. The thermochemistry for this reaction on Au indicates that the product formation proceeding through chemisorbed H-atoms is slightly endothermic while direct reaction of a has phase H-atom with M-CI is highly exothermic (ca. 50 kcal/mole). Details of the experimental techniques, results and implications regarding the scattering dynamics are discussed. 55 ref., 8 fig.

  15. Inelastic neutron scattering and raman light scattering from hydrogen-filled clathrates hydrates

    NASA Astrophysics Data System (ADS)

    Ulivi, L.; Celli, M.; Giannasi, A.; Ramirez-Cuesta, A. J.; Zoppi, M.

    2008-07-01

    Several samples of ternary tetrahydrofuran-H2O-H2 and binary H2O-H2 clathrate hydrates have been analysed by high-resolution inelastic neutron scattering and Raman light scattering. The neutron spectrum presents several intense bands due to H2 molecule excitations and in particular to rotational transitions, centre-of-mass translational transitions of either para-or ortho-H2, and to combinations of these. The H2 molecule behaves in the clathrate cage as an almost free rotor, and performs a translational motion (rattling), that is a paradigmatic example of the motion of a quantum particle in a non-harmonic three-dimensional potential well. Both the H2 rotational transition and the fundamental of the rattling transition split into triplets. Raman spectra show a similar splitting of the S0(0) rotational transition, due to a significant anisotropy of the potential with respect to the orientation of the molecule in the cage. The comparison of our experimental values for the transition frequencies to a recent quantum mechanical calculation is discussed.

  16. Inelastic Neutron Scattering Studies of the Dynamics of Glass-Forming Materials in Confinement

    NASA Astrophysics Data System (ADS)

    Zorn, Reiner

    2015-03-01

    The study of the dynamics of glass-forming liquids in nanoscopic confinement may contribute to the understanding of the glass transition. Especially, the question of a cooperativity length scale may be addressed. In this presentation, results obtained by inelastic neutron scattering are presented. The first experiments were done to study the α relaxation of glass-forming liquids and polymers in nanoporous silica. Neutron scattering is a suitable method to study such composite materials because the scattering of the liquid component can be emphasized by proper choice of isotopes. By combining time-of-flight spectroscopy and backscattering spectroscopy it is possible to cover the large dynamical range spanned by the dynamics of glass-forming materials. The experiments demonstrated a broadening of the spectrum of relaxation times with faster as well as slower components compared to the bulk. In later experiments `soft' confinement in a microemulsion was used to reduce surface effects. In this system a definite acceleration of the dynamics was observed. In all cases the glass-specific fast vibrational dynamics (boson peak) was also studied, revealing a characteristic confinement dependence which allows conclusions on its nature. Finally, studies were carried out on polymers by neutron spin echo spectroscopy with the aim of observing the confinement effect on polymer specific dynamics (Rouse motion). These studies showed that a comparatively simple model is able to explain the deviation from bulk behavior.

  17. Exploring a direct measurement of quark energy loss using semi-inclusive deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Peña, C.; Brooks, W.; Hakobyan, H.; Arratia, M.

    2012-02-01

    This work consists of an evaluation of the feasibility of a direct extraction of quark energy loss from the E02-104 experiment π+ data and using semi-inclusive Deep Inelastic Scattering (DIS). The method is based on a shape analysis of the pion energy spectrum, coupled with a GENIE simulation which includes an hadronic cascade model in nuclei. The pion energy spectrum from different nuclei such as C, Fe, and Pb is compared to that of deuterium in order to find a simple energy shift, which is predicted by BDMPS if the parton energy is high enough that the medium length L is smaller than a certain critical length Lc. GENIE is used to rule out hadronic interaction effects which could also explain the same behavior observed in data.

  18. Event shape analysis of deep inelastic scattering events with a large rapidity gap at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Ricci, F.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Kerger, R.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Wieber, H.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Mellado, B.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Przybycień , M. B.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Bukowy, M.; Jeleń , K.; Kisielewska, D.; Kowalski, T.; Przybycień , M.; Rulikowska-Zarȩ Bska, E.; Suszycki, L.; Zaja C, J.; Duliń Ski, Z.; Kotań Ski, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mań Czak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zsolararnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; MacDonald, N.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Walker, R.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamauchi, K.; Yamazaki, Y.; Hong, S. J.; Lee, S. B.; Nam, S. W.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Koffeman, E.; Kooijman, P.; van Sighem, A.; Tiecke, H.; Tuning, N.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Große-Knetter, J.; Harnew, N.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Oh, B. Y.; Okrasiń Ski, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Lane, J. B.; Saunders, R. L.; Sutton, M. R.; Wing, M.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1998-03-01

    A global event shape analysis of the multihadronic final states observed in neutral current deep inelastic scattering events with a large rapidity gap with respect to the proton direction is presented. The analysis is performed in the range 5<=Q2<=185 GeV2 and 160<=W<=250 GeV, where Q2 is the virtuality of the photon and W is the virtual-photon proton centre of mass energy. Particular emphasis is placed on the dependence of the shape variables, measured in the γ*-pomeron rest frame, on the mass of the hadronic final state, MX. With increasing MX the multihadronic final state becomes more collimated and planar. The experimental results are compared with several models which attempt to describe diffractive events. The broadening effects exhibited by the data require in these models a significant gluon component of the pomeron.

  19. Collective dynamics in fully hydrated phospholipid bilayers studied by inelastic x-ray scattering.

    PubMed

    Chen, S H; Liao, C Y; Huang, H W; Weiss, T M; Bellisent-Funel, M C; Sette, F

    2001-01-22

    The short wavelength density fluctuation of DLPC (dilaurylphosphatidylcholine) bilayers close to full hydration has been studied by the inelastic x-ray scattering technique below and above the main transition temperature. The analysis based on a generalized three effective eigenmode theory allows us to construct the dispersion relation of the high frequency sound mode for the first time. The marked softening of the excitation near k = 14 nm(-1), corresponding to the lipid chain-chain correlation peak in the structure factor, in the L(alpha) phase implies prevalent occurrences of short-wavelength in-plane motions of lipid chains that might be of importance for transportation of small molecules across membranes. PMID:11177926

  20. Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory

    SciTech Connect

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.

    2012-11-15

    The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.

  1. Longitudinal Polarization of {lambda} and {lambda}-bar Hyperons in Deep-Inelastic Scattering at COMPASS

    SciTech Connect

    Sapozhnikov, M. G.

    2007-06-13

    The longitudinal polarization of {lambda} and {lambda}-bar hyperons produced in deep-inelastic scattering of 160 GeV/c polarized positive muons is studied in the COMPASS (CERN NA58) experiment. Preliminary results on the longitudinal polarization of {lambda} and {lambda}-bar from data collected during the 2003 run are presented.

  2. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  3. Hot background” of the mobile inelastic neutron scattering system for soil carbon analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The problem of gamma spectrum peaks identification arises when conducting soil carbon (and other elements) analysis using the mobile inelastic neutron scattering (MINS) system. Some gamma spectrum peaks could be associated with radioisotopes appearing due to neutron activation of both the MINS syste...

  4. Magnetic relaxation studies on a single-molecule magnet by time-resolved inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Waldmann, O.; Carver, G.; Dobe, C.; Biner, D.; Sieber, A.; Güdel, H. U.; Mutka, H.; Ollivier, J.; Chakov, N. E.

    2006-01-01

    Time-resolved inelastic neutron scattering measurements on an array of single-crystals of the single-molecule magnet Mn12ac are presented. The data facilitate a spectroscopic investigation of the slow relaxation of the magnetization in this compound in the time domain.

  5. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight per...

  6. 4 f excitations in Ce Kondo lattices studied by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Amorese, A.; Dellea, G.; Fanciulli, M.; Seiro, S.; Geibel, C.; Krellner, C.; Makarova, I. P.; Braicovich, L.; Ghiringhelli, G.; Vyalikh, D. V.; Brookes, N. B.; Kummer, K.

    2016-04-01

    The potential of resonant inelastic soft x-ray scattering to measure 4 f crystal electric-field excitation spectra in Ce Kondo lattices has been examined. Spectra have been obtained for several Ce systems and show a well-defined structure determined by crystal-field, spin-orbit, and charge-transfer excitations only. The spectral shapes of the excitation spectra can be well understood in the framework of atomic multiplet calculations. For CeCu2Si2 we found notable disagreement between the inelastic x-ray-scattering spectra and theoretical calculations when using the crystal-field scheme proposed from inelastic neutron scattering. Modified sets of crystal-field parameters yield better agreement. Our results also show that, with the very recent improvements of soft x-ray spectrometers in resolution to below 30 meV at the Ce M4 ,5 edges, resonant inelastic x-ray scattering could be an ideal tool to determine the crystal-field scheme in Ce Kondo lattices and other rare-earth compounds.

  7. Reply to comment by Thomas on ''On rainbow scattering in inelastic molecular collisions''

    SciTech Connect

    Bowman, J.M.; Lee, K.T.

    1981-02-15

    The comments of Thomas/sup 1/ on the location of rainbows in inelastic molecular scattering of Ref. 2 are discussed and evaluated. It is contended that more insight into the nature of reainbows in rotatinally inelstic collisions is obtained by using the arguments in ref. 2. (AIP)

  8. Resonances in rotationally inelastic scattering of OH(X2Π) with helium and neon.

    PubMed

    Gubbels, Koos B; Ma, Qianli; Alexander, Millard H; Dagdigian, Paul J; Tanis, Dick; Groenenboom, Gerrit C; van der Avoird, Ad; van de Meerakker, Sebastiaan Y T

    2012-04-14

    We present detailed calculations on resonances in rotationally and spin-orbit inelastic scattering of OH (X(2)Π, j = 3/2, F(1), f) radicals with He and Ne atoms. We calculate new ab initio potential energy surfaces for OH-He, and the cross sections derived from these surfaces compare well with the recent crossed beam scattering experiment of Kirste et al. [Phys. Rev. A 82, 042717 (2010)]. We identify both shape and Feshbach resonances in the integral and differential state-to-state scattering cross sections, and we discuss the prospects for experimentally observing scattering resonances using Stark decelerated beams of OH radicals. PMID:22502519

  9. Inelastic and reactive scattering of hyperthermal atomic oxygen from amorphous carbon

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Brinza, David E.; Liang, Ranty H.

    1991-01-01

    The reaction of hyperthermal oxygen atoms with an amorphous carbon-13 surface was studied using a modified universal crossed molecular beams apparatus. Time-of-flight distributions of inelastically scattered O-atoms and reactively scattered CO-13 and CO2-13 were measured with a rotatable mass spectrometer detector. Two inelastic scattering channels were observed, corresponding to a direct inelastic process in which the scattered O-atoms retain 20 to 30 percent of their initial kinetic energy and to a trapping desorption process whereby O-atoms emerge from the surface at thermal velocities. Reactive scattering data imply the formation of two kinds of CO products, slow products whose translational energies are determined by the surface temperature and hyperthermal (Approx. 3 eV) products with translational energies comprising roughly 30 percent of the total available energy (E sub avl), where E sub avl is the sum of the collision energy and the reaction exothermicity. Angular data show that the hyperthermal CO is scattered preferentially in the specular direction. CO2 product was also observed, but at much lower intensities than CO and with only thermal velocities.

  10. Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds

    NASA Astrophysics Data System (ADS)

    Chaiken, Joseph; Goodisman, Jerry; Deng, Bin; Bussjager, Rebecca J.; Shaheen, George

    2009-09-01

    We report simultaneous observation of elastic scattering, fluorescence, and inelastic scattering from in vivo near-infrared probing of human skin. Careful control of the mechanical force needed to obtain reliable registration of in vivo tissue with an appropriate optical system allows reproducible observation of blood flow in capillary beds of human volar side fingertips. The time dependence of the elastically scattered light is highly correlated with that of the combined fluorescence and Raman scattered light. We interpret this in terms of turbidity (the impeding effect of red blood cells on optical propagation to and from the scattering centers) and the changes in the volume percentages of the tissues in the irradiated volume with normal homeostatic processes. By fitting to a model, these measurements may be used to determine volume fractions of plasma and RBCs.

  11. Precise QCD Predictions for the Production of Dijet Final States in Deep Inelastic Scattering.

    PubMed

    Currie, James; Gehrmann, Thomas; Niehues, Jan

    2016-07-22

    The production of two-jet final states in deep inelastic scattering is an important QCD precision observable. We compute it for the first time to next-to-next-to-leading order (NNLO) in perturbative QCD. Our calculation is fully differential in the lepton and jet variables and allows one to impose cuts on the jets in both the laboratory and the Breit frame. We observe that the NNLO corrections are moderate in size, except at kinematical edges, and that their inclusion leads to a substantial reduction of the scale variation uncertainty on the predictions. Our results will enable the inclusion of deep inelastic dijet data in precision phenomenology studies. PMID:27494466

  12. Precise QCD Predictions for the Production of Dijet Final States in Deep Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Currie, James; Gehrmann, Thomas; Niehues, Jan

    2016-07-01

    The production of two-jet final states in deep inelastic scattering is an important QCD precision observable. We compute it for the first time to next-to-next-to-leading order (NNLO) in perturbative QCD. Our calculation is fully differential in the lepton and jet variables and allows one to impose cuts on the jets in both the laboratory and the Breit frame. We observe that the NNLO corrections are moderate in size, except at kinematical edges, and that their inclusion leads to a substantial reduction of the scale variation uncertainty on the predictions. Our results will enable the inclusion of deep inelastic dijet data in precision phenomenology studies.

  13. Experimental constraints on non-linearities induced by two-photon effects in elastic and inelastic Rosenbluth separations

    SciTech Connect

    Vladas Tvaskis; John Arrington; Michael Christy; Rolf Ent; Cynthia Keppel; Yongguang Liang; Grahame Vittorini

    2006-01-26

    The effects of two-photon exchange corrections, suggested to explain the difference between measurements of the proton elastic electromagnetic form factors using the polarization transfer and Rosenbluth techniques, have been studied in elastic and inelastic scattering data. Such corrections could introduce epsilon-dependent non-linearities in inelastic Rosenbluth separations, where epsilon is the virtual photon polarization parameter. It is concluded that such non-linear effects are consistent with zero for elastic, resonance, and deep-inelastic scattering for all Q{sup 2} and W{sup 2} values measured.

  14. Inelastic scattering of NO from Ag(111): Internal state, angle, and velocity resolved measurements

    SciTech Connect

    Rettner, C.T.; Kimman, J.; Auerbach, D.J. )

    1991-01-01

    We have determined the velocity distributions of individual quantum states of NO scattering from Ag(111) at specific scattering angles {theta}{sub {ital f}} using molecular beam techniques to control the incidence energy {ital E}{sub {ital i}} and angle {theta}{sub {ital i}}. We find that the mean energies of scattered species {ital E}{sub {ital f}} depend weakly on {theta}{sub {ital f}} at low collision energies, but become increasingly independent of this parameter as {ital E}{sub {ital i}} approaches 1.0 eV. This is true for all final rotation states {ital J}. The previously reported insensitivity of the final kinetic energy to {ital J} is found to apply at all scattering angles, so that {ital E}{sub {ital f}} vs {theta}{sub {ital f}} curves for high {ital J} fall only slightly below those for low {ital J}. This system is highly translationally inelastic at high incidence energies, with up to 55% of {ital E}{sub {ital i}} being lost to phonons at {ital E}{sub {ital i}}=1.0 eV. Angular distributions are relatively insensitive to {ital J} at low {ital E}{sub {ital i}} , but for high {ital E}{sub {ital i}} the peak flux is found to shift away from the surface normal as {ital E}{sub {ital i}} increases. The effect of the surface temperature only becomes apparent at low incidence energies. A search for supernumerary rotational rainbows reveals no discernible oscillations even for the lowest surface temperatures. We believe that these supernumerary oscillations may be damped by surface corrugation'' effects for this system. Discussion focuses on the observed anticorrelation between kinetic energy transfer to phonons and to rotation, the extent to which parallel momentum is conserved in this system, and energy-angle scaling laws for energy transfer.

  15. Inelastic scattering in atom-diatomic molecule collisions. I - Rotational transitions in the sudden approximation

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The impact parameter method and the sudden approximation are applied to determine the total probability of inelastic rotational transitions arising from a collision of an atom and a homonuclear diatomic molecule at large impact parameters. An analytical approximation to this probability is found for conditions where the electron exchange or overlap forces dominate the scattering. An approximate upper bound to the range of impact parameters for which rotational scattering can be important is determined. In addition, an estimate of the total inelastic cross section is found at conditions for which a statistical model describes the scattering well. The results of this analysis are applied to Ar-O2 collisions and may be readily applied to other combinations of atoms and molecules.

  16. Fully quantum state-resolved inelastic scattering of NO(X) + Kr: differential cross sections and product rotational alignment.

    PubMed

    Brouard, M; Chadwick, H; Gordon, S D S; Hornung, B; Nichols, B; Kłos, J; Aoiz, F J; Stolte, S

    2014-10-28

    Fully quantum state selected and resolved inelastic scattering of NO(X) by krypton has been investigated. Initial Λ-doublet state selection is achieved using an inhomogeneous hexapole electric field. Differential cross sections and even-moment polarization dependent differential cross sections have been obtained at a collision energy of 514 cm(-1) for both spin-orbit and parity conserving and changing collisions. Experimental results are compared with those obtained from quantum scattering calculations and are shown to be in very good agreement. Hard shell quantum scattering calculations are also performed to determine the effects of the different parts of the potential on the scattering dynamics. Comparisons are also made with the NO(X) + Ar system. PMID:25362298

  17. Fully quantum state-resolved inelastic scattering of NO(X) + Kr: Differential cross sections and product rotational alignment

    SciTech Connect

    Brouard, M. Chadwick, H.; Gordon, S. D. S.; Hornung, B.; Nichols, B.; Kłos, J.; Aoiz, F. J.; Stolte, S.

    2014-10-28

    Fully quantum state selected and resolved inelastic scattering of NO(X) by krypton has been investigated. Initial Λ-doublet state selection is achieved using an inhomogeneous hexapole electric field. Differential cross sections and even-moment polarization dependent differential cross sections have been obtained at a collision energy of 514 cm{sup −1} for both spin-orbit and parity conserving and changing collisions. Experimental results are compared with those obtained from quantum scattering calculations and are shown to be in very good agreement. Hard shell quantum scattering calculations are also performed to determine the effects of the different parts of the potential on the scattering dynamics. Comparisons are also made with the NO(X) + Ar system.

  18. Study of Low Energy Electron Inelastic Scattering Mechanisms Using Spin Sensitive Techniques

    NASA Astrophysics Data System (ADS)

    Hsu, Hongbing

    1995-01-01

    Spin sensitive electron spectroscopies were used to study low energy electron inelastic scattering from metal surfaces and thin films. In these experiments, a beam of spin polarized electrons from a GaAs source is directed on the sample surface, and the spin polarization and intensity are measured as a function of energy loss and scattering angle by a Mott electron polarimeter coupled with a concentric hemispherical energy analyzer. Systematic studies of the angular dependence of inelastically scattered electrons were conducted on a Cu(100) surface, and Mo/Cu(100), non-magnetized Fe/Cu(100), and Co/Cu(100) films. The polarization and intensity of scattered electrons were measured as function of energy loss and scattering angle. Further studies were also conducted on Ag(100) surface and amorphous Cu/Ag(100) films. From the experimental results, the angular distributions of dipole and impact scattered electrons can be determined individually and both are found to peak in the specular scattering direction. Preliminary studies were conducted on magnetized Co/Cu(100) films. The spin dependent scattering intensity asymmetry was measured, with a clearly observable peak at energy loss of ~1 eV, which coincides with the band splitting. The polarizations of secondary electrons produced by an unpolarized primary beam were also measured. The polarizations can be related to the band polarization of magnetized cobalt films.

  19. Final-state interactions in inclusive deep-inelastic scattering from the deuteron

    DOE PAGESBeta

    Cosyn, Wim; Melnitchouk, Wally; Sargsian, Misak M.

    2014-01-16

    We explore the role of final-state interactions (FSI) in inclusive deep-inelastic scattering from the deuteron. Relating the inclusive cross section to the deuteron forward virtual Compton scattering amplitude, a general formula for the FSI contribution is derived in the generalized eikonal approximation, utilizing the diffractive nature of the effective hadron-nucleon interaction. The calculation uses a factorized model with a basis of three resonances with mass W~<2 GeV and a continuum contribution for larger W as the relevant set of effective hadron states entering the final-state interaction amplitude. The results show sizeable on-shell FSI contributions for Bjorken x ~> 0.6 andmore » Q2 < 10 GeV2 increasing in magnitude for lower Q2, but vanishing in the high-Q2 limit due to phase space constraints. The off-shell rescattering contributes at x ~> 0.8 and is taken as an uncertainty on the on-shell result.« less

  20. Elastic and inelastic scattering of positrons in gases and solids

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. W.

    1972-01-01

    Three apparatuses were designed and built: The first, which is now operative, was designed to study the details of positron thermalization in solids and the subsequent emission of the low energy positrons from moderating foils; The second apparatus now under test is a positron bottle similar in design to an electron trap. It was built to store positrons at a fixed energy and to look at the number of stored positrons (storage time) as a function of a scattering gas in the vacuum chamber. The third apparatus is a crossed beam apparatus where positron-, alkali scattering will be studied. Much of the apparatus is now under test with electrons.

  1. Measurement of high energy resolution inelastic proton scattering at and close to zero degrees

    NASA Astrophysics Data System (ADS)

    Tamii, A.; Fujita, Y.; Matsubara, H.; Adachi, T.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.; Hashimoto, H.; Hatanaka, K.; Itahashi, T.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Ninomiya, S.; Perez-Cerdan, A. B.; Popescu, L.; Rubio, B.; Saito, T.; Sakaguchi, H.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Shimizu, Y.; Smit, F. D.; Tameshige, Y.; Yosoi, M.; Zenhiro, J.

    2009-07-01

    Measurements of inelastic proton scattering with high energy resolution at forward scattering angles including 0∘ are described. High-resolution halo-free beams were accelerated by the cyclotron complex at the Research Center for Nuclear Physics. Instrumental background events were minimized using the high-quality beam. The remaining instrumental background events were eliminated by applying a background subtraction method. As a result, clean spectra were obtained even for a heavy target nucleus such as Pb208. A high energy resolution of 20 keV (FWHM) and a scattering angle resolution of ±0.6∘ were achieved at an incident proton energy of 295 MeV.

  2. A 2 m inelastic x-ray scattering spectrometer at CMC-XOR, Advanced Photon Source.

    SciTech Connect

    Hill, J. P.; Coburn, D. S.; Kim, Y. J.; Gog, T.; Casa, D. M.; Kodituwakku, C. N.; Sinn, H.; X-Ray Science Division; BNL; Univ. of Toronto

    2007-07-01

    The design and commissioning of an inelastic X-ray scattering instrument at CMC-XOR at the Advanced Photon Source is reported. The instrument features a 2 m vertical-scattering arm with a novel counterweight design to reduce the twisting moment as the arm is moved in the scattering plane. A Ge(733) spherical analyzer was fabricated and an overall resolution of 118 meV (FWHM) was obtained with a Si(444) monochromator and a Si(111) pre-monochromator. Early results from a representative cuprate, La{sub 2}CuO{sub 4}, are reported.

  3. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering.

    PubMed

    Gao, Xuan; Casa, Diego; Kim, Jungho; Gog, Thomas; Li, Chengyang; Burns, Clement

    2016-08-01

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals. PMID:27587100

  4. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program.

  5. CT14QED parton distribution functions from isolated photon production in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl; Pumplin, Jon; Stump, Daniel; Yuan, C.-P.

    2016-06-01

    We describe the implementation of quantum electrodynamic (QED) evolution at leading order (LO) along with quantum chromodynamic (QCD) evolution at next-to-leading order (NLO) in the CTEQ-TEA global analysis package. The inelastic contribution to the photon parton distribution function (PDF) is described by a two-parameter ansatz, coming from radiation off the valence quarks, and based on the CT14 NLO PDFs. Setting the two parameters to be equal allows us to completely specify the inelastic photon PDF in terms of the inelastic momentum fraction carried by the photon, p0γ, at the initial scale Q0=1.295 GeV . We obtain constraints on the photon PDF by comparing with ZEUS data [S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 687, 16 (2010)] on the production of isolated photons in deep inelastic scattering, e p →e γ +X . For this comparison we present a new perturbative calculation of the process that consistently combines the photon-initiated contribution with the quark-initiated contribution. Comparison with the data allows us to put a constraint at the 90% confidence level of p0γ≲0.14 % for the inelastic photon PDF at the initial scale of Q0=1.295 GeV in the one-parameter radiative ansatz. The resulting inelastic CT14QED PDFs will be made available to the public. In addition, we also provide CT14QEDinc PDFs, in which the inclusive photon PDF at the scale Q0 is defined by the sum of the inelastic photon PDF and the elastic photon distribution obtained from the equivalent photon approximation.

  6. Phase interference and sub-femtosecond time dynamics of resonant inelastic X-ray scattering from Mott insulators

    NASA Astrophysics Data System (ADS)

    Wray, L. Andrew; Huang, Shih-Wen; Xia, Yuqi; Hasan, M. Zahid; Mathy, Charles; Eisaki, Hiroshi; Hussain, Zahid; Chuang, Yi-De

    2014-03-01

    Resonant inelastic X-ray scattering (RIXS) is a powerful technique for observing the energy states of many-body quantum materials. The core hole resonance states that make RIXS possible are strongly correlated, and undergo complex time evolution that shapes scattering spectra. However, current inelastic scattering measurements cannot be converted to a time resolved picture, because techniques that determine relative phase information from elastic scattering have not been adapted to the greater complexity of inelastic spectra. We will show that inelastic scattering phases can be identified from quantum interference in sharply resolved (dE < 35meV) M-edge RIXS spectra of Mott insulators (e.g. SrCuO2 and NiO), and provide new information for identifying excitation symmetries and many-body time dynamics.

  7. State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms.

    PubMed

    Scharfenberg, Ludwig; Kłos, Jacek; Dagdigian, Paul J; Alexander, Millard H; Meijer, Gerard; van de Meerakker, Sebastiaan Y T

    2010-09-28

    The Stark deceleration method exploits the concepts of charged particle accelerator physics to produce molecular beams with a tunable velocity. These tamed molecular beams offer interesting perspectives for precise crossed beam scattering studies as a function of the collision energy. The method has advanced sufficiently to compete with state-of-the-art beam methods that are used for scattering studies throughout. This is demonstrated here for the scattering of OH radicals (X(2)Pi(3/2), J = 3/2, f) with Ar atoms, a benchmark system for the scattering of open-shell molecules with atoms. Parity-resolved integral state-to-state inelastic scattering cross sections are measured at collision energies between 80 and 800 cm(-1). The threshold behavior and collision energy dependence of 13 inelastic scattering channels is accurately determined. Excellent agreement is obtained with the cross sections predicted by close-coupling scattering calculations based on the most accurate ab initio OH + Ar potential energy surfaces to date. PMID:20657906

  8. Rotationally Inelastic Scattering of Quantum-State-Selected ND3 with Ar.

    PubMed

    Tkáč, Ondřej; Saha, Ashim K; Loreau, Jérôme; Parker, David H; van der Avoird, Ad; Orr-Ewing, Andrew J

    2015-06-11

    Rotationally inelastic scattering of ND3 with Ar is studied at mean collision energies of 410 and 310 cm(–1). In the experimental component of the study, ND3 molecules are prepared by supersonic expansion and subsequent hexapole state selection in the ground electronic and vibrational levels and in the jk(±) = 1(1) rotational level. A beam of state-selected ND3 molecules is crossed with a beam of Ar, and scattered ND3 molecules are detected in single final j′k′(±) quantum states using resonance enhanced multiphoton ionization spectroscopy. State-to-state differential cross sections for rotational-level changing collisions are obtained by velocity map imaging. The experimental measurements are compared with close-coupling quantum-mechanical scattering calculations performed using an ab initio potential energy surface. The computed DCSs agree well with the experimental measurements, confirming the high quality of the potential energy surface. The angular distributions are dominated by forward scattering for all measured final rotational and vibrational inversion symmetry states. This outcome is in contrast to our recent results for inelastic scattering of ND3 with He, where we observed significant amount of sideways and backward scattering for some final rotational levels of ND3. The differences between He and Ar collision partners are explained by differences in the potential energy surfaces that govern the scattering dynamics. PMID:25532415

  9. Vibrational dynamics of plant light-harvesting complex LHC II investigated by quasi- and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Golub, Maksym; Irrgang, Klaus-Dieter; Rusevich, Leonid; Pieper, Jörg

    2015-01-01

    Vibrational dynamics of the light-harvesting complex II (LHC II) from spinach was investigated by quasi- and inelastic neutron scattering (QENS and INS) at three different temperatures of 80, 160, and 285 K. QENS/INS spectra of solubilised LHC II and of the corresponding buffer solution were obtained separately and exhibit characteristic inelastic features. After subtraction of the buffer contribution, the INS spectrum of LHC II reveals a distinct Boson peak at ˜ 2.5 meV at 80 K that shifts towards lower energies if the temperature is increased to 285 K. This effect is interpreted in terms of a "softening" of the protein matrix along with the dynamical transition at ˜ 240 K. Our findings indicate that INS is a valuable method to obtain the density of vibrational states not only at cryogenic, but also at physiological temperatures.

  10. Self-dynamics of hydrogen gas as probed by means of inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Guarini, Eleonora; Orecchini, Andrea; Formisano, Ferdinando; Demmel, Franz; Petrillo, Caterina; Sacchetti, Francesco; Bafile, Ubaldo; Barocchi, Fabrizio

    2005-12-01

    The neutron double-differential cross-section of molecular hydrogen at low density has been measured at two rather low scattering angles and different final neutron energies by means of three-axis spectrometry. This first inelastic scattering determination of the single-particle roto-translational dynamics of room temperature H2 allows for a detailed test of the theoretical modelling of the spectral line-shapes of such a fundamental molecule, performed by referring both to a careful quantum-mechanical treatment and to a simpler semi-classical approximation. A comprehensive report on the neutron measurements and data analysis is presented, along with an overview of the theories used for comparison with the experimental results. An encouraging picture of the present capabilities in the calculation of the true dynamic response of hydrogen gas to slow and thermal neutrons is obtained, opening new perspectives for accurate data calibration in inelastic neutron spectroscopy, with special relevance for small-angle experiments.

  11. D^* production in deep-inelastic scattering at low Q^2

    SciTech Connect

    Jung, Andreas W.; /Fermilab

    2011-07-01

    Inclusive production of D* mesons in deep-inelastic scattering at HERA is studied in the range 5 < Q{sup 2} < 100 GeV{sup 2} of the photon virtuality and 0.02 < y < 0.70 of the inelasticity of the scattering process. The visible range for the D* meson is p{sub T} (D*) > 1.25 GeV and |{eta}(D*)| < 1.8. The data were taken with the H1 detector in the years 2004 to 2007 and correspond to an integrated luminosity of 347 pb{sup -1}. Single and double differential cross sections are measured. The results are compared to QCD predictions.

  12. Two Photon Exchange in Quasi-elastic and Deep-inelastic Scattering

    SciTech Connect

    Averett, Todd D.; Katich, Joseph; Zhao Bo

    2011-10-24

    In this paper, I present an overview and preliminary results from three experiments at Jefferson Lab that were recently completed using a {sup 3}He gas target with polarization oriented normal to the scattering plane of unpolarized incident electrons. A target single spin asymmetry was formed by periodically flipping the direction of the target spin. In the reaction {up_arrow}{sup 3}He(e,e'), the Born contribution is expected to be zero, giving direct sensitivity to two photon exchange. This asymmetry was measured in the quasi-elastic and deep-inelastic regimes with 0.1 < Q{sup 2} < 1.0 GeV{sup 2}. The asymmetry is predicted to decrease by two-orders of magnitude for deep-inelastic versus quasi-elastic scattering. Preliminary results from these experiments will be presented.

  13. Producing a compound Nucleus via Inelastic Scattering: The 90Zr(alpha,alpha')90Zr* Case

    SciTech Connect

    Escher, J E; Dietrich, F S

    2008-05-23

    In a Surrogate reaction a compound nucleus is produced via a direct reaction (pickup, stripping, or inelastic scattering). For a proper application of the Surrogate approach it is necessary to predict the resulting angular momentum and parity distribution in the compound nucleus. A model for determining these distributions is developed for the case of inelastic alpha scattering off a spherical nucleus. The focus is on obtaining a first, simple description of the direct-reaction process that produces the compound nucleus and on providing the basis for a more complete treatment of the problem. The approximations employed in the present description are discussed and the extensions required for a more rigorous treatment of the problem are outlined. To illustrate the formalism, an application to {sup 90}Zr({alpha},{alpha}{prime}){sup 90}Zr* is presented.

  14. Inelastic scattering of 72,74Ni off a proton target

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Doornenbal, P.; Obertelli, A.; Pietralla, N.; Werner, V.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Louchart, C.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Niikura, M.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Zs; Franchoo, S.; Giacoppo, F.; Gottardo, A.; Hadynska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Olivier, L.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C. M.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Vajta, Zs; Wu, J.; Xu, Z.

    2016-06-01

    Inelastic scattering of 72,74Ni off a proton target was performed at RIBF, RIKEN, Japan. The isotopes were produced by the fission of 238U on a thick Beryllium target and were then selected and identified on an event-by-event basis using the BigRIPS separator. Selected isotopes were focused onto the liquid hydrogen target of the MINOS device and gamma rays from the reactions were measured with the DALI2 array. The energy of the ions in the middle of the target was 213 MeV/u. Outgoing particles were identified using the ZeroDegree spectrometer. Here, we report on the current status of the data analysis and preliminary results for the proton inelastic scattering cross sections for both isotopes.

  15. Deep Inelastic Scattering from the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Taliotis, Anastasios

    2009-11-01

    We calculate [J.L. Albacete, Y.V. Kovchegov, and A. Taliotis, JHEP07, 074 (2008), 0806.1484] the cross section of an ultra relativistic nucleus scattering on a qq OverBar pair at large coupling in N=4 SUSY gauge theory. We study the problem in the context of the AdS/CFT correspondence [J.M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231-252]. The nucleus is modeled as a gravitational shockwave in an AdS5 background moving along the light cone. The dipole (qq OverBar) is represented by a Wilson loop moving in the opposite direction. Due to the correspondence, calculating the scattering amplitude of the Wilson loop with the nucleus, reduces to calculating the extreme value of the Nambu-Goto action for an open string. Its two end points are attached to the qq OverBar respectively and it hangs in an AdS5 shockwave spacetime. Six solutions are found two of which are physically meaningful. Both solutions predict that the saturation scale Q at high enough energies becomes energy independent; in particular it behaves as Q∝A1 where A is the atomic number. One solution predicts pomeron intercept α=2 and agrees with [R.C. Brower, J. Polchinski, M.J. Strassler, and C.-I. Tan, JHEP12 (2007) 005, [hep-th/0603115

  16. Analysis of inelastic x-ray scattering spectra of low-temperature water

    PubMed

    Liao; Chen; Sette

    2000-02-01

    We analyze a set of high-resolution inelastic x-ray scattering (IXS) spectra from H2O measured at T=259, 273, and 294 K using two different phenomenological models. Model I, called the "dynamic cage model," combines the short time in-cage dynamics described by a generalized Enskog kinetic theory with a long-time cage relaxation dynamics described by an alpha relaxation. This model is appropriate for supercooled water where the cage effect is dominant and the existence of an alpha relaxation is evident from molecular-dynamics (MD) simulation data of extended simple point charge (SPC/E) model water. Model II is essentially a generalized hydrodynamic theory called the "three effective eigenmode theory" by de Schepper et al. 11. This model is appropriate for normal liquid water where the cage effect is less prominent and there is no evidence of the alpha relaxation from the MD data. We use the model I to analyze IXS data at T=259 K (supercooled water). We successfully extract the Debye-Waller factor, the cage relaxation time from the long-time dynamics, and the dispersion relation of high-frequency sound from the short time dynamics. We then use the model II to analyze IXS data at all three temperatures, from which we are able to extract the relaxation rate of the central mode and the damping of the sound mode as well as the dispersion relation for the high-frequency sound. It turns out that the dispersion relations extracted from the two models at their respective temperatures agree with each other giving the high-frequency sound speed of 2900+/-300 m/s. This is to be compared with a slightly higher value reported previously, 3200+/-320 m/s, by analyzing similar IXS data with a phenomenological-damped harmonic oscillator model 22. This latter model has traditionally been used exclusively for the analysis of inelastic scattering spectra of water. The k-dependent sound damping and central mode relaxation rate extracted from our model analyses are compared with the known

  17. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect

    Niedziela, Jennifer L; Stone, Matthew B

    2014-01-01

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  18. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect

    Niedziela, J. L.; Stone, M. B.

    2014-09-08

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80 K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  19. Toward a QCD analysis of jet rates in deep-inelastic Muon-Proton scattering

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-08-01

    Measurements of multi-jet production rates in deep-inelastic Muon-Proton scattering at Fermilab-E665 are presented. Jet rates defined by the JADE clustering algorithm are compared to perturbative Quantum chromodynamics (PQCD) and different Monte Carlo model predictions. The applicability of the jet-parton duality hypothesis is studied. We obtain hadronic jet rates which are approximately a factor of two higher than PQCD predictions at the parton level. Possible causes for this discrepancy are discussed.

  20. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W. )

    1992-02-01

    Measurements of forward multi-jet production rates in deep-inelastic muon-proton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, [ital y][sub [ital cut

  1. Differences between the deformed-potential and folding-model descriptions of inelastic nuclear scattering

    SciTech Connect

    Hnizdo, V. )

    1994-08-01

    The differences between the deformed-potential and folding-model descriptions of inelastic nuclear scattering, attention to which has been called recently by Beene, Horen, and Satchler [Phys. Rev. C 48, 3128 (1993)], were pointed out already some time ago by contrasting the rules of equal deformation lengths and equal normalized multipole moments for the optical potential and the underlying nucleon distribution of the excited nucleus.

  2. Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.

    1992-10-01

    A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.

  3. Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA

    SciTech Connect

    Polifka, Richard

    2015-04-10

    The QCD factorization theorem in diffraction is tested by comparing diffractive jet production data to QCD predictions based on fits to inclusive diffractive cross section data. H1 measured dijet production with a leading proton detected in the Very Forward Proton Spectrometer (VFPS), both in deep-inelastic scattering and in photoproduction. The DIS measurements are complemented by measurements of dijet production with an associated rapidity gap and in a data sample selected with a leading proton in the Forward Proton Spectrometer (FPS)

  4. Shadowing in the muon-xenon inelastic scattering cross section at 490 GeV

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Fang, G.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Vidal, M.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.; Fermilab E665 Collaboration

    1992-08-01

    Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for xBj> s.001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with xBj, with a depletion in the kinematic range 0.001 < xBj < 0.025 which exhibits no significant Q2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.

  5. Measurements of transverse momentum in semi-inclusive deep-inelastic scattering at CLAS

    SciTech Connect

    K.A. Griffioen

    2012-12-01

    With mounting experimental evidence that only a small fraction of the proton's spin comes from the spins of its quarks and gluons, the quest for orbital angular momentum has begun. The parton distributions relevant to this depend on transverse quark momenta. Recent CLAS semi-inclusive deep-inelastic scattering measurements probe these new transverse-momentum-dependent parton distributions using longitudinally polarized beams and targets and detecting {pi}{sup +},{pi}{sup -} and {pi}{sup 0} in the final state.

  6. "Hot background" of the mobile inelastic neutron scattering system for soil carbon analysis.

    PubMed

    Kavetskiy, Aleksandr; Yakubova, Galina; Prior, Stephen A; Torbert, H Allen

    2016-01-01

    The problem of gamma spectrum peak identification arises when conducting soil carbon analysis using the inelastic neutron scattering (INS) system. Some spectral peaks could be associated with radioisotopes appearing due to neutron activation of both the measurement system and soil samples. The investigation of "hot background" gamma spectra from the construction materials, whole measurement system, and soil samples over time showed that activation of (28)Al isotope can contribute noticeable additions to the soil neutron stimulated gamma spectra. PMID:26595773

  7. Inelastic He-atom scattering from the MgO(001) surface

    NASA Astrophysics Data System (ADS)

    Cui, Jinhe; Jung, David R.; Frankl, Daniel R.

    1990-11-01

    Dispersion curves of Rayleigh phonons on an in situ cleaved, room-temperature surface of MgO(001) are determined by time-of-flight measurements of inelastically scattered He atoms. Along both the Γ¯ X¯ and Γ¯ M¯ directions, the measured phonon frequencies agree fairly well with a shell-model calculation for an unrelaxed MgO(001) surface.

  8. Analysis of inelastic neutron scattering spectra from a time-of-flight spectrometer with filter detector

    SciTech Connect

    Vorderwisch, P.; Mezei, F.; Eckert, J.; Goldstone, J.A.

    1986-01-01

    Inelastic neutron scattering spectra obtained from time-of-flight spectrometers with filter detector suffer in energy resolution from a long time-of-flight tail in the filter response function. A mathematical method is described which removes this tail in measured spectra. The energy resolution can thereby be adapted for each part of the spectrum. Applications of the method to data taken at the LANSCE pulsed spallation source are presented.

  9. Inelastic neutron scattering investigation of crystal-field splittings in UBr 3

    NASA Astrophysics Data System (ADS)

    Murasik, A.; Furrer, A.

    1980-10-01

    An inelastic neutron scattering technique was used to measure the crystal-field splittings in UBr 3 at various temperatures and momentum transfers. In the interpretation of the observed energy spectra it turns out that the Russell-Saunders coupling scheme is a reasonable approximation. The crystal-field level scheme could be unambiguously assigned. The detailed nature of the crystal-field transition from the ground state to the first-excited state is not yet fully understood.

  10. High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science

    PubMed Central

    Shvyd’ko, Yuri; Stoupin, Stanislav; Shu, Deming; Collins, Stephen P.; Mundboth, Kiran; Sutter, John; Tolkiehn, Martin

    2014-01-01

    Photon and neutron inelastic scattering spectrometers are microscopes for imaging condensed matter dynamics on very small length and time scales. Inelastic X-ray scattering permitted the first quantitative studies of picosecond nanoscale dynamics in disordered systems almost 20 years ago. However, the nature of the liquid-glass transition still remains one of the great unsolved problems in condensed matter physics. It calls for studies at hitherto inaccessible time and length scales, and therefore for substantial improvements in the spectral and momentum resolution of the inelastic X-ray scattering spectrometers along with a major enhancement in spectral contrast. Here we report a conceptually new spectrometer featuring a spectral resolution function with steep, almost Gaussian tails, sub-meV (≃620 μeV) bandwidth and improved momentum resolution. The spectrometer opens up uncharted space on the dynamics landscape. New results are presented on the dynamics of liquid glycerol, in the regime that has become accessible with the novel spectrometer. PMID:24953338

  11. Differential Cross Sections for Neutron Elastic and Inelastic Scattering on 23Na

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Chakraborty, A.; Champine, B. R.; Combs, B.; Crider, B. P.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Sidwell, L.; Sigillito, A.; Watts, D. W.; Yates, S. W.

    2014-03-01

    Measurements of neutron elastic and inelastic scattering from 23Na have been performed for sixteen incident neutron energies above 1.5 MeV with the 7-MV University of Kentucky Accelerator using the 3H(p,n) reaction as the neutron source. These measurements were complemented by γ-ray excitation functions using the (n,n'γ) reaction. The time-of-flight technique is employed for background reduction in both neutron and γ- ray measurements and for determining the energy of the scattered neutrons. Cross section determinations support fuel cycle and structural materials research and development. Previous reaction model evaluations [1] relied primarily on total cross sections and four (n,n0) and (n,n1) angular distributions in the En = 5 to 9 MeV range. The inclusion of more inelastic channels at lower neutron energies provides additional information on direct couplings between elastic and inelastic scattering as a function of angular momentum transfer. Reaction model calculations examining direct collective and statistical properties were performed.

  12. Inelastic scattering in the trajectory approximation and its improvements

    NASA Astrophysics Data System (ADS)

    Himes, D.; Celli, V.

    We analyze several versions of the trajectory approximation for He scattering from non-corrugated surfaces. We find that under typical conditions used in the study of simple metal surfaces all the formulations we consider lead to similar results. However, the exponentiated DWBA and various eikonal approximations correctly predict a shift of the average energy transfer with surface temperature, while the simple specular TA does not. We obtain a modified Brako-Newns formula for the energy and momentum distribution in the classical limit. We report calculations carried out for Pt(111) and Cu(111) under conditions of experimental interest and we discuss the importance of multiphonon processes and the contribution of various surface correlation functions.

  13. Inelastic cross sections for positron scattering from atomic hydrogen

    SciTech Connect

    Weber, M.; Hofmann, A.; Raith, W.; Sperber, W.; Jacobsen, F.; Lynn, K.G.

    1994-12-31

    Positronium formation (Ps) cross sections for positrons impinging on atomic hydrogen were measured in the impact energy range from 13eV to 255eV at the High Intensity Positron (HIP) beam at Brookhaven National Laboratory (BNL). The Ps-formation cross section was found to rise rapidly from the threshold at 6.8eV to a maximum value of (2.98 {plus_minus} 0.18) {times} 10{sup {minus}16} cm{sup 2} for {approx} 15eV positrons. By 75eV it drops below the detection limit of 0.17 {times} 10{sup {minus}16} cm{sup 2} which is the present level of statistical uncertainty. The experiment was modified to enable the measurement of doubly differential scattering cross sections.

  14. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei

    SciTech Connect

    Tvaskis, Vladas

    2004-12-09

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F{sub 2}(x,Q{sup 2}) is known with high precision over about four orders of magnitude in x and Q{sup 2}. In the region of Q{sup 2} > 1 (GeV/c){sup 2} the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoretical framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q{sup 2} becomes of the order of 1 (GeV/c){sup 2}, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q{sup 2}, since they include a factor 1/(Q{sup 2}{sup n}) (n {ge} 1).

  15. Observation of rotationally mediated focused inelastic resonances in D{sub 2} scattering from Cu(001)

    SciTech Connect

    Bertino, M.F.; Miret-Artes, S.; Toennies, J.P.; Benedek, G.

    1997-10-01

    Rotationally mediated focused inelastic resonances (RMFIR{close_quote}s) in the angular distributions of D{sub 2} scattered from Cu(001) are observed. The FIR effect involves a phonon-assisted focusing of an incident beam of arbitrary energy and direction into a final channel of one single well-defined energy and direction. Surprisingly for an incident energy E{sub i}=27meV the RMFIR conditions for the scattered beam coincide with the kinematic conditions required for a further elastic selective adsorption mechanism called the rotationally mediated critical kinematic (RMCK) effect. By taking advantage of the RMFIR and elastic RMCK effects, three effective bound states of energy {epsilon}{sub n,J}={minus}21.5meV, {minus}12.4meV, and {minus}10.3meV are determined. They are attributed to the lowest bound states {epsilon}{sub 0}={minus}28.9meV and {epsilon}{sub 1}={minus}19.8meV combined with the rotational excitation energy for J=1 to be B{sub rot}J(J+1)=7.41meV, respectively, and {epsilon}{sub 3}={minus}10.3meV combined with the rotational ground state (J=0). While the {epsilon}{sub 1} and {epsilon}{sub 3} states appear as maxima in the angular distribution at RMFIR conditions, the {epsilon}{sub 0} yields a striking minimum which represents the first evidence of what we call an anti-FIR feature. Theoretical arguments to explain the different FIR signatures observed are provided. A fit of a phenomenological interaction potential to the experimental bound-state values yields a value for the well depth D=32.5meV which is somewhat deeper than that found previously. {copyright} {ital 1997} {ital The American Physical Society}

  16. X-ray diffraction and inelastic neutron scattering study of 1:1 tetramethylpyrazine chloranilic acid complex: temperature, isotope, and pressure effects.

    PubMed

    Prager, M; Pietraszko, A; Sobczyk, L; Pawlukojć, A; Grech, E; Seydel, T; Wischnewski, A; Zamponi, M

    2006-11-21

    The x-ray diffraction studies of the title complex were carried out at room temperature and 14 K for H/D (in hydrogen bridge) isotopomers. At 82 K a phase transition takes place leading to a doubling of unit cells and alternation of the hydrogen bond lengths linking tetramethylpyrazine (TMP) and chloranilic acid molecules. A marked H/D isotope effect on these lengths was found at room temperature. The elongation is much smaller at 14 K. The infrared isotopic ratio for O-H(D)...N bands equals to 1.33. The four tunnel splittings of methyl librational ground states of the protonated complex required by the structure are determined at a temperature T=4.2 K up to pressures P=4.7 kbars by high resolution neutron spectroscopy. The tunnel mode at 20.6 microeV at ambient pressure shifts smoothly to 12.2 microeV at P=3.4 kbars. This is attributed to an increase of the strength of the rotational potential proportional to r(-5.6). The three other tunnel peaks show no or weak shifts only. The increasing interaction with diminishing intermolecular distances is assumed to be compensated by a charge transfer between the constituents of deltae/e approximately 0.02 kbar(-1). The phase transition observed between 3.4 and 4.7 kbars leads to increased symmetry with only two more intense tunneling bands. In the isotopomer with deuterated hydrogen bonds and P=1 bar all tunnel intensities become equal in consistency with the low temperature crystal structure. The effect of charge transfer is confirmed by a weakening of rotational potentials for those methyl groups whose tunnel splittings were independent of pressure. Density functional theory calculations for the model TMP.(HF)2 complex and fully ionized molecule TMP+ point out that the intramolecular rotational potential of methyl groups is weaker in the charged species. They do not allow for the unequivocal conclusions about the role of the intermolecular charge transfer effect on the torsional frequencies. PMID:17129141

  17. Elastic and inelastic scattering of 15N ions by 9Be at 84 MeV

    NASA Astrophysics Data System (ADS)

    Rudchik, A. T.; Chercas, K. A.; Kemper, K. W.; Rusek, K.; Rudchik, A. A.; Herashchenko, O. V.; Koshchy, E. I.; Pirnak, Val. M.; Piasecki, E.; Trzcińska, A.; Sakuta, S. B.; Siudak, R.; Strojek, I.; Stolarz, A.; Ilyin, A. P.; Ponkratenko, O. A.; Stepanenko, Yu. M.; Shyrma, Yu. O.; Szczurek, A.; Uleshchenko, V. V.

    2016-03-01

    Angular distributions of the 9Be + 15N elastic and inelastic scattering were measured at Elab(15N) = 84 MeV (Ec.m. = 31.5 MeV) for the 0-6.76 MeV states of 9Be and 0-6.32 MeV states of 15N. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of 9Be in ground and excited states and 15N in excited states as well as the most important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of the 9Be + 15N optical potential of Woods-Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the 9Be + 15N pure potential elastic scattering dominates at the forward angles whereas the ground state spin reorientation of 9Be gives a major contribution to the elastic scattering cross sections at the large angles. Contributions from particle transfers are found to be negligible for the present scattering system.

  18. Study of the soft dipole modes in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Ciemała, M.; Fornal, B.; Grȩbosz, J.; Mazurek, K.; Mȩczyński, W.; Ziȩbliński, M.; Crespi, F. C. L.; Bracco, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; De Angelis, G.; Napoli, D. R.; Valiente-Dobon, J. J.; Bazzacco, D.; Farnea, E.; Gottardo, A.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Recchia, F.; Ur, C.; Gadea, A.; Huyuk, T.; Barrientos, D.; Birkenbach, B.; Geibel, K.; Hess, H.; Reiter, P.; Steinbach, T.; Wiens, A.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Siem, S.

    2014-05-01

    The main aim of this study was a deeper understanding of the nuclear structure properties of the soft dipole modes in 140Ce, excited via inelastic scattering of weakly bound 17O projectiles. An important aim was to investigate the ‘splitting’ of the PDR into two parts: a low-energy isoscalar component dominated by neutron-skin oscillations and a higher-energy component lying on the tail of the giant dipole resonance of a rather isovector character. This was already observed for this nucleus, investigated in (α, α‧) and (γ, γ‧) experiments. The experiment was performed at Laboratori Nazionali di Legnaro, Italy. Inelastic scattering of 17O ion beam at 20 MeV A-1 was used to excite the resonance modes in the 140Ce target. Gamma-rays were registered by five triple clusters of AGATA-Demonstrator and nine large volume scintillators (LaBr3). The scattered 17O ions were identified by two ΔE - E Si telescopes of the TRACE array mounted inside the scattering chamber. The telescopes consisted of two segmented Si-pad detectors, each of 60 pixels. Very preliminary data have shown a strong domination of the E1 transitions in the ‘pygmy’ region with a character more similar to the one obtained in alpha scattering experiment.

  19. [Inelastic electron scattering from surfaces]. [Annual] progress report

    SciTech Connect

    Not Available

    1993-10-01

    This program is aimed at the quantitative study of surface dynamical processes (vibrational, magnetic excitations) in crystalline slabs, ultrathin-layered materials, and chemisorbed systems on substrates, and of the geometric structure connected to these dynamical excitations. High-resolution electron-energy loss spectroscopy (HREELS) is a powerful probe. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50-300 eV). The analyses has been used to study surfaces of ordered alloys (NiAl). Ab-initio surface lattice dynamical results were combined with phonon-loss cross sections to achieve a more accurate microscopic description. First-principles phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross-section calculations. The combined microscopic approach was used to analyze EELS data of Cu(0001) and Ag(001) at two points. Positron diffraction is discussed as a structural and imaging tool. The relation between geometric structure of a film and its local magnetic properties will be studied in the future, along with other things.

  20. Nuclear dynamics in the core-excited state of aqueous ammonia probed by resonant inelastic soft x-ray scattering

    SciTech Connect

    Weinhardt, L.; Weigand, M.; Fuchs, O.; Baer, M.; Blum, M.; Denlinger, J. D.; Yang, W.; Umbach, E.; Heske, C.

    2011-09-01

    The electronic structure of aqueous NH{sub 3} and ND{sub 3} has been investigated using resonant inelastic soft x-ray scattering. Spectral features of different processes involving nuclear dynamics in the core-excited state can be identified. When exciting into the lowest core-excited state, we find a strong isotope effect and clear evidence for ultrafast proton dynamics. Furthermore, a strong vibronic coupling is observed and, in the case of aqueous NH{sub 3}, a vibrational fine structure can be resolved.

  1. Neutron Elastic and Inelastic Scattering Cross Sections on ^NatFe and ^23Na

    NASA Astrophysics Data System (ADS)

    Kersting, Luke; Lueck, Collin J.; Hicks, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Vanhoy, J. R.

    2010-10-01

    Neutron elastic and inelastic scattering angular distributions from ^NatFe and ^23Na at incident neutron energies of 3.57 and 3.81 MeV have been measured at the University of Kentucky 7 MV Van de Graaff laboratory using neutron time-of-flight techniques. The neutron beam was produced using the ^3H(p,n)He^3reaction. The scattered neutrons were detected at angles between 20 and 150 in 10 intervals with a hexafluorbenzene detector located approximately 3 m from the scattering samples. Neutron scattering differential cross sections were deduced. These cross sections and their uncertainties are important for understanding neutron-induced reactions in fission reactors and are important for fission reactor criticality calculations.

  2. Development of a graphite polarization analyzer for resonant inelastic x-ray scattering

    SciTech Connect

    Gao Xuan; Burns, Clement; Li Chengyang; Casa, Diego; Upton, Mary; Gog, Thomas; Kim, Jungho

    2011-11-15

    Resonant inelastic x-ray scattering (RIXS) is a powerful technique for studying electronic excitations in correlated electron systems. Current RIXS spectrometers measure the changes in energy and momentum of the photons scattered by the sample. A powerful extension of the RIXS technique is the measurement of the polarization state of the scattered photons which contains information about the symmetry of the excitations. This long-desired addition has been elusive because of significant technical challenges. This paper reports the development of a new diffraction-based polarization analyzer which discriminates between linear polarization components of the scattered photons. The double concave surface of the polarization analyzer was designed as a good compromise between energy resolution and throughput. Such a device was fabricated using highly oriented pyrolytic graphite for measurements at the Cu K-edge incident energy. Preliminary measurements on a CuGeO{sub 3} sample are presented.

  3. Inelastic electron tunneling spectrum from surface magnon and magnetic impurity scatterings in magnetic tunnel junctions

    SciTech Connect

    Wei, H. X.; Qin, Q. H.; Ma, Q. L.; Zhang, Xiaoguang; Han, Prof. X. F.

    2010-01-01

    Analytic expressions for contributions to the inelastic electron tunneling spectrum (IETS) from surface magnon scattering and magnetic impurity scattering are obtained. It is shown that surface magnon scattering alone does not lead to peaks in the IETS. The peaks at small bias often observed in the IETS of magnetic junctions are due to magnetic impurity scattering, in agreement with the traditional model for zero bias anomaly. These impurity resonance peaks can sometimes split due to the impurities' magnetic coupling to the electrodes. Measurements of AlO and MgO barrier junctions yield excellent agreement to the theory. The experiment further shows that the magnetic impurities in MgO barriers are strongly coupled to the electrodes but those in AlO barriers are not magnetically coupled to the electrodes.

  4. Pygmy dipole resonance in 124Sn populated by inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Crespi, F. C. L.; Leoni, S.; Camera, F.; Lanza, E. G.; Kmiecik, M.; Maj, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Nicolini, R.; Vandone, V.; Wieland, O.; Bazzacco, D.; Bednarczyk, P.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Cederwall, B.; Charles, L.; Ciemala, M.; De Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Gernhäuser, R.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocrate, R.; Jolie, J.; Judson, D.; Jungclaus, A.; Karkour, N.; Krzysiek, M.; Litvinova, E.; Lunardi, S.; Mazurek, K.; Mengoni, D.; Michelagnoli, C.; Menegazzo, R.; Molini, P.; Napoli, D. R.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente Dobon, J. J.; Zieblinski, M.

    2014-11-01

    The γ decay from the high-lying states of 124Sn was measured using the inelastic scattering of 17O at 340 MeV. The emitted γ rays were detected with high resolution with the AGATA demonstrator array and the scattered ions were detected in two segmented ΔE- E silicon telescopes. The angular distribution was measured both for the γ rays and the scattered 17O ions. An accumulation of E1 strength below the particle threshold was found and compared with previous data obtained with (γ ,γ‧) and (α ,α‧ γ) reactions. The present results of elastic scattering, and excitation of E2 and E1 states were analysed using the DWBA approach. From this comprehensive description the isoscalar component of the 1- excited states was extracted. The obtained values are based on the comparison of the data with DWBA calculations including a form factor deduced using a microscopic transition density.

  5. Inelastic and Reactive Scattering Dynamics of Hyperthermal Oxygen Atoms on Ionic Liquid Surfaces: [emim][NTf{sub 2}] and [C{sub 12}mim][NTf{sub 2}

    SciTech Connect

    Wu Bohan; Zhang Jianming; Minton, Timothy K.; McKendrick, Kenneth G.; Slattery, John M.; Yockel, Scott; Schatz, George C.

    2011-05-20

    Collisions of hyperthermal oxygen atoms, with an average translational energy of 520 kJ mol{sup -1}, on continuously refreshed ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([emim][NTf{sub 2}]) and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([C{sub 12}mim][NTf{sub 2}]), were studied with the use of a beam-surface scattering technique. Time-of-flight and angular distributions of inelastically scattered O and reactively scattered OH and H{sub 2}O were collected for various angles of incidence with the use of a rotatable mass spectrometer detector. For both O and OH, two distinct scattering processes were identified, which can be empirically categorized as thermal and non-thermal. Non-thermal scattering is more probable for both O and OH products. The observation of OH confirms that at least some reactive sites, presumably alkyl groups, must be exposed at the surface. The ionic liquid with the longer alkyl chain, [C{sub 12}mim][NTf{sub 2}], is substantially more reactive than the liquid with the shorter alkyl chain, [emim][NTf{sub 2}], and proportionately much more so than would be predicted simply from stoichiometry based on the number of abstractable hydrogen atoms. Molecular dynamics models of these surfaces shed light on this change in reactivity. The scattering behavior of O is distinctly different from that of OH. However, no such differences between inelastic and reactive scattering dynamics have been seen in previous work on pure hydrocarbon liquids, in particular the benchmark, partially branched hydrocarbon, squalane (C{sub 30}H{sub 62}). The comparison between inelastic and reactive scattering dynamics indicates that inelastic scattering from the ionic liquid surfaces takes place predominantly at non-reactive sites that are effectively stiffer than the reactive alkyl chains, with a higher proportion of collisions sampling such sites for [emim][NTf{sub 2}] than for [C{sub 12}mim][NTf{sub 2}].

  6. Recent Advances in Development and Applications of the Mixed Quantum/Classical Theory for Inelastic Scattering.

    PubMed

    Babikov, Dmitri; Semenov, Alexander

    2016-01-28

    A mixed quantum/classical approach to inelastic scattering (MQCT) is developed in which the relative motion of two collision partners is treated classically, and the rotational and vibrational motion of each molecule is treated quantum mechanically. The cases of molecule + atom and molecule + molecule are considered including diatomics, symmetric-top rotors, and asymmetric-top rotor molecules. Phase information is taken into consideration, permitting calculations of elastic and inelastic, total and differential cross sections for excitation and quenching. The method is numerically efficient and intrinsically parallel. The scaling law of MQCT is favorable, which enables calculations at high collision energies and for complicated molecules. Benchmark studies are carried out for several quite different molecular systems (N2 + Na, H2 + He, CO + He, CH3 + He, H2O + He, HCOOCH3 + He, and H2 + N2) in a broad range of collision energies, which demonstrates that MQCT is a viable approach to inelastic scattering. At higher collision energies it can confidently replace the computationally expensive full-quantum calculations. At low collision energies and for low-mass systems results of MQCT are less accurate but are still reasonable. A proposal is made for blending MQCT calculations at higher energies with full-quantum calculations at low energies. PMID:26618533

  7. From deep inelastic scattering to proton-nucleus collisions in the color glass condensate model

    NASA Astrophysics Data System (ADS)

    Gelis, François; Jalilian-Marian, Jamal

    2003-04-01

    We show that particle production in proton-nucleus (pA) collisions in the color glass condensate model can be related to deep inelastic scattering (DIS) of leptons on protons or nuclei. The common building block is the quark-antiquark (or gluon-gluon) dipole cross section which is present in both DIS and pA processes. This correspondence in a sense generalizes the standard leading twist approach to pA collisions based on collinear factorization and perturbative QCD, and allows one to express the pA cross sections in terms of a universal quantity (dipole cross section) which, in principle, can be measured in DIS or other processes. Therefore, using the parametrization of the dipole cross section at DESY HERA, one can calculate particle production cross sections in proton-nucleus collisions at high energies. Alternatively, one could use proton-nucleus experiments to further constrain models of the dipole cross section. We show that the McLerran-Venugopalan model predicts an enhancement of the cross sections at large p⊥ (Cronin effect) and a suppression of the cross sections at low p⊥. The crossover depends on rapidity and moves to higher p⊥ as one goes to more forward rapidities.

  8. Inelastic light scattering measurements of structural phase coexistence in ferrimagnetic spinel Mn3O4

    NASA Astrophysics Data System (ADS)

    Gleason, Samuel; Byrum, Taylor; Thaler, Alexander; MacDougall, Gregory; Cooper, S. Lance

    2015-03-01

    The ferrimagnetic spinel Mn3O4 has a number of functional properties, e.g., magnetodielectricity, that are ascribed to a coupling between the spins and lattice of this material. Such a coupling is manifested in the symmetry-lowering structural distortion that occurs when Mn3O4 magnetically orders at T = 33 K. A recent x-ray diffraction study2 of polycrystalline Mn3O4 found that this distortion is not fully realized, i.e., the high-symmetry and low-symmetry structures coexist below T = 33 K due to strains from lattice mismatch. To extend this work, we use variable-pressure and variable-magnetic-field inelastic light scattering spectroscopy to study structural phase coexistence in single crystals of Mn3O4. We confirm the coexistence of tetragonal (high-symmetry) and orthorhombic (low-symmetry) phases below T = 33 K. Furthermore, we demonstrate that the application of hydrostatic pressure suppresses the remnant tetragonal phase, while the application of magnetic field can bolster this phase. These results indicate that microscopic descriptions of functional behavior in Mn3O4 should consider effects due to structural phase coexistence. [2] M. C. Kemei, et al., Phys. Rev. B 89, 174410 (2014). Research was supported by the U.S. Department of Energy under Award DE-FG02-07ER46453. T. Byrum was partially supported by the National Science Foundation under Grant Number DGE-1144245.

  9. Interaction of hydrogen with extraframework cations in zeolite hosts probed by inelastic neutron scattering spectroscopy.

    PubMed

    Eckert, Juergen; Trouw, Frans R; Mojet, Barbara; Forster, Paul; Lobo, Raul

    2010-01-01

    The hindered rotations of molecular hydrogen adsorbed at low loadings into a number of partially ion-exchanged zeolites A, Y and X have been studied at low temperatures with the use of inelastic neutron scattering (INS) techniques. The factors that determine the sorption sites and strength of the interaction with the host material are found to be a complex combination of the type, charge and size of the cations, their coordination to the host framework, and accessibility to the hydrogen molecule as well as the relative acidity of the framework, and lead to important criteria for the development of more effective hybrid materials for hydrogen storage. The highest barriers to rotation were found for the undercoordinated, exposed Li+ cations in LiA and in LiX. Interaction with the extra framework Cu2+ and Zn2+ cations in zeolite A is found to be noticeably stronger than with the neutral Zn- or Cu- containing clusters in metal-organic framework compounds. Our observation that binding of hydrogen in these charged frameworks is strongly enhanced relative to those that are neutral suggests an important approach to improvement of porous materials as ambient temperature hydrogen storage media. PMID:20352810

  10. Transverse Force on Quarks in Deep-Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2015-10-01

    Transverse single-spin asymmetries are not the only observable where the transverse force on quarks in DIS plays a role. For example, higher-twist effects in polarized inclusive DIS can be related to that force. Furthermore the torque due to that force is relevant when comparing the Jaffe-Manohar with the Ji definition for quark orbital angular momentum. I explain the origin of that force in semi-classical pictures and discuss connections and differences with the Aharonov-Bohm effect.