Sample records for inert gas dilution

  1. Infinite dilution activity coefficient measurements by inert gas stripping method

    Microsoft Academic Search

    Piia Haimi; Petri Uusi-Kyyny; Juha-Pekka Pokki; Juhani Aittamaa; Kari I. Keskinen

    2006-01-01

    The values of activity coefficients at infinite dilution (??) are of especially significance in the reliable design of thermal separation processes producing pure compounds. The ?? has been determined for six branched ethers and four sulfur compounds in water using the dilutor technique. The measurements were carried out in the temperature range from 288 to 333K.

  2. Inert Gas Dilution Effect on the Flammability Limits of Hydrocarbon Mixtures 

    E-print Network

    Zhao, Fuman

    2012-02-14

    )????????????????????????..??...70 xii FIGURE Page 5.5 N-butane flammability properties with dilution of nitrogen (25 ?C and 1... and the regressed linear curve...........................................................................................................83 5.15 Experimental n-butane LFL diluted with N2 and the regressed linear curve..????????....????????????????...84 5...

  3. 33 CFR 154.824 - Inerting, enriching, and diluting systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...false Inerting, enriching, and diluting systems. 154.824 Section 154.824 Navigation...HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.824 Inerting, enriching, and diluting systems. (a) A vapor control system...

  4. 33 CFR 154.2107 - Inerting, enriching, and diluting systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Inerting, enriching, and diluting systems. 154.2107 Section 154.2107 ...MATERIAL IN BULK Marine Vapor Control Systems Transfer Facilities-Vcs Design and... Inerting, enriching, and diluting systems. This section applies only to...

  5. 33 CFR 154.824 - Inerting, enriching, and diluting systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...false Inerting, enriching, and diluting systems. 154.824 Section 154.824 Navigation...HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.824 Inerting, enriching, and diluting systems. (a) A vapor control system...

  6. 33 CFR 154.824 - Inerting, enriching, and diluting systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Inerting, enriching, and diluting systems. 154.824 Section 154.824 Navigation...HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.824 Inerting, enriching, and diluting systems. (a) A vapor control system...

  7. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    Inert gases, particularly argon and xenon, are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. Hollow cathode data were obtained for a wide range of operating conditions. Some test conditions gave plasma coupling voltages at or below the sputtering threshold, hence should permit long operating lifetimes. All observations of hollow cathode operation were consistent with a single theory of operation, in which a significant amount of the total electron emission is from localized areas within the orifice. This mode of emission is also supported by scanning electron microscope photographs that indicate local temperatures at or near the melting temperature of the tungsten tip. Experimental hollow cathode performance was correlated for two orifice diameters, three inert gas propellants, and a range of flow rates for each propellant. The basic theory for the production of doubly ionized argon and xenon was completed. Experimental measurements of the doubly ionized fraction agree with theory within about plus or minus 20 percent. High voltage isolators were studied for the propellant feed line. The breakdown voltage per segment ranged from 300 to over 500 V with argon.

  8. Inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.

  9. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  10. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1978-01-01

    Inert gas thrusters have continued to be of interest for space propulsion applications. Xenon is of interest in that its physical characteristics are well suited to propulsion. High atomic weight and low tankage fraction were major factors in this choice. If a large amount of propellant was required, so that cryogenic storage was practical, argon is a more economical alternative. Argon was also the preferred propellant for ground applications of thruster technology, such as sputter etching and deposition. Additional magnetic field measurements are reported. These measurements should be of use in magnetic field design. The diffusion of electrons through the magnetic field above multipole anodes was studied in detail. The data were consistent with Bohm diffusion across a magnetic field. The theory based on Bohm diffusion was simple and easily used for diffusion calculations. Limited startup data were obtained for multipole discharge chambers. These data were obtained with refractory cathodes, but should be useful in predicting the upper limits for starting with hollow cathodes.

  11. 33 CFR 154.824 - Inerting, enriching, and diluting systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...used. (h) An inerting system must: (1) Supply sufficient...throughout the vapor collection system is maintained below 8.0 percent...produce the inert gas, have a hydraulic seal and non-return valve...line. (i) An enriching system must: (1) Supply...

  12. LNG ship tank inert gas generation system

    Microsoft Academic Search

    1974-01-01

    Chicago Bridge and Iron Co.'s new inert-gas system, designed for safely emptying LNG from storage tanks and avoiding potentially explosive gas\\/air mixtures in case of catastrophic ship collision, does not require the usual additional machinery such as an internal-combustion engine and a compressor. The inert-gas system consists of a supply tank for a liquefied inert gas such as nitrogen, an

  13. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false Inert gas system: Controls. 154.904 Section 154.904...Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas system must...

  14. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Inert gas system: Controls. 154.904 Section 154.904...Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas system must...

  15. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Inert gas system: Controls. 154.904 Section 154.904...Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas system must...

  16. 46 CFR 147.66 - Inert gas fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...gas fire extinguishing systems. 147.66 Section...DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage...gas fire extinguishing systems. (a) Inert gas...cylinders and discharge piping for fixed inert gas fire extinguishing systems must be renewed or...

  17. 46 CFR 147.66 - Inert gas fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...gas fire extinguishing systems. 147.66 Section...DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage...gas fire extinguishing systems. (a) Inert gas...cylinders and discharge piping for fixed inert gas fire extinguishing systems must be renewed or...

  18. 46 CFR 147.66 - Inert gas fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...gas fire extinguishing systems. 147.66 Section...DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage...gas fire extinguishing systems. (a) Inert gas...cylinders and discharge piping for fixed inert gas fire extinguishing systems must be renewed or...

  19. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  20. Inert gas: Vapor mixtures in thermoacoustics

    Microsoft Academic Search

    William Victor Slaton

    2001-01-01

    An analytic solution of sound propagation in wet-walled tubes with a temperature gradient will be presented. The tube contains an inert gas-vapor mixture with a thin layer of condensed vapor coating the tube wall. The vapor phase condenses and evaporates from this layer during an acoustic cycle. This phased evaporation and condensation modifies traditional energy density and wave number equations.

  1. Gear Lubrication in Inert Gas Atmospheres

    Microsoft Academic Search

    B. B. Baber; C. W. Lawler; H. R. Smith; G. A. Beane; P. M. Ku

    1960-01-01

    An investigation was made of the effect of inert gas atmospheres on the gear load-carrying capacity of lubricants. The experiments were performed in two types of gear test machines, using case-hardened AMS-6260 steel test gears. It was found that two mineral oils (a solvent-extracted turbine oil base stock and a USP grade white mineral oil), as well as the same

  2. Positron-inert gas differential elastic scattering

    NASA Technical Reports Server (NTRS)

    Kauppila, W. E.; Smith, Steven J.; Kwan, C. K.; Stein, T. S.

    1990-01-01

    Measurements are being made in a crossed beam experiment of the relative elastic differential cross section (DCS) for 5 to 300 eV positrons scattering from inert gas atoms (He, Ne, Ar, Kr, and Xe) in the angular range from 30 to 134 deg. Results obtained at energies around the positronium (Ps) formation threshold provide evidence that Ps formation and possibly other inelastic channels have an effect on the elastic scattering channel.

  3. Refractory metals welded or brazed with tungsten inert gas equipment

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere.

  4. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Construction and Equipment Atmospheric Control in Cargo Containment...boiling point and dewpoint at atmospheric pressure of the inert gas must be below the...c) For the temperatures and pressures at which the gas is stored...

  5. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Construction and Equipment Atmospheric Control in Cargo Containment...boiling point and dew point at atmospheric pressure of the inert gas must be below the...c) For the temperatures and pressures at which the gas is stored...

  6. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...Construction and Equipment Atmospheric Control in Cargo Containment...boiling point and dewpoint at atmospheric pressure of the inert gas must be below the...c) For the temperatures and pressures at which the gas is stored...

  7. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Construction and Equipment Atmospheric Control in Cargo Containment...boiling point and dewpoint at atmospheric pressure of the inert gas must be below the...c) For the temperatures and pressures at which the gas is stored...

  8. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Construction and Equipment Atmospheric Control in Cargo Containment...boiling point and dewpoint at atmospheric pressure of the inert gas must be below the...c) For the temperatures and pressures at which the gas is stored...

  9. Pulsed laser deposition of metals in various inert gas atmospheres

    NASA Astrophysics Data System (ADS)

    Scharf, T.; Faupel, J.; Sturm, K.; Krebs, H.-U.

    The changes in the properties of laser deposited metal thin films were investigated in different inert gas atmospheres (He, Ne, Ar and Xe). With increasing inert gas pressure, the reduction of particle energy is accompanied by a strong increase of the deposition rate (especially in He atmosphere), a transition from compressive to tensile stress, and changes in structure and texture. This is explained by a reduction of surface mobility of the deposited particles, a decrease of implantation, resputtering and shot-peening effects. At high gas pressures, deposition conditions similar to sputtering or even thermal deposition are obtained.

  10. Nonchamber, Root-Side, Inert-Gas Purging During Welding

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved apparatus distributes inert gas to protect against oxidation on root side of weld during welding and after welding while joint remains hot. Simple and lightweight; readily moved along weld path in synchronism with torch. Because it concentrates inert gas where needed, consumes gas at relatively low rate, and not necessary to monitor oxygen content of protective atmosphere. Apparatus does not obscure view of root side of weld. Used for full-penetration plasma-arc welding of such reactive metals as aluminum/lithium alloys and titanium.

  11. Inert fluorinated gas MRI: a new pulmonary imaging modality.

    PubMed

    Couch, Marcus J; Ball, Iain K; Li, Tao; Fox, Matthew S; Ouriadov, Alexei V; Biman, Birubi; Albert, Mitchell S

    2014-12-01

    Fluorine-19 ((19)F) MRI of the lungs using inhaled inert fluorinated gases can potentially provide high quality images of the lungs that are similar in quality to those from hyperpolarized (HP) noble gas MRI. Inert fluorinated gases have the advantages of being nontoxic, abundant, and inexpensive compared with HP gases. Due to the high gyromagnetic ratio of (19)F, there is sufficient thermally polarized signal for imaging, and averaging within a single breath-hold is possible due to short longitudinal relaxation times. Therefore, the gases do not need to be hyperpolarized prior to their use in MRI. This eliminates the need for an expensive polarizer and expensive isotopes. Inert fluorinated gas MRI of the lungs has been previously demonstrated in animals, and more recently in healthy volunteers and patients with lung diseases. The ongoing improvements in image quality demonstrate the potential of (19)F MRI for visualizing the distribution of ventilation in human lungs and detecting functional biomarkers. In this brief review, the development of inert fluorinated gas MRI, current progress, and future prospects are discussed. The current state of HP noble gas MRI is also briefly discussed in order to provide context to the development of this new imaging modality. Overall, this may be a viable clinical imaging modality that can provide useful information for the diagnosis and management of chronic respiratory diseases. PMID:25066661

  12. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Static discharges from inert gas systems. ...Or Combustible Cargoes § 153.462 Static discharges from inert gas systems. ...flammable or combustible cargo must not create static arcing as the inert gas is injected...

  13. Odorization of inert gas for occupational safety: psychophysical considerations.

    PubMed

    Cain, W S; Leaderer, B P; Cannon, L; Tosun, T; Ismail, H

    1987-01-01

    Odorization of inert gas can serve to warn workers in an enclosed space about gas leaking into the space. This psychophysical investigation, performed under conditions of directed attention, examined two candidates for possible odorization of argon:pyridine and cis-3-hexen-1-ol. Detection thresholds for pyridine and cis-3-hexen-1-ol in argon were 106 ppb and 19 ppb, respectively. Practice over four days yielded modest improvement in the detection of both odorants. For cis-3-hexen-1-ol, smokers had marginally lower thresholds than nonsmokers and older participants had slightly higher thresholds than younger participants. Gender, smoking status and age had no reliable influence on threshold for pyridine. This outcome indicated desirable perceptual stability for pyridine. Additional experiments dealt with the perceived intensity of pyridine and cis-3-hexen-1-ol over time in the realistic setting of an environmental chamber. Visitors to the chamber and occupants in the chamber assessed perceived magnitude at 5-min intervals for up to 60 min during injections of odorized argon into the chamber. Participants could gauge and track the concentration of pyridine much better than that of cis-3-hexen-1-ol. This held true for occupants almost to the same degree as visitors, though occupants inevitably exhibited some olfactory adaptation. Hence, the suprathreshold measurements also gave strong relative endorsement to pyridine. Calculations based on the experimental results indicated that odorization of the inert gas stream with 3 to 10 ppm (v/v) pyridine should suffice to warn occupants or visitors of an argon buildup of any severity. Field studies should permit a definitive judgment of the best concentration to use in practice. PMID:3031973

  14. Evacuation of a residual oil pipeline by inert gas displacement

    SciTech Connect

    Webb, S.; Bogucz, E.; Levy, E.; Barrett, M.; Snyder, C.; Waters, C.

    1987-02-01

    This paper describes an analysis developed to model the inert gas displacement process for evacuating a high-pour-point oil from a long pipeline. The governing equations were derived from the basic conservation equations for mass, momentum, and energy. The resultant computer program accounts for such effects as pipeline elevation changes, laminar and turbulent oil flow, temperature-dependent oil viscosity, and heat loss from the oil to the ground. Results of computations for an 84-mile (135-km) residual oil pipeline operated by the Pennsylvania Power and Light Co. are presented and compared with pressure measurements obtained during a trial purge of the system. Calculations show that the minimum N/sub 2/ volume required for a successful pipeline evacuation increases considerably with increased delay time. In addition, theoretical results indicate that for this case, the pipeline purge operation must begin within 20 hours of a shutdown to avoid evacuation difficulties.

  15. A high-temperature inert gas fusion apparatus.

    PubMed

    Mosen, A W; Kelley, R E; Mitchell, H P

    1966-03-01

    A high-temperature inert gas fusion apparatus capable of operating at crucible temperatures as high as 3,100 degrees is described. While this apparatus has been used primarily for the determination of oxygen in pyrolytic carbon-coated uranium carbide particles, its usefulness is not limited to this type of material. It can be generally applied to the determination of oxygen and nitrogen in metals, alloys and other materials amenable to analysis by vacuum-fusion techniques. Analytical results obtained on steel and uranium carbide samples are presented. The apparatus, in its present form, has been in daily use for nearly 2 years. Down time during this period has been negligible. A total of 20 samples can be run in duplicate in an 8-hr shift. PMID:18959890

  16. Dilution and Temperature Effects of Inert Addition on Soot Formation in Counterflow Diffusion Flames

    Microsoft Academic Search

    R. L. Axelbalim; W. L. Flower; C. K. Law

    1988-01-01

    —The isolated effects of fuel dilution and flame temperalure variation on soot formation have been investigated experimentally for counterflow dilTusion flames. The methodology of isolation through temperature adjustment involves changing the concentration of the fuel by diluting it with nitrogen, and then incrcasing the maximum temperature of the diluted flame back to that of the undiluted Rame by replacing a

  17. Design of a diesel exhaust-gas purification system for inert-gas drilling

    SciTech Connect

    Caskey, B.C.

    1982-01-01

    To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

  18. Molecular dissociation in dilute gas

    SciTech Connect

    Renfrow, S.N.; Duggan, J.L.; McDaniel, F.D. [Ion Beam Materials Research Laboratory, Sandia National Laboratories, MS 1056, PO Box 5800, Albuquerque, New Mexico 87185 (United States)]|[Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    1999-06-01

    The charge state distributions (CSD) produced during molecular dissociation are important to both Trace Element Accelerator Mass Spectrometry (TEAMS) and the ion implantation industry. The CSD of 1.3{endash}1.7 MeV SiN{sup +}, SiMg{sup +}, SiMn{sup +}, and SiZn{sup +} molecules have been measured for elements that do not form atomic negative ions (N, Mg, Mn, and Zn) using a NEC Tandem Pelletron accelerator. The molecules were produced in a Cs sputter negative ion source, accelerated, magnetically analyzed, and then passed through an N{sub 2} gas cell. The neutral and charged breakups where analyzed using an electrostatic deflector and measured with particle detectors. Equilibrium CSD were determined and comparisons made between molecular and atomic ion data. {copyright} {ital 1999 American Institute of Physics.}

  19. Simplified power processing for inert gas ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Pinero, L. R.; Hamley, J. A.

    1993-01-01

    Significant simplifications to power processors for inert gas ion thrusters in the 1 to 5 kW range have been identified. They include elimination of all but three power supplies - one each for the neutralizer, main discharge, and beam. The neutralizer and discharge power supplies would provide both cathode heating and plasma generating functions. This dual-use power supply concept was validated via integration tests with a 30 cm diameter xenon ion thruster. The beam/accelerator power supply would have positive and negative outputs to allow a single power supply to provide both functions. The discharge and beam power supplies would incorporate full-bridge inverters similar to those proven for flight-ready arcjet propulsion systems. Operation of this simplified power processing scheme at an inverter frequency of 50 kHz results in a projected power processor design with low mass and high efficiency. A 2 kW reference point design has estimated values of specific mass of 5.4 kg/kW and an efficiency of 93 percent.

  20. Simplified power processing for inert gas ion thrusters

    NASA Astrophysics Data System (ADS)

    Rawlin, V. K.; Pinero, L. R.; Hamley, J. A.

    1993-06-01

    Significant simplifications to power processors for inert gas ion thrusters in the 1 to 5 kW range have been identified. They include elimination of all but three power supplies - one each for the neutralizer, main discharge, and beam. The neutralizer and discharge power supplies would provide both cathode heating and plasma generating functions. This dual-use power supply concept was validated via integration tests with a 30 cm diameter xenon ion thruster. The beam/accelerator power supply would have positive and negative outputs to allow a single power supply to provide both functions. The discharge and beam power supplies would incorporate full-bridge inverters similar to those proven for flight-ready arcjet propulsion systems. Operation of this simplified power processing scheme at an inverter frequency of 50 kHz results in a projected power processor design with low mass and high efficiency. A 2 kW reference point design has estimated values of specific mass of 5.4 kg/kW and an efficiency of 93 percent.

  1. Investigation on the Oscillating Gas Flow Along AN Inertance Tube by Experimental and Cfd Methods

    Microsoft Academic Search

    Houlei Chen; Miguang Zhao; Luwei Yang; Jinghui Cai; Guotong Hong; Jingtao Liang

    2010-01-01

    To investigate the oscillating gas flow along an inertance tube used in pulse tube coolers, a CFD model is set up for FLUENT and an experimental measuring cell is designed and optimized by CFD results. Some characteristics of oscillating flow are demonstrated and discussed. Then, the flow status along an inertance tube is measured by the optimized measuring cell. The

  2. Isothermic adsorption of heavy inert gas atoms on graphite surfaces at low pressures

    NASA Astrophysics Data System (ADS)

    Nymand, Gustav Uffe; Nyeland, Carl

    1999-04-01

    Following a recently suggested electron gas density method for intermolecular potentials between inert gas atoms and solid surfaces, potentials have been calculated for inert gas atoms interacting with carbon atoms of the surface of graphite. Isothermic adsorption coefficients were then calculated as virial coefficients using atom-atom addition potentials. The results obtained were compared with experimental findings for isothermic adsorption finding good agreement for both values and temperature dependencies.

  3. Operation of the J-series thruster using inert gas

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1982-01-01

    Electron bombardment ion thrusters using inert gases are candidates for large space systems. The J-Series 30 cm diameter thruster, designed for operation up to 3 k-W with mercury, is at a state of technology readiness. The characteristics of operation with xenon, krypton, and argon propellants in a J-Series thruster with that obtained with mercury are compared. The performance of the discharge chamber, ion optics, and neutralizer and the overall efficiency as functions of input power and specific impulse and thruster lifetime were evaluated. As expected, the discharge chamber performance with inert gases decreased with decreasing atomic mass. Aspects of the J-Series thruster design which would require modification to provide operation at high power with insert gases were identified.

  4. Investigation on the Oscillating Gas Flow Along AN Inertance Tube by Experimental and Cfd Methods

    NASA Astrophysics Data System (ADS)

    Chen, Houlei; Zhao, Miguang; Yang, Luwei; Cai, Jinghui; Hong, Guotong; Liang, Jingtao

    2010-04-01

    To investigate the oscillating gas flow along an inertance tube used in pulse tube coolers, a CFD model is set up for FLUENT and an experimental measuring cell is designed and optimized by CFD results. Some characteristics of oscillating flow are demonstrated and discussed. Then, the flow status along an inertance tube is measured by the optimized measuring cell. The experimental results validate the simulating results.

  5. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, Steve H. (Idaho Falls, ID); Pigott, William R. (Idaho Falls, ID)

    1997-01-01

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

  6. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, S.H.; Pigott, W.R.

    1997-12-30

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

  7. Highly sensitive solids mass spectrometer uses inert-gas ion source

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.

  8. Molecular dynamics simulation of pressure dependence of cluster growth in inert gas condensation E. Kesl, A. Kuronen, and K. Nordlund

    E-print Network

    Nordlund, Kai

    Molecular dynamics simulation of pressure dependence of cluster growth in inert gas condensation E of nanoclusters during inert gas condensation has been studied for copper, silver, alumi- num, and platinum, began when Bentley and Henkes in 1961 indepen- dently detected jet-generated clusters of carbon dioxide

  9. Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels

    PubMed Central

    Lu, Y.; Michel, C. C.

    2012-01-01

    To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance. PMID:22604885

  10. The Propagation of Photons in the Dilute Ionized Gas

    E-print Network

    Yijia Zheng

    2013-05-02

    The dilute ionized gas is very popular in the Universe. Usually only the Compton interactions, the "Sunyaev-Zel'dovich" effect, were considered while photons propagated in this medium. In this paper the "soft-photon process" is considered. Due to the soft photons emitted during the propagation of a photon in the dilute ionized gas, the main photon (propagating in the original direction) will be redshifted. The formula to calculate this redshift is derived.

  11. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  12. Mechanisms of inert gas impact induced interlayer mixing in metal multilayers grown by sputter deposition

    NASA Astrophysics Data System (ADS)

    Zhou, X. W.; Wadley, H. N. G.

    2001-10-01

    Control of interfacial roughness and chemical mixing is critical in nanomaterials. For example, multilayers composed of ˜20 Å conductive layer sandwiched between two ˜50 Å ferromagnetic layers can exhibit giant magnetoresistance (GMR). This property has caused a tremendous recent increase in hard disk storage capacity, and can potentially result in a new generation of nonvolatile magnetic random access memories. It has been established that good GMR properties can be obtained when the interfacial roughness and interlayer mixing of these multilayers are low. However, flat interfaces in nanoscale multilayers are not thermodynamically stable, and cannot be obtained using thermal energy deposition processes such as molecular-beam epitaxy. Hyperthermal energy sputter deposition techniques using either plasma or ion-beam gun are able to create nonequilibrium flat interfaces, and have been shown to produce better GMR multilayers. In these processes, however, inert gas ions or neutrals with energies between 50 and 200 eV can impact the growth surface. This may be a major source for interlayer mixing. By using a molecular dynamics technique and a reduced order model, the composition profile across the thickness of multiply repeated Ni/Cu/Ni multilayers has been calculated as a function of the energy and the relative flux of the inert gas ions or neutrals as well as the layer thickness. The results indicate that the 50-200 eV inert gas impact caused atomic exchange between adjacent atomic layers near the surface. The probability of exchange increased with impact energy, but decreased with the number of overlayers. The exchange between Ni overlayer and Cu underlayer atoms was much more significant than that between Cu overlayer and Ni underlayer atoms. As a result, the Ni on Cu interfaces were much more diffuse than the Cu on Ni interfaces, in good agreement with experiments. At very high inert gas flux and impact energy, an increased probability for the underlying Cu atoms to be exchanged to the surface resulted in significant Cu surface segregation.

  13. Stabilization of liquified-inert-gas jets for laser-plasma generation

    Microsoft Academic Search

    B. A. M. Hansson; M. Berglund; O. Hemberg; H. M. Hertz

    2004-01-01

    We investigate the hydrodynamic properties of liquified-inert-gas jets in a vacuum with a special emphasis on their stability. Such jets have applications as targets for laser-plasma generation of soft-x-ray and extreme-ultraviolet (EUV) radiation. An important example is the liquid-xenon-jet laser-plasma source, one of the source candidates for EUV lithography. A simple hydrodynamic model in not sufficient to explain experimental observations

  14. Stabilization of liquified-inert-gas jets for laser–plasma generation

    Microsoft Academic Search

    B. A. M. Hansson; M. Berglund; O. Hemberg; H. M. Hertz

    2004-01-01

    We investigate the hydrodynamic properties of liquified-inert-gas jets in a vacuum with a special emphasis on their stability. Such jets have applications as targets for laser–plasma generation of soft-x-ray and extreme-ultraviolet (EUV) radiation. An important example is the liquid-xenon-jet laser-plasma source, one of the source candidates for EUV lithography. A simple hydrodynamic model in not sufficient to explain experimental observations

  15. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R. [Matheson Gas Products, Montgomeryville, PA (United States); Dunn, C. [Environics, Inc., Tolland, CT (United States)

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  16. Continuous crafting of uniform colloidal nanocrystals using an inert-gas-driven microflow reactor

    NASA Astrophysics Data System (ADS)

    Tang, Hailong; He, Yanjie; Li, Bo; Jung, Jaehan; Zhang, Chuchu; Liu, Xiaobo; Lin, Zhiqun

    2015-05-01

    Recent research has witnessed rapid advances in synthesis of nanocrystals, which has led to the development of a large variety of approaches for producing nanocrystals with controlled dimensions. However, most of these techniques lack the high-throughput production. Herein, we report on a viable and robust strategy based on an inert-gas-driven microflow reactor for continuous crafting of high-quality colloidal nanocrystals. With the judicious introduction of the inert-gas driven capability, the microflow reactor provides an attractive platform for continuous production of colloidal nanocrystals in large quantities, including easily-oxidized nanocrystals. The as-synthesized nanocrystals possessed a uniform size and shape. Intriguingly, the size of nanocrystals can be effectively tailored by varying the flow rate and the precursor concentration. We envision that the microflow reactor strategy is general and offers easy access to a wide range of scalable nanocrystals for potential applications in sensors, optics, optoelectronics, solar energy conversion, batteries, photocatalysis, and electronic devices.Recent research has witnessed rapid advances in synthesis of nanocrystals, which has led to the development of a large variety of approaches for producing nanocrystals with controlled dimensions. However, most of these techniques lack the high-throughput production. Herein, we report on a viable and robust strategy based on an inert-gas-driven microflow reactor for continuous crafting of high-quality colloidal nanocrystals. With the judicious introduction of the inert-gas driven capability, the microflow reactor provides an attractive platform for continuous production of colloidal nanocrystals in large quantities, including easily-oxidized nanocrystals. The as-synthesized nanocrystals possessed a uniform size and shape. Intriguingly, the size of nanocrystals can be effectively tailored by varying the flow rate and the precursor concentration. We envision that the microflow reactor strategy is general and offers easy access to a wide range of scalable nanocrystals for potential applications in sensors, optics, optoelectronics, solar energy conversion, batteries, photocatalysis, and electronic devices. Electronic supplementary information (ESI) available: The schematic illustration of five functional sections and a digital image of the inert-gas-driven continuous microflow reactor are shown in Fig. S1. The digital images and PL spectrum of the Cu2S nanocrystals are shown in Fig. S2 and S3, respectively. TEM images of 2-D and 3-D self-assemblies of Cu2S nanocrystals are shown in Fig. S4. The experimental procedures for synthesis of Ag nanocrystals are provided, together with a TEM image, size distribution histogram and UV-vis spectrum (Fig. S5). See DOI: 10.1039/c5nr01492a

  17. TIG WELDER LOCATED IN THE CLEAN ROOM OF THE TECHNICAL SERVICES BUILDING TSB - THE INERT GAS WELDING

    NASA Technical Reports Server (NTRS)

    1963-01-01

    TIG WELDER LOCATED IN THE CLEAN ROOM OF THE TECHNICAL SERVICES BUILDING TSB - THE INERT GAS WELDING FACILITY IS USED FOR WELDING REFRACTORY METALS IN CONNECTION WITH THE COLUMBIUM LIQUID SODIUM LOOP PROJECT

  18. A new gas dilution method for measuring body volume.

    PubMed Central

    Nagao, N; Tamaki, K; Kuchiki, T; Nagao, M

    1995-01-01

    This study was designed to examine the validity of a new gas dilution method (GD) for measuring human body volume and to compare its accuracy with the results obtained by the underwater weighing method (UW). We measured the volume of plastic bottles and 16 subjects (including two females), aged 18-42 years with each method. For the bottles, the volume measured by hydrostatic weighing was correlated highly (r = 1.000) with that measured by the new gas dilution method. For the subjects, the body volume determined by the two methods was significantly correlated (r = 0.998). However, the subject's volume measured by the gas dilution method was significantly larger than that by underwater weighing method. There was significant correlation (r = 0.806) between GD volume-UW volume and the body mass index (BMI), so that UW volume could be predicted from GD volume and BMI. It can be concluded that the new gas dilution method offers promising possibilities for future research in the population who cannot submerge underwater. PMID:7551760

  19. The diffusion of oxygen, carbon dioxide, and inert gas in flowing blood.

    PubMed

    Spaeth, E E; Friedlander, S K

    1967-11-01

    Measurements were made of exchange rates of oxygen, carbon dioxide, and krypton-85 with blood at 37.5 degrees C. Gas transfer took place across a 1 mil silicone rubber membrane. The blood was in a rotating disk boundary layer flow, and the controlling resistance to transfer was the concentration boundary layer. Measured rates were compared with rates predicted from the equation of convective diffusion using velocities derived from the Navier-Stokes equations and diffusivities calculated from the theory for conduction in a heterogeneous medium. The measured absorption rate of krypton-85 was closely predicted by this model. Significant deposition of material onto the membrane surface, resulting in an increased transfer resistance, occurred in one experiment with blood previously used in a nonmembrane type artificial lung. The desorption rate of oxygen from blood at low P(o2)(1) was up to four times the corresponding transfer rate of inert gas. This effect is described somewhat conservatively by a local equilibrium form of the convective diffusion equation. The carbon dioxide transfer rate in blood near venous conditions was about twice that of inert gas, a rate significantly greater than predicted by the local equilibrium theory. It should be possible to apply these theoretical methods to predict exchange rates with blood flowing in systems of other geometries. PMID:19211000

  20. Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.

    2013-12-01

    Since 2000 the Campi Flegrei caldera sited in Neapolitan area (Italy), has showed signs of reactivation, marked by ground uplift, seismic activity, compositional variations of fumarolic effluents from La Solfatara, an increase of the fumarolic activity as well as of soil CO2 fluxes. Comparing long time series of geochemical signals with ground deformation and seismicity, we show that these changes are at least partially caused by repeated injections of magmatic fluid into the hydrothermal system. The frequency of these degassing episodes has increased in the last years, causing pulsed uplift episodes and swarms of low magnitude earthquakes. We focus here in the inert gas species (CO2-He-Ar-N2) of Solfatara fumaroles which displayed in the time spectacular and persistent variation trends affecting all the monitored vents. The observed variations, which include a continuous decrease of both N2/He and N2/CO2 ratios since 1985, paralleled by an increase of He/CO2, can not be explained neither with changes in processes of boiling-condensation in the local hydrothermal system nor with changes in the mixing proportions between a magmatic vapour and hydrothermal fluids. Consequently we investigated the possibility that the trends of inert gas species are governed by changes in the conditions controlling magma degassing at depth. We applied a magma degassing model, with the most recent updates for inert gas solubilities, after to have included petrologic constraints from the ranges of melt composition and reservoir pressure at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a surprising agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-time geochemical changes. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive volatiles, inert gases are the preferred species to achieve information on the dynamics and structure of the magma plumbing systems.

  1. Inert gas beam delivery for ultrafast laser micromachining at ambient pressure

    NASA Astrophysics Data System (ADS)

    Sun, J.; Longtin, J. P.

    2001-06-01

    Ultrafast laser micromachining is realized by focusing a femtosecond laser beam to a small spot, where very high optical intensity is achieved at the workpiece. Often, however, the beam must pass through a gas, e.g., air, before reaching the workpiece. At the very high laser intensities associated with ultrafast lasers, the gas can ionize, resulting in a rapid increase in free electron (plasma) density, which decreases the gas refractive index, resulting in plasma defocusing and self-phase modulation. Plasma-induced effects distort the temporal and spatial profile of the laser beam, which degrade feature quality and repeatability for ultrafast laser micromachining. In addition, plasma absorption reduces the energy available for materials processing, resulting in a decreased material removal rate. To avoid these effects, processing has traditionally been performed in a vacuum chamber, however this makes real-time processing on a large scale impractical. This article presents a beam delivery technique that uses inert gas as the beam propagation environment instead of air or a vacuum chamber. Plasma defocusing, self-phase modulation, and shielding effects are minimized due to the higher ionization potential of inert gas and thus less plasma forms along the beam path. Experiments were performed by delivering Ti:Sapphire femtosecond laser pulses in four different environmental gases: air, nitrogen, neon, and helium, to machine holes through a copper plate, with the best feature quality and machining efficiency obtained in helium and the worst in air. This technique shows potential as an innovative method to maintain high beam quality without the need for a vacuum chamber, which significantly improves processing throughput in practical ultrafast laser applications.

  2. Experimental observations of effects of inert gas on cavity formation during irradiation

    SciTech Connect

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present.

  3. Entropy Production and Thermal Conductivity of A Dilute Gas

    E-print Network

    Yong-Jun Zhang

    2011-02-16

    It is known that the thermal conductivity of a dilute gas can be derived by using kinetic theory. We present here a new derivation by starting with two known entropy production principles: the steepest entropy ascent (SEA) principle and the maximum entropy production (MEP) principle. A remarkable feature of the new derivation is that it does not require the specification of the existence of the temperature gradient. The known result is reproduced in a similar form.

  4. Comparison of inert-gas-fusion and modified Kjeldahl techniques for determination of nitrogen in niobium alloys

    NASA Technical Reports Server (NTRS)

    Merkle, E. J.; Graab, J. W.; Davis, W. F.

    1974-01-01

    This report compares results obtained for the determination of nitrogen in a selected group of niobium-base alloys by the inert-gas-fusion and the Kjeldahl procedures. In the inert-gas-fusion procedure the sample is heated to approximately 2700 C in a helium atmosphere in a single-use graphite crucible. A platinum flux is used to facilitate melting of the sample. The Kjeldahl method consisted of a rapid decomposition with a mixture of hydrofluoric acid, phosphoric acid, and potassium chromate; distillation in the presence of sodium hydroxide; and highly sensitive spectrophotometry with nitroprusside-catalyzed indophenol. In the 30- to 80-ppm range, the relative standard deviation was 5 to 7 percent for the inert-gas-fusion procedure and 2 to 8 percent for the Kjeldahl procedure. The agreement of the nitrogen results obtained by the two techniques is considered satisfactory.

  5. Effect of the Inert Gas Adsorption on the Bilayer Graphene to the Localized Electron Magnetotransport

    NASA Astrophysics Data System (ADS)

    Fukuda, A.; Terasawa, D.; Ohno, Y.; Matsumoto, K.

    2014-12-01

    Graphene has a fascinating property that the two-dimensional electron gas is easily accessible externally and it is challenging to investigate the effects of the adsorption of inert gases on graphene, which may be the least effective chemically and physically. We carry out the magnetotransport measurements of 4He-adsorbed bilayer graphene at low temperatures and the magnetic field B ranging from 0 to 4 T. The magnetoresistance ?Rxx change from the pristine graphene is measured as a function of gate voltage Vg and B for partial coverage of 1/10 (= 0.1) layers and one layer 4He-adsorbed graphene. The overall magnitudes of ?Rxx for one layer are larger than the one for 1/10 layers. Signs of ?Rxx depend on the Vg for the entire range of B, associated with the magnetoresistance oscillation owing to the weak localization in the pristine graphene.

  6. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y. [Alameda Applied Sciences Corp. 626 Whitney St., San Leandro, CA (United States)

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  7. Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals

    Microsoft Academic Search

    Sukhomay Pal; Surjya K. Pal; Arun K. Samantaray

    2008-01-01

    This paper addresses the weld joint strength monitoring in pulsed metal inert gas welding (PMIGW) process. Response surface methodology is applied to perform welding experiments. A multilayer neural network model has been developed to predict the ultimate tensile stress (UTS) of welded plates. Six process parameters, namely pulse voltage, back-ground voltage, pulse duration, pulse frequency, wire feed rate and the

  8. Molecular dynamics investigations of the coalescence of iron clusters embedded in an inert-gas heat bath

    Microsoft Academic Search

    N. Luemmen; T. Kraska

    2005-01-01

    A detailed analysis of the coalescence of iron clusters over the course of their growth in an inert-gas atmosphere is presented. The investigation is performed by molecular dynamics simulations, using a recent version of the embedded atom method for iron. For several coalescence events extracted from realistic particle-growth simulations, the change of temperature, the atomic structure, and the morphology are

  9. Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel

    Microsoft Academic Search

    S. C Juang; Y. S Tarng

    2002-01-01

    In this paper, the selection of process parameters for obtaining an optimal weld pool geometry in the tungsten inert gas (TIG) welding of stainless steel is presented. Basically, the geometry of the weld pool has several quality characteristics, for example, the front height, front width, back height and back width of the weld pool. To consider these quality characteristics together

  10. Size-independent fcc-to-icosahedral structural transition in unsupported silver clusters: An electron diffraction study of clusters produced by inert-gas aggregation

    Microsoft Academic Search

    D. Reinhard; B. D. Hall; D. Ugarte; R. Monot

    1997-01-01

    The structure of free silver clusters, produced in an inert-gas-aggregation source and flowing in a molecular beam has been studied by electron diffraction. Large clusters (up to 11 nm in diameter) of both icosahedral and fcc structure are observed. Cluster structure is investigated as a function of evaporation temperature and molecular weight of the inert gas in the source. An

  11. Inert Gas Dilution Effect on the Flammability Limits of Hydrocarbon Mixtures

    E-print Network

    Zhao, Fuman

    2012-02-14

    .3 Numerical data analysis?????...????..??????.... 81 5.3.1 Hydrocarbon mixture LFL?????...???????..81 5.3.2 Hydrocarbon mixture UFL?????...???????..95 5.4 Fuel mixture MIC ???????????...?..?????..111 ix CHAPTER... Page 5.7 MICs of ethylene and propylene mixtures from experimental measurement and calculation using Eq. (5-10)???????????...113 6.1 Pure fuel (CaHb) combustion productions at LFL with additional nitrogen???????????????????????????119 6...

  12. Hydrogen Diluted Methane Plasma Gas-Substrate Metal Interaction

    NASA Astrophysics Data System (ADS)

    Okuno, Kimio; Lui, Lai; Furumoto, Takashi

    2008-05-01

    The interaction between hydrogen-diluted methane plasma gas and substrate metal has been investigated to evaluate interfacial phenomena in the heteroepitaxial growth and initial-stage growth of diamond by combing chemical vapor deposition and field ion microscopy (CVD-FIM). The interaction with plasma gas was evaluated from the behavior of the Fowler-Nordheim plot and field ion images, after plasma gas was exposed to a tungsten needle specimen (W tip) at methane contents CH4/H2 of 1-3%. The plasma gas-W tip surface interaction was very intensive, and thick carbonaceous layers in the amorphous state were formed with a depth of several tenths atomic layers on the top surface of a W tip. Some condensed carbon clusters consisting of several carbon atoms emerged on the interfacial carbonaceous mixed layers. The energetic carbon atom was very cohesive, and the condensed carbon clusters corresponded to prenucleation or prediamond states prior to bulk diamond growth. The behavior of the field emission characteristics originating from the condensed clusters consisting of carbon atoms was also discussed.

  13. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    SciTech Connect

    Carpenter, Robert; Kumar, V; Ore, C; Schock, Alfred

    2001-01-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.

  14. Energy balance in disk and CO2 laser beam inert gas fusion cutting

    NASA Astrophysics Data System (ADS)

    Scintilla, Leonardo Daniele; Tricarico, Luigi; Wetzig, Andreas; Beyer, Eckhard

    2012-03-01

    Experimental, numerical and analytical investigations were performed to give a possible explanation of the differences in cutting quality detected for inert gas laser beam cutting process performed with disk and CO2 laser sources. Cutting experiments were carried out at maximum cutting speed on cold work steel test specimens with different sheet thicknesses. The particular feature of the applied experimental setup was the similar geometry of both the CO2 and the disk laser beam with comparable values of the focus diameter and the Rayleigh length. The thermodynamic analysis was based on experimentally primary losses evaluation by means of polymethylmethacrylate (PMMA) blocks, on numerical computation of conductive power losses and analytical calculation of the remaining terms of energy balance. Energy balance allowed the evaluation of secondary losses and proportion of vaporized kerf volume used for justifying the lower quality of disk laser cuts. The lower proportion of vaporized kerf volume detected for disk laser cuts results in an increased process temperature, thus an increase of viscosity of molten material and the subsequent more difficult ejection of the melted material from the cut kerf.

  15. Thorium-232 exposure during tungsten inert gas arc welding and electrode sharpening.

    PubMed

    Saito, Hiroyuki; Hisanaga, Naomi; Okada, Yukiko; Hirai, Shoji; Arito, Heihachiro

    2003-07-01

    To assess the exposure of welders to thorium-232 (232Th) during tungsten inert gas arc (TIG) welding, airborne concentrations of 232Th in the breathing zone of the welder and background levels were measured. The radioactive concentrations were 1.11 x 10(-2) Bq/m3 during TIG welding of aluminum (TIG/Al), 1.78 x 10(-4) Bq/m3 during TIG welding of stainless steel (TIG/SS), and 1.93 x 10(-1) Bq/m3 during electrode sharpening, with 5.82 x 10(-5) Bq/m3 background concentration. Although the annual intake of 232Th estimated using these values did not exceed the annual limit intake (ALI, 1.6 x 10(2) Bq), we recommend reducing 232Th exposure by substituting thoriated electrodes with a thorium-free electrodes, setting up local ventilation systems, and by using respiratory protective equipment. It is also necessary to inform workers that thoriated tungsten electrodes contain radioactive material. PMID:12916759

  16. Multiproperty empirical isotropic interatomic potentials for CH4-inert gas mixtures.

    PubMed

    El-Kader, M S A

    2013-11-01

    An approximate empirical isotropic interatomic potentials for CH4-inert gas mixtures are developed by simultaneously fitting the Exponential-Spline-Morse-Spline-van der Waals (ESMSV) potential form to viscosity, thermal conductivity, thermal diffusion factors, diffusion coefficient, interaction second pressure virial coefficient and scattering cross-section data. Quantum mechanical lineshapes of collision-induced absorption (CIA) at different temperatures for CH4-He and at T = 87 K for CH4-Ar are computed using theoretical values for overlap, octopole and hexadecapole mechanisms and interaction potential as input. Also, the quantum mechanical lineshapes of collision-induced light scattering (CILS) for the mixtures CH4-Ar and CH4-Xe at room temperature are calculated. The spectra of scattering consist essentially of an intense, purely translational component which includes scattering due to free pairs and bound dimers, and the other is due to the induced rotational scattering. These spectra have been interpreted by means of pair-polarizability terms, which arise from a long-range dipole-induced-dipole (DID) with small dispersion corrections and a short-range interaction mechanism involving higher-order dipole-quadrupole A and dipole-octopole E multipole polarizabilities. Good agreement between computed and experimental lineshapes of both absorption and scattering is obtained when the models of potential, interaction-induced dipole and polarizability components are used. PMID:25685458

  17. MOX and MOX with 237Np/241Am Inert Fission Gas Generation Comparison in ATR

    SciTech Connect

    G. S. Chang; M. Robel; W. J. Carmack; D. J. Utterbeck

    2006-06-01

    The treatment of spent fuel produced in nuclear power generation is one of the most important issues to both the nuclear community and the general public. One of the viable options to long-term geological disposal of spent fuel is to extract plutonium, minor actinides (MA), and potentially long-lived fission products from the spent fuel and transmute them into short-lived or stable radionuclides in currently operating light-water reactors (LWR), thus reducing the radiological toxicity of the nuclear waste stream. One of the challenges is to demonstrate that the burnup-dependent characteristic differences between Reactor-Grade Mixed Oxide (RG-MOX) fuel and RG-MOX fuel with MA Np-237 and Am 241 are minimal, particularly, the inert gas generation rate, such that the commercial MOX fuel experience base is applicable. Under the Advanced Fuel Cycle Initiative (AFCI), developmental fuel specimens in experimental assembly LWR-2 are being tested in the northwest (NW) I-24 irradiation position of the Advanced Test Reactor (ATR). The experiment uses MOX fuel test hardware, and contains capsules with MOX fuel consisting of mixed oxide manufactured fuel using reactor grade plutonium (RG-Pu) and mixed oxide manufactured fuel using RG-Pu with added Np/Am. This study will compare the fuel neutronics depletion characteristics of Case-1 RG-MOX and Case-2 RG-MOX with Np/Am.

  18. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (?=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations. PMID:24474361

  19. Joining titanium materials with tungsten inert gas welding, laser welding, and infrared brazing.

    PubMed

    Wang, R R; Welsch, G E

    1995-11-01

    Titanium has a number of desirable properties for dental applications that include low density, excellent biocompatibility, and corrosion resistance. However, joining titanium is one of the practical problems with the use of titanium prostheses. Dissolved oxygen and hydrogen may cause severe embrittlement in titanium materials. Therefore the conventional dental soldering methods that use oxygen flame or air torch are not indicated for joining titanium materials. This study compared laser, tungsten inert gas, and infrared radiation heating methods for joining both pure titanium and Ti-6Al-4V alloy. Original rods that were not subjected to joining procedures were used as a control method. Mechanical tests and microstructure analysis were used to evaluate joined samples. Mechanical tests included Vickers microhardness and uniaxial tensile testing of the strength of the joints and percentage elongation. Two-way analysis of variance and Duncan's multiple range test were used to compare mean values of tensile strength and elongation for significant differences (p < or = 0.05). Tensile rupture occurred in the joint region of all specimens by cohesive failure. Ti-6Al-4V samples exhibited significantly greater tensile strength than pure titanium samples. Samples prepared by the three joining methods had markedly lower tensile elongation than the control titanium and Ti-6Al-4V rods. The changes in microstructure and microhardness were studied in the heat-affected and unaffected zones. Microhardness values increased in the heat-affected zone for all the specimens tested. PMID:8809260

  20. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    NASA Astrophysics Data System (ADS)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  1. Synchrotron X-ray measurement and finite element analysis of residual strain in tungsten inert gas welded aluminum alloy 2024

    Microsoft Academic Search

    R. V. Preston; H. R. Shercliff; P. J. Withers; D. J. Hughes; S. D. Smith; P. J. Webster

    2006-01-01

    Residual strains have been measured in a tungsten inert gas (TIG) butt-welded 2024 aluminum alloy plate using synchrotron\\u000a X-ray diffraction. Novel two-dimensional strain maps spanning the entire plate reveal steep gradients in residual stress and\\u000a provide detailed validation data for finite element (FE) analysis. Two variants of a FE model have been used to predict the\\u000a residual strain distributions, incorporating

  2. Synchrotron X-ray measurement and finite element analysis of residual strain in tungsten inert gas welded aluminum alloy 2024

    Microsoft Academic Search

    R. V. Preston; H. R. Shercliff; P. J. Withers; D. J. Hughes; S. D. Smith; P. J. Webster

    2006-01-01

    Residual strains have been measured in a tungsten inert gas (TIG) butt-welded 2024 aluminum alloy plate using synchrotron X-ray diffraction. Novel two-dimensional strain maps spanning the entire plate reveal steep gradients in residual stress and provide detailed validation data for finite element (FE) analysis. Two variants of a FE model have been used to predict the residual strain distributions, incorporating

  3. Analysis of residual stress in metal-inert-gas-welded Al2024 using neutron and synchrotron X-ray diffraction

    Microsoft Academic Search

    S. Ganguly; V. Stelmukh; L. Edwards; M. E. Fitzpatrick

    2008-01-01

    A combination of neutron and synchrotron X-ray diffraction was used to measure and map the full three-dimensional state of residual stress across the cross-section in coupon samples of metal-inert-gas (MIG)-welded 2024 aluminium alloy. Samples were analysed both as-welded and following a post-welding skim which served to remove the weld flash and reduce the plate thickness. The profile of the residual

  4. Characterization of InSb Nanoparticles Synthesized Using Inert Gas Condensation

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.; Kordesch, Martin E.

    2015-06-01

    Nanoparticles (NPs) of indium antimonide (InSb) were synthesized using a vapor phase synthesis technique known as inert gas condensation (IGC). NPs were directly deposited, at room temperature and under high vacuum, on glass cover slides, TEM grids and (111) p-type silicon wafers. TEM studies showed a bimodal distribution in the size of the NPs with average particle size of 13.70 nm and 33.20 nm. The Raman spectra of InSb NPs exhibited a peak centered at 184.27 cm-1, which corresponds to the longitudinal optical (LO) modes of phonon vibration in InSb. A 1:1 In-to-Sb composition ratio was confirmed by energy dispersive X-ray (EDX). X-ray diffractometer (XRD) and high-resolution transmission electron microscopy (HRTEM) studies revealed polycrystalline behavior of these NPs with lattice spacing around 0.37 and 0.23 nm corresponding to the growth directions of (111) and (220), respectively. The average crystallite size of the NPs obtained using XRD peak broadening results and the Debye-Scherrer formula was 25.62 nm, and the value of strain in NPs was found to be 0.0015. NP's band gap obtained using spectroscopy and Fourier transform infrared (FTIR) spectroscopy was around 0.43-0.52 eV at 300 K, which is a blue shift of 0.26-0.35 eV. The effects of increased particle density resulting into aggregation of NPs are also discussed in this paper.

  5. Inert gas narcosis disrupts encoding but not retrieval of long term memory.

    PubMed

    Hobbs, Malcolm; Kneller, Wendy

    2015-05-15

    Exposure to increased ambient pressure causes inert gas narcosis of which one symptom is long-term memory (LTM) impairment. Narcosis is posited to impair LTM by disrupting information encoding, retrieval (self-guided search), or both. The effect of narcosis on the encoding and retrieval of LTM was investigated by testing the effect of learning-recall pressure and levels of processing (LoP) on the free-recall of word lists in divers underwater. All participants (n=60) took part in four conditions in which words were learnt and then recalled at either low pressure (1.4-1.9atm/4-9msw) or high pressure (4.4-5.0atm/34-40msw), as manipulated by changes in depth underwater: low-low (LL), low-high(LH), high-high (HH), and high-low (HL). In addition, participants were assigned to either a deep or shallow processing condition, using LoP methodology. Free-recall memory ability was significantly impaired only when words were initially learned at high pressure (HH & HL conditions). When words were learned at low pressure and then recalled at low pressure (LL condition) or high pressure (LH condition) free-recall was not impaired. Although numerically superior in several conditions, deeper processing failed to significantly improve free-recall ability in any of the learning-recall conditions. This pattern of results support the hypothesis that narcosis disrupts encoding of information into LTM, while retrieval appears to be unaffected. These findings are discussed in relation to similar effects reported by some memory impairing drugs and the practical implications for workers in pressurised environments. PMID:25725120

  6. Characterization of InSb Nanoparticles Synthesized Using Inert Gas Condensation.

    PubMed

    Pandya, Sneha G; Kordesch, Martin E

    2015-12-01

    Nanoparticles (NPs) of indium antimonide (InSb) were synthesized using a vapor phase synthesis technique known as inert gas condensation (IGC). NPs were directly deposited, at room temperature and under high vacuum, on glass cover slides, TEM grids and (111) p-type silicon wafers. TEM studies showed a bimodal distribution in the size of the NPs with average particle size of 13.70 nm and 33.20 nm. The Raman spectra of InSb NPs exhibited a peak centered at 184.27 cm(-1), which corresponds to the longitudinal optical (LO) modes of phonon vibration in InSb. A 1:1 In-to-Sb composition ratio was confirmed by energy dispersive X-ray (EDX). X-ray diffractometer (XRD) and high-resolution transmission electron microscopy (HRTEM) studies revealed polycrystalline behavior of these NPs with lattice spacing around 0.37 and 0.23 nm corresponding to the growth directions of (111) and (220), respectively. The average crystallite size of the NPs obtained using XRD peak broadening results and the Debye-Scherrer formula was 25.62 nm, and the value of strain in NPs was found to be 0.0015. NP's band gap obtained using spectroscopy and Fourier transform infrared (FTIR) spectroscopy was around 0.43-0.52 eV at 300 K, which is a blue shift of 0.26-0.35 eV. The effects of increased particle density resulting into aggregation of NPs are also discussed in this paper. PMID:26061444

  7. The effective spectral irradiance of ultra-violet radiations from inert-gas-shielded welding processes in relation to the ARC current density

    E-print Network

    DeVore, Robin Kent

    1973-01-01

    fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1973 Major Subject: Industrial Hygiene THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED WELDING PROCESSES IN RELATION TO THE ARC CURRENT... DENSITY A Thesis by ROBIN KENT DEVORE Approved as to style and content by: C alarm n of o itte Hea o partment e er Member December 1973 ABSTRACT The Effective Spectral Irradiance of Ultraviolet Radiations from Inert-Gas-Shielded Welding...

  8. Temperature variability of the last 1000 years in Antarctica from inert gas isotopes

    NASA Astrophysics Data System (ADS)

    Orsi, Anais; Landais, Amaelle; Severinghaus, Jeffrey P.

    2015-04-01

    A large effort has been made to document the climate history of the last two thousand years, but there are still substantial gaps in the Southern Hemisphere, especially at high latitudes, where the changes in the climate are the largest. These gaps limit our understanding of the most fundamental driving mechanisms of the climate. In particular, the impact of solar minima on surface temperature is not fully understood. Here, we investigate the spatial structure of multi decadal climate variability in Antarctica, assess the significance of the Little Ice Age minimum documented elsewhere. We present a 1000 year temperature record at two sites in Antarctica: WAIS Divide (79°S, 112°W, 1766 m a.s.l), and Talos Dome (72°S, 159°E, 2315 m a.s.l), reconstructed from the combination of inert gas isotopes from the ice core and borehole temperature measurements. Borehole temperature provides an absolute estimate of long-term trends, while noble gases track decadal to centennial scale changes. This method provides a temperature reconstruction that is independent of water isotopes, and allows us to improve our understanding of water isotopes as a temperature proxy, and use them to track circulation changes. We find that there is a pronounced cooling trend over the last millennium at both sites, but it is stronger in East Antarctica (Talos Dome) than West Antarctica (WAIS-D). At WAIS Divide, we find that "Little Ice Age" cold period of 1400-1800 was 0.52°C colder than the last century, and that the recent warming trend (0.23°C/decade since 1960) has past analogs about every 200 years. At Talos Dome, the pronounced cooling trend over the whole record is not visible in the water isotope record, which suggests that there is a compensation of several sources of fractionation. Overall, both records are consistent with the idea that the solar minima and persistent volcanic activity of the Little Ice Age (1400-1850 A.D.) had a significant impact on the surface temperature in Antarctica. The feedbacks amplifying the forcing were likely stronger on the East Antarctic plateau than on the more marine-influenced West Antarctica.

  9. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 2; Gas Separation Technology--State of the Art

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Eklund, Thor I.; Haack, Gregory A.

    2001-01-01

    This purpose of this contract study task was to investigate the State of the Art in Gas Separation Technologies utilized for separating air into both nitrogen and oxygen gases for potential applications on commercial aircraft. The intended applications included: nitrogen gas for fuel tank inerting, cargo compartment fire protection, and emergency oxygen for passenger and crew use in the event of loss of cabin pressure. The approach was to investigate three principle methods of gas separation: Hollow Fiber Membrane (HFM), Ceramic Membrane (CM), and liquefaction: Total Atmospheric Liquefaction of Oxygen and Nitrogen (TALON). Additional data on the performance of molecular sieve pressure swing adsorption (PSA) systems was also collected and discussed. Performance comparisons of these technologies are contained in the body of the report.

  10. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  11. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, Mark W. (Los Alamos, NM); Yoshida, Tatsuro (Los Alamos, NM)

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  12. Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials

    Microsoft Academic Search

    R. E. Hedges; D. L. Drummond; Alan Gallagher

    1972-01-01

    The emission profiles of the cesium resonance lines broadened by collisions with inert gases have been measured from about 50-1000 cm-1 from line center. The emission is observed from optically excited Cs in a cell whose temperature is varied from about 300-800°K. By measuring the wing intensity relative to the entire line intensity from optically thin Cs, the profiles can

  13. Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste

    SciTech Connect

    Person, J.C.

    1996-05-30

    Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

  14. Electron temperature in heavy inert gas plasmas at low electric fields

    SciTech Connect

    Ivanov, V.A.; Prikhod'ko, A.S.

    1986-10-01

    The variation of Te(E/N) (where Te is the electron temperature) and the electron drift velocity W(E/N) in heavy inert gases is analyzed. Numerical results are presented which show that the forms of Te(E/N) and W(E/N) for low electric fields are determined to a large extent by the degree of ionization. The role of metastable atoms is studied using a xenon plasma with a high degree of ionization as an example; it is assumed that the energy distribution is Maxwellian. 15 references.

  15. Dissipative fluid dynamics for the dilute Fermi gas at unitarity: Anisotropic fluid dynamics

    E-print Network

    Bluhm, Marcus

    2015-01-01

    We consider the time evolution of a dilute atomic Fermi gas after release from a trapping potential. A common difficulty with using fluid dynamics to study the expansion of the gas is that the theory is not applicable in the dilute corona, and that a naive treatment of the entire cloud using fluid dynamics leads to unphysical results. We propose to remedy this problem by including certain non-hydrodynamic degrees of freedom, in particular anisotropic components of the pressure tensor, in the theoretical description. We show that, using this method, it is possible to describe the crossover from fluid dynamics to ballistic expansion locally. We illustrate the use of anisotropic fluid dynamics by studying the expansion of the dilute Fermi gas at unitarity using different functional forms of the shear viscosity, including a shear viscosity which is solely a function of temperature, $\\eta\\sim (mT)^{3/2}$, as predicted by kinetic theory in the dilute limit.

  16. Examination of laser-triggered discharge using a virtual gas model and the similarity of its Paschen curve with those of inert gases

    SciTech Connect

    Hoshi, Y.; Yoshida, H. [National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8564 (Japan)

    2009-09-15

    We examined laser-triggered discharge (LTD) under asymmetric electric fields in air. Upon introducing a virtual gas with npd (n=2.8-3) instead of pd in Paschen's law [Ann. Phys. Chem. 37, 69 (1889)], the results of LTD in air coincided with the Paschen curve. A Paschen curve similar to those of inert gases, i.e., Ne and He, can be obtained even in air. This implies that in LTD, the number of gas molecules between electrodes appears to be n times higher than that in air. In LTD in air, the gamma effect is presumed to be significant, similar to in inert gases.

  17. Examination of laser-triggered discharge using a virtual gas model and the similarity of its Paschen curve with those of inert gases

    NASA Astrophysics Data System (ADS)

    Hoshi, Y.; Yoshida, H.

    2009-09-01

    We examined laser-triggered discharge (LTD) under asymmetric electric fields in air. Upon introducing a virtual gas with npd (n =2.8-3) instead of pd in Paschen's law [Ann. Phys. Chem. 37, 69 (1889)], the results of LTD in air coincided with the Paschen curve. A Paschen curve similar to those of inert gases, i.e., Ne and He, can be obtained even in air. This implies that in LTD, the number of gas molecules between electrodes appears to be n times higher than that in air. In LTD in air, the ? effect is presumed to be significant, similar to in inert gases.

  18. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating inert particle additives

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.; Siekhaus, W. J.

    1982-09-01

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ball istic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually nonreactive, insulative, and nonablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles.

  19. Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B—mechanism and remedy

    Microsoft Academic Search

    Liming Liu; Gang Song; Guoli Liang; Jifeng Wang

    2005-01-01

    One of the major concerns during high speed welding of magnesium alloys is the presence of porosity in the weld metal that can deteriorate mechanical properties. This study seeks to analyze the presence method and quantity of pore during hybrid laser-tungsten inert gas arc (TIG) welding of magnesium alloy AZ31B by radiography, optical microscopy and electron probe microanalysis (EMPA). At

  20. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  1. Impact of inerts, diluents and trace constituents in natural gas on the natural gas industry and the interstate pipeline grid

    Microsoft Academic Search

    S. Chao; K. Crippen

    1995-01-01

    This report addresses gas quality concerns that have arisen industry-wide. The traditional properties affecting gas quality and interchangeability are the BTU content, relative density (specific gravity), the hydrogen to carbon ratio, and hydrocarbon dew point. These properties are directly related to the major and minor component composition of natural gas. Components that have a bearing on gas quality and interchangeability

  2. Dispersion measurement of inert gases and gas mixtures at 800 nm.

    PubMed

    Börzsönyi, A; Heiner, Z; Kalashnikov, M P; Kovács, A P; Osvay, K

    2008-09-20

    Dispersion of femtosecond laser pulses propagating in Ar, He, Kr, N(2), Ne, Xe, and their mixtures is measured by spectrally and spatially resolved interferometry. By varying the gas pressure in a 4.5 m long tube between 0.05 mbar and ambient pressure, the first, second, and third order phase derivatives of broadband laser pulses are determined at 800 nm under standard conditions. The dispersion of gases and gas mixtures obeys the Lorentz-Lorenz formula with an accuracy of 0.7%. Based on the measured pressure dependent dispersion values in the near infrared and the refractive indices available from the literature for the ultraviolet and visible, a pressure dependent Sellmeier-type formula is fitted for each gas. These common form, two-term dispersion equations provide an accuracy between 4.1x10(-9) (Ne) and 4.3x10(-7) (Xe) for the refractive indices, from UV to near IR. PMID:18806842

  3. Molecular dynamics investigations of the coalescence of iron clusters embedded in an inert-gas heat bath

    SciTech Connect

    Luemmen, N.; Kraska, T. [Physical Chemistry, University of Cologne, Luxemburger Strasse 116, D-50939 Cologne (Germany)

    2005-05-15

    A detailed analysis of the coalescence of iron clusters over the course of their growth in an inert-gas atmosphere is presented. The investigation is performed by molecular dynamics simulations, using a recent version of the embedded atom method for iron. For several coalescence events extracted from realistic particle-growth simulations, the change of temperature, the atomic structure, and the morphology are analyzed. Here, the change in morphology is investigated by the relative number of atoms in the surface related to the driving force of the coalescence, the surface energy. The duration of the coalescence depends on the state of the colliding clusters, which is related to their temperature. At elevated temperatures an exponential decay of the relaxation of the cluster shape is found in case of liquid clusters. Clusters at lower temperatures exhibit a regular atomic structure. The coalescence includes the restructuring of the clusters, leading to deviations from the exponential decay of the cluster properties. Here, a distinct three-step coalescence process has been identified for structured clusters under nonadiabatic conditions. Each of these steps is related to a different extent of heat exchange with the carrier gas.

  4. EFFECT OF VENTILATION AND PERFUSION IMBALANCE ON INERT GAS REBREATHING VARIABLES

    EPA Science Inventory

    The effects of ventilation-to-perfusion (Va/Qc) maldistribution within the lungs on measured multiple gas rebreathing variables were studied in 14 dogs. The rebreathing method (using He, C18C, and C2H2) allows for measurements of pulmonary capillary blood flow (Qc), diffusing cap...

  5. Modeling of Metal Laser Cutting Processes in Supersonic Jet in Inert Gas

    NASA Astrophysics Data System (ADS)

    Kovalev, O. B.; Orishich, A. M.; Fomin, V. M.; Shulyatev, V. B.

    2002-07-01

    Up-to-date CO2 lasers are widely used in laser treatment of materials (drilling, welting, cutting). Technical achievements of laser methods both in Russia and abroad are limited and have been applied only for some types of ferrous metals until now (iron, steel, stainless steel, electrical steel). A number of works, cannot describe satisfactory the processes of gas-laser metal cutting, and this fact implies consideration of a great number of complex and interrelated processes.

  6. Momentum Distribution of a Dilute Unitary Bose Gas with Three-Body Losses

    NASA Astrophysics Data System (ADS)

    Laurent, Sébastien; Leyronas, Xavier; Chevy, Frédéric

    2014-11-01

    Using a combination of Boltzmann's equation and virial expansion, we study the effect of three-body losses and interactions on the momentum distribution of a homogeneous unitary Bose gas in the dilute limit where quantum correlations are negligible. The comparison of our results to the recent measurement made at JILA on a unitary gas of 85Rb allows us to determine an experimental fugacity z =0.5 (1 ).

  7. Hot nanoindentation in inert environments

    E-print Network

    Trenkle, Jonathan C.

    An instrument capable of performing nanoindentation at temperatures up to 500?°C in inert atmospheres, including partial vacuum and gas near atmospheric pressures, is described. Technical issues associated with the technique ...

  8. Synchrotron X-ray measurement and finite element analysis of residual strain in tungsten inert gas welded aluminum alloy 2024

    NASA Astrophysics Data System (ADS)

    Preston, R. V.; Shercliff, H. R.; Withers, P. J.; Hughes, D. J.; Smith, S. D.; Webster, P. J.

    2006-12-01

    Residual strains have been measured in a tungsten inert gas (TIG) butt-welded 2024 aluminum alloy plate using synchrotron X-ray diffraction. Novel two-dimensional strain maps spanning the entire plate reveal steep gradients in residual stress and provide detailed validation data for finite element (FE) analysis. Two variants of a FE model have been used to predict the residual strain distributions, incorporating different levels of plate constraint. The model uses decoupled thermal and elastic-plastic mechanical analyses and successfully predicts the longitudinal and transverse residual strain field over the entire weld. For butt weld geometries, the degree of transverse constraint is shown to be a significant boundary condition, compared to simpler bead-on-plate analyses. The importance of transverse residual strains for detailed model validation is highlighted, together with the need for care in selecting the location for line scans. The residual stress is largest in the heat-affected zone (HAZ), being equal to the local postweld yield stress, though the strength increases subsequently by natural aging. In addition, a halving of the diffraction line width has been observed local to the weld, and this correlates with the microstructural changes in the region.

  9. Heat transfer coefficients of dilute flowing gas-solids suspensions

    NASA Technical Reports Server (NTRS)

    Kane, R. S.; Pfeffer, R.

    1973-01-01

    Heat transfer coefficients of air-glass, argon-glass, and argon-aluminum suspensions were measured in horizontal and vertical tubes. The glass, 21.6 and 36.0 micron diameter particles, was suspended at gas Reynolds numbers between 11,000 and 21,000 and loading ratios between 0 and 2.5. The presence of particles generally reduced the heat transfer coefficient. The circulation of aluminum powder in the 0.870 inch diameter closed loop system produced tenacious deposits on protuberances into the stream. In the vertical test section, the Nusselt number reduction was attributed to viscous sublayer thickening; in the horizontal test section to particle deposition.

  10. Plasma-weld pool interaction in tungsten inert-gas configuration

    NASA Astrophysics Data System (ADS)

    Mougenot, J.; Gonzalez, J.-J.; Freton, P.; Masquère, M.

    2013-04-01

    A three-dimensional (3D) transient model of a transferred argon arc in interaction with an anode material is presented and the results discussed. The model based on a finite volume method is developed using the open software @Saturne distributed by Electricité de France. The 3D model includes the characterization of the plasma gas and of the work piece with a current continuity resolution in the whole domain. Transport and thermodynamic properties are dependent on the local temperature and on the vapours emitted by the eroded material due to the heat flux transferred by the plasma. Drag force, Marangoni force, Laplace and gravity forces are taken into account on the weld pool description. The plasma and the weld pool characteristics are presented and compared with experimental and theoretical results from the literature. For a distance between the two electrodes of d = 5 mm and an applied current intensity of I = 200 A, the vapour concentration is weak. The influence of the parameters used in the Marangoni formulation is highlighted. Finally, in agreement with some authors, we show with this global transient 3D model that it is not necessary to include the voltage drop in the energy balance.

  11. Examination of laser-triggered discharge using a virtual gas model and the similarity of its Paschen curve with those of inert gases

    Microsoft Academic Search

    Y. Hoshi; H. Yoshida

    2009-01-01

    We examined laser-triggered discharge (LTD) under asymmetric electric fields in air. Upon introducing a virtual gas with npd (n=2.8-3) instead of pd in Paschen's law [Ann. Phys. Chem. 37, 69 (1889)], the results of LTD in air coincided with the Paschen curve. A Paschen curve similar to those of inert gases, i.e., Ne and He, can be obtained even in

  12. Equilibrium Computation for the Growth of Alpha Silicon Carbide from Silane and Propane in the Presence of Hydrogen or an Inert Gas

    Microsoft Academic Search

    Shigekazu Minagawa; textscHarry C. Gatos

    1971-01-01

    The equilibrium computation for the growth of alpha-SiC from silane and propane in an atmosphere of hydrogen or an inert gas is carried out. The dependence of the deposition ratios of alpha-SiC, Si(1) and C(graphite) and the partial pressures of the vapor species on the concentration of the reactants and on the temperature is analyzed in detail. It is shown

  13. Infinite dilution activity coefficient and vapour liquid equilibrium measurements for dimethylsulphide and tetrahydrothiophene with hydrocarbons

    Microsoft Academic Search

    Piia Haimi; Petri Uusi-Kyyny; Juha-Pekka Pokki; Ville Alopaeus

    2010-01-01

    The activity coefficients at infinite dilution (??) of dimethylsulphide (DMS) in four hydrocarbon solvents were measured using the dilutor technique at temperatures between 288K and 303K. The four hydrocarbons were hexane, 1-hexene, 2,2,4-trimethylpentane and 2,4,4-trimethyl-1-pentene. The dilutor technique is based on the stripping of the highly diluted solute, i.e. DMS, by a constant flow of inert gas. The gas composition

  14. INVESTIGATING THE POTENTIAL DILUTION OF THE METAL CONTENT OF HOT GAS IN EARLY-TYPE GALAXIES BY ACCRETED COLD GAS

    SciTech Connect

    Su, Yuanyuan; Irwin, Jimmy A., E-mail: ysu@crimson.ua.edu [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States)

    2013-03-20

    The measured emission-weighted metal abundance of the hot gas in early-type galaxies has been known to be lower than theoretical expectations for 20 years. In addition, both X-ray luminosity and metal abundance vary significantly among galaxies of similar optical luminosities. This suggests some missing factors in the galaxy evolution process, especially the metal enrichment process. With Chandra and XMM-Newton, we studied 32 early-type galaxies (kT {approx}< 1 keV) covering a span of two orders of L{sub X,gas}/L{sub K} to investigate these missing factors. Contrary to previous studies that X-ray faint galaxies show extremely low Fe abundance ({approx}0.1 Z{sub Sun }), nearly all galaxies in our sample show an Fe abundance at least 0.3 Z{sub Sun }, although the measured Fe abundance difference between X-ray faint and X-ray bright galaxies remains remarkable. We investigated whether this dichotomy of hot gas Fe abundances can be related to the dilution of hot gas by mixing with cold gas. With a subset of 24 galaxies in this sample, we find that there is virtually no correlation between hot gas Fe abundances and their atomic gas content, which disproves the scenario that the low metal abundance of X-ray faint galaxies might be a result of the dilution of the remaining hot gas by pristine atomic gas. In contrast, we demonstrate a negative correlation between the measured hot gas Fe abundance and the ratio of molecular gas mass to hot gas mass, although it is unclear what is responsible for this apparent anti-correlation. We discuss several possibilities including that externally originated molecular gas might be able to dilute the hot gas metal content. Alternatively, the measured hot gas Fe abundance may be underestimated due to more complex temperature and abundance structures and even a two-temperature model might be insufficient to reflect the true value of the emission weighted mean Fe abundance.

  15. High-accuracy stable gas flow dilution using an internally calibrated network of critical flow orifices

    Microsoft Academic Search

    P. J. Brewer; B. A. Goody; T. Gillam; R. J. C. Brown; M. J. T. Milton

    2010-01-01

    A network of critical flow orifices has been developed to form a gas flow dilutor capable of stable and repeatable operation, which is not influenced by environmental conditions. When used with a novel self-calibration method it achieves dilutions of up to 31:1 with a relative standard uncertainty of ±0.1%. This new approach avoids the uncertainty generated by setting and controlling

  16. Manifestation of quantum resonances and antiresonances in a finite-temperature dilute atomic gas

    SciTech Connect

    Saunders, M.; Halkyard, P. L.; Challis, K. J.; Gardiner, S. A. [Department of Physics, Durham University, Rochester Building, South Road, Durham DH1 3LE (United Kingdom)

    2007-10-15

    We investigate the effect of temperature on resonant and antiresonant dynamics in a dilute atomic gas kicked periodically by a standing-wave laser field. Our numerical calculations are based on a Monte Carlo method for an incoherent mixture of noninteracting plane waves, and show that the atomic dynamics are highly sensitive to the initial momentum width of the gas. We explain this sensitivity by examining the time evolution of individual atomic center-of-mass momentum eigenstates with varying quasimomentum, and we determine analytic expressions for the evolution of the second-order momentum moment to illustrate the range of behaviors.

  17. The manifestation of quantum resonances and antiresonances in a finite temperature dilute atomic gas

    E-print Network

    M. Saunders; P. L. Halkyard; K. J. Challis; S. A. Gardiner

    2007-08-07

    We investigate the effect of temperature on resonant and antiresonant dynamics in a dilute atomic gas kicked periodically by a standing wave laser field. Our numerical calculations are based on a Monte Carlo method for an incoherent mixture of non-interacting plane waves, and show that the atomic dynamics are highly sensitive to the initial momentum width of the gas. We explain this sensitivity by examining the time evolution of individual atomic centre of mass momentum eigenstates with varying quasimomentum, and we have determined analytic expressions for the evolution of the second-order momentum moment to illustrate the range of behaviours.

  18. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  19. Coupled-cluster theory of a gas of strongly-interacting electrons in the dilute limit

    SciTech Connect

    Mihaila, Bodgan [Los Alamos National Laboratory; Cardenas, Andres L [Los Alamos National Laboratory

    2008-01-01

    We study the ground-state properties of a dilute gas of strongly-interacting fermions in the framework of the coupled-cluster expansion (CCE). We demonstrate that properties such as universality, opening of a gap in the excitation spectrum and applicability of s-wave approximations appear naturally in the CCE approach. In the zero-density limit, we show that the ground-state energy density depends on only one parameter which in turn may depend at most on the spatial dimensionality of the system.

  20. Characterisation of the surface thermodynamic properties of cement components by inverse gas chromatography at infinite dilution

    Microsoft Academic Search

    Christian Perruchot; Mohamed M. Chehimi; Marie-Josèphe Vaulay; Karim Benzarti

    2006-01-01

    The surface thermodynamic properties of three main inorganic compounds formed during hydration of Portland cement: calcium hydroxide (Ca(OH)2), ettringite (3CaO·Al2O3·3CaSO4·32H2O) and calcium-silicate-hydrates (C-S-H), respectively, and one mineral filler: calcium carbonate (CaCO3), have been characterised by inverse gas chromatography at infinite dilution (IGC-ID) at 35 °C. The thermodynamic properties have been investigated using a wide range of non-polar (n-alkane series), Lewis

  1. [Effect of inert gas xenon on the functional state of nucleated cells of peripheral blood during freezing].

    PubMed

    Laptev, D S; Polezhaeva, T V; Zaitseva, O O; Khudyakov, A N; Utemov, S V; Knyazev, M G; Kostyaev, A A

    2015-01-01

    A new method of preservation of nucleated cells in the electric refrigerator with xenon. After slow freezing and storage is even one day at -80 °C persists for more than 60% leukocytes. Cell membranes are resistant to the vital dye. In 85% of granulocytes stored baseline lysosomal-cationic protein, reduced lipid peroxidation and antioxidant activity. Cryopreservation of biological objects in inert gases is a promising direction in the practice of medicine and can be an alternative to the traditional method using liquid nitrogen. PMID:26027341

  2. Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation

    Microsoft Academic Search

    Jun Tamaki; Chizuko Naruo; Yoshifumi Yamamoto; Masao Matsuoka

    2002-01-01

    Indium oxide based thin film sensors have been prepared by means of an electron beam evaporation and subjected to the detection of dilute Cl2 gas less than ppm-level. Among various In2O3 based sensors tested, the In2O3 thin film modified with Fe2O3 (1wt.%) showed extremely high sensitivity to dilute Cl2 gas of 0.2–5ppm. The Fe2O3–In2O3 sensor showed the sensitivity as high

  3. Ground-State Energy and Condensate Density of a Dilute Bose Gas Revisited

    NASA Astrophysics Data System (ADS)

    Tsutsui, Kazumasa; Kita, Takafumi

    2013-06-01

    The ground-state energy per particle E/N and condensate density n0 of a dilute Bose gas are studied with a self-consistent perturbation expansion satisfying the Hugenholtz--Pines theorem and conservation laws simultaneously. A class of Feynman diagrams for the self-energy, which has escaped consideration so far, is shown to add an extra constant cip˜ O(1) to the expressions reported by Lee et al. [Phys. Rev. 106 (1957) 1135] as E/N=(2?\\hbar2an/m)[1+(128/15\\sqrt?+16cip/5)\\sqrt{a3n}] and n0/n=1-(8/3\\sqrt?+cip)\\sqrt{a3n}, where a, n, and m are are the s-wave scattering length, particle density, and particle mass, respectively. We present a couple of estimates for cip; the third-order perturbation expansion yields cip=0.412.

  4. The Quantum Dynamics of a Dilute Gas in a 3D BCC Optical Lattice

    NASA Astrophysics Data System (ADS)

    Reichl, Linda; Boretz, Yingyue

    2015-03-01

    The classical and quantum dynamics of a dilute gas of rubidium atoms, in a 3D body-centered cubic optical lattice, is studied for a range of polarizations of the laser beams forming the lattice. The relative polarization of the lasers determines the the structure of the potential energy seen by the rubidium atoms. If three pairs of in-phase mutually perpendicular laser beams, with the same wavelength, form the lattice, only a limited range of possible couplings can be realized in the lab. We have determined the band structure of the BCC optical lattice for all theoretically possible couplings, and find that the band structure for lattices realizable in the lab, differs significantly from that expected for a BCC crystal. As coupling is increased, the lattice becomes increasingly chaotic and it becomes possible to produce band structure that has qualitative similarity to a BCC. Welch Foundation

  5. Dilute Bose gas with correlated disorder: a path integral Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Pilati, S.; Giorgini, S.; Modugno, M.; Prokof'ev, N.

    2010-07-01

    We investigate the thermodynamic properties of a dilute Bose gas in a correlated random potential using exact path integral Monte Carlo methods. The study is carried out in continuous space and disorder is produced in the simulations by a three-dimensional (3D) speckle pattern with tunable intensity and correlation length. We calculate the shift of the superfluid transition temperature due to disorder and we highlight the role of quantum localization by comparing the critical chemical potential with the classical percolation threshold. The equation of state of the gas is determined in the regime of strong disorder, where superfluidity is suppressed and the normal phase exists down to very low temperatures. We find a T2 dependence of the energy in agreement with the expected behavior in the Bose glass phase. We also discuss the major role played by the disorder correlation length and we make contact with a Hartree-Fock mean-field approach that holds if the correlation length is very large. The density profiles are analyzed as a function of temperature and interaction strength. Effects of localization and the depletion of the order parameter are emphasized in the comparison between local condensate and total density. At very low temperature, we find that the energy and the particle distribution of the gas are very well described by the T=0 Gross-Pitaevskii theory, even in the regime of very strong disorder.

  6. Experimental and computational studies on absorption and desorption of multicomponent hydrogen isotopes from inert gas mixtures in a yttrium particle bed

    NASA Astrophysics Data System (ADS)

    Fukada, S.; Nakahara, T.; Mitsuishi, N.

    1990-05-01

    For the recovery of multicomponent hydrogen isotopes from inert gas mixtures, a yttrium particle bed was numerically and experimentally investigated. The material balance equations for each hydrogen isotope component in the bed were computed in terms of a mass transfer coefficient for diffusion in a solid particle, that in a fluid film, and an absorption rate constant on solid particle surfaces. The numerical curves could be fitted to the experimental effluent data for absorption and desorption, and the roll-up of deuterium due to a higher equilibrium pressure was observed in the experimental effluent curves for absorption. It was found that the value of the isotopic separation factor of protium and deuterium was 1.05 for a yttrium hydride phase.

  7. Dispersion coefficients for the interactions of the alkali and alkaline-earth ions and inert gas atoms with a graphene layer

    E-print Network

    Kaur, Kiranpreet; Sahoo, B K

    2015-01-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients ($C_3$s) of the alkali ions (Li$^+$, Na$^+$, K$^+$ and Rb$^+$), the alkaline-earth ions (Ca$^+$, Sr$^+$, Ba$^+$ and Ra$^+$) and the inert gas atoms (He, Ne, Ar and Kr) with a graphene layer are determined precisely within the framework of Dirac model. For these calculations, we have evaluated the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are, finally, given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at the room temperature.

  8. Simple calculation for compounds lost by gas stripping in a two-phase liquid system involving dilute substances

    Microsoft Academic Search

    L. Cappaert; C. Larroche

    2004-01-01

    Compounds lost by gas stripping from a two-phase liquid system can be deduced from the slope of the logarithmic plot of the residual concentration in a given layer against time. This results in straight lines even when thermodynamic equilibrium is not reached, provided all phases belong to the diluted region. Partition coefficients were calculated during 2-heptanone reduction to 2-heptanol by

  9. Absorption of dilute SO 2 gas stream with conversion to polymeric ferric sulfate for use in water treatment

    Microsoft Academic Search

    Aron D Butler; Maohong Fan; Robert C Brown; Adrienne T Cooper; J. H van Leeuwen; Shihwu Sung

    2004-01-01

    Use of sulfur dioxide (SO2) in the production of polymeric ferric sulfate (PFS) was investigated. PFS is a highly effective coagulant useful in treatment of drinking water and wastewater, and could serve as a value-added sink for sulfur removed during coal gas cleanup. SO2 was absorbed from a dilute gas stream by sparging it into a bench-scale reactor containing a

  10. Measurement of activity coefficients at infinite dilution for acetonitrile, water, limonene, limonene epoxide and their binary pairs

    Microsoft Academic Search

    Rolando Barrera Zapata; Aída Luz Villa; Consuelo Montes de Correa

    2009-01-01

    Activity coefficients at infinite dilution were determined for binary pairs of acetonitrile, water, limonene and limonene epoxide at room temperature using the dilutor technique (inert gas stripping) in a home-made dilutor apparatus. The activity coefficients were predicted with the Aspen Plus software using the Dortmund-modified UNIFAC contribution method. Values predicted by software simulations are in good agreement with experimental data.

  11. Infinite dilution activity coefficients and Henry's law coefficients of some priority water pollutants determined by a relative gas chromatographic method

    SciTech Connect

    Tse, G.; Orbey, H.; Sandler, S.I. (Univ. of Delaware, Newark, DE (United States))

    1992-10-01

    A simple, fast relative measurement method based on gas chromatography developed recently has been used to determine the infinite dilution activity coefficients and Henry's law coefficients in water of some priority pollutants. The authors show that this simple method can be used to obtain accurate data quite rapidly, which is especially valuable for screening studies. Further, the infinite dilution activity coefficient and Henry's law coefficient data reported here can be useful for directly estimating environmentally important properties such as solubilities in water, multimedia partitioning, and octanol-water partition coefficients. 8 refs., 1 tab.

  12. A simple thermodynamic model of diluted hydrogen gas/plasma for CFD applications

    NASA Astrophysics Data System (ADS)

    Quartapelle, L.; Muzzio, A.

    2015-06-01

    This work describes a simple thermodynamic model of the hydrogen gas at low densities and for temperatures going from those involving quantum rotations of ortho- and para-hydrogen up to the fully ionized state. The closed-form energy levels of Morse rotating oscillator given [D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy (Dover, New York, 1989)] (but not those in Morse's original paper) are shown to provide an internal partition function of H2 that is a sufficiently accurate representation of that exploiting the state-of-the-art spectrum of roto-vibrational levels calculated by Pachucki and Komasa [K. Pachucki, J. Komasa, J. Chem. Phys. 130, 164113 (2009)]. A system of two coupled quadratic equations for molecular dissociation and atomic ionization at thermodynamical and chemical equilibrium is derived according to the statistical mechanics by assuming that the system is an ideal mixture containing molecules, neutral atoms and noninteracting protons and electrons. The system of two equations reduces to a single quartic equation for the ionization unknown, with the coefficients dependent on the temperature and the specific volume. Explicit relations for specific energy and entropy of the hydrogen ideal gas/plasma model are derived. These fully compatible equations of state provide a complete thermodynamic description of the system, uniformly valid from low temperatures up to a fully ionized state, with electrons and ions relaxed to one and the same temperature. The comparison with results of other models developed in the framework of the physical and chemical pictures shows that the proposed elementary model is adequate for computational fluid dynamics purposes, in applications with the hydrogen gas under diluted conditions and when the dissociation and ionization can be assumed at thermodynamical and chemical equilibrium.

  13. Bose-Einstein Condensation in a Dilute Gas; the First 70 Years and Some Recent Experiments

    NASA Astrophysics Data System (ADS)

    Cornell, E. A.; Wieman, C. E.

    Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of ``How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why?'' We will review some of our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging. This article is our ``Nobel Lecture'' and as such takes a relatively personal approach to the story of the development of experimental Bose-Einstein condensation. For a somewhat more scholarly treatment of the history, the interested reader is referred to E. A. Cornell, J. R. Ensher and C. E. Wieman, ``Experiments in dilute atomic Bose-Einstein condensation in Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics ``Enrico Fermi'' Course CXL'' (M. Inguscio, S. Stringari and C. E. Wieman, Eds., Italian Physical Society, 1999), pp. 15-66, which is also available as cond-mat/9903109. For a reasonably complete technical review of the three years of explosive progress that immediately followed the first observation of BEC, we recommend reading the above article in combination with the corresponding review from Ketterle, cond-mat/9904034.

  14. Inert electrode connection

    DOEpatents

    Weyand, J.D.; Woods, R.W.; DeYoung, D.H.; Ray, S.P.

    1985-02-19

    An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000--20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1,200--1,500 C. 5 figs.

  15. Direct quantitative determination of cyanamide by stable isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Hiradate, Syuntaro; Kamo, Tsunashi; Nakajima, Eri; Kato, Kenji; Fujii, Yoshiharu

    2005-12-01

    Cyanamide is a multifunctional agrochemical used, for example, as a pesticide, herbicide, and fertilizer. Recent research has revealed that cyanamide is a natural product biosynthesized in a leguminous plant, hairy vetch (Vicia villosa). In the present study, gas chromatography-mass spectrometry (GC-MS) equipped with a capillary column for amines was used for direct quantitative determination of cyanamide. Quantitative signals for ((14)N(2))cyanamide, ((15)N(2))cyanamide (internal standard for stable isotope dilution method), and m-(trifluoromethyl)benzonitrile (internal standard for correcting errors in GC-MS analysis) were recorded as peak areas on mass chromatograms at m/z 42 (A(42)), 44 (A(44)), and 171 (A(IS)), respectively. Total cyanamide content, ((14)N(2))cyanamide plus ((15)N(2))cyanamide, was determined as a function of (A(42)+A(44))/A(IS). Contents of ((14)N(2))cyanamide and ((15)N(2))cyanamide were then calculated by multiplying the total cyanamide content by A(42)/(A(42)+A(44)) and A(44)/(A(42)+A(44)), respectively. The limit of detection for the total cyanamide content by the GC-MS analysis was around 1ng. The molar ratio of ((14)N(2))cyanamide to ((15)N(2))cyanamide in the injected sample was equal to the observed A(42)/A(44) value in the range from 0.1 to 5. It was, therefore, possible to use the stable isotope dilution method to quantify the natural cyanamide content in samples; i.e., the natural cyanamide content was derived by subtracting the A(42)/A(44) ratio of the internal standard from the A(42)/A(44) ratio of sample spiked with internal standard, and then multiplying the resulting difference by the amount of added ((15)N(2))cyanamide (SID-GC-MS method). This method successfully gave a reasonable value for the natural cyanamide content in hairy vetch, concurring with the value obtained by a conventional method in which cyanamide was derivatized to a photometrically active compound 4-cyanimido-1,2-naphthoquinone and analyzed with reversed-phase HPLC (CNQ-HPLC method). The determination range of cyanamide in the SID-GC-MS method was almost the same as that in the CNQ-HPLC method; however, the SID-GC-MS method was much simpler than the CNQ-HPLC method. PMID:16314170

  16. Laws of the DC arc in an inert gas during melting in furnaces with a tungsten electrode

    NASA Astrophysics Data System (ADS)

    Belyanchikov, L. N.

    2012-06-01

    The I-V and voltage-baric characteristics of the dc arc glowing in argon between a tungsten cathode and a molten anode made of titanium, chromium, or manganese are studied at various gas pressures, arc currents, and arc lengths. The arc is probed to establish the relation between the voltage drop across the arc and its regions on the anode material and the melting conditions.

  17. Emission characteristics and parameters of gas-discharge plasma in mixtures of heavy inert gases with chlorine

    Microsoft Academic Search

    A. K. Shuaibov; A. N. Malinin

    2009-01-01

    The ultraviolet (UV) radiation from longitudinal glow-discharge plasma in three- and four-component mixtures of argon, krypton,\\u000a and xenon with chlorine has been investigated. The total radiation of Ar, Kr, and Xe monochlorides and chlorine molecules\\u000a in the spectral range 170–310 nm has been optimized with respect to the composition and the pressure of gas mixtures, as well\\u000a as the discharge

  18. Emission characteristics and parameters of gas-discharge plasma in mixtures of heavy inert gases with chlorine

    Microsoft Academic Search

    A. K. Shuaibov; A. N. Malinin

    2009-01-01

    The ultraviolet (UV) radiation from longitudinal glow-discharge plasma in three- and four-component mixtures of argon, krypton, and xenon with chlorine has been investigated. The total radiation of Ar, Kr, and Xe monochlorides and chlorine molecules in the spectral range 170-310 nm has been optimized with respect to the composition and the pressure of gas mixtures, as well as the discharge

  19. Gas-solids mixing and flow structure modeling of the upper dilute zone of a circulating fluidized bed

    Microsoft Academic Search

    R. Koenigsdorff; J. Werther

    1995-01-01

    A steady-state model of the flow structure and mixing processes in the upper dilute zone of a circulating fluidized bed (CFB), where variations in flow parameters with height are neglected, is presented. The model is based on a two-phase structure, consisting of dense particle clusters or strands and a lean gas-particle suspension as observed in several investigations. It accounts for

  20. Isotope dilution determination of polycyclic aromatic hydrocarbons in olive pomace oil by gas chromatography–mass spectrometry

    Microsoft Academic Search

    Gianfranco Diletti; Giampiero Scortichini; Rossana Scarpone; Giuseppe Gatti; Luigi Torreti; Giacomo Migliorati

    2005-01-01

    A gas chromatographic (GC) method with mass spectrometry detection (MS) for the determination of eight polycyclic aromatic hydrocarbons (PAHs) in olive pomace oil has been developed. The oil was diluted with n-pentane and extracted by liquid–liquid partition with dimethyl sulphoxide (DMSO). After water addition and back-extraction with cyclohexane, a thin-layer chromatography on silica gel was performed as a further purification

  1. Isotope Dilution Gas Chromatographic–Mass Spectrometric Method for the Determination of Isoflavonoids, Coumestrol, and Lignans in Food Samples

    Microsoft Academic Search

    Witold Mazur; Theodore Fotsis; Kristina Wähälä; Sirpa Ojala; Auli Salakka; Herman Adlercreutz

    1996-01-01

    We present a method for the quantitative determination of the phytoestrogens formononetin, biochanin A, daidzein, genistein, and coumestrol and simultaneously the lignans secoisolariciresinol (SECO) and matairesinol in plant-derived foods. These compounds are measured by isotope dilution gas chromatography–mass spectrometry in the selected ion monitoring mode (ID\\/GC\\/MS\\/SIM) using synthesized deuterated internal standards for the correction of losses during the procedure. A

  2. Respiratory and plumage gas volumes in unrestrained diving ducks ( Aythya affinis)

    Microsoft Academic Search

    Richard Stephenson

    1995-01-01

    Closed-circuit plethysmography and inert gas equilibration analysis were used to measure the volumes of gas in the respiratory system and plumage at the end of voluntary dives in unrestrained lesser scaup (Aythya affinis). Total (respiratory plus plumage) gas volumes were measured by helium dilution and estimated from body mass, body tissue density and buoyant force. These two techniques yielded results

  3. Experimental investigation on fiber and CO2 inert gas fusion cutting of AZ31 magnesium alloy sheets

    NASA Astrophysics Data System (ADS)

    Scintilla, L. D.; Tricarico, L.

    2013-03-01

    The influence of processing parameters and laser source type on cutting edge quality of AZ31 magnesium alloy sheets and differences in cutting efficiency between fiber and CO2 lasers were studied. A first part of the cutting experiments compared a fiber and CO2 laser source when cutting 1 mm thick sheets in continuous wave mode and using Argon as an assist gas. The effects of cutting speed and assist gas pressure were investigated and optimal conditions were identified. In the second part of the experimental investigation, 3.3 mm thick sheets were cut using fiber laser. Focal position and cutting speed were varied in order to detect the optimal combination of processing parameters to obtain the best edge quality. For both sheet thicknesses investigated, surface roughness, dross height, and striation pattern inclination were measured. Cutting quality assessment and classification was carried out according to UNI EN ISO 9013 standard. Results showed that productivity, process efficiency and cutting edges quality obtained using fiber lasers outperform CO2 laser performances and therefore are considered suitable for application like sheet metal trimming.

  4. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    NASA Astrophysics Data System (ADS)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled ? (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  5. Effects of CaF2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wang, Linzhi; Peng, Dong; Wang, Dan

    2012-11-01

    The effects of CaF2 coating on the macromorphologies of the welded seams were studied by morphological analysis. Microstructures and mechanical properties of butt joints welded with different amounts of CaF2 coatings were investigated using optical microscopy and tensile tests. The welding defects formed in the welded seams and the fracture surfaces were analyzed by scanning electron microscopy. An increase in the amount of CaF2 coating deteriorated the appearances of the welded seams but it improved the weld penetration depth and the depth/width ( D/ W) ratio of the tungsten inert gas (TIG) welded joints. The ?-Mg grains and Mg17(Al,Zn)12 intermetallic compound (IMC) were coarser in the case of a higher amount of CaF2 coating. The increase in the amount of CaF2 coating reduced the porosities and total length of solidification cracks in the fusion zone (FZ). The ultimate tensile strength (UTS) value and elongation increased at first and then decreased sharply.

  6. Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Asimellis, George; Hamilton, Stephen; Giannoudakos, Aggelos; Kompitsas, Michael

    2005-08-01

    Efficient quantitative detection for halogens is necessary in a wide range of applications, ranging from pharmaceutical products to air polluting hazardous gases or organic compounds used as chemical weapons. Detection of the non-metallic elements such as fluorine (F) and chlorine (Cl) presents particular difficulty, because strong emission lines originating from their resonance states lie in the VUV spectral range (110-190 nm). In the present work we detect F and Cl in the upper visible and in the near IR (650-850 nm) under controlled inert gas ambient atmosphere. Investigation of the controlled atmosphere effects suggests that there exists an optimum pressure range that optimizes signal strength and quality. Ablation and ionization were achieved with a UV laser at 355 nm, and a gated GaAs photocathode-based detector was used for detection with quantum efficiency in the range of 20% in the wavelengths of interest. Our results indicate that our approach provides quantitative detection with linearity over at least two orders of magnitude that is achieved without the need for Internal Standardization Method, and improved limits of detection. In particular, fluorine has been detected for concentration values down to 0.03 wt.% Definite spectral assignment revealing all major emission lines centered around 837 nm for F and 687 nm for Cl has been obtained for the first time in Laser-induced breakdown spectroscopy application.

  7. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    NASA Astrophysics Data System (ADS)

    Mat?jí?ek, J.; Kavka, T.; Bertolissi, G.; Ctibor, P.; Vilémová, M.; Mušálek, R.; Nevrlá, B.

    2013-06-01

    Tungsten-based coatings have potential application in the plasma-facing components in future nuclear fusion reactors. By the combination of refractory tungsten with highly thermal conducting copper, or steel as a construction material, functionally graded coatings can be easily obtained by plasma spraying, and may result in the development of a material with favorable properties. During plasma spraying of these materials in the open atmosphere, oxidation is an important issue, which could have adverse effects on their properties. Among the means to control it is the application of inert gas shrouding, which forms the subject of this study and represents a lower-cost alternative to vacuum or low-pressure plasma spraying, potentially applicable also for spraying of large surfaces or spacious components. It is a continuation of recent studies focused on the effects of various parameters of the hybrid water-argon torch on the in-flight behavior of copper and tungsten powders and the resultant coatings. In the current study, argon shrouding with various configurations of the shroud was applied. The effects of torch parameters, such as power and argon flow rate, and powder morphology were also investigated. Their influence on the particle in-flight behavior as well as the structure, composition and properties of the coatings were quantified. With the help of auxiliary calculations, the mass changes of the powder particles, associated with oxidation and evaporation, were assessed.

  8. Characterisation of the surface thermodynamic properties of cement components by inverse gas chromatography at infinite dilution

    SciTech Connect

    Perruchot, Christian [Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS) Universite Paris 7- Denis. Diderot, 1 Rue Guy de la Brosse, 75005 Paris (France); Chehimi, Mohamed M. [Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS) Universite Paris 7- Denis. Diderot, 1 Rue Guy de la Brosse, 75005 Paris (France); Vaulay, Marie-Josephe [Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS) Universite Paris 7- Denis. Diderot, 1 Rue Guy de la Brosse, 75005 Paris (France); Benzarti, Karim [Laboratoire Central des Ponts et Chaussees (LCPC), 58 Boulevard Lefevre, 75732 Paris Cedex 15 (France)]. E-mail: benzarti@lcpc.fr

    2006-02-15

    The surface thermodynamic properties of three main inorganic compounds formed during hydration of Portland cement: calcium hydroxide (Ca(OH){sub 2}), ettringite (3CaO.Al{sub 2}O{sub 3}.3CaSO{sub 4}.32H{sub 2}O) and calcium-silicate-hydrates (C-S-H), respectively, and one mineral filler: calcium carbonate (CaCO{sub 3}), have been characterised by inverse gas chromatography at infinite dilution (IGC-ID) at 35 deg. C. The thermodynamic properties have been investigated using a wide range of non-polar (n-alkane series), Lewis acidic (CH{sub 2}Cl{sub 2} and CHCl{sub 3}), Lewis basic (diethyl ether) and aromatic (benzene) and n-alkene series molecular probes, respectively. The tested samples are fairly high surface energy materials as judged by the high dispersive contribution to the total surface energy (the dispersive components {gamma} {sub s} {sup d} range from 45.6 up to 236.2 mJ m{sup -2} at 35 deg. C) and exhibit amphoteric properties, with a predominant acidic character. In the case of hydrated components (i.e. ettringite and C-S-H), the surface thermodynamic properties have been determined at various temperatures (from 35 up to 120 deg. C) in order to examine the influence of the water content. The changes of both dispersive and specific components clearly demonstrate that the material surface properties are activated with temperature. The changes in the acid-base properties are correlated with the extent of the overall water loss induced by the thermal treatment as demonstrated by thermogravimetric analysis (TGA). The elemental surface composition of these compounds has been determined by X-ray photoelectron spectroscopy (XPS)

  9. Emission characteristics and parameters of gas-discharge plasma in mixtures of heavy inert gases with chlorine

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Malinin, A. N.

    2009-04-01

    The ultraviolet (UV) radiation from longitudinal glow-discharge plasma in three- and four-component mixtures of argon, krypton, and xenon with chlorine has been investigated. The total radiation of Ar, Kr, and Xe monochlorides and chlorine molecules in the spectral range 170-310 nm has been optimized with respect to the composition and the pressure of gas mixtures, as well as the discharge current. The mean output power, the electric power of discharge, and the efficiency of a broadband low-pressure exciplex halogen lamp have been determined. Parameters of the glow discharge in Ar-Kr-Cl2 and Kr-Xe-Cl2 mixtures have been simulated numerically. The electron energy distribution functions have been determined through the solution of the Boltzmann kinetic equation. These functions have been used to calculate the plasma parameters, namely, electron transfer characteristics, specific losses of discharge power for electronic processes, and ionization and attachment coefficients.

  10. Screening for key odorants in Moroccan green olives by gas chromatography-olfactometry/aroma extract dilution analysis.

    PubMed

    Iraqi, Rafika; Vermeulen, Catherine; Benzekri, Amale; Bouseta, Amina; Collin, Sonia

    2005-02-23

    "Spanish style" Moroccan green table olives were screened for potent odorants by gas chromatography-olfactometry/aroma extraction dilution analysis of a representative Likens-Nickerson extract. (Z)-3-Hexenal [flavor dilution factor (FD) = 256], (E,E)-2,4-decadienal (FD = 128), and (E,Z)-2,4-decadienal (FD = 64) were revealed to confer green and coriander/paraffin oil odors to both fruit and oil extracts, whereas guaiacol (FD = 128) imparted a bad olive, phenolic note. Methional (3-methylthiopropionaldehyde, FD = 128) and several terpenes (FD

  11. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    PubMed

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 ?g m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising. PMID:23790592

  12. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to 13% oxygen by volume.

  13. Inert gas ion source program

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1978-01-01

    THe original 12 cm hexagonal magneto-electrostatic containment discharge chamber has been optimized for argon and xenon operation. Argon mass utilization efficiencies of 65 to 77 percent were achieved at keeper-plus-main discharge energy consumptions of 200 to 458 eV/ion, respectively. Xenon performance of 84 to 96 percent mass utilization was realized at 203 to 350 eV/ion. The optimization process and test results are discussed.

  14. Inert gas ion thruster development

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Two 12 cm magneto-electrostatic containment (MESC) ion thrusters were performance mapped with argon and xenon. The first, hexagonal, thruster produced optimized performance of 48.5to 79 percent argon mass utilization efficiencies at discharge energies of 240 to 425 eV/ion, respectively, Xenon mass utilization efficiencies of 78 to 95 percent were observed at discharge energies of 220 to 290 eV/ion with the same optimized hexagonal thruster. Changes to the cathode baffle reduced the discharge anode potential during xenon operation from approximately 40 volts to about 30 volts. Preliminary tests conducted with the second, hemispherical, MESC thruster showed a nonuniform anode magnetic field adversely affected thruster performance. This performance degradation was partially overcome by changes in the boundary anode placement. Conclusions drawn the hemispherical thruster tests gave insights into the plasma processes in the MESC discharge that will aid in the design of future thrusters.

  15. Ab initio potential energy surface for the carbon dioxide molecule pair and thermophysical properties of dilute carbon dioxide gas

    NASA Astrophysics Data System (ADS)

    Hellmann, Robert

    2014-10-01

    A four-dimensional intermolecular potential energy surface (PES) for two rigid carbon dioxide molecules was determined from quantum-chemical ab initio calculations. Interaction energies for 1229 CO2-CO2 configurations were computed at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. An analytical site-site potential function with seven sites per CO2 molecule was fitted to the interaction energies. The PES was validated by calculating the second virial coefficient as well as viscosity and thermal conductivity in the dilute-gas limit.

  16. Partial inerting—an additional degree of freedom in dust explosion protection

    Microsoft Academic Search

    Rolf K Eckhoff

    2004-01-01

    When applying partial inerting the gas (most often air) in which the explosible dust is dispersed is mixed with a fraction of inert gas (e.g. nitrogen) considerably smaller than that required for complete inerting. This reduces both the explosibility and the ignition sensitivity of the dust cloud. The effects on KSt (explosion violence) and MIE (minimum ignition energy) are particularly

  17. Superscaling in dilute Fermi gas and its relation to general properties of the nucleon momentum distribution in nuclei

    E-print Network

    A. N. Antonov; M. V. Ivanov; M. K. Gaidarov; E. Moya de Guerra

    2007-03-01

    The superscaling observed in inclusive electron scattering is described within the dilute Fermi gas model with interaction between the particles. The comparison with the relativistic Fermi gas (RFG) model without interaction shows an improvement in the explanation of the scaling function $f(\\psi ')$ in the region $\\psi ' < -1$, where the RFG result is $f(\\psi ') = 0$. It is found that the behavior of $f(\\psi ')$ for $\\psi ' < -1$ depends on the particular form of the general power-law asymptotics of the momentum distribution $n(k)\\sim 1/ k^{4+m}$ at large $k$. The best agreement with the empirical scaling function is found for $m\\simeq 4.5$ in agreement with the asymptotics of $n(k)$ in the coherent density fluctuation model where $m = 4$. Thus, superscaling gives information about the asymptotics of $n(k)$ and the NN forces.

  18. Effect of inert propellant injection on Mars ascent vehicle performance

    NASA Technical Reports Server (NTRS)

    Colvin, James E.; Landis, Geoffrey A.

    1992-01-01

    A Mars ascent vehicle is limited in performance by the propellant which can be brought from Earth. In some cases the vehicle performance can be improved by injecting inert gas into the engine, if the inert gas is available as an in-situ resource and does not have to be brought from Earth. Carbon dioxide, nitrogen, and argon are constituents of the Martian atmosphere which could be separated by compressing the atmosphere, without any chemical processing step. The effect of inert gas injection on rocket engine performance was analyzed with a numerical combustion code that calculated chemical equilibrium for engines of varying combustion chamber pressure, expansion ratio, oxidizer/fuel ratio, and inert injection fraction. Results of this analysis were applied to several candidate missions to determine how the required mass of return propellant needed in low Earth orbit could be decreased using inert propellant injection.

  19. Approaches of aroma extraction dilution analysis (AEDA) for headspace solid phase microextraction and gas chromatography-olfactometry (HS-SPME-GC-O): Altering sample amount, diluting the sample or adjusting split ratio?

    PubMed

    Feng, Yunzi; Cai, Yu; Sun-Waterhouse, Dongxiao; Cui, Chun; Su, Guowan; Lin, Lianzhu; Zhao, Mouming

    2015-11-15

    Aroma extract dilution analysis (AEDA) is widely used for the screening of aroma-active compounds in gas chromatography-olfactometry (GC-O). In this study, three aroma dilution methods, (I) using different test sample volumes, (II) diluting samples, and (III) adjusting the GC injector split ratio, were compared for the analysis of volatiles by using HS-SPME-AEDA. Results showed that adjusting the GC injector split ratio (III) was the most desirable approach, based on the linearity relationships between Ln (normalised peak area) and Ln (normalised flavour dilution factors). Thereafter this dilution method was applied in the analysis of aroma-active compounds in Japanese soy sauce and 36 key odorants were found in this study. The most intense aroma-active components in Japanese soy sauce were: ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl 4-methylpentanoate, 3-(methylthio)propanal, 1-octen-3-ol, 2-methoxyphenol, 4-ethyl-2-methoxyphenol, 2-methoxy-4-vinylphenol, 2-phenylethanol, and 4-hydroxy-5-ethyl-2-methyl-3(2H)-furanone. PMID:25976996

  20. EFFECTS OF H2O AND CO2 DILUTION ON THE CATALYTIC AND GAS-PHASE COMBUSTION OF METHANE OVER PLATINUM AT ELEVATED PRESSURES

    Microsoft Academic Search

    MICHAEL REINKE; JOHN MANTZARAS; ROLF BOMBACH; SABINE SCHENKER; NICLAS TYLLI; KONSTANTINOS BOULOUCHOS

    2007-01-01

    The impact of large exhaust gas dilution (up to 59.5% H2O and 30.3% CO2 per vol.) on the heterogeneous (catalytic) and homogeneous (gas-phase) steady combustion of fuel-lean CH4\\/O2\\/N2 mixtures over platinum has been investigated experimentally and numerically at pressures of 5 to 14 bar. In situ, one-dimensional Raman measurements of major gas-phase species concentrations and planar laser induced fluorescence (LIF)

  1. Development of a new method for the determination of thyroxine in serum based on isotope dilution gas chromatography mass spectrometry.

    PubMed

    Thienpont, L M; De Brabandere, V I; Stöckl, D; De Leenheer, A P

    1994-08-01

    A new gas chromatographic/mass spectrometric method in combination with isotope dilution for the determination of thyroxine in serum is described. Special attention was paid to the methylation step of thyroxine, which was investigated using methanolic HCl, dimethylformamide/dimethylacetal and diazomethane, the latter giving the best results in terms of reproducible isotope ratios. For internal standardization, (13C6)-thyroxine was dissolved in fraction V human albumin solution (70 g l-1). The internal standard-in-albumin solution was mixed with known amounts of thyroxine standard, dissolved in 0.05 M Na2HPO4 buffer at pH 11.6, to give isotope ratios of 0.75, 1.00 and 1.25. The same internal standard solution was also used for isotope dilution of the unknown serum samples. The volume of serum was adapted to give a 1:1 isotope ratio. Sample pretreatment consisted of protein precipitation and a two-step liquid/liquid extraction procedure. After methylation of unlabelled and labelled thyroxine with diazomethane and perfluoroacylation with pentafluoropropionic anhydride and heptafluorobutyric anhydride, respectively, mass spectrometric monitoring was done at m/z 951/957 and 1001/1007. Quantitative determination of thyroxine in five serum samples in duplicate, during three consecutive days, showed a mean overall imprecision of 1.0% and a deviation of +0.4% from the target value as determined by a definitive method. PMID:7918690

  2. Simultaneous determination of alachlor, metolachlor, atrazine, and simazine in water and soil by isotope dilution gas chromatography/mass spectrometry.

    PubMed

    Huang, L Q

    1989-01-01

    A multiresidue method was developed for the simultaneous determination of low parts per billion (ppb) concentrations of the herbicides alachlor, metolachlor, atrazine, and simazine in water and soil using isotope dilution gas chromatography/mass spectrometry (GC/MS). Known amounts of 15N,13C-alachlor and 2H5-atrazine were added to each sample as internal standards. The samples were then prepared by a solid phase extraction with no further cleanup. A high resolution GC/low resolution MS system with data acquisition in selected ion monitoring mode was used to quantitate herbicides in the extract. The limit of detection was 0.05 ppb for water and 0.5 ppb for soil. Accuracy greater than 80% and precision better than 4% was demonstrated with spiked samples. PMID:2651394

  3. Helium dilution effect on hydrogen permeation in 316L stainless steel and nickel-base heat-resistant alloys

    NASA Astrophysics Data System (ADS)

    Kishimoto, N.; Tanabe, T.; Suzuki, T.; Yoshida, H.

    1985-01-01

    Effects of inert-gas dilution on hydrogen permeation have been investigated in 316L stainless steel, Inconel 600, Inconel 750, Nimonic 80A and Hastelloy X at 1173 K and 1073 K, by employing a gas-flow system. We used gas mixtures of hydrogen and helium, whose hydrogen concentration ranged from 10 -5 to 10 -1. For the steady-state permeation, the dilution of hydrogen caused no anomalous effects and the permeation rate conformed to Sieverts' law. However, for the transient state, the hydrogen permeation was retarded by the dilution with helium. The retardation effect is discussed in terms of an adsorption model and explained by a decrease in sticking probability at the alloy surface with the dissociative adsorption of hydrogen.

  4. Accurate measurements of infinite dilution activity coefficients using gas chromatography with static-wall-coated open-tubular columns.

    PubMed

    Xu, Qianqian; Su, Baogen; Luo, Xinyi; Xing, Huabin; Bao, Zongbi; Yang, Qiwei; Yang, Yiwen; Ren, Qilong

    2012-11-01

    Wall-coated open-tubular (WCOT) columns provide higher column efficiency and lower solute interfacial adsorption effect than packed columns. However, previous efforts used to measure the infinite dilution activity coefficient (?(?)) via a chromatographic technique have used packed columns, because the low carrier gas flow rate (U) and the small stationary phase amount (n(2)) in WCOT columns raise large errors. By rationally revising the ?(?)-calculation equation for static-wall-coated open-tubular column, we observed that U and n(2) are not necessarily needed and the resulting error could be reduced, and WCOT column gas chromatography subsequently became a superior method for the accurate ?(?) determination. In this study, we validate our revised ?(?)-calculation equation by measuring ?(?) in an ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate system, in which 55 organic compounds covering a wide range of functional groups were used as probe solutes and their ?(?) values in the ionic liquid were determined at 40.0, 50.0, and 60.0 °C. Experimental error analysis shows that our revised equation remarkably reduces the error compared to the common ?(?)-calculation equation. Our data is consistent with previously reported values obtained via other techniques, which further proves the credibility of our revised equation. The accurately determined ?(?) values can be directly used to calculate the partial molar excess enthalpy, selectivity, and capacity, which will benefit for the rapid screening of solvents (especially ionic liquids) in separation approaches. PMID:23039405

  5. One-loop inert and pseudo-inert minima

    E-print Network

    Ferreira, P M

    2015-01-01

    We analyse the differences between inert and pseudo-inert vacua in the 2HDM, both at tree-level and one-loop. The validity of tree-level formulae for the relative depth of the potential at both minima is studied. The one-loop analysis shows both minima can coexist in regions of parameter space forbidden at tree-level.

  6. One-loop inert and pseudo-inert minima

    E-print Network

    P. M. Ferreira; B. Swiezewska

    2015-06-03

    We analyse the differences between inert and pseudo-inert vacua in the 2HDM, both at tree-level and one-loop. The validity of tree-level formulae for the relative depth of the potential at both minima is studied. The one-loop analysis shows both minima can coexist in regions of parameter space forbidden at tree-level.

  7. Determination of 3-quinuclidinyl benzilate (QNB) and its major metabolites in urine by isotope dilution gas chromatography/mass spectrometry.

    PubMed

    Byrd, G D; Paule, R C; Sander, L C; Sniegoski, L T; White, E; Bausum, H T

    1992-01-01

    In response to the scheduled destruction of U.S. military stockpiles of the hallucinogenic agent 3-quinuclidinyl benzilate (QNB), a specific confirmatory test for human exposure to QNB was developed. The amount of the parent compound in the urine as well as the two major metabolites, 3-quinuclidinol (Q) and benzilic acid (BA), was determined because the relationship between QNB dose and levels of QNB and its metabolites in human urine is not known. QNB was determined in urine samples spiked at a target level of 0.5 ng/mL, and the metabolites BA and Q were determined at a target level of 5 ng/mL. The method uses solid-phase extraction to isolate each analyte from the urine and isotope dilution gas chromatography/mass spectrometry for quantitation. Each analyte is converted to its trimethylsilyl derivative for analysis. The analytical method was tested on eight different urine samples spiked with known amounts of the analytes near the target levels, at 10 times the target levels, and blank (unspiked) urine samples. The variabilities in the method are for the most part evenly distributed between three imprecision categories: GC/MS measurement, sample preparation, and the urine samples. The total imprecision (1 standard deviation) of a single measurement is about 15% of the value for each analyte. PMID:1522714

  8. Isotope dilution gas chromatography-mass spectrometry in the determination of benzene, toluene, styrene and acrylonitrile in mainstream cigarette smoke.

    PubMed

    Byrd, G D; Fowler, K W; Hicks, R D; Lovette, M E; Borgerding, M F

    1990-03-23

    A cryogenic trapping method with isotope dilution gas chromatography-mass spectrometry analysis has been developed for the determination of benzene, toluene, styrene and acrylonitrile in mainstream vapor phase cigarette smoke. The method is simple, direct, and quantitative. Vapor phase samples are collected cryogenically in a series of four traps following removal of the particulate phase with a Cambridge filter pad. For all four analytes, 75-85% of the total amounts recovered were found in the initial trap and less than 1% in the final trap. Assessment of instrumental precision by multiple injections of a sample gave relative standard deviations of less than 2%. Linear calibration for all analytes over the analysis range gave an r2 value greater than 0.99 with average relative standard deviations at the mean ranging from 1.4 to 8.2%. The cigarettes analyzed include a reference cigarette (Kentucky 1R4F), a commercial ultra-low "tar" mentholated cigarette, and two cigarettes that heat but do not burn tobacco. The values determined for the four analytes in the 1R4F samples are comparable to reported values of similar cigarettes. The cigarettes which heat rather than burn tobacco yield less of all four analytes compared to the other cigarettes in the study. PMID:2185256

  9. Analysis of organophosphate flame retardants and plasticisers in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry.

    PubMed

    Teo, Tiffany L L; McDonald, James A; Coleman, Heather M; Khan, Stuart J

    2015-10-01

    The widespread use of organophosphate flame retardants (PFRs) in commercial products have led to their increased presence in the environment. In this study, a rapid and reliable analytical method was developed for the analysis of five PFRs in water using gas chromatography tandem mass spectrometry (GC-MS/MS) with electron ionisation (EI) and a run time of 13min. The PFRs investigated were tributyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP) and triphenyl phosphate (TPP). Solid phase extraction (SPE) was undertaken to extract and concentrate target analytes from aqueous matrices. All water samples were extracted from a volume of 500mL. Isotopically labelled compounds were used to account for analytical variability and for accurate quantification by isotope dilution. Method recoveries for all compounds were above 80% in all tested water samples. Method detection limits for all target analytes ranged from 0.3 to 24ng/L in ultrapure water, tap water, seawater, surface water, secondary effluent and swimming pool water. Validation of this method confirmed satisfactory method stability with less than 1% coefficients of variation, verifying that this approach produced good reproducibility. PMID:26078137

  10. Titanium-sponge bed to scavenge tritium from inert gases

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masabumi; Kido, Hidetoshi; Kotoh, Kenji; Sugisaki, Masayasu

    1983-03-01

    Chemical getters can be used to scavenge hydrogen isotopes from inert gases in HTGRs or fusion reactors. It is necessary that getter materials have a large gas-solid mass transfer capacity coefficient for scavenging hydrogen isotopes from inert gases. Absorption and desorption characteristics of hydrogen isotopes in a titanium sponge bed is examined in this study. Discussions are mainly based on data obtained from breakthrough curves. Experimental results show that the titanium-sponge bed is a good candidate material for scavenging and fixation of tritium from inert gases.

  11. Isotope dilution gas chromatography/mass spectrometry method for the determination of methionine sulfoxide in protein.

    PubMed

    Sochaski, M A; Jenkins, A J; Lyons, T J; Thorpe, S R; Baynes, J W

    2001-10-01

    We have developed a new technique for quantifying methionine sulfoxide (MetSO) in protein to assess levels of oxidative stress in physiological systems. In this procedure, samples are hydrolyzed with methanesulfonic acid (MSA) in order to avoid the conversion of MetSO to methionine (Met) that occurs during hydrolysis of protein in HCl. The hydrolysate is fractionated on a cation exchange column to remove the nonvolatile MSA from amino acids, and the amino acids are then derivatized as their trimethylsilyl esters for analysis by selected ion monitoring-gas chromatography/mass spectrometry. The limit of detection of the assay is 200 pmol of MetSO per analysis, and the interassay coefficient of variation is 5.8%. Compared to current methods, the SIM-GC/MS assay avoids the potential for conversion of Met to MetSO during sample preparation, requires less sample preparation time, has lower variability, and uses mass spectrometry for sensitive and specific analyte detection. PMID:11605844

  12. Dynamics of correlations in a dilute Bose gas following an interaction quench

    NASA Astrophysics Data System (ADS)

    Natu, Stefan S.; Mueller, Erich J.

    2013-05-01

    We calculate the dynamics of one- and two-body correlation functions in a homogeneous Bose gas at zero temperature following a sudden change in the interaction strength, in the continuum and in a lattice. By choosing suitable examples, we highlight features in the correlation functions that emerge due to the interactions and the band structure. We find that interactions dramatically change the way correlations build up and subsequently decay following a quench. For example, the Bogoliubov dispersion induces a crossover from diffusive spreading of short-range correlations to ballistic spreading of longer-range correlations. In the lattice, the correlation functions develop additional features absent in the continuum. Most strikingly, the lattice induces an additional velocity scale and some features propagate with that velocity. Finally, we discuss the ultra-short-range properties of the density-density correlation function following a quench, and the implications for experiments using this quantity to probe the “contact.” Our calculations, which can be readily tested in current experiments, suggest that the dynamics of correlations may be a useful tool for extracting many-body parameters.

  13. Isotope dilution determination of polycyclic aromatic hydrocarbons in olive pomace oil by gas chromatography-mass spectrometry.

    PubMed

    Diletti, Gianfranco; Scortichini, Giampiero; Scarpone, Rossana; Gatti, Giuseppe; Torreti, Luigi; Migliorati, Giacomo

    2005-01-14

    A gas chromatographic (GC) method with mass spectrometry detection (MS) for the determination of eight polycyclic aromatic hydrocarbons (PAHs) in olive pomace oil has been developed. The oil was diluted with n-pentane and extracted by liquid-liquid partition with dimethyl sulphoxide (DMSO). After water addition and back-extraction with cyclohexane, a thin-layer chromatography on silica gel was performed as a further purification step. The PAHs spot was scraped off from the plate and the final extract was concentrated and analysed by GC-MS in full scan mode. The eight PAHs under investigation were determined in the presence of the corresponding labelled compounds added as internal standards to the sample at the beginning of the analytical process. The identified PAHs were then quantified by the isotope dilution methodology assuring the compensation of the concentration of each analyte for any variation in the sample preparation. The method precision was satisfactory with relative standard deviation (R.S.D.) values in the range 3.6-12.7% for all PAHs. The average recovery rates ranged from 69.0 to 97.5%. Accuracy was also calculated for benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene by analysing a certified reference material (CRM 458, coconut oil) with adequate results. All response curves exhibited a linear fit from 0.1 to 10 microg ml(-1) and the determination coefficients R2 were better than 0.9942. The limits of detection (0.1-0.4 microg kg(-1)) were acceptable when compared with the maximum permitted limit of 2 microg kg(-1) for each of the eight considered PAHs and 5 microg kg(-1) for the sum of the eight PAHs established by the Italian legislation. Measurement uncertainty was finally calculated identifying and quantifying the uncertainty components of the analytical process. The relative expanded uncertainties (Uc), expressed as percent values were in the range 8.5-11.4% thus appropriate for residues quantification in the range of concentrations considered in the present study. PMID:15679162

  14. Measurement of dialkyl phosphate metabolites of organophosphorus pesticides in human urine using lyophilization with gas chromatography-tandem mass spectrometry and isotope dilution quantification

    Microsoft Academic Search

    Roberto Bravo; Lisa M Caltabiano; Gayanga Weerasekera; Ralph D Whitehead; Carolina Fernandez; Larry L Needham; Asa Bradman; Dana B Barr

    2004-01-01

    Urinary dialkylphosphate (DAP) metabolites have been used to estimate human exposure to organophosphorus pesticides. We developed a method for quantifying the six DAP urinary metabolites of at least 28 organophosphorus pesticides using lyophilization and chemical derivatization followed by analysis using isotope-dilution gas chromatography–tandem mass spectrometry (GC–MS\\/MS). Urine samples were spiked with stable isotope analogues of the DAPs and the water

  15. Simultaneous detection of multiple hydroxylated polychlorinated biphenyls from a complex tissue matrix using gas chromatography/isotope dilution mass spectrometry.

    PubMed

    Eguchi, Akifumi; Nomiyama, Kei; Ochiai, Mari; Mizukawa, Hazuki; Nagano, Yasuko; Nakagawa, Katsuhiro; Tanaka, Kouki; Miyagawa, Haruhiko; Tanabe, Shinsuke

    2014-01-01

    In this study, we developed a comprehensive, highly sensitive, and robust method for determining 53 congeners of three to eight chlorinated OH-PCBs in liver and brain samples by using isotope dilution gas chromatography (GC) coupled with electron capture negative ionization mass spectrometry (ECNI-MS). These results were compared with those from GC coupled with electron ionization high-resolution mass spectrometry (EI-HRMS). Clean-up procedures for analysis of OH-PCBs homologs in liver and brain samples involve a pretreatment step consisting of acetonitrile partition and 5% hydrated silica-gel chromatography before derivatization. Recovery rates of tri- and tetra-chlorinated OH-PCBs in the acetonitrile partition method followed by the 5% hydrated silica-gel column (82% and 91%) were higher than conventional sulfuric acid treatment (2.0% and 3.5%). The method detection limits of OH-PCBs for each matrix obtained by GC/ECNI-MS and GC/EI-HRMS were 0.58-2.6 pg g(-1) and 0.36-1.6 pg g(-1) wet wt, respectively. Recovery rates of OH-PCB congeners in spike tests using sample matrices (10 and 50 pg) were 64.7-117% (CV: 4.7-14%) and 70.4-120% (CV: 2.3-12%), respectively. This analytical method may enable the simultaneous detection of various OH-PCBs from complex tissue matrices. Furthermore, this method allows more comprehensive assessment of the biological effects of OH-PCB exposure on critical organs. PMID:24274296

  16. Solid-phase microextraction and gas chromatography olfactometry analysis of successively diluted samples. A new approach of the aroma extract dilution analysis applied to the characterization of wine aroma.

    PubMed

    Martí, Maria Pilar; Mestres, Montserrat; Sala, Cristina; Busto, Olga; Guasch, Josep

    2003-12-31

    The relationship between the composition and the aroma of the wine can be established by using gas chromatography with olfactometric detection (sniffing or GCO), which combines the chromatographic response with the human nose response. To evaluate the contribution of the odor compounds in wine aroma, we designed a new approach of the aroma extract dilution analysis (AEDA) that lies in the GCO analysis of serially diluted wine samples using headspace solid-phase microextraction (HS-SPME) as the extraction technique. The fiber coating used was Flex divinyl-carboxen-polydimethylsiloxane. The method developed was applied to determine the aromatic composition of a red Grenache wine from Priorat (Spain). The method allows 38 important odorants to be determined in the AEDA study, 30 of them precisely identified. These results are similar to those reported by other studies related to this variety of wine. HS-SPME is a suitable technique to obtain representative extracts of wine aroma with several advantages such as simplicity, speediness, and little sample manipulation. PMID:14690365

  17. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.

    PubMed

    Qian, Yangyang; Zhang, Jie; Wang, Jie

    2014-12-01

    The pyrolysis of rice husk was conducted in a fixed-bed reactor with a sweeping nitrogen gas to investigate the effects of pressure on the pyrolytic behaviors. The release rates of main gases during the pyrolysis, the distributions of four products (char, bio-oil, water and gas), the elemental compositions of char, bio-oil and gas, and the typical compounds in bio-oil were determined. It was found that the elevation of pressure from 0.1MPa to 5.0MPa facilitated the dehydration and decarboxylation of bio-oil, and the bio-oils obtained under the elevated pressures had significantly less oxygen and higher calorific value than those obtained under atmospheric pressure. The former bio-oils embraced more acetic acid, phenols and guaiacols. The elevation of pressure increased the formation of CH4 partially via the gas-phase reactions. An attempt is made in this study to clarify "the pure pressure effect" and "the combined effect with residence time". PMID:25463787

  18. A common single-site Pt(II)-O(OH)x- species stabilized by sodium on "active" and "inert" supports catalyzes the water-gas shift reaction.

    PubMed

    Yang, Ming; Liu, Jilei; Lee, Sungsik; Zugic, Branko; Huang, Jun; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria

    2015-03-18

    While it has long been known that different types of support oxides have different capabilities to anchor metals and thus tailor the catalytic behavior, it is not always clear whether the support is a mere carrier of the active metal site, itself not participating directly in the reaction pathway. We report that catalytically similar single-atom-centric Pt sites are formed by binding to sodium ions through -O ligands, the ensemble being equally effective on supports as diverse as TiO2, L-zeolites, and mesoporous silica MCM-41. Loading of 0.5 wt % Pt on all of these supports preserves the Pt in atomic dispersion as Pt(II), and the Pt-O(OH)x- species catalyzes the water-gas shift reaction from ?120 to 400 °C. Since the effect of the support is "indirect," these findings pave the way for the use of a variety of earth-abundant supports as carriers of atomically dispersed platinum for applications in catalytic fuel-gas processing. PMID:25746682

  19. Effect of isothermal dilution on emission factors of organic carbon and n-alkanes in the particle and gas phases of diesel exhaust

    NASA Astrophysics Data System (ADS)

    Fujitani, Yuji; Saitoh, Katsumi; Fushimi, Akihiro; Takahashi, Katsuyuki; Hasegawa, Shuich; Tanabe, Kiyoshi; Kobayashi, Shinji; Furuyama, Akiko; Hirano, Seishiro; Takami, Akinori

    2012-11-01

    To investigate the effect of isothermal dilution (30 °C) on emission factors (EFs) of semivolatile and nonvolatile compounds of heavy-duty diesel exhaust, we measured EFs for particulate matter (PM), organic carbon (OC), and elemental carbon (EC) in the particle phase, and EFs for n-alkanes in both the particle phase and the gas phase of exhaust produced under high-idle engine operating conditions at dilution ratios (DRs) ranging from 8 to 1027. The EC EFs did not vary with DR, whereas the OC EFs in the particle phase determined at DR = 1027 were 13% of the EFs determined at DR = 8, owing to evaporation of organic compounds. Using partitioning theory and n-alkane EFs measured at DR = 14 and 238, we calculated the distributions of compounds between the particle and gas phases at DR = 1760, which corresponds to the DR for tailpipe emissions as they move from the tailpipe to the roadside atmosphere. The gas-phase EF of a compound with a vapor pressure of 10-7 Pa was 0.01 ?g kg-1-fuel at DR = 14, and this value is 1/330 the value derived at DR = 1760. Our results suggest that the EFs of high-volatility compounds in the particle phase will be overestimated and that the EFs of low-volatility compounds in the gas phase will be underestimated if the estimates are derived from data obtained at the low DRs and they are applied to the real world. Therefore, extrapolation from EFs derived at low DR values to EFs at atmospherically relevant DRs will be a source of error in predictions of the concentrations of particulate matter and gas-phase precursors to secondary organic aerosols in air quality models.

  20. Determination of atrazine, lindane, pentachlorophenol, and diazinon in water and soil by isotope dilution gas chromatography\\/mass spectrometry

    Microsoft Academic Search

    Viorica. Lopez-Avila; Pat. Hirata; Susan. Kraska; Michael. Flanagan; John H. Taylor; Stephen C. Hern

    1985-01-01

    This paper describes an isotope dilution GC\\/MS technique for the analysis of low-parts-per-billion concentrations of atrazine, lindane, pentachlorophenol, and diazinon in water and soil. Known amounts of stable-labeled isotopes such as atrazine-dâ, lindane-dâ, pentachlorophenol-¹³Câ, and diazinon-dââ are spiked into each sample prior to extraction. Water samples are extracted with methylene chloride; soil samples are extracted with acetone\\/hexane. Analysis is performed

  1. Dilution-based emissions sampling from stationary sources: Part 2--Gas-fired combustors compared with other fuel-fired systems.

    PubMed

    England, Glenn C; Watson, John G; Chow, Judith C; Zielinska, Barbara; Chang, M C Oliver; Loos, Karl R; Hidy, George M

    2007-01-01

    With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results. PMID:17269233

  2. Gas chromatography-combustion-mass spectrometry with postcolumn isotope dilution for compound-independent quantification: its potential to assess HS-SPME procedures.

    PubMed

    Cueto Díaz, Sergio; Ruiz Encinar, Jorge; Sanz-Medel, Alfredo; García Alonso, J Ignacio

    2010-08-15

    A quadrupole GC-MS instrument with an electron ionization (EI) source has been modified to enable application of postcolumn isotope dilution analysis for the standardless quantification of organic compounds injected in the gas chromatograph. Instrumental modifications included the quantitative conversion of the separated compounds into CO(2), using a postcolumn combustion furnace, and the subsequent mixing of the gas with a constant flow of (13)CO(2) diluted in helium. The online measurement of the (12)CO(2)/(13)CO(2) (44/45) ratio in the EI-MS allowed us to obtain quantitative data without resorting to compound-specific standards. Validation of the procedure involved the analysis of standard solutions containing different families of organic compounds (C(9)-C(20) linear hydrocarbons, BTEX and esters) obtaining satisfactory results in all cases in terms of absolute errors (<6%) and precision (<4% RSD). The developed procedure showed excellent linearity over the range assayed (2 orders of magnitude) and adequate detection limits for carbon containing compounds (0.8 pg C s(-1)). The generic value of this compound-independent calibration approach was assessed by studying the quantitative performance of Head Space-Solid Phase Microextraction (HS-SPME). The proposed compound-independent quantification by EI-MS permits comparison of the performance of different fibers by assessing analyte recoveries with extreme robustness, simplicity, and precision. PMID:20704376

  3. Headspace stir bar sorptive extraction-gas chromatography/mass spectrometry characterization of the diluted vapor phase of cigarette smoke delivered to an in vitro cell exposure chamber.

    PubMed

    Kaur, Navneet; Cabral, Jean-Louis; Morin, André; Waldron, Karen C

    2011-01-14

    Advanced smoke generation systems, such as the Borgwaldt RM20S(®) smoking machine used in combination with the BAT exposure chamber, allow for the generation, dilution and delivery of fresh cigarette smoke to cell or tissue cultures for in vitro cell culture analyses. Recently, our group confirmed that the Borgwaldt RM20S(®) is a reliable tool to generate and deliver repeatable and reproducible exposure concentrations of whole smoke to in vitro cultures. However, the relationship between dose and diluted smoke components found within the exposure chamber has not been characterized. The current study focused on the development of a headspace stir bar sorptive extraction (HSSE) method to chemically characterize some of the vapor phase components of cigarette smoke generated by the Borgwaldt RM20S(®) and collected within a cell culture exposure chamber. The method was based on passive sampling within the chamber by HSSE using a Twister™ stir bar. Following exposure, sorbed analytes were recovered using a thermal desorption unit and a cooled injection system coupled to gas chromatograph/mass spectrometry for identification and quantification. Using the HSSE method, sixteen compounds were identified. The desorption parameters were assessed using ten reference compounds and the following conditions led to the maximal response: desorption temperature of 200°C for 2 min with cryofocussing temperature of -75°C. During transfer of the stir bars to the thermal desorption system, significant losses of analytes were observed as a function of time; therefore, the exposure-to-desorption time interval was kept at the minimum of 10±0.5 min. Repeatability of the HSSE method was assessed by monitoring five reference compounds present in the vapor phase (10.1-12.9% RSD) and n-butyl acetate, the internal standard (18.5% RSD). The smoke dilution precision was found to be 17.2, 6.2 and 11.7% RSD for exposure concentrations of 1, 2 and 5% (v/v) cigarette vapor phase in air, respectively. A linear response of analyte abundance was observed as a function of dilution. Extrapolation to 100% (v/v) cigarette vapor phase, i.e., undiluted smoke, gave yields for the five compounds ranging from 6 to 450 ng for 10 min exposure. PMID:21163485

  4. Infrared reflectivity spectra of gas-source molecular beam epitaxy grown dilute InNxAs1-x/InP (001)

    NASA Astrophysics Data System (ADS)

    Talwar, Devki N.; Yang, Tzuen-Rong; Hsiung Lin, Hao; Chuan Feng, Zhe

    2013-02-01

    Vibrational spectra of gas-source molecular beam epitaxy grown dilute InNxAs1-x/InP (001) alloys are obtained using a Fourier-transform infrared (IR) spectroscopy. A triply degenerate NAs local vibrational mode of Td-symmetry is observed near 438 cm-1 corresponding to the In-N bond energy. The analysis of composition dependent infrared reflectivity spectra in InNAs has predicted a two-phonon-mode behavior. In In(Ga)-rich GaInNAs alloys the observed splitting of the NAs local mode into a doublet for the NAs-Ga1(In1)In3(Ga3) pair-defect of C3v-symmetry is consistent with our simulated results based on a sophisticated Green's function theory.

  5. The growth of bunched and multi-circularly wrapped carbon nanotubes on bulk magnetic alloys by microwave enhanced hot-filament CVD with a dilute gas of ammonia

    NASA Astrophysics Data System (ADS)

    Miao, H. Y.; Lue, J. T.; Chen, S. K.; Tsau, C. H.; Ouyang, M. S.

    2005-02-01

    Bunched and multi-circularly wrapped carbon nanotubes (CNT) are observed to grow on alloy substrates based on iron group metals and copper by a microwave enhanced hot-filament method with a dilute gas of ammonia at a proper RF self-bias. The grown size of CNTs embodied in the grain sizes of conducting bulk alloy catalysts such as Cu-Ni, Cu-Fe, Cu-Co, and Cu-Ni-Fe-Co are controlled by a precursor time of hydrogen plasma etching. Species with different structural features and homogenization of CNTs samples are produced crucially attributed to various reactant gases and self-bias induced by the radio frequency field.

  6. Role of Ion Damage on Unintentional Ca Incorporation During the Plasma-Assisted Molecular-Beam Epitaxy Growth of Dilute Nitrides Using N2/Ar Source Gas Mixtures

    SciTech Connect

    Oye, M. M.; Bank, S. R.; Ptak, A. J.; Reedy, R. C.; Goorsky, M. S.; Holmes Jr., A. L.

    2008-05-01

    Unintentional Ca incorporation caused by Ca-contaminated substrate surfaces on as-purchased GaAs wafers are known to limit the efficiency of solar cells based on dilute nitride materials. This article focuses on further understanding the conditions and mechanisms by which these Ca impurities incorporate. Plasma-assisted molecular-beam epitaxy utilizing a 1% N{sub 2} in Ar precursor gas mixture was used to grow GaAs at 400 and 580 C, and GaN{sub 0.01}As{sub 0.99} at 400 C. Two plasma operating combinations of rf power and gas flow rate were used to generate different amounts and energies of both ions and other plasma species, while keeping nitrogen incorporation constant. The ions were characterized with a dual-grid, retarding-field ion energy analyzer, and the corresponding ion energy distributions are presented to correlate ions with Ca incorporation. When appropriate, dc-biased deflector plates were used to remove ions during growth. Secondary ion mass spectrometry was used to measure Ca in GaAs and GaN{sub 0.01}As{sub 0.99}. Ca incorporation was observed in the dilute nitride samples, but the effects of ions did not exceed other Ca incorporation mechanisms associated with defects due to both low temperature growth and nitrogen incorporation; however, different neutral active nitrogen species (atomic N and metastable N{sub 2}) may be a factor. Ca incorporation measured in GaAs grown at 400 C with a pure Ar plasma is predominantly due to defects associated with low temperature growth, as opposed to plasma damage caused by the ions. GaAs growths at 580 C without a plasma did not exhibit Ca incorporation, but growth at 580 C with ions from a pure Ar plasma caused Ca incorporation.

  7. Detection of Inert Gases by Cold Electron Emission from Carbon Nanotube Emitters

    NASA Astrophysics Data System (ADS)

    Kim, Seongjeen

    In this work, different from the typical gas sensors responding by gas adsorption on their surface, a new gas sensor using carbon nanotubes (CNTs) as electron emitters is introduced for detecting inert gases which hardly possess chemical or electrical adsorption in normal conditions. The proposed sensor works by figuring out the variation of the dark current and the initial breakdown voltage on Paschen's law under applied high voltage. As they depend on the gas composition and the pressure in a sealed chamber, it is possible to detect the identity and the concentration of unknown inert gas species.

  8. Dilution Control in Gas-Tungsten-Arc Welds Involving Superaustenitic Stainless Steels and Nickel-Based Alloys

    E-print Network

    DuPont, John N.

    -core compo- sition in the weld metal, as well as the concomitant corrosion IN order to compensate attempt to restore composition have been considered in some joining applica- weld-metal corrosion stainless steel, (the AL-6XN alloy) and two Ni-based filler metals (IN625 and IN622) using the gas

  9. Identification of odorants in frankincense (Boswellia sacra Flueck.) by aroma extract dilution analysis and two-dimensional gas chromatography-mass spectrometry/olfactometry.

    PubMed

    Niebler, Johannes; Buettner, Andrea

    2015-01-01

    Frankincense has been known, traded and used throughout the ages for its exceptional aroma properties, and is still commonly used in both secular and religious settings to convey a pleasant odor. Surprisingly, the odoriferous principle(s) underlying its unique odor profile have never been published. In this study, resin samples of Boswellia sacra Flueck. from both Somalia and Oman were investigated by aroma extract dilution analysis. In a comprehensive, odor-activity guided approach both chemo-analytical and human-sensory parameters were used to identify odor active constituents of the volatile fraction of B. sacra. Among the key odorants found were ?-pinene, ?-myrcene, linalool, p-cresol and two unidentified sesquiterpenoids. Overall, a total of 23 odorants were detected and analyzed by gas chromatography-olfactometry and heart-cut two-dimensional gas chromatography-mass spectrometry/olfactometry. The majority of the identified odorant compounds were oxygenated monoterpenes, along with some relevant mono- and sesquiterpenes and only one diterpenoid substance. Several of these compounds were reported here for the first time as odorous constituents in B. sacra. Identifying bioactive compounds might support a better understanding with regard to the potential benefits of frankincense, for example in aromatherapy or ecclesial settings. PMID:25468535

  10. Absolute quantification of peptides by isotope dilution liquid chromatography-inductively coupled plasma mass spectrometry and gas chromatography/mass spectrometry.

    PubMed

    Liu, Rui; Hou, Xiandeng; Lv, Yi; McCooeye, Margaret; Yang, Lu; Mester, Zoltán

    2013-04-16

    Absolute quantitation of peptides/proteins in dilute calibration solutions used in various diagnostic settings is a major challenge. Here we report the absolute quantitation of peptides by non-species-specific isotope dilution liquid chromatography-inductively coupled plasma mass spectrometry (ID LC-ICPMS) based on stoichiometric Eu tagging. The method was validated by species-specific isotope dilution gas chromatography/mass spectrometry (GC/MS) analysis of constituent amino acids of the target peptide. Quantitative labeling of bradykinin peptide was accomplished with a commercially available 2',2?-(10-(2-((2,5-dioxopyrrolidin-1-yl)oxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (DOTA-NHS-ester) and subsequently tagged with Eu. A (151)Eu-enriched spike was used for the non-species-specific ID LC-ICPMS determination of bradykinin. The non-species-specific ID LC-ICPMS method was cross-validated by a species-specific ID GC/MS approach, which is based on the determination of phenylalanine in bradykinin to derive the concentration of the peptide in the sample. The hydrolysis of the peptide into amino acids was achieved by microwave digestion with 4 M methanesulfonic acid, and derivatization of phenylalanine with methyl chloroformate (MCF) was performed prior to its detection by GC/MS based on a (13)C-enriched phenylalanine spike. The accuracy of the method was confirmed at various concentration levels with a typical precision of better than 5% relative standard deviation (RSD) at 20 pmol for non-species-specific ID LC-ICPMS and 500 pmol for species-specific ID GC/MS. A detection limit (3 SD) of 7.2 fmol estimated for ID LC-ICPMS with a 10 ?L injection volume from three procedure blanks was obtained for bradykinin, confirming the suitability of the method for the direct determination of peptides at trace levels. To the best of our knowledge, the proposed method is the first ICPMS peptide quantification strategy which employs an independent validation strategy using species-specific ID GC/MS for amino acid quantitation. PMID:23489086

  11. Quantification of carcinogenic 4- to 6-ring polycyclic aromatic hydrocarbons in human urine by solid-phase microextraction gas chromatography-isotope dilution mass spectrometry.

    PubMed

    Campo, Laura; Fustinoni, Silvia; Bertazzi, Pieralberto

    2011-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are pollutants found in living and working environments. The aim of this study was to develop a solid-phase microextraction (SPME) gas chromatography (GC)-isotope dilution mass spectrometry method for the quantification of 10 four- to six-ring PAHs in urine samples. Seven of the selected PAHs have been classified as carcinogenic. Under the final conditions, analytes were sampled with a 100-?m polydimethylsiloxane SPME fibre for 60 min at 80 °C and desorbed in the injection port of the GC at 270 °C. Fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene were separated using a highly arylene-modified phase capillary column and quantified by MS using eight deuterated PAHs as surrogate internal standards. Limits of quantification (LOQ) were in the 0.5- to 2.2-ng/L range. Validation showed linear dynamic ranges up to 340 ng/L, inter- and intra-run precisions <20%, and accuracies within 20% of spiked concentrations. Matrix effect evaluation and the use of control charts to monitor process performances showed that the isotope dilution approach allowed for the control of bias sources. Urinary PAHs were above or equal to LOQ, depending on different compounds, in 58-100% (min-max), 40-100% and 5-39% of samples from coke oven workers (n?=?12), asphalt workers (n?=?10) and individuals not occupationally exposed to PAHs (n?=?18), respectively. Chrysene was the most abundant PAH determined with median levels of 62.6, 6.9 and <0.6 ng/L, respectively. These results show that the method is suitable for quantifying carcinogenic PAHs in specimens from individuals with different levels of PAH exposure. PMID:21626187

  12. Validation of an isotope dilution gas chromatography-mass spectrometry method for combined analysis of oxysterols and oxyphytosterols in serum samples.

    PubMed

    Schött, Hans-Frieder; Lütjohann, Dieter

    2015-07-01

    We describe the validation of a method for the analysis of oxysterols, i.e. oxycholesterols and oxyphytosterols, in human serum using gas chromatography-mass spectrometry selected ion monitoring (GC-MS-SIM). Concentrations of 7?- and 7?-hydroxy-, and 7oxo-cholesterol, -campesterol, and -sitosterol as well as 4?-hydroxycholesterol and side-chain oxygenated 24S-, 25-, and 27-hydroxycholesterol were determined by isotope dilution methodology. After saponification at room temperature the oxysterols were extracted, separated from their substrates, cholesterol, campesterol, and sitosterol, by solid phase extraction, and subsequently derivatised to their corresponding trimethylsilyl-ethers prior to GC-MS-SIM. In order to prevent artificial autoxidation butylated hydroxytoluene and ethylenediaminetetraacetic acid were added. The validation of the method was performed according to the International Conference on Harmonisation guidance, including limits of detection and quantification, ranges, recovery and precision. Due to improved instrumental settings and work-up procedure, limits of detection and quantification ranged between 8.0-202.0pg/mL and 28.0-674pg/mL, respectively. Recovery data in five calibration points varied between 91.9% and 116.8% and in serum samples between 93.1% and 118.1%. The mean coefficient of variation (CV) for the recovery of all compounds was <10%. Well satisfying CVs for within-day precision (2.1-10.8%) and for between-day precision (2.3-12.1%) were obtained. More than 20 samples could be processed in a single routine day and test series of about 300 samples can be realised without impairment of the validation parameters during a sequence. Comparison of oxysterol and oxyphytosterol content in serum and plasma revealed no difference. A fully validated isotope dilution methodology for the quantification of oxycholesterols and oxyphytosterols from human serum or plasma is presented. PMID:25701095

  13. Determination of melamine and its analogues in egg by gas chromatography-tandem mass spectrometry using an isotope dilution technique

    Microsoft Academic Search

    H. Miao; S. Fan; P. P. Zhou; L. Zhang; Y. F. Zhao; Y. N. Wu

    2010-01-01

    A method was developed for the simultaneous determination of melamine, ammeline, ammelide, and cyanuric acid in egg using gas chromatography-tandem mass spectrometry (GC-MS\\/MS). The samples were first extracted by the solution of diethylamine–water–acetonitrile (10:40:50, v\\/v\\/v). Clean-up employed an ‘On Guard II’ RP cartridge, and the dried elute was derivatised using bis-(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS). Derivatised samples were analysed

  14. An accurate stable isotope dilution gas chromatographic–mass spectrometric approach to the diagnosis of guanidinoacetate methyltransferase deficiency

    Microsoft Academic Search

    E. A. Struys; E. E. W. Jansen; H. J. ten Brink; N. M. Verhoeven; M. S. van der Knaap; C. Jakobs

    1998-01-01

    A gas chromatography–mass spectrometry (GC–MS) method is described for the quantification of guanidinoacetate in different body fluids, using a two step derivatisation procedure which involves a reaction with hexafluoroacetylacetone to form a bis(trifluoromethyl)pyrimidine ring structure followed by a reaction with pentafluorobenzyl bromide. 13C2-labelled guanidinoacetate is used as an internal standard. Bis(trifluoromethyl)pyrimidine pentafluorobenzyl derivatives were separated on a polar capillary GC-column

  15. Flammability limits of dusts: Minimum inerting concentrations

    SciTech Connect

    Dastidar, A.G.; Amyotte, P.R. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Chemical Engineering] [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Chemical Engineering; Going, J.; Chatrathi, K. [Fike Corp., Blue Springs, MO (United States)] [Fike Corp., Blue Springs, MO (United States)

    1999-05-01

    A new flammability limit parameter has been defined as the Minimum Inerting Concentration (MIC). This is the concentration of inertant required to prevent a dust explosion regardless of fuel concentration. Previous experimental work at Fike in a 1-m{sup 3} spherical chamber has shown this flammability limit to exist for pulverized coal dust and cornstarch. In the current work, inerting experiments with aluminum, anthraquinone and polyethylene dusts as fuels were performed, using monoammonium phosphate and sodium bicarbonate as inertants. The results show that an MIC exists only for anthraquinone inerted with sodium bicarbonate. The other combustible dust and inertant mixtures did not show a definitive MIC, although they did show a strong dependence between inerting level and suspended fuel concentration. As the fuel concentration increased, the amount of inertant required to prevent an explosion decreased. Even though a definitive MIC was not found for most of the dusts an effective MIC can be estimated from the data. The use of MIC data can aid in the design of explosion suppression schemes.

  16. Development of an equilibrium headspace gas chromatographic method for the measurement of noncovalent association and partitioning of n-alkylbenzenes at infinite dilution in fulvic acid pseudophase.

    PubMed

    Eljack, Mahmoud D; Wilson, Rachael E; Hussam, Abul; Khan, Shahamat U

    2015-02-27

    Fulvic acid (FA), the most important water soluble fraction of humic substances in nature, is known to form aggregate pseudophase and complexes with organic and inorganic species. Here, we report a novel equilibrium headspace gas chromatography (eHSGC) and a two-step reaction model to measure n-alkylbenzene-FA association constant (K11) and n-alkylbenzene-pseudophase FAn association constant (Kn1) without solute concentration and response factor. The K11 and Kn1 values were 2-3 orders of magnitude higher than those for sodium dodecylsulfate. Changes in peak area were used to calculate the critical FA-aggregation concentration (cfc), mole fraction based partition coefficients (Kx), activity coefficients of solute inside the aggregate pseudophase (?m(?)), and transfer free energies of alkyl CH2 at infinite dilution. The cfc was found to be 10±0.5?M. The Kx values are of the order of 10(7) in the FA-aggregate pseudophase. The data shows that benzene has the lowest (0.0002) and n-butylbenzene has the highest (0.01) ?m(?) values, which are seven orders of magnitude smaller than ?w(?) in water. The transfer free energy of association of a CH2 group, -155cal/mol, compared to that of benzene, -9722cal/mol, indicates that the FA-aggregate pseudophase is more polarizable benzene-like and less n-alkane aliphatic-like. PMID:25622521

  17. Regional water-quality analysis of 2,4-D and dicamba in river water using gas chromatography-isotope dilution mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Zimmerman, L.R.; Aga, D.S.; Gilliom, R.J.

    2001-01-01

    Gas chromatography with isotope dilution mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA) were used in regional National Water Quality Assessment studies of the herbicides, 2,4-D and dicamba, in river water across the United States. The GC-MS method involved solid-phase extraction, derivatized with deutemted 2,4-D, and analysis by selected ion monitoring. The ELISA method was applied after preconcentration with solid-phase extraction. The ELISA method was unreliable because of interference from humic substances that were also isolated by solid-phase extraction. Therefore, GC-MS was used to analyzed 80 samples from river water from 14 basins. The frequency of detection of dicamba (28%) was higher than that for 2,4-D (16%). Concentrations were higher for dicamba than for 2,4-D, ranging from less than the detection limit (<0.05 ??g/L) to 3.77 ??g/L, in spite of 5 times more annual use of 2,4-D as compared to dicamba. These results suggest that 2,4-D degrades more rapidly in the environment than dicamba.

  18. Drill pipe corrosion control using an inert drilling fluid

    SciTech Connect

    Caskey, B.C.; Copass, K.S.

    1981-01-01

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  19. A dynamic inert metal anode.

    SciTech Connect

    Hryn, J. N.

    1998-11-09

    A new concept for a stable anode for aluminum electrowinning is described. The anode consists of a cup-shaped metal alloy container filled with a molten salt that contains dissolved aluminum. The metal alloy can be any of a number of alloys, but it must contain aluminum as a secondary alloying metal. A possible alloy composition is copper with 5 to 15 weight percent aluminum. In the presence of oxygen, aluminum on the metal anode's exterior surface forms a continuous alumina film that is thick enough to protect the anode from chemical attack by cryolite during electrolysis and thin enough to maintain electrical conductivity. However, the alumina film is soluble in cryolite, so it must be regenerated in situ. Film regeneration is achieved by the transport of aluminum metal from the anode's molten salt interior through the metal wall to the anode's exterior surface, where the transported aluminum oxidizes to alumina in the presence of evolving oxygen to maintain the protective alumina film. Periodic addition of aluminum metal to the anode's interior keeps the aluminum activity in the molten salt at the desired level. This concept for an inert anode is viable as long as the amount of aluminum produced at the cathode greatly exceeds the amount of aluminum required to maintain the anode's protective film.

  20. Quantifying gross N2O flux and production using 15N2O pool dilution technique and direct gas-flow core method

    NASA Astrophysics Data System (ADS)

    Wen, Yuan; Chen, Zhe; Dannenmann, Michael; Carminati, Andrea; Willibald, Georg; Kiese, Ralf; Wolf, Benjamin; Veldkamp, Edzo; Butterbach-Bahl, Klaus; Corre, Marife D.

    2015-04-01

    Soils are not only a major source but also a potential sink for atmospheric nitrous oxide (N2O), a potent greenhouse gas and the most important substance for stratospheric ozone depletion. Net N2O flux at the soil-atmosphere interface is the balance of simultaneously occurring gross N2O production and consumption. N2O is consumed via reduction to N2, i. e. the terminal product of the denitrification process, which is difficult to measure against the high atmosphere background. The enigmatic lack of measurements on gross N2O flux or N2 production still impedes our understanding of the controls on soil N2O emissions and the closure of the global nitrogen cycle. Here, we combined the 15N2O pool dilution technique and direct gas-flow core method to disentangle 1) gross N2O fluxes at the soil-atmosphere interface, and 2) gross N2O production and consumption in the soil. The 15N2O pool dilution method entails adding 15N2O to the chamber headspace, measuring 14N2O and 15N2O concentrations and applying a model to simultaneously solve for gross N2O flux and consumption rate at the soil-atmosphere interface. The direct gas-flow core method substitutes the soil air and chamber headspace with helium to a nearly N2-free atmosphere in order to directly measure both N2O and N2fluxes; N2 flux is the gross N2O consumption and its sum with N2O flux is the gross N2O production in the soil. Soil samples were taken from grassland, cropland, beech and pine forest soils, representing a broad range of land uses and soil types. Additionally, we compared measurements from intact soil cores (reflecting inherent soil bulk density and porosity) and sieved soils (eliminating heterogeneity in porosity). Gross N2O production rate in the soil was highest in the silty grassland soil (41.04±4.6 ?g N kg-1 h-1) and lowest in the sandy pine forest soil (1.84±1.82 ?g N kg-1 h-1). The intact soil cores and sieved soils showed similar trends. Gross N2O production rates in the soil exceeded gross N2O fluxes at the soil-atmosphere interface by at least an order of magnitude, suggesting that most of the N2O produced is possibly directly consumed and diffused as N2. The gross N2O consumption rate at the soil-atmosphere interface only accounted for 7% of N2 production in the soil, suggesting that N2O in the soil air that is diffusing to the atmosphere is seldom consumed. Gross N2O fluxes at the soil-atmosphere interface, gross N2O production in the soil and N2 production were all significantly correlated with soil water content, NH4+, dissolved organic C, microbial biomass C and N (p

  1. Application of the carbon dioxide-barium hydroxide hydrate gas-solid reaction for the treatment of dilute carbon dioxide-bearing gas streams

    SciTech Connect

    Haag, G.L.

    1983-09-01

    The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH)/sub 2/ hydrate flakes for the removal of an acid gas, CO/sub 2/, from air that contains approx. 330 ppM/sub v/ CO/sub 2/. Areas of investigation encompassed: (1) an extensive literature review of Ba(OH)/sub 2/ hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH)/sub 2/.8H/sub 2/O flakes at ambient temperatures to be capable of high CO/sub 2/-removal efficiencies (effluent concentrations <100 ppB), high reactant utilization (>99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH)/sub 2/.8H/sub 2/O was determined to be more reactive toward CO/sub 2/ than either Ba(OH)/sub 2/.3H/sub 2/O or Ba(OH)/sub 2/.1H/sub 2/O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems.

  2. Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos

    E-print Network

    Jonathan P. Hall; Stephen F. King

    2011-05-11

    We discuss a new variant of the E6 inspired supersymmetric standard model (E6SSM) in which the two inert singlinos are exactly massless and the dark matter candidate has a dominant bino component. A successful relic density is achieved via a novel mechanism in which the bino scatters inelastically into heavier inert Higgsinos during the time of thermal freeze-out. The two massless inert singlinos contribute to the effective number of neutrino species at the time of Big Bang Nucleosynthesis, where the precise contribution depends on the mass of the Z' which keeps them in equilibrium. For example for mZ' > 1300 GeV we find Neff \\approx 3.2, where the smallness of the additional contribution is due to entropy dilution. We study a few benchmark points in the constrained E6SSM with massless inert singlinos to illustrate this new scenario.

  3. Isentropic Compression of Multicomponent Mixtures of Fuels and Inert Gases

    NASA Technical Reports Server (NTRS)

    Barragan, Michelle; Julien, Howard L.; Woods, Stephen S.; Wilson, D. Bruce; Saulsberry, Regor L.

    2000-01-01

    In selected aerospace applications of the fuels hydrazine and monomethythydrazine, there occur conditions which can result in the isentropic compression of a multicomponent mixture of fuel and inert gas. One such example is when a driver gas such as helium comes out of solution and mixes with the fuel vapor, which is being compressed. A second example is when product gas from an energetic device mixes with the fuel vapor which is being compressed. Thermodynamic analysis has shown that under isentropic compression, the fuels hydrazine and monomethylhydrazine must be treated as real fluids using appropriate equations of state. The appropriate equations of state are the Peng-Robinson equation of state for hydrazine and the Redlich-Kwong-Soave equation of state for monomethylhydrazine. The addition of an inert gas of variable quantity and input temperature and pressure to the fuel compounds the problem for safety design or analysis. This work provides the appropriate thermodynamic analysis of isentropic compression of the two examples cited. In addition to an entropy balance describing the change of state, an enthalpy balance is required. The presence of multicomponents in the system requires that appropriate mixing rules are identified and applied to the analysis. This analysis is not currently available.

  4. Axial grading of inert matrix fuels

    SciTech Connect

    Recktenwald, G. D.; Deinert, M. R. [Dept. of Mechanical Engineering, Univ. of Texas, Austin, TX (United States)

    2012-07-01

    Burning actinides in an inert matrix fuel to 750 MWd/kg IHM results in a significant reduction in transuranic isotopes. However, achieving this level of burnup in a standard light water reactor would require residence times that are twice that of uranium dioxide fuels. The reactivity of an inert matrix assembly at the end of life is less than 1/3 of its beginning of life reactivity leading to undesirable radial and axial power peaking in the reactor core. Here we show that axial grading of the inert matrix fuel rods can reduce peaking significantly. Monte Carlo simulations are used to model the assembly level power distributions in both ungraded and graded fuel rods. The results show that an axial grading of uranium dioxide and inert matrix fuels with erbium can reduces power peaking by more than 50% in the axial direction. The reduction in power peaking enables the core to operate at significantly higher power. (authors)

  5. Helium in inert matrix dispersion fuels

    Microsoft Academic Search

    A. van Veen; R. J. M Konings; A. V Fedorov

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO2, MgAl2O4, MgO and Al2O3) is presented. A general picture is that for

  6. Comparison of extraction methods for quantitation of methionine and selenomethionine in yeast by species specific isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Yang, Lu; Sturgeon, Ralph E; McSheehy, Shona; Mester, Zoltán

    2004-11-01

    Fourteen extraction methods commonly cited in the literature were evaluated for the quantitation of methionine (Met) and selenomethionine (SeMet) in a yeast candidate certified reference material (CRM). Species specific isotope dilution (ID) gas chromatography-mass spectrometry (GC-MS) was utilized to effectively compensate for potential errors, such as losses during derivatization and clean up steps. Despite different extraction methods, the same derivatization procedure using methyl chloroformate was applied with a single exception, which was based on digestion with cyanogen bromide with 2% SnCl2 in 0.1 M HCl. Significant differences in measured Met and SeMet concentrations were obtained when different extraction methods were used. A 4 M methanesulfonic acid reflux digestion was found to be the most efficient for both analytes. Digestion with CNBr with 2% SnCl2 in 0.1 M HCl for the determination of SeMet showed the second highest extraction efficiency. Despite frequent use of enzymatic hydrolysis for the extraction of SeMet from yeast, very low extraction efficiencies for both analytes were obtained for four of eight tested methods. Among these, the highest extraction efficiencies for both analytes were obtained using 20mg pronase and 10mg lipase with incubation at 37 degrees C for 24 h. However, recoveries remained nearly 30 and 50% lower for Met and SeMet, respectively, compared to extraction with methanesulfonic acid. Lowest extraction efficiencies for both analytes were obtained when HCl or tetramethylammonium hydroxide (TMAH) digestions were used. Efficient extraction was also achieved using 200 mg (or 400 mg) of protease XIV with incubation at 37 degrees C for 72 h (or 24 h). Concentrations of 3331+/-45 and 3334+/-39 microg g(-1) (mean and one standard deviation, n = 4) for SeMet were obtained using 200 mg (72 h incubation) and 400 mg (24 h incubation) of protease XIV, respectively, in agreement with a value of 3404+/-38 microg g(-1) obtained using a methanesulfonic acid reflux. PMID:15560494

  7. Simultaneous determination of creatinine and creatine in human serum by double-spike isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; Añón Álvarez, M Elena; Rodríguez, Felix; Menéndez, Francisco V Álvarez; García Alonso, J Ignacio

    2015-04-01

    This work describes the first multiple spiking isotope dilution procedure for organic compounds using (13)C labeling. A double-spiking isotope dilution method capable of correcting and quantifying the creatine-creatinine interconversion occurring during the analytical determination of both compounds in human serum is presented. The determination of serum creatinine may be affected by the interconversion between creatine and creatinine during sample preparation or by inefficient chemical separation of those compounds by solid phase extraction (SPE). The methodology is based on the use differently labeled (13)C analogues ((13)C1-creatinine and (13)C2-creatine), the measurement of the isotopic distribution of creatine and creatinine by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the application of multiple linear regression. Five different lyophilized serum-based controls and two certified human serum reference materials (ERM-DA252a and ERM-DA253a) were analyzed to evaluate the accuracy and precision of the proposed double-spike LC-MS/MS method. The methodology was applied to study the creatine-creatinine interconversion during LC-MS/MS and gas chromatography-mass spectrometry (GC-MS) analyses and the separation efficiency of the SPE step required in the traditional gas chromatography-isotope dilution mass spectrometry (GC-IDMS) reference methods employed for the determination of serum creatinine. The analysis of real serum samples by GC-MS showed that creatine-creatinine separation by SPE can be a nonquantitative step that may induce creatinine overestimations up to 28% in samples containing high amounts of creatine. Also, a detectable conversion of creatine into creatinine was observed during sample preparation for LC-MS/MS. The developed double-spike LC-MS/MS improves the current state of the art for the determination of creatinine in human serum by isotope dilution mass spectrometry (IDMS), because corrections are made for all the possible errors derived from the sample preparation step. PMID:25751287

  8. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  9. Performance of the inertance pulse tube

    NASA Astrophysics Data System (ADS)

    de Boer, P. C. T.

    2002-03-01

    The rate of refrigeration of the inertance pulse tube (IPTR) is found as a function of the relevant parameters. In the simplified case of infinite volume of the reservoir and zero dead volume of the regenerator, these parameters are the dimensions of the inertance tube, the volume of the pulse tube, the conductance of the regenerator, the driving pressure, and the frequency. The effective conductance of the inertance tube is determined using a simple turbulent flow model. It is found that the performance of the IPTR is superior to that of the orifice pulse tube refrigerator (OPTR) over a limited range of frequencies. The improvement is explained in terms of the pressure amplitude in the pulse tube, the flow rate between the regenerator and the pulse tube, and the phase angle between these parameters. The analysis is extended to the case of finite reservoir and regenerator volumes. It is indicated how the results obtained can be useful in experimental work.

  10. Headspace stir bar sorptive extraction–gas chromatography\\/mass spectrometry characterization of the diluted vapor phase of cigarette smoke delivered to an in vitro cell exposure chamber

    Microsoft Academic Search

    Navneet Kaur; Jean-Louis Cabral; André Morin; Karen C. Waldron

    2011-01-01

    Advanced smoke generation systems, such as the Borgwaldt RM20S® smoking machine used in combination with the BAT exposure chamber, allow for the generation, dilution and delivery of fresh cigarette smoke to cell or tissue cultures for in vitro cell culture analyses. Recently, our group confirmed that the Borgwaldt RM20S® is a reliable tool to generate and deliver repeatable and reproducible

  11. Inertness of Bonded Silica Gel Packings

    Microsoft Academic Search

    M. Ohhira; F. Ohmura; T. Hanai

    1989-01-01

    Stability and inertness of bonded silica gel packings were examined from the retention behavior of acidic and basic compounds, and also metal sensitive compounds. Bonded silica gels made from pure silica gel were stable in acidic and basic solutions, and did not interfere with chromatography of chelate reagents in reversed-phase liquid chromatography.

  12. Solubility of solutes in compressed gases: Dilute solution theory

    SciTech Connect

    Wang, X.; Tavlarides, L.L. (Syracuse Univ., NY (United States). Dept. of Chemical Engineering)

    1994-03-01

    A dilute solution theory is developed for describing the thermodynamic behavior of a compressed gaseous dilute solution. The considerations follow generally accepted statistical treatments for describing dilute liquid solutions. The theory is self-consistent with the ideal gas law for dilute gases and with Henry's law for dilute liquid (or solid) solutions. Further, it provides a simple linear relationship which represents well the solubility behavior of a heavy solute (solid or liquid) in a gaseous solvent over relatively wide density regions of the solvent (i.e., 0 [le] [rho] [le] 2.0/V[sub c]).

  13. Microfluidic serial dilution ladder.

    PubMed

    Ahrar, Siavash; Hwang, Michelle; Duncan, Philip N; Hui, Elliot E

    2014-01-01

    Serial dilution is a fundamental procedure that is common to a large number of laboratory protocols. Automation of serial dilution is thus a valuable component for lab-on-a-chip systems. While a handful of different microfluidic strategies for serial dilution have been reported, approaches based on continuous flow mixing inherently consume larger amounts of sample volume and chip real estate. We employ valve-driven circulatory mixing to address these issues and also introduce a novel device structure to store each stage of the dilution process. The dilution strategy is based on sequentially mixing the rungs of a ladder structure. We demonstrate a 7-stage series of 1?:?1 dilutions with R(2) equal to 0.995 in an active device area of 1 cm(2). PMID:24231765

  14. Effect of chemically inert particles on parameters and suppression of detonation in gases

    Microsoft Academic Search

    P. A. Fomin; J.-R. Chen

    2009-01-01

    An algorithm for calculating the parameters of a steady one-dimensional detonation wave in mixtures of a gas with chemically\\u000a inert particles and estimating the detonation-cell size in such mixtures is proposed. The calculated detonation parameters\\u000a and cell size in stoichiometric hydrogen-oxygen mixtures with W, Al2O3, and SiO2 particles are used to analyze the method of suppression of multifront gas detonation

  15. Dilution in massive, elliptical galaxies.

    NASA Astrophysics Data System (ADS)

    Yates, R. M.; Kauffmann, G.

    We present a recent study of massive galaxies in the Munich semi-analytic model of galaxy formation and the SDSS-DR7. We find that massive, elliptical galaxies with low-sSFR and low gas-phase metallicity (Zg) are undergoing a gradual dilution in the model, via accretion of metal-poor cold gas clumps and merging satellites \\citep{YK13}. Indirect signatures of this evolution are also found in these systems' analogues in the SDSS-DR7, such as lower gas fractions, older ages (from the Dn4000 index), and lower Zg-Z*. This provides strong evidence that such a gradual dilution could also be occurring in massive, elliptical galaxies in the real Universe. These findings have consequences for the fundamental metallicity relation (FMR) at z=0, as they provide an explanation for the positive correlation between SFR and Zg seen in some observational studies (e.g. \\citealt{YKG12}). Such a correlation is not considered in the FMR, meaning that its shape at z=0 is not as simple as first thought, and cannot be accurately fit by a simple 2D projection.

  16. Method for retarding dye fading during archival storage of developed color photographic film. [inert atmosphere

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Rhodes, C. M. (inventors)

    1981-01-01

    Dye fading during archival storage of developed color photographic film is retarded by placing the film in a sealed, opaque vault, introducing a dry, pressurized inert gas into the vault while the latter is vented, and sealing the vault after the air within the vault has been purged and replaced by the inert gas. Preferably, the gas is nitrogen; and the vault is stored at a temperature below room temperature to preserve the color photographic emulsions on the film contained within the vault. For short-term storage, sodium thiocyanate pads charged with water are placed within the vault. For long term storage, the interior of the vault is kept at a low relative humidity.

  17. Measurement of selected polybrominated diphenyl ethers, polybrominated and polychlorinated biphenyls, and organochlorine pesticides in human serum and milk using comprehensive two-dimensional gas chromatography isotope dilution time-of-flight mass spectrometry.

    PubMed

    Focant, Jean-François; Sjödin, Andreas; Turner, Wayman E; Patterson, Donald G

    2004-11-01

    A new method using comprehensive two-dimensional gas chromatography and isotope dilution time-of-flight mass spectrometry (GCxGC-IDTOFMS) for the simultaneous measurement of selected polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and brominated flame retardants is presented. In contrast to the reference methods based on classical GC/MS, a single injection of the extract containing all compounds of interest results in accurate identification and quantification. Using GCxGC ensures the chromatographic separation of most compounds, and TOFMS allows mass spectral deconvolution of coeluting compounds as well as the use of (13)C-labeled internal standards for quantification. Isotope ratio measurements of the most intense ions for both native and labels ensure the required specificity. The use of this new method with an automated sample preparation procedure developed at the Centers for Disease Control and Prevention (CDC) for the analysis of human serum and milk compared favorably to conventional isotope-dilution one-dimensional gas chromatography-high-resolution mass spectrometry (GC-IDHRMS) for the different human serum and milk pools tested. The instrumental detection limits ranged between 0.5 pg/microL and 10 pg/microL and the method detection limits ranged between 1 and 15 pg/microL (N = 59 analytes). The reproducibility of the method was almost as good as with GC-IDHRMS, the relative standard deviations ranging between 1 and 11% for OCPs measured in human serum. OCP, PBDE, and PCB levels measured using the two methods were highly correlated, and the deviations between the two methods were below 20% for most analytes with concentrations above 1 ng/g milk lipids. PMID:15516123

  18. Automated high-speed analysis of selected organic compounds in urban air by on-line isotopic dilution cryofocusing gas chromatography\\/mass spectrometry

    Microsoft Academic Search

    E. Davoli; L. Cappellini; M. Maggi; R. Fanelli

    1994-01-01

    An automated environmental air monitor has been developed to measure selected organic compounds in urban air. The instrument\\u000a is based on a cryofocusing-thermal desorption gas chromatographic mass spectrometry technique where the mass spectrometer\\u000a is a slightly modified residual gas analyzer (RGA). The RGA was chosen as a detector because the whole system must be robust\\u000a for long periods, with 24-h

  19. C(240)-----The most Chemically Inert Fullerene?

    NASA Technical Reports Server (NTRS)

    Haddon, R. C.; Scuseria, G. E.; Smalley, R. E.

    1997-01-01

    The reactivity of the fullerenes is primarily a function of their strain, as measured by the pyramidalization angle or curvature of the conjugated carbon atoms. The development of faceting in the structure of large icosahedral fullerenes leads to a minimum in the value of the maximum fullerene pyramidalization angle that lies in the vicinity of C-240. On this basis it is argued that C-240 will be the most chemically inert fullerene. This observation explains the production of [10,10] single-walled nanotubes because a C-240 hemisphere is required for the nucleation of such tubes.

  20. Kinetics simulation for natural gas conversion to unsaturated C? hydrocarbons 

    E-print Network

    Yang, Li

    2003-01-01

    . In this process, methane is decomposed to ethylene, acetylene and carbon. Ethylene and acetylene are the desired products, while carbon formation should be stopped in the decomposition reaction. Some researchers have studied the dilution effect of various inert...

  1. Standard for Inert Cryogenic Liquid Usage in the Laboratory Page 1 of 4 Standard for Inert Cryogenic Liquid Usage in the Laboratory

    E-print Network

    Chan, Hue Sun

    safety precautions to be taken when working with inert cryogenics, and is based on standard industry_______________________________________________________________________ Standard for Inert Cryogenic Liquid Usage in the Laboratory Page 1 of 4 March 2009 Standard for Inert Cryogenic Liquid Usage

  2. Pitfalls encountered during quantitative determination of 3-alkyl-2-methoxypyrazines in grape must and wine using gas chromatography-mass spectrometry with stable isotope dilution analysis. Comprehensive two-dimensional gas chromatography-mass spectrometry and on-line liquid chromatography-multidimensional gas chromatography-mass spectrometry as potential loopholes.

    PubMed

    Schmarr, Hans-Georg; Ganss, Sebastian; Koschinski, Stefan; Fischer, Ulrich; Riehle, Carmen; Kinnart, Julian; Potouridis, Theodoros; Kutyrev, Maria

    2010-10-22

    The analysis of 3-alkyl-2-methoxypyrazines in Vitis vinifera grape must or wine at the low nanogram per liter level failed in several situations when applying a one-dimensional gas chromatographic analysis with mass spectrometric detection (GC-MS). Sample preparation methods such as headspace solid phase microextraction or solid phase extraction were convenient procedures, however lacking extraction selectivity for complex matrices. Analysis by comprehensive two-dimensional gas chromatography with mass spectrometric detection clearly demonstrated the potential for co-elution in such matrices and the risk for erroneous results when applying one-dimensional GC-MS. In one example, matrix problems would have been a challenge even for a comprehensive two-dimensional chromatographic approach with MS detection (GC×GC-MS). A solution to matrix problems was found by protonating the 3-alkyl-2-methoxypyrazines in acidic pH and sample clean-up using solid phase extraction with a mixed-mode polymeric cation-exchange sorbent. Quantification was performed by a stable isotope dilution assay, following analysis by on-line coupled high performance liquid chromatography with multidimensional gas chromatography and detection with mass spectrometry (on-line LC-MDGC-MS). This new approach allowed trace-level analysis of 3-alkyl-2-methoxypyrazines in grape musts and wines and is described for V. vinifera Sauvignon blanc, following 3-alkyl-2-methoxypyrazines concentrations during ripening and in the processed wines. PMID:20637469

  3. Innovative method for determination of 19 polycyclic aromatic hydrocarbons in food and oil samples using gas chromatography coupled to tandem mass spectrometry based on an isotope dilution approach.

    PubMed

    Veyrand, Bruno; Brosseaud, Aline; Sarcher, Ludovic; Varlet, Vincent; Monteau, Fabrice; Marchand, Philippe; Andre, François; Le Bizec, Bruno

    2007-05-18

    An efficient and selective analytical method for the determination and the quantification of 19 polycyclic aromatic hydrocarbons (PAHs) in food and oil has been developed. This method includes the monitoring of 15 PAHs stated as a priority by the EU in their 2005/108 recommendation. The samples were extracted according to a selective extraction step using pressurized liquid extraction followed by a purification with polystyrene-divinylbenzene SPE. Identification and quantification were performed using GC-MS/MS, with an isotope dilution approach using (13)C-labelled PAHs. The novel combination of selective extraction followed by purification provides highly purified analytes combined to a fast and automated method. The advantages of GC-MS/MS as compared to other detection methods are tremendous in terms of sensitivity, selectivity and interpretation facilities. Limits of detection varied between 0.008 and 0.15 microg kg(-1), limits of quantification between 0.025 and 0.915 microg kg(-1) for PAHs in food. The calibration curves showed a good linearity for all PAHs (R(2)>0.99) and precision and recovery were fit for purpose. Trueness of the method was carried out using the US National Institute of Standards and Technology SRM 2977 reference material. PMID:17395191

  4. A modified Paschen law for the initiation of a dc glow discharge in inert gases

    Microsoft Academic Search

    V. A. Lisovskii; S. D. Yakovin

    2000-01-01

    Breakdown of inert gases in a homogeneous dc electric field is studied experimentally and theoretically at various distances\\u000a L between the electrodes and radii R of the discharge tubes. It is shown that, for arbitrary geometric dimensions of the discharge chamber and cathode materials,\\u000a the ratio of the breakdown electric field strength to the gas pressure holds constant at the

  5. CCl 4 Decomposition in RF Thermal Plasma in Inert and Oxidative Environments

    Microsoft Academic Search

    Tamás Kovács; Tamás Turányi; János Szépvölgyi

    2010-01-01

    The decomposition of carbon tetrachloride was investigated in an RF inductively coupled thermal plasma reactor in inert CCl4–Ar and in oxidative CCl4–O2–Ar systems, respectively. The exhaust gases were analyzed by gas chromatography-mass spectrometry. The kinetics of CCl4 decomposition at the experimental conditions was modeled in the temperature range of 300–7,000 K. The simulations predicted\\u000a 67.0 and 97.9% net conversions of CCl4

  6. I. I. Rabi Prize Lecture: Paradox Lost and Paradox Regained: Recent Experimental Results in Dilute-Gas Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Cornell, Eric A.

    1997-04-01

    In the two years since Bose-Einstein condensation was first observed [1,2,3] in dilute vapors of the alkali metals, a wide variety of experimental studies has been performed on these exotic systems. Some of the recent results out of JILA (for instance a critical temperature measurement [4]) have been in excellent agreement with theeoretical expectations. Others (for instance the behavior of low-lying condensate excitations at finite-T [5]) have been more puzzling. I will discuss the recently observed two-component condensates [6] and provide also an overview of recent studies [7] of the coherence properties of condensates. ([1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995). [2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Kettle, Phys. Rev. Lett. 75, 3696 (1995). [3] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. (in press). [4] J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 77, 4984 (1996). [5] D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. (in press). [6] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Phys. Rev. Lett. (in press). [7] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle, Science (in press).)

  7. Determination of 1-methyl-1H-1,2,4-triazole in soils contaminated by rocket fuel using solid-phase microextraction, isotope dilution and gas chromatography-mass spectrometry.

    PubMed

    Yegemova, Saltanat; Bakaikina, Nadezhda V; Kenessov, Bulat; Koziel, Jacek A; Nauryzbayev, Mikhail

    2015-10-01

    Environmental monitoring of Central Kazakhstan territories where heavy space booster rockets land requires fast, efficient, and inexpensive analytical methods. The goal of this study was to develop a method for quantitation of the most stable transformation product of rocket fuel, i.e., highly toxic unsymmetrical dimethylhydrazine - 1-methyl-1H-1,2,4-triazole (MTA) in soils using solid-phase microextraction (SPME) in combination with gas chromatography-mass spectrometry. Quantitation of organic compounds in soil samples by SPME is complicated by a matrix effect. Thus, an isotope dilution method was chosen using deuterated analyte (1-(trideuteromethyl)-1H-1,2,4-triazole; MTA-d3) for matrix effect control. The work included study of the matrix effect, optimization of a sample equilibration stage (time and temperature) after spiking MTA-d3 and validation of the developed method. Soils of different type and water content showed an order of magnitude difference in SPME effectiveness of the analyte. Isotope dilution minimized matrix effects. However, proper equilibration of MTA-d3 in soil was required. Complete MTA-d3 equilibration at temperatures below 40°C was not observed. Increase of temperature to 60°C and 80°C enhanced equilibration reaching theoretical MTA/MTA-d3 response ratios after 13 and 3h, respectively. Recoveries of MTA depended on concentrations of spiked MTA-d3 during method validation. Lowest spiked MTA-d3 concentration (0.24mgkg(-1)) provided best MTA recoveries (91-121%). Addition of excess water to soil sample prior to SPME increased equilibration rate, but it also decreased method sensitivity. Method detection limit depended on soil type, water content, and was always below 1mgkg(-1). The newly developed method is fully automated, and requires much lower time, labor and financial resources compared to known methods. PMID:26078153

  8. Inerting Aircraft Fuel Systems Using Exhaust Gases

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  9. Resonance-inert stabilization for space stations

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.

    1972-01-01

    An approach to stabilizing control systems is presented which structures controllers like passive mechanical systems. The controller is visualized as a structural part with a passive behavior similar to springs, dashpots, and masses. If such a controller is connected by a proper feedback arrangement, then a passive mechanical plant cannot upset stability, regardless of masses, resonances, and three-dimensional coupling. The concept of resonance-inert stabilization is explained by structuring the controller of a simple feedback loop. Reactive functions, connections, and matrices are defined and used in the stabilization concept. The realization of a possible Skylab control system is discussed and compared with the present design. This example demonstrates the applicability to three-dimensional problems with lagging controllers.

  10. Metabolically stable cellular adhesion to inert surfaces.

    PubMed

    Meldal, Morten; Wu, Boqian; Diness, Frederik; Michael, Roice; Hagel, Grith

    2011-11-01

    The structure of D-amino acid hexapeptides that promote cellular adhesion was determined by screening D-amino acid hexapeptide libraries synthesized on otherwise inert beaded PEGA resin. These new adhesion molecules provide a completely stable cellular environment and facilitate the maintenance of a monolayer of cells on beads for extended periods. The presence of the peptides promotes spreading of the cells on the bead surface. Not surprisingly, the molecules contained a significant number of arginines and/or lysines. However, the exact structure of each peptide is quite important for the degree of adhesion observed, and a motif with three or four basic amino acids spaced within amino acids of intermediate polarity clearly prevailed, for example, k-l/r-h-r-i/v-r-a; this maintains a polar/hydrophobic balance. PMID:21928441

  11. Mathematical model of self-sustaining combustion in inert porous medium with phase change under complex heat transfer

    Microsoft Academic Search

    R. Echigo; H. Yoshida

    1998-01-01

    The phenomenon of self-sustaining combustion of a gaseous mixture in inert high porous medium with prior vaporization of liquid droplets is studied by means of a numerical simulation. The complex heat transfer includes convective, conductive and radiative heat transfer between three phases: gas, solid and liquid. Evaporation and different modes of convective heat transfer between liquid, gaseous and solid phases

  12. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  13. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  14. Phosphorus diffusion in isoconcentration backgrounds under inert conditions in silicon

    E-print Network

    Florida, University of

    Phosphorus diffusion in isoconcentration backgrounds under inert conditions in silicon Jay P. John (Received 29 May 1992; accepted for publication 31 December 1992) The diffusivity of phosphorus in isoconcentration backgrounds under inert conditions in silicon is investigated. Phosphorus is implanted at low dose

  15. Molecular hydrogen: An inert gas turns clinically effective.

    PubMed

    Ostojic, Sergej M

    2015-06-01

    Molecular hydrogen (H2) appeared as an experimental agent in biomedicine approximately 40 years ago, yet the past 5 years seem to confirm its medicinal value in the clinical environment. H2 improves clinical end-points and surrogate markers in several clinical trials, from metabolic diseases to chronic systemic inflammatory disorders to cancer. However, less information is available concerning its medicinal properties, such as dosage and administration, or adverse reactions and use in specific populations. The present paper overviews the clinical relevance of molecular hydrogen, and summarizes data from clinical trials on this innovative medical agent. Clinical profiles of H2 provide evidence-based direction for practical application and future research on molecular hydrogen for the wider health care community. PMID:25936365

  16. High Pressure Spark Gap in an Inert Gas

    Microsoft Academic Search

    F. J. Jervis-Smith

    1909-01-01

    FOR some years I have employed a high-pressure spark-gap, such as that described by me in the Phil. Mag. for August, 1902, in connection with a Tesla inductive system, and I have experienced considerable trouble arising from the erosion of the spark balls and their supports. They soon become coated with an oxide of the metal employed, and the sparking

  17. Inert Welding/Brazing Gas Filters and Dryers

    NASA Technical Reports Server (NTRS)

    Goudy, Jerry

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heat-flux environments (150 W/sq cm) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading-edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same "pick" location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by the choice of constituents, varying fiber tow sizes and constituent part ratios. This structural concept provides high strength and stiffness at low density 1.06 g/cu cm in panels tested. Varieties of face sheet constructions are possible, including variations in fiber type and weave geometry. The integrated structures possible with this composite could eliminate the need for non-load-bearing thermal protection systems on top of a structural component. The back sheet can readily be integrated to substructures through the incorporation of ribs. This would eliminate weight and cost for aerospace missions.

  18. Dilution, Concentration, and Flotation

    ERIC Educational Resources Information Center

    Liang, Ling; Schmuckler, Joseph S.

    2004-01-01

    As both classroom teaching practice and literature show, many students have difficulties learning science concepts such as density. Here are some investigations that identify the relationship between density and floating through experimenting with successive dilution of a liquid, or the systematic change of concentration of a saltwater solution.…

  19. Isotope dilution mass spectrometry

    Microsoft Academic Search

    Klaus G. Heumann

    1992-01-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g.

  20. Improving the efficiency of organic light emitting diodes by use of a diluted light-emitting layer

    E-print Network

    S. H. Mohan; K. Garre; N. Bhandari; M. Cahay

    2011-07-13

    The use of a thin mixed layer consisting of an inert diluent material and a light emitting material between the hole-transport layer and electron-transport layer of organic light-emitting diodes leads to an increase in the external quantum efficiency. The efficiency improvement is highly dependent on the thickness of the diluted light-emitting layer and driving current. Significant improvement seen at low current densities is explained in terms of effective hole confinement by the mixed layer while a modest decreases in efficiency at higher current densities may be attributed to luminescence quenching at the hole-transport layer/inert diluents material interface. The phenomena are demonstrated with three different inert diluents materials. A maximum external quantum efficiency improvement of about 40% is found for a diluted light-emitting layer thickness between 40 {\\AA} and 60 {\\AA}.

  1. Growth and development in inert non-aqueous liquids. [of higher plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1974-01-01

    A preview is presented of the survival and growth capabilities of higher plants in non-aqueous, inert liquids. The two media which were used are mineral (white) oil and fluorochemical inert liquid FC-75. Both liquids dissolve oxygen and carbon dioxide readily, but are insoluble in water. Consequently, plants submerged in these liquids are capable of gas exchange with the atmosphere, but possess a water impermeable coating the dimensions of which are determined by the size of the liquid holding container. In a sense, growing plants in a tank of mineral oil imparts on them a cuticle. Plants plus prescribed volumes of water were innoculated into mineral oil. Organisms with minimal water supplied could then be observed. Also, submersed plants covered with an oil slick were shown to be capable of growth in dessicating atmospheres.

  2. Models of bending strength for Gilsocarbon graphites irradiated in inert and oxidising environments

    NASA Astrophysics Data System (ADS)

    Eason, Ernest D.; Hall, Graham N.; Marsden, Barry J.; Heys, Graham B.

    2013-05-01

    This paper presents the development and validation of an empirical model of fast neutron damage and radiolytic oxidation effects on bending strength for the moulded Gilsocarbon graphites used in Advanced Gas-cooled Reactors (AGRs). The inert environment model is based on evidence of essentially constant strength as fast neutron dose increases in inert environment. The model of combined irradiation and oxidation calibrates that constant along with an exponential function representing the degree of radiolytic oxidation as measured by weight loss. The change in strength with exposure was found to vary from one AGR station to another. The model was calibrated to data on material trepanned from AGR moderator bricks after varying operating times.

  3. Use of an inert drilling fluid to control geothermal drill pipe corrosion

    SciTech Connect

    Caskey, B.C.

    1981-04-01

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternatively used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico, USA. Data from corrosion rings, corrosion probes, fluid samples, and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid (nitrogen) reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an on-site inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  4. Extinguishment of methane diffusion flames by inert gases in coflow air and oxygen-enriched microgravity environments

    Microsoft Academic Search

    Fumiaki Takahashi; Gregory T. Linteris; Viswanath R. Katta

    2011-01-01

    Extinguishment of laminar coflow diffusion flames in microgravity (?g) have been studied experimentally and computationally. The ?g experiments were conducted using a methane cup-burner flame aboard the NASA Reduced-Gravity Aircraft. Transient computations with full methane chemistry and a gray-gas radiation model were performed to reveal the flame structure and extinguishment processes. In ?g, as an inert gas (N2, He, or

  5. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    This report summarizes the technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. In addition, dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor (PWR) fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved {similar_to}5,000 fuel rods, and {similar_to}600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570{sup 0}C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at {similar_to}70{sup 0}C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the United States. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380{sup 0}C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400{sup 0}C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved.

  6. 75 FR 7560 - Public Availability of Identities of Inert Ingredients in Pesticides; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ...FRL-8813-3] Public Availability of Identities of Inert Ingredients in Pesticides...increase public availability of the identities of the inert ingredients in pesticide...increase public availability of the identities of the inert ingredients in...

  7. S1 certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate certified reference material (organochlorine pesticides in tea) by isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Sin, Della Wai-Mei; Wong, Yee-Lok; Cheng, Eddie Chung-Chin; Lo, Man-Fung; Ho, Clare; Mok, Chuen-Shing; Wong, Siu-Kay

    2015-04-01

    This paper presents the certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate tea certified reference material (code: GLHK-11-03) according to the requirements of the ISO Guide 30 series. Certification of GLHK-11-03 was based on an analytical method purposely developed for the accurate measurement of the mass fraction of the target analytes in the material. An isotope dilution mass spectrometry (IDMS) method involving determination by (i) gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS) and (ii) gas chromatography-electron ionization-high-resolution mass spectrometry (GC-EI-HRMS) techniques was employed. The performance of the described method was demonstrated through participation in the key comparison CCQM-K95 "Mid-Polarity Analytes in Food Matrix: Mid-Polarity Pesticides in Tea" organized by the Consultative Committee for Amount of Substance-Metrology in Chemistry in 2012, where the study material was the same as the certified reference material (CRM). The values reported by using the developed method were in good agreement with the key comparison reference value (KCRV) assigned for beta-endosulfan (727?±?14 ?g kg(-1)) and endosulfan sulfate (505?±?11 ?g kg(-1)), where the degree of equivalence (DoE) values were 0.41 and 0.40, respectively. The certified values of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in dry mass fraction in GLHK-11-03 were 350, 730, and 502 ?g kg(-1), respectively, and the respective expanded uncertainties, due to sample inhomogeneity, long-term and short-term stability, and variability in the characterization procedure, were 27 ?g kg(-1) (7.8 %), 48 ?g kg(-1) (6.6 %), and 33 ?g kg(-1) (6.6 %). PMID:25619984

  8. The Physics and Technology of Dilute Nitrides

    Microsoft Academic Search

    N Balkan

    2004-01-01

    Dilute nitrides have emerged from conventional III–V semiconductors such as GaAs or InP by the insertion of nitrogen into the group V sub-lattice, which has a profound influence on the electronic properties of these materials and allows widely extended band structure engineering. This is expected to lead to novel devices, e.g. for optical data transmission, solar cells, biophotonics or gas

  9. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  10. Preliminary Design Report Shippingport Spent Fuel Drying and Inerting System

    SciTech Connect

    JEPPSON, D.W.

    2000-05-18

    A process description and system flow sheets have been prepared to support the design/build package for the Shippingport Spent Fuel Canister drying and inerting process skid. A process flow diagram was prepared to show the general steps to dry and inert the Shippingport fuel loaded into SSFCs for transport and dry storage. Flow sheets have been prepared to show the flows and conditions for the various steps of the drying and inerting process. Calculations and data supporting the development of the flow sheets are included.

  11. Mechanical behaviour of macro-dispersed inert matrix fuels

    Microsoft Academic Search

    E. A. C. Neeft; K. Bakker; R. L. Belvroy; W. J. Tams; R. P. C. Schram; R. Conrad; A. van Veen

    2003-01-01

    Macro-dispersed inert matrix fuels were irradiated in the high flux reactor in Petten. These fuels consisted of UO2 inclusions embedded in the inert matrices MgO, MgAl2O4, Y3Al5O12, CeO2-x and Y2O3. The uranium burn-up reached 17.1–19.8% FIMA after an irradiation period of 198.9 days. The sample temperature was about 700–1000 K. Room temperature indentation measurements were performed in the inert matrices

  12. On-line monitoring of benzene air concentrations while driving in traffic by means of isotopic dilution gas chromatography/mass spectrometry.

    PubMed

    Davoli, E; Cappellini, L; Moggi, M; Ferrari, S; Fanelli, R

    1996-01-01

    There is no shortage of information about the average benzene concentrations in urban air, but there is very little about microenvironmental exposure, such as in-vehicle concentrations while driving in various traffic conditions, while refuelling, or while in a parking garage. The main reason for this lack of data is that no analytical instrumentation has been available to measure on-line trace amounts of benzene in such situations. We have recently proposed a highly accurate, high-speed cryofocusing gas chromatography/mass spectrometry (GC/MS) system for monitoring benzene concentrations in air. Accuracy of the analytical data is achieved by enrichment of the air sample before trapping, with a stable isotope permeation tube system. The same principles have been applied to a new instrument, specifically designed for operation on an electric vehicle (Ducato Elettra, Fiat). The zero emission vehicle and the fully transportable, battery-operated GC/MS system provide a unique possibility of monitoring benzene exposure in real everyday situations such as while driving, refuelling, or repairing a car. All power consumptions have been reduced so as to achieve a battery-operated GC/MS system. Liquid nitrogen cryofocusing has been replaced by a packed, inductively heated, graphitized charcoal microtrap. The instrument has been mounted on shock absorbers and installed in the van. The whole system has been tested in both fixed and mobile conditions. The maximum monitoring period without external power supply is 6 h. The full analytical cycle is 4 min, allowing close to real-time monitoring, and the minimum detectable level is 1 microgram/m3 for benzene. In-vehicle monitoring showed that, when recirculation was off and ventilation on, i.e., air from outside the vehicle was blown inside, concentrations varied widely in different driving conditions: moving from a parking lot into normal traffic on an urban traffic condition roadway yielded an increase in benzene concentration from 17 to 62.3 micrograms/m3 even if the actual distance was small. A larger increase was observed when a car was left with the engine running at a distance 2 m from the zero emission vehicle: We measured an increment of benzene concentrations from 15.2 to 174.4 micrograms/m3 with a car equipped with a catalytic converter, and from 19.1 to 386.3 micrograms/m3 with a car without such a converter. PMID:8738357

  13. Results from electrolysis test of a prototype inert anode: Inert Electrode Program

    SciTech Connect

    Strachan, D.M.; Windisch, C.F. Jr.; Koski, O.H.; Morgan, L.G. (Pacific Northwest Lab., Richland, WA (USA)); Peterson, R.D.; Richards, N.E.; Tabereaux, A.T. (Reynolds Metals Co., Sheffield, AL (USA). Mfg. Technology Lab.)

    1990-05-01

    Nonconsumable or inert anodes are being developed at the Pacific Northwest Laboratory (PNL)({sup a}) for use in the electrolytic production of aluminum. A series of laboratory test on the laboratory scale (Hart et al. 1987; Strachan et al. 1989; Marschman 1989) has shown the technology to be potentially feasible. A series of larger-scale experiments are now being run to determine the viability of the technology on a commercial scale. The results reported here are from a test performed at the Reynolds Metals Company, Manufacturing Technology Laboratory, Sheffield, Alabama, using a prototype anode. The prototype anode was approximately 15 cm in diameter and 20 cm high (Figure 1.1). The objectives of the test were to determine if an anode, produced by a commercial vendor, could survive in a test under conditions approximating those found in a commercial electrolysis cell; to familiarize the Reynolds staff with the operation of such an anode in a subsequent pilot cell test of the inert anode technology; and to familiarize the PNL staff with the operations at the Reynolds Metals Company facility. 8 refs., 39 figs., 9 tabs.

  14. Inertance Tube Modeling and the Effects of Temperature

    NASA Astrophysics Data System (ADS)

    Dodson, C.; Razani, A.; Roberts, T.

    2010-04-01

    Pulse tube refrigerators (PTRs) have made dramatic improvements in reliability, efficiency and usage. Inertance tube PTRs have been one of the keys to these improvements. The inertance tube is the component in the PTR that most easily affects the control of the PTR fluid dynamics. In one application in multistage cryocoolers, the performance of inertance tubes at the cryogenic temperatures is of interest. One purpose of this paper is to understand how temperature and the size of the reservoir influence the phase shift between mass flow rate and pressure at the inlet of the inertance tube. Various models including a two dimensional Computational Fluid Dynamics (CFD) will be compared to understand how these models can predict the phase shift and the acoustic power.

  15. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  16. Process and apparatus for igniting a burner in an inert atmosphere

    DOEpatents

    Coolidge, Dennis W. (Katy, TX); Rinker, Franklin G. (Perrysburg, OH)

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  17. Optimisation of inert matrix fuel concepts for americium transmutation

    Microsoft Academic Search

    N. Chauvin; R. J. M Konings; Hj Matzke

    1999-01-01

    Concepts of inert-matrix fuels for americium transmutation are discussed. It is demonstrated that a `hybrid' fuel design, consisting in a dispersion of an americium-bearing phase in an inert matrix, is desirable. More than a solid-solution is preferred in order to localise within a small volume the damage in the matrix due to fission fragments. Such a dispersion is composed of

  18. Dispersion serial dilution methods using the gradient diluter device.

    PubMed

    Walling, Leslie; Schulz, Craig; Johnson, Michael

    2012-12-01

    A solute aspirated into a prefilled tube of diluent undergoes a dilution effect known as dispersion. Traditionally the effects of dispersion have been considered a negative consequence of using liquid-filled fixed-tip liquid handlers. We present a novel device and technique that utilizes the effects of dispersion to the benefit of making dilutions. The device known as the Gradient Diluter extends the dilution range of practical serial dilutions to six orders of magnitude in final volumes as low as 10??L. Presented are the device, dispersion methods, and validation tests using fluorescence detection of sulforhodamine and the high-performance liquid chromatography/ultraviolet detection of furosemide. In addition, a T-cell inhibition assay of a relevant downstream protein is used to demonstrate IC(50) curves made with the Gradient Diluter compare favorably with those generated by hand. PMID:22364546

  19. Dark matter with topological defects in the Inert Doublet Model

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Kirk, Russell; No, Jose Miguel; West, Stephen M.

    2015-05-01

    We examine the production of dark matter by decaying topological defects in the high mass region mDM gg mW of the Inert Doublet Model, extended with an extra U(1) gauge symmetry. The density of dark matter states (the neutral Higgs states of the inert doublet) is determined by the interplay of the freeze-out mechanism and the additional production of dark matter states from the decays of topological defects, in this case cosmic strings. These decays increase the predicted relic abundance compared to the standard freeze-out only case, and as a consequence the viable parameter space of the Inert Doublet Model can be widened substantially. In particular, for a given dark matter annihilation rate lower dark matter masses become viable. We investigate the allowed mass range taking into account constraints on the energy injection rate from the diffuse ?-ray background and Big Bang Nucleosynthesis, together with constraints on the dark matter properties coming from direct and indirect detection limits. For the Inert Doublet Model high-mass region, an inert Higgs mass as low as ~ 200 GeV is permitted. There is also an upper limit on string mass per unit length, and hence the symmetry breaking scale, from the relic abundance in this scenario. Depending on assumptions made about the string decays, the limits are in the range 1012 GeV to 1013 GeV.

  20. Praxair's dilute oxygen combustion technology for pyrometallurgical applications

    NASA Astrophysics Data System (ADS)

    Riley, M. F.; Kobayashi, H.; Deneys, A. C.

    2001-05-01

    Dilute oxygen combustion (DOC) technology uses separate high-velocity fuel and oxygen jets to generate strong in-furnace gas recirculation, producing combustion between the fuel and a highly diluted oxygen and furnace-gas mixture. These very low NOx oxy-fuel burners have been developed and commercially demonstrated in steel reheating furnaces. The burner design meets industry needs for increased productivity and lower operating costs with minimal capital expense and low maintenance. The performance of DOC technology has been measured under laboratory and industrial conditions encompassing both natural gas and coke oven gas firing, and a wide range of furnace temperatures and nitrogen levels that simulate air infiltration. This paper describes the results of the tests using natural gas as the fuel and lists potential applications for DOC technology in the non-ferrous metals industry.

  1. Inert Gas Buffered Milling and Particle Size Separation of ���������������¯������������������������������­m-Scale Superconducting Precursor Powders - Final Report

    SciTech Connect

    P. McIntyre and S. Seshadri

    2008-06-20

    The project developed an aerosol system for the met milling and particle size separation of the precursor powders used in fabrication of powder-in-tube superconductors. The work builds upon the results of a previous SBIR-funded development that proved the basic principles of the virtual impactor (VI) technology and its efficacy for the powders of interest. The new project extended that work in three respects: it integrated provisions for recirculating the aerosol flow using inert gas to avoid contamination from O2, CO2 and water in ambient air; a quad configuration of VI subassemblies to support kg/hr throughput; and it incorporated design features that eliminate error trajectories which would introduce trace contamination of larger particles into the separated flow. The project demonstrated the technical effectiveness of the process and established its economic feasibility by achieving kg/hr throughput within a cost profile that would be profitable within the range of competitive toll fees. The project is beneficial to the public through its potential to improve the performance of superconducting materials for research and for biomedicine. It also conveys potential benefits for powders used in high-performance ceramics (for example for engines for automobiles and for aircraft) and for high-performance electrical insulators for telecommunications circuitry.

  2. Neutronic aspects of inert matrix fuels for application in ADS

    NASA Astrophysics Data System (ADS)

    Wallenius, J.

    2003-07-01

    Accelerator driven systems may operate on uranium or thorium free fuels. In order to guarantee the stability of such fuels at high temperatures, the use of inert matrices is foreseen. In the present study, safety parameters of 800 MWth ADS cores operating on oxide and nitride fuels with high americium content are investigated for a representative range of pin and core geometries. It is shown that among the inert matrices investigated, chromium yields the lowest void worth, hafnium nitride the highest fission probability for americium and magnesia the highest burnup potential.

  3. Dilution physics modeling: Dissolution/precipitation chemistry

    SciTech Connect

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.

  4. Stress in dilute suspensions

    NASA Technical Reports Server (NTRS)

    Passman, Stephen L.

    1989-01-01

    Generally, two types of theory are used to describe the field equations for suspensions. The so-called postulated equations are based on the kinetic theory of mixtures, which logically should give reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a system of equations which is underdetermined, in a sense that can be made precise. On the other hand, the so-called averaging theory starts with a determined system, but the very process of averaging renders the resulting system underdetermined. A third type of theory is proposed in which the kinetic theory of gases is used to motivate continuum equations for the suspended particles. This entails an interpretation of the stress in the particles that is different from the usual one. Classical theory is used to describe the motion of the suspending medium. The result is a determined system for a dilute suspension. Extension of the theory to more concentrated systems is discussed.

  5. Dilute magnetic semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Kulkarni, J. S.; Kazakova, O.; Holmes, J. D.

    2006-11-01

    Semiconductor materials form the basis of modern electronics, communication, data storage and computing technologies. One of today’s challenges for the development of future technologies is the realization of devices that control not only the electron charge, as in present electronics, but also its spin, setting the basis for future spintronics. Spintronics represents the concept of the synergetic and multifunctional use of charge and spin dynamics of electrons, aiming to go beyond the traditional dichotomy of semiconductor electronics and magnetic storage technology. The most direct method to induce spin-polarized electrons into a semiconductor is by introducing appropriate transition-metal or rare-earth dopants producing a dilute magnetic semiconductor (DMS). At the same time the seamless integration of future spintronic devices into nanodevices would require the fabrication of one-dimensional DMS nanostructures in well-defined architectures. In this review we focus on recent advances in the synthesis of DMS nanowires as well discussing the structural, optical and magnetic properties of these materials.

  6. Dark Matter with Two Inert Doublets plus One Higgs Doublet

    E-print Network

    Venus Keus; Stephen F. King; Stefano Moretti; Dorota Sokolowska

    2014-08-14

    Following the discovery of a Higgs boson, there has been renewed interest in the general 2-Higgs-Doublet Model (2HDM). A model with One Inert Doublet plus One Higgs Doublet (I(1+1)HDM), where one of the scalar doublets is "inert" (since it has no vacuum expectation value and does not couple to fermions) has an advantage over the 2HDM since it provides a good Dark Matter (DM) candidate, namely the lightest inert scalar. Motivated by the existence of three fermion families, here we consider a model with two scalar doublets plus one Higgs doublet (I(2+1)HDM), where the two scalar doublets are inert. The I(2+1)HDM has a richer phenomenology than either the I(1+1)HDM or the 2HDM. We discuss the new regions of DM relic density in the I(2+1)HDM with simplified couplings and address the possibility of constraining the model using recent results from the Large Hadron Collider (LHC) and DM direct detection experiments.

  7. A NOVEL INERT COLLAGEN MATRIX FOR HYPOSPADIAS REPAIR

    Microsoft Academic Search

    ANTHONY ATALA; LUIS GUZMAN; ALAN B. RETIK

    1999-01-01

    PurposeIn select patients with hypospadias in whom genital skin is insufficient alternative tissues are needed for urethral reconstruction. Although skin and mucosal grafts may be used, they may increase hospitalization and morbidity. We explored the feasibility of using a bladder submucosal, collagen based inert matrix as a free graft substitute for urethral repair.

  8. Are aromatic diluents used in pyrolysis experiments inert

    Microsoft Academic Search

    Phillip E. Savage

    1994-01-01

    Hydrogen abstraction from compounds such as benzene and biphenyl is a potential complication when these aromatics are used as diluents in hydrocarbon pyrolysis experiments. This paper presents a general methodology for quantitatively assessing the likelihood that substrate-derived radicals abstract hydrogen from a nominally inert diluent. The key variables are the concentration of the substrate, the pyrolysis temperature, and the dissociation

  9. Combustion of hydrocarbon fuels within porous inert media

    Microsoft Academic Search

    J. R. Howell; M. J. Hall; J. L. Ellzey

    1996-01-01

    There has been a recent surge of interest in the combustion of hydrocarbon fuels within porous inert media. The interest has been directed by the needs of industry to develop high performance radiant heaters while complying with increasingly stringent emissions regulations. This paper reviews the processes associated with non-catalytic combustion within porous media, and describes related experimental and modeling research.

  10. The Refractive Indices and Verdet Constants of the Inert Gases

    Microsoft Academic Search

    A. Dalgarno; A. E. Kingston

    1960-01-01

    A method is suggested by which the refractive index and Verdet constant of an atomic system may be derived theoretically. It is applied to atomic hydrogen and to the inert gases and a comparison is made with experimental data. The Verdet constant of neon is not anomalous. The origin of the suggestion appears to be an underestimate of the experimental

  11. Determination of Ethane-1,2-diamine in Inert Complexes.

    ERIC Educational Resources Information Center

    Searle, Graeme H.

    1985-01-01

    Describes a procedure for determining ethane-1,2-diamine (EN) which is generally applicable for inert or labile complexes or for EN in its salts, although it cannot be used directly with ammonium or coordinated ammonia. It gives results with five percent accuracy or better and requires less than one hour laboratory time. (JN)

  12. A Limit Theorem for Financial Markets with Inert Investors

    Microsoft Academic Search

    Erhan Bayraktar; Ulrich Horst; Ronnie Sircar

    2007-01-01

    We study the effect of investor inertia on stock price fluctuations with a market microstructure model comprising many small investors who are inactive most of the time. It turns out that semi-Markov processes are tailor made for modelling inert investors. With a suitable scaling, we show that when the price is driven by the market imbalance, the log price process

  13. DAVINCI: Dilute Aperture VIsible Nulling Coronagraphic Imager

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Levine, B. M.; Vasisht, G.; Lane, B. F.; Woodruff, R.; Vasudevan, G.; Samuele, R.; Lloyd, C. A.; Clampin, M.; Lyon, R.; Guyon, O.

    2008-01-01

    This slide presentation gives an overview of DAVINCI (Dilute Aperture VIsible Nulling Coronagraphic Imager). The presentation also includes information about dilute aperture coronagraph, and lyot efficiency.

  14. FIELD AND LABORATORY EVALUATION OF A WOODSTOVE DILUTION SAMPLING SYSTEM

    EPA Science Inventory

    The paper discusses field and laboratory evaluation of a woodstove dilution sampling system. Two sampling methods have been developed and used by EPA to test emissions from woodstoves: both remove flue gas directly from the appliance chimney. The two methods have been developed t...

  15. 40 CFR 1065.546 - Verification of minimum dilution ratio for PM batch sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...minimum dilution ratio for PM batch sampling. Use continuous flows and/or tracer gas concentrations for transient and ramped-modal cycles to verify the minimum dilution ratios for PM batch sampling as specified in § 1065.140(e)(2) over the...

  16. Sea Urchin Embryology: Sperm Dilution

    NSDL National Science Digital Library

    PhD David Epel (Stanford U. Hopkins Marine Station)

    2007-04-20

    Lab directions for up to two 50 min periods and the last of the dilution labs. Includes set up information, materials, procedure, experimental design, things to observe, math possibilities, thought-provoking questions and an assessment.

  17. Sea Urchin Embryology: Simple Dilutions

    NSDL National Science Digital Library

    PhD David Epel (Stanford U. Hopkins Marine Station)

    2006-12-20

    Starting from a known concentration students learn to use dilutions to determine the concentration of an unknown. The following skills are used in this lesson: 1. making dilutions 2. reading the meter on a simple homemade spectrophotometer 3. keeping careful laboratory records 4. graphing on linear graph paper 5. determining an unknown concentration from known 6. using a colored filter to enhance contrast and sensitivity

  18. Dilute Oxygen Combustion - Phase 3 Report

    SciTech Connect

    Riley, Michael F.

    2000-05-31

    Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good, and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel's standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion on furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

  19. Dilute Oxygen Combustion Phase 3 Final Report

    SciTech Connect

    Riley, M.F.; Ryan, H.M.

    2000-05-31

    Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel?s standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion of furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

  20. Process for the pyrolysis of coal in dilute-and dense-phase fluidized beds

    Microsoft Academic Search

    1980-01-01

    A description is given of a process for the pyrolysis of coal comprising, (A) countercurrently contacting coal subdivided to a particle size fluidizable in gas in the form of a relatively cool, upwardly mving fluidized mass in a first vertically-oriented preheating zone with an inert relatively hot first particulate heat carrier thereby transferring sensible heat from the heat carrier to

  1. Quantification of the 2-deoxyribonolactone and nucleoside 5’-aldehyde products of 2-deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: Differential effects of ?-radiation and Fe2+-EDTA

    PubMed Central

    Chan, Wan; Chen, Bingzi; Wang, Lianrong; Taghizadeh, Koli; Demott, Michael S.; Dedon, Peter C.

    2010-01-01

    The oxidation of 2-deoxyribose in DNA has emerged as a critical determinant of the cellular toxicity of oxidative damage to DNA, with oxidation of each carbon producing a unique spectrum of electrophilic products. We have developed and validated an isotope-dilution gas chromatography-coupled mass spectrometry (GC-MS) method for the rigorous quantification of two major 2-deoxyribose oxidation products: the 2-deoxyribonolactone abasic site of 1’-oxidation and the nucleoside 5’-aldehyde of 5’-oxidation chemistry. The method entails elimination of these products as 5-methylene-2(5H)-furanone (5MF) and furfural, respectively, followed by derivatization with pentafluorophenylhydrazine (PFPH), addition of isotopically labeled PFPH derivatives as internal standards, extraction of the derivatives, and quantification by GC-MS analysis. The precision and accuracy of the method were validated with oligodeoxynucleotides containing the 2-deoxyribonolactone and nucleoside 5’-aldehyde lesions. Further, the well defined 2-deoxyribose oxidation chemistry of the enediyne antibiotics, neocarzinostatin and calicheamicin ?1I, was exploited in control studies, with neocarzinostatin producing 10 2-deoxyribonolactone and 300 nucleoside 5’-aldehyde per 106 nt per µM in accord with its established minor 1’- and major 5’-oxidation chemistry. Calicheamicin unexpectedly caused 1’-oxidation at a low level of 10 2-deoxyribonolactone per 106 nt per µM in addition to the expected predominance of 5’-oxidation at 560 nucleoside 5’-aldehyde per 106 nt per µM. The two hydroxyl radical-mediated DNA oxidants, ?-radiation and Fe2+-EDTA, produced nucleoside 5’-aldehyde at a frequency of 57 per 106 nt per Gy (G-value 74 nmol/J) and 3.5 per 106 nt per µM, respectively, which amounted to 40% and 35%, respectively, of total 2-deoxyribose oxidation as measured by a plasmid nicking assay. However, ?-radiation and Fe2+-EDTA produced different proportions of 2-deoxyribonolactone at 7% and 24% of total 2-deoxyribose oxidation, respectively, with frequencies of 10 lesions per 106 nt per Gy (G-value, 13 nmol/J) and 2.4 lesions per 106 nt per µM. Studies in TK6 human lymphoblastoid cells, in which the analytical data were corrected for losses sustained during DNA isolation, revealed background levels of 2-deoxyribonolactone and nucleoside 5’-aldehyde of 9.7 and 73 lesions per 106 nt, respectively. ?-Irradiation of the cells caused increases of 0.045 and 0.22 lesions per 106 nt per Gy, respectively, which represents a ~250-fold quenching effect of the cellular environment similar to that observed in previous studies. The proportions of the various 2-deoxyribose oxidation products generated by ?-radiation are similar for purified DNA and cells. These results are consistent with solvent exposure as a major determinant of hydroxyl radical reactivity with 2-deoxyribose in DNA, but the large differences between ?-radiation and Fe2+-EDTA suggest that factors other than hydroxyl radical reactivity govern DNA oxidation chemistry. PMID:20377226

  2. 75 FR 30300 - Restricting the Mailing of Replica or Inert Explosive Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ...devices, such as simulated grenades that are not dangerous but bear a realistic appearance to explosive devices, to Registered Mail...Inert Explosive Devices Replica or inert explosive devices that bear a realistic appearance to explosive devices such as...

  3. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.

    PubMed

    Chandrasekaran, Sriraam R; Hopke, Philip K

    2012-12-01

    Grass pellets are a renewable resource that have energy content similar to that of wood. However, the higher ash and chlorine content affects combustion. Thermal degradation analysis of a fuel is useful in developing effective combustion. Thermogravimetric analysis (TGA) of the thermal degradation of grass pellets under inert (nitrogen) and oxidizing (air) atmospheres was conducted. Non-isothermal conditions were employed with 4 different heating rates. Kinetic parameters (activation energy and pre-exponential factors) were estimated using the iso-conversional method. Both pyrolysis and oxidative atmospheric thermal degradation exhibited two major loss process: volatilization of cellulose, hemicelluloses and lignin and burning or slow oxidation of the residual char. The activation energy and pre-exponential factors were high for the oxidizing environment. During pyrolysis, major decomposition occurred with 40% to 75% conversion of the mass to gas with an activation energy of 314 kJ/mol. In air the decomposition occurred with 30% to 55% conversion with an activation energy of 556 kJ/mol. There was a substantial effect of heating rate on mass loss and mass loss rate. The TG shifted to higher temperature ranges on increasing the heating rate. In both pyrolyzing and oxidizing conditions, average combustion and devolatilization rates increased. Enhanced combustion takes place with higher activation energy in oxidizing atmosphere compared to the inert atmosphere due to presence of air. PMID:23026316

  4. Advances towards the qualification of an aircraft fuel tank inert environment fiber optic oxygen sensor system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian; Susko, Kenneth; Goglia, John

    2011-06-01

    An all optical pressure and temperature compensated fiber optic oxygen sensor (FOxSenseTM) system is under qualification for use in the in-situ closed-loop-control of the inert atmosphere environment inside fuel tanks of military and commercial aircraft. The all-optical oxygen environment control sensor is a passive, intrinsically safe, fiber-optic sensor device with no electrical connections leading to the sensors installed within the fuel tanks of an aircraft. To control the fuel tank environment, an array of multiple sensors is deployed throughout the fuel tanks of an aircraft, and a remote multi-channel optoelectronic system is used to monitor the status of all the sensors in real time to provide feedback oxygen environment information to the on-board inert gas generating system (OBIGS). Qualification testing of the all optical sensor have demonstrated the ability to monitor the oxygen environment inside a simulated fuel tank environment in the oxygen range from 0% to 21% oxygen concentrations, temperatures from (-) 40°C to (+) 60°C, and altitudes from sea level to 40,000 feet. Fiber optic oxygen sensors with built-in temperature compensation as well as the conduit fiber optic cables have passed DO-160E including acoustic noise and burn test.

  5. Fluctuating hydrodynamics for dilute granular gases: a Monte Carlo study

    E-print Network

    Giulio Costantini; Andrea Puglisi

    2010-05-22

    We investigate hydrodynamic noise in a dilute granular gas during the homogeneous cooling state, by means of a proper application of the Direct Simulation Monte Carlo (DSMC) algorithm. The DSMC includes a source of randomization which is not present in Molecular Dynamics (MD) for inelastic hard disks. Notwithstanding this difference, a fair quantitative agreement is found, including a violation of the fluctuation-dissipation relation for the noise amplitude of the same order observed in MD. This study suggests that deterministic collision dynamics is not an essential ingredient to reproduce, up to a good degree of approximation, hydrodynamic fluctuations in dilute granular gases.

  6. 75 FR 282 - Restricting the Mailing of Replica or Inert Explosive Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ...Restricting the Mailing of Replica or Inert Explosive Devices AGENCY: Postal Service TM...allow for the mailing of replica or inert explosive devices, such as grenades, be sent...identify these items as ``replica or inert explosive devices'' rather than ``replica...

  7. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOEpatents

    Dawless, Robert K. (Monroeville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA); Kozarek, Robert L. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  8. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  9. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, Loucas G. (Oak Ridge, TN); McCorkle, Dennis L. (Knoxville, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  10. Inert scalars and vacuum metastability around the electroweak scale

    E-print Network

    Bogumila Swiezewska

    2015-03-24

    We analyze effective potential around the electroweak (EW) scale in the Standard Model (SM) extended with heavy inert scalars. We show that the additional scalars can have a strong impact on the issue of vacuum stability. Although the additional heavy scalars may improve the behavior of running Higgs self-coupling at large field values, we prove that they can destabilize the vacuum due to EW-scale effects. A new EW symmetry conserving minimum of the effective potential can appear rendering the electroweak symmetry breaking (EWSB) minimum meta- or unstable. However, for the case of the inert doublet model (IDM) with a 125 GeV Higgs boson we demonstrate that the parameter space region where the vacuum is meta- or unstable cannot be reconciled with the constraints from perturbative unitarity, electroweak precision tests (EWPT) and dark matter relic abundance measurements.

  11. Inert scalars and vacuum metastability around the electroweak scale

    E-print Network

    Swiezewska, Bogumila

    2015-01-01

    We analyze effective potential around the electroweak (EW) scale in the Standard Model (SM) extended with heavy inert scalars. We show that the additional scalars can have a strong impact on the issue of vacuum stability. Although the additional heavy scalars may improve the behavior of running Higgs self-coupling at large field values, we prove that they can destabilize the vacuum due to EW-scale effects. A new EW symmetry conserving minimum of the effective potential can appear rendering the electroweak symmetry breaking (EWSB) minimum meta- or unstable. However, for the case of the inert doublet model (IDM) with a 125 GeV Higgs boson we demonstrate that the parameter space region where the vacuum is meta- or unstable cannot be reconciled with the constraints from perturbative unitarity, electroweak precision tests (EWPT) and dark matter relic abundance measurements.

  12. The Electroweak Phase Transition in the Inert Doublet Model

    E-print Network

    Blinov, Nikita; Stefaniak, Tim

    2015-01-01

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  13. Significant gamma lines from inert Higgs dark matter.

    PubMed

    Gustafsson, Michael; Lundström, Erik; Bergström, Lars; Edsjö, Joakim

    2007-07-27

    One way to unambiguously confirm the existence of particle dark matter and determine its mass would be to detect its annihilation into monochromatic gamma-rays in upcoming telescopes. One of the most minimal models for dark matter is the inert doublet model, obtained by adding another Higgs doublet with no direct coupling to fermions. For a mass between 40 and 80 GeV, the lightest of the new inert Higgs particles can give the correct cosmic abundance of cold dark matter in agreement with current observations. We show that for this scalar dark matter candidate, the annihilation signal of monochromatic gammagamma and Zgamma final states would be exceptionally strong. The energy range and rates for these gamma-ray line signals make them ideal to search for with the soon upcoming GLAST satellite. PMID:17678348

  14. Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst: Final Report, 24 February 2004 -- 23 February 2006

    SciTech Connect

    Reppert, T.; Chiu, J.

    2005-09-01

    This report discusses the development of a E7G 12-liter, lean-burn natural gas engine--using stoichiometric combustion, cooled exhaust gas recirculation, and three-way catalyst technologies--for refuse haulers.

  15. Inert matrix fuel in dispersion type fuel elements

    Microsoft Academic Search

    A. M. Savchenko; A. V. Vatulin; A. V. Morozov; V. L. Sirotin; I. V. Dobrikova; G. V. Kulakov; S. A. Ershov; V. P. Kostomarov; Y. I. Stelyuk

    2006-01-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of

  16. Evolution of weak disturbances in inert binary mixtures

    NASA Technical Reports Server (NTRS)

    Rasmussen, M. L.

    1977-01-01

    The evolution of weak disturbances in inert binary mixtures is determined for the one-dimensional piston problem. The interaction of the dissipative and nonlinear mechanisms is described by Burgers' equation. The binary mixture diffusion mechanisms enter as an additive term in an effective diffusivity. Results for the impulsive motion of a piston moving into an ambient medium and the sinusoidally oscillating piston are used to illustrate the results and elucidate the incorrect behavior pertaining to the associated linear theory.

  17. Metal ion implantation in inert polymers for strain gauge applications

    Microsoft Academic Search

    Giovanni Di Girolamo; Marcello Massaro; Emanuela Piscopiello; Leander Tapfer

    2010-01-01

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu+ and Ni+) and with fluences in the range between 1×1016 and 1×1017ions\\/cm2, in order to promote the precipitation of dispersed

  18. The linear stability of dilute particulate rings

    E-print Network

    Henrik N. Latter; Gordon I. Ogilvie

    2006-09-06

    Irregular structure in planetary rings is often attributed to the intrinsic instabilities of a homogeneous state undergoing Keplerian shear. Previously these have been analysed with simple hydrodynamic models. We instead employ a kinetic theory, in which we solve the linearised moment equations derived in Shu and Stewart 1985 for a dilute ring. This facilitates an examination of velocity anisotropy and non-Newtonian stress, and their effects on the viscous and viscous/gravitational instabilities thought to occur in Saturn's rings. Because we adopt a dilute gas model, the applicability of our results to the actual dense rings of Saturn are significantly curtailled. Nevertheless this study is a necessary preliminary before an attack on the difficult problem of dense ring dynamics. We find the Shu and Stewart formalism admits analytic stability criteria for the viscous overstability, viscous instability, and thermal instability. These criteria are compared with those of a hydrodynamic model incorporating the effective viscosity and cooling function computed from the kinetic steady state. We find the two agree in the `hydrodynamic limit' (i.e. many collisions per orbit) but disagree when collisions are less frequent, when we expect the viscous stress to be increasingly non-Newtonian and the velocity distribution increasingly anisotropic. In particular, hydrodynamics predicts viscous overstability for a larger portion of parameter space. We also numerically solve the linearised equations of the more accurate Goldreich and Tremaine 1978 kinetic model and discover its linear stability to be qualitatively the same as that of Shu and Stewart's. Thus the simple collision operator adopted in the latter would appear to be an adequate approximation for dilute rings, at least in the linear regime.

  19. Biomathematical modeling for diluted drugs.

    PubMed

    Chattopadhyay, S

    2003-07-01

    Several workers have proven that succussed ultra high dilution of a drug molecule in water or alcoholic medium, even exceeding Avogadro number, can bring forth noticeable physiological changes of an organism. Homeopathic drugs are prepared by dissolving such drug ingredients in distilled water and then the solution is centesimally diluted serially by ethanol. A mathematical model has been proposed by the present worker, which explains why the drug does not become non-molecular even in ultra-high dilution. This is due to loss of homogeneity in the solution, caused by increase of dielectric constant of the medium during the process of potentization. Facilitated binding of the drug molecules with minute physiologically important protein factors may be the cause of visible physiological alterations. PMID:12781641

  20. Application of Cryocoolers to a Vintage Dilution Refrigerator

    SciTech Connect

    Schmitt, Richard; Smith, Gary; Ruschman, Mark; /Fermilab; Beaty, Jim; /Minnesota U.

    2011-06-06

    A dilution refrigerator is required for 50mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80K and at 4K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiers using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.

  1. Tablet Analysis Using Gravimetric Dilutions

    NASA Astrophysics Data System (ADS)

    Simonson, Larry A.

    2001-10-01

    This experiment introduces the concept of gravimetric dilutions in the context of tablet analysis. Caffeine tablets are analyzed by absorbance at 274 nm with reference to a standard calibration graph and tested for compliance with the USP criterion. All samples and standards are prepared using gravimetric dilutions without reference to volume or density. This experiment is appropriate for high school and college freshman chemistry courses and may be useful at higher levels. It is only necessary that students have had exposure to Beer's law.

  2. Neutrophils Generate Microparticles during Exposure to Inert Gases Due to Cytoskeletal Oxidative Stress*

    PubMed Central

    Thom, Stephen R.; Bhopale, Veena M.; Yang, Ming

    2014-01-01

    This investigation was to elucidate the mechanism for microparticle (MP) formation triggered by exposures to high pressure inert gases. Human neutrophils generate MPs at a threshold of ?186 kilopascals with exposures of 30 min or more. Murine cells are similar, but MP production occurs at a slower rate and continues for ?4 h, whether or not cells remain under pressure. Neutrophils exposed to elevated gas but not hydrostatic pressure produce MPs according to the potency series: argon ? nitrogen > helium. Following a similar pattern, gases activate type-2 nitric-oxide synthase (NOS-2) and NADPH oxidase (NOX). MP production does not occur with neutrophils exposed to a NOX inhibitor (Nox2ds) or a NOS-2 inhibitor (1400W) or with cells from mice lacking NOS-2. Reactive species cause S-nitrosylation of cytosolic actin that enhances actin polymerization. Protein cross-linking and immunoprecipitation studies indicate that increased polymerization occurs because of associations involving vasodilator-stimulated phosphoprotein, focal adhesion kinase, the H+/K+ ATPase ? (flippase), the hematopoietic cell multidrug resistance protein ABC transporter (floppase), and protein-disulfide isomerase in proximity to short actin filaments. Using chemical inhibitors or reducing cell concentrations of any of these proteins with small inhibitory RNA abrogates NOS-2 activation, reactive species generation, actin polymerization, and MP production. These effects were also inhibited in cells exposed to UV light, which photoreverses S-nitrosylated cysteine residues and by co-incubations with the antioxidant ebselen or cytochalasin D. The autocatalytic cycle of protein activation is initiated by inert gas-mediated singlet O2 production. PMID:24867949

  3. Neutrophils generate microparticles during exposure to inert gases due to cytoskeletal oxidative stress.

    PubMed

    Thom, Stephen R; Bhopale, Veena M; Yang, Ming

    2014-07-01

    This investigation was to elucidate the mechanism for microparticle (MP) formation triggered by exposures to high pressure inert gases. Human neutrophils generate MPs at a threshold of ?186 kilopascals with exposures of 30 min or more. Murine cells are similar, but MP production occurs at a slower rate and continues for ?4 h, whether or not cells remain under pressure. Neutrophils exposed to elevated gas but not hydrostatic pressure produce MPs according to the potency series: argon ? nitrogen > helium. Following a similar pattern, gases activate type-2 nitric-oxide synthase (NOS-2) and NADPH oxidase (NOX). MP production does not occur with neutrophils exposed to a NOX inhibitor (Nox2ds) or a NOS-2 inhibitor (1400W) or with cells from mice lacking NOS-2. Reactive species cause S-nitrosylation of cytosolic actin that enhances actin polymerization. Protein cross-linking and immunoprecipitation studies indicate that increased polymerization occurs because of associations involving vasodilator-stimulated phosphoprotein, focal adhesion kinase, the H(+)/K(+) ATPase ? (flippase), the hematopoietic cell multidrug resistance protein ABC transporter (floppase), and protein-disulfide isomerase in proximity to short actin filaments. Using chemical inhibitors or reducing cell concentrations of any of these proteins with small inhibitory RNA abrogates NOS-2 activation, reactive species generation, actin polymerization, and MP production. These effects were also inhibited in cells exposed to UV light, which photoreverses S-nitrosylated cysteine residues and by co-incubations with the antioxidant ebselen or cytochalasin D. The autocatalytic cycle of protein activation is initiated by inert gas-mediated singlet O2 production. PMID:24867949

  4. Zirconia Inert Matrix Fuel for Plutonium and Minor Actinides Management in Reactors and as an Ultimate Waste Form

    SciTech Connect

    Degueldre, Claude [NES, PSI, OHLD 08, Villigen, CH-5232 (Switzerland); Wiesenack, Wolfgang [OECD Halden Reactor Project, Halden, 1751 (Norway)

    2008-07-01

    An yttria stabilised zirconia doped with plutonia and erbia has been selected as inert matrix fuel (IMF) at PSI. The results of experimental irradiation tests on yttria-stabilised zirconia doped with plutonia and erbia pellets in the Halden research reactor as well as a study of zirconia solubility are presented. Zirconia must be stabilised by yttria to form a solid solution such as MAz(Y,Er){sub y}Pu{sub x}Zr{sub 1-y}O{sub 2-{xi}} where minor actinides (MA) oxides are also soluble. (Er,Y,Pu,Zr)O{sub 2-{xi}} (with Pu containing 5% Am) was successfully prepared at PSI and irradiated in the Halden reactor. Emphasis is given on the zirconia- IMF properties under in-pile irradiation, on the fuel material centre temperatures and on the fission gas release. The retention of fission products in zirconia may be stronger at similar temperature, compared to UO{sub 2}. The outstanding behaviour of plutonia-zirconia inert matrix fuel is compared to the classical (U,Pu)O{sub 2} fuels. The properties of the spent fuel pellets are presented focusing on the once-through strategy. For this strategy, low solubility of the inert matrix is required for geological disposal. This parameter was studied in detail for a range of solutions corresponding to groundwater under near field conditions. Under these conditions the IMF solubility is about 109 times smaller than glass, several orders of magnitude lower than UO{sub 2} in oxidising conditions (Yucca Mountain) and comparable in reducing conditions, which makes the zirconia material very attractive for deep geological disposal. The behaviour of plutonia-zirconia inert matrix fuel is discussed within a 'burn and bury' strategy. (authors)

  5. Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    A detailed numerical study was conducted on the dynamics and thermal response of inert, spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport, For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations indicate that the magnitude and direction of the gravitational force can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature.

  6. Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Campbell, Charles S.; Wu, Ming-Shin (Technical Monitor)

    1999-01-01

    A detailed numerical study was conducted on the dynamics and thermal response of inert spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport. For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations indicate that the magnitude and direction of the gravitational force can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature.

  7. Effect of swine manure dilution on ammonia, hydrogen sulfide, carbon dioxide, and sulfur dioxide releases.

    PubMed

    Ni, Ji-Qin; Heber, Albert J; Sutton, Alan L; Kelly, Dan T; Patterson, John A; Kim, Sun-Tae

    2010-11-01

    Animal manure is a significant source of environmental pollution and manure dilution in barn cleaning and slurry storage is a common practice in animal agriculture. The effect of swine manure dilution on releases of four pollutant gases was studied in a 30-day experiment using eight manure reactors divided into two groups. One group was treated with swine manure of 6.71% dry matter and another with manure diluted with water to 3.73% dry matter. Ammonia release from the diluted manure was 3.32 mg min(-1)m(-2) and was 71.0% of the 4.67 mg min(-1)m(-2) from the undiluted manure (P<0.01). Because the ammonia release reduction ratio was lower than the manure dilution ratio, dilution could increase the total ammonia emissions from swine manure, especially in lagoons with large liquid surface areas. Carbon dioxide release of 87.3 mg min(-1)m(-2) from the diluted manure was 56.4% of the 154.8 mg min(-1)m(-2) from the undiluted manure (P<0.01). Manure dry matter was an important factor for carbon dioxide release from manure. No differences were observed between the treatments (P>0.05) for both hydrogen sulfide and sulfur dioxide releases. Therefore, dilution could also significantly increase the total releases of hydrogen sulfide and sulfur dioxide to the environment because dilution adds to the total manure volume and usually also increases the total gas release surface area. PMID:20850169

  8. Inert Anode Life in Low Temperature Reduction Process

    SciTech Connect

    Bradford, Donald R.

    2005-06-30

    The production of aluminum metal by low temperature electrolysis utilizing metal non-consumable anodes and ceramic cathodes was extensively investigated. Tests were performed with traditional sodium fluoride--aluminum fluoride composition electrolytes, potassium fluoride-- aluminum fluoride electrolytes, and potassium fluoride--sodium fluoride--aluminum fluoride electrolytes. All of the Essential First-Tier Requirements of the joint DOE-Aluminum Industry Inert Anode Road Map were achieved and those items yet to be resolved for commercialization of this technology were identified. Methods for the fabrication and welding of metal alloy anodes were developed and tested. The potential savings of energy and energy costs were determined and potential environmental benefits verified.

  9. Inertization of toxic metals in metakaolin-blended cements

    SciTech Connect

    Pera, J.; Bonnin, E. [URGC-Materiaux, Villeurbanne (France)

    1996-12-31

    Three blended cements containing respectively 10, 20, and 30 % metakaolin (MK) were tested for engineering properties and ability to immobilize chromium, lead, and cadmium. The pollutants (sodium bichromate, lead nitrate, and cadmium chloride) were added to the mixing water of pastes and standard mortars. The strength, microstructure and leaching properties of pastes and mortars were investigated. The results obtained show that a binder containing around 20 to 30 % MK is efficient towards the inertization of toxic metals. Some mechanisms of immobilization are proposed : Cr (VI) is incorporated in calcium aluminates while Cd and Pb are fixed in C-S-H.

  10. Thermal Conductivity and Sound Attenuation in Dilute Atomic Fermi Gases

    E-print Network

    Matt Braby; Jingyi Chao; Thomas Schaefer

    2010-10-15

    We compute the thermal conductivity and sound attenuation length of a dilute atomic Fermi gas in the framework of kinetic theory. Above the critical temperature for superfluidity, T_c, the quasi-particles are fermions, whereas below T_c, the dominant excitations are phonons. We calculate the thermal conductivity in both cases. We find that at unitarity the thermal conductivity \\kappa in the normal phase scales as \\kappa ~ T^{3/2}. In the superfluid phase we find \\kappa ~ T^{2}. At high temperature the Prandtl number, the ratio of the momentum and thermal diffusion constants, is 2/3. The ratio increases as the temperature is lowered. As a consequence we expect sound attenuation in the normal phase just above T_c to be dominated by shear viscosity. We comment on the possibility of extracting the shear viscosity of the dilute Fermi gas at unitarity using measurements of the sound absorption length.

  11. Sea Urchin Embryology: Simple Dilutions 2

    NSDL National Science Digital Library

    PhD David Epel (Stanford U. Hopkins Marine Station)

    2006-12-20

    SUMMARY: Building on what was learned in SIMPLE DILUTION, students will determine the best dilution strategy to solve a dilution problem. 1. Students are given an unknown dye solution and asked to determine its concentration by comparing it with standards they create. 2. Repeated "serial" dilutions will be necessary to determine accurate concentration readings. 3. Varying the color of the filters and the path length will aid in seeing lower concentrations.

  12. Development of a compact dilution refrigerator for zero gravity operation

    NASA Technical Reports Server (NTRS)

    Roach, Pat R.; Helvensteijn, Ben

    1990-01-01

    A compact dilution refrigerator design based on internal charcoal adsorption is being tested for operation in zero gravity. This refrigerator is self-contained with no external pumps or gas handling system and provides reliable operation since it has no moving parts. All operations are performed with heaters and are completely computer controlled. The refrigerator is capable of providing many hours of operation at very low temperature before the charcoal pumps must be recycled.

  13. Clamp and Gas Nozzle for TIG Welding

    NASA Technical Reports Server (NTRS)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  14. Science Notes: Dilution of a Weak Acid

    ERIC Educational Resources Information Center

    Talbot, Christopher; Wai, Chooi Khee

    2014-01-01

    This "Science note" arose out of practical work involving the dilution of ethanoic acid, the measurement of the pH of the diluted solutions and calculation of the acid dissociation constant, K[subscript a], for each diluted solution. The students expected the calculated values of K[subscript a] to be constant but they found that the…

  15. Teflon films for chemically-inert microfluidic valves and pumps

    PubMed Central

    Grover, William H.; von Muhlen, Marcio G.; Manalis, Scott R.

    2014-01-01

    We present a simple method for fabricating chemically-inert Teflon microfluidic valves and pumps in glass microfluidic devices. These structures are modeled after monolithic membrane valves and pumps that utilize a featureless polydimethylsiloxane (PDMS) membrane sandwiched between two etched glass wafers. The limited chemical compatibility of PDMS has necessitated research into alternative materials for microfluidic devices. Previous work has shown that spin-coated amorphous fluoropolymers and Teflon-fluoropolymer laminates can be fabricated and substituted for PDMS in monolithic membrane valves and pumps for space flight applications. However, the complex process for fabricating these spin-coated Teflon films and laminates may preclude their use in many research and manufacturing contexts. As an alternative, we show that commercially-available fluorinated ethylene-propylene (FEP) Teflon films can be used to fabricate chemically-inert monolithic membrane valves and pumps in glass microfluidic devices. The FEP Teflon valves and pumps presented here are simple to fabricate, function similarly to their PDMS counterparts, maintain their performance over extended use, and are resistant to virtually all chemicals. These structures should facilitate lab-on-a-chip research involving a vast array of chemistries that are incompatible with native PDMS microfluidic devices. PMID:18497911

  16. Non-inert refrigerant study for automotive applications

    SciTech Connect

    Dieckmann, J.T.; Bentley, J.; Varone, A.

    1991-11-01

    Alternatives to CFC-12 for automobile air conditioning were examined. The list of candidate fluids included flammable as well as non-flammable substances. HFC-134a was taken as the baseline alternative given current industry plans to convert automobile air conditioning systems to this fluid over the next several years. Three flammable (non-inert) altemative refrigerants -- BFC-152a, HC-290 (propane) and HC-270 (cyclopropane) were identified. Air conditioning cycle efficiency, ozone depletion potential, and global warming impacts of these three fluids and HFC-134a were compared, with the three non-inert fluids all having higher COP and lower global warming impact. The ozone depletion potential of each of these fluids is zero. The fire safety implications of the flammable alternatives being used in otherwise conventional automobile air conditioning systems were examined in preliminary fashion. The results, which are subject to more extensive verification indicate that the additional passenger compartment fire risk would be very small, while the incidence of engine compartment fires would increase modestly. The engine compartment fire hazard could be minimized by modest design changes to reduce the occurrence of ignition sources and condenser punctures in front end collisions.

  17. Materials research on inert matrices: a screening study

    NASA Astrophysics Data System (ADS)

    Matzke, Hj; Rondinella, V. V.; Wiss, T.

    1999-08-01

    Materials research on inert matrices for U-free fuels has been extensively performed at the Institute for Transuranium Elements (ITU) for more than five years. Relevant experience, e.g. on MgO-based ceramic fuel, fabrication and irradiation of annular cercer and cermet fuel and of ThO 2-based fuel in ITU dates back to about 30 yr ago. The criteria for selecting inert matrices for Am-transmutation, their fabrication - with and without Am - and typical results on property measurements are discussed, often in comparison with UO 2, with emphasis on radiation damage formation and damage effects. The materials studied in most detail are spinel MgAl 2O 4, zircon ZrSiO 4, ceria CeO 2- x, yttria-stabilized zirconia (Zr 1- xY x)O 2- x/2 , monazite CePO 4, and to a smaller degree Al 2O 3, MgO, SiC and Si 3N 4. This paper mentions and reports significant characteristics and experimental results for some of the above listed materials, as an overview of the research activities carried out at ITU. Preliminary results of first leaching experiments with Am-doped CeO 2, MgAl 2O 4 and ZrSiO 4 are also reported. Some recommendations deduced from this work are summarized.

  18. Fiber optic oxygen sensor using fluorescence quenching for aircraft inerting fuel tank applications

    NASA Astrophysics Data System (ADS)

    Panahi, Allen

    2009-05-01

    On July 18, 2008, the FAA mandated that new aircraft are to include inerting technology to significantly reduce the potential for flammable vapor spaces in center wing fuel tanks. All passenger aircraft constructed since 1991 must also be retrofitted with this technology. This ruling is the result of 18 aircraft that have experienced fuel tank flammable vapor ignition incidents since 1960. Included in these are the TWA 800 and Avianca Flight 203 incidents that resulted in 337 total fatalities. Comprised of heavier hydrocarbon components, jet fuel is much less volatile, with Jet A having a flash point of approximately 100°F and JP-4 having a flash point of approximately 0°F. In contrast, straight-run gasoline has a flash point of approximately -40°F. The flash point is the minimum temperature where a liquid fuel can generate enough vapor to form a flammable mixture with air. If the temperature is below the flash point there isn't enough fuel evaporating to form a flammable fuel-air mixture. Since jet fuel and gasoline have similar flammable concentration limits, gasoline must produce much more vapor at a given temperature to have such a low flash point; hence gasoline is much more volatile than jet fuel. In this paper we explore Fluorescence Technology as applied to the design and development of O2 sensors that can be used for this application and discuss the various test and measurement techniques used to estimate the O2 gas concentration. We compare the various intensity based approaches and contrast them with the frequency domain techniques that measure phase to extract fluorescent lifetimes. The various inerting fuel tank requirements are explained and finally a novel compact measurement system using that uses the frequency heterodyning cross correlation technique that can be used for various applications is described in detail while the benefits are explored together with some test data collected.

  19. Gas

    MedlinePLUS

    ... and pain in the belly—especially after a big meal. Foods that can cause gas Some people naturally produce ... your stomach or throw up . Your breasts are big and sore . The area around your nipples gets darker. You crave certain foods. Or you really dislike certain foods. You feel ...

  20. Cryogen-free dilution refrigerators

    NASA Astrophysics Data System (ADS)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 ?W at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  1. Decomposition of dilute trichloroethylene by nonthermal plasma

    SciTech Connect

    Oda, Tetsuji; Takahashi, Tadashi; Tada, Keiko [Univ. of Tokyo (Japan). Dept. of Electrical Engineering] [Univ. of Tokyo (Japan). Dept. of Electrical Engineering

    1999-03-01

    Decomposition performance of a dilute toxic organic compound, trichloroethylene (TCE), in air by using nonthermal plasma processing was studied extensively. The nonthermal plasma was generated by the high-frequency (2 kHz) or commercial-frequency (50 Hz) barrier discharge in a fused silica tube. Three types of reactors, bolt type, rod type (both are barrier-discharge type), and coil type (surface-discharge type), were tested. Analysis of byproducts, residual materials, and end products generated by the plasma process was performed by a gas chromatography mass spectrometer of gas chromatography. Most organic byproducts decrease with an increase of the electric discharge power, but only toxic phosgene increases with the increase of the discharge power. As a post process, NaOH solution was used to test effluent from the plasma reactor. The solution was found effective in phosgene absorption. Comparison between nonthermal plasma and UV irradiation for TCE decomposition was also made. In regard to the energy efficiency of the TCE decomposition, UV irradiation is found much better than discharge plasma.

  2. Are aromatic diluents used in pyrolysis experiments inert

    SciTech Connect

    Savage, P.E. (Univ. of Michigan, Ann Arbor, MI (United States). Chemical Engineering Dept.)

    1994-05-01

    Hydrogen abstraction from compounds such as benzene and biphenyl is a potential complication when these aromatics are used as diluents in hydrocarbon pyrolysis experiments. This paper presents a general methodology for quantitatively assessing the likelihood that substrate-derived radicals abstract hydrogen from a nominally inert diluent. The key variables are the concentration of the substrate, the pyrolysis temperature, and the dissociation energies of the C-H bonds attacked. Hydrogen abstraction from an aromatic diluent becomes more important as the temperature increases, the substrate concentration decreases, and the C-H bond dissociation energy of the substrate increases. All other factors being equal, the relative rate of hydrogen abstraction from an aromatic diluent is about 10 times higher during the pyrolysis of an n-alkane than during the pyrolysis of an n-alkylbenzene.

  3. Drill Pipe Corrosion Control Using an Inert Drilling Fluid

    SciTech Connect

    Caskey, B. C.; Copass, K. S.

    1981-01-01

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. it is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed.

  4. Serial Dilution & Parts Per Million

    NSDL National Science Digital Library

    This activity provides a real world application of the ATEEC Recommended Core Curriculum. This curriculum was identified by ATEEC Fellows as necessary preparation for environmental technology occupation. In this activity, students will experiment with serial dilution and parts per million. At the end of the activity, students will understand how to perform lab procedures, translate real world problems into math relationship, apply ratios and proportions to solve problems, manipulate and substitute variables to solve formulas, and demonstrate safe practices. The activity is appropriate for a high school biology or chemistry class.

  5. Gas diffusion cell removes carbon dioxide from occupied airtight enclosures

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Small, lightweight permeable cell package separates and removes carbon dioxide from respiratory gas mixtures. The cell is regenerative while chemically inert in the presence of carbon dioxide so that only adsorption takes place.

  6. Paste Residence Time in a Spouted Bed Dryer. IV: Effect of the Inert Particle Size Distribution

    Microsoft Academic Search

    Luciana A. Tacon; Luis A. P. Freitas

    2011-01-01

    The residence time distribution and mean residence time of a 10% sodium bicarbonate solution that is dried in a conventional spouted bed with inert bodies were measured with the stimulus-response method. Methylene blue was used as a chemical tracer, and the effects of the paste feed mode, size distribution of the inert bodies, and mean particle size on the residence

  7. The Ethics of Placebo-controlled Trials: A Comparison of Inert and Active Placebo Controls

    Microsoft Academic Search

    Sarah J. L. Edward; Andrew J. Stevens; David A. Braunholtz; Richard J. Lilford; Teresa Swift

    2005-01-01

    Because of the recent and controversial example of sham surgery for the evaluation of fetal tissue transplants for Parkinson’s disease, there is renewed interest in the ethics of using “active” placebos in surgical trials, where otherwise there are no inert procedures available, and in pharmacological trials, where there are inert substances, but where patients may guess to which arm they

  8. 30 CFR 75.1107-12 - Inerting of mine atmosphere prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Inerting of mine atmosphere prohibited. 75.1107-12 Section 75.1107-12 Mineral...Underground Equipment § 75.1107-12 Inerting of mine atmosphere prohibited. No fire suppression device designed to...

  9. 30 CFR 75.1107-12 - Inerting of mine atmosphere prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Inerting of mine atmosphere prohibited. 75.1107-12 Section 75.1107-12 Mineral...Underground Equipment § 75.1107-12 Inerting of mine atmosphere prohibited. No fire suppression device designed to...

  10. 30 CFR 75.1107-12 - Inerting of mine atmosphere prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Inerting of mine atmosphere prohibited. 75.1107-12 Section 75.1107-12 Mineral...Underground Equipment § 75.1107-12 Inerting of mine atmosphere prohibited. No fire suppression device designed to...

  11. 30 CFR 75.1107-12 - Inerting of mine atmosphere prohibited.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Inerting of mine atmosphere prohibited. 75.1107-12 Section 75.1107-12 Mineral...Underground Equipment § 75.1107-12 Inerting of mine atmosphere prohibited. No fire suppression device designed to...

  12. SIMULATION OF DRYING SUSPENSIONS IN SPOUT-FLUID BEDS OF INERT PARTICLES

    Microsoft Academic Search

    E. F. Costa Jr; M. Cardoso; M. L. Passos

    2001-01-01

    In spouted and spout fluid bed dryers, the suspension is spread into the bed of inert particles, covering these particles with a thin layer. As the inert particles circulate, this suspension layer is dried and must become brittle enough to break off by the particle attrition. The powder produced is then carried out by air. Problems with the spout stability,

  13. Laminar radial flow electrochemical reactors. II. Convective diffusion of inert tracer

    Microsoft Academic Search

    F. B. Thomas; P. A. Ramachandran; M. P. Dudukovic; R. E. W. Jansson

    1989-01-01

    Mixing is investigated in three laminar radial flow cells (capillary gap cell (stationary discs), pump cell (one disc spinning) and the rotating electrolyser (co-rotating discs)) using numerical and semianalytical methods for inert tracer transport. Results are compared to existing data. Mixing in the three cells is modelled using finite element techniques applied to convection-dominated inert tracer transport. For the capillary

  14. Young Infants' Reasoning about Physical Events Involving Inert and Self-Propelled Objects

    ERIC Educational Resources Information Center

    Luo, Yuyan; Kaufman, Lisa; Baillargeon, Renee

    2009-01-01

    The present research examined whether 5- to 6.5-month-old infants would hold different expectations about various physical events involving a box after receiving evidence that it was either inert or self-propelled. Infants were surprised if the inert but not the self-propelled box: reversed direction spontaneously (Experiment 1); remained…

  15. A Microgravity Helium Dilution Cooler

    NASA Technical Reports Server (NTRS)

    Roach, Pat R.; Sperans, Joel (Technical Monitor)

    1994-01-01

    We are developing a He-3-He-4 dilution cooler to operate in microgravity. It uses charcoal adsorption pumps and heaters for its operation; it has no moving parts. It currently operates cyclically to well below 0.1 K and we have designed a version to operate continuously. We expect that the continuous version will be able to provide the long-duration cooling that many experiments need at temperatures down to 0.040 K. More importantly, such a dilution cooler could provide the precooling that enables the use of adiabatic demagnetization techniques that can reach temperatures below 0.001 K. At temperatures below 0.002 K many fascinating microgravity experiments on superfluid He-3 become possible. Among the possibilities are: research into a superfluid He-3 gyroscope, study of the nucleation of the B-phase of superfluid He-3 when the sample is floating out of contact with walls, study of the anisotropy of the surface tension of the B-phase, and NMR experiments on tiny free-floating clusters of superfluid He-3 atoms that should model the shell structure of nuclei.

  16. Improved Assembly for Gas Shielding During Welding or Brazing

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  17. An assessment of the dilution required to mitigate Hanford tank 241-SY-101

    SciTech Connect

    Hudson, J.D.; Bredt, P.R.; Felmy, A.R.; Stewart, C.W.; Tingey, J.M.; Trent, D.S. [Pacific Northwest Lab., Richland, WA (United States); Barney, G.S.; Herting, D.L.; Larrick, A.P.; Reynolds, D.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-01

    A group of experts from PNL and WHC convened November 2 and 3, 1994, to screen the current state of knowledge about dilution and reach a consensus on the minimum dilution ratio that will achieve passive mitigation of Tank 241-SY-101 wastes and the dilution ratio that would satisfy the given cross-site transfer criteria with reasonable assurance. The panel evaluated the effects of dilution on the parameters important in gas generation, retention, and release and reached the following conclusions, which are deduced from the existing body of data, experience, and analyses: (1) Dissolution of solids is the single most important aspect of mitigation by dilution. We are confident that diluting until nitrates, nitrites, and aluminum salts are dissolved will mitigate Hanford flammable gas tanks; (2) Sufficient solids dissolution can be achieved in Tank 241-SY-101 at a dilution ratio of 1:1, which will result in a average specific gravity of approximately 1.35. It is likely that a 0.5:1 dilution will also mitigate 241-SY-101, but the current uncertainty is too high to recommend this dilution ratio; (3) The recommended dilution requires a diluent with at least 2 molar free hydroxide, because aluminum probably precipitates at lower hydroxide concentrations. The transfer criteria for Tank 241-SY-101 waste were also evaluated. These criteria have been specified as solids content {<=}30% (volume), viscosity {<=}30% cP and density <1.5 g/mL. (1) Solids content is the limiting criterion if it is defined as volume fraction of settled solids. A 1:1 dilution will satisfy this criterion at nominal premixing conditions in Tank 241-SY-101; however, analysis of Window E core samples suggests that up to 1.5:1 might be required. If the solids content is interpreted simply as solids volume fraction no further dilution is necessary, because Tank 241-SY-101 waste (excluding the crust) is already below 30%; (2) Bulk density is the next limiting criterion and is met at 0.4:1 dilution.

  18. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces, and this reduction can be scaled by the gravitational dimensionless time. Mechanistic simulation of core-scale surfactant brine imbibition matches the experimentally observed imbibition data. In-situ distributions observed through simulation indicate that surfactant diffusion (which depends on temperature and molecular weight) is the rate limiting step. Most of the oil is recovered through gravitational forces. Oil left behind at the end of this process is at its residual oil saturation. The capillary and Bond numbers are not large enough to affect the residual oil saturation. At the field-scale, 50% of the recoverable oil is produced in about 3 years if the fracture spacing is 1 m and 25% if 10 m, in the example simulated. Decreasing fracture spacing and height, increasing permeability, and increasing the extent of wettability alteration increase the rate of oil recovery from surfactant-aided gravity drainage. This dilute surfactant aided gravity-drainage process is relatively cheap. The chemical cost for a barrel of oil produced is expected to be less than $1.

  19. Dry dilution refrigerator with He-4 precool loop

    NASA Astrophysics Data System (ADS)

    Uhlig, Kurt

    2014-01-01

    He-3/He-4 dilution refrigerators (DR) are very common in sub-Kelvin temperature research. We describe a pulse tube precooled DR where a separate He-4 circuit condenses the He-3 of the dilution loop. Whereas in our previous work the dilution circuit and the He-4 circuit were separate, we show how the two circuits can be combined. Originally, the He-4 loop with a base temperature of ˜ 1 K was installed to make an additional cooling power of up to 100 mW available to cool cold amplifiers and electrical lines. In the new design, the dilution circuit is run through a heat exchanger in the vessel of the He-4 circuit so condensation of the He-3 stream of the DR is done by the He-4 stage. A much reduced condensation time (factor of 2) of the He-3/He-4 gas mixture at the beginning of an experiment is achieved. A compressor is no longer needed with the DR as the condensation pressure remains below atmospheric pressure at all times; thus the risk of losing expensive He-3 gas is small. The performance of the DR has been improved compared to previous work: The base temperature of the mixing chamber at a small He-3 flow rate is now 4.1 mK; at the highest He-3 flow rate of 1.2 mmol/s this temperature increases to 13 mK. Mixing chamber temperatures were measured with a cerium magnesium nitrate (CMN) thermometer which was calibrated with a superconducting fixed point device.

  20. Chemical changes of organic compounds in chlorinated water. XIII. Gas chromatographic-mass spectrometric studies of the reactions of Irgasan DP 300 [5-chloro-2-(2,4-dichlorophenoxy)phenol] with chlorine in dilute aqueous solution.

    PubMed

    Onodera, S; Ogawa, M; Suzuki, S

    1987-04-17

    The reactions of Irgasan DP 300 with chlorine in water were investigated by means of gas chromatography (GC) and GC-mass spectrometry. Irgasan DP 300 was shown to produce dichloro- and trichloro-2-(2,4-dichlorophenoxy)phenols in chlorine-treated water, followed by the decomposition of these intermediates to chlorophenols. No polychlorinated dibenzo-p-dioxins were detected in chlorine-treated Irgasan DP 300 solutions. The production of some of these compounds is dependent on the number of equivalents of chlorine per mol of compound and on the reaction pH. PMID:3597577

  1. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2005-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory imbibition tests show that imbibition rate is not very sensitive to the surfactant concentration (in the range of 0.05-0.2 wt%) and small amounts of trapped gas saturation. It is however very sensitive to oil permeability and water-oil-ratio. Less than 0.5 M Na2CO3 is needed for in situ soap generation and low adsorption; NaCl can be added to reach the necessary total salinity. The simulation result matches the laboratory imbibition experimental data. Small fracture spacing and high permeability would be needed for high rate of recovery.

  2. Band anticrossing in dilute nitrides

    SciTech Connect

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  3. Desynchronization in diluted neural networks

    SciTech Connect

    Zillmer, Ruediger [INFN Sezione Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Livi, Roberto [Dipartimento di Fisica, Universita di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Sezione INFN, Unita' INFM e Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Politi, Antonio; Torcini, Alessandro [Istituto dei Sistemi Complessi, CNR, CNR, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2006-09-15

    The dynamical behavior of a weakly diluted fully inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochasticlike regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase locked. The strong-coupling phase is characterized by an irregular pattern, even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with the phenomenon of 'stable chaos', i.e., by observing that the stochasticlike behavior is 'limited' to an exponentially long (with the system size) transient. Remarkably, the transient dynamics turns out to be stationary.

  4. Development of a constant dilution sampling system for particulate and gaseous pollutant measurements

    NASA Astrophysics Data System (ADS)

    Tzamkiozis, T.; Ntziachristos, L.; Amanatidis, S.; Niemelä, V.; Ukkonen, A.; Samaras, Z.

    2013-08-01

    This paper presents a new concept of a partial flow sampling system (PFSS), involving a two-stage diluter which operates on the principle of underpressure, while exhaust is sampled through a capillary. Due to the low flowrate through the capillary, the diluter may be sampling from a freely exhausting tailpipe and is not prone to pressure variations in the exhaust line. In addition, the PFSS operates at constant pressure conditions even upstream of diesel particle filters that increase the backpressure in the tailpipe. As a result, the PFSS offers a constant dilution ratio (DR) over any engine or vehicle operation condition. This study presents the diluter concept and a straightforward model developed to calculate the DR, depending on the dilution air flowrate and the diluter underpressure. The model is validated using CO2 as a trace gas, and very good agreement is demonstrated between the calculated and the measured DR values. Following validation, the PFSS is combined with aerosol measurement instruments to measure the exhaust particle concentration of a diesel engine operating at different steady-state modes. For demonstrating the stability of the DR and applicability of the PFSS, measurements are conducted with both heavy duty and light duty diesel exhaust gases. Future applications of this device include gas and particle exhaust measurements both in laboratory environments and on-board vehicles.

  5. Higgs properties in a broken Inert Doublet Model

    E-print Network

    Rikard Enberg; Johan Rathsman; Glenn Wouda

    2014-12-22

    We consider a model for the Higgs sector with two scalar doublets and a broken $Z_2$ symmetry, the Stealth Doublet Model, where the $Z_2$ symmetry is manifest in the Yukawa sector but broken by the scalar potential. This model can be seen as a generalization of the Inert Doublet Model. One of the doublets is the Higgs doublet that participates in electroweak symmetry breaking and couples to fermions. The other doublet does not couple to fermions at tree level and does not acquire a vacuum expectation value. The broken $Z_2$ symmetry leads to interesting phenomenology such as mixing between the two doublets and charged and CP-odd scalars that can be light and have unusual decay channels. We present theoretical and experimental constraints on the model and consider the recent observation of a Higgs boson at the LHC. The data on the $H\\to\\gamma\\gamma$ channel can be naturally accommodated in the model, with either the lightest or the heaviest CP-even scalar playing the role of the observed particle.

  6. Investigation of materials for inert electrodes in aluminum electrodeposition cells

    SciTech Connect

    Haggerty, J. S.; Sadoway, D. R.

    1987-09-14

    Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. The third major topic was Non Consumable Anode (Data Base, Candidate Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented. 162 refs., 39 figs., 18 tabs.

  7. Asymmetric Inelastic Inert Doublet Dark Matter from Triplet Scalar Leptogenesis

    E-print Network

    Arina, Chiara

    2011-01-01

    The nature of dark matter (DM) particles and the mechanism that provides their measured relic abundance are currently unknown. In this paper we investigate inert scalar and vector like fermion doublet DM candidates with a charge asymmetry in the dark sector, which is generated by the same mechanism that provides the baryon asymmetry, namely baryogenesis-via-leptogenesis induced by decays of scalar triplets. At the same time the model gives rise to neutrino masses in the ballpark of oscillation experiments via type II seesaw. We discuss possible sources of depletion of asymmetry in the DM and visible sectors and solve the relevant Boltzmann equations for quasi-equilibrium decay of triplet scalars. A Monte-Carlo-Markov-Chain analysis is performed for the whole parameter space. The survival of the asymmetry in the dark sector leads to inelastic scattering off nuclei. We then apply bayesian statistic to infer the model parameters favoured by the current experimental data, in particular the DAMA annual modulation ...

  8. Asymmetric Inelastic Inert Doublet Dark Matter from Triplet Scalar Leptogenesis

    E-print Network

    Chiara Arina; Narendra Sahu

    2011-09-01

    The nature of dark matter (DM) particles and the mechanism that provides their measured relic abundance are currently unknown. In this paper we investigate inert scalar and vector like fermion doublet DM candidates with a charge asymmetry in the dark sector, which is generated by the same mechanism that provides the baryon asymmetry, namely baryogenesis-via-leptogenesis induced by decays of scalar triplets. At the same time the model gives rise to neutrino masses in the ballpark of oscillation experiments via type II seesaw. We discuss possible sources of depletion of asymmetry in the DM and visible sectors and solve the relevant Boltzmann equations for quasi-equilibrium decay of triplet scalars. A Monte-Carlo-Markov-Chain analysis is performed for the whole parameter space. The survival of the asymmetry in the dark sector leads to inelastic scattering off nuclei. We then apply bayesian statistic to infer the model parameters favoured by the current experimental data, in particular the DAMA annual modulation and Xenon100 exclusion limit. The latter strongly disfavours asymmetric scalar doublet DM of mass $\\mathcal{O}(\\TeV)$ as required by DM-$\\bar{\\rm DM}$ oscillations, while an asymmetric vector like fermion doublet DM with mass around 100 GeV is a good candidate for DAMA annual modulation yet satisfying the constraints from Xenon100 data.

  9. Inert dark matter in type-II seesaw

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hung; Nomura, Takaaki

    2014-09-01

    Weakly interacting massive particle (WIMP) as a dark matter (DM) candidate is further inspired by recent AMS-02 data, which confirm the excess of positron fraction observed earlier by PAMELA and Fermi-LAT experiments. Additionally, the excess of positron+electron flux is still significant in the measurement of Fermi-LAT. For solving the problems of massive neutrinos and observed excess of cosmic-ray, we study the model with an inert Higgs doublet (IHD) in the framework of type-II seesaw model by imposing a Z 2 symmetry on the IHD, where the lightest particle of IHD is the DM candidate and the neutrino masses originate from the Yukawa couplings of Higgs triplet and leptons. We calculate the cosmic-ray production in our model by using three kinds of neutrino mass spectra, which are classified by normal ordering, inverted ordering and quasi-degeneracy. We find that when the constraints of DM relic density and comic-ray antiproton spectrum are taken into account, the observed excess of positron/electron flux could be explained well in normal ordered neutrino mass spectrum. Moreover, excess of comic-ray neutrinos is implied in our model. We find that our results on < ?v> are satisfied with and close to the upper limit of IceCube analysis. More data from comic-ray neutrinos could test our model.

  10. Metal ion implantation in inert polymers for strain gauge applications

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Giovanni; Massaro, Marcello; Piscopiello, Emanuela; Tapfer, Leander

    2010-10-01

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu + and Ni +) and with fluences in the range between 1 × 10 16 and 1 × 10 17 ions/cm 2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (<5 × 10 16 ions/cm 2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (˜50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  11. Development and Comparison of Two Types of Cryogen-Free Dilution Refrigerator

    NASA Astrophysics Data System (ADS)

    Hata, T.; Matsumoto, T.; Obara, K.; Yano, H.; Ishikawa, O.; Handa, A.; Togitani, S.; Nishitani, T.

    2014-04-01

    Dilution refrigerators are an important tool used in solid state and quantum fluid physics for cooling to temperatures below 0.3 K. Conventional dilution refrigerators consume a lot of liquid helium, which has to be recharged in a helium bath every few days. Cryogen-free dilution refrigerators, however, do not use liquid helium and then automatic operation by electricity can be possible from room temperature to the mK region. In near future, therefore, most conventional dilution refrigerators will be replaced by cryogen-free refrigerators because they are easy to operate, do not require maintenance and do not consume helium. We have developed two types of cryogen-free dilution refrigerator. One is directly cooled by a pulse tube refrigerator in the same cryostat using copper thin wires as a thermal link, and the other is cooled by a separate Gifford McMahon refrigerator using circulating helium gas through a flexible syphon tube. The latter has been developed as a vibration-free cryogen-free dilution refrigerator. These two types of cryogen-free dilution refrigerator are compared considering several key points: base temperature, precooling time, minimum temperature and vibration amplitude.

  12. Results of Waste Transfer and Back-Dilution in Tanks 241-SY-101 and 241-SY-102

    SciTech Connect

    LA Mahoney; ZI Antoniak; WB Barton; JM Conner; NW Kirch; CW Stewart; BE Wells

    2000-07-26

    This report chronicles the process of remediation of the flammable gas hazard in Tank 241-SY-101 (SY-101) by waste transfer and back-dilution from December 18, 1999 through April 2, 2000. A brief history is given of the development of the flammable gas retention and release hazard in this tank, and the transfer and dilution systems are outlined. A detailed narrative of each of the three transfer and dilution campaigns is given to provide structure for the balance of the report. Details of the behavior of specific data are then described, including the effect of transfer and dilution on the waste levels in Tanks SY-101 and SY-102, data from strain gauges on equipment suspended from the tank dome, changes in waste configuration as inferred from neutron and gamma logs, headspace gas concentrations, waste temperatures, and the mixerpump operating performance. Operating data and performance of the transfer pump in SY-101 are also discussed.

  13. CFD Simulation of Oscillating Flow in an Inertance Tube and its Comparison to Other Models

    NASA Astrophysics Data System (ADS)

    Gustafson, S.; Flake, B.; Razani, A.

    2006-04-01

    Three first-order models usually used to simulate the effect of inertance tube as a phase-shifter used in Pulse-Tube Refrigerators (PTRs) are compared to the results of Computational Fluid Dynamics (CFD) simulation using a commercial CFD software package. The results of the CFD calculations are first validated by their comparison to experimental results for a compressor, inertance tube, and a reservoir system. Good agreement between experimental and numerical calculations is obtained. The three first-order models usually used in design analysis of inertance PTRs take into account the inertance, the compliance, and the fluid flow resistance associated with oscillating flow in the inertance tube. The three models consist of the lumped parameter method, the transmission line theory, and the analytical solution to the hyperbolic equation representing oscillating fluid flow in the inertance tube. The comparison of the results of the three models and the CFD simulation for different parameters important in the design of inertance PTRs are presented in this investigation.

  14. Silicon nitride etching performance of CH2F2 plasma diluted with argon or krypton

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Ishikawa, Kenji; Hayashi, Toshio; Miyawaki, Yudai; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-04-01

    Etching rates of silicon nitrides (SiN), SiO2, and poly-Si films for CH2F2 plasmas diluted with rare gases are presented by comparing the effects of flow rates of CH2F2 and dilution gases (Ar and Kr). The SiO2 etching rate was considered to be controlled by ion fluxes of the incident CHF2+ and CH2F+ under the conditions for the selective etching of SiO2 and SiN over poly-Si. Interestingly, the SiN etching rate was considerably affected by the dilution gas used. The SiN surface reaction was promoted by F-rich chemistry in the Ar-diluted CH2F2 plasma with a relatively high density of F atoms.

  15. Development of improved technologies and techniques for reducing base gas requirements in underground natural gas storage facilities. Mathematical model. Final report, July 1986-September 1987

    SciTech Connect

    Modine, A.D.; Bashbush, J.L.

    1987-12-01

    Base gas requirements in the U.S. amount to a few trillion cubic feet. The Gas Research Institute has proposed a gas-storage operating plan whereby an inert gas or a low-BTU gas could be injected to replace part of the hydrocarbon gas. A reservoir simulator was developed to solve gas-water reservoir problems where the gas may be treated as a two-component miscible mixture. The simulator is based on a modification of SSI's standard 3-phase, 3-dimensional reservoir simulator and, therefore, it encompasses the experience of more than 20 years of simulation technology. To accomplish the task, the oil equation was removed and a means of tracking a second component (inert) in the gas phase was added. The movement of the inert component was described with the method of characteristics to practically eliminate the numerical dispersion problems associated with the solution of the flow equations with standard finite-difference methods.

  16. Dilepton constraints in the inert doublet model from Run 1 of the LHC

    NASA Astrophysics Data System (ADS)

    Bélanger, Geneviève; Dumont, Béranger; Goudelis, Andreas; Herrmann, Björn; Kraml, Sabine; Sengupta, Dipan

    2015-06-01

    Searches in final states with two leptons plus missing transverse energy, targeting supersymmetric particles or invisible decays of the Higgs boson, were performed during Run 1 of the LHC. Recasting the results of these analyses in the context of the inert doublet model (IDM) using MadAnalysis 5, we show that they provide constraints on inert scalars that significantly extend previous limits from LEP. Moreover, these LHC constraints allow us to test the IDM in the limit of very small Higgs-inert scalar coupling, where the constraints from direct detection of dark matter and the invisible Higgs width vanish.

  17. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  18. Sample Diluter for Detecting Hypergolic Propellants and Other Toxic or Hazardous Gases

    NASA Technical Reports Server (NTRS)

    Barile, R. G.; Hodge, T. R.; Meneghelli, B. J.; Gursky, R.; Lueck, D. E.

    1997-01-01

    Hardware was developed to dilute vapor samples of purged hypergolic propellants (with air) into the range of existing instruments for detection of such toxic vapors. Since these detectors are normally used to monitor at the threshold limit value (TLV), most do not have quantitative capability at percent levels which relate to lower explosion limit (LEL) and fire hazards. For example, the upper limits of Energetic Sciences (ESI) 6000 series detectors used at KSC are 200 parts per million (ppm) for monomethyl hydrazine (MMH) and 500 ppm for nitrogen dioxide (NO2) arising from decomposition of nitrogen tetroxide (N2O4). Orbiter Processing Facility (OPF) personnel servicing Shuttle thrusters need to measure up to 250 ppm MMH and 7500 ppm NO2 with portable, intrinsically safe instruments. Our objective was to quickly fabricate a sample diluter out of existing materials as a temporary measure while other parallel efforts were conducted to provide a commercial or in-house-developed instrument to detect high propellant levels. A 3 to 1 diluter would bring 500 ppm MMH into the range of the existing fuel ESI, and a 30 to 1 diluter would do the same for NO2. In this way, familiar equipment already available would be used, resulting in minimal paperwork, safety, and training impacts and low cost. An MMH vapor sample-diluter was constructed from a 1/4-inch Kynar tee, along with specially designed lengths of sample and dilution tubing. The sample line was 3 feet of Bev-A-Line 4, 1/4 inch tube leading to the straight run of the tee. The side run of the tee had a 17-inch length of Bev-A-Line 4, 1/4-inch tube, for nominal 3 to 1 dilution. A gas sample bag was prepared and assayed at 113 ppm MMH, and diluted vapor sarnples were assayed at 39.5 ppm, or a measured dilution of 2.9 to 1. For NO2, a 316 stainless steel (SS) 1/8-inch tee with 49.5 inches of coiled, 1/8-inch outside diameter (OD) 316 SS tubing was used as the sarnpling end of the dilution system. The side run of the tee was open. The measured dilution ratio, based on the input value of 6,480 ppm NO2 and the average output value of 233 ppm, was 28 to 1. Thus, sample-diluters were successful in diluting concentrated hypergolic propellant vapors, both MMH and N2O4, into the ranges of existing TLV detectors.

  19. Sample Diluter for Detecting Hypergolic Propellants and other Toxic or Hazardous Gases

    NASA Technical Reports Server (NTRS)

    Barile, R. G.; Hodge, T. R.; Meneghelli, B. J.; Gursky, R.; Lueck, D. E.

    1997-01-01

    Hardware was developed to dilute vapor samples of purged hypergolic propellants (with air) into the range of existing instruments for detection of such toxic vapors. Since these detectors are normally used to monitor at the threshold limit value (TLV), most do not have quantitative capability at percent levels which relate to lower explosion limit (LEL) and fire hazards. For example, the upper limits of Energetic Sciences (ESI) 6000 series detectors used at KSC are 200 parts per million (ppm) for monomethyl hydrazine (MMH) and 500 ppm for nitrogen dioxide (NO2) arising from decomposition of nitrogen tetroxide (N2O4). Orbiter Processing Facility (OPF) personnel servicing Shuttle thrusters need to measure up to 250 ppm MMH and 7,500 ppm NO2 with portable, intrinsically safe instruments. Our objective was to quickly fabricate a sample diluter out of existing materials as a temporary measure while other parallel efforts were conducted to provide a commercial or in-house-developed instrument to detect high propellant levels. A 3 to 1 diluter would bring 500 ppm MMH into the range of the existing fuel ESI, and a 30 to 1 diluter would do the same for NO2. In this way, familiar equipment already available would be used, resulting in minimal paperwork, safety, and training impacts and low cost. An MMH vapor sample-diluter was constructed from a 1/4-inch Kynar tee, along with specially designed lengths of sample and dilution tubing. The sample line was 3 feet of Bev-A-Line 4, 1/4-inch tube leading to the straight run of the tee. The side run of the tee had a 17-inch length of Bev-A-Line 4, 1/4-inch tube, for nominal 3 to 1 dilution. A gas sample bag was prepared and assayed at 113 ppm ppm MMH, and diluted vapor samples were assayed at 39.5 ppm, or a measured dilution of 2.9 to 1. For NO2, a 316 stainless steel (SS) 1/8-inch tee with 49.5 inches of coiled, 1/8-inch outside diameter (OD) 316 SS tubing was used as the sampling end of the dilution system. The side run of the tee was open. The measured dilution ratio, based on the input value of 6,480 ppm NO2, and the average output value of 233 ppm, was 28 to 1. Thus, sample-diluters were successful in diluting concentrated hypergolic propellant vapors, both MMH and N2O4 into the ranges of existing TLV detectors.

  20. Resonant holographic measurements of laser ablation plume expansion in vacuum and argon gas backgrounds

    SciTech Connect

    Lindley, R.A. [Michigan Univ., Ann Arbor, MI (United States)

    1993-10-01

    This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining {lambda}{sub o}; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.

  1. Wafer chamber having a gas curtain for extreme-UV lithography

    DOEpatents

    Kanouff, Michael P. (Livermore, CA); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2001-01-01

    An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.

  2. DAVINCI a Dilute Aperture Coronagraph

    NASA Astrophysics Data System (ADS)

    Shao, Michael

    2009-01-01

    The motivation for DAVINCI was originally to make use of the technology developed for space interferometers like SIM to build a coronagraph from four 1.1m telescopes that was dramatically lower in cost than a 4 5m filled aperture offaxis coronagraph. Our initial studies through team X have shown this cost savings to be real. But a more careful analysis showed that DAVINCI would have an inner working angle of 35mas a factor of 2 smaller than a 2 lambda/D 4 meter coronagraph or 70m external occulter, resulting in a 10X increase in the number of potential Earth-Clone targets. DAVINCI uses a nulling interferometer as a coronagraph, a nulling interferometer is one the few coronagraph architectures that are compatible with segmented and dilute aperture telescopes. Combined with a post coronagraph wavefront sensor several ultra-demanding tolerances of conventional coronagraphs can be relaxed by factors of 100. The post coronagraph wavefront sensor is also much less affected by local and exozodi background than wavefront sensors that use the science camera as the wavefront sensor. The post coronagraph interferometer is also used on ground based extreme AO coronagraphs, GPI, and P1640.

  3. Respiratory and plumage gas volumes in unrestrained diving ducks (Aythya affinis).

    PubMed

    Stephenson, R

    1995-05-01

    Closed-circuit plethysmography and inert gas equilibration analysis were used to measure the volumes of gas in the respiratory system and plumage at the end of voluntary dives in unrestrained lesser scaup (Aythya affinis). Total (respiratory plus plumage) gas volumes were measured by helium dilution and estimated from body mass, body tissue density and buoyant force. These two techniques yielded results that differed by only 2.1 +/- 1.5%. Buoyancy decreased from a maximum of 3.46 +/- 0.16 N at immersion to a minimum of 2.65 +/- 0.16 N at 1.5 m depth at the end of the feeding phase of voluntary dives. At 0.193 +/- 0.013 L BTPS, the respiratory system contributed 52% of the initial buoyancy and 65% of the minimum value. The increasing relative influence of the respiratory system on buoyancy was due to the loss of 47 +/- 5% of the air in the plumage layer during the dive. These data differ significantly from estimates based on restrained ducks, and this has implications for modelling of mechanical costs of diving, oxygen storage capacity and thermal insulation in foraging ducks. PMID:7624614

  4. Exhaust odor and smoke reduction of stationary DI diesel engines to acceptable level by water-scrubbing and air-dilution system

    Microsoft Academic Search

    Murari Mohon Roy; Riaz Parvez; Rabiul Islam Sarker

    2011-01-01

    A simple low-cost exhaust gas aftertreatment system called water-scrubbing and air-dilution system was developed in this study. The water-scrubbing and air-dilution system was investigated on a stationary direct injection (DI) diesel engine to reduce exhaust odor and smoke to acceptable level under variable engine running conditions. Diesel exhaust was diluted with air and washed by sprayed water and passed through

  5. Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model.

    PubMed

    Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max

    2013-01-15

    Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources. PMID:23190276

  6. Development of dual phase magnesia-zirconia ceramics for light water reactor inert matrix fuel

    E-print Network

    Medvedev, Pavel

    2005-02-17

    Dual phase magnesia-zirconia ceramics were developed, characterized, and evaluated as a potential matrix material for use in light water reactor inert matrix fuel intended for the disposition of plutonium and minor actinides. Ceramics were...

  7. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA)

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  8. Lepton Flavor Violation in the Inert Scalar Model with Higher Representations

    E-print Network

    Chowdhury, Talal Ahmed

    2015-01-01

    We investigate the lepton flavor violation (LFV) in the inert scalar model with higher representations. We generalize the inert doublet model with right handed neutrino by using higher scalar and fermion representation of $SU(2)_{L}$. As the generalized model and the inert doublet model have the same parameter space, we compare the rates of $\\mu\\rightarrow e\\gamma$, $\\mu\\rightarrow ee\\overline{e}$ and $\\mu-e$ conversion in nuclei in the doublet and its immediate extension, the quartet model. We show that the corresponding rates are larger in the case of higher representation compared to the Inert doublet for the same region of parameter space. This implies that such extended models are more constrained by current LFV bounds and will have better prospects in future experiments.

  9. Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  10. Energy levels of the electrons localized over the surface of an inert film with address electrodes

    SciTech Connect

    Petrin, A. B., E-mail: a_petrin@mail.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2013-03-15

    The problem of searching for the potential energy and the energy spectrum of the electrons localized over the surface of a thin liquid or solid inert film due to address electrodes placed under the film is considered.

  11. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  12. 30 CFR 75.1107-12 - Inerting of mine atmosphere prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-12 Inerting of mine atmosphere prohibited. No fire suppression...

  13. Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles

    Microsoft Academic Search

    A. V. Fedorov; D. A. Tropin; I. A. Bedarev

    2010-01-01

    The paper addresses the problem of searching for methods that can control, suppress, and attenuate explosive and detonation\\u000a processes in homogeneous and heterogeneous media (mixtures of reactive gases and inert species). The analysis is performed\\u000a by analytical and numerical methods. The problem of detonation suppression in a mixture of reactive gases and inert species\\u000a (argon and sand particles) in a

  14. Fourier transform infrared study of amorphous N2O4 solid: Destabilization with inert impurities

    NASA Astrophysics Data System (ADS)

    Givan, A.; Loewenschuss, A.

    1991-06-01

    Amorphous N2O4 solid was formed on predeposited oxygen or krypton layers. Evaporation of the underlying layer and redeposition of the inert impurities resulted in decomposition of the ionic nitrosonium nitrate clusters within the solid nitrogen tetroxide. Infrared features indicate NO+NO-3 decomposition to occur via molecular NONO3, with NO2 monomers as products. Evaporation of the inert impurities and recooling restored the amorphous N2O4 from which NO+NO-3 was formed again.

  15. Experimental investigation and numerical validation of explosion suppression by inert particles in large-scale duct

    Microsoft Academic Search

    Gang Dong; Baochun Fan; Bo Xie; Jingfang Ye

    2005-01-01

    A large-scale duct with an explosion suppressor was designed to investigate experimentally the explosion suppression by inert particles for a CH4\\/O2\\/N2 mixture. The duct is 25m long and has an internal diameter of 700mm. Pressure and flame signals were recorded some distance away from ignitor in the duct. Pressure tracking lines of the shock front for the different inert particle

  16. Fabrication of particle dispersed inert matrix fuel based on liquid phase sintered SiC

    Microsoft Academic Search

    D. Pavlyuchkov; R. H. Baney; J. S. Tulenko; H. J. Seifert

    2011-01-01

    In the present work, liquid phase sintered SiC (LPS-SiC) was proposed as an inert matrix for the particle dispersed inert matrix fuel (IMF). The fuel particles containing plutonium and minor actinides were substituted with pure yttria stabilized zirconia beads. The LPS-SiC matrix was produced from the initial mixtures prepared using submicron sized alpha-SiC powder and oxide additives Al2O3, Y2O3 in

  17. Fabrication of particle dispersed inert matrix fuel based on liquid phase sintered SiC

    Microsoft Academic Search

    D. Pavlyuchkov; R. H. Baney; J. S. Tulenko; H. J. Seifert

    2011-01-01

    In the present work, liquid phase sintered SiC (LPS-SiC) was proposed as an inert matrix for the particle dispersed inert matrix fuel (IMF). The fuel particles containing plutonium and minor actinides were substituted with pure yttria stabilized zirconia beads. The LPS-SiC matrix was produced from the initial mixtures prepared using submicron sized ?-SiC powder and oxide additives Al2O3, Y2O3 in

  18. Analysis of the influence of inert particles on the propagation of a cellular heterogeneous detonation

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Kratova, Y. V.

    2015-05-01

    The interaction of a cellular detonation wave with a cloud of inert particles is investigated numerically. The regimes of propagation of the heterogeneous cellular detonation and its suppression are identified. The influence of various parameters of the inert cloud is demonstrated. The critical length of the cloud for detonation suppression is determined. It is shown that the disperse composition and the non-uniform distribution of particles of the particle cloud are important parameters affecting the detonation propagation mode.

  19. Peptide derived from Pvfp-1 as bioadhesive on bio-inert surface.

    PubMed

    Jiang, Zhen; Yu, Yabiao; Du, Lina; Ding, Xiyu; Xu, Hui; Sun, Yanan; Zhang, Qiqing

    2012-02-01

    Surface property is one important characteristic of materials, especially for ones that are bio-inert but designed for bio-medical application. In this study, we designed a series of peptides and compared their capacities as bioadhesive to improve the surface bioactivity of bio-inert material. The peptides were designed according to the sequence of Perna viridis foot protein 1 (Pvfp-1), one of the Mfp-1s (mussel foot protein 1) which play key roles in wet adhesion of mussel byssus. And the Teflon (PTFE) was chosen as a model of bio-inert material. With adsorption, adhesion and coating analysis, it was found that peptide C2 (M) (derived from the non-repeating region of Pvfp-1, contains modified DOPA) has superior coating and adhesion abilities especially on the bio-inert surface of PTFE. After coating with peptide C2 (M), the cell adhesion and spreading of osteoblast MC3T3-E1 cells on PTFE were significantly improved compared with those on non-coated surface, and the peptide-coating did not show any cell toxicity. Therefore, peptide C2 (M) is effective for improving the bioactivity of bio-inert PTFE, and could be potentially used as a bioadhesive on other bio-inert materials for biomedical application. Moreover, this study also provided new insights in designing other peptide-based bioadhesive materials. PMID:22079698

  20. Henry's law, surface tension, and surface adsorption in dilute binary mixtures

    E-print Network

    Henry's law, surface tension, and surface adsorption in dilute binary mixtures Akira Onukia. The solute partitioning between gas and liquid Henry's law and the surface tension change are discussed. A derivation of the Gibbs law =-T is given with being the surface adsorption. Calculated quantities include

  1. Bose–Einstein condensation in dilute atomic gases: atomic physics meets condensed matter physics

    Microsoft Academic Search

    W. Ketterle

    2000-01-01

    Bose–Einstein condensed atomic gases are a new class of quantum fluids. They are produced by cooling a dilute atomic gas to nanokelvin temperatures using laser and evaporative cooling techniques. The study of these quantum gases has become an interdisciplinary field of atomic and condensed matter physics. Topics of many-body physics can now be studied with the methods of atomic physics.

  2. Covalent functionalization of silica surface using "inert" poly(dimethylsiloxanes).

    PubMed

    Graffius, Gabriel; Bernardoni, Frank; Fadeev, Alexander Y

    2014-12-16

    Methyl-terminated poly(dimethylsiloxanes) (PDMSs) are typically considered to be inert and not suitable for surface functionalization reactions because of the absence of readily hydrolyzable groups. Nevertheless, these siloxanes do react with silica and other oxides, producing chemically grafted organic surfaces. Known since the 1970s and then forgotten and recently rediscovered, this reaction provides a versatile yet simple method for the covalent functionalization of inorganic surfaces. In this work, we have explored the reactions of linear methyl-terminated and cyclic PDMS and bis-fluoroalkyl disiloxanes for the surface functionalization of mesoporous silica (Dpore ? 30-35 nm). The optimal reaction conditions included 24 h of contact of neat siloxane liquids and silica at 120-250 °C (depending on the siloxane). A study of the reactions of silicas with different extents of hydration demonstrated the critical role of water in facilitating the grafting of the siloxanes. The proposed reaction mechanism involved the hydrolysis of the adsorbed siloxanes by the Lewis acidic centers (presumably formed by water adsorbed onto surface defects) followed by the coupling of silanols to the surface to produce grafted siloxanes. For rigorously dehydrated silicas (calcination ?1000 °C), an alternative pathway that did not require water and involved the reaction of the siloxanes with the strained siloxane rings was also plausible. According to FTIR and chemical analysis, the reactions of bis-fluoroalkyl disiloxanes and cyclic PDMS (D3-D5) produced covalently-attached monolayer surfaces, and the reactions of high-MM methyl-terminated PDMS produced polymeric grafted silicas with a PDMS mass content of up to 50%. As evidenced by the high contact angles of ?130°/100° (adv/rec) and the negligible amount of water adsorption over the entire range of relative pressures, including saturation (p/p0 ? 1), the siloxane-grafted porous silicas show uniform, high-quality hydrophobic surfaces. An overall comparison of siloxanes with classical silane coupling agents (i.e., silanes with readily hydrolyzable functionalities such as chloro, amino, etc.) demonstrated that the reactions of siloxanes produced surfaces of similar quality and, although requiring higher temperatures, used noncorrosive, less hazardous reagents, thereby providing an environmentally benign alternative to the chemical functionalization of metal oxide surfaces. PMID:25419641

  3. Effect of Using Inert and Non-Inert Gases on the Thermal Degradation and Fuel Properties of Biomass in the Torrefaction and Pyrolysis Region 

    E-print Network

    Eseltine, Dustin E.

    2012-02-14

    to N? and Ar (which are entirely inert), making it better suited for use as a fuel for co-firing with coal or gasification. Three different biomasses were investigated: Juniper wood chips, Mesquite wood chips, and forage Sorghum. Experiments were...

  4. Soil chemistry in lithologically diverse datasets: the quartz dilution effect

    USGS Publications Warehouse

    Bern, Carleton R.

    2009-01-01

    National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

  5. 13-kV Ion-Extraction System Being Developed for Inert Gas Ion Engines

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Williams, George J.; Wilbur, Paul

    2002-01-01

    A high-voltage ion optics design was chosen for an assumed outer planet or interstellar precursor mission that would require a long-life, high-power, high-specific-impulse krypton ion engine. Such an engine could support energetic space missions to the outer planets or beyond. Detailed performance and lifetime analyses and several inexpensive subscale grid tests were conducted at the NASA Glenn Research Center and at the Colorado State University under a NASA Glenn grant. A subscale grid set of the selected geometry shown was tested at voltages up to 13,000 V. This yielded a krypton ion beam current that would, when scaled to a full-size 50-cm diameter, produce an ion beam with a power of 30 kW at a specific impulse over 14,000 sec. The operational ion beam focusing limits, as a function of ion current per hole, were found to impose requirements of high uniformity on the discharge chamber plasma density. A full-size set of two-grid, 50-cm-diameter titanium ion optics has been fabricated and awaits testing.

  6. Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes.

    PubMed

    Gäfvert, T; Pagels, J; Holm, E

    2003-01-01

    The exposure to 232Th from TIG welding with thoriated electrodes has been determined at five different workshops. Welding with both alternating and direct current was investigated. The exposure levels of 232Th were generally below 10 mBq m(-3) in the breathing zone of the welders. Two samples from AC welding showed significant higher exposure levels, probably due to maladjustment of the TIG welding power source. Samples of the respirable fraction of 232Th from grinding thoriated electrodes were also collected showing exposure levels of 5 mBq m(-3) or lower. A dose estimate has been made for two scenarios, one realistic and one with conservative assumptions, showing that the annual committed effective dose from inhalation of 232Th, 230Th, 228Th and 228Ra, for a full-time TIG welder, in the realistic case is below 0.3 mSv and with conservative assumptions around 1 mSv or lower. The contribution from grinding electrodes was lower, 10 microSv or lower in the realistic case and 63 microSv or lower based on conservative assumptions. The study does not exclude occurrence of higher exposure levels under welding conditions different from those prevailing in this study. PMID:12797558

  7. The Tungsten Inert GAS (TIG) Process of Welding Aluminium in Microgravity: Technical and Economic Considerations

    NASA Astrophysics Data System (ADS)

    Ferretti, S.; Amadori, K.; Boccalatte, A.; Alessandrini, M.; Freddi, A.; Persiani, F.; Poli, G.

    2002-01-01

    The UNIBO team composed of students and professors of the University of Bologna along with technicians and engineers from Alenia Space Division and Siad Italargon Division, took part in the 3rd Student Parabolic Flight Campaign of the European Space Agency in 2000. It won the student competition and went on to take part in the Professional Parabolic Flight Campaign of May 2001. The experiment focused on "dendritic growth in aluminium alloy weldings", and investigated topics related to the welding process of aluminium in microgravity. The purpose of the research is to optimise the process and to define the areas of interest that could be improved by new conceptual designs. The team performed accurate tests in microgravity to determine which phenomena have the greatest impact on the quality of the weldings with respect to penetration, surface roughness and the microstructures that are formed during the solidification. Various parameters were considered in the economic-technical optimisation, such as the type of electrode and its tip angle. Ground and space tests have determined the optimum chemical composition of the electrodes to offer longest life while maintaining the shape of the point. Additionally, the power consumption has been optimised; this offers opportunities for promoting the product to the customer as well as being environmentally friendly. Tests performed on the Al-Li alloys showed a significant influence of some physical phenomena such as the Marangoni effect and thermal diffusion; predictions have been made on the basis of observations of the thermal flux seen in the stereophotos. Space transportation today is a key element in the construction of space stations and future planetary bases, because the volumes available for launch to space are directly related to the payload capacity of rockets or the Space Shuttle. The research performed gives engineers the opportunity to consider completely new concepts for designing structures for space applications. In fact, once the optimised parameters are defined for welding in space, it could be possible to weld different parts directly in orbit to obtain much larger sizes and volumes, for example for space tourism habitation modules. The second relevant aspect is technology transfer obtained by the optimisation of the TIG process on aluminium which is often used in the automotive industry as well as in mass production markets.

  8. Mechanisms of inert gas impact induced interlayer mixing in metal multilayers grown by sputter deposition

    E-print Network

    Wadley, Haydn

    of Materials Science and Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia 22903 Received 20 December 2000; accepted for publication 3 July 2001 Control being investigated for use in a class of nonvolatile magnetic ran- dom access memories.5 Both classes

  9. Free base tetraazaporphine isolated in inert gas hosts: Matrix influence on its spectroscopic and photochemical properties

    NASA Astrophysics Data System (ADS)

    Henchy, Chris; McCaffrey, John G.; Arabei, Serguei; Pavich, Tatiana; Galaup, Jean-Pierre; Shafizadeh, Niloufar; Crépin, Claudine

    2014-09-01

    The absorption, fluorescence, and excitation spectra of free base tetraazaporphine (H2TAP) trapped in Ne, N2, and Ar matrices have been recorded at cryogenic temperatures. Normal Raman spectra of H2TAP were recorded in KBr discs and predicted with density functional theory (DFT) using large basis sets calculations. The vibrational frequencies observed in the Raman Spectrum exhibit reasonable agreement with those deduced from the emission spectra, as well as with frequencies predicted from large basis set DFT computations. The upper state vibrational frequencies, obtained from highly resolved, site selected excitation spectra, are consistently lower than the ground state frequencies. This contrasts with the situation in free base phthalocyanine, where the upper state shows little changes in vibrational frequencies and geometry when compared with the ground state. Investigations of the photochemical properties of H2TAP isolated in the three matrices have been performed using the method of persistent spectral hole-burning (PSHB). This technique has been used to reveal sites corresponding to distinct N-H tautomers which were not evident in the absorption spectra. An analysis of the holes and antiholes produced with PSHB in the Qx (0-0) absorption band made it possible to identify inter-conversion of distinct host sites.

  10. Free base tetraazaporphine isolated in inert gas hosts: matrix influence on its spectroscopic and photochemical properties.

    PubMed

    Henchy, Chris; McCaffrey, John G; Arabei, Serguei; Pavich, Tatiana; Galaup, Jean-Pierre; Shafizadeh, Niloufar; Crépin, Claudine

    2014-09-28

    The absorption, fluorescence, and excitation spectra of free base tetraazaporphine (H2TAP) trapped in Ne, N2, and Ar matrices have been recorded at cryogenic temperatures. Normal Raman spectra of H2TAP were recorded in KBr discs and predicted with density functional theory (DFT) using large basis sets calculations. The vibrational frequencies observed in the Raman Spectrum exhibit reasonable agreement with those deduced from the emission spectra, as well as with frequencies predicted from large basis set DFT computations. The upper state vibrational frequencies, obtained from highly resolved, site selected excitation spectra, are consistently lower than the ground state frequencies. This contrasts with the situation in free base phthalocyanine, where the upper state shows little changes in vibrational frequencies and geometry when compared with the ground state. Investigations of the photochemical properties of H2TAP isolated in the three matrices have been performed using the method of persistent spectral hole-burning (PSHB). This technique has been used to reveal sites corresponding to distinct N-H tautomers which were not evident in the absorption spectra. An analysis of the holes and antiholes produced with PSHB in the Qx (0-0) absorption band made it possible to identify inter-conversion of distinct host sites. PMID:25273433

  11. Design and operation of an inert gas facility for thermoelectric generator storage

    SciTech Connect

    Goebel, C.J.

    1990-01-01

    While the flight hardware is protected by design from the harsh environments of space, its in-air storage often requires special protection from contaminants such as dust, moisture and other gases. One of these components, the radioisotope thermoelectric generator (RTG) which powers the missions, was deemed particularly vulnerable to pre-launch aging because the generators remain operational at core temperatures in excess of 1000 degrees centigrade throughout the storage period. Any oxygen permitted to enter the devices will react with thermally hot components, preferentially with molybdenum in the insulating foils, and with graphites to form CO/CO{sub 2} gases which are corrosive to the thermopile. It was important therefore to minimize the amount of oxygen which could enter, by either limiting the effective in-leakage areas on the generators themselves, or by reducing the relative amount of oxygen within the environment around the generators, or both. With the generators already assembled and procedures in place to assure minimal in-leakage in handling, the approach of choice was to provide a storage environment which contains significantly less oxygen than normal air. 2 refs.

  12. Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D

    E-print Network

    Zhou, Wei

    of porosity in the welds. The welding was conducted using alternating current at a voltage of 20­22 V,2 Magnesium alloy AZ91D is widely used because of its relatively higher corrosion resistance and mechanical,4 corrosion resistance5­8 and mechanical properties9 of AZ91D magnesium alloys. Effort has also been made

  13. Computation of Pressure Effects of Inert-Gas Mixtures on Atomic Line Shapes

    Microsoft Academic Search

    Harry C. Jacobson

    1972-01-01

    Recent line-shape experiments on the absorption series of cesium pressurized by various concentration ratios of argon and helium provide an opportunity to study the additivity of perturber interactions. Calculations which assume additivity and which assume additive adiabatic collisions agree well with the reported data. The results suggest that a systematic study of such experiments using accurate digitized data can furnish

  14. Decrements in cognitive performance in metal inert gas welders exposed to aluminium

    PubMed Central

    Akila, R.; Stollery, B. T.; Riihimaki, V.

    1999-01-01

    OBJECTIVES: Often little has been discovered of the cognitive functions affected by occupational toxins because many functions cooperate to produce the single performance scores typically reported from neuropsychological tests. To facilitate the interpretation of neuropsychological scores, the issue of occupational exposure to aluminium was examined with an approach intended to increase understanding of those cognitive processes that may be affected. METHODS: The investigation was a cross sectional study of asymptomatic aluminium welders and a reference group of mild steel welders. Based on urinary aluminium concentrations, welders were classified into a reference (n = 28), low (n = 27), and high (n = 24) exposure group. The mean urinary aluminium concentrations were 0.46, 2.25, and 9.98 mumol/l, respectively. A comprehensive neuropsychological examination was undertaken to assess psychomotor function, simple visual reaction time, attention related tasks, verbal and visual or visuospatial abilities as well as verbal and visual learning and memory. RESULTS: Aluminium welders showed no impairment on the finger tapping, Santa Ana dexterity, simple visual reaction times, any of the verbal memory tasks, the similarities subtest of Wechsler adult intelligence scale, or the Stroop task. However, the low exposed group performed poorer on the memory for designs and on more difficult block design items demanding preliminary visuospatial analysis. The time limited synonym task, embedded figures, digit symbol speed, and the backward counting component of the divided attention task showed exposure-response relations. CONCLUSIONS: The impairments found were circumscribed. When the neuropsychological tasks were scored to show some of the underlying theoretical cognitive structures, the results indicated that performance difficulties were mainly detected in tasks requiring working memory, particularly that relating to processing of visuospatial information. There was also evidence that such impairments are more readily found in time limited tasks involving visually presented material, in which effective visual scanning combined with control of working memory is demanded.   PMID:10615297

  15. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology.

    PubMed

    Guarienti, Michela; Gianoncelli, Alessandra; Bontempi, Elza; Moscoso Cardozo, Sdenka; Borgese, Laura; Zizioli, Daniela; Mitola, Stefania; Depero, Laura E; Presta, Marco

    2014-08-30

    Municipal solid waste incinerator (MSWI) residues can generate negative environmental impacts when improperly handled. The COlloidal Silica Medium to Obtain Safe inert (COSMOS) technology represents a new method to stabilize MSWI residues and to produce inert safe material. Here we report the results about aquatic biotoxicity of lixiviated MSWI fly ash and the corresponding inertized COSMOS material using a zebrafish (Danio rerio) embryo toxicity test. Quantitative assessment of waste biotoxicity included evaluation of mortality rate and of different morphological and teratogenous endpoints in zebrafish embryos exposed to tested materials from 3 to 72h post-fertilization. The results demonstrate that lixiviated MSWI fly ash exerts a dose-dependent lethal effect paralleled by dramatic morphological/teratogenous alterations and apoptotic events in the whole embryo body. Similar effects were observed following MSWI fly ash stabilization in classical concrete matrices, demonstrating that the obtained materials are not biologically safe. On the contrary, no significant mortality and developmental defects were observed in zebrafish embryos exposed to COSMOS inert solution. Our results provide the first experimental in vivo evidence that, in contrast with concrete stabilization procedure, COSMOS technology provides a biologically safe inert. PMID:25080155

  16. Geochemical detection of carbon dioxide in dilute aquifers

    PubMed Central

    2009-01-01

    Background Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. Results For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux ? 104 t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase in the lower most permeable unit and does not reach the monitoring well. Sustained pumping in a developed aquifer mixes the CO2-affected water with the ambient water and enhances pH signal for small leaks (103 t/yr) and reduces pH signal for larger leaks (? 104t/yr). Conclusion The ability to detect CO2 leakage from a storage reservoir to overlying dilute groundwater is dependent on CO2 solubility, leak flux, CO2 buoyancy, and groundwater flow. Our simulations show that the most likely places to detect CO2 are at the base of the confining layer near the water table where CO2 gas accumulates and is transported laterally in all directions, and downstream of the vertical gas trace where groundwater flow is great enough to transport dissolved CO2 laterally. Our simulations show that CO2 may not rise high enough in the aquifer to be detected because aqueous solubility and lateral groundwater transport within the lower aquifer unit exceeds gas pressure build-up and buoyancy needed to drive the CO2 gas upwards. PMID:19323832

  17. Dissolved gas concentrations of the geothermal fluids in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  18. Dilution in elliptical galaxies: implications for the relation between metallicity, stellar mass and star formation rate

    NASA Astrophysics Data System (ADS)

    Yates, Robert M.; Kauffmann, Guinevere

    2014-04-01

    We investigate whether dilution in some elliptical galaxies is the cause of a positive correlation between specific star formation rate (sSFR) and gas-phase metallicity (Zg) at high stellar mass in the local Universe. In the Munich semi-analytic model of galaxy formation, L-GALAXIES, massive, low-sSFR, elliptical galaxies are seen to undergo a gradual dilution of their interstellar medium, via accretion of metal-poor gas in cold-gas clumps and low-mass satellites. This occurs after a merger-induced starburst and the associated supernova feedback have quenched most of the original gas reservoir. Signatures of this evolution are present in these model galaxies at z = 0, including low gas fractions, large central black holes, old ages, and importantly, low (Zg-Z*). Remarkably, all of these properties are also found in massive, low-sSFR, elliptical galaxies in the sloan digital sky survey data release 7 (SDSS-DR7). This provides strong, indirect evidence that gradual dilution is also occurring in nearby ellipticals in the real Universe. This scenario provides an explanation for the positive correlation between SFR and Zg measured in high-M* galaxies, and therefore has consequences for the local fundamental metallicity relation, which assumes a weak anticorrelation above ˜1010.5 M?.

  19. Optical properties of insulator-excitonic-semiconductor superlattices in the presence of inert layers

    NASA Astrophysics Data System (ADS)

    Cocoletzi, G. H.; Ramrez Perucho, A.; Luis Mochán, W.

    1991-11-01

    We study the optical properties of an insulator-excitonic-semiconductor superlattice in the presence of exciton-free inert layers on both surfaces of each semiconducting region. Generalized boundary conditions are applied at the interface between the inert layer and the active region, and the dispersion relation of the collective normal modes of an infinite superlattice is calculated near an excitonic transition. We also obtain the optical reflectance of a semi-infinite superlattice for p polarization. We present results for CdS layers using two well-known additional boundary conditions. Increasing the inert-layer thickness induces a blueshift and modifies the structure in the complex spectra. This structure is interpreted in terms of guided transverse- and longitudinal-wave resonances in the active excitonic layers.

  20. Inert electrode composition having agent for controlling oxide growth on electrode made therefrom

    DOEpatents

    Ray, S.P.

    1986-04-15

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. The electrode composition further includes a metal compound dopant which will aid in controlling the thickness of a protective oxide layer on at least the bottom portion of an electrode made therefrom during use. 12 figs.

  1. Mossbauer effect in dilute iron alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1975-01-01

    The effects of variable concentration, x, of Aluminum, Germanium, and Lanthanum atoms in Iron lattice on various Mossbauer parameters was studied. Dilute binary alloys of (Fe-Al), (Fe-Ge), (Fe-Al) containing up to x = 2 a/o of the dilute constituent were prepared in the form of ingots and rolled to a thickness of 0.001 in. Mossbauer spectra of these targets were then studied in transmission geometry to measure changes in the hyperfine field, peak widths isomer shifts as well as the ratio of the intensities of peaks (1,6) to the intensities of peaks (2,5). It was shown that the concept of effective hyperfine structure field in very dilute alloys provides a useful means of studying the effects of progressively increasing the solute concentration on host lattice properties.

  2. Adsorption of inert gases including element 118 on noble metal and inert surfaces from ab initio Dirac-Coulomb atomic calculations

    Microsoft Academic Search

    V. Pershina; A. Borschevsky; E. Eliav; U. Kaldor

    2008-01-01

    The interaction of the inert gases Rn and element 118 with various surfaces has been studied on the basis of fully relativistic ab initio Dirac-Coulomb CCSD(T) calculations of atomic properties. The calculated polarizability of element 118, 46.3 a.u., is the largest in group 18, the ionization potential is the lowest at 8.91 eV, and the estimated atomic radius is the

  3. How the dynamics of an ablation plume is affected by ambient gas ionisation

    NASA Astrophysics Data System (ADS)

    Bailini, A.; Ossi, P. M.

    2005-10-01

    The influence of inert gas ionisation on the expansion dynamics of a laser ablation plume propagating through an inert gas is studied. Charge transfer reactions between ionised ablated species and gas neutrals lead to the formation of a charged layer of ionised gas atoms in contact with the plume expansion front. The energy lost by fast ablated ions when the plume is slowed down is calculated. For the exemplary carbon ablation in helium and argon atmospheres, where background gas ionisation plays a different role, model predictions agree with the observed microstructural differences of deposited films.

  4. A steam inerting system for hydrogen disposal for the Vandenberg Shuttle

    NASA Technical Reports Server (NTRS)

    Belknap, Stuart B.

    1988-01-01

    A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.

  5. Geochemical detection of carbon dioxide in dilute aquifers

    SciTech Connect

    Carroll, S; Hao, Y; Aines, R

    2009-03-27

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO{sub 2} emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO{sub 2} gas leak into dilute groundwater are important measures for the potential release of CO{sub 2} to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO{sub 2} storage reservoir. Specifically, we address the relationships between CO{sub 2} flux, groundwater flow, detection time and distance. The CO{sub 2} flux ranges from 10{sup 3} to 2 x 10{sup 6} t/yr (0.63 to 1250 t/m{sup 2}/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.

  6. From High-Temperature Gas-Cooled Reactors to Gas-Cooled Fast Breeder Reactors

    Microsoft Academic Search

    R. H. Simon; G. J. Schlueter

    1973-01-01

    The evolution of gas-cooled reactors is described and the advantages of helium as a reactor coolant stemming from its inertness and the fact that it is a single-phase coolant are discussed. The High-Temperature Gas-Cooled Reactor (HTGR) forms the basis for the current design of a Gas-Cooled Fast Breeder Reactor (GCFR). The extensive use of existing HTGR technology and the similarities

  7. A ``Dilution Refrigerator'' Using Spin-Polarized Fermions

    NASA Astrophysics Data System (ADS)

    Basu, Sourish; Mueller, Erich J.

    2009-05-01

    We present an analogy between a population imbalanced two component Fermi gas on the BEC side of a Feshbach resonance and a ^3He-^4He mixture. The bosonic pairs are analogous to ^4He and the fermionic unpaired atoms to ^3He. These systems have topologically indistinguishable phase diagrams: at low temperatures the system phase separates into a fermion rich and a fermion poor region. As in standard cryogenic setups, one can in principle create a refrigerator which cools based upon the fact that there is a latent heat associated with pulling particles from the fermion rich region into the fermion poor one. We explore this idea, calculating the entropy of mixing, and suggesting cold atom geometries which mimic the anatomy of a standard ^3He-^4He dilution refrigerator.

  8. Science Sampler: Dilution, Concentration, and Flotation

    NSDL National Science Digital Library

    Joseph S. Schmuckler

    2004-04-01

    Classroom teaching practice and literature show that many students have difficulties with science concepts such as density. These investigations identify the relationship between density and floating through experimenting with successive dilution of a liquid, or the systematic change of concentration of a saltwater solution. The lessons follow the constructivist teaching model--invitation, exploration, proposing explanations, and taking action.

  9. Automatic dilution gaging of rapidly varying flow

    USGS Publications Warehouse

    Duerk, M.D.

    1983-01-01

    Obtaining discharge ratings at urban gaging stations is often difficult. Results of using an automated constant-rate dye-dilution technique to measure discharge at two sites in Madison, Wisconsin, are presented. The sites selected have well-defined stage-discharge ratings, developed during previous hydrologic studies. One site is a 60-inch-diameter concrete storm sewer and the other a concrete-lined open trapezoidal channel. Equipment selected to automate the method included a portable automatic water sampler, four-channel event recorder; and for dye injection, a peristaltic pump. An electrical switching circuit was designed to coordinate the operation of the water sampler, injection pump, and four-channel recorder. During the data-collection period of 1 year, a total of 20 storms was monitored. The analyses showed that the discharges measured by dye-dilution techniques ranged from + or - 5 to + or - 10 percent of the discharges determined from ratings established by current-meter measurements. Larger differences were noted at the start of and on the rising limb of four hydrographs. Of the 20 storms monitored, 17 produced acceptable results. Peak discharges by the dilution method at the open-channel site ranged from 0 to 12 percent departures from the existing rating, whereas the peak discharge by the dilution method at the storm-sewer site ranged from 0 to 5 percent departures from the existing rating. (UGGS)

  10. Polaron Percolation in Diluted Magnetic Semiconductors

    Microsoft Academic Search

    A. Kaminski; S. Das Sarma

    2002-01-01

    We theoretically study the development of spontaneous magnetization in diluted magnetic semiconductors as arising from a percolation of bound magnetic polarons. Within the framework of a generalized percolation theory we derive analytic expressions for the Curie temperature and the magnetization in the limit of low carrier density, obtaining excellent quantitative agreement with Monte Carlo simulation results and good qualitative agreement

  11. Sulfuric Acid and Water: Paradoxes of Dilution

    ERIC Educational Resources Information Center

    Leenson, I. A.

    2004-01-01

    On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…

  12. Resistance Minimum in Dilute Magnetic Alloys

    Microsoft Academic Search

    Jun Kondo

    1964-01-01

    Based on the s-d interaction model for dilute magnetic alloys we have calculated the scattering probability of the conduction electrons to the second Born approximation. Because of the dynamical character of the localized spin system, the Pauli principle should be taken into account in the intermediate states of the second order terms. Thus the effect of the Fermi sphere is

  13. Dilute acid hydrolysis of lignocellulosic biomass

    Microsoft Academic Search

    P. Lenihan; A. Orozco; E. O’Neill; M. N. M. Ahmad; D. W. Rooney; G. M. Walker

    2010-01-01

    The overall aim of this work was to establish the optimum conditions for acid hydrolysis of hemicellulosic biomass in the form of potato peel. The hydrolysis reaction was undertaken in a 1l high pressure pilot batch reactor using dilute phosphoric acid. Analysis of the decomposition rate of hemicellulosic biomass (namely Cellulose, Hemicellulose and lignin) was undertaken using HPLC of the

  14. Surface Pretreatment Based On Dilute Hexafluorozirconic Acid

    Microsoft Academic Search

    Y. Zhai; Z. Zhao; G. S. Frankel; J. Zimmerman; T. Bryden; W. Fristad

    Two surface pretreatments based on dilute hexafluorozirconic acid (FZ) solution, a simple FZ and a modified FZ or MFZ, were studied as replacements for the phosphating process. The FZ conversion coatings were deposited on cold rolled steel (CRS) substrates by immersion treatment. AFM images reveal that the coating surface exhibited small features tens of nm in size and clusters of

  15. LAKE RESTORATION BY DILUTION: MOSES LAKE, WASHINGTON

    EPA Science Inventory

    Dilution water, low in macronutrients, was added to Moses Lake on three occasions in 1977 and once in 1978 during the spring-summer period. The addition resulted in reducing the annual average inflow concentration of phosphorus from about 130-140 micrograms/l to 100 micrograms/l....

  16. Storage, Ageing, Refilling, and Dilution of Photoresists

    E-print Network

    Yoo, S. J. Ben

    as chemical impurities (water, isopropyl, softener from plastics) cause an (accelerated) ageingStorage, Ageing, Refilling, and Dilution of Photoresists Revised: 2010-01-27 Source: www results in a resists being `out of specifica- tions'. High storage temperatures cause accelerated resist

  17. THE MOST DILUTE LAKE IN THE WORLD?

    EPA Science Inventory

    Lake Notasha, near the crest of the Oregon Cascade mountain range, is the most dilute lake known. he measured conductivity during two visits was 1.3 and 1.6 uS cm-1, with a sum of base cations of 9 and 18 ueq L-1; bicarbonate was the dominant anion. ost of the cations in the lake...

  18. Zinc oxide based diluted magnetic semiconductors

    Microsoft Academic Search

    Shivaraman Ramachandran

    2007-01-01

    During my graduate research I have synthesized materials known as diluted magnetic semiconductors (DMS) as epitaxial thin film structures using the process of pulsed laser deposition (PLD). These materials are envisioned to be of importance in the emerging field of spintronics where the charge as well as the spin of the charge carriers can be combined to yield unique functionalities

  19. 40 CFR 1065.267 - Gas chromatograph.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...a) Application. You may use a gas chromatograph to measure CH4 concentrations of diluted exhaust for batch sampling. While you may also use a nonmethane cutter to measure CH4 , as described in § 1065.265, use a reference...

  20. 40 CFR 1065.267 - Gas chromatograph.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...a) Application. You may use a gas chromatograph to measure CH4 concentrations of diluted exhaust for batch sampling. While you may also use a nonmethane cutter to measure CH4 , as described in § 1065.265, use a reference...

  1. Dilution-based emissions sampling from stationary sources: Part 1--Compact sampler methodology and performance.

    PubMed

    England, Glenn C; Watson, John G; Chow, Judith C; Zielinska, Barbara; Chang, M C Oliver; Loos, Karl R; Hidy, George M

    2007-01-01

    This paper presents the design and performance of a compact dilution sampler (CDS) for characterizing fine particle emissions from stationary sources. The sampler is described, along with the methodology adopted for its use. Dilution sampling has a number of advantages, including source emissions that are measured under conditions simulating stack gas entry and mixing in the ambient atmosphere. This is particularly important for characterizing the semivolatile species in effluents as a part of particulate emissions. The CDS characteristics and performance are given, along with sampling methodology. The CDS was compared with a reference dilution sampler. The results indicate that the two designs are comparable for tests on gas-fired units and a diesel electrical generator. The performance data indicate that lower detection limits can be achieved relative to current regulatory methods for particulate emissions. Test data for the fine particulate matter (PM2.5) emissions are provided for comparison with U.S. Environment Protection Agency (EPA) Conditional Test Method 040 for filterable particulate matter (FPM) and the EPA Method 202 for condensable particulate matter. This comparison showed important differences between methods, depending on whether a comparison is done between in situ FPM determinations or the sum of such values with condensable PM from liquid filled impingers chilled in an ice bath. These differences are interpretable in the light of semivolatile material present in the stack effluent and, in some cases, differences in detection and quantification limits. Determination of emissions from combustors using liquid fuels can be readily achieved using 1-hr sampling with the CDS. Emissions from gasfired combustors are very low, requiring careful attention to sample volumes. Sampling volumes corresponding with 6-hr operation were used for the combined mass and broad chemical speciation. Particular attention to dilution sampler operation with clean dilution air also is essential for gas-fired sources. PMID:17269232

  2. Reduction of combustion noise and instabilities using porous inert material with a swirl-stabilized burner

    NASA Astrophysics Data System (ADS)

    Sequera, Daniel

    Combustion instabilities represent a major problem during operation of power generation systems that can lead to costly shutdown. Combustion instabilities are self excited large amplitude pressure oscillations caused by the coupling of unsteady heat release and acoustic modes of the combustor. These oscillations cause fluctuating mechanical loads and fluctuating heat transfer that can result in catastrophic premature failure of components. Combustion noise, a significant source of noise in gas turbines, can lead to combustion instabilities. Combustion noise and instabilities are different phenomena; however, they both occur due to unsteady heat release of turbulent flames that excites acoustic modes of the combustor. The instabilities self excite when flame adds energy to the acoustic field at a faster rate than it can dissipate it. Swirl-stabilized combustion and porous inert medium (PIM) combustion are two methods that have extensively been used, although independently, for flame stabilization. In this study, the two concepts are combined so that PIM serves as a passive device to mitigate combustion noise and instabilities. A PIM insert is placed within the lean premixed, swirl-stabilized combustor to affect the turbulent flow field reducing combustion noise. This study is the first step for eventual implementation in liquid fuel systems. After presenting the concept, a numerical investigation of the changes in the mean flow field caused by the PIM is presented. Changes in the flow field can be beneficial for noise reduction by optimizing the geometric parameters of the PIM. Next, atmospheric pressure experiments were conducted at low reactant inlet velocity (<10 m/s) and low reactant inlet temperature (<120°C) to investigate effect of PIM parameters on sound pressure level (SPL), and CO and NOx emissions. Surface and interior combustion modes were identified and PIM geometric parameters were optimized. Next, a laboratory facility to conduct experiments at high reactant inlet velocity, high inlet air temperature, and high pressure was designed and developed. Results show that the porous insert substantially reduces combustion noise for a range of operating conditions. Moreover, experiments show that the porous insert can mitigate combustion instabilities without adversely affecting CO and NOx emissions.

  3. A simple deep monitoring well dilution technique.

    NASA Astrophysics Data System (ADS)

    Rogiers, Bart; Labat, Serge; Gedeon, Matej; Vandersteen, Katrijn

    2015-04-01

    Well dilution techniques are well known and studied as one of the basic techniques to quantify groundwater fluxes. A typical well dilution test consists of the injection of a tracer, a mixing mechanism (e.g. water circulation with a pump) to achieve a homogeneous concentration distribution within the well, and monitoring of the evolution of tracer concentration with time. An apparent specific discharge can be obtained from such a test, and when details on the well construction are known, it can be converted into a specific discharge representative of the undisturbed aquifer. For deep wells however, the injection of tracer becomes less practical and the use of pumps for circulating and mixing the water becomes problematic. This is due to the limited pressure that common pumps can endure at the outlet, as well as the large volume of water that makes it difficult to achieve a homogeneous concentration, and the impracticalities of getting a lot of equipment to large depths in very small monitoring wells. Injection and monitoring of tracer at a specific depth omits several of the problems with deep wells. We present a very simple device that can be used to perform a dilution test at a specific depth in deep wells. The injection device consists of a PVC tube with a detachable rubber seal at its bottom. To minimize disturbance of the water column in the well, we integrated an EC sensor in this injection device, which enables us to use demineralized water or dissolved salts as a tracer. Once at the target depth, the PVC tube is retracted and the EC sensor and tracer become subject to groundwater flow. The device was tested on a shallow well, on which different types of dilution tests were performed. The results of the other tests agree well with the injection tube results. Finally, the device was used to perform a dilution test in a deep well in order to demonstrate the feasibility of the approach.

  4. J Biol Chem . Author manuscript D-Maurocalcine, a pharmacologically inert efficient cell-penetrating peptide

    E-print Network

    Paris-Sud XI, Université de

    J Biol Chem . Author manuscript Page /1 18 D-Maurocalcine, a pharmacologically inert efficient cell characteristic pharmacological activity on ryanodine-sensitive calcium channels without affecting its cell for an excellent cell penetrating peptide: preserved structure, lack of pharmacological action, conserved vector

  5. The ethics of placebo-controlled trials: a comparison of inert and active placebo controls.

    PubMed

    Edward, Sarah J L; Stevens, Andrew J; Braunholtz, David A; Lilford, Richard J; Swift, Teresa

    2005-05-01

    Because of the recent and controversial example of sham surgery for the evaluation of fetal tissue transplants for Parkinson's disease, there is renewed interest in the ethics of using "active" placebos in surgical trials, where otherwise there are no inert procedures available, and in pharmacological trials, where there are inert substances, but where patients may guess to which arm they have been allocated. This paper seeks to clarify the ethical arguments surrounding the use of active placebos in trials, and to set up a notation for assessing the ethics of trials more generally. We first establish an framework by which ethics committees can analyze such trials. We examine (1) the scientific value of the research; (2) the expected risks and benefits to individual patients, and (3) the voluntary nature of consent. We then contrast the implications of this framework for inert and active placebo-controlled trials, respectively. In particular, we analyze their relative expected utility using three main utility factors, namely, treatment effects, placebo effects, and altruism. We conclude that, when the intervention is already widely available, active placebo trials rely more heavily on altruism than do inert placebo trials and, when the intervention is restricted, this excess reliance may not be needed. What our analysis provides is the explicit justification for the apparent caution of Institutional Review Boards or ethics committees when reviewing sham operations, especially when the expected harm is not trivial and the risk of exploitation is high. PMID:15827854

  6. Improved scaling laws for stage inert mass of space propulsion systems. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Summarized is a study which satisfies the need for improved scaling laws for stage inert mass of space propulsion systems. The resulting laws are applicable to current and future vehicle systems and designs for a comprehensive spectrum of anticipated planetary missions.

  7. Conditional statistics of inert droplet effects on turbulent combustion in reacting mixing layers

    Microsoft Academic Search

    J. Xia; K. H. Luo

    2009-01-01

    Direct numerical simulation (DNS) of turbulent reacting mixing layers laden with evaporating inert droplets is used to assess the droplet effects in the context of the conditional moment closure (CMC) for multiphase turbulent combustion. The temporally developing mixing layer has an initial Reynolds number of 1000 based on the vorticity thickness with more than 16 million Lagrangian droplets traced. An

  8. Transmutation of actinides in inert-matrix fuels: fabrication studies and modelling of fuel behaviour

    NASA Astrophysics Data System (ADS)

    Konings, R. J. M.; Bakker, K.; Boshoven, J. G.; Hein, H.; Huntelaar, M. E.; van der Laan, R. R.

    1999-08-01

    A review of the ongoing research of inert-matrix fuels for the transmutation of actinides is given. Three fabrication routes are described, co-precipitation (CPP), low-impact mixing of powders (LMP) and mixing of particles and powders (MPP). These methods have been tested for various combinations of actinide host materials and inert matrices. Most attention is given to a fuel concept consisting of an actinide-containing host phase and spinel as the inert matrix. To understand the phase relations and melting behaviour of this hybrid fuel type the binary phase diagrams in the system (Zr,Y,Pu)O 2 + MgAl 2O 4 are being modelled and some results are presented. In addition, the thermal behaviour of MgAl 2O 4-based inert-matrix fuels is investigated. The thermal conductivity of polycrystalline spinel is measured and in-pile temperature measurements of an UO 2 + MgAl 2O 4 target are analysed.

  9. Modeling separation of proteins by inert core adsorbent in a batch adsorber

    Microsoft Academic Search

    Ping Li; Guohua Xiu; Alirio E. Rodrigues

    2003-01-01

    Adsorption\\/desorption kinetics of protein on the binding ligand of inert core adsorbent in a batch adsorber is analyzed theoretically for Langmuir isotherm coupled with the intraparticle diffusion and film mass transfer resistances. For the two limiting cases of Langmuir isotherm, there are analytical solutions. New analytical solutions are derived for Henry isotherm, and the analytical solution of shrinking core model

  10. Quick look analysis of an emergency separation for ALT captive-inert flight 1

    NASA Technical Reports Server (NTRS)

    Glenn, G. M.; Seale, R. H.

    1977-01-01

    Emergency separation capability for the landing configuration of ALT Captive Inert Flight Number One was investigated. The quick look analysis confirms emergency separation capability under nominal conditions for the ALT landing configuration. The recommended emergency separation procedure under those conditions is not applicable to all ALT configurations.

  11. YOUNG INFANTS’ REASONING ABOUT PHYSICAL EVENTS INVOLVING INERT AND SELF-PROPELLED OBJECTS

    PubMed Central

    Luo, Yuyan; Kaufman, Lisa; Baillargeon, Renée

    2009-01-01

    The present research examined whether 5- to 6.5-month-old infants would hold different expectations about various physical events involving a box after receiving evidence that it was either inert or self-propelled. Infants were surprised if the inert but not the self-propelled box: reversed direction spontaneously (Experiment 1); remained stationary when hit or pulled (Experiments 3 and 3A); remained stable when released in midair or with inadequate support from a platform (Experiment 4); or disappeared when briefly hidden by one of two adjacent screens (the second screen provided the self-propelled box with an alternative hiding place; Experiment 5). On the other hand, infants were surprised if the inert or the self-propelled box appeared to pass through an obstacle (Experiment 2) or disappeared when briefly hidden by a single screen (Experiment 5). The present results indicate that infants as young as 5 months of age distinguish between inert and self-propelled objects and hold different expectations for physical events involving these objects, even when incidental differences between the objects are controlled. These findings are consistent with the proposal by Gelman (1990), Leslie (1994), and others that infants endow self-propelled objects with an internal source of energy. Possible links between infants’ concepts of self-propelled object, agent, and animal are also discussed. PMID:19232579

  12. The validation of a thermal battery model using electrically-inert and active batteries

    Microsoft Academic Search

    John Knight; I. McKirdy

    1990-01-01

    Physical property data on thermal battery component materials were obtained from the matching of model simulations to experimental thermocouple responses of inert batteries, here defined as dummy batteries. This has been done for some thermal battery designs by: (i) building and testing a series of 30 dummy batteries fitted with internal thermocouples, whose stacks consisted merely of pyrotechnic pellets alternating

  13. Development of a modified chemical inertness test method for refillable pet bottle material

    Microsoft Academic Search

    Aristoula G. Karamani; Panagiotis G. Demertzis; Konstantoula Akrida-Demertzi

    2002-01-01

    Refillable PET containers offer great advantages from an ecological point of view, i.e., to reduce waste from packaging materials. A major concern is the potential public health risks of PET refillable bottles due to possible misuse. In this study, a modified method for determining the chemical inertness of PET bottles involving the interaction of strips from bottle walls with a

  14. Sensory characterization of polyester-based bottle material inertness using threshold odour number determination

    Microsoft Academic Search

    Heléne Widén; Gunnar Hall

    2007-01-01

    Refillable polyester bottles, for example polyethylene terephthalate (PET) bottles, are known to interact with chemicals. Aroma compounds from a product can be absorbed by the bottle material, remain after washing and remigrate when the bottle is reused, resulting in off-flavour of the new product. A certified reference material has recently been approved with which the chemical and sensory inertness of

  15. PAPER www.rsc.org/loc | Lab on a Chip Teflon films for chemically-inert microfluidic valves and pumps

    E-print Network

    Manalis, Scott

    800600h We present a simple method for fabricating chemically-inert Teflon microfluidic valves and pumps in glass microfluidic devices. These structures are modeled after monolithic membrane valves and pumpsPAPER www.rsc.org/loc | Lab on a Chip Teflon films for chemically-inert microfluidic valves

  16. Retained Gas Sampler Calibration and Simulant Tests

    SciTech Connect

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  17. Gas sensors based on Paschen's law using carbon nanotubes as electron emitters

    Microsoft Academic Search

    S J Kim

    2006-01-01

    In the case of typical gas sensors responding by gas adsorption on the surface, it is very difficult to detect inert gases which have low chemical adsorption energies under normal conditions. Carbon nanotubes (CNTs) are well known as electron emitters in applications like field emission displays. In this work, we fabricate a physical gas sensor (or vacuum sensor) using CNTs

  18. 40 CFR 89.424 - Dilute emission sampling calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...CONTINUED) AIR PROGRAMS... , PM, or NOX ) in g...Hydrocarbon concentration of the...the dilution air as measured... =Relative humidity of the dilution air, percent...Carbon monoxide concentration of the...

  19. Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOEpatents

    Farthing, William Earl (Pinson, AL) [Pinson, AL; Felix, Larry Gordon (Pelham, AL) [Pelham, AL; Snyder, Todd Robert (Birmingham, AL) [Birmingham, AL

    2008-02-12

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  20. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOEpatents

    Farthing, William Earl (Pinson, AL); Felix, Larry Gordon (Pelham, AL); Snyder, Todd Robert (Birmingham, AL)

    2009-12-15

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  1. An extension of the group contribution model for thermodynamic and transport properties of dilute gases

    Microsoft Academic Search

    Seung-Kyo Oh; Chol-Ho Sim

    2002-01-01

    Earlier work of the group contribution method presented by Oh and Campbell [Oh and Campbell, 1997] for prediction of second\\u000a virial coefficients and dilute gas transport properties has been repeated with a new set of normal alkane second virial coefficient\\u000a data (methane, ethane, propane, and normal pentane critically compiled by Dymond and Smith [1980], normal hexane recommended\\u000a by Dymond et

  2. Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data

    Microsoft Academic Search

    Stéphanie Clémens; Mathilde Monperrus; Olivier F. X. Donard; David Amouroux; Thierry Guérin

    Methylmercury (MeHg) and total mercury (THg) in seafood were determined using species-specific isotope dilution analysis and\\u000a gas chromatography combined with inductively coupled plasma mass spectrometry. Sample preparation methods (extraction and\\u000a derivation step) were evaluated on certified reference materials using isotopically enriched Hg species. Solid–liquid extraction,\\u000a derivation by propylation and automated agitation gave excellent accuracy and precision results. Satisfactory figures of

  3. Quantification of Pantothenic Acid and Folates by Stable Isotope Dilution Assays

    Microsoft Academic Search

    Michael Rychlik; Achim Freisleben

    2002-01-01

    Stable isotope dilution assays for the quantification of pantothenic acid and folates in foods by using four-fold labeled isotopomers of the vitamins as internal standards (IS) were developed. The use of labeled IS enabled to exactly correct losses during cleanup and derivatization.Pantothenic acid and its labeled isotopomer were detected as trimethylsilyl derivatives by gas chromatography–mass spectrometry. In starch a detection

  4. Isotope dilution GC\\/MS determination of anandamide and other fatty acylethanolamides in rat blood plasma

    Microsoft Academic Search

    Andrea Giuffrida; Daniele Piomelli

    1998-01-01

    Anandamide and allied fatty acylethanolamides (AEs) may act as signalling molecules in brain and peripheral tissues. In the present study, we describe an electron-impact gas chromatography\\/mass spectrometry (GC\\/MS) method based on isotope dilution, which may be used for the identification and quantification of anandamide and other AEs in biological matrices. The calibration curves for standard AEs were linear over the

  5. Dilution jet mixing program, supplementary report

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; White, C.

    1986-01-01

    The velocity and temperature distributions predicted by a 3-D numerical model and experimental measurements are compared. Empirical correlations for the jet velocity trajectory developed are presented. The measured velocity distributions for all test cases of phase through phase 3 are presented in the form of contour and oblique plots. quantification of the effects of the following on the jet mixing characteristics with a confined crossflow are: (1) orifice geometry momentum flux ratio and density ratio; (2) nonuniform mainstream temperature and velocity profiles upstream of dilution orifices; (3) cold versus hot jet injection; (4) cross-stream flow are a convergence as encountered in practical dilution zone geometries; (5) 2-D slot versus circular orifices; (6) discrete noncirculcer orifices; (7) single-sided versus opposed jets; (8) single row of jets.

  6. Determination of copper by isotopic dilution.

    PubMed

    Faquim, E S; Munita, C S

    1994-01-01

    A rapid and selective method was used for the determination of copper by isotopic dilution employing substoichiometric extraction with dithizone in carbon tetrachloride. The appropriate pH range for the substoichiometric extraction was 2-7. In the analysis, even a large excess of elements forming extractable complexes with dithizone does not interfere. The accuracy and precision of the method were evaluated. The method has been applied to analysis of reference materials, wheat flour, wine, and beer. PMID:7710886

  7. Interaction of clays with dilute fluoride solutions

    Microsoft Academic Search

    J. Slavek; H. Farrah; W. F. Pickering

    1984-01-01

    Interaction between dilute (mg L-1) NaF solutions and clay suspensions (0.08 % w\\/v) has been examined as a function of pH (range 3 to 8), clay type (Na+- or Ca2+-kaolinite, illite, montmorillonite) and NaF concentration. No F loss from solution was detected at pH > 6.5, while enhanced uptake was found on decreasing the pH, especially in the 4 to

  8. Anaerobic toxic wastes treatment: dilution effects

    Microsoft Academic Search

    G. F. Nakhla; M. T. Suidan

    1995-01-01

    The impact of waste strength on the treatability of toxic wastes such as coal gasification wastewater by the anaerobic GAC reactor operating with periodic GAC replacement was assessed by operating three units treating 30%, 60% and full strength wastewater. At a COD loading of 4.7 kg\\/m3 d performance was unimpacted by dilution at all the GAC replacement rates investigated in

  9. Zinc oxide-based diluted magnetic semiconductors

    Microsoft Academic Search

    Ram Seshadri

    2005-01-01

    The current experimental situation on the occurrence or absence of ferromagnetism in diluted magnetic semiconductors based on wurtzite zinc oxide hosts is presented, focusing mainly on the many recent experiments which have been performed on bulk systems. Numerous reports have suggested that partial (typically less than 10at.%) substitution of Zn2+ in ZnO by magnetic transition metal (tM) ions, particularly Mn2+

  10. Dilution of respiratory solutes in exhaled condensates.

    PubMed

    Effros, Richard M; Hoagland, Kelly W; Bosbous, Mark; Castillo, Daniel; Foss, Bradley; Dunning, Marshall; Gare, Meir; Lin, Wen; Sun, Feng

    2002-03-01

    Most exhaled water is produced as gaseous water vapor, which can be collected in cooled condensers. The presence of nonvolatile solutes in these condensates suggests that droplets of respiratory fluid (RF) have also been collected. However, calculation of RF solute concentrations from condensates requires estimation of the dilution of RF droplets by water vapor. We used condensate electrolyte concentrations to calculate the dilution of RF droplets in condensates from 20 normal subjects. The total ionic concentration (conductivity) was 497 plus minus 68 (mean plus minus SEM) muM. Of this, 229 plus minus 43 muM was NH(4)(+), but little NH(4)(+) was collected from subjects with tracheostomies, indicating oral formation. The Na+ concentration in condensate ([Na+](cond)) averaged 242 plus minus 43 muM. Large variations in [Na(+)](cond) correlated well with variations of K+ in condensate ([K+](cond)) and Cl-) in condensate ([Cl-](cond)), and were attributed to differences in respiratory droplet dilution. Dividing condensate values of ([Na+] + [K+] ) by those of plasma indicated that RF represented between 0.01% and 2.00% of condensate volumes. Calculated values for Na+, K+, Cl-, lactate, and protein in RF were [Na+](RF) = 91 +/- 8 mM, [K+](RF) = 60 +/- 11 mM, [Cl-](RF) = 102 +/- 17 mM, [lactate](RF) = 44 +/- 17 mM, and [protein](RF) = 7.63 +/- 1.82 g/dl, respectively. PMID:11874811

  11. Bayesian analysis of serial dilution assays.

    PubMed

    Gelman, Andrew; Chew, Ginger L; Shnaidman, Michael

    2004-06-01

    In a serial dilution assay, the concentration of a compound is estimated by combining measurements of several different dilutions of an unknown sample. The relation between concentration and measurement is nonlinear and heteroscedastic, and so it is not appropriate to weight these measurements equally. In the standard existing approach for analysis of these data, a large proportion of the measurements are discarded as being above or below detection limits. We present a Bayesian method for jointly estimating the calibration curve and the unknown concentrations using all the data. Compared to the existing method, our estimates have much lower standard errors and give estimates even when all the measurements are outside the "detection limits." We evaluate our method empirically using laboratory data on cockroach allergens measured in house dust samples. Our estimates are much more accurate than those obtained using the usual approach. In addition, we develop a method for determining the "effective weight" attached to each measurement, based on a local linearization of the estimated model. The effective weight can give insight into the information conveyed by each data point and suggests potential improvements in design of serial dilution experiments. PMID:15180666

  12. The ADMX Site and Dilution Refrigerator

    NASA Astrophysics Data System (ADS)

    Sloan, James; ADMX Collaboration

    2015-04-01

    The ADMX experiment searches for axions by looking for their resonant conversion to detectable photons with a frequency that directly corresponds to the axion mass (a currently unknown value). Fundamentally, the RF photon detection is relatively straightforward; the exceptional technical challenge of ADMX is achieving the sensitivity required to discern the extremely weak (~ 10-22 W) photon signal above the system noise. Greater sensitivity is achieved by either lowering the physical and amplifier noise or by integrating for longer time over a given frequency range. Noise temperatures approaching the quantum limit are achieved by operating quantum electronics, SQUIDs and JPAs, at very low physical temperatures. In the past ADMX has achieved ~1.5K physical temperatures by operating with pumped 4 He. The addition of a 3 He/4 He dilution refrigerator into ADMX will lower the physical temperatures to ~100mK, dramatically increasing the scan rate and sensitivity. I will discuss the site and hardware modifications to ADMX to accommodate the dilution refrigerator and will report on the commissioning operations of the dilution refrigerator. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, NSF Grant 1067242, and the Livermore LDRD program.

  13. The Pliocene Yafo Formation in Israel: Hydrogeologically inert or active?

    NASA Astrophysics Data System (ADS)

    Avisar, D.; Rosenthal, E.; Shulman, H.; Zilberbrand, M.; Flexer, A.; Kronfeld, J.; Ben Avraham, Z.; Fleischer, L.

    For several decades the ``Saqiye beds'' (later renamed Yafo Formation) underlying the Coastal Plain aquifer (Kurkar Group) aquifer of Israel, were regarded as an extremely thick, tectonically undisturbed, and absolutely impervious aquiclude. Following intensive groundwater exploitation from the overlying Kurkar Group aquifer, brackish and saline waters were locally encountered in the lower parts of this aquifer and always at the contact with the underlying Yafo Formation aquiclude. The present study revealed that this aquiclude is not a uniform and impervious rock unit, but rather an alternation of pervious and impervious strata within the Yafo Formation containing highly pressured fluids of different - mostly high - salinities. The permeable beds are at an angular unconformity and in direct contact with the overlying Kurkar Group aquifer. The Yafo Formation and the underlying and overlying rock units are dislocated by numerous fault systems, which facilitate accessibility of brines into the Kurkar Group aquifer. The mobilization of the saline fluids and their injection into the Kurkar Group aquifer could be due either to diffusion of saline fluids occurring in the permeable horizons of the Petah Tiqva Member through the clays of the Yafo Formation or to their upconing following intensive pumping in the Coastal Plain aquifer. It could have also been caused by up-dip movement of saline water as the result of overpressure generated by major accumulation of gas in the permeable horizons. Another possible mechanism could be hydraulic contact with pressurized brines up-flowing along fault zones from deep-seated Jurassic or Cretaceous reservoirs. The squeezing of saline interstitial water from the clays of the Yafo Formation into the overlying Kurkar Group aquifer, is of secondary importance for groundwater salinization (its input is comparable with salt input from rain). Depuis longtemps, les «couches de Saqiye», nommées maintenant formation de Yafo, constituant le mur de l'aquifère côtier (série de Kurkar) d'Israël, ont été considérées comme un ensemble extrêmement épais, sans déformation tectonique et totalement imperméable. À la suite de l'exploitation intensive de l'eau souterraine de l'aquifère sus-jacent de la série de Kurkar, des eaux salées et des saumures sont rencontrées occasionnellement dans les parties les plus profondes de cet aquifère et toujours au contact de l'imperméable sous-jacent de la formation de Yafo. Cette étude a révélé que cet imperméable n'est pas une unité géologique uniforme et imperméable, mais qu'il s'agit plutôt d'une alternance de couches perméables et imperméables dans la formation de Yafo contenant des fluides sous des pressions fortes avec des salinités différentes (?) et en général élevées (?). Les niveaux perméables sont en discordance angulaire et en contact direct avec l'aquifère sus-jacent de la série de Kurkar. La formation de Yafo et les unités géologiques situées dessous et dessus sont disloquées par de nombreuses systèmes de failles, qui facilitent le passage des saumures dans l'aquifère de la série de Kurkar. La mobilisation des fluides salins et leur injection dans l'aquifère de Kurkar pourraient être dues soit à la diffusion des fluides salins dans les horizons perméables du Petah Tiqva au travers des argiles de la formation de Yafo, soit leur remontée par upconing sous l'effet de pompages intensifs dans l'aquifère de la plaine côtière. Il peut aussi être causé par la remontée des eaux salines selon le pendage sous l'effet d'une surpression provoquée par une accumulation considérable de gaz dans les horizons imperméables. Un autre mécanisme possible pourrait être un contact hydraulique avec des saumures sous pression, remontant le long des zones de faille depuis des réservoirs profonds jurassiques ou crétacés. L'expulsion d'eau saline interstitielle des argiles de la formation de Yafo dans l'aquifère de Kurkar est d'importance secondaire pour la salinisation de l'eau souterraine cet apport est comparable à ce

  14. Adsorption of inert gases including element 118 on noble metal and inert surfaces from ab initio Dirac-Coulomb atomic calculations

    NASA Astrophysics Data System (ADS)

    Pershina, V.; Borschevsky, A.; Eliav, E.; Kaldor, U.

    2008-10-01

    The interaction of the inert gases Rn and element 118 with various surfaces has been studied on the basis of fully relativistic ab initio Dirac-Coulomb CCSD(T) calculations of atomic properties. The calculated polarizability of element 118, 46.3 a.u., is the largest in group 18, the ionization potential is the lowest at 8.91 eV, and the estimated atomic radius is the largest, 4.55 a.u. These extreme values reflect, in addition to the general trends in the Periodic Table, the relativistic expansion and destabilization of the outer valence 7p3/2 orbital. Van der Waals coefficients C3 and adsorption enthalpies ?Hads of Ne through element 118 on noble metals and inert surfaces, such as quartz, ice, Teflon, and graphite, were calculated in a physisorption model using the atomic properties obtained. The C3 coefficients were shown to steadily increase in group 18, while the increase in ?Hads from Ne to Rn does not continue to element 118: The large atomic radius of the latter element is responsible for a decrease in the interaction energy. We therefore predict that experimental distinction between Rn and 118 by adsorption on these types of surfaces will not be feasible. A possible candidate for separating the two elements is charcoal; further study is needed to test this possibility.

  15. Development of improved technologies and techniques for reducing base gas requirements in underground gas storage facilities: Simulation study of hanson field gas storage reservoir. Final report, May 1989-November 1989

    SciTech Connect

    Modine, A.D.

    1989-11-01

    Base gas requirements in the U.S. amount to a few trillion cubic feet. The Gas Research Institute has proposed a gas storage operating plan whereby an inert gas or a low BTU gas could be injected to replace part of the hydrocarbon gas. A reservoir simulator has been developed, enhanced and tested to solve gas-water reservoir problems where the gas may be treated as a two-component miscible mixture. The previously developed reservoir simulator was further enhanced to include a local grid refinement option, which allows the engineer to study a portion of the field in more detail compared to the rest of the field. The simulator was tested for correctness and completeness. A simulation study was conducted for the Hanson Field Gas Storage Reservoir using two models with different layering. The reservoir history matching was duplicated and several prediction cases were run to study the effectiveness of the replacement of base gas with an inert gas. The results show that replacement of a portion of the hydrocarbon base gas with an inert gas can be an attractive alternative for the gas storage industry.

  16. Reactions of gaseous, elemental mercury with dilute halogen solutions

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.

    1996-07-01

    Of the trace elements known to exist in fossil fuels, mercury (Hg) has emerged as one of the greatest concerns. Mercury has been found to be emitted from combustion in at least two different chemical forms: elemental Hg and oxidized Hg compounds. Precise identification of the oxidized compounds emitted has not been accomplished to date. However, most workers in this field assume that mercuric chloride should be the predominant oxidized species. Mercuric chloride should be readily removed in a wet scrubber system because of its relatively high solubility in water. However, it has been presumed, and we have shown, that elemental Hg will pass through a wet scrubber system with little or no removal being effected. Therefore, it is important, in order to obtain a high total Hg removal, to study methods that might result in a removal of gaseous, elemental Hg from a flue-gas stream. In this regard, we have been studying the effect of dilute halogen-containing solutions on elemental Hg in gas streams of various compositions. In particular, the results of passing Hg through bubblers containing solutions of iodine, chlorine, and chloric acid are described. Mercury found in the bubbler solutions is an indication of the extent of reaction (oxidation) of elemental Hg with the halogen species, since we have found very little Hg transferred to the liquid phase when only distilled water is used in the bubblers. Results using commercial iodine, sodium hypochlorite, and NOXSORB (sup TM) solutions are presented and discussed.

  17. Pulmonary gas exchange in diving.

    PubMed

    Moon, R E; Cherry, A D; Stolp, B W; Camporesi, E M

    2009-02-01

    Diving-related pulmonary effects are due mostly to increased gas density, immersion-related increase in pulmonary blood volume, and (usually) a higher inspired Po(2). Higher gas density produces an increase in airways resistance and work of breathing, and a reduced maximum breathing capacity. An additional mechanical load is due to immersion, which can impose a static transrespiratory pressure load as well as a decrease in pulmonary compliance. The combination of resistive and elastic loads is largely responsible for the reduction in ventilation during underwater exercise. Additionally, there is a density-related increase in dead space/tidal volume ratio (Vd/Vt), possibly due to impairment of intrapulmonary gas phase diffusion and distribution of ventilation. The net result of relative hypoventilation and increased Vd/Vt is hypercapnia. The effect of high inspired Po(2) and inert gas narcosis on respiratory drive appear to be minimal. Exchange of oxygen by the lung is not impaired, at least up to a gas density of 25 g/l. There are few effects of pressure per se, other than a reduction in the P50 of hemoglobin, probably due to either a conformational change or an effect of inert gas binding. PMID:19008484

  18. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  19. The Effect of Dilution on the Structure of Microbial Communities

    NASA Technical Reports Server (NTRS)

    Mills, Aaron L.

    2000-01-01

    To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.

  20. Bone-implant interface mechanics of in vivo bio-inert ceramics.

    PubMed

    Hayashi, K; Inadome, T; Tsumura, H; Mashima, T; Sugioka, Y

    1993-12-01

    We have previously demonstrated that there was no significant difference between the affinity of bone to bio-inert ceramics and stainless steel in a histological study. In this study, the bone-implant interface shear strength of alumina ceramics (Al2O3), zirconia ceramics (ZrO2), stainless steel (SUS316L) and sintered hydroxyapatite (HA) were compared in 19 dogs using a transcortical push-out model of the femur 4 and 12 wk after implantation. The interface shear strength of HA was significantly greater than that of alumina ceramics, zirconia ceramics and stainless steel (P < 0.001). There was no significant difference between bio-inert ceramics and stainless steel. PMID:8130323

  1. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    SciTech Connect

    Loyola, V.M.; Reber, S.D.

    1996-02-01

    As a result of Sandia`s radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia`s Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels.

  2. a Model for the Parametric Analysis and Optimization of Inertance Tube Pulse Tube Refrigerators

    NASA Astrophysics Data System (ADS)

    Dodson, C.; Lopez, A.; Roberts, T.; Razani, A.

    2008-03-01

    A first order model developed for the design analysis and optimization of Inertance Tube Pulse Tube Refrigerators (ITPTRs) is integrated with the code NIST REGEN 3.2 capable of modeling the regenerative heat exchangers used in ITPTRs. The model is based on the solution of simultaneous non-linear differential equations representing the inertance tube, an irreversibility parameter model for the pulse tube, and REGEN 3.2 to simulate the regenerator. The integration of REGEN 3.2 is accomplished by assuming a sinusoidal pressure wave at the cold side of the regenerator. In this manner, the computational power of REGEN 3.2 is conveniently used to reduce computational time required for parametric analysis and optimization of ITPTRs. The exergy flow and exergy destruction (irreversibility) of each component of ITPTRs is calculated and the effect of important system parameters on the second law efficiency of the refrigerators is presented.

  3. Baryon number asymmetry and dark matter in the neutrino mass model with an inert doublet

    NASA Astrophysics Data System (ADS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2012-09-01

    The radiative neutrino mass model with an inert doublet scalar has been considered as a promising candidate which can explain neutrino masses, dark matter abundance and baryon number asymmetry if dark matter is identified with the lightest neutral component of the inert doublet. We reexamine these properties by imposing all the data of the neutrino oscillation, which are recently suggested by the reactor experiments. We find that the sufficient baryon number asymmetry seems not to be easily generated in a consistent way with all the data of the neutrino masses and mixing as long as the right-handed neutrinos are kept in TeV regions. Two possible modifications of the model are examined.

  4. Atomization of cadmium compounds under reactive and inert high-temperature environment with stationary sample introduction.

    PubMed

    Nagy, Dávid; Nagy, Tibor; Balogh, Attila; Falussy, Csaba; Posta, József

    2014-01-01

    Atomization of cadmium compounds (acetate, chloride, nitrate, perchlorate, sulfate, formate, propionate) was studied using flame atomic absorption spectrometry. Our goal was to study processes influencing atomization separately, the focus was on the contribution of thermal properties of substances to atomization. For this purpose new techniques and equipment have been developed, such as a special separated three-slot burner, quartz flame furnace, and an electrically heated thermospectrometer. According to quartz flame furnace and thermospectrometric measurements, cadmium salts do not atomize below 600 °C in an inert atmosphere. We found that in the thermospectrometer the atomization of cadmium compounds follows at least two different reaction courses. At lower temperatures (650-700 °C) a slower mechanism is dominant at higher regions of the furnace, while at 800 °C a faster mechanism demanding less residence time in the furnace becomes dominant. Under inert atmosphere the degree of atomization strongly depends on the thermal properties of substances. PMID:24666943

  5. TOPICAL REVIEW: Inertial rotation and matrix interaction effects on the EPR spectra of methyl radicals isolated in 'inert' cryogenic matrices

    NASA Astrophysics Data System (ADS)

    Benetis, Nikolas P.; Dmitriev, Yurij

    2009-03-01

    The CW-EPR lineshapes of methyl and small methyl-like radicals trapped in noble gas matrices at liquid He temperatures are substantially different from the expected classical EPR spectra. At low temperatures they show small or negligible anisotropy in studies using different experimental techniques and have a temperature dependence that differs from systems whose motional dynamics is diffusion controlled. At liquid He temperatures, before the Boltzmann statistics take over in the classical high temperature realm, the spectral intensities are dominated by quantum statistics. These properties, which were obtained experimentally at temperatures about 5 K and lower, and up to about 20 K, can be attributed to quantum effects of inertial rotary motion and its coupling to the nuclear spin of the radical. Methyl-like radicals have nuclear-exchange symmetry and contain the lightest possible isotopes, protons, and deuterons. In the ideal case of absent radical-matrix interaction, the methyl rotation about the central heavier carbon atom guaranties minimal moments of inertia. However, the theoretical interpretation of the above effects and other related quantum effects, as well as recognition of the important physics which lead to them, is not a simple matter. The literature accumulated on the subject over the years is successful but contains several unresolved questions. Recently obtained spectra of methyl radicals in Kr, N2 and CO matrices, which are less inert than the smaller noble gas Ar, were shown to exhibit greater, but certainly slight, overall anisotropic spectral features while in earlier experimental studies the anisotropy was practically absent. Even gases of smaller radii such as Ne and H2 at liquid He temperatures show interesting differences as hosts of methyl radicals compared to Ar. Investigation of other possible causes of this difference, not excluding the experimentally controlled ones related to the sample preparation and the MW power saturation of the CW-EPR measurement, were conducted in this work.

  6. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, S.P.; Rapp, R.A.

    1986-04-22

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  7. Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide(III) DOTA complexes.

    PubMed

    Tei, Lorenzo; Baranyai, Zsolt; Gaino, Luca; Forgács, Attila; Vágner, Adrienn; Botta, Mauro

    2015-03-28

    A complete thermodynamic and kinetic solution study on lanthanide(III) complexes with monoacetamide (DOTAMA, L1) and monopropionamide (DOTAMAP, L2) derivatives of DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was undertaken with the aim to elucidate their stability and inertness in aqueous media. The stability constants of GdL1 and GdL2 are comparable, whereas a more marked difference is found in the kinetic inertness of the two complexes. The formation of the Eu(III) and Ce(III) complexes takes place via the formation of the protonated intermediates which can deprotonate and transform into the final complex through a OH(-) assisted pathway. GdL2 shows faster rates of acid catalysed decomplexation with respect to GdL1, which has a kinetic inertness comparable to GdDOTA. Nevertheless, GdL2 is one order of magnitude more inert than GdDO3A. A novel DOTAMAP-based bifunctional chelating ligand and its deoxycholic acid derivative (L5) were also synthesized. Since the coordinated water molecule in GdL2 is characterized by an exchange rate ca. two orders of magnitude greater than in GdL1, the relaxivity of the macromolecular derivatives of L5 should not be limited by the slow water exchange process. The relaxometric properties of the supramolecular adduct of GdL5 with human serum albumin (HSA) were investigated in aqueous solution by measuring the magnetic field dependence of the (1)H relaxivity which, at 20 MHz and 298 K, shows a 430% increase over that of the unbound GdL5 chelate. Thus, Gd(III) complexes with DOTAMAP macrocyclic ligands can represent good candidates for the development of stable and highly effective bioconjugate systems for molecular imaging applications. PMID:25695351

  8. Advances towards the qualification of an aircraft fuel tank inert environment fiber optic oxygen sensor system

    Microsoft Academic Search

    Edgar A. Mendoza; Yan Esterkin; Cornelia Kempen; Songjian Sun; Kenneth Susko; John Goglia

    2011-01-01

    An all optical pressure and temperature compensated fiber optic oxygen sensor (FOxSenseTM) system is under qualification for use in the in-situ closed-loop-control of the inert atmosphere environment inside fuel tanks of military and commercial aircraft. The all-optical oxygen environment control sensor is a passive, intrinsically safe, fiber-optic sensor device with no electrical connections leading to the sensors installed within the

  9. Simulation of an inert membrane reactor for the oxidative dehydrogenation of butane

    Microsoft Academic Search

    C. Téllez; M. Menéndez; J. Santamar??a

    1999-01-01

    A model is presented for the simulation of an inert membrane reactor for the oxidative dehydrogenation of butane over V\\/MgO catalysts. For the first time, the simulation includes the effect of oxygen distribution through the membrane on the state of the catalyst, by means of kinetic parameters that relate the activities of selective and non-selective sites on the catalyst surface.

  10. Study on biopretreatment of lignin by white-rot fungi for enhancing pyrolysis in inert atmosphere

    Microsoft Academic Search

    Xuewei Yang; Xiaoyu Zhang; Shulin Chen

    The improvement of lignin pyrolysis by biopretreatment of white-rot fungi was investigated in this study. Results showed that\\u000a biopretreatment can decrease the final residue yields, increase the weight loss rates, and absorb less heat during the pyrolysis\\u000a of lignin in the inert atmosphere. In addition, the activation energies of biopretreated lignin were lower with the pre-exponential\\u000a factors much higher compared

  11. Temporal evolution and variation of laser optogalvanic signals in the spectra of inert gases

    Microsoft Academic Search

    Shaukat Mahmood; M. Anwar-Ul-Haq; M. Riaz; M. A. Baig

    2004-01-01

    We present new studies on the temporal evolution and variation of the laser optogalvanic signals in the spectra of inert gases using commercial hollow cathode lamps in conjunction with a Nd:YAG pumped dye laser system. The behavior of the optogalvanic signals for the transitions following the ?J=?K=0 and ± 1 dipole selection rules in the jcK-coupling scheme namely mp5(m+1)p[5\\/2]3, mp5(m+1)p?[3\\/2]2,

  12. Phase Relations in the System Ce,O,-AI,O, in Inert and Reducing Atmospheres

    E-print Network

    Tas, A. Cuneyt

    Phase Relations in the System Ce,O,-AI,O, in Inert and Reducing Atmospheres A. Cuneyt TasAlO,, in the system Ce,O,-AI,O, has been synthesized from the oxides and shown to have a perovskite-like tetragonalAIO,. This compound is shown to be stable up to 1950°C. The 1:11 compound, CeAI,,O,,, has also been synthesized

  13. Validity and reliability of body composition assessed by the sulphur hexafluoride dilution method.

    PubMed

    Demura, Shinichi; Yamaji, Shunsuke; Kobayashi, Hidetsugu; Sato, Susumu; Nagasawa, Yoshinori

    2002-09-01

    The aims of this study were to assess the validity and reliability of body volume and percent body fat determined by sulphur hexafluoride dilution, using underwater weighing as the criterion method, and to determine the influence of the magnitude of body volume. Thirty-one healthy Japanese individuals aged 18-27 years (16 males: height 1.70 +/- 0.06 m, mass 64.8 +/- 7.7 kg; 15 females: height 1.60 +/- 0.05 m, mass 55.2 +/- 6.2 kg; mean +/- s) participated in the study. Sulphur hexafluoride dilution measures the concentration of sulphur hexafluoride gas in the chamber (BSF-200, Shimazu Corp.). Underwater weighing was performed five times using a weight scale (AD-6204, A&D) after residual volume had been determined (System9, Minato Medical Corp.). There were no significant differences in the mean between two trials for body volume, body density or percent body fat determined by sulphur hexafluoride dilution. The intra-class correlation coefficient of these variables ranged from 0.985 to 0.999. The results suggest that sulphur hexafluoride dilution is a reliable method for assessing body composition. There was no significant difference in body volume or percent body fat between sulphur hexafluoride dilution (males: 61.3 +/- 7.6 litres, 18.4 +/- 6.7%; females: 52.8 +/- 6.9 litres, 21.0 +/- 8.9%) and underwater weighing (males: 60.6 +/- 7.0 litres, 15.6 +/- 3.5%; females: 53.0 +/- 6.5 litres, 23.7 +/- 6.1%) and there was a high correlation between the two (r = 0.997, P < 0.05). A Bland-Altman plot of the difference between percent body fat estimated by underwater weighing and sulphur hexafluoride dilution versus average percent body fat by the two methods showed no systematic difference (mean difference = -0.12 +/- 6.6 kg). The upper and lower limits of agreement were 13.2% and -13.4%, respectively. Determination by sulphur hexafluoride dilution resulted in both over- and underestimations in body volume and the difference between the two body volumes (determined by underwater weighing and by sulphur hexafluoride dilution) was inversely proportional to the mean body volume by the two methods. This suggests that improvements need to be made to the device or to the technique to maintain a constant volume of sulphur hexafluoride in the chamber. PMID:12200917

  14. A simple method for estimating respiratory solute dilution in exhaled breath condensates.

    PubMed

    Effros, Richard M; Biller, Julie; Foss, Bradley; Hoagland, Kelly; Dunning, Marshall B; Castillo, Daniel; Bosbous, Mark; Sun, Feng; Shaker, Reza

    2003-12-15

    Exhaled breath condensates have been widely used to detect inflammatory mediators in the fluid that covers airway surfaces of patients with inflammatory lung disorders. This approach is much less invasive than bronchoalveolar lavage, but respiratory droplets are markedly diluted by large and variable amounts of water vapor. We estimated the dilution of respiratory droplets by comparing concentrations of nonvolatile, reference indicators (total nonvolatile cations, urea or conductivity) in 18 normal subjects with normal plasma concentrations by assuming similar concentrations in the respiratory fluid and plasma. The volatile cation, NH4+ (most of which is delivered as NH3 gas from the mouth), represented 93 +/- 3% (SEM) of the condensate cations. More than 99% of the NH4+ was removed by lyophilization, making it possible to use conductivity to estimate total nonvolatile ionic concentrations and facilitating analysis of urea. Conductivity was significantly correlated with electrolyte and urea concentrations. Estimates of dilution based on total cations, conductivity, and urea were not significantly different (cations: 20,472 +/- 2,516; conductivity: 21,019 +/- 2,427; and urea: 18,818 +/- 2,402). These observations suggest that the conductivity of lyophilized samples can be used as an inexpensive, simple, and reliable method for estimating dilution of nonvolatile, hydrophilic mediators in condensates. PMID:14512268

  15. The effect of iron dilution on strength of nickel/steel and Monel/steel welds

    SciTech Connect

    Fout, S.L.; Wamsley, S.D.

    1983-03-28

    The weld strength, as a function of iron content, for nickel/steel and Monel/steel welds was determined. Samples were prepared using a Gas Metal Arc (GMAW) automatic process to weld steel plate together with nickel or Monel to produce a range of iron contents typical of weld compositions. Tensile specimens of each iron content were tested to obtain strength and ductility measurements for that weld composition. Data indicate that at iron contents of less than 20% iron in a nickel/steel weld, the weld fails at the weld interface, due to a lack of fusion. Between 20% and 35% iron, the highest iron dilution that could be achieved in a nickel weld, the welds were stronger than the steel base metal. This indicates that a minimum amount of iron dilution (20%) is necessary for good fusion and optimum strength. On the other hand for Monel/steel welds, test results showed that the welds had good strength and integrity between 10% and 27% iron in the weld. Above 35% iron, the welds have less strength and are more brittle. The 35% iron content also corresponds to the iron dilution in Monel welds that has been shown to produce an increase in corrosion rate. This indicates that the iron dilution in Monel welds should be kept below 35% iron to maximize both the strength and corrosion resistance. 2 refs., 6 figs., 3 tabs.

  16. Low Energy Gamma Ray Excess Confronting a Singlet Scalar Extended Inert Doublet Dark Matter Model

    E-print Network

    Amit Dutta Banik; Debasish Majumdar

    2014-08-25

    Recent study of gamma rays originating from the region of galactic centre has confirmed an anomalous $\\gamma$-ray excess within the energy range 1-3 GeV. This can be explained as the consequence of pair annihilation of a 31-40 GeV dark matter into $b \\bar b$ with thermal annihilation cross-section $\\sigma v \\sim 1.4-2.0 \\times 10^{-26}~\\rm{cm^3/s}$. In this work we revisit the Inert Doublet Model (IDM) in order to explain this gamma ray excess. Taking the lightest inert particle (LIP) as a stable DM candidate we show that a 31-40 GeV dark matter derived from IDM will fail to satisfy experimental limits on dark matter direct detection cross-section obtained from ongoing direct detection experiments and is also inconsistent with LHC findings. We show that a singlet extended inert doublet model can easily explain the reported $\\gamma$-ray excess which is as well in agreement with Higgs search results at LHC and other observed results like DM relic density and direct detection constraints.

  17. Mitral inertance in humans: critical factor in Doppler estimation of transvalvular pressure gradients

    NASA Technical Reports Server (NTRS)

    Nakatani, S.; Firstenberg, M. S.; Greenberg, N. L.; Vandervoort, P. M.; Smedira, N. G.; McCarthy, P. M.; Thomas, J. D.

    2001-01-01

    The pressure-velocity relationship across the normal mitral valve is approximated by the Bernoulli equation DeltaP = 1/2 rhoDeltav(2) + M. dv/dt, where DeltaP is the atrioventricular pressure difference, rho is blood density, v is transmitral flow velocity, and M is mitral inertance. Although M is indispensable in assessing transvalvular pressure differences from transmitral flow, this term is poorly understood. We measured intraoperative high-fidelity left atrial and ventricular pressures and simultaneous transmitral flow velocities by using transesophageal echocardiography in 100 beats (8 patients). We computed mean mitral inertance (M) by M = integral((DeltaP)-(1/2 x rho v(2))dt/integral(dv/dt)dt and we assessed the effect of the inertial term on the transmitral pressure-flow relation. ranged from 1.03 to 5.96 g/cm(2) (mean = 3.82 +/- 1.22 g/cm(2)). DeltaP calculated from the simplified Bernoulli equation (DeltaP = 1/2. rhov(2)) lagged behind (44 +/- 11 ms) and underestimated the actual peak pressures (2.3 +/- 1.1 mmHg). correlated with left ventricular systolic pressure (r = -0.68, P < 0.0001) and transmitral pressure gradients (r = 0.65, P < 0.0001). Because mitral inertance causes the velocity to lag significantly behind the actual pressure gradient, it needs to be considered when assessing diastolic filling and the pressure difference across normal mitral valves.

  18. Conceptual studies for pressurised water reactor cores employing plutonium erbium zirconium oxide inert matrix fuel assemblies

    NASA Astrophysics Data System (ADS)

    Stanculescu, A.; Kasemeyer, U.; Paratte, J.-M.; Chawla, R.

    1999-08-01

    The most efficient way to enhance plutonium consumption in light water reactors is to eliminate the production of plutonium all together. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. At PSI, studies have focused on employing ZrO 2 as inert matrix. Adding a burnable poison to such a fuel proves to be necessary. As a result of scoping studies, Er 2O 3 was identified as the most suitable burnable poison material. The results of whole-core three-dimensional neutronics analyses indicated, for a present-day 1000 MW e pressurised water reactor (PWR), the feasibility of an asymptotic equilibrium four-batch cycle fuelled solely with the proposed PuO 2-Er 2O 3-ZrO 2 inert matrix fuel (IMF). The present paper presents the results of more recent investigations related to `real-life' situations, which call for transition configurations in which mixed IMF and UO 2 assembly loadings must be considered. To determine the influence of the introduction of IMF assemblies on the characteristics of a UO 2-fuelled core, three-dimensional full-core calculations have been performed for a present-day 1000 MW e PWR containing up to 12 optimised IMF assemblies.

  19. Synthesis and characterization of zirconia-magnesia inert matrix fuel: Uranium homolog studies

    NASA Astrophysics Data System (ADS)

    Holliday, Kiel; Hartmann, Thomas; Poineau, Frederic; Rory Kennedy, J.; Czerwinski, Ken

    2009-09-01

    X-ray powder diffraction, X-ray fluorescence, microscopy, X-ray absorption fine structure, and electron probe microanalysis were used to characterize ZrO 2-MgO inert matrix fuel containing UO 2 (as a fissile element and a Pu homolog) and Er 2O 3 as a burnable poison. A large composition range of MgO and ZrO 2 was evaluated to determine total concentrations, local environment, phases present, phase mixing, and phase composition. It was found that most compositions of the material consist of two phases: MgO (periclase) and ZrO 2 (cubic zirconia). The zirconia phase incorporates up to 5% (wt/wt) MgO and up to 20% and 10% (wt/wt) UO 2 and Er 2O 3 respectively. This allows the fissile material and burnable poison to be incorporated into the zirconia crystal structure and defines the limits of this isomorphic substitution. The bond deformation due to the isomorphic substitution of uranium was determined by X-ray absorption fine structure. The MgO phase remains pure, which will enable design optimization of the overall thermophysical properties of the inert matrix fuel in regard to thermal diffusivity and thermal conductivity. This characterization data will be used in future studies to correlate the dissolution behavior of inert matrix material containing plutonium.

  20. Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems

    SciTech Connect

    He, X.; Williams, A.; Christensen, E.; Burton, J.; McCormick, R.

    2011-12-01

    Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous operation under DPF regeneration events. During the second stage of HD testing, the ULSD lube-oil dilution levels fell from 1.5% to 0.8%, while for B20, lube-oil dilution levels fell from 1.6% to 1.0%, but the fuel in the oil was 36% biodiesel. For the LD vehicle tests, the frequency of DPF regeneration events was observed to be the same for both ULSD and B20. No significant difference between the two fuels' estimated soot loading was detected by the engine control unit (ECU), although a 23% slower rate of increase in differential pressure across DPF was observed with B20. It appears that the ECU estimated soot loading is based on the engine map, not taking advantage of the lower engine-out particulate matter from the use of biodiesel. After 4,000 miles of LD vehicle operation with ULSD, fuel dilution in the lube-oil samples showed total dilution levels of 4.1% diesel. After 4,000 miles of operation with B20, total fuel in oil dilution levels were 6.7% consisting of 3.6% diesel fuel and 3.1% biodiesel. Extrapolation to the 10,000-mile oil drain interval with B20 suggests that the total fuel content in the oil could reach 12%, compared to 5% for operation on ULSD. Analysis of the oil samples also included measurement of total acid number, total base number, viscosity, soot, metals and wear scar; however, little difference in these parameters was noted.

  1. A liquefied energy chain for transport and utilization of natural gas for power production with CO 2 capture and storage – Part 4: Sensitivity analysis of transport pressures and benchmarking with conventional technology for gas transport

    Microsoft Academic Search

    Audun Aspelund; Truls Gundersen

    2009-01-01

    A novel energy and cost effective transport chain for stranded natural gas utilized for power production with CO2 capture and storage is developed. It includes an offshore section, a combined gas carrier and an integrated receiving terminal. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO2) and liquid inert nitrogen (LIN), which are

  2. Dilution jet mixing program, phase 3

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Myers, G.; White, C.

    1985-01-01

    The main objectives for the NASA Jet Mixing Phase 3 program were: extension of the data base on the mixing of single sided rows of jets in a confined cross flow to discrete slots, including streamlined, bluff, and angled injections; quantification of the effects of geometrical and flow parameters on penetration and mixing of multiple rows of jets into a confined flow; investigation of in-line, staggered, and dissimilar hole configurations; and development of empirical correlations for predicting temperature distributions for discrete slots and multiple rows of dilution holes.

  3. 40 CFR 180.1122 - Inert ingredients of semiochemical dispensers; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...contained in, dispensers made of polymeric matrix materials (including the monomers, plasticizers, dispersing agents, antioxidants, UV protectants, stabilizers, and other inert ingredients) are exempted from the requirement of a tolerance when...

  4. 40 CFR 180.1122 - Inert ingredients of semiochemical dispensers; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...contained in, dispensers made of polymeric matrix materials (including the monomers, plasticizers, dispersing agents, antioxidants, UV protectants, stabilizers, and other inert ingredients) are exempted from the requirement of a tolerance when...

  5. 40 CFR 180.1122 - Inert ingredients of semiochemical dispensers; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...contained in, dispensers made of polymeric matrix materials (including the monomers, plasticizers, dispersing agents, antioxidants, UV protectants, stabilizers, and other inert ingredients) are exempted from the requirement of a tolerance when...

  6. 40 CFR 180.1122 - Inert ingredients of semiochemical dispensers; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...contained in, dispensers made of polymeric matrix materials (including the monomers, plasticizers, dispersing agents, antioxidants, UV protectants, stabilizers, and other inert ingredients) are exempted from the requirement of a tolerance when...

  7. 40 CFR 180.1122 - Inert ingredients of semiochemical dispensers; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...contained in, dispensers made of polymeric matrix materials (including the monomers, plasticizers, dispersing agents, antioxidants, UV protectants, stabilizers, and other inert ingredients) are exempted from the requirement of a tolerance when...

  8. Motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions.

    SciTech Connect

    Swaminathan, S.; Ziebert, F.; Aranson, I. S.; Karpeev, D. (Mathematics and Computer Science); ( MSD); (Northwestern Univ.); (UMR CNRS)

    2011-01-01

    We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability resulting in spontaneous ordering. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results reveal a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations on a slow logarithmic time scale. In semi-dilute filament solutions, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered phase with a nonzero mean orientation. Motors attach to a pair of filaments and walk along the pair bringing them into closer alignment. We develop a spatially homogenous, mean-field theory that explicitly accounts for a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We show that the transition to the oriented state can be both continuous and discontinuous when the force-dependent detachment of motors is important.

  9. EDITORIAL: Focus on Dilute Magnetic Semiconductors FOCUS ON DILUTE MAGNETIC SEMICONDUCTORS

    Microsoft Academic Search

    Scott A. Chambers; Bryan Gallagher

    2008-01-01

    This focus issue of New Journal of Physics is devoted to the materials science of dilute magnetic semiconductors (DMS). A DMS is traditionally defined as a diamagnetic semiconductor doped with a few to several atomic per cent of some transition metal with unpaired d electrons. Several kinds of dopant dopant interactions can in principle couple the dopant spins leading to

  10. Geometric Exponents of Dilute Loop Models

    NASA Astrophysics Data System (ADS)

    Provencher, Guillaume; Saint-Aubin, Yvan; Pearce, Paul A.; Rasmussen, Jørgen

    2012-04-01

    The fractal dimensions of the hull, the external perimeter and of the red bonds are measured through Monte Carlo simulations for dilute minimal models, and compared with predictions from conformal field theory and SLE methods. The dilute models used are those first introduced by Nienhuis. Their loop fugacity is ?=-2 \\cos(?/bar{kappa}) where the parameter bar{kappa} is linked to their description through conformal loop ensembles. It is also linked to conformal field theories through their central charges c(bar{kappa})=13-6(bar{kappa}+bar{kappa}^{-1}) and, for the minimal models of interest here, bar{kappa}=p/p' where p and p' are two coprime integers. The geometric exponents of the hull and external perimeter are studied for the pairs ( p, p')=(1,1),(2,3),(3,4),(4,5),(5,6),(5,7), and that of the red bonds for ( p, p')=(3,4). Monte Carlo upgrades are proposed for these models as well as several techniques to improve their speeds. The measured fractal dimensions are obtained by extrapolation on the lattice size H, V??. The extrapolating curves have large slopes; despite these, the measured dimensions coincide with theoretical predictions up to three or four digits. In some cases, the theoretical values lie slightly outside the confidence intervals; explanations of these small discrepancies are proposed.

  11. Diluted Equilibrium Sterile Neutrino Dark Matter

    E-print Network

    Patwardhan, Amol V; Kishimoto, Chad T; Kusenko, Alexander

    2015-01-01

    We present a model where sterile neutrinos with rest masses in the range ~ keV to ~ MeV can be the dark matter and be consistent with all laboratory, cosmological, large scale structure, and X-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ~ TeV to ~ EeV rest mass range, possibly associated with new physics at high energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to ...

  12. Dilution in elliptical galaxies: Implications for the relation between metallicity, stellar mass and star formation rate

    E-print Network

    Yates, Robert M

    2013-01-01

    We investigate whether gradual dilution of the gas in some elliptical galaxies is the cause of a positive correlation between star formation rate (SFR) and gas-phase metallicity (Zg) at high stellar mass (M*) in the local Universe. To do this, two classes of massive (M* >= 10^10.5 Msun) galaxy are selected from the Sloan Digital Sky Survey (SDSS) and the Munich semi-analytic model of galaxy formation, L-Galaxies. The first class is selected by high specific star formation rates (sSFR) and high Zg, and the second class by low sSFR and low Zg. These criteria roughly distinguish disc-dominant galaxies from metal-poor, elliptical galaxies. In the semi-analytic model, the second class of galaxies obtain low sSFR and low Zg due to gradual dilution of the interstellar medium by accretion of metal-poor gas via infalling clumps and low-mass satellites. This occurs after a merger-induced starburst and the associated supernova feedback have quenched most of the original gas reservoir. A number of signatures of this evol...

  13. Relaxational dynamics in 3D randomly diluted Ising models

    Microsoft Academic Search

    Martin Hasenbusch; Andrea Pelissetto; Ettore Vicari

    2007-01-01

    We study the purely relaxational dynamics (model A) at criticality in three-dimensional disordered Ising systems whose static critical behaviour belongs to the randomly diluted Ising universality class. We consider the site-diluted and bond-diluted Ising models, and the ± J Ising model along the paramagnetic ferromagnetic transition line. We perform Monte Carlo simulations at the critical point using the Metropolis algorithm

  14. Original article Single dilution ELISAs using soluble piroplasm,

    E-print Network

    Paris-Sud XI, Université de

    of tropical theileriosis. Theileria annulata / single dilution ELISA / piroplasm / schizont / regression Vet theileriosis in tropical and subtropical countries. The disease is of particular eco- nomic importance since

  15. 21 CFR 866.2500 - Microtiter diluting and dispensing device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2500 Microtiter diluting and dispensing device. (a) Identification....

  16. 21 CFR 866.2500 - Microtiter diluting and dispensing device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2500 Microtiter diluting and dispensing device. (a) Identification....

  17. 21 CFR 866.2500 - Microtiter diluting and dispensing device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2500 Microtiter diluting and dispensing device. (a) Identification....

  18. 21 CFR 866.2500 - Microtiter diluting and dispensing device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2500 Microtiter diluting and dispensing device. (a) Identification....

  19. 21 CFR 866.2500 - Microtiter diluting and dispensing device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2500 Microtiter diluting and dispensing device. (a) Identification....

  20. Hydrogen-selective thermoelectric gas sensor

    Microsoft Academic Search

    Woosuck Shin; Masahiko Matsumiya; Noriya Izu; Norimitsu Murayama

    2003-01-01

    A thermoelectric (TE) hydrogen gas sensor was fabricated by depositing a platinum catalyst thin film on the half surface of nickel oxide thick film. When it was exposed to combustible gas diluted by synthetic air, the catalyst layer converts hydrogen and oxygen effectively to water vapor, and give out heat energy, resulting temperature difference across the sensor, and consequently voltage