Sample records for inert gas condensation

  1. Preparing ultrafine PbS powders from the scrap lead-acid battery by sulfurization and inert gas condensation

    NASA Astrophysics Data System (ADS)

    Xia, Huipeng; Zhan, Lu; Xie, Bing

    2017-02-01

    A novel method for preparing ultrafine PbS powders involving sulfurization combined with inert gas condensation is developed in this paper, which is applicable to recycle Pb from lead paste of spent lead-acid batteries. Initially, the effects of the evaporation and condensation temperature, the inert gas pressure, the condensation distance and substrate on the morphology of as-obtained PbS ultrafine particles are intensively investigated using sulfur powders and lead particles as reagents. Highly dispersed and homogeneous PbS nanoparticles can be prepared under the optimized conditions which are 1223 K heating temperature, 573 K condensation temperature, 100 Pa inert gas pressure and 60 cm condensation distance. Furthermore, this method is successfully applied to recycle Pb from the lead paste of spent lead acid battery to prepare PbS ultrafine powders. This work does not only provide the theoretical fundamental for PbS preparation, but also provides a novel and efficient method for recycling spent lead-acid battery with high added-value products.

  2. The Stability and Oxidation Resistance of Iron- and Cobalt-Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation

    DTIC Science & Technology

    2005-01-01

    imaging, drug delivery, and hyperthermia treatment for cancer . Ideal magnetic nanoparticle fluids have well-separated, biocompatible nanoparticles with a...Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation DISTRIBUTION: Approved for public release, distribution unlimited This paper...Oxidation Resistance of Iron- and Cobalt-Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation Nguyen H. Hail, Raymond Lemoine’, Shaina

  3. Size-controlled synthesis of nanocrystalline CdSe thin films by inert gas condensation

    NASA Astrophysics Data System (ADS)

    Sharma, Jeewan; Singh, Randhir; Kumar, Akshay; Singh, Tejbir; Agrawal, Paras; Thakur, Anup

    2018-02-01

    Size, shape and structure are considered to have significant influence on various properties of semiconducting nanomaterials. Different properties of these materials can be tailored by controlling the size. Size-controlled CdSe crystallites ranging from ˜ 04 to 95 nm were deposited by inert gas-condensation technique (IGC). In IGC method, by controlling the inert gas pressure in the condensation chamber and the substrate temperature or both, it was possible to produce nanoparticles with desired size. Structure and crystallite size of CdSe thin films were determined from Hall-Williamson method using X-ray diffraction data. The composition of CdSe samples was estimated by X-ray microanalysis. It was confirmed that CdSe thin film with different nanometer range crystallite sizes were synthesized with this technique, depending upon the synthesis conditions. The phase of deposited CdSe thin films also depend upon deposition conditions and cubic to hexagonal phase transition was observed with increase in substrate temperature. The effect of crystallite size on optical and electrical properties of these films was also studied. The crystallite size affects the optical band gap, electrical conductivity and mobility activation of nanocrystalline CdSe thin films. Mobility activation study suggested that there is a quasi-continuous linear distribution of three different trap levels below the conduction band.

  4. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation

    PubMed Central

    2010-01-01

    Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132

  5. Size-controlled, magnetic, and core-shell nanoparticles synthesized by inert-gas condensation

    NASA Astrophysics Data System (ADS)

    Koten, Mark A.

    Interest in nanoparticles (2 to 100 nm in diameter) and clusters of atoms (0.5 to 2 nm in diameter) has heightened over the past two and a half decades on both fundamental and functional levels. Nanoparticles and clusters of atoms are an exciting branch of materials science because they do not behave like normal bulk matter, nor do they act like molecules. They can have shockingly different physical, chemical, optical, or magnetic properties from the same material at a larger scale. In the case of nanoparticles, the surface-to-volume ratio can change fundamental properties like melting temperature, binding energy, or electron affinity. The definitions of markers used to distinguish between metallic, semiconducting, and insulating bulk condensed matter, such as the band gap and polarizability, can even be blurred or confused on the nanoscale. Similarly, clusters of atoms can form in structures that are only stable at finite sizes, and do not translate to bulk condensed matter. Thermodynamics of finite systems changes dramatically in nanovolumes such as wires, rods, cubes, and spheres, which can lead to complex core-shell and onion-like nanostructures. Consequently, these changes in properties and structure have led to many new possibilities in the field of materials engineering. Inert-gas condensation (IGC) is a well-established method of producing nanoparticles that condense from the gas phase. Its first use dates back to the early 1990s, and it has been used to fabricate nanoparticles both commercially and in research and development for applications in magnetism, biomedicine, and catalysts. In this dissertation, IGC was used to produce a wide variety of nanoparticles. First, control over the size distributions of Cu nanoparticles and how it relates to the plasma properties inside the nucleation chamber was investigated. Next, the formation of phase pure WFe2 nanoparticles revealed that this Laves phase is ferromagnetic instead of non-magnetic. Finally, core

  6. A thermodynamics model for morphology prediction of aluminum nano crystals fabricated by the inert gas condensation method

    NASA Astrophysics Data System (ADS)

    Wen, Yu; Xia, Dehong

    2018-03-01

    The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.

  7. Controlling particle properties in {{YBa}}_{2}{{Cu}}_{3}{{\\rm{O}}}_{7-\\delta } nanocomposites by combining PLD with an inert gas condensation system

    NASA Astrophysics Data System (ADS)

    Sparing, M.; Reich, E.; Hänisch, J.; Gottschall, T.; Hühne, R.; Fähler, S.; Rellinghaus, B.; Schultz, L.; Holzapfel, B.

    2017-10-01

    The critical current density {J}{{c}} in {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films, which limits their application in external magnetic fields, can be enhanced by the introduction of artificial pinning centers such as non-superconducting nanoparticles inducing additional defects and local strain in the superconducting matrix. To understand the correlation between superconductivity, defect structures and particles, a controlled integration of particles with adjustable properties is essential. A powerful technique for the growth of isolated nanoparticles in the range of 10 nm is dc-magnetron sputtering in an inert gas flow. The inert gas condensation (IGC) of particles allows for an independent control of both the particle diameter distribution and the areal density. We report on the integration of such gas-phase-condensed {{HfO}}2 nanoparticles into pulsed laser deposited (PLD) {{YBa}}2{{Cu}}3{{{O}}}7-δ thin film multilayers with a combined PLD-IGC system. The particles and the structure of the multilayers are analyzed by transmission electron microscopy on cross-sectional FIB lamellae. As a result of the IGC particle implementation, randomly as well as biaxially oriented {{BaHfO}}3 precipitates are formed in the {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films. With as few as three interlayers of nanoparticles, the pinning force density is enhanced in the low-field region.

  8. Synthesis and mechanical/magnetic properties of nano-grained iron-oxides prepared with an inert gas condensation and pulse electric current sintering process

    NASA Astrophysics Data System (ADS)

    Choa, Yong-Ho; Nakayama, Tatachika; Sekino, Tohru; Niihara, Koichi

    1999-04-01

    Nanocrystalline iron-oxide powder was fabricated with an inert gas condensation (IGC) method combined with evaporation, and in-situ oxidation techniques. The particle size of iron-oxide powder was controlled by varying the helium gas pressure between 0.1 and 10 Torr, with the smallest one =10 nm at 0.1 Torr. The nanostructure was characterized by TEM. Nanocrystalline iron-oxide powder was sintered with the pulse electric current sintering (PECS) method to obtain densified γ-Fe2O3 materials, and suitably densified nano-grained γ-Fe2O3 materials (≈ 40 nm) of great hardness were obtained. The correlation between the nanostructure and magnetic properties of nanocrystalline powder and densified γ-Fe2O3 materials was also investigated.

  9. INERT GAS SHIELD FOR WELDING

    DOEpatents

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  10. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas system... the cargo area meeting paragraph (a) of this section; (c) Automatic and manual inert gas pressure...

  11. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.

  12. Inert gas transport in blood and tissues.

    PubMed

    Baker, A Barry; Farmery, Andrew D

    2011-04-01

    This article establishes the basic mathematical models and the principles and assumptions used for inert gas transfer within body tissues-first, for a single compartment model and then for a multicompartment model. From these, and other more complex mathematical models, the transport of inert gases between lungs, blood, and other tissues is derived and compared to known experimental studies in both animals and humans. Some aspects of airway and lung transfer are particularly important to the uptake and elimination of inert gases, and these aspects of gas transport in tissues are briefly described. The most frequently used inert gases are those that are administered in anesthesia, and the specific issues relating to the uptake, transport, and elimination of these gases and vapors are dealt with in some detail showing how their transfer depends on various physical and chemical attributes, particularly their solubilities in blood and different tissues. Absorption characteristics of inert gases from within gas cavities or tissue bubbles are described, and the effects other inhaled gas mixtures have on the composition of these gas cavities are discussed. Very brief consideration is given to the effects of hyper- and hypobaric conditions on inert gas transport. © 2011 American Physiological Society. Compr Physiol 1:569-592, 2011.

  13. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas system: Controls. 154.904 Section 154.904... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas system...

  14. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas piping: Location. 154.910 Section 154.910 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping must...

  15. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dewpoint at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49 °F...

  16. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  17. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried...

  18. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  19. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  20. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  1. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  2. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  3. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping must not pass through or terminate in an accommodation, service, or control space. ...

  4. One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2017-06-16

    Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO 2 and As 2 O 3 , the gas-solid phase reaction of GeO 2 , As 2 O 3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.

  5. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as..., service, or control space. (b) An inert gas generator that does not use flame burning equipment may be...

  6. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas generator: Location. 154.908 Section 154.908 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as...

  7. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  8. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    ERIC Educational Resources Information Center

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  9. Shock wave induced condensation in fuel-rich gaseous and gas-particles mixtures

    NASA Astrophysics Data System (ADS)

    Fomin, P. A.

    2018-03-01

    The possibility of fuel vapor condensation in shock waves in fuel-rich (cyclohexane-oxygen) gaseous mixtures and explosion safety aspects of this effect are discussed. It is shown, that condensation process can essentially change the chemical composition of the gas. For example, the molar fraction of the oxidizer can increase in a few times. As a result, mixtures in which the initial concentration of fuel vapor exceeds the Upper Flammability Limit can, nevertheless, explode, if condensation shifts the composition of the mixture into the ignition region. The rate of the condensation process is estimated. This process can be fast enough to significantly change the chemical composition of the gas and shift it into the flammable range during the compression phase of blast waves, generated by explosions of fuel-vapor clouds or rapture of pressurized chemical reactors, with characteristic size of a few meters. It is shown that the presence of chemically inert microparticles in the gas mixtures under consideration increases the degree of supercooling and the mass of fuel vapors that have passed into the liquid and reduces the characteristic condensation time in comparison with the gas mixture without microparticles. The fuel vapor condensation should be taken into account in estimation the explosion hazard of chemical reactors, industrial and civil constructions, which may contain fuel-rich gaseous mixtures of heavy hydrocarbons with air.

  10. Portable spectrometer monitors inert gas shield in welding process

    NASA Technical Reports Server (NTRS)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  11. Effect of Inert Gas Switching at Depth on Decompression Outcome in Rats

    DTIC Science & Technology

    1989-01-01

    Indcuae Security Classification) Effect Of inert gas switching at depth on decompression outcome in rats Liil RVRcCall1urn M~E 16. SUPPLEMENTARY...CLASSIrICATrIONOF TI PAGE All other edition% -ate obsfee UNCLASSIFIED Effect of inert gas switching at depth on decompression outcome in rats R. S... Effect of inert gas Although various models of inert gas transport in the switching at depth on decompression outcome in rats. J. Appl

  12. Nonchamber, Root-Side, Inert-Gas Purging During Welding

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved apparatus distributes inert gas to protect against oxidation on root side of weld during welding and after welding while joint remains hot. Simple and lightweight; readily moved along weld path in synchronism with torch. Because it concentrates inert gas where needed, consumes gas at relatively low rate, and not necessary to monitor oxygen content of protective atmosphere. Apparatus does not obscure view of root side of weld. Used for full-penetration plasma-arc welding of such reactive metals as aluminum/lithium alloys and titanium.

  13. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  14. Inert-gas welding and brazing enclosure fabricated from sheet plastic

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Custom-fabricated plastic bag maintains an inert-gas atmosphere for welding and brazing certain metals. The bag fits over part of the workpieces and the welding and brazing tools. It is also used for metal brazing and fusion plating which require an inert-gas atmosphere.

  15. 3-D simulation of gases transport under condition of inert gas injection into goaf

    NASA Astrophysics Data System (ADS)

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang

    2016-12-01

    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  16. Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.

    2013-12-01

    Since 2000 the Campi Flegrei caldera sited in Neapolitan area (Italy), has showed signs of reactivation, marked by ground uplift, seismic activity, compositional variations of fumarolic effluents from La Solfatara, an increase of the fumarolic activity as well as of soil CO2 fluxes. Comparing long time series of geochemical signals with ground deformation and seismicity, we show that these changes are at least partially caused by repeated injections of magmatic fluid into the hydrothermal system. The frequency of these degassing episodes has increased in the last years, causing pulsed uplift episodes and swarms of low magnitude earthquakes. We focus here in the inert gas species (CO2-He-Ar-N2) of Solfatara fumaroles which displayed in the time spectacular and persistent variation trends affecting all the monitored vents. The observed variations, which include a continuous decrease of both N2/He and N2/CO2 ratios since 1985, paralleled by an increase of He/CO2, can not be explained neither with changes in processes of boiling-condensation in the local hydrothermal system nor with changes in the mixing proportions between a magmatic vapour and hydrothermal fluids. Consequently we investigated the possibility that the trends of inert gas species are governed by changes in the conditions controlling magma degassing at depth. We applied a magma degassing model, with the most recent updates for inert gas solubilities, after to have included petrologic constraints from the ranges of melt composition and reservoir pressure at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a surprising agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-time geochemical changes. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive

  17. Inert gas effects on embryonic development.

    NASA Technical Reports Server (NTRS)

    Weiss, H. S.; Grimard, M.

    1972-01-01

    It had been found in previous investigations that hatchability of fertile chicken eggs is reduced to 50% or less of controls if incubation takes place in a low nitrogen atmosphere containing He. Although these results suggest some role for nitrogen in embryogenesis, it is possible that a requirement exists for an inert molecule closer in physical characteristics to nitrogen than is He. An investigation is conducted involving incubation at ground level pressure in a gas mixture in which the 79% inert component was either neon or argon. The effect of varying combinations of nitrogen, helium, and oxygen was also studied.

  18. A new understanding of inert gas narcosis

    NASA Astrophysics Data System (ADS)

    Meng, Zhang; Yi, Gao; Haiping, Fang

    2016-01-01

    Anesthetics are extremely important in modern surgery to greatly reduce the patient’s pain. The understanding of anesthesia at molecular level is the preliminary step for the application of anesthetics in clinic safely and effectively. Inert gases, with low chemical activity, have been found to cause anesthesia for centuries, but the mechanism is unclear yet. In this review, we first summarize the progress of theories about general anesthesia, especially for inert gas narcosis, and then propose a new hypothesis that the aggregated rather than the dispersed inert gas molecules are the key to trigger the narcosis to explain the steep dose-response relationship of anesthesia. Project supported by the Supercomputing Center of Chinese Academy of Sciences in Beijing, China, the Shanghai Supercomputer Center, China, the National Natural Science Foundation of China (Grant Nos. 21273268, 11290164, and 11175230), the Startup Funding from Shanghai Institute of Applied Physics, Chinese Academy of Sciences (Grant No. Y290011011), “Hundred People Project” from Chinese Academy of Sciences, and “Pu-jiang Rencai Project” from Science and Technology Commission of Shanghai Municipality, China (Grant No. 13PJ1410400).

  19. Refractory metals welded or brazed with tungsten inert gas equipment

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere.

  20. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  1. Plasma processes in inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.

  2. Experimental study on steam condensation with non-condensable gas in horizontal microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai

    2013-07-01

    This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.

  3. Impact of airway gas exchange on the multiple inert gas elimination technique: theory.

    PubMed

    Anderson, Joseph C; Hlastala, Michael P

    2010-03-01

    The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.

  4. THE INERT GAS PURIFIER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Rapacki, H.; Slapa, M.

    1961-01-01

    A device used for purmfication of inert gases used nkn nuclear detectors such as grid ionization chambers, proportional, and gas scintillation counters is described. Gas to be purifnked cireulates in a svstem containing a column consisting of trays with Ca and Mg shavings, horizontal pipes, valves, and a detector to be filled with a pure gas. The device is designed to work at up to 10 atm. The apparatus ts out-gassed very carefully. lt is filled with argon, which ps cnkrculated for 5 hours and then pumped out. Operation is based on the thermal circulation principle. The process depends onmore » the filter temperature and purification time, which in turn, are function of the gas pressure and the chemical composition of the filter. The best resolution obtained for alpha particles from natural uranium at 4.20 and 4.76 Mev was 6%. Commercial argon at 6 atm was used. Curves obtained show that the filter temperature cannot be lower than 210 deg C and that the one containing calcium mixed with magnesium gives better results than that containing pure calcium only. (L.N.N.)« less

  5. Mechanism of Gaseous Detonation Propagation Through Reactant Layers Bounded by Inert Gas

    NASA Astrophysics Data System (ADS)

    Houim, Ryan

    2017-11-01

    Vapor cloud explosions and rotating detonation engines involve the propagation of gaseous detonations through a layer of reactants that is bounded by inert gas. Mechanistic understanding of how detonations propagate stably or fail in these scenarios is incomplete. Numerical simulations were used to investigate mechanisms of gaseous detonation propagation through reactant layers bounded by inert gas. The reactant layer was a stoichiometric mixture of C2H4/O2 at 1 atm and 300K and is 4 detonation cells in height. Cases where the inert gas temperature was 300, 1500, and 3500 K will be discussed. The detonation failed for the 300 K case and propagated marginally for the 1500 K case. Surprisingly, the detonation propagated stably for the 3500 K case. A shock structure forms that involves a detached shock in the inert gas and a series of oblique shocks in the reactants. A small local explosion is triggered when the Mach stem of a detonation cell interacts with the compressed reactants behind one of these oblique shocks. The resulting pressure wave produces a new Mach stem and a new triple point that leads to a stable detonation. Preliminary results on the influence of a deflagration at the inert/reactant interface on the stability of a layered detonation will be discussed.

  6. Study on cyclic injection gas override in condensate gas reservoir

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu

    2018-02-01

    Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.

  7. Apparatus For Metal/Inert-Gas Welding In Vacuum

    NASA Technical Reports Server (NTRS)

    Stocks, C. O.

    1994-01-01

    Metal/inert-gas welding-torch assembly operates in vacuum. Plasma generated in interior chamber and focused onto workpiece in vacuum. Pinch rollers feed wire to weld puddle. Controlled flow of plasma reduces dispersal in vacuum, preventing extinction.

  8. Automated measurement of respiratory gas exchange by an inert gas dilution technique

    NASA Technical Reports Server (NTRS)

    Sawin, C. F.; Rummel, J. A.; Michel, E. L.

    1974-01-01

    A respiratory gas analyzer (RGA) has been developed wherein a mass spectrometer is the sole transducer required for measurement of respiratory gas exchange. The mass spectrometer maintains all signals in absolute phase relationships, precluding the need to synchronize flow and gas composition as required in other systems. The RGA system was evaluated by comparison with the Douglas bag technique. The RGA system established the feasibility of the inert gas dilution method for measuring breath-by-breath respiratory gas exchange. This breath-by-breath analytical capability permits detailed study of transient respiratory responses to exercise.

  9. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  10. 46 CFR 153.500 - Inert gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; (b) Has a pressure control system that: (1) Prevents the inert gas system from raising the cargo tank pressure to more than the relief valve setting; and (2) Maintains at least a 3.5 kPa gauge (approx. 0.5 psig) pressure within the containment system at all times, including cargo discharge; (c) Has storage...

  11. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.

  12. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  13. Inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.

  14. Spark gap switch system with condensable dielectric gas

    DOEpatents

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  15. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  16. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    PubMed

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

  17. Diving under the influence: issues in researching personality and inert gas narcosis.

    PubMed

    Van Wijk, Charles H; Martin, Jarred H; Meintjes, Willem A J

    2017-01-01

    This paper considers the relationship between measures of personality and mood states, and susceptibility to inert gas narcosis. It briefly reviews the topics of inert gas narcosis affecting personality, and personality affecting the susceptibility to inert gas narcosis. There appears to be is a theoretical argument for a possible relationship between measures of personality, mood states, and susceptibility to narcosis. Practically, such a relationship may speak to issues in selection, training and preparation, risk assessments, and even accident investigation in the diving and/or hyperbaric environment. Twenty one divers completed measures of personality and mood states, and were then compressed to 709 kPa (equivalent to 60 msw) in a dry compression chamber, where they completed a task measuring speed of information processing, and a scale measuring subjective narcosis. The main finding was the absence of any significant correlations between measures of personality traits and mood, and susceptibility to inert gas narcosis. Although the study found no evidence of any major relationship, it is presented as a case study to highlight some of the issues and pitfalls involved in such research. The lessons learned - including the careful defining and describing of concepts, and choosing of samples and measurements - are used to discuss some of the methodological and conceptual issues and future directions for researchers to consider.

  18. Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels

    PubMed Central

    Lu, Y.; Michel, C. C.

    2012-01-01

    To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance. PMID:22604885

  19. Modeling the Phase Composition of Gas Condensate in Pipelines

    NASA Astrophysics Data System (ADS)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  20. Heaterless ignition of inert gas ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Schatz, M. F.

    1985-01-01

    Heaterless inert gas ion thruster hollow cathodes were investigated with the aim of reducing ion thruster complexity and increasing ion thruster reliability. Cathodes heated by glow discharges are evaluated for power requirements, flowrate requirements, and life limiting mechanisms. An accelerated cyclic life test is presented.

  1. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    NASA Astrophysics Data System (ADS)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  2. 3D-Printing inside the Glovebox: A Versatile Tool for Inert-Gas Chemistry Combined with Spectroscopy.

    PubMed

    Lederle, Felix; Kaldun, Christian; Namyslo, Jan C; Hübner, Eike G

    2016-04-01

    3D-Printing with the well-established 'Fused Deposition Modeling' technology was used to print totally gas-tight reaction vessels, combined with printed cuvettes, inside the inert-gas atmosphere of a glovebox. During pauses of the print, the reaction flasks out of acrylonitrile butadiene styrene were filled with various reactants. After the basic test reactions to proof the oxygen tightness and investigations of the influence of printing within an inert-gas atmosphere, scope and limitations of the method are presented by syntheses of new compounds with highly reactive reagents, such as trimethylaluminium, and reaction monitoring via UV/VIS, IR, and NMR spectroscopy. The applicable temperature range, the choice of solvents, the reaction times, and the analytical methods have been investigated in detail. A set of reaction flasks is presented, which allow routine inert-gas syntheses and combined spectroscopy without modifications of the glovebox, the 3D-printer, or the spectrometers. Overall, this demonstrates the potential of 3D-printed reaction cuvettes to become a complementary standard method in inert-gas chemistry.

  3. Inert-gas thruster technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Trock, D. C.

    1981-01-01

    Attention is given to recent advances in component technology for inert-gas thrusters. It is noted that the maximum electron emission of a hollow cathode with Ar can be increased 60-70% by using an enclosed keeper configuration. Operation with Ar but without emissive oxide has also been attained. A 30-cm thruster operated with Ar at moderate discharge voltages is found to give double-ion measurements consistent with a double-ion correlation developed earlier on the basis of 15-cm thruster data. An attempt is made to reduce discharge losses by biasing anodes positive of the discharge plasma. The performance of a single-grid ion-optics configuration is assessed. The ion impingement on the single-grid accelerator is found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator is 2-3 times the aperture diameter.

  4. Quantum gas-liquid condensation in an attractive Bose gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Shun-ichiro

    Gas-liquid condensation (GLC) in an attractive Bose gas is studied on the basis of statistical mechanics. Using some results in combinatorial mathematics, the following are derived. (1) With decreasing temperature, the Bose-statistical coherence grows in the many-body wave function, which gives rise to the divergence of the grand partition function prior to Bose-Einstein condensation. It is a quantum-mechanical analogue to the GLC in a classical gas (quantum GLC). (2) This GLC is triggered by the bosons with zero momentum. Compared with the classical GLC, an incomparably weaker attractive force creates it. For the system showing the quantum GLC, we discussmore » a cold helium 4 gas at sufficiently low pressure.« less

  5. Liquid oil production from shale gas condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James J.

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  6. Oxygen carrier for gas chromatographic analysis of inert gases in propellants

    NASA Technical Reports Server (NTRS)

    Cannon, W. A.

    1972-01-01

    Gas chromatographic determination of small quantities of inert gases in reactive propellants is discussed. Operating conditions used for specific analyses of helium in diborane and nitrogen in oxygen difluoride are presented in tabular form.

  7. Highly sensitive solids mass spectrometer uses inert-gas ion source

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.

  8. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  9. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The master of a tank vessel having a COW system under § 157.10(e), § 157.10a(a)(2), or § 157.10c(b)(2) shall... less by volume at the locations under paragraph (a)(1) of this section. (4) During COW operations, the...

  10. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns

    PubMed Central

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-01-01

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis. PMID:27834896

  11. Comparison of inert-gas-fusion and modified Kjeldahl techniques for determination of nitrogen in niobium alloys

    NASA Technical Reports Server (NTRS)

    Merkle, E. J.; Graab, J. W.; Davis, W. F.

    1974-01-01

    This report compares results obtained for the determination of nitrogen in a selected group of niobium-base alloys by the inert-gas-fusion and the Kjeldahl procedures. In the inert-gas-fusion procedure the sample is heated to approximately 2700 C in a helium atmosphere in a single-use graphite crucible. A platinum flux is used to facilitate melting of the sample. The Kjeldahl method consisted of a rapid decomposition with a mixture of hydrofluoric acid, phosphoric acid, and potassium chromate; distillation in the presence of sodium hydroxide; and highly sensitive spectrophotometry with nitroprusside-catalyzed indophenol. In the 30- to 80-ppm range, the relative standard deviation was 5 to 7 percent for the inert-gas-fusion procedure and 2 to 8 percent for the Kjeldahl procedure. The agreement of the nitrogen results obtained by the two techniques is considered satisfactory.

  12. Mechanisms of inert gas narcosis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experiments describing the mechanism of inert gas narcosis are reported. A strain of mice, genetically altered to increase susceptibility to botulin poisoning (synaptic response) appears to increase metabolic rates while breathing argon; this infers a genetically altered synaptic response to both botulin toxin and narcotic gases. Studies of metabolic depression in human subjects breathing either air or a 30% mixture of nitrous oxide indicate that nitrous oxide narcosis does not produce pronounced metabolic depression. Tests on mice for relative susceptibilities to narcosis and oxygen poisoning as a function of fatty membrane composition show that alteration of the fatty acid composition of phospholipids increases resistance to metabolically depressant effects of argon but bas no effect on nitrous oxide narcosis. Another study suggests that acclimatization to low tension prior to high pressure oxygen treatment enhances susceptibility of mice to convulsions and death; developing biochemical lesions cause CNS metabolite reductions and pulmonary damage.

  13. Development of a large inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Steiner, G.

    1982-01-01

    A 30 cm inert gas electrostatic ion thruster has been developed, exhibiting excellent performance. In the development, the effective anode area was reduced by altering the magnetic field geometry to improve plasma containment, consistent with operational stability. The propellant introduction scheme has the effect of 'folding' the discharge chamber without the increased wall loss penalty associated with a longer chamber. These features contribute to a low discharge cost (eV/ion) versus mass utilization characteristic which remains relatively flat even to high mass utilizations.

  14. Biomarkers of exposure to stainless steel tungsten inert gas welding fumes and the effect of exposure on exhaled breath condensate.

    PubMed

    Riccelli, Maria Grazia; Goldoni, Matteo; Andreoli, Roberta; Mozzoni, Paola; Pinelli, Silvana; Alinovi, Rossella; Selis, Luisella; Mutti, Antonio; Corradi, Massimo

    2018-08-01

    The respiratory tract is the main target organ of the inhaled hexavalent chromium (Cr-VI) and nickel (Ni) contained in stainless steel (SS) welding fumes (WFs). The aim of this study was to investigate the Cr and Ni content of the exhaled breath condensate (EBC) of SS tungsten inert gas (TIG) welders, and relate their concentrations with oxidative stress and inflammatory biomarkers. EBC and urine from 100 SS TIG welders were collected pre-(T 0 ) and post-shift (T 1 ) on a Friday, and pre-shift (T 2 ) on the following Monday morning. Both EBC and urinary Cr concentrations were higher at T 1 (0.08 μg/L and 0.71 μg/g creatinine) and T 0 (0.06 μg/L and 0.74 μg/g creatinine) than at T 2 (below the limit of detection [LOD] and 0.59 μg/g creatinine), and EBC Ni concentrations generally remained

  15. Probing Toluene and Ethylbenzene Stable Glass Formation using Inert Gas Permeation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; May, Robert A.; Kay, Bruce D.

    Inert gas permeation is used to investigate the formation of stable glasses of toluene and ethylbenzene. The effect of deposition temperature (Tdep) on the kinetic stability of the vapor deposited glasses is determined using Kr desorption spectra from within sandwich layers of either toluene or ethylbenzene. The results for toluene show that the most stable glass is formed at Tdep = 0.92 Tg, although glasses with a kinetic stability within 50% of the most stable glass were found with deposition temperatures from 0.85 to 0.95 Tg. Similar results were found for ethylbenzene, which formed its most stable glass at 0.91more » Tg and formed stable glasses from 0.81 to 0.96 Tg. These results are consistent with recent calorimetric studies and demonstrate that the inert gas permeation technique provides a direct method to observe the onset of molecular translation motion that accompanies the glass to supercooled liquid transition.« less

  16. Ultra-trace level analysis of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate by gas chromatography with multi-mode inlet, and flame ionization detection.

    PubMed

    Luong, J; Shellie, R A; Cortes, H; Gras, R; Hayward, T

    2012-03-16

    Steam condensate water treatment is a vital and integral part of the overall cooling water treatment process. Steam condensate often contains varying levels of carbon dioxide and oxygen which acts as an oxidizer. Carbon dioxide forms corrosive carbonic acid when dissolved in condensed steam. To neutralize the harmful effect of the carbonic acid, volatile amine compounds such as morpholine, cyclohexylamine, and diethylaminoethanol are often employed as part of a strategy to control corrosion in the water treatment process. Due to the high stability of these compounds in a water matrix, the indirect addition of such chemicals into the process via steam condensate often results in their presence throughout the process and even into the final product. It is therefore important to understand the impact of these chemicals and their fate within a chemical plant. The ability to analyze such compounds by gas chromatography has historically been difficult due to the lack of chromatographic system inertness at the trace level concentrations especially in an aqueous matrix. Here a highly sensitive, practical, and reliable gas chromatographic approach is described for the determination of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate at the part-per-billion (ppb) levels. The approach does not require any sample enrichment or derivatization. The technique employs a multi-mode inlet operating in pulsed splitless mode with programmed inlet temperature for sample introduction, an inert base-deactivated capillary column for solute separation and flame ionization detection. Chromatographic performance was further enhanced by the incorporation of 2-propanol as a co-solvent. Detection limits for morpholine, cyclohexylamine, diethylaminoethanol were established to be 100 ppb (v/v), with relative standard deviations (RSD) of less than 6% at the 95% confidence level (n=20) and a percent recovery of 96% or higher for the solutes of interest over a range of 0

  17. Mathematical simulation of the process of condensing natural gas

    NASA Astrophysics Data System (ADS)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  18. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  19. Compression set in gas-blown condensation-cured polysiloxane elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Mogon; Chinn, Sarah; Maxwell, Robert S.

    2010-12-01

    Accelerated thermal ageing studies on foamed condensation cured polysiloxane materials have been performed in support of life assessment and material replacement programmes. Two different types of filled hydrogen-blown and condensation cured polysiloxane foams were tested; commercial (RTV S5370), and an in-house formulated polysiloxane elastomer (Silfoam). Compression set properties were investigated using Thermomechanical (TMA) studies and compared against two separate longer term ageing trials carried out in air and in dry inert gas atmospheres using compression jigs. Isotherms measured from these studies were assessed using time-temperature (T/t) superposition. Acceleration factors were determined and fitted to Arrhenius kinetics. For both materials, themore » thermo-mechanical results were found to closely follow the longer term accelerated ageing trials. Comparison of the accelerated ageing data in dry nitrogen atmospheres against field trial results showed the accelerated ageing trends over predict, however the comparison is difficult as the field data suffer from significant component to component variability. Of the long term ageing trials reported here, those carried out in air deviate more significantly from field trials data compared to those carried out in dry nitrogen atmospheres. For field return samples, there is evidence for residual post-curing reactions influencing mechanical performance, which would accelerate compression set. Multiple quantum-NMR studies suggest that compression set is not associated with significant changes in net crosslink density, but that some degree of network rearrangement has occurred due to viscoelastic relaxation as well as bond breaking and forming processes, with possible post-curing reactions at early times.« less

  20. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  1. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, S.H.; Pigott, W.R.

    1997-12-30

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

  2. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, Steve H.; Pigott, William R.

    1997-01-01

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

  3. AVO in North of Paria, Venezuela: Gas methane versus condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regueiro, J.; Pena, A.

    1996-07-01

    The gas fields of North of Paria, offshore eastern Venezuela, present a unique opportunity for amplitude variations with offset (AVO) characterization of reservoirs containing different fluids: gas-condensate, gas (methane) and water (brine). AVO studies for two of the wells in the area, one with gas-condensate and the other with gas (methane) saturated reservoirs, show interesting results. Water sands and a fluid contact (condensate-water) are present in one of these wells, thus providing a control point on brine-saturated properties. The reservoirs in the second well consist of sands highly saturated with methane. Clear differences in AVO response exist between hydrocarbon-saturated reservoirsmore » and those containing brine. However, it is also interesting that subtle but noticeable differences can be interpreted between condensate-and methane-saturated sands. These differences are attributed to differences in both in-situ fluid density and compressibility, and rock frame properties.« less

  4. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Keblinski, Pawel

    2018-02-01

    Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

  5. Stepwise Bose-Einstein Condensation in a Spinor Gas.

    PubMed

    Frapolli, C; Zibold, T; Invernizzi, A; Jiménez-García, K; Dalibard, J; Gerbier, F

    2017-08-04

    We observe multistep condensation of sodium atoms with spin F=1, where the different Zeeman components m_{F}=0,±1 condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization m_{z} and on the quadratic Zeeman energy q (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading, for instance, to condensation in m_{F}=±1, a phenomenon that cannot occur for an ideal gas with q>0.

  6. Development of advanced inert-gas ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1983-01-01

    Inert gas ion thruster technology offers the greatest potential for providing high specific impulse, low thrust, electric propulsion on large, Earth orbital spacecraft. The development of a thruster module that can be operated on xenon or argon propellant to produce 0.2 N of thrust at a specific impulse of 3000 sec with xenon propellant and at 6000 sec with argon propellant is described. The 30 cm diameter, laboratory model thruster is considered to be scalable to produce 0.5 N thrust. A high efficiency ring cusp discharge chamber was used to achieve an overall thruster efficiency of 77% with xenon propellant and 66% with argon propellant. Measurements were performed to identify ion production and loss processes and to define critical design criteria (at least on a preliminary basis).

  7. Comparative study during condensation of R152 a and R134 a with presence of non-condensable gas inside a vertical tube

    NASA Astrophysics Data System (ADS)

    Charef, Adil; Feddaoui, M'barek; Najim, Monssif; Meftah, Hicham

    2018-04-01

    A computational study of the liquid film condensation from vapour-gas mixtures of HFC refrigerants inside a vertical tube is performed. The external wall of the tube is subjected to constant temperature. The model uses an implicit finite difference method to solve the governing equations for the liquid film and gas flow together including the boundary and interfacial matching conditions. Parametric computations were realised to examine the effects of inlet Reynolds number, tube length, and inlet temperature of the gas mixtures on the condensation mechanism. A comparative study between the results obtained for studied R152 a and R134 a with presence of non-condensable gas is made. The predicted results indicate that the condensation of R152 a-air corresponds to a higher accumulated condensation m c d and local heat transfer coefficient h T when compared to R134 a-air in the same conditions. Increasing the inlet Reynolds number or the tube length improve the condensation. Additionally, lower non-condensable gas in R152 a - a i r substantially enhances the heat and mass exchanges.

  8. 46 CFR 153.923 - Inerting systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inerting systems. 153.923 Section 153.923 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Requirements § 153.923 Inerting systems. The master shall ensure that the inert gas systems for any cargo that...

  9. 46 CFR 153.923 - Inerting systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inerting systems. 153.923 Section 153.923 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Requirements § 153.923 Inerting systems. The master shall ensure that the inert gas systems for any cargo that...

  10. 46 CFR 153.923 - Inerting systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inerting systems. 153.923 Section 153.923 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Requirements § 153.923 Inerting systems. The master shall ensure that the inert gas systems for any cargo that...

  11. 46 CFR 153.923 - Inerting systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inerting systems. 153.923 Section 153.923 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Requirements § 153.923 Inerting systems. The master shall ensure that the inert gas systems for any cargo that...

  12. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    USGS Publications Warehouse

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  13. An in vitro lung model to assess true shunt fraction by multiple inert gas elimination.

    PubMed

    Varadarajan, Balamurugan; Vogt, Andreas; Hartwich, Volker; Vasireddy, Rakesh; Consiglio, Jolanda; Hugi-Mayr, Beate; Eberle, Balthasar

    2017-01-01

    The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET) has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q) ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I) to construct a novel in vitro lung model (IVLM) for the simulation of predefined V/Q distributions with five gas exchange compartments and (II) to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V) and perfused with human red cell suspension or saline (Q). Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V) was kept constant and reference shunt fractions (IVLM-S) were established by bypassing one or more oxygenators with perfusate flow (Q). The derived shunt fractions (MM-S) were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.

  14. Method for removing metal vapor from gas streams

    DOEpatents

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  15. Method for removing metal vapor from gas streams

    DOEpatents

    Ahluwalia, R. K.; Im, K. H.

    1996-01-01

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  16. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristicsmore » of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.« less

  17. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristicsmore » of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.« less

  18. Calorimetry of a Bose–Einstein-condensed photon gas

    PubMed Central

    Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2016-01-01

    Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978

  19. 46 CFR 154.1848 - Inerting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF... that: (1) Hold and interbarrier spaces on a vessel with full secondary barriers are inerted so that the... interbarrier spaces contain only dry air or inert gas on: (i) A vessel with partial secondary barriers; (ii) A...

  20. Characterization of pure Ni ultrafine/nanoparticles synthesized by electromagnetic levitational gas condensation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodaei, Azin, E-mail: Azin.Khodaei@gmail.com; Hasannasab, Malihe; Amousoltani, Narges

    2016-02-15

    Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of themore » condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.« less

  1. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  2. Green spherules from Apollo 15 - Inferences about their origin from inert gas measurements.

    NASA Technical Reports Server (NTRS)

    Lakatos, S.; Yaniv, A.; Heymann, D.

    1973-01-01

    Green spherules from the 'clod' 15426 and from fines 15421 contain about 100 times less trapped inert gases than normal bulk fines from Apollo 15. These spherules have apparently never been directly exposed to the solar wind. Spherules from other fines contain about 10 times more trapped gas than those from the 'clod.' The gas in the former is surface correlated. However, spherules from fines 15401 are exceptionally gas-poor. The trapped gases can be of solar-wind origin, but this origin requires a two-stage model for the spherules from the clods. Another possibility is that the gases were absorbed from an ambient gas phase. The trapped gases may also be assumed to represent primordial lunar gas. The composition of this gas is then similar to the 'solar' or 'unfractionated' component of gas-rich meteorites, but unlike that in most of the carbonaceous chondrites.

  3. Mobility of Supercooled liquid Toluene, Ethylbenzene, and Benzene near their Glass Transition Temperatures Investigated using Inert Gas Permeation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg and as a result the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function ofmore » the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 K to 135 K. In this temperature range, diffusivities are found to vary across five orders of magnitude (~10-14 to 10-9 cm2/s). These data are compared to viscosity measurements and used to determine the low temperature fractional Stokes-Einstein exponent. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.« less

  4. Condensation of an ideal gas obeying non-Abelian statistics.

    PubMed

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  5. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    NASA Astrophysics Data System (ADS)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-07-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  6. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    NASA Astrophysics Data System (ADS)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  7. Effect of precursor supply on structural and morphological characteristics of fe nanomaterials synthesized via chemical vapor condensation method.

    PubMed

    Ha, Jong-Keun; Ahn, Hyo-Jun; Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo

    2012-01-01

    Various physical, chemical and mechanical methods, such as inert gas condensation, chemical vapor condensation, sol-gel, pulsed wire evaporation, evaporation technique, and mechanical alloying, have been used to synthesize nanoparticles. Among them, chemical vapor condensation (CVC) has the benefit of its applicability to almost all materials because a wide range of precursors are available for large-scale production with a non-agglomerated state. In this work, Fe nanoparticles and nanowires were synthesized by chemical vapor condensation method using iron pentacarbonyl (Fe(CO)5) as the precursor. The effect of processing parameters on the microstructure, size and morphology of Fe nanoparticles and nanowires were studied. In particular, we investigated close correlation of size and morphology of Fe nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. The atomic quantity was calculated by Boyle's ideal gas law. The Fe nanoparticles and nanowires with various diameter and morphology have successfully been synthesized by the chemical vapor condensation method.

  8. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  9. The Features of Condensate Water and Its Guide on Gas Proudction in upper Triassic Gas Reservoir of Western Sichuan Depression, China

    NASA Astrophysics Data System (ADS)

    Shang, C.; Lou, Z.

    2012-12-01

    In upper Triassic Xujiahe Formation of western Sichuan depression, China, there developed ultrathight sandstones reservoirs, of which the mean porosity is 4.02% and the permeability mode is less than 0.1×10-3μm2. Because of the ultrathight sandstones, thick gaseous- liquid phase transition develops in the upper Trassic Xujiahe Formation. The absolute quantity of gaseous water is lager. Due to the change of temperature and pressure at the wellhead, the gaseous water in gas reservoir becomes condensate water. Therefore, the condensate water of low salinity can be widely found at the original productive process in the Xujiahe Formation reservoir, such as wells named Lian 150, Xin 851, Xin 853, Xin 856, Dayi 101, Dayi 103. The main cations are K++Na+, while the anions are HCO3- and Cl-. The main water type is CaCl2, followed by NaHCO3, Na2SO4 and MgCl2. The PH of condensate water is 5.28-8.20 with mean value 6.40. The salinity of condensate water is lower than that of formation water. The milligram equivalent (mEq) percent of ion is used to study the features of condensate water. The anions (mEq) distribution of condensate water are scattered in ternary diagram, while that of formation water concentrate upon the SO42- and Cl- endpoints. The percent of HCO3-(mEq) in condensate water is higher than that of formation water. There is no obvious difference of cations mEq percent between condensate water and formation water, which indicates that condensate water strongly affected by formation water. Through this study, condensate water may originate from formation water and then be affected by complicated physical and chemical interactions. The condensate water is affected by gas and formation water. The relationship between condensate water and gas yield is very close. The variations of water yield, salinity and ions composition can reflect the change of gas yield. Taking well Xin 856 for example, which is located in Xinchang gas felid, there exist a relationship between

  10. Gas adsorption and capillary condensation in nanoporous alumina films.

    PubMed

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  11. Modeling condensation with a noncondensable gas for mixed convection flow

    NASA Astrophysics Data System (ADS)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface

  12. High-efficiency condenser of steam from a steam-gas mixture

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.

    2017-12-01

    The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.

  13. Effect of inert propellant injection on Mars ascent vehicle performance

    NASA Technical Reports Server (NTRS)

    Colvin, James E.; Landis, Geoffrey A.

    1992-01-01

    A Mars ascent vehicle is limited in performance by the propellant which can be brought from Earth. In some cases the vehicle performance can be improved by injecting inert gas into the engine, if the inert gas is available as an in-situ resource and does not have to be brought from Earth. Carbon dioxide, nitrogen, and argon are constituents of the Martian atmosphere which could be separated by compressing the atmosphere, without any chemical processing step. The effect of inert gas injection on rocket engine performance was analyzed with a numerical combustion code that calculated chemical equilibrium for engines of varying combustion chamber pressure, expansion ratio, oxidizer/fuel ratio, and inert injection fraction. Results of this analysis were applied to several candidate missions to determine how the required mass of return propellant needed in low Earth orbit could be decreased using inert propellant injection.

  14. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 2; Gas Separation Technology--State of the Art

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Eklund, Thor I.; Haack, Gregory A.

    2001-01-01

    This purpose of this contract study task was to investigate the State of the Art in Gas Separation Technologies utilized for separating air into both nitrogen and oxygen gases for potential applications on commercial aircraft. The intended applications included: nitrogen gas for fuel tank inerting, cargo compartment fire protection, and emergency oxygen for passenger and crew use in the event of loss of cabin pressure. The approach was to investigate three principle methods of gas separation: Hollow Fiber Membrane (HFM), Ceramic Membrane (CM), and liquefaction: Total Atmospheric Liquefaction of Oxygen and Nitrogen (TALON). Additional data on the performance of molecular sieve pressure swing adsorption (PSA) systems was also collected and discussed. Performance comparisons of these technologies are contained in the body of the report.

  15. Condensation and critical exponents of an ideal non-Abelian gas

    NASA Astrophysics Data System (ADS)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  16. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of a volume discharge in inert-gas halides without preionisation

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Tarasenko, V. F.

    2008-04-01

    The energy characteristics of radiation of halides of inert gases excited by a volume discharge without additional preionisation are studied. The pressures of working mixtures and relations between the inert gas and halogen optimal for obtaining the maximum pulsed power and radiation efficiency are determined. The peak UV radiation power density achieved 5 kW cm-2 and the radiation efficiency was ≈5.5%. The pulse FWHM was 30—40 ns.

  17. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  18. Inerting of magnesium dust cloud with Ar, N2 and CO2.

    PubMed

    Li, G; Yuan, C M; Fu, Y; Zhong, Y P; Chen, B Z

    2009-10-15

    Experiments were conducted on the inerting of magnesium dust with N(2), CO(2), and Ar. Comparing the maximum explosion pressure, maximum rate of pressure rise, and limiting oxygen concentration with different inertants, it was determined that Ar is not the best inert gas under all conditions as commonly believed. N(2) was more effective than Ar as an inertant. CO(2) provided more inerting effect than either Ar and N(2) in low magnesium dust concentrations, although explosibility was increased at higher dust concentrations. Both N(2) and CO(2) as inerting agents showed higher LOC values than Ar. These results indicated that N(2) is a more economical inerting gas than Ar for the tested coarse magnesium dust.

  19. Cloud Condensation in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Anderson, Carrie M.

    2011-01-01

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability

  20. Waste heat recovery system including a mechanism for collection, detection and removal of non-condensable gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Timothy C.; Zigan, James A.

    2017-06-20

    The disclosure describes a non-condensable gas collection, detection, and removal system for a WHR system that helps to maintain cycle efficiency of the WHR system across the life of an engine system associated with the WHR system. A storage volume is configured to collect non-condensable gas received from the working fluid circuit, and a release valve is configured to selectively release non-condensable gas contained within the storage volume.

  1. Effects of non-condensable gas on the dynamic oscillations of cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning

    2016-11-01

    Cavitation is an essential topic of multiphase flow with a broad range of applications. Generally, there exists non-condensable gas in the liquid and a complex vapor/gas mixture bubble will be formed. A rigorous prediction of the dynamic behavior of the aforementioned mixture bubble is essential for the development of a complete cavitation model. In the present paper, effects of non-condensable gas on the dynamic oscillations of the vapor/gas mixture bubble are numerically investigated in great detail. For the completeness, a large parameter zone (e.g. bubble radius, frequency and ratio between gas and vapor) is investigated with many demonstrating examples. The mechanisms of mass diffusion are categorized into different groups with their characteristics and dominated regions given. Influences of non-condensable gas on the wave propagation (e.g. wave speed and attenuation) in the bubbly liquids are also briefly discussed. Specifically, the minimum wave speed is quantitatively predicted in order to close the pressure-density coupling relationship usually employed for the cavitation modelling. Finally, the application of the present finding on the development of cavitation model is demonstrated with a brief discussion of its influence on the cavitation dynamics. This work was financially supported by the National Natural Science Foundation of China (Project No.: 51506051).

  2. An investigation of condensation heat transfer in a closed tube containing a soluble noncondensable gas

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hanson, R. J.

    1976-01-01

    An exact one-dimensional condensation heat transfer model for insoluble gases has been developed and compared with experimental data. Modifications to this model to accommodate soluble gas behavior have also been accomplished, and the effects on gas front behavior demonstrated. Analytical models for condensation heat transfer are documented, and a novel optical method used for measuring gas concentration profiles is outlined.

  3. Effect of inert gas and prefermentative treatment with polyvinylpolypyrrolidone on the phenolic composition of Chilean Sauvignon blanc wines.

    PubMed

    Cáceres-Mella, Alejandro; Peña-Neira, Álvaro; Parraguez, Jenny; López-Solís, Remigio; Laurie, V Felipe; Canals, Joan Miquel

    2013-06-01

    Sauvignon blanc wines are produced under a wide variety of winemaking conditions, some of which include different fruit-ripening levels, cold soaks and the use of fining agents and inert gases. Anecdotal evidence suggests that sensory variations among these wines may have to do with their phenolic composition and concentration. Therefore the aim of this work was to study the effects of different winemaking conditions typically used in Chile on the phenolic composition and concentration of Sauvignon blanc wines. The use of an inert gas (CO2) in winemaking produced differences in the proportion of proanthocyanidin fractions. A higher concentration of flavan-3-ol monomers resulted from winemaking in the presence of inert gas. This condition also produced a higher content of total phenols and low-molecular-weight phenolic compounds. Low doses of polyvinylpolypyrrolidone (PVPP) in the prefermentative treatments produced wines with a higher content of phenolic compounds. Under these conditions a higher content of polymeric proanthocyanidins was observed. Different winemaking conditions modified the concentration and proportion of proanthocyanidin fractions and the global phenolic composition of the resulting white wines. This should be taken into account by the wineries producing these wines. © 2012 Society of Chemical Industry.

  4. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE PAGES

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-24

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  5. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations.

    PubMed

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J

    2018-04-28

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  6. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  7. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  8. Economic analysis of condensers for water recovery in steam injected gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Paepe, M.; Huvenne, P.; Dick, E.

    1998-07-01

    Steam injection cycles are interesting for small power ranges because of the high efficiency and the relatively low investment costs. A big disadvantage is the consumption of water by the cycle. Water recovery is seldom realized in industrial practice. In this paper an analysis of the technical and economical possibilities of water recovery by condensation of water out of the exhaust gases is made. Three gas turbines are considered : the Kawasaki M1A-13CC (2.3 MWe), the Allison 501KH (6.8 MWe) and the General Electric LM1600 (17 MWe). For every gas turbine two types of condensers are designed. In the watermore » cooled condenser finned tubes are used to cool the exhaust gases, flowing at the outside of the tubes. The water itself flows at the inside of the tubes and is cooled by a water to air cooler. In the air cooled condenser the exhaust gases flow at the inside of the tubes and the cooling air at the outside. The investment costs of the condensers is compared to the costs of the total installation. The investment costs are relatively smaller if the produced power goes up. The water cooled condenser with water to air cooler is cheaper than the air cooled condenser. Using a condenser results in higher exploitation costs due to the fans and pumps. It is shown that the air cooled condenser has lower exploitation costs than the water cooled one. Pay back time of the total installation does not significantly vary compared to the installation without recovery. Water prices are determined for which water recovery is profitable. For the water cooled condenser the turning point lies at 2.2 Euro/m; for the air cooled condenser this is 0.6 Euro/m.« less

  9. An investigation of condensation heat transfer in a closed tube containing a soluble noncondensable gas

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hanson, R. J.

    1976-01-01

    A more exact one-dimensional condensation heat transfer model for insoluble gases was developed and compared with experimental data. Modifications to this model to accommodate soluble gas behavior were also accomplished, and the effects on gas front behavior demonstrated. Analytical models for condensation heat transfer are documented, and an optical method used for measuring gas concentration profiles is outlined. Experimental data is then presented and interpreted.

  10. Magnetotransport of Monolayer Graphene with Inert Gas Adsorption in the Quantum Hall Regime

    NASA Astrophysics Data System (ADS)

    Fukuda, A.; Terasawa, D.; Fujimoto, A.; Kanai, Y.; Matsumoto, K.

    2018-03-01

    The surface of graphene is easily accessible from outside, and thus it is a suitable material to study the effects of molecular adsorption on the electric transport properties. We investigate the magnetotransport of inert-gas-adsorbed monolayer graphene at a temperature of 4.4 K under a magnetic field ranging from 0 to 7 T. We introduce 4He or Ar gas at low temperature to graphene kept inside a sample cell. The magnetoresistance change ΔRxx and Hall resistance change ΔRxy from the pristine graphene are measured as a function of gate voltage and magnetic field for one layer of adsorbates. ΔRxx and ΔRxy show oscillating patterns related to the constant filling factor lines in a Landau-fan diagram. Magnitudes of these quantities are relatively higher around a charge neutral point and may be mass-sensitive. These conditions could be optimized for development of a highly sensitive gas sensor.

  11. Thermodynamics and Dynamics of Bose condensation in a quasi-homogeneous gas

    NASA Astrophysics Data System (ADS)

    Navon, Nir; Schmidutz, Tobias; Gotlibovych, Igor; Gaunt, Alexander; Robert-de-Saint-Vincent, Martin; Smith, Robert; Hadzibabic, Zoran

    2014-05-01

    We present an experimental study of the thermodynamics and dynamics of Bose-Einstein condensation (BEC) in an optical-box trap. We first characterize the critical point for BEC, and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. We also observed the quantum Joule-Thomson effect, namely isoenthalpic cooling of a non-interacting gas. We then investigate the dynamics of Bose condensation in the box potential following a rapid temperature quench through the phase transition, and focus on the time-evolution of the condensed fraction, the coherence length and the mean-field shift, that we probe via Bragg spectroscopy.

  12. A new approach for biological online testing of stack gas condensate from municipal waste incinerators.

    PubMed

    Elsner, Dorothea; Fomin, Anette

    2002-01-01

    A biological testing system for the monitoring of stack gas condensates of municipal waste incinerators has been developed using Euglena gracilis as a test organism. The motility, velocity and cellular form of the organisms were the endpoints, calculated by an image analysis system. All endpoints showed statistically significant changes in a short time when organisms were exposed to samples collected during combustion situations with increased pollutant concentrations. The velocity of the organisms proved to be the most appropriate endpoint. A semi-continuous system with E. gracilis for monitoring stack gas condensate is proposed, which could result in an online system for testing stack gas condensates in the future.

  13. METAL SPRAYER FOR USE IN VACUUM OR INERT ATMOSPHERE

    DOEpatents

    Monroe, R.E.

    1958-10-14

    A metal sprayer is described for use in a vacuum or inert atmosphere with a straight line wire feed and variable electrode contact angle. This apparatus comprises two wires which are fed through straight tubes of two mechanisms positioned on opposite sides of a central tube to which an inert gas is fed. The two mechanisms and the wires being fed constitute electrodes to which electrical current is supplied so that the wires are melted by the electric are formed at their contacting region and sprayed by the gas supplied by the central tube. This apparatus is designed specifically to apply a zirconium coating to uranium in an inert atmosphere and without the use of an oxidizing flame.

  14. Contribution of multiple inert gas elimination technique to pulmonary medicine. 1. Principles and information content of the multiple inert gas elimination technique.

    PubMed Central

    Roca, J.; Wagner, P. D.

    1994-01-01

    This introductory review summarises four different aspects of the multiple inert gas elimination technique (MIGET). Firstly, the historical background that facilitated, in the mid 1970s, the development of the MIGET as a tool to obtain more information about the entire spectrum of VA/Q distribution in the lung by measuring the exchange of six gases of different solubility in trace concentrations. Its principle is based on the observation that the retention (or excretion) of any gas is dependent on the solubility (lambda) of that gas and the VA/Q distribution. A second major aspect is the analysis of the information content and limitations of the technique. During the last 15 years a substantial amount of clinical research using the MIGET has been generated by several groups around the world. The technique has been shown to be adequate in understanding the mechanisms of hypoxaemia in different forms of pulmonary disease and the effects of therapeutic interventions, but also in separately determining the quantitative role of each extrapulmonary factor on systemic arterial PO2 when they change between two conditions of MIGET measurement. This information will be extensively reviewed in the forthcoming articles of this series. Next, the different modalities of the MIGET, practical considerations involved in the measurements and the guidelines for quality control have been indicated. Finally, a section has been devoted to the analysis of available data in healthy subjects under different conditions. The lack of systematic information on the VA/Q distributions of older healthy subjects is emphasised, since it will be required to fully understand the changes brought about by diseases that affect the older population. PMID:8091330

  15. Design of a Helium Vapor Shroud for Liquid Hydrogen Fueling of an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Cavender, K.; Evans, C.; Haney, J.; Leachman, J.

    2017-12-01

    Filling a vehicular liquid hydrogen fuel tank presents the potential for flammable mixtures due to oxygen concentration from liquid air condensation. Current liquid hydrogen tank designs utilize insulating paradigms such as aerogel/fiberglass materials, vacuum jackets, or inert gas purge systems to keep the outer surface from reaching the condensation temperature of air. This work examines the heat transfer at the refuelling connection of the tank to identify potential areas of condensation, as well as the surface temperature gradient. A shrouded inert gas purge was designed to minimize vehicle weight and refuelling time. The design of a shrouded inert gas purge system is presented to displace air preventing air condensation. The design investigates 3D printed materials for an inert gas shroud, as well as low-temperature sealing designs. Shroud designs and temperature profiles were measured and tested by running liquid nitrogen through the filling manifold. Materials for the inert gas shroud are discussed and experimental results are compared to analytical model predictions. Suggestions for future design improvements are made.

  16. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    PubMed

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  17. Stepwise Internal Energy Control for Protonated Methanol Clusters by Using the Inert Gas Tagging

    NASA Astrophysics Data System (ADS)

    Shimamori, Takuto; Kuo, Jer-Lai; Fujii, Asuka

    2016-06-01

    Preferred isomer structures of hydrogen-bonded clusters should depend on their temperature because of the entropy term in the free energy. To observe such temperature dependence, we propose a new approach to control the internal energy (vibrational temperature) of protonated clusters in the gas phase. We performed IR spectroscopy of protonated methanol clusters, H+ (CH{_3}OH) {_n}, n= 5 and 7, with the tagging by various inert gas species (Ar, CO{_2}, CO, CS{_2}, C{_2}H{_2}, and C{_6}H{_6}). We found that vibrational temperature of the tagged clusters raises with increase of the interaction energy with the tag species, and the observed cluster structures follow the theoretical prediction of the temperature dependence of the isomer population.

  18. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  19. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon

    Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  20. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  1. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  2. Condensate statistics and thermodynamics of weakly interacting Bose gas: Recursion relation approach

    NASA Astrophysics Data System (ADS)

    Dorfman, K. E.; Kim, M.; Svidzinsky, A. A.

    2011-03-01

    We study condensate statistics and thermodynamics of weakly interacting Bose gas with a fixed total number N of particles in a cubic box. We find the exact recursion relation for the canonical ensemble partition function. Using this relation, we calculate the distribution function of condensate particles for N=200. We also calculate the distribution function based on multinomial expansion of the characteristic function. Similar to the ideal gas, both approaches give exact statistical moments for all temperatures in the framework of Bogoliubov model. We compare them with the results of unconstraint canonical ensemble quasiparticle formalism and the hybrid master equation approach. The present recursion relation can be used for any external potential and boundary conditions. We investigate the temperature dependence of the first few statistical moments of condensate fluctuations as well as thermodynamic potentials and heat capacity analytically and numerically in the whole temperature range.

  3. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    Inert gases are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. The multipole discharge chamber investigated was shown capable of low discharge chamber losses and flat ion beam profiles with a minimum of optimization. Minimum discharge losses were 200 to 250 eV/ion for xenon and 300 to 350 eV/ion for argon, while flatness parameters in the plane of the accelerator grid were 0.85 to 0.95. The design used employs low magnetic field strengths, which permits the use of sheet-metal parts. The corner problem of the discharge chamber was resolved with recessed corner anodes, which approximately equalized both the magnetic field above the anodes and the electron currents to these anodes. Argon hollow cathodes were investigated at currents up to about 5 amperes using internal thermionic emitters. Cathode chamber diameter optimized in the 1.0 to 2.5 cm range, while orifices diameter optimized in the 0.5 to 5 mm range. The use of a bias voltage for the internal emitter extended the operating range and facilitated starting. The masses of 15 and 30 cm flight type thrusters were estimated at about 4.2 and 10.8 kg.

  4. Industrial Research of Condensing Unit for Natural Gas Boiler House

    NASA Astrophysics Data System (ADS)

    Ziemele, Jelena; Blumberga, Dagnija; Talcis, Normunds; Laicane, Ilze

    2012-12-01

    In the course of work industrial research was carried out at the boiler plant A/S "Imanta" where a 10MW passive condensing economizer working on natural gas was installed after the 116MW water boiler. The work describes the design of the condensing economizer and wiring diagram. During the industrial experiment, the following measurements were made: the temperature of water before and after the economizer; the ambient temperature; the quantity of water passing through the economizer; heat, produced by the economizer and water boilers. The work summarizes the data from 2010-2011.

  5. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    NASA Astrophysics Data System (ADS)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  6. Quick estimate of oil discovery from gas-condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarem, A.M.

    1966-10-24

    A quick method of estimating the depletion performance of gas-condensate reservoirs is presented by graphical representations. The method is based on correlations reported in the literature and expresses recoverable liquid as function of gas reserves, producing gas-oil ratio, and initial and final reservoir pressures. The amount of recoverable liquid reserves (RLR) under depletion conditions, is estimated from an equation which is given. Where the liquid-reserves are in stock-tank barrels the gas reserves are in Mcf, with the arbitrary constant, N calculated from one graphical representation by dividing fractional oil recovery by the initial gas-oil ratio and multiplying 10U6D for convenience.more » An equation is given for estimating the coefficient C. These factors (N and C) can be determined from the graphical representations. An example calculation is included.« less

  7. Full field reservoir modelling of Central Oman gas/condensate fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemput, L.E.C. van de; Bertram, D.A.; Bentley, M.R.

    1995-12-31

    Gas reserves sufficient for a major export scheme have been found in Central Oman. To support appraisal and development planning of the gas/condensate fields, a dedicated, multi-disciplinary study team comprising both surface and subsurface engineers was assembled. The team fostered a high level of awareness of cross-disciplinary needs and challenges, resulting in timely data acquisition and a good fit between the various work-activities. The foundation of the subsurface contributions was a suite of advanced full-field reservoir models which: (1) provided production and well requirement forecasts; (2) quantified the impact of uncertainties on field performance and project costs; (3) supported themore » appraisal campaign; (4) optimised the field development plan; and (5) derived recovery factor ranges for reserves estimates. Geological/petrophysical uncertainties were quantified using newly-developed, 3-D probabilistic modelling tools. An efficient computing environment allowed a large number of sensitivities to be run in a timely, cost-effective manner. The models also investigated a key concern in gas/condensate fields: well impairment due to near-well condensate precipitation. Its impact was assessed using measured, capillary number-dependent, relative permeability curves. Well performance ranges were established on the basis of Equation of State single-well. simulations, and translated into the volatile oil full-field models using pseudo relative permeability curves for the wells. The models used the sparse available data in an optimal way and, as part of the field development plan, sustained confidence in the reserves estimates and the project, which is currently in the project specification phase.« less

  8. Temperature Dependence of the Thermal Conductivity of a Trapped Dipolar Bose-Condensed Gas

    NASA Astrophysics Data System (ADS)

    Yavari, H.

    2018-02-01

    The thermal conductivity of a trapped dipolar Bose condensed gas is calculated as a function of temperature in the framework of linear response theory. The contributions of the interactions between condensed and noncondensed atoms and between noncondensed atoms in the presence of both contact and dipole-dipole interactions are taken into account to the thermal relaxation time, by evaluating the self-energies of the system in the Beliaev approximation. We will show that above the Bose-Einstein condensation temperature ( T > T BEC ) in the absence of dipole-dipole interaction, the temperature dependence of the thermal conductivity reduces to that of an ideal Bose gas. In a trapped Bose-condensed gas for temperature interval k B T << n 0 g B , E p << k B T ( n 0 is the condensed density and g B is the strength of the contact interaction), the relaxation rates due to dipolar and contact interactions between condensed and noncondensed atoms change as {τ}_{dd12}^{-1}∝ {e}^{-E/{k}_BT} and τ c12 ∝ T -5, respectively, and the contact interaction plays the dominant role in the temperature dependence of the thermal conductivity, which leads to the T -3 behavior of the thermal conductivity. In the low-temperature limit, k B T << n 0 g B , E p >> k B T, since the relaxation rate {τ}_{c12}^{-1} is independent of temperature and the relaxation rate due to dipolar interaction goes to zero exponentially, the T 2 temperature behavior for the thermal conductivity comes from the thermal mean velocity of the particles. We will also show that in the high-temperature limit ( k B T > n 0 g B ) and low momenta, the relaxation rates {τ}_{c12}^{-1} and {τ}_{dd12}^{-1} change linearly with temperature for both dipolar and contact interactions and the thermal conductivity scales linearly with temperature.

  9. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  10. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  11. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  12. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND CARBONACEOUS SOLIDS IN GAS-PHASE CONDENSATION EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, C.; Huisken, F.; Henning, Th.

    2009-05-01

    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less

  13. Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zumberge, J.E.; Macko, S.

    1996-01-01

    Two of the largest gas fields in the world, Hasi R'Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have beenmore » generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.« less

  14. Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zumberge, J.E.; Macko, S.

    Two of the largest gas fields in the world, Hasi R`Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have beenmore » generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.« less

  15. Optimization of gas condensate Field A development on the basis of "reservoir - gathering facilities system" integrated model

    NASA Astrophysics Data System (ADS)

    Demidova, E. A.; Maksyutina, O. V.

    2015-02-01

    It is known that many gas condensate fields are challenged with liquid loading and condensate banking problems. Therefore, gas production is declining with time. In this paper hydraulic fracturing treatment was considered as a method to improve the productivity of wells and consequently to exclude the factors that lead to production decline. This paper presents the analysis of gas condensate Field A development optimization with the purpose of maintaining constant gas production at the 2013 level for 8 years taking into account mentioned factors . To optimize the development of the filed, an integrated model was created. The integrated model of the field implies constructing the uniform model of the field consisting of the coupling models of the reservoir, wells and surface facilities. This model allowed optimizing each of the elements of the model separately and also taking into account the mutual influence of these elements. Using the integrated model, five development scenarios were analyzed and an optimal scenario was chosen. The NPV of this scenario equals 7,277 mln RUR, cumulative gas production - 12,160.6 mln m3, cumulative condensate production - 1.8 mln tons.

  16. Advances in SAW gas sensors based on the condensate-adsorption effect.

    PubMed

    Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang

    2011-01-01

    A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.

  17. Inert gases in Sea of Fertility regolith

    NASA Technical Reports Server (NTRS)

    Vinogradov, A. P.; Zadorozhnyy, I. K.

    1974-01-01

    The content and isotopic composition were studied of inert gases -- He, Ne, Ar, Kr, and Xe -- in samples of lunar regolith returned by the Luna 16 automatic station. The samples were taken from depths of about 12 and 30 cm. The high concentrations of inert gases exceed by several orders their concentrations observed in ordinary stony meteorites. The gases in lunar regolith were a complex mixture of gases of different origins: Solar, cosmogenic, radiogenic, and so on. Solar wind gases predominated, distributed in the thin surficial layer of the regolith grains. The concentrations of these gases in the surficial layer is several cubic centimeters per gram. The isotopic composition of the inert gases of solar origin approaches their composition measured in gas-rich meteorites.

  18. Note: Development of fast heating inert gas annealing apparatus operated at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Das, S. C.; Majumdar, A.; Shripathi, T.; Hippler, R.

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCNx) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup.

  19. Operation of the J-series thruster using inert gas

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1982-01-01

    Electron bombardment ion thrusters using inert gases are candidates for large space systems. The J-Series 30 cm diameter thruster, designed for operation up to 3 k-W with mercury, is at a state of technology readiness. The characteristics of operation with xenon, krypton, and argon propellants in a J-Series thruster with that obtained with mercury are compared. The performance of the discharge chamber, ion optics, and neutralizer and the overall efficiency as functions of input power and specific impulse and thruster lifetime were evaluated. As expected, the discharge chamber performance with inert gases decreased with decreasing atomic mass. Aspects of the J-Series thruster design which would require modification to provide operation at high power with insert gases were identified.

  20. Design and optimization of integrated gas/condensate plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, C.R.; Wilson, J.L.

    1995-11-01

    An optimized design is demonstrated for combining gas processing and condensate stabilization plants into a single integrated process facility. This integrated design economically provides improved condensate recovery versus use of a simple stabilizer design. A selection matrix showing likely application of this integrated process is presented for use on future designs. Several methods for developing the fluid characterization and for using a process simulator to predict future design compositions are described, which could be useful in other designs. Optimization of flowsheet equipment choices and of design operating pressures and temperatures is demonstrated including the effect of both continuous and discretemore » process equipment size changes. Several similar designs using a turboexpander to provide refrigeration for liquids recovery and stabilizer reflux are described. Operating overthrust and from the P/15-D platform in the Dutch sector of the North Sea has proven these integrated designs are effective. Concerns do remain around operation near or above the critical pressure that should be addressed in future work including providing conservative separator designs, providing sufficient process design safety margin to meet dew point specifications, selecting the most conservative design values of predicted gas dew point and equipment size calculated with different Equations-of-State, and possibly improving the accuracy of PVT calculations in the near critical area.« less

  1. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    PubMed

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Colloidal gas-liquid condensation of polystyrene latex particles with intermediate kappa a values (5 to 160, a > kappa(-1)).

    PubMed

    Ishikawa, Masamichi; Kitano, Ryota

    2010-02-16

    Polystyrene latex particles showed gas-liquid condensation under the conditions of large particle radius (a > kappa(-1)) and intermediate kappa a, where kappa is the Debye-Hückel parameter and a is the particle radius. The particles were dissolved in deionized water containing ethanol from 0 to 77 vol %, settled to the bottom of the glass plate within 1 h, and then laterally moved toward the center of a cell over a 20 h period in reaching a state of equilibrium condensation. All of the suspensions that were 1 and 3 microm in diameter and 0.01-0.20 vol % in concentration realized similar gas-liquid condensation with clear gas-liquid boundaries. In 50 vol % ethanol solvent, additional ethanol was added to enhance the sedimentation force so as to restrict the particles in a monoparticle layer thickness. The coexistence of gas-liquid-solid (crystalline solid) was microscopically recognized from the periphery to the center of the condensates. A phase diagram of the gas-liquid condensation was created as a function of KCl concentration at a particle diameter of 3 microm, 0.10 vol % concentration, and 50:50 water/ethanol solvent at room temperature. The miscibility gap was observed in the concentration range from 1 to 250 microM. There was an upper limit of salt concentration where the phase separation disappeared, showing nearly critical behavior of macroscopic density fluctuation from 250 microM to 1 mM. These results add new experimental evidence to the existence of colloidal gas-liquid condensation and specify conditions of like-charge attraction between particles.

  3. Note: development of fast heating inert gas annealing apparatus operated at atmospheric pressure.

    PubMed

    Das, S C; Majumdar, A; Shripathi, T; Hippler, R

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCN(x)) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup. © 2012 American Institute of Physics

  4. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  5. Bose-Einstein condensation in the relativistic ideal Bose gas.

    PubMed

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  6. Spectroscopy of Cosmic Carbon Analogs in Inert-Gas Matrices and in the Gas-Phase: Comparative Results and Perspectives for Astrophysics

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent studies of the spectroscopy of large (up to approx. 50 carbon atoms) neutral and Ionized polycyclic aromatic hydrocarbons (PAHs) and Fullerenes isolated in inert gas matrices will be presented. The advantages and the limitations of matrix isolation spectroscopy for the study of the molecular spectroscopy of interstellar dust analogs will be discussed. The laboratory data will be compared to the astronomical spectra (the interstellar extinction, the diffuse interstellar bands). Finally, the spectra of PAH ions isolated in neon/argon matrices will be compared to the spectra obtained for PAH ion seeded in a supersonic expansion. The astrophysical implications and future perspectives will be discussed.

  7. Photoinduced Processes in Cobalt-Complexes: Condensed Phase and Gas Phase

    NASA Astrophysics Data System (ADS)

    Rupp, F.; Chevalier, K.; Wolf, M. M. N.; Krüger, H.-J.; Wüllen, C. v.; Nosenko, Y.; Niedner-Schatteburg, Y.; Riehn, C.; Diller, R.

    2013-03-01

    Femtosecond time-resolved, steady-state spectroscopic methods and quantum chemical calculations are employed to study ultrafast photoinduced processes in [Co(III)-(L-N4Me2)(dbc)](BPh4) and [Co(II)-(L-N4tBu2)(dbsq)](B(p-C6H4Cl)4) and to characterise the transient redox- and spin-states in condensed and gas phase.

  8. Method of producing hydrogen, and rendering a contaminated biomass inert

    DOEpatents

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  9. FAST FLUX TEST FACILITY CONCEPTUAL FACILTY DESIGN DESCRIPTION FOR THE INERT GAS CELL EXAMINATION FACILITY NO. 71

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1968-12-12

    The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.

  10. Film condensation of steam flowing downward on a tier of horizontal cylinders at different inclination angles in the presence of a non-condensable gas

    NASA Astrophysics Data System (ADS)

    Ramadan, Abdulghani; Yamali, Cemil

    2013-12-01

    The problem of forced laminar film condensation of steam flowing downward a tier of horizontal cylinders is investigated numerically. The effects of free stream non-condensable gas, air concentration (m1,∞), free stream velocity (Reynolds number), cylinder diameter, and angle of inclination on the condensation heat transfer are analyzed. Two flow arrangements, inline and staggered, are analyzed and investigated. The mathematical model takes into account the effect of staggering of the cylinders and how condensation is affected at the lower cylinders when condensate does not fall on to the center line of the cylinders. Condensation heat transfer results are available in ranges from (U∞ = 1 - 30 m/s) for free stream velocity, (m1,∞ = 0.01 -0.8) for free stream air mass fraction and (D = 12.7 -50.8 mm) for cylinder diameter. Results show that; a remarked reduction in the vapor side heat transfer coefficient is noticed. This results from the presence of small amounts of free stream air mass fractions in the steam-air mixture and increase in the cylinder diameter. On the other hand, it increases by increasing the free stream velocity (Reynolds number). Average heat transfer coefficient at the middle and the bottom cylinders increases by increasing the angle of inclination, whereas, no significant change is observed for that of the upper cylinder. Down the bank, a rapid decrease in the vapor side heat transfer coefficient is noticed. It may be resulted from the combined effects of inundation, decrease in the vapor velocity and increase in the non-condensable gas (air) at the bottom cylinders in the bank.

  11. Statistical properties and condensate fluctuation of attractive Bose gas with finite number of particles

    NASA Astrophysics Data System (ADS)

    Bera, Sangita; Lekala, Mantile Leslie; Chakrabarti, Barnali; Bhattacharyya, Satadal; Rampho, Gaotsiwe Joel

    2017-09-01

    'We study the condensate fluctuation and several statistics of weakly interacting attractive Bose gas of 7 Li atoms in harmonic trap. Using exact recursion relation we calculate canonical ensemble partition function and study the thermal evolution of the condensate. As 7 Li condensate is associated with collapse, the number of condensate atom is truly finite and it facilitates to study the condensate in mesoscopic region. Being highly correlated, we utilize the two-body correlated basis function to get the many-body effective potential which is further used to calculate the energy levels. Taking van der Waals interaction as interatomic interaction we calculate several quantities like condensate fraction N, root-mean-square fluctuation δn0 and different orders of central moments. We observe the effect of finite size on the calculation of condensate fluctuations and the effect of attractive interaction over the noninteracting limit. We observe the depletion of the condensate with increase in temperature. The calculated moments nicely exhibit the mesoscopic effect. The sharp fall in the root-mean-square fluctuation near the critical point signifies the possibility of phase transition.

  12. Requirements for long-life operation of inert gas hollow cathodes: Preliminary report

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Macrae, Gregory S.

    1990-01-01

    An experimental investigation was initiated to establish conditioning procedures for reliable hollow cathode operation via the characterization of critical parameters in a representative cathode test facility. From vacuum pumpdown rates, it was found that approximately 1.5 hours were required to achieve pressure levels within 5 percent of the lowest attainable pressure for this facility, depending on the purge conditions. The facility atmosphere was determined by a residual gas analyzer to be composed of primarily air and water vapor. The effects of vacuum pumping and inert gas purging were evaluated. A maximum effective leakage rate of 2.0 x 10(exp -3)sccm was observed and its probable causes were examined. An extended test of a 0.64 cm diameter Mo-Re hollow cathode was successfully completed. This test ran for 504 hours at an emission current of 23.0 amperes and a xenon flow rate of 6.1 sccm. Discharge voltage rose continuously from 15 to 21 volts over the course of the test. The temperature of the cathode body during the test was relatively stable at 1160 C. Post-test examination revealed ion-bombardment texturing of the orifice plate to be the only detectable sign of wear on the hollow cathode.

  13. Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network.

    PubMed

    de Oliveira, I N; dos Santos, T B; de Moura, F A B F; Lyra, M L; Serva, M

    2013-08-01

    We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74.

  14. Inert electrode connection

    DOEpatents

    Weyand, J.D.; Woods, R.W.; DeYoung, D.H.; Ray, S.P.

    1985-02-19

    An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000--20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1,200--1,500 C. 5 figs.

  15. Method and apparatus for removing non-condensible gas from a working fluid in a binary power system

    DOEpatents

    Mohr, Charles M.; Mines, Gregory L.; Bloomfield, K. Kit

    2002-01-01

    Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

  16. Heat transfer during condensation of steam from steam-gas mixtures in the passive safety systems of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Portnova, N. M.; Smirnov, Yu B.

    2017-11-01

    A theoretical model for calculation of heat transfer during condensation of multicomponent vapor-gas mixtures on vertical surfaces, based on film theory and heat and mass transfer analogy is proposed. Calculations were performed for the conditions implemented in experimental studies of heat transfer during condensation of steam-gas mixtures in the passive safety systems of PWR-type reactors of different designs. Calculated values of heat transfer coefficients for condensation of steam-air, steam-air-helium and steam-air-hydrogen mixtures at pressures of 0.2 to 0.6 MPa and of steam-nitrogen mixture at the pressures of 0.4 to 2.6 MPa were obtained. The composition of mixtures and vapor-to-surface temperature difference were varied within wide limits. Tube length ranged from 0.65 to 9.79m. The condensation of all steam-gas mixtures took place in a laminar-wave flow mode of condensate film and turbulent free convection in the diffusion boundary layer. The heat transfer coefficients obtained by calculation using the proposed model are in good agreement with the considered experimental data for both the binary and ternary mixtures.

  17. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  18. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, Mark W.; Yoshida, Tatsuro

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  19. Experimental investigations of tungsten inert gas assisted friction stir welding of pure copper plates

    NASA Astrophysics Data System (ADS)

    Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.

    2017-10-01

    Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

  20. Modelling responses of the inert-gas washout and MRI to bronchoconstriction.

    PubMed

    Foy, Brody H; Kay, David; Bordas, Rafel

    2017-01-01

    Many lung diseases lead to an increase in ventilation heterogeneity (VH). Two clinical practices for the measurement of patient VH are in vivo imaging, and the inert gas multiple breath washout (MBW). In this study computational modelling was used to compare the responses of MBW indices LCI and s cond and MRI measured global and local ventilation indices, σ r and σ local , to constriction of airways in the conducting zone of the lungs. The simulations show that s cond , LCI and σ r behave quite similarly to each other, all being sensitive to increases in the severity of constriction, while exhibiting little sensitivity to the depth at which constriction occurs. In contrast, the local MRI index σ local shows strong sensitivity to depth of constriction, but lowered sensitivity to constriction severity. We finish with an analysis of the sensitivity of MRI indices to grid sizes, showing that results should be interpreted with reference to the image resolution. Overall we conclude that the application of both local and global VH measures may help to classify different types of bronchoconstriction. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Gamma inert sterilization: a solution to polyethylene oxidation?

    PubMed

    Medel, Francisco J; Kurtz, Steven M; Hozack, William J; Parvizi, Javad; Purtill, James J; Sharkey, Peter F; MacDonald, Daniel; Kraay, Matthew J; Goldberg, Victor; Rimnac, Clare M

    2009-04-01

    In the 1990s, oxidation was found to occur in ultra-high molecular weight polyethylene total joint replacement components following gamma irradiation and prolonged shelf aging in air. Orthopaedic manufacturers developed barrier packaging to reduce oxidation during and after radiation sterilization. The present study explores the hypothesis that polyethylene components sterilized in a low-oxygen environment undergo similar in vivo oxidative mechanisms as inserts sterilized in air. In addition, the potential influence of the different sterilization processes on the wear performance of the polyethylene components was examined. An analysis of oxidation, wear, and surface damage was performed for forty-eight acetabular liners and 123 tibial inserts. The mean implantation time was 12.3+/-3.7 years for thirty-one acetabular liners that had been gamma sterilized in air and 4.0+/-2.5 years for the seventeen acetabular liners that had been gamma sterilized in inert gas. The mean implantation time was 11.0+/-3.2 years for the twenty-six tibial inserts that had been sterilized in air and 2.8+/-2.2 years for the ninety-seven tibial inserts that had been gamma sterilized in inert gas. Oxidation and hydroperoxide levels were characterized in loaded and unloaded regions of the inserts. Measurable oxidation and oxidation potential were observed in all cohorts. The oxidation and hydroperoxide levels were regional. Surfaces with access to body fluids were more heavily oxidized than protected bearing surfaces were. This variation appeared to be greater in historical (gamma-in-air-sterilized) components. Regarding wear performance, historical and conventional acetabular liners showed similar wear penetration rates, whereas a low incidence of delamination was confirmed for the conventional tibial inserts in the first decade of implantation. The present study explores the impact of industry-wide changes in sterilization practices for polyethylene. We found lower oxidation and oxidation

  2. Investigation of Bose Condensation in Ideal Bose Gas Trapped under Generic Power Law Potential in d Dimension

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.

    2016-02-01

    The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.

  3. Assessment of MELCOR condensation models with the presence of noncondensable gas in natural convection flow regime

    DOE PAGES

    Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L

    2017-04-01

    Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale formore » MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.« less

  4. Assessment of MELCOR condensation models with the presence of noncondensable gas in natural convection flow regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L

    Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale formore » MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.« less

  5. Inert gases in fines at three levels of the trench at Van Serg Crater

    NASA Technical Reports Server (NTRS)

    Jordan, J. L.; Heymann, D.

    1975-01-01

    Inert-gas measurements were conducted with three soil samples collected from a trench of about 17 cm depth which had been dug at Station 9, approximately 60-m southeast of the rim of Van Serg Crater on the moon. The particular trench is interesting because it is located in the continuous ejecta blanket of a relatively young crater. The results of the inert-gas measurements are presented in a table. They confirm an earlier conclusion reported by Heymann et al. (1974) that fines from Station 9 are among the most gas rich in the whole landing site. The three fines are agglutinate rich and most of the trapped gas is contained in the constructional particles. Agglutinate contents of fines tend to decrease rapidly for particles greater than about 250 micrometers.

  6. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  7. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    NASA Astrophysics Data System (ADS)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  8. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the

  9. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  10. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  11. Gas shielding apparatus

    DOEpatents

    Brandt, Daniel

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  12. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  13. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  14. Method for retarding dye fading during archival storage of developed color photographic film. [inert atmosphere

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Rhodes, C. M. (Inventor)

    1981-01-01

    Dye fading during archival storage of developed color photographic film is retarded by placing the film in a sealed, opaque vault, introducing a dry, pressurized inert gas into the vault while the latter is vented, and sealing the vault after the air within the vault has been purged and replaced by the inert gas. Preferably, the gas is nitrogen; and the vault is stored at a temperature below room temperature to preserve the color photographic emulsions on the film contained within the vault. For short-term storage, sodium thiocyanate pads charged with water are placed within the vault. For long term storage, the interior of the vault is kept at a low relative humidity.

  15. Spectral Properties of Gas-phase Condensed Fullerene-like Carbon Nanoparticles from Far-ultraviolet to Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Jäger, C.; Mutschke, H.; Henning, Th.; Huisken, F.

    2008-12-01

    Carbon solids are ubiquitous material in interstellar space. However, the formation pathway of carbonaceous matter in astrophysical environments, as well as in terrestrial gas-phase condensation reactions, is not yet understood. Laser ablation of graphite in different quenching gas atmospheres, such as pure He, He/H2, and He/H2O at varying pressures, is used to synthesize very small, fullerene-like carbon nanoparticles. The particles are characterized by very small diameters between 1 and 4 nm and a disturbed onion-like structure. The soot particles extracted from the condensation zone obviously represent a very early stage of particle condensation. The spectral properties have been measured from the far-ultraviolet (FUV; λ = 120 nm) to the mid-infrared (MIR; λ = 15 μm). The seedlike soot particles show strong absorption bands in the 3.4 μm range. The profile and the intensity pattern of the 3.4 μm band of the diffuse interstellar medium can be well reproduced by the measured 3.4 μm profile of the condensed particles; however, all the carbon which is left to form solids is needed to fit the intensity of the interstellar bands. In contrast to the assumption that onion-like soot particles could be the carriers of the interstellar ultraviolet (UV) bump, our very small onion-like carbon nanoparticles do not show distinct UV bands due to (π-π*) transitions.

  16. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  17. On the thermodynamics of the photoacoustic effect of condensed matter in gas cells

    NASA Astrophysics Data System (ADS)

    Korpiun, P.; Büchner, B.

    1983-03-01

    The photoacoustic (PA) effect of condensed matter measured in a gas-microphone cell can be interpreted by the Rosencwaig-Gersho-model. This model developed originally for thermally thick gas columns is extended to arbitrary gas lengths. The periodic variation of temperature varies the internal energy of the total volume of the gas leading to a pressure oscillation by an isochoric process. Further, taking into account a residual volume as introduced by Tam and Wong, the description leads finally to an extended Rosencwaig-Gersho model (ERG). Measurements with argon (γ=1.67) and Freon 13 (CClF3, γ=1.17) for thermally thin and thick gas colomns confirm the isochoric character of the PA effect at frequencies far below the acoustic cell resonance. Experimental results of other groups can be interpreted very well with our model. Furthermore, the extended Rosencwaig-Gershomodel leads just in the low frequency region to the same results as the model of McDonald and Wetsel.

  18. Substitution-inert trinuclear platinum complexes efficiently condense/aggregate nucleic acids and inhibit enzymatic activity**

    PubMed Central

    Malina, Jaroslav; Farrell, Nicholas P.; Brabec, Viktor

    2015-01-01

    The trinuclear platinum complexes ([{Pt(NH3)3}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}]6+, TriplatinNC‐A; [{trans-Pt(NH3)2(NH2(CH2)6NH3+)}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}]8+, TriplatinNC) belong to a class of biologically active agents that bind to DNA via nonbonding noncovalent (hydrogen bonding, electrostatic) interactions. Charge delocalization (6+ to 8+) in these linear trinuclear platinum complexes results in a high cellular uptake and promising cytotoxic activity in several carcinoma cell lines. We show in the present work with the aid of the methods of biophysical chemistry that in particular TriplatinNC condenses DNA with unprecedented potency which is much higher than that of conventional DNA condensing agents. In addition, in contrast to other DNA condensing agents, both platinum complexes induce aggregation of small transfer RNA molecules. We also demonstrate for the first time that TriplatinNC-A and TriplatinNC in particular completely inhibit DNA transcriptional activity at markedly lower concentration than naturally occurring spermine. Notably, the topoisomerase I-mediated relaxation of supercoiled DNA was inhibited by TriplatinNC-A and TriplatinNC at ~60-fold and ~250-fold lower concentration than that of spermine, respectively. We suggest that the general mechanisms of biological activity of TriplatinNC-A and TriplatinNC may be associated with their unique ability to condense/aggregate nucleic acids with consequent inhibitory effect on crucial enzymatic activities. PMID:25256921

  19. Inert gas narcosis has no influence on thermo-tactile sensation.

    PubMed

    Jakovljević, Miroljub; Vidmar, Gaj; Mekjavic, Igor B

    2012-05-01

    Contribution of skin thermal sensors under inert gas narcosis to the raising hypothermia is not known. Such information is vital for understanding the impact of narcosis on behavioural thermoregulation, diver safety and judgment of thermal (dis)comfort in the hyperbaric environment. So this study aimed at establishing the effects of normoxic concentration of 30% nitrous oxide (N(2)O) on thermo-tactile threshold sensation by studying 16 subjects [eight females and eight males; eight sensitive (S) and eight non-sensitive (NS) to N(2)O]. Their mean (SD) age was 22.1 (1.8) years, weight 72.8 (15.3) kg, height 1.75 (0.10) m and body mass index 23.8 (3.8) kg m(-2). Quantitative thermo-tactile sensory testing was performed on forearm, upper arm and thigh under two experimental conditions: breathing air (air trial) and breathing normoxic mixture of 30% N(2)O (N(2)O trial) in the mixed sequence. Difference in thermo-tactile sensitivity thresholds between two groups of subjects in two experimental conditions was analysed by 3-way mixed-model analysis of covariance. There were no statistically significant differences in thermo-tactile thresholds either between the Air and N(2)O trials, or between S and NS groups, or between females and males, or with respect to body mass index. Some clinically insignificant lowering of thermo-tactile thresholds occurred only for warm thermo-tactile thresholds on upper arm and thigh. The results indicated that normoxic mixture of 30% N(2)O had no influence on thermo-tactile sensation in normothermia.

  20. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: On the gravitational-deceleration initiation of the phase transition of gas to a Bose condensate

    NASA Astrophysics Data System (ADS)

    Rivlin, L. A.

    2008-01-01

    A scenario of the experiment on the observation of the isothermal Bose condensation of cooled gas with increasing the concentration of atoms caused by the deceleration of a vertical atomic beam in the gravitational field resulting in a decrease in the phase transition critical temperature below the gas temperature is considered. Coherent phenomena accompanying the evolution of the Bose condensate during further beam deceleration are pointed out.

  1. Pitot pressure analyses in CO2 condensing rarefied hypersonic flows

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Suzuki, T.; Fujita, K.

    2016-11-01

    In order to improve the accuracy of rarefied aerodynamic prediction, a hypersonic rarefied wind tunnel (HRWT) was developed at Japan Aerospace Exploration Agency. While this wind tunnel has been limited to inert gases, such as nitrogen or argon, we recently extended the capability of HRWT to CO2 hypersonic flows for several Mars missions. Compared to our previous N2 cases, the condensation effect may not be negligible for CO2 rarefied aerodynamic measurements. Thus, in this work, we have utilized both experimental and numerical approaches to investigate the condensation and rarefaction effects in CO2 hypersonic nozzle flows.

  2. The improvement of the effectiveness of using natural gas in hot-water boilers by means of condensing economizers

    NASA Astrophysics Data System (ADS)

    Vnukov, A. K.; Rozanova, F. A.

    2013-07-01

    The paper describes the results of the study of the mathematical model of a condensing economizer (CE) interacting with the technological parameter of the particular district heating station. This model has been developed by the authors. It is shown that the CE, due to condensation of water vapor and augmentation of convective heat exchange between products of natural gas combustion, makes it possible to save up to 8% of fuel.

  3. Substitution-inert trinuclear platinum complexes efficiently condense/aggregate nucleic acids and inhibit enzymatic activity.

    PubMed

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor

    2014-11-17

    The trinuclear platinum complexes (TriplatinNC-A [{Pt(NH3 )3 }2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](6+) , and TriplatinNC [{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH3 (+) )}2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](8+) ) are biologically active agents that bind to DNA through noncovalent (hydrogen bonding, electrostatic) interactions. Herein, we show that TriplatinNC condenses DNA with a much higher potency than conventional DNA condensing agents. Both complexes induce aggregation of small transfer RNA molecules, and TriplatinNC in particular completely inhibits DNA transcription at lower concentrations than naturally occurring spermine. Topoisomerase I-mediated relaxation of supercoiled DNA was inhibited by TriplatinNC-A and TriplatinNC at concentrations which were 60 times and 250 times lower than that of spermine. The mechanisms for the biological activity of TriplatinNC-A and TriplatinNC may be associated with their ability to condense/aggregate nucleic acids with consequent inhibitory effects on crucial enzymatic activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  5. The evaluation of the pyrochemistry for the treatment of Gen IV nuclear fuels Inert matrix chlorination studies in the gas phase or molten chloride salts

    NASA Astrophysics Data System (ADS)

    Bourg, S.; Péron, F.; Lacquement, J.

    2007-01-01

    The structure of the fuels for the future Gen IV nuclear reactors will be totally different from those of PWR, especially for the GFR concept including a closed cycle. In these reactors, fissile materials (carbides or nitrides of actinides) should be surrounded by an inert matrix. In order to build a reprocessing process scheme, the behavior of the potential inert matrices (silicon carbide, titanium nitride, and zirconium carbide and nitride) was studied by hydro- and pyrometallurgy. This paper deals with the chlorination results at high temperature by pyrometallurgy. For the first time, the reactivity of the matrix towards chlorine gas was assessed in the gas phase. TiN, ZrN and ZrC are very reactive from 400 °C whereas it is necessary to be over 900 °C for SiC to be as fast. In molten chloride melts, the bubbling of chlorine gas is less efficient than in gas phase but it is possible to attack the matrices. Electrochemical methods were also used to dissolve the refractory materials, leading to promising results with TiN, ZrN and ZrC. The massive SiC samples used were not conductive enough to be studied and in this case specific SiC-coated carbon electrodes were used. The key point of these studies was to find a method to separate the matrix compounds from the fissile material in order to link the head to the core of the process (electrochemical separation or liquid-liquid reductive extraction in the case of a pyrochemical reprocessing).

  6. Turboexpanders aid condensate recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houghton, J.; McLay, J.D.

    1973-03-05

    Turboexpander plants built by Fluor are operating in 18 locations throughout the world, with the first one having been built in 1963. These plants, plus those under construction, account for a combined gas capacity or more than 4,000 MMscfd. In both gas-processing and cryogenic operations, the turboexpander is gaining wide acceptance in such areas as North and South America, the Middle East, and N. Africa. In a typical plant, feed gas is first dehydrated before being chilled by heat exchange with the gas product from the turboexpander. Condensate liquids are separated from the gas stream which is then expanded. Furthermore » condensed liquids resulting from the expansion-cooling effect are separated for fractionation. The degree of expansion can be varied to recover up to 60 to 90% of the ethane contained in the feed gas. The most efficient use of turboexpander refrigeration is dependent upon the product required.« less

  7. Bose-Einstein condensation of paraxial light

    NASA Astrophysics Data System (ADS)

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-10-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose-Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.

  8. Thermodynamic properties of gas-condensate system with abnormally high content of heavy hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zanochuev, S. A.; Shabarov, A. B.; Podorozhnikov, S. Yu; Zakharov, A. A.

    2018-05-01

    Gas-condensate systems (GCS) with an abnormally high content of heavy hydrocarbons are characterized by a sharp change in both phase and component compositions with an insignificant decrease in pressure below the start pressure of the phase transitions (the beginning of condensation). Calculation methods for describing the phase behavior of such systems are very sensitive to the quality of the initial information. The uncertainty of the input data leads not only to significant errors in the forecast of phase compositions, but also to an incorrect phase state estimation of the whole system. The research presents the experimental thermodynamic parameters of the GCS of the BT reservoirs on the Beregovoye field, obtained at the phase equilibrium facility. The data contribute to the adaptation of the calculated models of the phase behavior of the GCS with a change in pressure.

  9. Fractionation in the solar nebula - Condensation of yttrium and the rare earth elements

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.

    1975-01-01

    The condensation of Y and the rare earth elements (REE) from the solar nebula may be controlled by thermodynamic equilibrium between gas and condensed solids. Highly fractionated REE patterns may result if condensates are removed from the gas before condensation is complete. It is found that the fractionation is not a smooth function of REE ionic radius but varies in an extremely irregular pattern. Both Yb and Eu are predicted to be extremely depleted in the early condensate without the requirement of condensation in the divalent state. The model is discussed with respect to a highly fractionated pattern observed by Tanaka and Masuda (1973), in a pink Ca-Al-rich inclusion from the Allende meteorite and can account for the abundances of each REE determined. According to the model this inclusion represents a condensate from a previously fractionated gas rather than from a gas of solar composition. Before the condensation of this inclusion, an earlier condensate was formed and was removed from equilibrium with the gas.

  10. Pore diameter effects on phase behavior of a gas condensate in graphitic one-and two-dimensional nanopores.

    PubMed

    Welch, William R W; Piri, Mohammad

    2016-01-01

    Molecular dynamics (MD) simulations were performed on a hydrocarbon mixture representing a typical gas condensate composed mostly of methane and other small molecules with small fractions of heavier hydrocarbons, representative of mixtures found in tight shale reservoirs. The fluid was examined both in bulk and confined to graphitic nano-scale slits and pores. Numerous widths and diameters of slits and pores respectively were examined under variable pressures at 300 K in order to find conditions in which the fluid at the center of the apertures would not be affected by capillary condensation due to the oil-wet walls. For the bulk fluid, retrograde phase behavior was verified by liquid volumes obtained from Voronoi tessellations. In cases of both one and two-dimensional confinement, for the smallest apertures, heavy molecules aggregated inside the pore space and compression of the gas outside the solid structure lead to decreases in density of the confined fluid. Normal density/pressure relationships were observed for slits having gaps of above 3 nm and pores having diameters above 6 nm. At 70 bar, the minimum gap width at which the fluid could pass through the center of slits without condensation effects was predicted to be 6 nm and the corresponding diameter in pores was predicted to be 8 nm. The models suggest that in nanoscale networks involving pores smaller than these limiting dimensions, capillary condensation should significantly impede transmission of natural gases with similar composition.

  11. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    PubMed

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  12. Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2-inert gas mixtures

    NASA Astrophysics Data System (ADS)

    Chen, Yani; Zhao, Hongbin; Sheng, Leimei; Yu, Liming; An, Kang; Xu, Jiaqiang; Ando, Yoshinori; Zhao, Xinluo

    2012-06-01

    Large-scale production of graphene sheets has been achieved by direct current arc discharge evaporation of pure graphite electrodes in various H2-inert gas mixtures. The as-prepared few-layer graphene sheets have high purity, high crystallinity and high oxidation resistance temperature. Their electrochemical characteristics have been evaluated in coin-type cells versus metallic lithium. The first cell discharge capacity reached 1332 mA h g-1 at a current density of 50 mA g-1. After 350 cycles, the discharge capacity still remained at 323 mA h g-1. Graphene sheets produced by this method should be a promising candidate for the electrode material of lithium-ion batteries.

  13. Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    DeSalvo, B. J.; Patel, Krutik; Johansen, Jacob; Chin, Cheng

    2017-12-01

    We report on the formation of a stable quantum degenerate mixture of fermionic 6Li and bosonic 133Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.

  14. Reflux condensation of pure vapors with and without a noncondensable gas inside plain and enhanced tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelmessih, A.N.; Rabas, T.J.; Panchal, C.B.

    1997-06-01

    Estimates of the surface-area and vapor-release reductions are obtained when commercially available enhanced tubes (spirally ribbed) replace plain tubes in a reflux unit condensing pure organic vapors with different concentrations of a noncondensable gas. This investigation was undertaken because there are no existing data and/or prediction methods that are applicable for these shell-and-tube condensers commonly used in the process industries. To obtain these estimates, existing design methods published in the open literature were used. The major findings are that (1) surface-area reductions can almost approach the single-phase heat transfer enhancement level, and (2) vapor-release reductions can approach a factor ofmore » four. The important implication is that enhanced tubes appear to be very cost effective for addressing the recovery of volatile organic vapors (VOCs), and for a vast number of different reflux-condenser applications.« less

  15. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that

  16. Effect of condensed tannins on forage nutritive value and greenhouse gas output of an orchardgrass diet

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gas (GHG) emissions from livestock account for 43%, 29%, and 27% of CH4, N2O and CO2, respectively, of global GHG emissions from livestock. Legumes containing condensed tannins (CT) have been shown to decrease enteric CH4 in ruminants; however, research is lacking on how increased CT leve...

  17. From particle condensation to polymer aggregation

    NASA Astrophysics Data System (ADS)

    Janke, Wolfhard; Zierenberg, Johannes

    2018-01-01

    We draw an analogy between droplet formation in dilute particle and polymer systems. Our arguments are based on finite-size scaling results from studies of a two-dimensional lattice gas to three-dimensional bead-spring polymers. To set the results in perspective, we compare with in part rigorous theoretical scaling laws for canonical condensation in a supersaturated gas at fixed temperature, and derive corresponding scaling predictions for an undercooled gas at fixed density. The latter allows one to efficiently employ parallel multicanonical simulations and to reach previously not accessible scaling regimes. While the asymptotic scaling can not be observed for the comparably small polymer system sizes, they demonstrate an intermediate scaling regime also observable for particle condensation. Altogether, our extensive results from computer simulations provide clear evidence for the close analogy between particle condensation and polymer aggregation in dilute systems.

  18. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  19. Direct condensation refrigerant recovery and restoration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, D.C.H.

    1992-03-10

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting themore » separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.« less

  20. Improved Back-Side Purge-Gas Chambers For Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Ezell, Kenneth G.; Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved chambers for inert-gas purging of back sides of workpieces during plasma arc welding in keyhole (full-penetration) mode based on concept of directing flows of inert gases toward, and concentrating them on, hot weld zones. Tapered chamber concentrates flow of inert gas on plasma arc plume and surrounding metal.

  1. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    PubMed

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  2. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOEpatents

    Durai-Swamy, Kandaswamy

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  3. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    NASA Astrophysics Data System (ADS)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  4. Disequilibrium condensation environments in space - A frontier in thermodynamics

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.

  5. Process and apparatus for igniting a burner in an inert atmosphere

    DOEpatents

    Coolidge, Dennis W.; Rinker, Franklin G.

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  6. Gas stream purifier

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.

    1994-01-01

    A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.

  7. Inert Ingredients Overview and Guidance

    EPA Pesticide Factsheets

    This Web page provides information on inert ingredients approved for use in pesticide products and the guidance documents that are available to assist in obtaining approval for a new inert ingredient.

  8. Inert gas narcosis and the encoding and retrieval of long-term memory.

    PubMed

    Kneller, Wendy; Hobbs, Malcolm

    2013-12-01

    Prior research has indicated that inert gas narcosis (IGN) causes decrements in free recall memory performance and that these result from disruption of either encoding or self-guided search in the retrieval process. In a recent study we provided evidence, using a Levels of Processing approach, for the hypothesis that IGN affects the encoding of new information. The current study sought to replicate these results with an improved methodology. The effect of ambient pressure (111.5-212.8 kPa/1-11 msw vs. 456-516.8 kPa/35-41 msw) and level of processing (shallow vs. deep) on free recall memory performance was measured in 34 divers in the context of an underwater field experiment. Free recall was significantly worse at high ambient pressure compared to low ambient pressure in the deep processing condition (low pressure: M = 5.6; SD = 2.7; high pressure: M = 3.3; SD = 1.4), but not in the shallow processing condition (low pressure: M = 3.9; SD = 1.7; high pressure: M = 3.1; SD = 1.8), indicating IGN impaired memory ability in the deep processing condition. In the shallow water, deep processing improved recall over shallow processing but, significantly, this effect was eliminated in the deep water. In contrast to our earlier study this supported the hypothesis that IGN affects the self-guided search of information and not encoding. It is suggested that IGN may affect both encoding and self-guided search and further research is recommended.

  9. Guidance Documents for Inert Ingredients

    EPA Pesticide Factsheets

    These guidance documents provide information on various inert ingredient issues, including the general process for submitting petitions or requests, adding trade names to our database, and doing searches related to inert ingredients.

  10. Horizontal gas-condensate find brightens Louisiana chalk outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzet, G.A.

    1994-12-19

    A ray of hope may have appeared in the Louisiana portion of the Cretaceous Austin chalk trend after several years of expensive disappointment. OXY USA Inc. plans to use dual leg horizontal wells to develop a fracture chalk reservoir named Masters Creek field in Rapides Parish. The state has approved four 1,920 acre spacing units, one of which contains OXY's A1 Monroe well. The A1 Monroe flowed 6.6 MMcfd of gas with 2,162 b/d of 48[degree] gravity condensate, not oil as previously reported, through a 26/64 in. choke with 6,196 psi flowing tubing pressure from a single southward 4,000 ftmore » horizontal leg at 14,803 ft true vertical depth. Bottomhole pressure is 13,100 psi. OXY called A1 Monroe a significant discovery and said it has additional exploration acreage blocks along the trend. Louisiana exempts production from horizontal wells from state severance tax until all project costs are returned. The paper briefly discusses OXY's program.« less

  11. Distribution of inert gases in fines from the Cayley-Descartes region

    NASA Technical Reports Server (NTRS)

    Walton, J. R.; Lakatos, S.; Heymann, D.

    1973-01-01

    The inert gases in 14 different fines and in one sample of 2 to 4 mm fines from Apollo 16 were measured by mass spectroscopy with respect to trapped solar wind gases, cosmogenic gases, and 'parentless' Ar-40. Such studies are helpful for the understanding of regolith evolution, of transport of regolith fines, and of the lunar atmosphere. The Apollo 16 soils are unique because they represent, after Luna 20, the second and much more extensive record from the lunar highlands. The landing site presents the problem of materials from the Cayley Formation vs those from the Descartes Formation. There are two large, relatively fresh craters in the area, North Ray and South Ray, whose ejecta patterns may be recognized in the inert-gas record.

  12. Assessment of the effect of development of the Bovanenkovskoe gas-condensate field in the middle Yamal region on the dynamics of the polar fox population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrinskii, N.L.; Sosin, V.F.

    Based on the findings of integrated monitoring research, the state of polar fox population in a zone of heavy technogenic pressure is assessed experimentally. Networks of breeding burrows on permanent experimental and control plots were carefully examined over the course of three summer seasons. Active development of the Bovanenkovskoe gas-condensate field has led to loss of the central portion of this area as a zone of polar fox restocking. Heavy accelerated exploitation of other gas and gas-condensate fields in the Yamal Peninsula may lower the Yamal population of polar fox to the verge of extinction. 15 refs.

  13. Reproductive effects of the water-accommodated fraction of a natural gas condensate in the Indo-Pacific reef-building coral Pocillopora damicornis.

    PubMed

    Villanueva, R D; Yap, H T; Montaño, M N E

    2011-11-01

    Toxic effects of the water-accommodated fraction (WAF) of a natural gas condensate on the reproduction of the brooding coral Pocillopora damicornis were studied in short-term (24 h) laboratory experiments. Coral fragments were exposed to varying concentrations of condensate WAF during different reproductive phases: gametogenesis, early embryogenesis, and late embryogenesis (when nighttime planulation occurs). During gametogenesis, exposure to condensate WAF did not inhibit subsequent production of larvae. On the other hand, exposure to >25% WAF of gravid corals, at early and late embryogenesis, resulted in abortion and early release of larvae, respectively, with higher percentages of larvae expelled in fragments treated with higher concentrations of condensate WAF at least 3h after onset of exposure. Aborted larvae during early embryogenesis were 'premature', as they are of small size (0.06±0.03 mm³), low metamorphic competency (54%), and white in coloration, with a pale brown oral end (indicating low density of zooxanthellae). Those larvae released at the latter part of embryogenesis are bigger in size (0.22±0.08 mm³), possess 100% metamorphic competency, and are brown in coloration (high density of zooxanthellae). Aside from direct effects on reproduction, fragment mortality index was higher in samples exposed to higher concentrations of condensate WAF (>25%), hence lowering the number of potentially reproducing polyps. Altogether, exposure to >25% natural gas condensate WAF for at least 3h can potentially disrupt the replenishment of coral populations due to negative effects on reproduction and early life processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Liquid methane gelled with methanol and water reduces rate of nitrogen absorption

    NASA Technical Reports Server (NTRS)

    Vanderwall, E. M.

    1972-01-01

    Dilution of gelant vapor with inert carrier gas accomplishes gelation. Mixture is injected through heated tube and orifice into liquid methane for immediate condensation within bulk of liquid. Direct dispersion of particles in liquid avoids condensation on walls of vessel and eliminates additional mixing.

  15. Clinical application of inert gas Multiple Breath Washout in children and adolescents with asthma.

    PubMed

    Zwitserloot, Annelies; Fuchs, Susanne I; Müller, Christina; Bisdorf, Kornelia; Gappa, Monika

    2014-09-01

    Children with asthma often have normal spirometry despite significant disease. The pathology of the small airways in asthma may be assessed using Multiple Breath Washout (MBW) and calculating the Lung Clearance Index (LCI). There are only few studies using MBW in children with asthma and existing data regarding bronchodilator effect are contradictory. The aim of the present pilot study was to compare LCI in asthma and controls and assess the effect of salbutamol in children with asthma on the LCI. Unselected patients with a diagnosis of asthma visiting the outpatient department of our hospital between 04-2010 and 03-2011 were recruited and compared to a healthy control group. MBW was performed as inert gas MBW using sulfurhexafluorid (SF6) as the tracer gas. Clinical data were documented and spirometry and MBW (EasyOne Pro, MBW module, NDD Switzerland) were performed before and after the use of salbutamol (200-400 μg). Healthy controls performed baseline MBW only. 32 children diagnosed with asthma (4.7-17.4 years) and 42 controls (5.3-20.8) were included in the analysis. LCI differed between patients and controls, with a mean LCI (SD) of 6.48 (0.48) and 6.21 (0.38) (P = 0.008). Use of salbutamol had no significant effect on LCI for the group. These pilot data show that clinically stable asthma patients and controls both have a LCI in the normal range. However, in patients the LCI is significantly higher indicating that MBW may have a role in assessing small airways disease in asthma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Einstein–Bose condensation of Onsager vortices

    NASA Astrophysics Data System (ADS)

    Valani, Rahil N.; Groszek, Andrew J.; Simula, Tapio P.

    2018-05-01

    We have studied statistical mechanics of a gas of vortices in two dimensions. We introduce a new observable—a condensate fraction of Onsager vortices—to quantify the emergence of the vortex condensate. The condensation of Onsager vortices is most transparently observed in a single vortex species system and occurs due to a competition between solid body rotation (see vortex lattice) and potential flow (see multiple quantum vortex state). We propose an experiment to observe the condensation transition of the vortices in such a single vortex species system.

  17. Origins of inert Higgs doublets

    DOE PAGES

    Kephart, Thomas W.; Yuan, Tzu -Chiang

    2016-03-24

    Here, we consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z 2 symmetry can occur automatically. Several examples are discussed.

  18. Growth and development in inert non-aqueous liquids. [of higher plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1974-01-01

    A preview is presented of the survival and growth capabilities of higher plants in non-aqueous, inert liquids. The two media which were used are mineral (white) oil and fluorochemical inert liquid FC-75. Both liquids dissolve oxygen and carbon dioxide readily, but are insoluble in water. Consequently, plants submerged in these liquids are capable of gas exchange with the atmosphere, but possess a water impermeable coating the dimensions of which are determined by the size of the liquid holding container. In a sense, growing plants in a tank of mineral oil imparts on them a cuticle. Plants plus prescribed volumes of water were innoculated into mineral oil. Organisms with minimal water supplied could then be observed. Also, submersed plants covered with an oil slick were shown to be capable of growth in dessicating atmospheres.

  19. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  20. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

    NASA Astrophysics Data System (ADS)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-04-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  1. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    PubMed

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    PubMed Central

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  3. Dynamic characteristics of stay cables with inerter dampers

    NASA Astrophysics Data System (ADS)

    Shi, Xiang; Zhu, Songye

    2018-06-01

    This study systematically investigates the dynamic characteristics of a stay cable with an inerter damper installed close to one end of a cable. The interest in applying inerter dampers to stay cables is partially inspired by the superior damping performance of negative stiffness dampers in the same application. A comprehensive parametric study on two major parameters, namely, inertance and damping coefficients, are conducted using analytical and numerical approaches. An inerter damper can be optimized for one vibration mode of a stay cable by generating identical wave numbers in two adjacent modes. An optimal design approach is proposed for inerter dampers installed on stay cables. The corresponding optimal inertance and damping coefficients are summarized for different damper locations and interested modes. Inerter dampers can offer better damping performance than conventional viscous dampers for the target mode of a stay cable that requires optimization. However, additional damping ratios in other vibration modes through inerter damper are relatively limited.

  4. Compressing the Inert Doublet Model

    DOE PAGES

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; ...

    2016-02-16

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. We found that this stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. In conclusion, we derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  5. Tracheal volume in the pupa of the Saturniid moth Hyalophora cecropia determined with inert gases.

    PubMed

    Bridges, C R; Kestler, P; Scheid, P

    1980-06-01

    Tracheal volume (VTr) was measured in pupae of the Giant silkworm moth Hyalophora cecropia (Saturniidae, Lepidoptera, Insecta) using inert gas wash-out techniques. The animal was placed in a small vessel that was continuously ventilated (rate, V) by a gas mixture containing 20% O2 in N2; the inflowing (F1) and outflowing gas fractions (FE) of the vessel could be continuously measured by a respiratory mass spectrometer. At the onset of a spiracular constriction period, which was evidenced from the FECO2 trace, the mixture was rapidly replaced by pure Ar. At the subsequent burst, the amount of N2 emerging from the animal, MN2, was calculated from V and the difference (FE--F1)N2. VTr was calculated from MN2 and the N2 concentration in the tracheal system before constriction (assumed to equal that in the ventilating gas before replacement by Ar). Measurements were repeated with N2 and Ar replacing each other. VTr average 48 microliter . g-1 (range 39 to 59) for animals of 5.8 g average body weight (range 3.4 to 9.9), when inert gas solubility in body fluids was accounted for. Both size and stage in pupal development appear to affect VTr. These values show reasonable agreement with literature data, mostly obtained by emptying the tracheal gas space by mechanical compression.

  6. Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint

    NASA Astrophysics Data System (ADS)

    Milyardi, Indra; Sunar Baskoro, Ario

    2018-04-01

    Autogenous Tungsten Inert Gas (TIG) welding has been conducted on aluminum alloy A1100. The purpose of this research is to determine the proper current and speed of autogenous TIG welding with butt joint pattern. Variations on welding current are 150 A, 155 A, and 160 A with the variations on welding speed are 1 mm/seconds, 1.1 mm/seconds, 1.2 mm/seconds. The welded results were tested using non-destructive test (NDT) method using X-Ray radiography. After the test, it is found that the appropriate current for the best result without porosity can be achieved using the welding parameter of welding current of 160 A and the welding speed of 1.1 mm seconds.

  7. Flammability limits of lithium-ion battery thermal runaway vent gas in air and the inerting effects of halon 1301

    NASA Astrophysics Data System (ADS)

    Karp, Matthew Eugene

    Lithium-ion (rechargeable) and lithium-metal (non-rechargeable) battery cells put aircraft at risk of igniting and fueling fires. Lithium batteries can be packed in bulk and shipped in the cargo holds of freighter aircraft; currently lithium batteries are banned from bulk shipment on passenger aircraft [1]. The federally regulated Class C cargo compartment extinguishing system's utilization of a 5 %vol Halon 1301 knockdown concentration and a sustained 3 %vol Halon 1301 may not be sufficient at inerting lithium-ion battery vent gas and air mixtures [2]. At 5 %vol Halon 1301 the flammability limits of lithium-ion premixed battery vent gas (Li-Ion pBVG) in air range from 13.80 %vol to 26.07 %vol Li-Ion pBVG. Testing suggests that 8.59 %vol Halon 1301 is required to render all ratios of the Li-Ion pBVG in air inert. The lower flammability limit (LFL) and upper flammability limit (UFL) of hydrogen and air mixtures are 4.95 %vol and 76.52 %vol hydrogen, respectively. With the addition of 10 %vol and 20 %vol Halon 1301 the LFL is 9.02 %vol and 11.55 %vol hydrogen, respectively, and the UFL is 45.70 %vol and 28.39 %vol hydrogen, respectively. The minimum inerting concentration (MIC) of Halon 1301 in hydrogen and air mixtures is 26.72 %vol Halon 1301 at 16.2 %vol hydrogen. The LFL and UFL of Li-Ion pBVG and air mixtures are 7.88 %vol and 37.14 %vol Li-Ion pBVG, respectively. With the addition of 5 %vol, 7 %vol, and 8 %vol Halon 1301 the LFL is 13.80 %vol, 16.15 %vol, and 17.62 % vol Li-Ion pBVG, respectively, and the UFL is 26.07 %vol, 23.31 %vol, and 21.84 %vol Li- Ion pBVG, respectively. The MIC of Halon 1301 in Li-Ion pBVG and air mixtures is 8.59 %vol Halon 1301 at 19.52 %vol Li-Ion pBVG. Le Chatelier's mixing rule has been shown to be an effective measure for estimating the flammability limits of Li-Ion pBVGes. The LFL has a 1.79 % difference while the UFL has a 4.53 % difference. The state of charge (SOC) affects the flammability limits in an apparent parabolic

  8. Competition between Bose-Einstein Condensation and Spin Dynamics.

    PubMed

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  9. Non-equilibrium Properties of a Pumped-Decaying Bose-Condensed Electron–Hole Gas in the BCS–BEC Crossover Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanai, R.; Littlewood, P. B.; Ohashi, Y.

    2016-03-01

    We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose-Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is shown to induce quasi-particle excitations, leading to the partial occupation of the upper branch of Bogoliubov single-particle excitation spectrum. We also discuss how this quasi-particle induction is related to the suppression of exciton BEC, as well as the stability of the steady state.

  10. Wafer chamber having a gas curtain for extreme-UV lithography

    DOEpatents

    Kanouff, Michael P.; Ray-Chaudhuri, Avijit K.

    2001-01-01

    An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.

  11. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    NASA Astrophysics Data System (ADS)

    Vutha, A.; Horbatsch, M.; Hessels, E.

    2018-01-01

    We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the $\\hat{\\rm{z}}$ direction by an applied electric field, as has recently been demonstrated by Park, et al. [Angewandte Chemie {\\bf 129}, 1066 (2017)]. The trapped molecules are prepared into a state which has its electron spin perpendicular to $\\hat{\\rm{z}}$, and a magnetic field along $\\hat{\\rm{z}}$ causes precession of this spin. An electron electric dipole moment $d_e$ would affect this precession due to the up to 100~GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring $d_e$ to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  12. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    NASA Astrophysics Data System (ADS)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  13. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    PubMed

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  14. Inert gas narcosis disrupts encoding but not retrieval of long term memory.

    PubMed

    Hobbs, Malcolm; Kneller, Wendy

    2015-05-15

    Exposure to increased ambient pressure causes inert gas narcosis of which one symptom is long-term memory (LTM) impairment. Narcosis is posited to impair LTM by disrupting information encoding, retrieval (self-guided search), or both. The effect of narcosis on the encoding and retrieval of LTM was investigated by testing the effect of learning-recall pressure and levels of processing (LoP) on the free-recall of word lists in divers underwater. All participants (n=60) took part in four conditions in which words were learnt and then recalled at either low pressure (1.4-1.9atm/4-9msw) or high pressure (4.4-5.0atm/34-40msw), as manipulated by changes in depth underwater: low-low (LL), low-high(LH), high-high (HH), and high-low (HL). In addition, participants were assigned to either a deep or shallow processing condition, using LoP methodology. Free-recall memory ability was significantly impaired only when words were initially learned at high pressure (HH & HL conditions). When words were learned at low pressure and then recalled at low pressure (LL condition) or high pressure (LH condition) free-recall was not impaired. Although numerically superior in several conditions, deeper processing failed to significantly improve free-recall ability in any of the learning-recall conditions. This pattern of results support the hypothesis that narcosis disrupts encoding of information into LTM, while retrieval appears to be unaffected. These findings are discussed in relation to similar effects reported by some memory impairing drugs and the practical implications for workers in pressurised environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust

    PubMed Central

    Dunk, Paul W.; Adjizian, Jean-Joseph; Kaiser, Nathan K.; Quinn, John P.; Blakney, Gregory T.; Ewels, Christopher P.; Marshall, Alan G.; Kroto, Harold W.

    2013-01-01

    Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous 22Ne in ancient meteorites. That exotic 22Ne is, in fact, the decay isotope of relatively short-lived 22Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe “build-up” and formation of carbon stardust, and provide insight into fullerene astrochemistry. PMID:24145444

  16. Experimental study of the novel tuned mass damper with inerter which enables changes of inertance

    NASA Astrophysics Data System (ADS)

    Brzeski, P.; Lazarek, M.; Perlikowski, P.

    2017-09-01

    In this paper we present the experimental verification of the novel tuned mass damper which enables changes of inertance. Characteristic feature of the proposed device is the presence of special type of inerter. This inerter incorporates a continuously variable transmission that enables stepless changes of inertance. Thus, it enables to adjust the parameters of the damping device to the current forcing characteristic. In the paper we present and describe the experimental rig that consists of the massive main oscillator forced kinematically and the prototype of the investigated damper. We perform a series of dedicated experiments to characterize the device and asses its damping efficiency. Moreover, we perform numerical simulations using the simple mathematical model of investigated system. Comparing the numerical results and the experimental data we legitimize the model and demonstrate the capabilities of the investigated tuned mass damper. Presented results prove that the concept of the novel type of tuned mass damper can be realized and enable to confirm its main advantages. Investigated prototype device offers excellent damping efficiency in a wide range of forcing frequencies.

  17. Assessment of choke valve erosion in a high-pressure, high-temperature gas condensate well using TLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchenough, P.M.; Cornally, D.; Dawson, S.G.B.

    1994-12-31

    Many planned new developments in the North Sea will involve the exploitation of hostile high pressure, high temperature gas condensate reserves. The extremely high pressure letdown over the wellhead choke leads to very high flow velocities, and consequent risks of erosion damage occurring to the choke internals. In a recent study, measurements of erosion have been performed during an offshore well test under flowing conditions using advanced Thin Layer Activation techniques and scaled Laboratory tests.

  18. Mitigation of multipacting, enhanced by gas condensation on the high power input coupler of a superconducting RF module, by comprehensive warm aging

    NASA Astrophysics Data System (ADS)

    Wang, Chaoen; Chang, Lung-Hai; Chang, Mei-Hsia; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Liu, Zong-Kai; Lo, Chih-Hung; Tsai, Chi-Lin; Yeh, Meng-Shu; Yu, Tsung-Chi

    2017-11-01

    Excitation of multipacting, enhanced by gas condensation on cold surfaces of the high power input coupler in a SRF module poses the highest challenge for reliable SRF operation under high average RF power. This could prevent the light source SRF module from being operated with a desired high beam current. Off-line long-term reliability tests have been conducted for the newly constructed 500-MHz SRF KEKB type modules at an accelerating RF voltage of 1.6-MV to enable prediction of their operational reliability in the 3-GeV Taiwan Photon Source (TPS), since prediction from mere production performance by conventional horizontal test is presently unreliable. As expected, operational difficulties resulting from multipacting, enhanced by gas condensation, have been identified in the course of long-term reliability test. Our present hypothesis is that gas condensation can be slowed down by preserving the vacuum pressure at the power coupler close to that reached just after its cool down to liquid helium temperatures. This is achievable by reduction of the power coupler out-gassing rate through comprehensive warm aging. Its feasibility and effectiveness has been experimentally verified in a second long term reliability test. Our success opens the possibility to operate the SRF module free of multipacting trouble and opens a new direction to improve the operational performance of next generation SRF modules in light sources with high beam currents.

  19. Comfort-oriented vehicle suspension design with skyhook inerter configuration

    NASA Astrophysics Data System (ADS)

    Hu, Yinlong; Chen, Michael Z. Q.; Sun, Yonghui

    2017-09-01

    This paper is concerned with the comfort-oriented vehicle suspension design problem by using a skyhook inerter configuration. The rationale of the skyhook inerter is to use a grounded inerter to virtually increase the sprung mass of a vehicle, as it is analytically demonstrated that increasing the sprung mass can always improve the ride comfort performance. Semi-active means to realize the skyhook inerter configuration are investigated by using semi-active inerters. Three control laws, that is the on-off control, the anti-chatter on-off control, and the continuous control, are proposed for the semi-active inerter to approximate the skyhook inerter. Numerical simulations are performed to demonstrate the effectiveness and performances of these control laws. It is shown that the semi-active realizations of the skyhook inerter by using the proposed control laws can achieve over 10% improvement compared with the traditional strut, and similar performances are obtained for these control laws, with slight differences with respect to different static stiffnesses of the suspension system.

  20. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    NASA Astrophysics Data System (ADS)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  1. Drinking influences exhaled breath condensate acidity.

    PubMed

    Kullmann, Tamás; Barta, Imre; Antus, Balázs; Horváth, Ildikó

    2008-01-01

    Exhaled breath condensate analysis is a developing method for investigating airway pathology. Impact of food and drink on breath condensate composition has not been systematically addressed. The aim of the study was to follow exhaled breath condensate pH after drinking an acidic and a neutral beverage. Breath condensate, capillary blood, and urine of 12 healthy volunteers were collected before and after drinking either 1 l of coke or 1 l of mineral water. The pH of each sample was determined with a blood gas analyzer. The mean difference between the pH of two breath condensate samples collected within 15 min before drinking was 0.13+/-0.03. Condensate pH decreased significantly from 6.29+/-0.02 to 6.24+/-0.02 (p<0.03) after drinking coke and from 6.37+/-0.03 to 6.22+/-0.04 (p<0.003) after drinking water. Drinking coke induced significant changes in blood and urine pH as well. Drinking influences exhaled breath condensate composition and may contribute to the variability of exhaled breath condensate pH.

  2. Effect of inert cover gas on performance of radioisotope Stirling space power system

    NASA Astrophysics Data System (ADS)

    Carpenter, R.; Kumar, V.; Or, C.; Schock, A.

    2001-02-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched on missions to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al., 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission. .

  3. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Robert; Kumar, V; Ore, C

    2001-01-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Companymore » (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.« less

  4. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  5. Oxidative and inert pyrolysis on-line coupled to gas chromatography with mass spectrometric detection: On the pyrolysis products of tobacco additives.

    PubMed

    Paschke, Meike; Hutzler, Christoph; Henkler, Frank; Luch, Andreas

    2016-11-01

    According to European legislation, tobacco additives may not increase the toxicity or the addictive potency of the product, but there is an ongoing debate on how to reliably characterize and measure such properties. Further, too little is known on pyrolysis patterns of tobacco additives to assume that no additional toxicological risks need to be suspected. An on-line pyrolysis technique was used and coupled to gas chromatography-mass spectrometry (GC/MS) to identify the pattern of chemical species formed upon thermal decomposition of 19 different tobacco additives like raw cane sugar, licorice or cocoa. To simulate the combustion of a cigarette it was necessary to perform pyrolysis at inert conditions as well as under oxygen supply. All individual additives were pyrolyzed under inert or oxidative conditions at 350, 700 and 1000°C, respectively, and the formation of different toxicants was monitored. We observed the generation of vinyl acrylate, fumaronitrile, methacrylic anhydride, isobutyric anhydride and 3-buten-2-ol exclusively during pyrolysis of tobacco additives. According to the literature, these toxicants so far remained undetectable in tobacco or tobacco smoke. Further, the formation of 20 selected polycyclic aromatic hydrocarbons (PAHs) with molecular weights of up to 278Da was monitored during pyrolysis of cocoa in a semi-quantitative approach. It was shown that the adding of cocoa to tobacco had no influence on the relative amounts of the PAHs formed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas

    NASA Astrophysics Data System (ADS)

    Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.

    2010-03-01

    We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the

  7. Wheat pasture bloat dynamics, in vitro ruminal gas production, and potential bloat mitigation with condensed tannins.

    PubMed

    Min, B R; Pinchak, W E; Fulford, J D; Puchala, R

    2005-06-01

    The aim of this study was to determine the effect of winter wheat (Triticum aestivum L.) forage growth stage, forage allowance, time of day, and commercial condensed tannins (CT) on steer bloat dynamics and in vitro ruminal gas production. Twenty-six crossbreed steers (Angus x Hereford x Salers; average initial BW = 194 +/- 26 kg) were used. Wheat forage allowances were either 18 kg (high forage allowance) and 6 kg (low forage allowance) of DM/(100 kg BW.d). In each bloat observation period, fresh wheat forage samples were hand-clipped to ground level in all study pastures for nutrient and in vitro ruminal gas production analyses. In vitro ruminal gas accumulation was measured at 0, 1, 2, 3, 4, 5, 6, and 12 h. Commercial CT was added at 0, 10, 15, and 20 mg of CT/g of DM. Bloat was scored once per week on two consecutive days at 0800 and 1500 during the vegetative stage and once every 2 wk during the reproductive stage of wheat development. Mean bloat score was calculated for each steer by time of day, stage of plant growth, and forage allowance. Bloat was detected in 65.8% of the observation periods. Average bloat scores were four and 2.5 times greater (P < 0.05) in cattle grazing at a high forage allowance than at a low forage allowance in the vegetative and reproductive growth phases of wheat, respectively. Rate of gas production was greater (P < 0.001) in the vegetative stage than in the reproductive stage. Steer bloat score was positively correlated with forage CP (r = 0.22; P < 0.05) and IVDMD (r = 0.32; P < 0.05). Rate of ruminal gas production was positively correlated (P < 0.01) to forage CP (r = 0.48), NPN (r = 0.40), soluble protein (r = 0.32), and IVDMD (r = 0.47). Conversely, negative correlations were found for forage DM (r = -0.20; P < 0.05), insoluble protein (r = -0.40), NDF (r = -0.69), and forage height (r = -0.49; P < 0.01) on the rate of ruminal gas production. Addition of CT at levels greater than 10 mg of CT/g of DM decreased (P < 0.05) the

  8. Experimental investigation of CO2 condensation process using cryogen

    NASA Astrophysics Data System (ADS)

    Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung; Park, Hana; Jeong, Sangkwon

    2014-01-01

    Carbon dioxide (CO2) is one of the dominant gas molecules that causes greenhouse effect, i.e. global warming. Numerous studies have been carried out to regulate the emission of CO2 to reduce greenhouse gas. The liquid CO2 is a convenient form of transportation compared to high-pressurized gaseous CO2. Therefore, the direct liquefaction mechanism of CO2 at low temperature draws technical attention recently. In particular, cold thermal energy of Liquefied Natural Gas (LNG) could be a candidate to condense gaseous CO2, especially in the LNG powered ship. In this paper, the detailed direct condensation process of CO2 using LN2 with intermittent solidification is investigated. Pressurized CO2 at 600 kPa is directly liquefied in a vessel by liquid nitrogen which is supplied into the coiled tube heat exchanger inside the CO2 vessel. The heat exchanger temperature is controlled from 130 K to 205 K to regulate the solidification and sublimation of CO2 by duty control with cryogenic solenoid valve. The characteristics of CO2 condensation process with cryogen are analyzed from the measurement results. The results show that the solidification causes the significant degradation of CO2 condensation heat transfer. Finally, the condensation rate with and without solidification is compared.

  9. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces must...

  10. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces must...

  11. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces must...

  12. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces must...

  13. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces must...

  14. Safety considerations in testing a fuel-rich aeropropulsion gas generator

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James; Hulligan, David D.

    1991-01-01

    A catalyst containing reactor is being tested using a fuel-rich mixture of Jet A fuel and hot input air. The reactor product is a gaseous fuel that can be utilized in aeropropulsion gas turbine engines. Because the catalyst material is susceptible to damage from high temperature conditions, fuel-rich operating conditions are attained by introducing the fuel first into an inert gas stream in the reactor and then displacing the inert gas with reaction air. Once a desired fuel-to-air ratio is attained, only limited time is allowed for a catalyst induced reaction to occur; otherwise the inert gas is substituted for the air and the fuel flow is terminated. Because there presently is not a gas turbine combustor in which to burn the reactor product gas, the gas is combusted at the outlet of the test facility flare stack. This technique in operations has worked successfully in over 200 tests.

  15. Continuous condensation in nanogrooves

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  16. Experiments of Transient Condensation Heat Transfer on the Heat Flux Senor

    NASA Astrophysics Data System (ADS)

    Wang, Xuwen; Liu, Qiusheng; Zhu, Zhiqiang; Chen, Xue

    2015-09-01

    The influence of transient heat transfer in different condensation condition was investigated experimentally in the present paper. Getting condensation heat and mass transfer regularity and characteristics in space can provide theoretical basis for thermodynamic device such as heat pipes, loop heat pipes and capillary pumped loops as well as other fluid management engineering designing. In order to study the condensation process in space, an experimental study has been carried out on the ground for space experiment. The results show that transit heat transfer coefficient of film condensation is related to the condensation film width, the flow condition near the two phase interface and the pressure of the vapor and non-condensable gas in chamber. On the ground, the condensation heat flux on vertical surface is higher than it on horizontal surface. The transit heat flux of film condensation is affected by the temperature of superheated vapor, the temperature of condensation surface and non-condensable gas pressure. Condensation heat flux with vapor forced convection is many times more than it with natural convection. All of heat flux for both vapor forced convection and natural convection condensation in limited chamber declines dramatically over time. The present experiment is preliminary work for our future space experiments of the condensation and heat transfer process onboard the Chinese Spacecraft "TZ-1" to be launched in 2016.

  17. Continuous Droplet Removal upon Dropwise Condensation of Humid Air on a Hydrophobic Micropatterned Surface

    PubMed Central

    2015-01-01

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic–hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement. PMID:25073014

  18. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    PubMed

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.

  19. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  20. APPARATUS FOR THE PURIFICATION OF CALCIUM

    DOEpatents

    Burnett, R.L.

    1953-08-25

    The present patent claims and describes an apparatus adapted to carry out a new process for the purification of calcium containing an alkali metal as impurity. The process consists of distilling the impure caldium in the presence of an inert gas and at a reduced pressure, condensing substantially pure calcium on a condensing surface of iron or a ferrous alloy and condensing the alkali metal on a separate surface, the two condensing surfaces being maintained at suitable temperatures by separate cooling means.

  1. Hypoxia, gas narcosis, and metabolic response to argon and nitrous oxide

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the mechanism of inert gas influence on metabolism are reported. The studies reported include: metabolic response of hamsters to argon and nitrous oxide, membrane fatty acids and susceptability to narcotic gas influence, narcosis-induced histotoxic hypoxia, biochemical study of inert gas narcosis, hypoxia-induced protection against cardiovascular deterioration in the weightless state, and acute metabolic and physiologic response of goats to narcosis.

  2. Development of Key-Enabling Technologies for a Variable-blend Natural Gas Vehicle

    DOT National Transportation Integrated Search

    2017-12-01

    A portable, economic and reliable sensor for the Natural Gas (NG) fuel quality has been developed. Both Wobbe Index (WI) and Methane Indexes (MI) as well as inert gas content (inert%) of the NG fuel can be measured in real time within 5% accuracy. Th...

  3. Inertance Tube Modeling and the Effects of Temperature

    DTIC Science & Technology

    2010-01-01

    fluid dynamics. In one application in multistage cryocoolers , the performance of inertance tubes at the cryogenic temperatures is of interest. One... cryocoolers , the performance of inertance tubes at the cryogenic temperatures is of interest. One purpose of this paper is to understand how...acoustic power. KEYWORDS: Inertance tube, cryocoolers , pulse tube refrigerators, oscillating flow, computational fluid dynamics INTRODUCTION Pulse

  4. Process for gasifying carbonaceous material from a recycled condensate slurry

    DOEpatents

    Forney, Albert J.; Haynes, William P.

    1981-01-01

    Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

  5. Two Heat-Transfer Improvements for Gas Liquefiers

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.

    2005-01-01

    Two improvements in heat-transfer design have been investigated with a view toward increasing the efficiency of refrigerators used to liquefy gases. The improvements could contribute to the development of relatively inexpensive, portable oxygen liquefiers for medical use. A description of the heat-transfer problem in a pulse-tube refrigerator is prerequisite to a meaningful description of the first improvement. In a pulse-tube refrigerator in particular, one of in-line configuration heat must be rejected from two locations: an aftercooler (where most of the heat is rejected) and a warm heat exchanger (where a small fraction of the total input power must be rejected as heat). Rejection of heat from the warm heat exchanger can be problematic because this heat exchanger is usually inside a vacuum vessel. When an acoustic-inertance tube is used to provide a phase shift needed in the pulse-tube cooling cycle, another problem arises: Inasmuch as the acoustic power in the acoustic-inertance tube is dissipated over the entire length of the tube, the gas in the tube must be warmer than the warm heat exchanger in order to reject heat at the warm heat exchanger. This is disadvantageous because the increase in viscosity with temperature causes an undesired increase in dissipation of acoustic energy and an undesired decrease in the achievable phase shift. Consequently, the overall performance of the pulse-tube refrigerator decreases with increasing temperature in the acoustic-inertance tube. In the first improvement, the acoustic-inertance tube is made to serve as the warm heat exchanger and to operate in an approximately isothermal condition at a lower temperature, thereby increasing the achievable phase shift and the overall performance of the refrigerator. This is accomplished by placing the acoustic-inertance tube inside another tube and pumping a cooling fluid (e.g., water) in the annular space between the tubes. Another benefit of this improvement is added flexibility of

  6. Evaluation of anodic behavior of commercially pure titanium in tungsten inert gas and laser welds.

    PubMed

    Orsi, Iara Augusta; Raimundo, Larica B; Bezzon, Osvaldo Luiz; Nóbilo, Mauro Antonio de Arruda; Kuri, Sebastião E; Rovere, Carlos Alberto D; Pagnano, Valeria Oliveira

    2011-12-01

    This study evaluated the resistance to corrosion in welds made with Tungsten Inert Gas (TIG) in specimens made of commercially pure titanium (cp Ti) in comparison with laser welds. A total of 15 circular specimens (10-mm diameter, 2-mm thick) were fabricated and divided into two groups: control group-cp Ti specimens (n = 5); experimental group-cp Ti specimens welded with TIG (n = 5) and with laser (n = 5). They were polished mechanically, washed with isopropyl alcohol, and dried with a drier. In the anodic potentiodynamic polarization assay, measurements were taken using a potentiostat/galvanostat in addition to CorrWare software for data acquisition and CorrView for data visualization and treatment. Three curves were made for each working electrode. Corrosion potential values were statistically analyzed by the Student's t-test. Statistical analysis showed that corrosion potentials and passive current densities of specimens welded with TIG are similar to those of the control group, and had lower values than laser welding. TIG welding provided higher resistance to corrosion than laser welding. Control specimens welded with TIG were more resistant to local corrosion initiation and propagation than those with laser welding, indicating a higher rate of formation and growth of passive film thickness on the surfaces of these alloys than on specimens welded with laser, making it more difficult for corrosion to occur. © 2011 by the American College of Prosthodontists.

  7. Analysis of heat and mass transfer during condensation over a porous substrate.

    PubMed

    Balasubramaniam, R; Nayagam, V; Hasan, M M; Khan, L

    2006-09-01

    Condensing heat exchangers are important in many space applications for thermal and humidity control systems. The International Space Station uses a cooled fin surface to condense moisture from humid air that is blown over it. The condensate and the air are "slurped" into a system that separates air and water by centrifugal forces. The use of a cooled porous substrate is an attractive alternative to the fin where condensation and liquid/gas separation can be achieved in a single step. We analyze the heat and mass transfer during condensation of moisture from flowing air over such a cooled, flat, porous substrate. A fully developed regime is investigated for coupled mass, momentum and energy transport in the gas phase, and momentum and energy transport in the condensate layer on the porous substrate and through the porous medium.

  8. Bose-Einstein condensation in atomic alkali gases

    NASA Astrophysics Data System (ADS)

    Dodd, Robert J.

    1998-05-01

    I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.

  9. Equilibrium and Non-Equilibrium Condensation Phenomena in Tuneable 3D and 2D Bose Gases

    DTIC Science & Technology

    2016-04-01

    condensed gas " which remains condensed above the expected critical temperature, and performed one of the first studies of the strongly-interacting "unitary...34 Bose gas . With the 2d harmonic trap we showed how the interaction-driven BKT phase is connected with purely statistical theory, and with the 3d...box trap we created the world’s first atomic BEC in a quasi-uniform potential. 15. SUBJECT TERMS EOARD, Bose gas , ultracold, condensation, equilibrium

  10. Inert Reassessment Document for Gluconic Acid and Sodium Salt

    EPA Pesticide Factsheets

    Gluconic acid and D-gluconic acid are classified as List 3 inert ingredients, sodium gluconate is classified as a List 4B inert ingredient, and D-gluconic acid, sodium salt has not been categorized as to inert ingredient list classification status.

  11. Influence of Dense Inert Additives (W and Pb) on Detonation Conditions and Regime of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Imkhovik, Nikolay A.

    2010-10-01

    Results of experimental and theoretical studies of the unusual detonation properties of mixtures of high explosives (HEs) with high-density inert additives W and Pb were analyzed and systematized. Typical examples of the nonideal detonation of composite explosives for which the measured detonation pressure is substantially lower and the detonation velocity is higher than the values calculated within the framework of the hydrodynamic model, with the specific heat ratio for the detonation products of ∼6-8, are presented. Mechanisms of formation of anomalous pressure and mass velocity profiles, which explain the correlation between the Chapman-Jouguet pressure for HE-W and HE-Pb mixtures, the velocity of the free surface of duralumin target, and the depth of the dent imprinted in steel witness plates, are described.

  12. Kinetically inert Cu in coastal waters.

    PubMed

    Kogut, Megan B; Voelker, Bettina M

    2003-02-01

    Many studies have shown that Cu and other metals in natural waters are mostly bound by unidentified compounds interpreted to be strong ligands reversibly complexing a given metal. However, commonly applied analytical techniques are not capable of distinguishing strongly but reversibly complexed metal from metal bound in kinetically inert compounds. In this work, we use a modified competitive ligand exchange adsorptive cathodic stripping voltammetry method combined with size fractionation to show that most if not all of the apparently very strongly (log K > or = 13) bound Cu in samples from five New England coastal waters (1-18 nM, 10-60% of total Cu) is actually present as kinetically inert compounds. In three of the five samples examined by ultrafiltration, a significant portion of the 0.2-microm-filtrable inert Cu was retained by a 0.02-microm-pore size filter, suggesting that at least some of the Cu was kinetically inert because it was physically sequestered in colloidal material. The rest of the ambient Cu, and Cu added in titrations, were reversibly bound in complexes that could be modeled as having conditional stability constants of 10(10)-10(13). The Cu-binding ability of these complexes was equivalent to that of seawater containing reasonable concentrations of humic substances from terrestrial sources, approximately 0.15-0.45 mg of C/L. Both the inert compounds and the reversible ligands were important for determining [Cu2+] at ambient Cu levels in our samples.

  13. Gas-Purged Headspace Liquid Phase Microextraction System for Determination of Volatile and Semivolatile Analytes

    PubMed Central

    Zhang, Meihua; Bi, Jinhu; Yang, Cui; Li, Donghao; Piao, Xiangfan

    2012-01-01

    In order to achieve rapid, automatic, and efficient extraction for trace chemicals from samples, a system of gas-purged headspace liquid phase microextraction (GP-HS-LPME) has been researched and developed based on the original HS-LPME technique. In this system, semiconductor condenser and heater, whose refrigerating and heating temperatures were controlled by microcontroller, were designed to cool the extraction solvent and to heat the sample, respectively. Besides, inert gas, whose gas flow rate was adjusted by mass flow controller, was continuously introduced into and discharged from the system. Under optimized parameters, extraction experiments were performed, respectively, using GP-HS-LPME system and original HS-LPME technique for enriching volatile and semivolatile target compounds from the same kind of sample of 15 PAHs standard mixture. GC-MS analysis results for the two experiments indicated that a higher enrichment factor was obtained from GP-HS-LPME. The enrichment results demonstrate that GP-HS-LPME system is potential in determination of volatile and semivolatile analytes from various kinds of samples. PMID:22448341

  14. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  15. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  16. Simultaneous gas chromatographic-mass spectrometric quantitation of the alkylbenzene inert components, pesticide manufacturing by-products and active ingredient in two malathion formulations.

    PubMed

    Lin, Y W; Hee, S S

    1998-07-24

    A rapid, reliable and effective method for direct determination of the inert components, manufacturing by-products of the pesticide, and active ingredient in two malathion formulations has been established using capillary gas chromatography-mass spectrometry (GC-MS) with the internal standard method. The C2-, C3-, and C4-alkylbenzenes, the major pesticide manufacturing by-products (O,O,S-trimethylthionophosphate, diethyl maleate and O,O,O-trimethylthionophosphate), and malathion were resolved, and quantified in the same chromatogram. Structural identification was based on MS total ion current data, comparison of GC retention times with those of authentic standards, and retention indices. O,O,S-Trimethylthionophosphate was quantified at 3.57 +/- 0.31% (w/w) in one malathion formulation. While the malathion contents were within specifications for both formulations, the total alkylbenzene contents were not.

  17. Hydrogen-bonded ring closing and opening of protonated methanol clusters H(+)(CH3OH)(n) (n = 4-8) with the inert gas tagging.

    PubMed

    Li, Ying-Cheng; Hamashima, Toru; Yamazaki, Ryoko; Kobayashi, Tomohiro; Suzuki, Yuta; Mizuse, Kenta; Fujii, Asuka; Kuo, Jer-Lai

    2015-09-14

    The preferential hydrogen bond (H-bond) structures of protonated methanol clusters, H(+)(MeOH)n, in the size range of n = 4-8, were studied by size-selective infrared (IR) spectroscopy in conjunction with density functional theory calculations. The IR spectra of bare clusters were compared with those with the inert gas tagging by Ar, Ne, and N2, and remarkable changes in the isomer distribution with the tagging were found for clusters with n≥ 5. The temperature dependence of the isomer distribution of the clusters was calculated by the quantum harmonic superposition approach. The observed spectral changes with the tagging were well interpreted by the fall of the cluster temperature with the tagging, which causes the transfer of the isomer distribution from the open and flexible H-bond network types to the closed and rigid ones. Anomalous isomer distribution with the tagging, which has been recently found for protonated water clusters, was also found for H(+)(MeOH)5. The origin of the anomaly was examined by the experiments on its carrier gas dependence.

  18. Inert gas rejection device for zinc-halogen battery systems

    DOEpatents

    Hammond, Michael J.; Arendell, Mark W.

    1981-01-01

    An electrolytic cell for separating chlorine gas from other (foreign) gases, having an anode, a cathode assembly, an aqueous electrolyte, a housing, and a constant voltage power supply. The cathode assembly is generally comprised of a dense graphite electrode having a winding channel formed in the face opposing the anode, a gas impermeable (but liquid permeable) membrane sealed into the side of the cathode electrode over the channel, and a packing of graphite particles contained in the channel of the cathode electrode. The housing separates and parallelly aligns the anode and cathode assembly, and provides a hermetic seal for the cell. In operation, a stream of chlorine and foreign gases enters the cell at the beginning of the cathode electrode channel. The chlorine gas is dissolved into the electrolyte and electrochemically reduced into chloride ions. The chloride ions disfuse through the gas impermeable membrane, and are electrochemically oxidized at the anode into purified chlorine gas. The foreign gases do not participate in the above electrochemical reactions, and are vented from the cell at the end of the cathode electrode channel.

  19. A hybrid formulation for the numerical simulation of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2016-07-01

    In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.

  20. Film Condensation with and Without Body Force in Boundary-Layer Flow of Vapor Over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.

    1961-01-01

    Laminar film condensation under the simultaneous influence of gas-liquid interface shear and body force (g force) is analyzed over a flat plate. Important parameters governing condensation and heat transfer of pure vapor are determined. Mixtures of condensable vapor and noncondensable gas are also analyzed. The conditions under which the body force has a significant influence on condensation are determined.

  1. Increasing the efficiency of the condensing boiler

    NASA Astrophysics Data System (ADS)

    Zaytsev, O. N.; Lapina, E. A.

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  2. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  3. Recovery of Water from Boiler Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending stronglymore » on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.« less

  4. Performance of an adjustable, threaded inertance tube

    NASA Astrophysics Data System (ADS)

    Zhou, W. J.; Pfotenhauer, J. M.; Nellis, G. F.; Liu, S. Y.

    2015-12-01

    The performance of the Stirling type pulse tube cryocooler depends strongly on the design of the inertance tube. The phase angle produced by the inertance tube is very sensitive to its diameter and length. Recent developments are reported here regarding an adjustable inertance device that can be adjusted in real time. The inertance passage is formed by the root of a concentric cylindrical threaded device. The depth of the threads installed on the outer screw varies. In this device, the outer screw can be rotated four and half turns. At the zero turn position the length of the passage is 1.74 m and the hydraulic diameter is 7 mm. By rotating the outer screw, the inner threaded rod engages with additional, larger depth threads. Therefore, at its upper limit of rotation, the inertance passage includes both the original 1.74 m length with 7mm hydraulic diameter plus an additional 1.86 m length with a 10 mm hydraulic diameter. A phase shift change of 24° has been experimentally measured by changing the position of outer screw while operating the device at a frequency of 60 Hz. This phase angle shift is less than the theoretically predicted value due to the presence of a relatively large leak through the thread clearance. Therefore, the distributed component model of the inertance tube was modified to account for the leak path causing the data to agree with the model. Further, the application of vacuum grease to the threads causes the performance of the device to improve substantially.

  5. Integral Reactor Containment Condensation Model and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiao; Corradini, Michael

    pressure ranging from 4 to 21 bar with three different static inventories of non-condensable gas. Condensation and heat transfer rates were evaluated employing several methods, notably from measured temperature gradients in the HTP as well as measured condensate formation rates. A detailed mass and energy accounting was used to assess the various measurement methods and to support simplifying assumptions required for the analysis. Condensation heat fluxes and heat transfer coefficients are calculated and presented as a function of pressure to satisfy the objectives of this investigation. The major conclusions for those tests are summarized below: (1) In the steam blow-down tests, the initial condensation heat transfer process involves the heating-up of the containment heat transfer plate. An inverse heat conduction model was developed to capture the rapid transient transfer characteristics, and the analysis method is applicable to SMR safety analysis. (2) The average condensation heat transfer coefficients for different pressure conditions and non-condensable gas mass fractions were obtained from the integral test facility, through the measurements of the heat conduction rate across the containment heat transfer plate, and from the water condensation rates measurement based on the total energy balance equation. 15 (3) The test results using the measured HTP wall temperatures are considerably lower than popular condensation models would predict mainly due to the side wall conduction effects in the existing MASLWR integral test facility. The data revealed the detailed heat transfer characteristics of the model containment, important to the SMR safety analysis and the validation of associated evaluation model. However this approach, unlike separate effect tests, cannot isolate the condensation heat transfer coefficient over the containment wall, and therefore is not suitable for the assessment of the condensation heat transfer coefficient against system pressure and

  6. The effects of alloying elements on microstructures and mechanical properties of tungsten inert gas welded AZ80 magnesium alloys joint

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zhang, Jiansheng; Ding, Rongrong

    2017-11-01

    The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.

  7. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    DTIC Science & Technology

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  8. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    It is widely believed that the materials making up the solar system were derived from a nebular gas and dust cloud that went through an early high-temperature stage during which virtually all of the material was in the gas phase. At one time, it was thought that the entire inner solar nebula was hot, but it is now believed that most material was processed through regions where high temperatures were achieved. Certainly some material, such as presolar grains (cf., Mendybaev et al., 2002a), has never been exposed to high temperatures. As the system cooled, solids and perhaps liquids began to condense, but at some point the partially condensed materials became isolated from the remaining gas. Various lines of evidence support this view. At the largest scale, there is the observation that the Earth, Moon, Mars, and all chondritic meteorites except for the CI chondrites are depleted to varying degrees in the abundances of moderately volatile elements relative to bulk solar system composition. The CI chondrites reflect the bulk composition of the solar system for all but hydrogen, carbon, nitrogen, oxygen, and the rare gases, the most volatile elements (see Chapter 1.03; Palme et al., 1988; McDonough and Sun, 1995; Humayun and Cassen, 2000). The depletions in moderately volatile elements are, to a significant degree, correlated with condensation temperature, suggesting progressive removal of gas as condensation proceeded ( Cassen, 1996). Additional observations that can be explained by partial condensation are that various particularly primitive components of meteorites (e.g., calcium-, aluminum-rich refractory inclusions, and certain metal grains) have mineralogy and/or details of their chemical composition that are remarkably similar to what is calculated for equilibrium condensates from a solar composition gas. For example, the calcium-, aluminum-rich inclusions (CAIs) in chondritic meteorites have compositions very similar to that calculated for the first 5% of total

  9. Vortices and turbulence in trapped atomic condensates

    PubMed Central

    White, Angela C.; Anderson, Brian P.; Bagnato, Vanderlei S.

    2014-01-01

    After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and superfluidity and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates. PMID:24704880

  10. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  11. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  12. Ventilation/perfusion ratios measured by multiple inert gas elimination during experimental cardiopulmonary resuscitation.

    PubMed

    Hartmann, E K; Duenges, B; Boehme, S; Szczyrba, M; Liu, T; Klein, K U; Baumgardner, J E; Markstaller, K; David, M

    2014-09-01

    During cardiopulmonary resuscitation (CPR) the ventilation/perfusion distribution (VA /Q) within the lung is difficult to assess. This experimental study examines the capability of multiple inert gas elimination (MIGET) to determine VA /Q under CPR conditions in a pig model. Twenty-one anaesthetised pigs were randomised to three fractions of inspired oxygen (1.0, 0.7 or 0.21). VA/ Q by micropore membrane inlet mass spectrometry-derived MIGET was determined at baseline and during CPR following induction of ventricular fibrillation. Haemodynamics, blood gases, ventilation distribution by electrical impedance tomography and return of spontaneous circulation were assessed. Intergroup differences were analysed by non-parametric testing. MIGET measurements were feasible in all animals with an excellent correlation of measured and predicted arterial oxygen partial pressure (R(2)  = 0.96, n = 21 for baseline; R(2)  = 0.82, n = 21 for CPR). CPR induces a significant shift from normal VA /Q ratios to the high VA /Q range. Electrical impedance tomography indicates a dorsal to ventral shift of the ventilation distribution. Diverging pulmonary shunt fractions induced by the three inspired oxygen levels considerably increased during CPR and were traceable by MIGET, while 100% oxygen most negatively influenced the VA /Q. Return of spontaneous circulation were achieved in 52% of the animals. VA /Q assessment by MIGET is feasible during CPR and provides a novel tool for experimental purposes. Changes in VA /Q caused by different oxygen fractions are traceable during CPR. Beyond pulmonary perfusion deficits, these data imply an influence of the inspired oxygen level on VA /Q. Higher oxygen levels significantly increase shunt fractions and impair the normal VA /Q ratio. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Noninvasive Cardiac Output Estimation by Inert Gas Rebreathing in Mechanically Ventilated Pediatric Patients.

    PubMed

    Perak, Amanda M; Opotowsky, Alexander R; Walsh, Brian K; Esch, Jesse J; DiNardo, James A; Kussman, Barry D; Porras, Diego; Rhodes, Jonathan

    2016-10-01

    To assess the feasibility and accuracy of inert gas rebreathing (IGR) pulmonary blood flow (Qp) estimation in mechanically ventilated pediatric patients, potentially providing real-time noninvasive estimates of cardiac output. In mechanically ventilated patients in the pediatric catheterization laboratory, we compared IGR Qp with Qp estimates based upon the Fick equation using measured oxygen consumption (VO2) (FickTrue); for context, we compared FickTrue with a standard clinical short-cut, replacing measured with assumed VO2 in the Fick equation (FickLaFarge, FickLundell, FickSeckeler). IGR Qp and breath-by-breath VO2 were measured using the Innocor device. Sampled pulmonary arterial and venous saturations and hemoglobin concentration were used for Fick calculations. Qp estimates were compared using Bland-Altman agreement and Spearman correlation. The final analysis included 18 patients aged 4-23 years with weight >15 kg. Compared with the reference FickTrue, IGR Qp estimates correlated best and had the least systematic bias and narrowest 95% limits of agreement (results presented as mean bias ±95% limits of agreement): IGR -0.2 ± 1.1 L/min, r = 0.90; FickLaFarge +0.7 ± 2.2 L/min, r = 0.80; FickLundell +1.6 ± 2.9 L/min, r = 0.83; FickSeckeler +0.8 ± 2.5 L/min, r = 0.83. IGR estimation of Qp is feasible in mechanically ventilated patients weighing >15 kg, and agreement with FickTrue Qp estimates is better for IGR than for other Fick Qp estimates commonly used in pediatric catheterization. IGR is an attractive option for bedside monitoring of Qp in mechanically ventilated children. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Formation of inorganic electride thin films via site-selective extrusion by energetic inert gas ions

    NASA Astrophysics Data System (ADS)

    Miyakawa, Masashi; Toda, Yoshitake; Hayashi, Katsuro; Hirano, Masahiro; Kamiya, Toshio; Matsunami, Noriaki; Hosono, Hideo

    2005-01-01

    Inert gas ion implantation (acceleration voltage 300kV) into polycrystalline 12CaO.7Al2O3 (C12A7) films was investigated with fluences from 1×1016 to 1×1017cm-2 at elevated temperatures. Upon hot implantation at 600°C with fluences greater than 1×1017cm-2, the obtained films were colored and exhibited high electrical conductivity in the as-implanted state. The extrusion of O2- ions encaged in the crystallographic cages of C12A7 crystal, which leaves electrons in the cages at concentrations up to ˜1.4×1021cm-3, may cause the high electrical conductivity. On the other hand, when the fluence is less than 1×1017cm-2, the as-implanted films are optically transparent and electrically insulating. The conductivity is enhanced and the films become colored by irradiating with ultraviolet light due to the formation of F +-like centers. The electrons forming the F+-like centers are photo released from the encaged H- ions, which are presumably derived from the preexisting OH- groups. The induced electron concentration is proportional to the calculated displacements per atom, which suggests that nuclear collision effects of the implanted ions play a dominant role in forming the electron and H- ion in the films. The hot ion implantation technique provides a nonchemical process for preparing electronic conductive C12A7 films.

  15. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    PubMed

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  16. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    NASA Astrophysics Data System (ADS)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  17. Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wen-Bin; Gu, Pei-Hong

    2016-05-18

    We extend the standard model by three types of inert fields including Majorana fermion singlets/triplets, real Higgs singlets/triplets and leptonic Higgs doublets. In the presence of a softly broken lepton number and an exactly conserved Z{sub 2} discrete symmetry, these inert fields together can mediate a one-loop diagram for a Majorana neutrino mass generation. The heavier inert fields can decay to realize a successful leptogenesis while the lightest inert field can provide a stable dark matter candidate. As an example, we demonstrate the leptogenesis by the inert Higgs doublet decays. We also perform a systematic study on the inert Higgsmore » triplet dark matter scenario where the interference between the gauge and Higgs portal interactions can significantly affect the dark matter properties.« less

  18. Experimental investigation of CO{sub 2} condensation process using cryogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung

    2014-01-29

    Carbon dioxide (CO{sub 2}) is one of the dominant gas molecules that causes greenhouse effect, i.e. global warming. Numerous studies have been carried out to regulate the emission of CO{sub 2} to reduce greenhouse gas. The liquid CO{sub 2} is a convenient form of transportation compared to high-pressurized gaseous CO{sub 2}. Therefore, the direct liquefaction mechanism of CO{sub 2} at low temperature draws technical attention recently. In particular, cold thermal energy of Liquefied Natural Gas (LNG) could be a candidate to condense gaseous CO{sub 2}, especially in the LNG powered ship. In this paper, the detailed direct condensation process ofmore » CO{sub 2} using LN{sub 2} with intermittent solidification is investigated. Pressurized CO{sub 2} at 600 kPa is directly liquefied in a vessel by liquid nitrogen which is supplied into the coiled tube heat exchanger inside the CO{sub 2} vessel. The heat exchanger temperature is controlled from 130 K to 205 K to regulate the solidification and sublimation of CO{sub 2} by duty control with cryogenic solenoid valve. The characteristics of CO{sub 2} condensation process with cryogen are analyzed from the measurement results. The results show that the solidification causes the significant degradation of CO{sub 2} condensation heat transfer. Finally, the condensation rate with and without solidification is compared.« less

  19. Apparatus for silicon nitride precursor solids recovery

    DOEpatents

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1995-04-04

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  20. Method for silicon nitride precursor solids recovery

    DOEpatents

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1992-12-15

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  1. Mixed Convective Condensation in Enclosures with Noncondensable Gases

    NASA Astrophysics Data System (ADS)

    Fox, Richard John

    1994-01-01

    A transient, two-dimensional, numerical model was developed in order to study the laminar flow, heat, and mass transfer in a vertical reflux condenser loaded with vapor and noncondensable gas. The simplified model treats the two-component (gas/vapor), two-phase (vapor/liquid) mixture as a continuum by making use of conservation equations for mass continuity, momentum, species, and energy. The liquid mist phase is formed in such a way as to obey one of three conditions: thermodynamic equilibrium, complete nonequilibrium (no mist formation), or partial equilibrium (partial supersaturation). In developing the model, special attention was paid to the formulation of the boundary conditions, global continuity, and numerical efficiency. Two different mixture combinations were used in order to create stable and unstable systems. Steam-helium mixtures (Mv, = 18, Mg = 4) were found to exhibit stable flows with the lighter helium trapped in the upper portion of the condenser, shutting off condensation in that region. Steam-air mixtures (M_ {v}, = 18, Mg = 28) were found to exhibit varying degrees of instability, depending on the noncondensable gas and heat load, owing to the accumulation of the heavy gas near the condensing surface. Under low gas loading cases (Pg = 0.031 kg/m^3) the natural convective fluctuations were found to be weak and the flow was more easily dominated by the forced convective inlet flow and wall suction. At such low gas loadings, stable, asymmetric flow patterns persisted up to high powers. Large gas loadings (Pg = 0.196 kg/m^3) showed much stronger natural convective effects. Regions of counterflowing vapor and gas were found to promote stronger mixing as the power was increased. Regions of noncondensing gas were found to blanket the condenser walls as the suction velocity increased, resulting in a strong resistance to heat and mass transfer and consequent increase in system pressure. Moderate gas loadings (Pg = 0.065 kg/m ^3) were found to exhibit

  2. Detection of water molecules in inert gas based plasma by the ratios of atomic spectral lines

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.

    2017-01-01

    A new approach is considered to detect the water leaks in inert plasma-forming gas present in the reactor chamber. It is made up of the intensity ratio of D α and H α spectral lines in combination with O, Ar and Xe lines intensity. The concentrations of H2O, O, H and D particles have been measured with high sensitivity. At the D2 admixture pressure {{p}{{\\text{D}\\text{2}}}}   =  0.025 mbar, we used the acquisition time of 10 s to measure the rate of water molecules injected from the outside, Γ0  =  1.4 · 10-9 mbar · m3 · s-1, and the incoming water molecules to plasma, Γ  =  5 ·10-11 mbar · m3 · s-1. The scaling proves that at small D2 admixtures (10-4 mbar), the leaks with the rates Γ0  ≈  6 · 10-12 mbar · m3 · s-1 and Γ  ≈  2 · 10-13 mbar · m3 · s-1 can be detected and measured. The difference between Γ0 and Γ values is due to the high degree of H2O dissociation, which can be up to 97-98%.

  3. Interfacial condensation induced by sub-cooled liquid jet

    NASA Astrophysics Data System (ADS)

    Rame, Enrique; Balasubramaniam, R.

    2016-11-01

    When a sub-cooled liquid jet impinges on the free surface between a liquid and its vapor, vapor will condense at a rate dependent on the sub-cooling, the jet strength and fluid properties. In 1966 and during the examination of a different type of condensation flow, Shekriladeze found an approximate result, valid at large condensation rates, that decouples the flow in the liquid phase from that of the vapor, without putting it in the context of a formal asymptotic approximation. In this talk we will develop an asymptotic approximation that contains Shekriladze's result, and extend the calculations to the case when a non-condensable gas is present in the vapor phase.

  4. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    PubMed Central

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-01-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed. PMID:27270997

  5. Large Scale Gas Mixing and Stratification Triggered by a Buoyant Plume With and Without Occurrence of Condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paladino, Domenico; Auban, Olivier; Zboray, Robert

    The benefits of using codes with 3-D capabilities to address safety issues of LWRs will be applicable to both the current generation of nuclear reactors as well to future ALWRs. The phenomena governing the containment response in case of some postulated severe accident scenarios include gas (air, hydrogen, steam) stratification in the containment, gas distribution between containment compartments, wall condensation, etc. These phenomena are driven by buoyant high momentum injection (jets) and/or low momentum injection (plumes). For instance, mixing in the immediate vicinity of the postulated line break is mainly dominated by very high velocity efflux, while low-momentum flows aremore » responsible for most of the transport processes within the containment. A project named SETH is currently in progress under the auspices of 15 OECD countries, with the aim of creating an experimental database suitable to assess the 3-D code capabilities in analyzing key-physical phenomena relevant for LWR safety analysis. This paper describes some results of two SETH tests, performed in the PANDA facility (located at PSI in Switzerland), focusing on plumes flowing near a containment wall. The plumes are generated by injecting a constant amount of steam in one of two interconnected vessels initially filled with air. In one of the two tests the temperature of the injected steam and the initial containment wall and fluid temperatures allowed for condensation during the test. (authors)« less

  6. Model identification methodology for fluid-based inerters

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofu; Jiang, Jason Zheng; Titurus, Branislav; Harrison, Andrew

    2018-06-01

    Inerter is the mechanical dual of the capacitor via the force-current analogy. It has the property that the force across the terminals is proportional to their relative acceleration. Compared with flywheel-based inerters, fluid-based forms have advantages of improved durability, inherent damping and simplicity of design. In order to improve the understanding of the physical behaviour of this fluid-based device, especially caused by the hydraulic resistance and inertial effects in the external tube, this work proposes a comprehensive model identification methodology. Firstly, a modelling procedure is established, which allows the topological arrangement of the mechanical networks to be obtained by mapping the damping, inertance and stiffness effects directly to their respective hydraulic counterparts. Secondly, an experimental sequence is followed, which separates the identification of friction, stiffness and various damping effects. Furthermore, an experimental set-up is introduced, where two pressure gauges are used to accurately measure the pressure drop across the external tube. The theoretical models with improved confidence are obtained using the proposed methodology for a helical-tube fluid inerter prototype. The sources of remaining discrepancies are further analysed.

  7. Use of inert gas jets to measure the forces required for mechanical gene transfection

    PubMed Central

    2012-01-01

    Background Transferring genes and drugs into cells is central to how we now study, identify and treat diseases. Several non-viral gene therapy methods that rely on the mechanical disruption of the plasma membrane have been proposed, but the success of these methods has been limited due to a lack of understanding of the mechanical parameters that lead to cell membrane permeability. Methods We use a simple jet of inert gas to induce local transfection of plasmid DNA both in vitro (HeLa cells) and in vivo (chicken chorioallantoic membrane). Five different capillary tube inner diameters and three different gases were used to treat the cells to understand the dependency of transfection efficiency on the dynamic parameters. Results The simple setup has the advantage of allowing us to calculate the forces acting on cells during transfection. We found permeabilization efficiency was related to the dynamic pressure of the jet. The range of dynamic pressures that led to transfection in HeLa cells was small (200 ± 20 Pa) above which cell stripping occurred. We determined that the temporary pores allow the passage of dextran up to 40 kDa and reclose in less than 5 seconds after treatment. The optimized parameters were also successfully tested in vivo using the chorioallantoic membrane of the chick embryo. Conclusions The results show that the number of cells transfected with the plasmid scales with the dynamic pressure of the jet. Our results show that mechanical methods have a very small window in which cells are permeabilized without injury (200 to 290 Pa). This simple apparatus helps define the forces needed for physical cell transfection methods. PMID:22963645

  8. Confocal microscopy of fluid inclusions reveals fluid-pressure histories of sediments and an unexpected origin of gas condensate

    NASA Astrophysics Data System (ADS)

    Aplin, Andrew C.; Larter, Steve R.; Bigge, M. Ashley; MacLeod, Gordon; Swarbrick, Richard E.; Grunberger, Daniel

    2000-11-01

    We present two examples of how fluid inclusion data can be used to determine geologic pressure histories and to quantify the compositional evolution of petroleum in oil reservoirs. Volumetric liquid: vapor ratios generated with a confocal laser scanning microscope are used along with pressure-vapor-temperature (P-V-T) modeling software to estimate the composition, P-T phase envelope, and isochore of single petroleum inclusions in the North Sea's Judy and Alwyn fields. In both cases, the gas condensates currently in the reservoirs formed by the emplacement of gas into preexisting oil accumulations. Pressure histories of individual units in each field are also revealed, providing the kind of data needed to determine the permeability and fluid flow histories of sedimentary basins.

  9. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.

    2008-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions

  10. Influence of inert gases on the reactive high power pulsed magnetron sputtering process of carbon-nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Susann; Czigany, Zsolt; Greczynski, Grzegorz

    2013-01-15

    The influence of inert gases (Ne, Ar, Kr) on the sputter process of carbon and carbon-nitride (CN{sub x}) thin films was studied using reactive high power pulsed magnetron sputtering (HiPIMS). Thin solid films were synthesized in an industrial deposition chamber from a graphite target. The peak target current during HiPIMS processing was found to decrease with increasing inert gas mass. Time averaged and time resolved ion mass spectroscopy showed that the addition of nitrogen, as reactive gas, resulted in less energetic ion species for processes employing Ne, whereas the opposite was noticed when Ar or Kr were employed as inertmore » gas. Processes in nonreactive ambient showed generally lower total ion fluxes for the three different inert gases. As soon as N{sub 2} was introduced into the process, the deposition rates for Ne and Ar-containing processes increased significantly. The reactive Kr-process, in contrast, showed slightly lower deposition rates than the nonreactive. The resulting thin films were characterized regarding their bonding and microstructure by x-ray photoelectron spectroscopy and transmission electron microscopy. Reactively deposited CN{sub x} thin films in Ar and Kr ambient exhibited an ordering toward a fullerene-like structure, whereas carbon and CN{sub x} films deposited in Ne atmosphere were found to be amorphous. This is attributed to an elevated amount of highly energetic particles observed during ion mass spectrometry and indicated by high peak target currents in Ne-containing processes. These results are discussed with respect to the current understanding of the structural evolution of a-C and CN{sub x} thin films.« less

  11. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.

    PubMed

    Wang, Jianhui; He, Jizhou; Ma, Yongli

    2011-05-01

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  12. Thermodynamic entanglement of magnonic condensates

    NASA Astrophysics Data System (ADS)

    Yuan, H. Y.; Yung, Man-Hong

    2018-02-01

    Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.

  13. Clamp and Gas Nozzle for TIG Welding

    NASA Technical Reports Server (NTRS)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  14. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  15. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A study of thorium exposure during tungsten inert gas welding in an airline engineering population.

    PubMed

    McElearney, N; Irvine, D

    1993-07-01

    To investigate the theoretic possibility of excessive exposure to thorium during the process of tungsten inert gas (TIG) welding using thoriated rods we carried out a cross-sectional study of TIG welders and an age- and skill-matched group. We measured the radiation doses from inhaled thorium that was retained in the body and investigated whether any differences in health or biologic indices could have been attributable to the welding and tip-grinding process. Sixty-four TIG welders, 11 non-TIG welders, and 61 control subjects from an airline engineering population participated. All of the subjects were interviewed for biographic, occupational history and morbidity details. All of the welders and eight control subjects carried out large-volume urine sampling to recover thorium 232 and thorium 228; this group also had chest radiographs. All of the subjects had a blood sample taken to estimate liver enzymes, and they provided small-volume urine samples for the estimation of retinol-binding protein and beta 2-microglobulin. We found no excess of morbidity among the TIG or non-TIG welding groups, and the levels of retinol-binding protein and beta 2-microglobulin were the same for both groups. There was a higher aspartate aminotransferase level in the control group. The internal radiation doses were estimated at less than an annual level of intake in all cases, and considerably less if the exposure (as was the case) was assumed to be chronic over many years. Some additional precautionary measures are suggested to reduce further any potential hazard from this process.

  17. Passive vibration suppression using inerters for a multi-storey building structure

    NASA Astrophysics Data System (ADS)

    Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon

    2016-09-01

    This paper investigates the use of inerters for vibration suppression of a multistorey building structure. The inerter was proposed as a two-terminal replacement for the mass element, with the property that the applied force is proportional to the relative acceleration across its terminals. It completes the force-current mechanical-electrical network analogy, providing the mechanical equivalent to a capacitor. Thus allows all passive mechanical impedances to be synthesised. The inerter has been used in Formula 1 racing cars and applications to various systems such as vehicle suspension have been identified. Several devices that incoporate inerter(s), as well as spring(s) and damper(s), have also been identified for vibration suppression of building structures. These include the tuned inerter damper (TID) and the tuned viscous mass damper (TVMD). In this paper, a three-storey building model with an absorber located at the bottom subjected to base excitation is studied. Four simple absorber layouts, in terms of how spring, damper and inerter components should be arranged, have been studied. In order to minimise the maximum relative displacement of the building, the optimum parameter values for each of the layouts have been obtained with respect to the inerter's size.

  18. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    NASA Astrophysics Data System (ADS)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  19. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    PubMed

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).

  20. Improved Assembly for Gas Shielding During Welding or Brazing

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  1. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    PubMed

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (<25 mN/m). We demonstrate a method to enhance condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  2. Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity

    PubMed Central

    Kollár, Alicia J.; Papageorge, Alexander T.; Vaidya, Varun D.; Guo, Yudan; Keeling, Jonathan; Lev, Benjamin L.

    2017-01-01

    Phase transitions, where observable properties of a many-body system change discontinuously, can occur in both open and closed systems. By placing cold atoms in optical cavities and inducing strong coupling between light and excitations of the atoms, one can experimentally study phase transitions of open quantum systems. Here we observe and study a non-equilibrium phase transition, the condensation of supermode-density-wave polaritons. These polaritons are formed from a superposition of cavity photon eigenmodes (a supermode), coupled to atomic density waves of a quantum gas. As the cavity supports multiple photon spatial modes and because the light–matter coupling can be comparable to the energy splitting of these modes, the composition of the supermode polariton is changed by the light–matter coupling on condensation. By demonstrating the ability to observe and understand density-wave-polariton condensation in the few-mode-degenerate cavity regime, our results show the potential to study similar questions in fully multimode cavities. PMID:28211455

  3. Condensation of refractory metals in asymptotic giant branch and other stellar environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwander, D.; Berg, T.; Schönhense, G.

    2014-09-20

    The condensation of material from a gas of solar composition has been extensively studied, but less so condensation in the environment of evolved stars, which has been mainly restricted to major compounds and some specific element groups such as the Rare Earth elements. Also of interest, however, are refractory metals like Mo, Ru, Os, W, Ir, and Pt, which may condense to form refractory metal nuggets (RMNs) like the ones that have been found in association with presolar graphite. We have performed calculations describing the condensation of these elements in the outflows of s-process enriched AGB stars as well asmore » from gas enriched in r-process products. While in carbon-rich environments (C > O), the formation of carbides is expected to consume W, Mo, and V (Lodders and Fegley), the condensation sequence for the other refractory metals under these conditions does not significantly differ from the case of a cooling gas of solar composition. The composition in detail, however, is significantly different due to the completely different source composition. Condensation from an r-process enriched source differs less from the solar case. Elemental abundance ratios of the refractory metals can serve as a guide for finding candidate presolar grains among the RMNs in primitive meteorites—most of which have a solar system origin—for confirmation by isotopic analysis. We apply our calculations to the case of the four RMNs found by Croat et al., which may very well be presolar.« less

  4. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.

  5. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  6. Integrated vacuum absorption steam cycle gas separation

    DOEpatents

    Chen, Shiaguo [Champaign, IL; Lu, Yonggi [Urbana, IL; Rostam-Abadi, Massoud [Champaign, IL

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  7. Waste gas storage

    NASA Technical Reports Server (NTRS)

    Vickers, Brian D. (Inventor)

    1994-01-01

    Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.

  8. Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.

    2010-04-01

    Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.

  9. Experimental Study of an On-board Fuel Tank Inerting System

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  10. Unidentified Inert Ingredients in Pesticides: Implications for Human and Environmental Health

    PubMed Central

    Cox, Caroline; Surgan, Michael

    2006-01-01

    Background By statute or regulation in the United States and elsewhere, pesticide ingredients are divided into two categories: active and inert (sometimes referred to as other ingredients, adjuvants, or coformulants). Despite their name, inert ingredients may be biologically or chemically active and are labeled inert only because of their function in the formulated product. Most of the tests required to register a pesticide are performed with the active ingredient alone, not the full pesticide formulation. Inert ingredients are generally not identified on product labels and are often claimed to be confidential business information. Objectives In this commentary, we describe the shortcomings of the current procedures for assessing the hazards of pesticide formulations and demonstrate that inert ingredients can increase the toxicity of and potential exposure to pesticide formulations. Discussion Inert ingredients can increase the ability of pesticide formulations to affect significant toxicologic end points, including developmental neurotoxicity, genotoxicity, and disruption of hormone function. They can also increase exposure by increasing dermal absorption, decreasing the efficacy of protective clothing, and increasing environmental mobility and persistence. Inert ingredients can increase the phytotoxicity of pesticide formulations as well as the toxicity to fish, amphibians, and microorganisms. Conclusions Pesticide registration should require full assessment of formulations. Evaluations of pesticides under the National Environmental Policy Act, the Endangered Species Act, and similar statutes should include impact assessment of formulations. Environmental monitoring for pesticides should include inert ingredients. To enable independent research and risk assessment, inert ingredients should be identified on product labels. PMID:17185266

  11. Influence of source parameters on the growth of metal nanoparticles by sputter-gas-aggregation

    NASA Astrophysics Data System (ADS)

    Khojasteh, Malak; Kresin, Vitaly V.

    2017-11-01

    We describe the production of size-selected manganese nanoclusters using a magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length), we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way, it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the metal vapor, and argon also plays a crucial role in the formation of condensation nuclei via three-body collisions. However, the argon flow and the discharge power have a relatively weak effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, governed by the helium supply (which raises the pressure and density of the gas column inside the source, resulting in more efficient transport of nanoparticles to the exit) and by the aggregation path length.

  12. Dynamics and Evolution of SO2 Gas Condensation Around Prometheus-like Volcanic Plumes on Io as Seen by the Near Infrared Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Doute, S.; Lopes-Gautier, R.; Smythe, W. D.; Kamp, L. W.; Carlson, R.

    2001-01-01

    Near Infrared Mapping Spectrometer data acquired during the I24, 25, and 27 Io's Fly-bys by Galileo are analyzed to map the SO2 frost abundance and granularity. This allows a better understanding of the dynamics and evolution of gas condensation around volcanic plumes. Additional information is contained in the original extended abstract.

  13. Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Song, Yong Jae

    The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet

  14. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides.

    PubMed

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-06-20

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO₂ and Al₂O₃ were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO₂ leads to a satisfactory surface appearance compared to that of the TIG weld made with Al₂O₃. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO₂, the TIG welding with nanoparticle SiO₂ has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al₂O₃ does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO₂ uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al₂O₃ results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  15. Hydrogen sorption in Pd-decorated Mg-MgO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Piscopiello, E.; Montone, A.; Antisari, M. Vittori; Bonetti, E.

    2009-06-01

    Mg nanoparticles with metal-oxide core-shell morphology were synthesized by inert-gas condensation and decorated by in situ Pd deposition. Transmission electron microscopy and x-ray diffraction underline the formation of a noncontinuous layer with Pd clusters on top of the MgO shell. Even in the presence of a thick MgO interlayer, a modest (2 at. %) Pd decoration deeply enhances the hydrogen sorption properties: previously inert nanoparticles exhibit metal-hydride transformation with fast kinetics and gravimetric capacity above 5 wt %.

  16. Applications of UT results to confirm defects findings by utilization of relevant metallurgical investigations techniques on gas/condensate pipeline working in wet sour gas environment

    NASA Astrophysics Data System (ADS)

    El-Azhari, O. A.; Gajam, S. Y.

    2015-03-01

    The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.

  17. Manganese in exhaled breath condensate: a new marker of exposure to welding fumes.

    PubMed

    Hulo, Sébastien; Chérot-Kornobis, Nathalie; Howsam, Mike; Crucq, Sébastien; de Broucker, Virginie; Sobaszek, Annie; Edme, Jean-Louis

    2014-04-07

    To evaluate manganese in exhaled breath condensate (Mn-EBC) as an indicator of exposure to fumes from metal inert gas welding process. We collected EBC and urine from 17 welders and 16 unexposed control subjects after 5 days exposure. Concentrations of manganese (Mn), nickel (Ni), iron (Fe) and chromium (Cr) were measured in EBC and urine samples and correlated with cumulative exposure indices for the working week (CIW) and for the total welding years (WY), based on duration of welding activity and atmospheric metal measurements. Concentrations of Mn and Ni in EBC were significantly higher among welders than controls whereas this difference was not significant for Mn in urine. Levels of Mn and Ni in EBC were not correlated with their respective levels in urine. The linear regressions found significant positive coefficients between Mn-EBC, Ni-EBC, Ni-U and Cr-U concentrations and the cumulative exposure indices. Taking into account tobacco use, statistical analysis showed the same trends except for the relationship between Mn-U and CIW. This pilot study showed that Mn-EBC, as well as Ni-EBC, can serve as reliable indices of occupational exposure to welding fumes and provide complimentary toxicokinetic information to that provided by urine analyses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Bose-Einstein condensation of light: general theory.

    PubMed

    Sob'yanin, Denis Nikolaevich

    2013-08-01

    A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.

  19. Manure ammonia and greenhouse gas emissions from beef cattle fed condensed tannins

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to determine the effects of three levels of condensed tannins fed to 27 beef feed yard steers on ammonia and GHG emissions from manure. Condensed tannins were fed at rates of 0, 0.5 and 1.0 percent on a dry matter basis. Manure and urine were collected from two periods over 6 d...

  20. Nanocomposite thin films for optical gas sensing

    DOEpatents

    Ohodnicki, Paul R; Brown, Thomas D

    2014-06-03

    The disclosure relates to a plasmon resonance-based method for gas sensing in a gas stream utilizing a gas sensing material. In an embodiment the gas stream has a temperature greater than about 500.degree. C. The gas sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Changes in the chemical composition of the gas stream are detected by changes in the plasmon resonance peak. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

  1. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reservesmore » and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.« less

  2. Condensation model for the ESBWR passive condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revankar, S. T.; Zhou, W.; Wolf, B.

    2012-07-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data frommore » separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)« less

  3. Development of a condenser for the dual catalyst water recovery system

    NASA Technical Reports Server (NTRS)

    Budinikas, P.; Rasouli, F.; Rabadi, N.

    1983-01-01

    Conceptual evaporation/condensation systems suitable for integration with the catalytic water recovery method were evaluated. The primary requirements for each concept were its capability to operate under zero-gravity conditions, condense recovered water from a vapor-noncondensable gas mixture, and integrate with the catalytic system. Specific energy requirements were estimated for concepts meeting the primary requirements, and the concept most suitable for integration with the catalytic system was proposed. A three-man rate condenser capable of integration with the proposed system, condensing water vapor in presence of noncondensables and transferring the heat of condensation to feed urine was designed, fabricated, and tested. It was treated with steam/air mixtures at atmospheric and elevated pressures and integrated with an actual catalytic water recovery system. The condenser has a condensation efficiency exceeding 90% and heat transfer rate of approximately 85% of theoretical value at coolant temperature ranging from 7 to 80 deg C.

  4. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  5. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  6. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  7. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    PubMed Central

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-01-01

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides. PMID:28788704

  8. Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria.

    PubMed

    Tremblay, Julien; Yergeau, Etienne; Fortin, Nathalie; Cobanli, Susan; Elias, Miria; King, Thomas L; Lee, Kenneth; Greer, Charles W

    2017-12-01

    Application of chemical dispersants to oil spills in the marine environment is a common practice to disperse oil into the water column and stimulate oil biodegradation by increasing its bioavailability to indigenous bacteria capable of naturally metabolizing hydrocarbons. In the context of a spill event, the biodegradation of crude oil and gas condensate off eastern Canada is an essential component of a response strategy. In laboratory experiments, we simulated conditions similar to an oil spill with and without the addition of chemical dispersant under both winter and summer conditions and evaluated the natural attenuation potential for hydrocarbons in near-surface sea water from the vicinity of crude oil and natural gas production facilities off eastern Canada. Chemical analyses were performed to determine hydrocarbon degradation rates, and metagenome binning combined with metatranscriptomics was used to reconstruct abundant bacterial genomes and estimate their oil degradation gene abundance and activity. Our results show important and rapid structural shifts in microbial populations in all three different oil production sites examined following exposure to oil, oil with dispersant and dispersant alone. We found that the addition of dispersant to crude oil enhanced oil degradation rates and favored the abundance and expression of oil-degrading genes from a Thalassolituus sp. (that is, metagenome bin) that harbors multiple alkane hydroxylase (alkB) gene copies. We propose that this member of the Oceanospirillales group would be an important oil degrader when oil spills are treated with dispersant.

  9. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  10. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, leasemore » condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.« less

  11. Neutrophils Generate Microparticles during Exposure to Inert Gases Due to Cytoskeletal Oxidative Stress*

    PubMed Central

    Thom, Stephen R.; Bhopale, Veena M.; Yang, Ming

    2014-01-01

    This investigation was to elucidate the mechanism for microparticle (MP) formation triggered by exposures to high pressure inert gases. Human neutrophils generate MPs at a threshold of ∼186 kilopascals with exposures of 30 min or more. Murine cells are similar, but MP production occurs at a slower rate and continues for ∼4 h, whether or not cells remain under pressure. Neutrophils exposed to elevated gas but not hydrostatic pressure produce MPs according to the potency series: argon ≃ nitrogen > helium. Following a similar pattern, gases activate type-2 nitric-oxide synthase (NOS-2) and NADPH oxidase (NOX). MP production does not occur with neutrophils exposed to a NOX inhibitor (Nox2ds) or a NOS-2 inhibitor (1400W) or with cells from mice lacking NOS-2. Reactive species cause S-nitrosylation of cytosolic actin that enhances actin polymerization. Protein cross-linking and immunoprecipitation studies indicate that increased polymerization occurs because of associations involving vasodilator-stimulated phosphoprotein, focal adhesion kinase, the H+/K+ ATPase β (flippase), the hematopoietic cell multidrug resistance protein ABC transporter (floppase), and protein-disulfide isomerase in proximity to short actin filaments. Using chemical inhibitors or reducing cell concentrations of any of these proteins with small inhibitory RNA abrogates NOS-2 activation, reactive species generation, actin polymerization, and MP production. These effects were also inhibited in cells exposed to UV light, which photoreverses S-nitrosylated cysteine residues and by co-incubations with the antioxidant ebselen or cytochalasin D. The autocatalytic cycle of protein activation is initiated by inert gas-mediated singlet O2 production. PMID:24867949

  12. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  13. Condensation in One-Dimensional Dead-End Nanochannels.

    PubMed

    Zhong, Junjie; Zandavi, Seyed Hadi; Li, Huawei; Bao, Bo; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2017-01-24

    Phase change at the nanoscale is at the heart of many biological and geological phenomena. The recent emergence and global implications of unconventional oil and gas production from nanoporous shale further necessitate a higher understanding of phase behavior at these scales. Here, we directly observe condensation and condensate growth of a light hydrocarbon (propane) in discrete sub-100 nm (∼70 nm) channels. Two different condensation mechanisms at this nanoscale are distinguished, continuous growth and discontinuous growth due to liquid bridging ahead of the meniscus, both leading to similar net growth rates. The growth rates agree well with those predicted by a suitably defined thermofluid resistance model. In contrast to phase change at larger scales (∼220 and ∼1000 nm cases), the rate of liquid condensate growth in channels of sub-100 nm size is found to be limited mainly by vapor flow resistance (∼70% of the total resistance here), with interface resistance making up the difference. The condensation-induced vapor flow is in the transitional flow regime (Knudsen flow accounting for up to 13% of total resistance here). Collectively, these results demonstrate that with confinement at sub-100 nm scales, such as is commonly found in porous shale and other applications, condensation conditions deviate from the microscale and larger bulk conditions chiefly due to vapor flow and interface resistances.

  14. 46 CFR 154.1740 - Vinyl chloride: Inhibiting and inerting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride: Inhibiting and inerting. 154.1740... Operating Requirements § 154.1740 Vinyl chloride: Inhibiting and inerting. When a vessel is carrying vinyl chloride, the master shall ensure that: (a) Section 154.1818 is met; or (b) Section 154.1710 is met, and...

  15. Use of Computational Fluid Dynamics for improving freeze-dryers design and process understanding. Part 2: Condenser duct and valve modelling.

    PubMed

    Marchisio, Daniele L; Galan, Miquel; Barresi, Antonello A

    2018-05-05

    This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular in this part the duct connecting the chamber with the condenser, with its valves, is considered, while the chamber design and its effect on drying kinetics have been investigated in Part 1. Such an approach allows a much deeper process understanding and assessment of the critical aspects of lyophilisation. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating influence of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions. The role of the inlet and boundary conditions considered has been assessed, also by modelling the whole apparatus including chamber and condenser, and the influence of the duct diameter has been discussed; the results show a little dependence of the relationship between critical mass flux and chamber pressure on the duct size. Results concerning the fluid dynamics of a simple disk valve, a profiled butterfly valve and a mushroom valve installed in a medium size horizontal condenser are presented. Also in these cases the maximum allowable flow when sonic flow conditions are reached can be described by a correlation similar to that found valid for empty ducts; for the mushroom valve the parameters are dependent on the valve opening length. The possibility to use the equivalent length concept, and to extend the validity of the results obtained for empty ducts will be also discussed. Finally the presence of the inert gas modifies the conductance of the duct, reducing the maximum flow rate of water that can be removed through it before the flow is choked; this also requires a proper over-sizing of the duct (or duct-butterfly valve system). Copyright © 2018. Published by Elsevier B.V.

  16. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    NASA Astrophysics Data System (ADS)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  17. A Robust, Gravity-Insensitive, High-Temperature Condenser for Water Recovery

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Conboy, Thomas; Ewert, Michael

    2016-01-01

    Regenerative life support systems are vital for NASA's future long-duration human space exploration missions. A Heat Melt Compactor (HMC) system is being developed by NASA to dry and compress trash generated during space missions. The resulting water vapor is recovered and separated from the process gas flow by a gravity-insensitive condenser. Creare is developing a high-temperature condenser for this application. The entire condenser is constructed from metals that have excellent resistance to chemical attack from contaminants and is suitable for high-temperature operation. The metal construction and design configuration also offer greatest flexibility for potential coating and regeneration processes to reduce biofilm growth and thus enhancing the reliability of the condenser. The proposed condenser builds on the gravity-insensitive phase separator technology Creare developed for aircraft and spacecraft applications. This paper will first discuss the design requirements for the condenser in an HMC system that will be demonstrated on the International Space Station (ISS). Then, it will present the overall design of the condenser and the preliminary thermal test results of a subscale condenser. Finally, this paper will discuss the predicted performance of the full-size condenser and the development plan to mature the technology and enhance its long-term reliability for a flight system.

  18. Measurement of the distribution of ventilation-perfusion ratios in the human lung with proton MRI: comparison with the multiple inert-gas elimination technique.

    PubMed

    Sá, Rui Carlos; Henderson, A Cortney; Simonson, Tatum; Arai, Tatsuya J; Wagner, Harrieth; Theilmann, Rebecca J; Wagner, Peter D; Prisk, G Kim; Hopkins, Susan R

    2017-07-01

    We have developed a novel functional proton magnetic resonance imaging (MRI) technique to measure regional ventilation-perfusion (V̇ A /Q̇) ratio in the lung. We conducted a comparison study of this technique in healthy subjects ( n = 7, age = 42 ± 16 yr, Forced expiratory volume in 1 s = 94% predicted), by comparing data measured using MRI to that obtained from the multiple inert gas elimination technique (MIGET). Regional ventilation measured in a sagittal lung slice using Specific Ventilation Imaging was combined with proton density measured using a fast gradient-echo sequence to calculate regional alveolar ventilation, registered with perfusion images acquired using arterial spin labeling, and divided on a voxel-by-voxel basis to obtain regional V̇ A /Q̇ ratio. LogSDV̇ and LogSDQ̇, measures of heterogeneity derived from the standard deviation (log scale) of the ventilation and perfusion vs. V̇ A /Q̇ ratio histograms respectively, were calculated. On a separate day, subjects underwent study with MIGET and LogSDV̇ and LogSDQ̇ were calculated from MIGET data using the 50-compartment model. MIGET LogSDV̇ and LogSDQ̇ were normal in all subjects. LogSDQ̇ was highly correlated between MRI and MIGET (R = 0.89, P = 0.007); the intercept was not significantly different from zero (-0.062, P = 0.65) and the slope did not significantly differ from identity (1.29, P = 0.34). MIGET and MRI measures of LogSDV̇ were well correlated (R = 0.83, P = 0.02); the intercept differed from zero (0.20, P = 0.04) and the slope deviated from the line of identity (0.52, P = 0.01). We conclude that in normal subjects, there is a reasonable agreement between MIGET measures of heterogeneity and those from proton MRI measured in a single slice of lung. NEW & NOTEWORTHY We report a comparison of a new proton MRI technique to measure regional V̇ A /Q̇ ratio against the multiple inert gas elimination technique (MIGET). The study reports good relationships

  19. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, F.; Pierrehumbert, R. T., E-mail: fding@uchicago.edu

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamentalmore » ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.« less

  20. Low Cost Polymer heat Exchangers for Condensing Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, Thomas; Trojanowski, Rebecca; Wei, George

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered tomore » be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.« less

  1. Electron- and positron-impact ionization of inert gases

    NASA Astrophysics Data System (ADS)

    Campeanu, R. I.; Walters, H. R. J.; Whelan, Colm T.

    2018-06-01

    Triple-differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions which cannot be separately detected in an experiment with a single projectile. A comparison is presented between theory and the recent experiments of [Gavin, deLucio, and DuBois, Phys. Rev. A 95, 062703 (2017), 10.1103/PhysRevA.95.062703] for e± and contrasted with the results from earlier electron experiments. For the special case of xenon(5 p ), cross sections are presented for both electron- and positron-impact ionization in kinematics where the electron case appears well understood. The kinematics are then varied in order to focus on the possible role of distortion, exchange, and target wave-function effects.

  2. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOEpatents

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  3. Repulsive Casimir force in Bose–Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Biswas, Shovon

    2018-04-01

    We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.

  4. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  5. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Somnath, E-mail: sghosh@aero.iitkgp.ernet.in; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. Themore » filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.« less

  6. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    PubMed

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  7. Evaporation system and method for gas jet deposition of thin film materials

    DOEpatents

    Schmitt, J.J.; Halpern, B.L.

    1994-10-18

    A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.

  8. Evaporation system and method for gas jet deposition of thin film materials

    DOEpatents

    Schmitt, Jerome J.; Halpern, Bret L.

    1994-01-01

    A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.

  9. The track structure in condensed matter

    NASA Astrophysics Data System (ADS)

    Kaplan, I. G.

    1995-11-01

    The physical stage of track formation in a condensed phase is discussed. For interaction of charged particles with condensed molecular media its most important specific features are: (a) the continuous oscillator strength distribution with the broak peak in the energy range 21-22 eV attributed to the collective plasmon-type state; (b) the lowering of ionization potential compared to a gas phase. These specific features must be taken into account for simulation of track structures. The great difference in mass and charge for a electron and heavy ions cause a qualitative difference in their track structures. We analyse the structure of heavy ion tracks and prove the impossibility to use the LET as a universal characteristic for the radiation action of different ions.

  10. Detailed Studies on Flame Extinction by Inert Particles in Normal- and Micro-gravity

    NASA Technical Reports Server (NTRS)

    Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.

    2001-01-01

    The combustion of dusty flows has been studied to lesser extent than pure gas phase flows and sprays. Particles can have a strong effect by modifying the dynamic response and detailed structure of flames through the dynamic, thermal, and chemical couplings between the two phases. A rigorous understanding of the dynamics and structure of two-phase flows can be attained in stagnation flow configurations, which have been used by others to study spray combustion as well as reacting dusty flows. In earlier studies on reacting dusty flows, the thermal coupling between the two phases as well as the effect of gravity on the flame response were not considered. However, in Ref. 6, the thermal coupling between chemically inert particles and the gas was addressed in premixed flames. The effects of gravity was also studied showing that it can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature. The results showed a strong dynamic and thermal dependence of reacting dusty flows to particle number density. However, the work was only numerical and limited to twin-flames, stagnation, premixed flames. In Ref. 7 the effects of chemically inert particle clouds on the extinction of strained premixed and non-premixed flames were studied both experimentally and numerically at 1-g. It was shown and explained that large particles can cause more effective flame cooling compared to smaller particles. The effects of flame configuration and particle injection orientation were also addressed. The complexity of the coupling between the various parameters in such flows was demonstrated and it was shown that it was impossible to obtain a simple and still meaningful scaling that captured all the pertinent physics.

  11. Cosmological tachyon condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilic, Neven; Tupper, Gary B.; Viollier, Raoul D.

    2009-07-15

    We consider the prospects for dark matter/energy unification in k-essence type cosmologies. General mappings are established between the k-essence scalar field, the hydrodynamic and braneworld descriptions. We develop an extension of the general relativistic dust model that incorporates the effects of both pressure and the associated acoustic horizon. Applying this to a tachyon model, we show that this inhomogeneous 'variable Chaplygin gas' does evolve into a mixed system containing cold dark matter like gravitational condensate in significant quantities. Our methods can be applied to any dark energy model, as well as to mixtures of dark energy and traditional dark matter.

  12. SiO(x) nanoparticles synthesized by an evaporation and condensation process using induction melting of silicon and gas injection.

    PubMed

    Jang, Bo Yun; Lee, Jin Seok; Kim, Joon Soo

    2013-05-01

    SiO(x) nanoparticles were synthesized using a specially designed induction melting system equipped with a segmented graphite crucible. The graphite crucible with the segmented wall was the key to enhancing the evaporation rate due to the increase of the evaporation area and convection of the silicon melt. Injection of the gas mixture of oxygen (O2) and argon (Ar) on silicon (Si) melt caused the formation of SiO(x) nanoparticles. The evaporated SiO(x) nanoparticles were then cooled and condensed in a process chamber. The effects of the O2/Ar ratio in the injection gas on the microstructures of the SiO(x) nanoparticles were then investigated. Synthesized SiO(x) nanoparticles were proven to be of a homogeneous amorphous phase with average diameters of 30-35 nm. The microstructures were independent from the O2/Ar ratio of the injected gas. However, x increased from 1.36 to 1.84 as the O2/Ar ratio increased. The purity of the synthesized nanoparticles was about 99.9%. SiO(x) nanoparticles could be applied as the active anode material in a lithium (Li) ion secondary battery.

  13. Two characteristic temperatures for a Bose-Einstein condensate of a finite number of particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Z.; Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover,; Rzazewski, K.

    2003-09-01

    We consider two characteristic temperatures for a Bose-Einstein condensate, which are related to certain properties of the condensate statistics. We calculate them for an ideal gas confined in power-law traps and show that they approach the critical temperature in the limit of large number of particles. The considered characteristic temperatures can be useful in the studies of Bose-Einstein condensates of a finite number of atoms indicating the point of a phase transition.

  14. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T.

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are presentmore » in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.« less

  15. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology.

    PubMed

    Guarienti, Michela; Gianoncelli, Alessandra; Bontempi, Elza; Moscoso Cardozo, Sdenka; Borgese, Laura; Zizioli, Daniela; Mitola, Stefania; Depero, Laura E; Presta, Marco

    2014-08-30

    Municipal solid waste incinerator (MSWI) residues can generate negative environmental impacts when improperly handled. The COlloidal Silica Medium to Obtain Safe inert (COSMOS) technology represents a new method to stabilize MSWI residues and to produce inert safe material. Here we report the results about aquatic biotoxicity of lixiviated MSWI fly ash and the corresponding inertized COSMOS material using a zebrafish (Danio rerio) embryo toxicity test. Quantitative assessment of waste biotoxicity included evaluation of mortality rate and of different morphological and teratogenous endpoints in zebrafish embryos exposed to tested materials from 3 to 72h post-fertilization. The results demonstrate that lixiviated MSWI fly ash exerts a dose-dependent lethal effect paralleled by dramatic morphological/teratogenous alterations and apoptotic events in the whole embryo body. Similar effects were observed following MSWI fly ash stabilization in classical concrete matrices, demonstrating that the obtained materials are not biologically safe. On the contrary, no significant mortality and developmental defects were observed in zebrafish embryos exposed to COSMOS inert solution. Our results provide the first experimental in vivo evidence that, in contrast with concrete stabilization procedure, COSMOS technology provides a biologically safe inert. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Molecular equilibria and condensation sequences in carbon rich gases

    NASA Technical Reports Server (NTRS)

    Sharp, C. M.; Wasserburg, G. J.

    1993-01-01

    Chemical equilibria in stellar atmospheres have been investigated by many authors. Lattimer, Schramm, and Grossman presented calculations in both O rich and C rich environments and predicted possible presolar condensates. A recent paper by Cherchneff and Barker considered a C rich composition with PAH's included in the calculations. However, the condensation sequences of C bearing species have not been investigated in detail. In a carbon rich gas surrounding an AGB star, it is often assumed that graphite (or diamond) condenses out before TiC and SiC. However, Lattimer et al. found some conditions under which TiC condenses before graphite. We have performed molecular equilibrium calculations to establish the stability fields of C(s), TiC(s), and SiC(s) and other high temperature phases under conditions of different pressures and C/O. The preserved presolar interstellar dust grains so far discovered in meteorites are graphite, diamond, SiC, TiC, and possibly Al2O3.

  17. Purging of multilayer insulation by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Spuckler, C. M.

    1976-01-01

    An experimental investigation was conducted to determine the time required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable (nitrogen) gas concentration of less than 1 percent within the panel. Two flat, rectangular MLI panel configurations, one incorporating a butt joint, were tested. The insulation panels consisted of 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The test results indicated that the rate which the condensable gas concentration at the edge or at the butt joint of an MLI panel was reduced was a significant factor in the total time required to reduce the condensable gas concentration within the panel to less than 1 percent. The experimental data agreed well with analytical predictions made by using a simple, one-dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent.

  18. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  19. Overcoming the Inert Knowledge Problem in Learning from Expository Text.

    ERIC Educational Resources Information Center

    Cote, Nathalie

    Students often fail to store new information in memory in a way that is accessible or useful. The information they have acquired is inert. This paper examines the inert knowledge problem in the context of learning from informational expository text. Kintsch and van Dijk (1978) have suggested a framework for understanding learning from expository…

  20. Reducing Actinide Production Using Inert Matrix Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deinert, Mark

    2017-08-23

    The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessingmore » that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.« less

  1. Inflation and dark matter in the inert doublet model

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya; Kumar, Abhass

    2017-11-01

    We discuss inflation and dark matter in the inert doublet model coupled non-minimally to gravity where the inert doublet is the inflaton and the neutral scalar part of the doublet is the dark matter candidate. We calculate the various inflationary parameters like n s , r and P s and then proceed to the reheating phase where the inflaton decays into the Higgs and other gauge bosons which are non-relativistic owing to high effective masses. These bosons further decay or annihilate to give relativistic fermions which are finally responsible for reheating the universe. At the end of the reheating phase, the inert doublet which was the inflaton enters into thermal equilibrium with the rest of the plasma and its neutral component later freezes out as cold dark matter with a mass of about 2 TeV.

  2. Gas-Liquid Processing in Microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; Twitchell, Alvin

    Processing gases and liquids together in microchannels having at least one dimension <1 mm has unique advantages for rapid heat and mass transfer. One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate the liquid phase from the gas phase. Gas-liquid processing is accomplished by providing a gas flow path and inducing flow of the liquid phase through or along the wick under an induced pressure gradient. A variety of unit operations are enabled, including phase separation, partial condensation, absorption, desorption, and distillation. Results are reported of an investigation of microchannel phasemore » separation in a transparent, single-channel device. Next, heat exchange is integrated with the microchannel wick approach to create a partial condenser that also separates the condensate. Finally, the scale-up to a multi-channel phase separator is described.« less

  3. The ZONMET thermodynamic and kinetic model of metal condensation

    NASA Astrophysics Data System (ADS)

    Petaev, Michail I.; Wood, John A.; Meibom, Anders; Krot, Alexander N.; Keil, Klaus

    2003-05-01

    The ZONMET model of metal condensation is a FORTRAN computer code that calculates condensation with partial isolation-type equilibrium partitioning of the 19 most abundant elements among 203 gaseous and 488 condensed phases and growth in the nebula of a zoned metal grain by condensation from the nebular gas accompanied by diffusional redistribution of Ni, Co, and Cr. Of five input parameters of the ZONMET model (chemical composition of the system expressed as the dust/gas [ D/ G] ratio, nebular pressure [ Ptot], isolation degree [ξ], cooling rate ( CR), and seed size), only two—the D/ G ratio and the CR of the nebular source region of a zoned Fe,Ni grain—are important in determining the grain radius and Ni, Co, and Cr zoning profiles. We found no evidence for the supercooling during condensation of Fe,Ni metal that is predicted by the homogeneous nucleation theory. The model allows estimates to be made of physicochemical parameters in the CH chondrite nebular source regions. Modeling growth and simultaneous diffusional redistribution of Ni, Co, and Cr in the zoned metal grains of CH chondrites reveals that the condensation zoning profiles were substantially modified by diffusion while the grains were growing in the nebula. This means that previous estimates of the physicochemical conditions in the nebular source regions of CH and CB chondrites, based on measured zoning profiles of Ni, Co, Cr, and platinum group elements in Fe,Ni metal grains, need to be corrected. The two zoned metal grains in the PAT 91456 and NWA 470 CH chondrites studied so far require nebular source regions with different chemical compositions ( D/ G = 1 and D/ G = 4, respectively) and thermal histories characterized by variable cooling rates ( CR = 0.011 + 0.0022 × Δ T K/h and CR = 0.05 + 0.0035 × Δ T K/h, respectively). It appears that the metal grains of the CH chondrites were formed in multiple nebular source regions or in different events within the same source region as the CB

  4. Spray-loading: A cryogenic deposition method for diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  5. Diamondoid Characterization in Condensate by Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry: The Junggar Basin of Northwest China

    PubMed Central

    Li, Shuifu; Hu, Shouzhi; Cao, Jian; Wu, Ming; Zhang, Dongmei

    2012-01-01

    Diamondoids in crude oil are useful for assessing the maturity of oil in high maturation. However, they are very difficult to separate and accurately quantify by conventional geochemical methods due to their low abundance in oil. In this paper, we use comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) to study the compounds in condensates from the Junggar Basin of northwest China and address their geological and geochemical applications. GC×GC-TOFMS improves the resolution and separation efficiency of the compounds. It not only separates the compounds that coelute in conventional GC-MS (e.g., 4, 8-dimethyl-diamantane and trimethyl-diamantane) but also allows the identification of compounds that were not previously detected (e.g., trimethyl-diamantane (15A)). A reversed-phase column system improves the separation capabilities over the normal phase column system. The diamondoid indexes indicate that a representative condensate from Well DX 10 is highly mature with equivalent Ro being approximately 1.5%. PMID:23109861

  6. High-Temperature Nonequilibrium Bose Condensation Induced by a Hot Needle.

    PubMed

    Schnell, Alexander; Vorberg, Daniel; Ketzmerick, Roland; Eckardt, André

    2017-10-06

    We investigate theoretically a one-dimensional ideal Bose gas that is driven into a steady state far from equilibrium via the coupling to two heat baths: a global bath of temperature T and a "hot needle," a bath of temperature T_{h}≫T with localized coupling to the system. Remarkably, this system features a crossover to finite-size Bose condensation at temperatures T that are orders of magnitude larger than the equilibrium condensation temperature. This counterintuitive effect is explained by a suppression of long-wavelength excitations resulting from the competition between both baths. Moreover, for sufficiently large needle temperatures ground-state condensation is superseded by condensation into an excited state, which is favored by its weaker coupling to the hot needle. Our results suggest a general strategy for the preparation of quantum degenerate nonequilibrium steady states with unconventional properties and at large temperatures.

  7. Analytic Approximation of Carbon Condensation Issues in Type ii Supernovae

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.

    2013-01-01

    I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if 56Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel & Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.

  8. Effects of proton irradiation on a gas phase in which condensation takes place. I Negative Mg-26 anomalies and Al-26. [applied to solar and meteoritic composition

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Dziczkaniec, M.; Walker, A.; Huss, G.; Morgan, J. A.

    1978-01-01

    In the present paper, isotopic effects in magnesium generated in a proton-irradiated gas phase are examined, taking only (p,n), (p,d), and (p, alpha) reactions in magnesium, aluminum, and silicon into consideration. In the presence of proton radiation, the three elements are 'removed' from the gas phase by condensation. It is required that a value of Al-26/Al-27 greater than 6 times 10 to the -5th must be reached, consistent with the value deduced by Lee Papanastassiou, and Wasserburg (1976) from their studies of the Allende meteorite. The calculations show that fast aluminum condensation reduces the required proton fluence substantially, that a significant fraction of aluminum remains uncondensed when the above value of the Al-26/Al-27 ratio is reached, that a detectable MG-24 excess is very likely to occur, that detectable negative MG-28 anomalies can be generated, and that proton fluxes and irradiation times can be varied simultaneously, and over a wide range of values, without significant changes in the required proton fluence.

  9. Ultrafine particle and fiber production in microgravity

    NASA Technical Reports Server (NTRS)

    Webb, George W. (Inventor)

    1988-01-01

    In a system and method for producing ultrafine particles and ultrafine fibers of a given source material by evaporating and condensing the material in a gas atmosphere that includes inert gas. A smaller, more narrow size distribution is accomplished by producing the particles and fibers in a microgravity environment in order to reduce particle coalescence caused by convection currents. Particle coalescence also is reduced in an Earth gravity environment by controlling the convection currents. Condensed particles are collected either by providing an electrostatic field or a spatially varying magnetic field or by causing the gas to move through a filter which collects the particles. Nonferromagnetic material fibers are produced and collected by electrodes which produce an electro- static field. Ferromagnetic particles are collected by spatially varying magnetic fields.

  10. Determination of Vinyl Chloride at ug/l. Level in Water by Gas Chromatography

    ERIC Educational Resources Information Center

    Bellar, Thomas A.; And Others

    1976-01-01

    A quantitative method for the determination of vinyl chloride in water is presented. Vinyl chloride is transfered to the gas phase by bubbling inert gas through the water. After concentration on silica gel or Carbosieve-B, determination is by gas chromatography. Confirmation of vinyl chloride is by gas chromatography-mass spectrometry. (Author/BT)

  11. Performances of condensation boilers of the dry type observed in the laboratory and in operation (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelloux-Prayer, D.; Rottenberg, J.; Ours, A.

    1982-01-01

    Studies have shown that the dry type of condensation boiler offers substantial energy savings in residential space heating. For collective heating, laboratory efficiencies of 85-95% were confirmed in the field by a condensation boiler operating in a 75-unit apartment house. Compared with conventional boilers, the condensation type uses 15-21% less energy. Retrofitting existing boilers involves routing the flue gas through a heat exchanger placed in the return-water system and providing drainage for the condensates.

  12. Recovery of condensate water quality in power generator's surface condenser

    NASA Astrophysics Data System (ADS)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  13. Harvesting Hydrogen Gas from Air Pollutants with an Unbiased Gas Phase Photoelectrochemical Cell.

    PubMed

    Verbruggen, Sammy W; Van Hal, Myrthe; Bosserez, Tom; Rongé, Jan; Hauchecorne, Birger; Martens, Johan A; Lenaerts, Silvia

    2017-04-10

    The concept of an all-gas-phase photoelectrochemical (PEC) cell producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward PEC remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biofilter application for control of BTEX compounds from glycol dehydrator condenser vent gases at oil and natural gas producing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, W.C.; Kamarthi, R.S.

    1997-12-31

    Compliance with 1990 Clean Air Act Amendments will require cost-effective control technologies to reduce air emissions for petroleum industries. EPA has also proposed a new MACT Rule for Oil and Natural Gas Producing Facilities which will require control of emissions from glycol dehydrator vents. Control of volatile organic compound (VOC) emissions such as benzene, toluene, ethylbenzene, and xylene (BTEX) is one of the major concerns for the petroleum industries. Traditional VOC control methods may not be economically feasible to meet the requirements of these regulations. Recent studies have shown that biofilters can cost-effectively remove BTEX compounds with greater than 95%more » efficiency. This paper describes results from field testing a biofilter at an Oil and Natural Gas Producing facility. The biofilter treats a low flow gas stream containing high concentrations of VOCs and carbon dioxide from a glycol dehydrator condenser vent. A modular high-rate vapor phase biofilter developed by BioiReaction Industries was used to investigate the feasibility of this low-cost technology. Due to the high VOC loading (BTEX compounds up to 18,000 ppm; total VOCs 50,000 to 90,000 ppm), three modular biofilters were installed in series.« less

  15. Leakage effect analysis on the performance of a cylindrical adjustable inertance tube

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjie; Pfotenhauer, John M.; Zhi, Xiaoqin

    2018-04-01

    The inertance tube plays a significant role in improving the performance of the Stirling type pulse tube cryocooler by providing the desired phase angle between the mass flow and pressure wave. The phase angle is highly depended on the inertance tube geometry, such as diameter and length. A cylindrical threaded root device with variable thread depth on the outer screw and inner screw creates an adjustable inertance tube whose diameter and length can be adjusted in the real time. However, due to its geometry imperfectness, the performance of this threaded inertance tube is reduced by the leaks through the roots between the two screws. Its phase angle shift ability is decreased by 30% with the leakage clearance thickness of 15.5 μm according to both the theoretical prediction and the experimental verification.

  16. DISTILLATION OF CALCIUM

    DOEpatents

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  17. Relationship between welding fume concentration and systemic inflammation after controlled exposure of human subjects with welding fumes from metal inert gas brazing of zinc-coated materials.

    PubMed

    Brand, Peter; Bauer, Marcus; Gube, Monika; Lenz, Klaus; Reisgen, Uwe; Spiegel-Ciobanu, Vilia Elena; Kraus, Thomas

    2014-01-01

    It has been shown that exposure of subjects to emissions from a metal inert gas (MIG) brazing process of zinc-coated material led to an increase of high-sensitivity C-reactive protein (hsCRP) in the blood. In this study, the no-observed-effect level (NOEL) for such emissions was assessed. Twelve healthy subjects were exposed for 6 hours to different concentrations of MIG brazing fumes under controlled conditions. High-sensitivity C-reactive protein was measured in the blood. For welding fumes containing 1.20 and 1.50 mg m zinc, high-sensitivity C-reactive protein was increased the day after exposure. For 0.90 mg m zinc, no increase was detected. These data indicate that the no-observed-effect level for emissions from a MIG brazing process of zinc-coated material in respect to systemic inflammation is found for welding fumes with zinc concentrations between 0.90 and 1.20 mg m.

  18. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Public Lands: A Field Evaluation Of A Photoionization Detector (PID) At A Condensate Release Site, Padre Island National Seashore, Texas

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2001-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air

  19. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisionsmore » for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.« less

  20. Entirely passive heat-pipe apparatus capable of operating against gravity

    DOEpatents

    Koenig, D.R.

    1981-02-11

    The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

  1. Detection of Dust Condensations in the Orion Bar Photon-dominated Region

    NASA Astrophysics Data System (ADS)

    Qiu, Keping; Xie, Zeqiang; Zhang, Qizhou

    2018-03-01

    We report Submillimeter Array dust continuum and molecular spectral line observations toward the Orion Bar photon-dominated region (PDR). The 1.2 mm continuum map reveals, for the first time, a total of nine compact (r < 0.01 pc) dust condensations located within a distance of ∼0.03 pc from the dissociation front of the PDR. Part of the dust condensations are also seen in spectral line emissions of CS (5–4) and H2CS (71,7–61,6), though the CS map also reveals dense gas further away from the dissociation front. We also detect compact emissions in H2CS (60,6–50,5), (62,4–52,3) and C34S, C33S (4–3) toward bright dust condensations. The line ratio of H2CS (60,6–50,5)/(62,4–52,3) suggests a temperature of 73 ± 58 K. A nonthermal velocity dispersion of ∼0.25–0.50 km s‑1 is derived from the high spectral resolution C34S data and indicates a subsonic to transonic turbulence in the condensations. The masses of the condensations are estimated from the dust emission, and range from 0.03 to 0.3 M ⊙, all significantly lower than any critical mass that is required for self-gravity to play a crucial role. Thus the condensations are not gravitationally bound, and could not collapse to form stars. In cooperating with recent high-resolution observations of the compressed surface layers of the molecular cloud in the Bar, we speculate that the condensations are produced as a high-pressure wave induced by the expansion of the H II region compresses and enters the cloud. A velocity gradient along a direction perpendicular to the major axis of the Bar is seen in H2CS (71,7–61,6), and is consistent with the scenario that the molecular gas behind the dissociation front is being compressed.

  2. Passive and active vibration isolation systems using inerter

    NASA Astrophysics Data System (ADS)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  3. Acute ecotoxicology of natural oil and gas condensate to coral reef larvae

    PubMed Central

    Negri, Andrew P.; Brinkman, Diane L.; Flores, Florita; Botté, Emmanuelle S.; Jones, Ross J.; Webster, Nicole S.

    2016-01-01

    Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 μg l−1, similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 μg l−1 TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems. PMID:26892387

  4. Acute ecotoxicology of natural oil and gas condensate to coral reef larvae.

    PubMed

    Negri, Andrew P; Brinkman, Diane L; Flores, Florita; Botté, Emmanuelle S; Jones, Ross J; Webster, Nicole S

    2016-02-19

    Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 μg l(-1), similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 μg l(-1) TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems.

  5. Experimental study of condensate subcooling with the use of a model of an air-cooled condenser

    NASA Astrophysics Data System (ADS)

    Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.

    2016-01-01

    Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.

  6. Thermocapillary flow with evaporation and condensation and its effect on liquid retention in low-G fluid acquisition devices

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1994-01-01

    The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are studied using scaling and numerical techniques. The objective is to determine whether the thermocapillary and two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant. Why these devices seem immune to retention loss when pressurized with heated helium or heated directly through the porous structure was also examined. Results show that highly wetting fluids exhibit large negative and positive dynamic pressure gradients towards the meniscus interline when superheated and subcooled, respectively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert the same influence on surface morphology and promote retention. With subcooling, however, the pressure distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses deformation and explains why this failure mode does not occur in instances of direct screen heating or pressurization with a heated inert gas.

  7. Modeling soil gas dynamics in the context of noble gas tracer applications

    NASA Astrophysics Data System (ADS)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Peregovich, Bernhard; Machado, Carlos

    2017-04-01

    Noble gas tracer applications show a particular relevance for the investigation of gas dynamics in the unsaturated zone, but also for a treatment of soil contamination as well as concerning exchange processes between soil and atmosphere. In this context, reliable conclusions require a profound understanding of underlying biogeochemical processes. With regard to noble gas tracer applications, the dynamics of reactive and inert gases in the unsaturated zone is investigated. Based on long-term trends and varying climatic conditions, this is the first study providing general insights concerning the role of unsaturated zone processes. Modeling approaches are applied, in combination with an extensive set of measured soil air composition data from appropriate sampling sites. On the one hand, a simple modeling approach allows to identify processes which predominantly determine inert gas mixing ratios in soil air. On the other hand, the well-proven and sophisticated modeling routine Min3P is applied to describe the measured data by accounting for the complex nature of subsurface gas dynamics. Both measured data and model outcomes indicate a significant deviation of noble gas mixing ratios in soil air from the respective atmospheric values, occurring on seasonal scale. Observed enhancements of noble gas mixing ratios are mainly caused by an advective balancing of depleted sum values of O2+CO2, resulting from microbial oxygen depletion in combination with a preferential dissolution of CO2. A contrary effect, meaning an enhanced sum value of O2+CO2, is shown to be induced at very dry conditions due to the different diffusivities of O2 and CO2. Soil air composition data show a yearlong mass-dependent fractionation, occurring as a relative enhancement of heavier gas species with respect to lighter ones. The diffusive balancing of concentration gradients between soil air and atmosphere is faster for lighter gas species compared to heavier ones. The rather uniform fractionation is

  8. Process for the preparation of calcium superoxide

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wood, P. C.; Wydeven, T. J.; Spitze, L. A. (Inventor)

    1978-01-01

    Calcium superoxide is prepared in high yields by spreading a quantity of calcium peroxide diperoxyhydrate on the surface of a container, positioning said container in a vacuum chamber on a support structure through which a coolant fluid can be circulated, partially evacuating said vacuum chamber, allowing the temperature of the diperoxyhydrate to reach the range of about 0 to about 40 C; maintaining the temperature selected for a period of time sufficient to complete the disproproriation of the diperoxyhydrate to calcium superoxide, calcium hydroxide, oxygen, and water; constantly and systematically removing the water as it is formed by sweeping the reacting material with a current of dry inert gas and/or by condensation of said water on a cold surface; backfilling the chamber with a dry inert gas; and finally, recovering the calcium superoxide produced.

  9. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Inert matter. 201.19 Section 201.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.19...

  10. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Inert matter. 201.19 Section 201.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.19...

  11. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Inert matter. 201.19 Section 201.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.19...

  12. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Inert matter. 201.19 Section 201.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.19...

  13. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Inert matter. 201.19 Section 201.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.19...

  14. Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy

    2006-01-01

    Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.

  15. Polychronakos statistics and α-deformed Bose condensation of α-bosons

    NASA Astrophysics Data System (ADS)

    Chung, Won Sang; Hassanabadi, Hassan

    2018-02-01

    In this paper, we consider the Polychronakos statistics for α < 0. We use the Stirling formula for the α-Gamma function to find the distribution function for the α-bosons. As application, we discuss the α-deformed Bose condensation for α-boson gas.

  16. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet

    2014-10-01

    In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence

  17. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  18. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  19. Coherent magnon optics in a ferromagnetic spinor Bose-Einstein condensate.

    PubMed

    Marti, G Edward; MacRae, Andrew; Olf, Ryan; Lourette, Sean; Fang, Fang; Stamper-Kurn, Dan M

    2014-10-10

    We measure the dispersion relation, gap, and magnetic moment of a magnon in the ferromagnetic F = 1 spinor Bose-Einstein condensate of (87)Rb. From the dispersion relation we measure an average effective mass 1.033(2)(stat)(10)(sys) times the atomic mass, as determined by interfering standing and running coherent magnon waves within the dense and trapped condensed gas. The measured mass is higher than theoretical predictions of mean-field and beyond-mean-field Beliaev theory for a bulk spinor Bose gas with s-wave contact interactions. We observe a magnon energy gap of h × 2.5(1)(stat)(2)(sys) Hz, which is consistent with the predicted effect of magnetic dipole-dipole interactions. These dipolar interactions may also account for the high magnon mass. The effective magnetic moment of -1.04(2)(stat)(8)(sys) times the atomic magnetic moment is consistent with mean-field theory.

  20. Microcanonical fluctuations of the condensate in weakly interacting Bose gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew

    2005-05-15

    We study fluctuations of the number of Bose condensed atoms in a weakly interacting homogeneous and trapped gases. For a homogeneous system we apply the particle-number-conserving formulation of the Bogoliubov theory and calculate the condensate fluctuations within the canonical and the microcanonical ensembles. We demonstrate that, at least in the low-temperature regime, predictions of the particle-number-conserving and traditional, nonconserving theory are identical, and lead to the anomalous scaling of fluctuations. Furthermore, the microcanonical fluctuations differ from the canonical ones by a quantity which scales normally in the number of particles, thus predictions of both ensembles are equivalent in the thermodynamicmore » limit. We observe a similar behavior for a weakly interacting gas in a harmonic trap. This is in contrast to the trapped, ideal gas, where microcanonical and canonical fluctuations are different in the thermodynamic limit.« less

  1. Bose-Einstein condensation of photons in a 'white-wall' photon box

    NASA Astrophysics Data System (ADS)

    Klärs, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin

    2011-01-01

    Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a "white-wall" photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.

  2. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  3. Collecting exhaled breath condensate (EBC) with two condensers in series: a promising technique for studying the mechanisms of EBC formation, and the volatility of selected biomarkers.

    PubMed

    Corradi, Massimo; Goldoni, Matteo; Caglieri, Andrea; Folesani, Giuseppina; Poli, Diana; Corti, Marina; Mutti, Antonio

    2008-03-01

    Exhaled breath condensate (EBC) consists mainly of water, but also contains semivolatile and nonvolatile compounds. The aim of this study was to develop a system in which two condensers are simultaneously used in series to clarify the mechanisms of EBC condensation. Two aliquots of EBC (EBC1 and EBC2) were collected from 20 asymptomatic smokers and 20 healthy young nonsmokers using a specifically designed device having two condensers in series in which total volume, hydrogen peroxide (H(2)O(2)), ammonium (NH(4)(+)), and conductivity before and after lyophilization were measured. Water, NH(4)(+) levels and conductivity before lyophilization were significantly lower in the EBC2 than in the EBC1 of smokers and nonsmokers; the contrary was true for H(2)O(2) levels. Almost all nonvolatile salts were collected in the first condenser, because more than 50% of postlyophilization conductivity was below the detection limit in EBC2. The recovery of volatile molecules and their derivatives (water and NH(4)(+)) was partial in the first condenser, but appreciable amounts of both were measured in the second; however, the condenser immediately in contact with exhaled air was more efficient in terms of water, NH(4)(+) and conductivity before lyophilization. On the contrary, nonvolatile ions (conductivity after lyophilization) were mainly collected in the first condenser. Finally, the behavior of H(2)O(2) cannot be explained on the basis of its chemical and physical properties, and the most probable explanation is that some was byproduced by a radical reaction in the gas phase or during the condensation process in water.

  4. All-optical spinor Bose-Einstein condensation and the spinor dynamics-driven atom laser

    NASA Astrophysics Data System (ADS)

    Lundblad, Nathan Eric

    Optical trapping as a viable means of exploring the physics of ultracold dilute atomic gases has revealed a new spectrum of physical phenomena. In particular, macroscopic and sudden occupation of the ground state below a critical temperature---a phenomenon known as Bose-Einstein condensation---has become an even richer system for the study of quantum mechanics, ultracold collisions, and many-body physics in general. Optical trapping liberates the spin degree of the BEC, making the order parameter vectorial ('spinor BEC'), as opposed to the scalar order of traditional magnetically trapped condensates. The work described within is divided into two main efforts. The first encompasses the all-optical creation of a Bose-Einstein condensate in rubidium vapor. An all-optical path to spinor BEC (as opposed to transfer to an optical trap from a magnetic trap condensate) was desired both for the simplicity of the experimental setup and also for the potential gains in speed of creation; evaporative cooling, the only known path to dilute-gas condensation, works only as efficiently as the rate of elastic collisions in the gas, a rate that starts out much higher in optical traps. The first all-optical BEC was formed elsewhere in 2001; the years following saw many groups worldwide seeking to create their own version. Our own all-optical spinor BEC, made with a single-beam dipole trap formed by a focused CO2 laser, is described here, with particular attention paid to trap loading, measurement of trap parameters, and the use of a novel 780 nm high-power laser system. The second part describes initial experiments performed with the nascent condensate. The spinor properties of the condensate are documented, and a measurement is made of the density-dependent rate of spin mixing in the condensate. In addition, we demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of the condensate, whose populations have been coherently evolved through spin

  5. Monthly Crude Oil and Natural Gas Production Report

    EIA Publications

    2017-01-01

    Crude oil production (including lease condensate) and natural gas production (gross withdrawals) from data collected on Form EIA-914 (Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, other states and lower 48 states. Alaska data are from the Alaska state government and included to obtain a U.S. total.

  6. Pressurized reactor system and a method of operating the same

    DOEpatents

    Isaksson, J.M.

    1996-06-18

    A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.

  7. Pressurized reactor system and a method of operating the same

    DOEpatents

    Isaksson, Juhani M.

    1996-01-01

    A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.

  8. Bio-inert interfaces via biomimetic anchoring of a zwitterionic copolymer on versatile substrates.

    PubMed

    Dizon, Gian Vincent; Chou, Ying-Nien; Yeh, Lu-Chen; Venault, Antoine; Huang, James; Chang, Yung

    2018-05-22

    Bio-inert biomaterial design is vital for fields like biosensors, medical implants, and drug delivery systems. Bio-inert materials are generally hydrophilic and electrical neutral. One limitation faced in the design of bio-inert materials is that most of the modifiers used are specific to their substrate. In this work, we synthesized a novel zwitterionic copolymer containing a catechol group, a non-substrate dependent biomimetic anchoring segment, that can form a stable coating on various materials. No previous study was conducted using a grafting-to approach and determined the critical amount of catechol groups needed to effectively modify a material. The synthesized copolymers of sulfobetaine acrylamide (SBAA) and dopamine methacrylamide (DMA) in this work contains varying numbers of catechol groups, in which the critical number of catechol groups that had effectively modified substrates to have the bio-inert property was determined. The bio-inert property and capability to do coating on versatile substrates were evaluated in contact with human blood by coating different material groups such as ceramic, metallic, and polymeric groups. The novel structure and the simple grafting-to approach provides bio-inert property on various materials, giving them non-specific adsorption and attachment of biomolecules such as plasma proteins, erythrocytes, thrombocytes, bacteria, and tissue cells (85-95% reduction). Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Generation of monodisperse droplets by spontaneous condensation of flow in nozzles

    NASA Technical Reports Server (NTRS)

    Lai, Der-Shaiun; Kadambi, J. R.

    1993-01-01

    Submicron size monodisperse particles are of interest in many industrial and scientific applications. These include the manufacture of ceramic parts using fine ceramic particles, the production of thin films by deposition of ionized clusters, monodisperse seed particles for laser anemometry, and the study of size dependence of cluster chemical and physical properties. An inexpensive and relatively easy way to generate such particles is by utilizing the phenomenon of spontaneous condensation. The phenomenon occurs when the vapor or a mixture of a vapor and a noncondensing gas is expanded at a high expansion rate. The saturation line is crossed with the supercooled vapor behaving like a gas, until all of a sudden at the so called Wilson point, condensation occurs, resulting in a large number of relatively monodisperse droplets. The droplet size is a function of the expansion rate, inlet conditions, mass fraction of vapor, gas properties, etc. Spontaneous condensation of steam and water vapor and air mixture in a one dimensional nozzle was modeled and the resulting equations solved numerically. The droplet size distribution at the exit of various one dimensional nozzles and the flow characteristics such as pressure ratio, mean droplet radius, vapor and droplet temperatures, nucleation flux, supercooling, wetness, etc., along the axial distance were obtained. The numerical results compared very well with the available experimental data. The effect of inlet conditions, nozzle expansion rates, and vapor mass fractions on droplet mean radius, droplet size distribution, and pressure ratio were examined.

  10. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    NASA Astrophysics Data System (ADS)

    Hernández, Liliana; Kafarov, Viatcheslav

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 °C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction.

  11. Condensation onto grains in the outflows from mass-losing red giants

    NASA Technical Reports Server (NTRS)

    Jura, M.; Morris, M.

    1985-01-01

    In the outflows from red giants, grains are formed which are driven by radiation pressure. For the development of a model of the outflows, a detailed understanding of the interaction between the gas and dust is critical. The present investigation is concerned with condensation processes which occur after the grains nucleate near the stars. A physical process considered results from the cooling of the grains as they flow away from the star. Molecules which initially do not condense onto the grains can do so far from the star. It is shown that for some species this effect can be quite important in determining their gas-phase abundances in the outer circumstellar envelope. One of the major motivations of this investigation was provided by the desire to understand the physical conditions and molecular abundances in the outflows from the considered stars.

  12. Development of a wet vapor homogeneous liquid metal MHD power system

    NASA Astrophysics Data System (ADS)

    1989-04-01

    During the period covered by this report (October 1988 to March 1989), the following work was done: the mixing stream condensation process was analyzed, and a theoretical model for simulating this process was modified. A parametric study is being conducted at the present time; the separation processes were analyzed; and the experimental system was specified and its design is at present in an advanced stage. The mixing stream condensation process was analyzed. For the parameters defined in the SOW of this project the process was found to be a mist flow direct contact condensation, where the hot gas mixture consisting of inert gas and vapor is the continuous phase, and the subcooled liquid on which the vapor is condensed if the droplets dispersed phase. Two possibilities of creating the mist flow were considered. The first, injecting the cold Liquid Metal (LM) into the Mixing Streams Condenser (MSC) entrance as a jet and breaking it into LM fragments and the fragments into droplets by momentum transfer breakup mechanism. The second, atomizing the cooled LM stream into little droplets (approximately 100 micrometers in diameter) and accelerating them by the gas. The second possibility was preferred due to its much higher heat and mass transfer surface and coefficients relative to the first one.

  13. Analysis and comparison of biomass pyrolysis/gasification condensates: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.

    1986-06-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longermore » term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.« less

  14. Exhaled breath condensate pH in mechanically ventilated patients.

    PubMed

    Nannini, L J; Quintana, R; Bagilet, D H; Druetta, M; Ramírez, M; Nieto, R; Guelman Greta, G

    2013-12-01

    In this prospective clinical trial we aimed to answer if spontaneous exhaled breath condensate (EBC) in the trap of the expiratory arm of the ventilator could replace EBC collected by coolant chamber standardized with Argon as an inert gas. Second, if EBC pH could predict ventilator associated pneumonia (VAP) and mortality. We included 34 critically ill patients (males = 26), aged = 54.85 ± 19.86 (mean ± SD) yrs, that required mechanical ventilation due to non-pulmonary direct cause (APACHE II score = 23.58 ± 14.7; PaO(2)/FiO(2) = 240.00 ± 98.29). ICU with 9 beds from a regional teaching hospital. The patients were followed up until development of VAP, successful weaning or death. There were significant differences between mean EBC pH from the 4 procedures with the exception of spontaneous EBC de-aerated with Argon (n = 79; 6.74 ± 0.28) and coolant chamber deaerated with Argon (n = 79; 6.70 ± 0.36; p = NS by Tukey's Multiple Comparison Test). However, none of the procedures were extrapolated between each other according to Bland & Altman method. The mean EBC pH from the trap without Argon was 6.50 ± 0.28. From the total of 34 patients, 22 survived and were discharged and 12 patients died in the ICU. Spontaneous EBC pH could not be extrapolated to EBC pH from coolant chamber and it did not change in subjects who dead, neither subject with VAP in comparison with baseline data. The lack of other biomarker in EBC and the lack of a control group determinate the need for further studies in this setting. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  15. Geysers advanced direct contact condenser research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for themore » Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.« less

  16. Novel mechatronic solutions incorporating inerters for railway vehicle vertical secondary suspensions

    NASA Astrophysics Data System (ADS)

    Matamoros-Sanchez, Alejandra Z.; Goodall, Roger M.

    2015-02-01

    This paper discusses the effects of inerter-based passive networks in the design of novel mechatronic solutions for improving the vertical performance of a bogied railway vehicle. Combinations of inerter-based structures and active suspensions comprise distinct novel mechatronic solutions for the vertical secondary suspension of the vehicle. The parameters of the active and passive parts of the overall configuration are optimised so that a synergy arises to enhance the vehicle vertical performance and simplify common mechatronic suspension design conflicts. The study is performed by combining inerter-based suspensions with well-established active control (output-based and model-based) strategies for ride quality enhancement. Also, a novel nonlinear control strategy, here called 'Adaptive Stiffness', is incorporated for suspension deflection regulation to complement the well-known local implementation of skyhook damping. This would complete a significant set of control strategies to produce general conclusions. The vehicle performance is assessed through the vertical accelerations of the vehicle body as an initial investigation. Attained results show the potential of the inerter concept for innovating mechatronic technologies to achieve substantial improvements in railway vehicle vertical ride quality with reduced actuator force.

  17. Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.

    PubMed

    Yasui, Kyuichi; Izu, Noriya

    2017-06-01

    Acoustic oscillations of a fluid (a mixture of gas and vapor) parcel in a wet stack of a thermoacoustic engine are numerically simulated with a Lagrangian approach taking into account Rott equations and the effect of non-equilibrium evaporation and condensation of water vapor at the stack surface. In a traveling-wave engine, the volume oscillation amplitude of a fluid parcel always increases by evaporation and condensation. As a result, pV work done by a fluid parcel is enhanced, which means enhancement of acoustic energy in a thermoacoustic engine. On the other hand, in a standing-wave engine, the volume oscillation amplitude sometimes decreases by evaporation and condensation, and pV work is suppressed. Presence of a tiny traveling-wave component, however, results in the enhancement of pV work by evaporation and condensation.

  18. Entirely passive heat pipe apparatus capable of operating against gravity

    DOEpatents

    Koenig, Daniel R.

    1982-01-01

    The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

  19. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    PubMed Central

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-01-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071

  20. On the onset of surface condensation: formation and transition mechanisms of condensation mode.

    PubMed

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-08-02

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

  1. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.

    PubMed

    Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A

    2017-01-06

    The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.

  2. Electrochemical separation and concentration of sulfur containing gases from gas mixtures

    DOEpatents

    Winnick, Jack

    1981-01-01

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  3. 75 FR 7560 - Public Availability of Identities of Inert Ingredients in Pesticides; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... Availability of Identities of Inert Ingredients in Pesticides; Extension of Comment Period AGENCY... initiation of rulemaking to increase public availability of the identities of the inert ingredients in... of rulemaking to increase public availability of the identities of the inert ingredients in pesticide...

  4. Noise thermometry with two weakly coupled Bose-Einstein condensates.

    PubMed

    Gati, Rudolf; Hemmerling, Börge; Fölling, Jonas; Albiez, Michael; Oberthaler, Markus K

    2006-04-07

    Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics.

  5. Bose gases near resonance: Renormalized interactions in a condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.

    2013-01-15

    Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less

  6. Young Infants' Reasoning about Physical Events Involving Inert and Self-Propelled Objects

    ERIC Educational Resources Information Center

    Luo, Yuyan; Kaufman, Lisa; Baillargeon, Renee

    2009-01-01

    The present research examined whether 5- to 6.5-month-old infants would hold different expectations about various physical events involving a box after receiving evidence that it was either inert or self-propelled. Infants were surprised if the inert but not the self-propelled box: reversed direction spontaneously (Experiment 1); remained…

  7. The Researches on Reasonable Well Spacing of Gas Wells in Deep and low Permeability Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Bei, Yu Bei; Hui, Li; Lin, Li Dong

    2018-06-01

    This Gs64 gas reservoir is a condensate gas reservoir which is relatively integrated with low porosity and low permeability found in Dagang Oilfield in recent years. The condensate content is as high as 610g/m3. At present, there are few reports about the well spacing of similar gas reservoirs at home and abroad. Therefore, determining the reasonable well spacing of the gas reservoir is important for ensuring the optimal development effect and economic benefit of the gas field development. This paper discusses the reasonable well spacing of the deep and low permeability gas reservoir from the aspects of percolation mechanics, gas reservoir engineering and numerical simulation. considering there exist the start-up pressure gradient in percolation process of low permeability gas reservoir, this paper combined with productivity equation under starting pressure gradient, established the formula of gas well spacing with the formation pressure and start-up pressure gradient. The calculation formula of starting pressure gradient and well spacing of gas wells. Adopting various methods to calculate values of gas reservoir spacing are close to well testing' radius, so the calculation method is reliable, which is very important for the determination of reasonable well spacing in low permeability gas reservoirs.

  8. Analysis of medium-BTU gasification condensates, June 1985-June 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.

    1987-05-01

    This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers andmore » pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.« less

  9. Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles - control of the intraparticle phase distribution

    NASA Astrophysics Data System (ADS)

    Stötzel, C.; Kurland, H.-D.; Grabow, J.; Müller, F. A.

    2015-04-01

    Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs

  10. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  11. Breath condenser coatings affect measurement of biomarkers in exhaled breath condensate.

    PubMed

    Rosias, P P; Robroeks, C M; Niemarkt, H J; Kester, A D; Vernooy, J H; Suykerbuyk, J; Teunissen, J; Heynens, J; Hendriks, H J; Jöbsis, Q; Dompeling, E

    2006-11-01

    Exhaled breath condensate collection is not yet standardised and biomarker measurements are often close to lower detection limits. In the current study, it was hypothesised that adhesive properties of different condenser coatings interfere with measurements of eicosanoids and proteins in breath condensate. In vitro, condensate was derived from a collection model using two test solutions (8-isoprostane and albumin) and five condenser coatings (silicone, glass, aluminium, polypropylene and Teflon). In vivo, condensate was collected using these five coatings and the EcoScreen condenser to measure 8-isoprostane, and three coatings (silicone, glass, EcoScreen) to measure albumin. In vitro, silicone and glass coatings had significantly higher albumin recovery compared with the other coatings. A similar trend was observed for 8-isoprostane recovery. In vivo, median (interquartile range) 8-isoprostane concentrations were significantly higher using silicone (9.2 (18.8) pg.mL(-1)) or glass (3.0 (4.5) pg.mL(-1)) coating, compared with aluminium (0.5 (2.4) pg.mL(-1)), polypropylene (0.5 (0.5) pg.mL(-1)), Teflon (0.5 (0.0) pg.mL(-1)), and EcoScreen (0.5 (2.0) pg.mL(-1)). Albumin in vivo was mainly detectable using glass coating. In conclusion, a condenser with silicone or glass coating is more efficient for measurement of 8-isoprostane or albumin in exhaled breath condensate, than EcoScreen, aluminium, polypropylene or Teflon. Guidelines for exhaled breath condensate standardisation should include the most valid condenser coating to measure a specific biomarker.

  12. Condensation of binary mixtures on horizontal tubes

    NASA Astrophysics Data System (ADS)

    Büchner, A.; Reif, A.; Rehfeldt, S.; Klein, H.

    2017-12-01

    The two most common models to describe the condensation of binary mixtures are the equilibrium model by Silver (Trans Inst Chem Eng 25:30-42, 1947) and the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937), which is stated by Webb et al. (Int J Heat Mass Transf 39:3147-3156, 1996) as more accurate. The film model describes the outer heat transfer coefficient by subdividing it into two separate resistances against the heat transfer. The resistance of the liquid condensate film on the tube can be calculated with equations for the condensation of pure substances for the analogous flow pattern and geometry using the property data of the mixture. The resistance in the gas phase can be described by a thermodynamic parameter Z and the single phase heat transfer coefficient α G . In this work measurements for condensation of the binary mixtures n-pentane/iso-octane and iso-propanol/water on horizontal tubes for free convection are carried out. The obtained results are compared with the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937). The comparison shows a rather big deviation between the theoretical model and the experimental results. To improve the prediction quality an own model based on dimensionless numbers is proposed, which describes the experimental results of this work significantly better than the film model.

  13. Activation of catalysts for synthesizing methanol from synthesis gas

    DOEpatents

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  14. Inert gas stratigraphy of Apollo 15 drill core sections 15001 and 15003

    NASA Technical Reports Server (NTRS)

    Huebner, W.; Kirsten, T.; Heymann, D.

    1973-01-01

    Rare gase contents were studied in Apollo 15 drill core sections corresponding to 207 to 238 and 125 to 161-cm depths, with respect to layering of the core, turnover on a centimeter scale, and cosmic proton bombardment history. Trapped gas abundance was established in all samples, the mean grain size being a major factor influencing the absolute rare gas contents. Analysis of the results suggests that the regolith materials were exposed to galactic and solar cosmic rays long before their deposition.

  15. Increased resistance of hygroscopic condenser humidifiers when using a closed circuit suction system.

    PubMed

    Martinez, F J; Pietchel, S; Wise, C; Walek, J; Beamis, J F

    1994-10-01

    To examine a hygroscopic condenser after clinical use and to describe the interaction of a hygroscopic condenser and a closed circuit suction system used simultaneously. Prospective evaluation of hygroscopic condensers used clinically, and laboratory investigation of a hygroscopic condenser used with a closed circuit suction system. Tertiary referral centers. The hygroscopic condenser used during mechanical ventilation was removed and peak inflation pressure was measured by delivering a standard tidal volume and inspiratory flow across the isolated hygroscopic condenser while recording the peak inflation pressure. In the laboratory, four 10-mL aliquots of saline were instilled via closed circuit suction system into a test lung with fresh hygroscopic condensers (n = 15) inline. At baseline and after each instillation, the hygroscopic condenser was weighed and the peak inflation pressure was measured while in five condensers, peak expiratory flow rate was also measured. In these five devices, hygroscopic condenser resistance was measured with 100 L/min of constant gas flow while measuring the pressure drop across the hygroscopic condenser. In 11 hygroscopic condensers used for 27.5 +/- 11.9 hrs with no closed circuit suction system, the peak inflation pressure was 3.74 +/- 0.58 cm H2O. In the laboratory, instillation of saline via closed circuit suction system was associated with an increase in hygroscopic condenser weight. Peak inflation pressure increased in a quadratic fashion with the increase in hygroscopic condenser weight, while peak expiratory flow rate decreased in a linear fashion. After four saline instillations, hygroscopic condenser resistance increased from 5.66 +/- 0.31 to 13.9 +/- 2.42 cm H2O/L/sec. Clinical use of a hygroscopic condenser alone is not associated with a significant increase in peak inflation pressure. We caution the use of a hygroscopic condenser and a closed circuit suction system simultaneously, as an increase in hygroscopic

  16. CONDENSATION CAN

    DOEpatents

    Booth, E.T. Jr.; Pontius, R.B.; Jacobsohn, B.A.; Slade, C.B.

    1962-03-01

    An apparatus is designed for condensing a vapor to a solid at relatively low back pressures. The apparatus comprises a closed condensing chamber, a vapor inlet tube extending to the central region of the chamber, a co-axial tubular shield surrounding the inlet tube, means for heating the inlet tube at a point outside the condensing chamber, and means for refrigeratirg the said chamber. (AEC)

  17. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    NASA Technical Reports Server (NTRS)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  18. Significant gamma lines from inert Higgs dark matter.

    PubMed

    Gustafsson, Michael; Lundström, Erik; Bergström, Lars; Edsjö, Joakim

    2007-07-27

    One way to unambiguously confirm the existence of particle dark matter and determine its mass would be to detect its annihilation into monochromatic gamma-rays in upcoming telescopes. One of the most minimal models for dark matter is the inert doublet model, obtained by adding another Higgs doublet with no direct coupling to fermions. For a mass between 40 and 80 GeV, the lightest of the new inert Higgs particles can give the correct cosmic abundance of cold dark matter in agreement with current observations. We show that for this scalar dark matter candidate, the annihilation signal of monochromatic gammagamma and Zgamma final states would be exceptionally strong. The energy range and rates for these gamma-ray line signals make them ideal to search for with the soon upcoming GLAST satellite.

  19. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Pareizs, John M.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  20. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Mikhael, Michael G. (Inventor); Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  1. Toxicological and chemical characterization of the process stream materials and gas combustion products of an experimental low-btu coal gasifier.

    PubMed

    Benson, J M; Hanson, R L; Royer, R E; Clark, C R; Henderson, R F

    1984-04-01

    The process gas stream of an experimental pressurized McDowell-Wellman stirred-bed low-Btu coal gasifier, and combustion products of the clean gas were characterized as to their mutagenic properties and chemical composition. Samples of aerosol droplets condensed from the gas were obtained at selected positions along the process stream using a condenser train. Mutagenicity was assessed using the Ames Salmonella mammalian microsome mutagenicity assay (TA98, with and without rat liver S9). All materials required metabolic activation to be mutagenic. Droplets condensed from gas had a specific mutagenicity of 6.7 revertants/microgram (50,000 revertants/liter of raw gas). Methylnaphthalene, phenanthrene, chrysene, and nitrogen-containing compounds were positively identified in a highly mutagenic fraction of raw gas condensate. While gas cleanup by the humidifier-tar trap system and Venturi scrubber led to only a small reduction in specific mutagenicity of the cooled process stream material (4.1 revertants/microgram), a significant overall reduction in mutagenicity was achieved (to 2200 revertants/liter) due to a substantial reduction in the concentration of material in the gas. By the end of gas cleanup, gas condensates had no detectable mutagenic activity. Condensates of combustion product gas, which contained several polycyclic aromatic compounds, had a specific mutagenicity of 1.1 revertants/microgram (4.0 revertants/liter). Results indicate that the process stream material is potentially toxic and that care should be taken to limit exposure of workers to the condensed tars during gasifier maintenance and repair and to the aerosolized tars emitted in fugitive emissions. Health risks to the general population resulting from exposure to gas combustion products are expected to be minimal.

  2. Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors.

    PubMed

    Hormann, Jan; Malina, Jaroslav; Lemke, Oliver; Hülsey, Max J; Wedepohl, Stefanie; Potthoff, Jan; Schmidt, Claudia; Ott, Ingo; Keller, Bettina G; Brabec, Viktor; Kulak, Nora

    2018-05-07

    Many drugs that are applied in anticancer therapy such as the anthracycline doxorubicin contain DNA-intercalating 9,10-anthraquinone (AQ) moieties. When Cu(II) cyclen complexes were functionalized with up to three (2-anthraquinonyl)methyl substituents, they efficiently inhibited DNA and RNA synthesis resulting in high cytotoxicity (selective for cancer cells) accompanied by DNA condensation/aggregation phenomena. Molecular modeling suggests an unusual bisintercalation mode with only one base pair between the two AQ moieties and the metal complex as a linker. A regioisomer, in which the AQ moieties point in directions unfavorable for such an interaction, had a much weaker biological activity. The ligands alone and corresponding Zn(II) complexes (used as redox inert control compounds) also exhibited lower activity.

  3. Formation of Load Parameters of Destroyed Massife in Explosion of Multicharge Composition with Separation of its Parts by Profile Inert Interval

    NASA Astrophysics Data System (ADS)

    Paramonov, G. P.; Mysin, A. V.; Babkin, R. S.

    2017-10-01

    The paper introduces construction of multicharge composition with separation of parts by the profile inert interval. On the basis of the previous researches, the pulse-forming process at explosion of the borehole multicharge taking into account the offered design is considered. The physical model for definition of reflected wavelet taking into account an increment of radius of cross section of a charging cavity and the expiration of detonation products is offered. A technique is developed for numerical modeling of gas-dynamic processes in a borehole with a change in the axial channel of a profile inert interval caused by a high-temperature flow of gaseous products of an explosion. The authors obtained the dependence of the change in mean pressure on the borehole wall on time for each of the parts of the multicharge. To blast a series of charges of the proposed design, taking into account optimization of the stress fields of neighboring charges, the delay interval is determined for a short-delayed explosion.

  4. Condensation polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1989-01-01

    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.

  5. Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.

    PubMed

    Grossmann, S; Holthaus, M

    1997-11-10

    After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts.

  6. Helium in inert matrix dispersion fuels

    NASA Astrophysics Data System (ADS)

    van Veen, A.; Konings, R. J. M.; Fedorov, A. V.

    2003-07-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2, MgAl 2O 4, MgO and Al 2O 3) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 °C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur.

  7. Bose-Einstein condensation on a manifold with non-negative Ricci curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akant, Levent, E-mail: levent.akant@boun.edu.tr; Ertuğrul, Emine, E-mail: emine.ertugrul@boun.edu.tr; Tapramaz, Ferzan, E-mail: waskhez@gmail.com

    The Bose-Einstein condensation for an ideal Bose gas and for a dilute weakly interacting Bose gas in a manifold with non-negative Ricci curvature is investigated using the heat kernel and eigenvalue estimates of the Laplace operator. The main focus is on the nonrelativistic gas. However, special relativistic ideal gas is also discussed. The thermodynamic limit of the heat kernel and eigenvalue estimates is taken and the results are used to derive bounds for the depletion coefficient. In the case of a weakly interacting gas, Bogoliubov approximation is employed. The ground state is analyzed using heat kernel methods and finite sizemore » effects on the ground state energy are proposed. The justification of the c-number substitution on a manifold is given.« less

  8. In situ measurements of plasma properties during gas-condensation of Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koten, M. A., E-mail: mark.koten@gmail.com; Shield, J. E.; Voeller, S. A.

    2016-03-21

    Since the mean, standard deviation, and modality of nanoparticle size distributions can vary greatly between similar input conditions (e.g., power and gas flow rate), plasma diagnostics were carried out in situ using a double-sided, planar Langmuir probe to determine the effect the plasma has on the heating of clusters and their final size distributions. The formation of Cu nanoparticles was analyzed using cluster-plasma physics, which relates the processes of condensation and evaporation to internal plasma properties (e.g., electron temperature and density). Monitoring these plasma properties while depositing Cu nanoparticles with different size distributions revealed a negative correlation between average particlemore » size and electron temperature. Furthermore, the modality of the size distributions also correlated with the modality of the electron energy distributions. It was found that the maximum cluster temperature reached during plasma heating and the material's evaporation point regulates the growth process inside the plasma. In the case of Cu, size distributions with average sizes of 8.2, 17.3, and 24.9 nm in diameter were monitored with the Langmuir probe, and from the measurements made, the cluster temperatures for each deposition were calculated to be 1028, 1009, and 863 K. These values are then compared with the onset evaporation temperature of particles of this size, which was estimated to be 1059, 1068, and 1071 K. Thus, when the cluster temperature is too close to the evaporation temperature, less particle growth occurs, resulting in the formation of smaller particles.« less

  9. Magnesium Nanoparticles for Hydrogen Storage: Structure, Kinetics and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Pasquini, L.; Brighi, M.; Montone, A.; Vittori Antisari, M.; Dam, B.; Palmisano, V.; Bonetti, E.

    2012-08-01

    Magnesium nanoparticles coated by a native oxide shell and decorated by palladium clusters were synthesized by the inert gas condensation technique. The kinetics and thermodynamics of hydrogen sorption were investigated by Sieverts measurements at high temperature and by optical hydrogenography close to ambient temperature. The structure and morphology of the nanoparticles were studied by electron microscopy and X-ray diffraction both in the as-prepared state and after hydrogen sorption cycles.

  10. Freeze-Tolerant Condensers

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  11. Gas bubble disease: mortalities of coho salmon, Oncorhynchus kisutch, in water with constant total gas pressure and different oxygen-nitrogen ratios

    USGS Publications Warehouse

    Rucker, R.R.

    1975-01-01

    A review of the literature regarding gas-bubble disease can be found in a recent publication by Rucker (1972); one by the National Academy of Science (Anonymous in press); and an unpublished report by Weitkamp and Katz (1973)." Most discussions on gas-bubble disease have dealt with the inert gas, nitrogen-oxygen was given a secondary role. It is important to know the relationship of nitrogen and oxygen when we are concerned with the total gas pressure in water. Where water becomes aerated at dams or falls, oxygen and nitrogen are usually about equally saturated, however, many of the samples analyzed from the Columbia River indicate that nitrogen is often about 7% higher than oxygen when expressed as a percentage. When oxygen is removed from water by metabolic and chemical action, or when oxygen is added to the water by photosynthesis, there is a definite change in the ratio of oxygen and the inert gases (mainly nitrogen with some argon, etc.). This present study shows the effect of varying the oxygen and nitrogen ratio in water on fingerling coho salmon, Oncorh.llnchllS kislltch, while maintaining a constant total gas pressure. The primary purpose of these experiments was to determine differences in lethality of various gas ratios of oxygen and nitrogen at a constant total gas pressure of 119%. I also wished to determine whether there was a difference in susceptibility between sizes and stocks of juvenile coho. Also to be examined was the effect of reducing the oJl:ygen while holding the nitrogen constant.

  12. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, S.P.; Rapp, R.A.

    1984-06-12

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  13. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  14. Gas-separation process

    DOEpatents

    Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  15. Enhanced Condensation Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  16. Radiation hardening of low condensation products containing amino group (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, S.; Hayashi, K.; Kaetsu, I.

    1967-11-01

    An initial condensation product is prepared by condensing a monomer selected from the group of urea, thiourea, melanine, aniline and acidamide with formalin. 0ne or more of the initial condensation product is then mixed with a substance which forms an acid or base by irradiation with an ionizing radiation in the presence or absence of the initial condensation product, except for halogenated hydrocarbon. The mixture is hardened by irradiation of the ionizing radiation to form a resinous substance. Formamide, acetamide, oxalic diamide, succinic diamide, acrylamide, etc. can be used as the acidamide monomer. Phosphonitrile chloride, cyanuric chloride, chloral hydrate, trichloroaceticmore » acid, monochloroacetic acid, ammonium chloride, aluminium chloride, gaseous chlorine, sullurous acid gas, sodium sulfite, aluminium sulfate, potassium hydrogensulfate, sodium pyrophosphate, potassium pyrophosphate, potassium phosphate, ammonia, bromine, bromal, bromal hydrate, dibromoacetic acid, sulfonated benzene, sulfonated toluene, etc. can be used as the acid- or base- forming substance. To the initial condensation product may be added 0.5-20%, in certain cases 20-50%, by weight of the said substances. The ionizing radiation can be electron beams. In an example, 2% chloral hydrate was homogeneously dissolved in the initial urea-formalin condensation product having a degree of condensation of 3--5. The solution was then irradiated by gamma rays at the dose rate of 4 x 10/sup 4/ r/hour from a /sup 60/Co source with a dose 5.0 x 10/sup 6/ roentgens. A white resinous composition was obtained. (JA)« less

  17. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  18. Inert Reassessment Document for Poly(oxyethylene)(5) sorbitan monooleate

    EPA Pesticide Factsheets

    The sorbitan fatty acid esters and polysorbates are inert ingredients used as surfactants, related adjuvants of surfactants, emulsifiers, buffering agents, and corrosion inhibitors in a variety of pesticide products.

  19. Condensation and Vaporization Studies of CH3OH and NH3 Ices: Major Implications for Astrochemistry

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing H20, CO, CO2, SO2, H2S, and H2, We present measurements of the physical and infrared spectral properties of ices containing CH30H and NH3.The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed 87 of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.

  20. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing H2O, CO, CO2, SO2, H2S, and H2, we present measurements of the physical and infrared spectral properties of ices containing CH3OH and NH3. The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed depletion of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.