Science.gov

Sample records for inertial fusion sessions

  1. Magneto-Inertial Fusion

    DOE PAGESBeta

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  2. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  3. Status of inertial fusion

    NASA Astrophysics Data System (ADS)

    Keefe, D.

    1987-04-01

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs RF linacs, synchrotrons, and storage rings - although the use of the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program.

  4. Inertial confinement fusion

    SciTech Connect

    Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W.

    1992-01-01

    This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.

  5. Economic potential of inertial fusion

    SciTech Connect

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

  6. Interplanetary propulsion using inertial fusion

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Hoffman, Nate; Murray, Kathy; Klein, Gail; Diaz, Franklin Chang

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short duration manned mission performance exceeding other technologies. A study was conducted to assess the systems aspects of inertial as applied to such missions, based on the conceptual engine design of Hyde (1983). The required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel is described. Preliminary design details are given for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days.

  7. Interplanetary propulsion using inertial fusion

    NASA Technical Reports Server (NTRS)

    Orth, C. D.; Hogan, W. J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F. C.

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed.

  8. Inertial-confinement-fusion targets

    SciTech Connect

    Hendricks, C.D.

    1981-11-16

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques have been devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  9. Future of Inertial Fusion Energy

    SciTech Connect

    Nuckolls, J H; Wood, L L

    2002-09-04

    In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

  10. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  11. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  12. Inertial fusion: strategy and economic potential

    SciTech Connect

    Nuckolls, J.H.

    1983-01-01

    Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity).

  13. Inertial Confinement Fusion Materials Science

    SciTech Connect

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable than

  14. National Ignition Facility for Inertial Confinement Fusion

    SciTech Connect

    Paisner, J.A.; Murray, J.R.

    1997-10-08

    The National Ignition Facility for inertial confinement fusion will contain a 1.8 MJ, 500 TW frequency-tripled neodymium glass laser system that will be used to explore fusion ignition and other problems in the physics of high temperature and density. We describe the facility briefly. The NIF is scheduled to be completed in 2003.

  15. Review of Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    The physics of inertial confinement fusion is reviewed. The trend to short-wavelength lasers is argued, and the distinction between direct and indirect (soft X-ray) drive is made. Key present issues include the non-linear growth of Rayleigh-Taylor (R-T) instabilities, the seeding of this instability by the initial laser imprint, the relevance of self-generated magnetic fields, and the importance of parametric instabilities (stimulated Brillouin and Raman scattering) in gas-filled hohlraums. Experiments are reviewed which explore the R-T instability in both planar and converging geometry. The employment of various optical smoothing techniques is contrasted with the overcoating of the capsule by gold coated plastic foams to reduce considerably the imprint problem. The role of spontaneously generated magnetic fields in non-symmetric plasmas is discussed. Recent hohlraum compression results are presented together with gas bag targets which replicate the long-scale-length low density plasmas expected in NIF gas filled hohlraums. The onset of first Brillouin and then Raman scattering is observed. The fast ignitor scheme is a proposal to use an intense short pulse laser to drill a hole through the coronal plasma and then, with laser excited fast electrons, create a propagating thermonuclear spark in a dense, relatively cold laser-compressed target. Some preliminary results of laser hole drilling and 2-D and 3-D PIC simulations of this and the > 10^8 Gauss self-generated magnetic fields are presented. The proposed National Ignition Facility (NIF) is described.

  16. Inertial-confinement fusion with lasers

    NASA Astrophysics Data System (ADS)

    Betti, R.; Hurricane, O. A.

    2016-05-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.

  17. Inertially confined fusion using heavy ion drivers

    SciTech Connect

    Herrmannsfeldt, W.B.; Bangerter, R.O.; Bock, R.; Hogan, W.J.; Lindl, J.D.

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  18. Inertially confined fusion using heavy ion drivers

    SciTech Connect

    Herrmannsfeldt, W.B. ); Bangerter, R.O. ); Bock, R. ); Hogan, W.J.; Lindl, J.D. )

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  19. Grand challenges of inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Nuckolls, J. H.

    2010-08-01

    As soon as practical, Earth's low-cost, abundant, environmentally attractive fusion energy resources should be applied to the urgent global challenges of climate change, energy supply, economic growth, and the developing world. A National Ignition Campaign is under way at the recently completed National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) to ignite high-gain inertial fusion targets in the 2010-2012 time frame. Achieving ignition on NIF could be the catalyst for national and global leaders to support the development of inertial fusion energy (IFE) to meet the future's worldwide electric power demand. With sustained, high-priority funding could practical IFE be possible by the 2020 timeframe? The answer lies in how well can the community address and solve technical challenges in four key areas: achieving ignition, producing advanced targets and drivers, creating a practical fusion engine, and developing economical fusion power plants.

  20. Nuclear diagnostics for inertial confinement fusion implosions

    SciTech Connect

    Murphy, T.J.

    1997-11-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

  1. Heavy ion beams for inertial fusion

    SciTech Connect

    Godlove, T.F.; Herrmannsfeldt, W.B.

    1980-05-01

    The United States' program in inertial confinement fusion (ICF) is described in this paper, with emphasis on the studies of the use of intense high energy beams of heavy ions to provide the power and energy needed to initiate thermonuclear burn. Preliminary calculations of the transport of intense ion beams in an electrostatic quadrupole focussing structure are discussed.

  2. Wakes in Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ellis, Ian Norman

    Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relativistically propagating electrons through the dense plasma, are discussed. Both processes play important roles in Inertial Confinement Fusion (ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing the energy available to compress the ICF capsule and affecting the symmetry of where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma wave wake can also generate superthermal electrons that can preheat the core and/or the ablator. Electron beam stopping plays a critical role in the Fast Ignition (FI) ICF concept, in which a beam of relativistic electrons is used to heat the target core to ignition temperatures after the compression stage. The beam stopping power determines the effectiveness of the heating process. This dissertation covers new discoveries on the importance of plasma wave wakes in both BSRS and electron beam stopping. In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are performed, which model a short-duration (˜500/ω0 --1FWHM) counter-propagating scattered light seed pulse in the presence of a constant pump laser with an intensity far below the absolute instability threshold for plasma waves undergoing Landau damping. The seed undergoes linear convective Raman amplification and dominates over the amplification of fluctuations due to particle discreteness. The simulation results are in good agreement with results from a coupled-mode solver when special relativity and the effects of finite size PIC

  3. Inertial-confinement fusion with lasers

    DOE PAGESBeta

    Betti, R.; Hurricane, O. A.

    2016-05-03

    Here, the quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related tomore » the safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less

  4. Interpreting inertial fusion neutron spectra

    NASA Astrophysics Data System (ADS)

    Munro, David H.

    2016-03-01

    A burning laser fusion plasma produces a neutron spectrum first described by Brysk (1973 Plasma Phys. Control. Fusion 15 611). This and more recent work deals with the spectrum produced by a single fluid element. The distribution of temperatures and velocities in multiple fluid elements combine in any real spectrum; we derive formulas for how the neutron spectrum averages these contributions. The single element momentum spectrum is accurately Gaussian, but the multi-element spectrum exhibits higher moments. In particular, the skew and kurtosis are likely to be large enough to measure. Even the single fluid element spectrum may exhibit measurable directional anisotropy, so that instruments with different lines of sight should see different yields, mean velocities, mean temperatures, and higher moments. Finally, we briefly discuss how scattering in the imploded core modifies the neutron spectrum by changing the relative weighting of fuel regions with different temperatures and velocities.

  5. Heavy ion drivers for inertial confinement fusion

    SciTech Connect

    Keefe, D.

    1983-12-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto.

  6. Review of the Inertial Fusion Energy Program

    SciTech Connect

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  7. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  8. Low-Convergence Magnetized Liner Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Vesey, Roger; Sinars, Daniel; Sefkow, Adam

    2013-10-01

    Numerical simulations indicate that pulsed-power driven liner-implosions could produce substantial fusion yields if the deuterium-tritium (DT) fuel is first magnetized and preheated [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. As with all inertial fusion, the implosions could be degraded by the Rayleigh-Taylor instability. Since highly convergent implosions are more susceptible to this instability, we have explored the necessary conditions to obtain significant fusion yield with low-convergence liner-implosions. Such low-convergence implosions can be obtained if the fuel is sufficiently preheated and magnetized. We present analytic and numerical studies of laser plasma heating, which indicate that low convergence implosions should be possible with sufficient laser energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contra.

  9. Accelerators for Inertial Fusion Energy Production

    NASA Astrophysics Data System (ADS)

    Bangerter, R. O.; Faltens, A.; Seidl, P. A.

    2014-02-01

    Since the 1970s, high energy heavy ion accelerators have been one of the leading options for imploding and igniting targets for inertial fusion energy production. Following the energy crisis of the early 1970s, a number of people in the international accelerator community enthusiastically began working on accelerators for this application. In the last decade, there has also been significant interest in using accelerators to study high energy density physics (HEDP). Nevertheless, research on heavy ion accelerators for fusion has proceeded slowly pending demonstration of target ignition using the National Ignition Facility (NIF), a laser-based facility at Lawrence Livermore National Laboratory. A recent report of the National Research Council recommends expansion of accelerator research in the US if and when the NIF achieves ignition. Fusion target physics and the economics of commercial energy production place constraints on the design of accelerators for fusion applications. From a scientific standpoint, phase space and space charge considerations lead to the most stringent constraints. Meeting these constraints almost certainly requires the use of multiple beams of heavy ions with kinetic energies > 1 GeV. These constraints also favor the use of singly charged ions. This article discusses the constraints for both fusion and HEDP, and explains how they lead to the requirements on beam parameters. RF and induction linacs are currently the leading contenders for fusion applications. We discuss the advantages and disadvantages of both options. We also discuss the principal issues that must yet be resolved.

  10. Laser Inertial Fusion Energy Control Systems

    SciTech Connect

    Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

    2011-03-18

    A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

  11. Inertial fusion features in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    León, Pablo T.; Eliezer, Shalom; Piera, Mireia; Martínez-Val, José M.

    2005-04-01

    Very high plasma densities can be obtained at the end of the implosion phase in inertial fusion targets, particularly in the so-called fast-ignition scheme (Tabak et al., 1994; Mulser & Bauer, 2004), where a central hot spark is not needed at all. By properly tailoring the fuel compression stage, degenerate states can be reached (Azechi et al., 1991; Nakai et al., 1991; McCory, 1998). In that case, most of the relevant energy transfer mechanisms involving electrons are affected (Honrubia & Tikhonchuk, 2004; Bibi & Matte, 2004; Bibi et al., 2004). For instance, bremsstrahlung emission is highly suppressed (Eliezer et al., 2003). In fact, a low ignition-temperature regime appears at very high plasma densities, due to radiation leakage reduction (León et al., 2001). Stopping power and ion-electron coulomb collisions are also changed in this case, which are important mechanisms to trigger ignition by the incoming fast jet, and to launch the fusion wave from the igniting region into the colder, degenerate plasma. All these points are reviewed in this paper. Although degenerate states would not be easy to obtain by target implosion, they present a very interesting upper limit that deserves more attention in order to complete the understanding on the different domains for inertial confinement fusion.

  12. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-12-31

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  13. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-01-01

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  14. Diamond Ablators for Inertial Confinement Fusion

    SciTech Connect

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  15. Micromachining of inertial confinement fusion targets

    SciTech Connect

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-12-31

    Many experiments conducted on today`s largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron.

  16. Generalized Lawson Criteria for Inertial Confinement Fusion

    SciTech Connect

    Tipton, Robert E.

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  17. Target production for inertial fusion energy

    SciTech Connect

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of {approximately}16{cents} per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW{sub e} IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level.

  18. Research in Inertial Fusion Sciences: Now and in the Future

    SciTech Connect

    Powell, H T; Campbell, E M; Hogan, W J; Orth, C D

    2001-04-10

    We review the current and future state of research in inertial fusion sciences. We describe the National Ignition Facility (NIF), the IFE development plan, applications of inertial confinement fusion (ICF) to various high-energy sciences, uses of petawatt laser systems, and concepts for the ICF integrated research experiment (IRE) and IFE power plants.

  19. Deceleration Phase of Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Betti, R.

    2001-10-01

    In inertial confinement fusion (ICF) implosions, a spherical shell of cryogenic deuterium and tritium (DT) filled with DT gas is accelerated by direct laser irradiation (direct drive) or x-rays produced by a high-Z enclosure (indirect drive). Hydrodynamic instabilities, growing on the outer shell surface during the acceleration phase, cause the outer nonuniformities to feed through the shell onto the inner surface. As the shell starts to decelerate, the inner surface is unstable to the Rayleigh-Taylor instability and the inner surface nonuniformities grow exponentially in time, causing the cold shell material to penetrate and cool the hot spot. Such a cooling could prevent the hot spot from achieving the ignition conditions. We have developed a model to study the deceleration phase of imploding capsules, including the onset of ignition. The model yields all the hot-spot profiles and the hydrodynamic parameters of interest to the deceleration phase instability: ablation velocity [Ref.1] off the shell's inner surface, density-gradient scale length, and deceleration. It is shown [Ref. 1] that the growth rates of the deceleration-phase instability are significantly reduced by the finite ablative flow and the unstable spectrum exhibits a cutoff at short wavelengths. For a direct-drive NIF-like capsule, the cutoff mode number occurs for l ~= 90. The marginal ignition scaling law of Ref. 2 is also recovered analytically. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. [1] V. Lobatchev and R. Betti, Phys. Rev. Lett. 85, 4522 (2000); [2] M. C. Herrmann, M. Tabak, and J. D. Lindl, Nucl. Fusion 41, 99 (2001).

  20. Inertial confinement fusion with light ion beams.

    PubMed

    Vandevender, J P; Cook, D L

    1986-05-16

    The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well. PMID:17755963

  1. Inertial fusion with ultra-powerful lasers

    SciTech Connect

    Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

    1993-10-01

    Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel.

  2. Inertial Confinement Fusion Annual Report 1997

    SciTech Connect

    Correll, D

    1998-06-01

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change provided a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also

  3. Fusion technologies for Laser Inertial Fusion Energy (LIFE)

    NASA Astrophysics Data System (ADS)

    Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.

    2013-11-01

    The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Planar geometry inertial electrostatic confinement fusion device

    NASA Astrophysics Data System (ADS)

    Knapp, Daniel R.

    2015-03-01

    In the classic gridded inertial electrostatic confinement (IEC) fusion reactor, ion bombardment of the grid leads to heating, thermionic electron emission, significant power loss, and ultimately melting of the grid. Gridless IEC devices have sought to overcome these limitations. Klein reported a gridless device in which ions are circulated as a linear beam in an electrostatic analogue of an optical resonator. To overcome limits of stored ions due to space charge effects at the turning regions, the device employed multiple overlapping traps. The work reported here seeks to further increase the turning region space in a gridless trap by employing a planar geometry. Ion trapping in the planar device was examined by simulating trajectories of 2H+ ions with SIMION 8.1 software. Simulations were carried out using multiple potentials as in Klein's device and for a single potential trap as a planar analogue of the anharmonic ion trap. Scattering by background gas was simulated using a hard sphere collision model, and the results suggested the device will require operation at low pressure with a separate ion source.

  5. Auxiliary Heating of Inertial Confinement Fusion Targets

    NASA Astrophysics Data System (ADS)

    Norreys, Peter

    2014-10-01

    The role of collisionless ion heating arising from the propagation of petawatt-laser driven relativistic electron beams in dense plasma will be discussed. The energy cascade mechanism begins first with the rapid growth of electrostatic waves near the electron plasma frequency. These waves reach high amplitudes and break, which then results in the generation of a strongly driven turbulent Langmuir spectrum. Parametric decay of these waves, particularly via the modulational instability, then gives rise to a coupled turbulent ion acoustic spectrum. These waves, in turn, experience significant Landau damping, resulting in the rapid heating of the background ion population. In this talk, I will review the evidence for this cascade process in laboratory plasmas and describe the theoretical background that underpins this process. I will then present the most recent analytic modelling, particle-in-cell and Vlasov-Poisson simulation results of my team within Oxford Physics and the Central Laser Facility that explores the optimum parameter space for this process, focusing in particular on the requirements for auxiliary heating of the central hot spot in inertial confinement fusion target experiments now underway on the National Ignition Facility. I will also describe new methods for hole-boring through the coronal plasma surrounding the fuel using strongly relativistic laser beams that demonstrates the strong suppression of the hosing instability under these conditions.

  6. HYLIFE-2 inertial confinement fusion reactor design

    SciTech Connect

    Moir, R.W.

    1990-10-04

    The HYLIFE-II inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x-rays, and blast to provide a 30-y lifetime. HYLIFE-I used liquid lithium. HYLIFE-II avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li{sub 2}BeF{sub 4}) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-I, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09$/kW{center dot}h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 12 refs., 9 figs., 5 tabs.

  7. Thomson scattering from inertial confinement fusion plasmas

    SciTech Connect

    Glenzer, S.H.; Back, C.A.; Suter, L.J.

    1997-07-08

    Thomson scattering has been developed at the Nova laser facility as a direct and accurate diagnostic to characterize inertial confinement fusion plasmas. Flat disks coated with thin multilayers of gold and beryllium were with one laser beam to produce a two ion species plasma with a controlled amount of both species. Thomson scattering spectra from these plasmas showed two ion acoustic waves belonging to gold and beryllium. The phase velocities of the ion acoustic waves are shown to be a sensitive function of the relative concentrations of the two ion species and are in good agreement with theoretical calculations. These open geometry experiments further show that an accurate measurement of the ion temperature can be derived from the relative damping of the two ion acoustic waves. Subsequent Thomson scattering measurements from methane-filled, ignition-relevant hohlraums apply the theory for two ion species plasmas to obtain the electron and ion temperatures with high accuracy. The experimental data provide a benchmark for two-dimensional hydrodynamic simulations using LASNEX, which is presently in use to predict the performance of future megajoule laser driven hohlraums of the National Ignition Facility (NIF). The data are consistent with modeling using significantly inhibited heat transport at the peak of the drive. Applied to NIF targets, this flux limitation has little effect on x- ray production. The spatial distribution of x-rays is slightly modified but optimal symmetry can be re-established by small changes in power balance or pointing. Furthermore, we find that stagnating plasma regions on the hohlraum axis are well described by the calculations. This result implies that stagnation in gas-filled hohlraums occurs too late to directly affect the capsule implosion in ignition experiments.

  8. Diagnosing magnetized liner inertial fusion experiments on Za)

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, D. G.; Tomlinson, K.

    2015-05-01

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (˜1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (˜10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ˜3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

  9. Microencapsulation and fabrication of fuel pellets for inertial confinement fusion.

    PubMed

    Nolen, R L; Kool, L B

    1981-04-01

    Various microencapsulation techniques were evaluated for fabrication of thermonuclear fuel pellets for use in existing experimental facilities studying inertial confinement fusion and in future fusion-power reactors. Coacervation, spray drying, in situ polymerization, and physical microencapsulation methods were employed. Highly spherical, hollow polymeric shells were fabricated ranging in size from 20 to 7000 micron. In situ polymerization microencapsulation with poly(methyl methacrylate) provided large shells, but problems with local wall defects still must be solved. Extension to other polymeric systems met with limited success. Requirements for inertial confinement fusion targets are described, as are the methods that were used. PMID:7229942

  10. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  11. Efficient pumping of inertial fusion energy lasers

    NASA Astrophysics Data System (ADS)

    Wessling, C.; Rübenach, O.; Hambücker, S.; Sinhoff, V.; Banerjeea, S.; Ertel, K.; Mason, P.

    2013-02-01

    Solid-state lasers have been demonstrated as attractive drivers for laser-plasma interaction and have presently been developed for various applications like inertial confinement fusion (ICF) [1], particle acceleration and intense X-ray generation [3]. Viable real world applications like power production at industrial scale will require high laser system efficiency, repetition rate and lifetime which are only possible with semiconductor diode pumping. The paper describes the work conducted with two 20 kW diode laser sources pumping an ytterbium:YAG laser amplifier. The set-up acts as a small scale prototype for the DiPOLE project [2]. This project aims to develop scalable gas cooled cryogenic multi-slab diode pumped solid state lasers capable of producing KJ pulse energy. A scale-down prototype is currently under development at the Central Laser Facility (CLF) designed to generate 10 J at 10 Hz. To secure an efficient pumping process the sources have to fulfill aside power requirement in the spectral and time domain, the claim for high homogenization and low divergence of the spatial and angular beam distribution as well as a minimization of losses within the optical path. The existing diode laser sources designed and built by INGENERIC deliver 20 kW pulsed power, concentrated on a plateau of FWHM dimension of 20 x 20 mm² with a homogeneity of more than 90 %. The center wavelength of 939.5 nm is controlled in a range of ± 0.1 nm. The time and area integrated spectrum of at least 76 % of the total energy is contained within a 6 nm wide wavelength band around the center wavelength. Repetition rates can be adjusted between 0.1 Hz up to 10 Hz with rise and fall times less than 50 μs and pulse durations from 0.2 ms to 1.2 ms. The paper describes the impact of different designs on the performance of pump sources and puts special emphasis on the influence of the optical components on efficiency and performance. In addition the influence of the measuring principle is

  12. Inertial fusion: an energy-production option for the future

    SciTech Connect

    Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

    1982-05-01

    The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

  13. PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)

    NASA Astrophysics Data System (ADS)

    Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude

    2008-06-01

    The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007) was held on 9-14 September 2007 at Kobe International Conference Center in Kobe, Japan. The host organizations for this conference were Osaka University and the Institute of Laser Engineering (ILE) at Osaka University; and co-organized by the Institute Lasers and Plasmas (ILP) in France, the Commissariatá l'Energie Atomique (CEA), Lawrence Livermore National Laboratory (LLNL), National Institute for Fusion Science (NIFS) in Japan, and Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA). The conference objective was to review the state of the art of research in inertial fusion sciences and applications since the last conference held in Biarritz, France, in 2005. 470 abstracts were accepted, and 448 persons from 18 countries attended the conference. These Proceedings contain 287 of the papers presented at IFSA 2007. This collection of papers represents the manuscripts submitted to and passing the peer review process. The program was organized with some specific features: The reviews of influential programs appeared both at the very beginning and at the very end of the Conference to attract attendance throughout the Conference. Each poster session had the same time period as a single oral session, thereby avoiding overlap with oral talks. The everyday program was structured to be as similar as possible so the attendees could easily recognize the program. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, researchers presented the exciting advances in both traditional hot spot ignition and fast ignition approach, including status report of USA's National Ignition Facility (NIF), French Laser Magajoule (LMJ), Japanese Fast Ignition Realization Experiment (FIREX), and European High Power laser Energy Research (HiPER). A particular emphasis of the meeting was that the `physics of inertial fusion' category was dominated

  14. The technology benefits of inertial confinement fusion research

    SciTech Connect

    Powell, H T

    1999-05-26

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10{sup 6} J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10{sup {minus}6} m) with picosecond (10{sup {minus}12} s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal

  15. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  16. An antiproton catalyst for inertial confinement fusion propulsion

    NASA Technical Reports Server (NTRS)

    Lewis, Raymond A.; Newton, Richard; Smith, Gerald A.; Toothacker, William S.; Kanzleiter, Randall J.

    1990-01-01

    This paper discusses the concept of an inertial confinement fusion propulsion system involving an antiproton catalyst (for antiproton-induced fission). It is argued that, when the two processes, fusion and antimatter annihilation, are combined into one system, a viable candidate propulsion system for planetary exploration emerges. It is shown that as much as 7.6 GW of power, well within the requrements for interplanetary travel, can be achieved using existing driver technologies and available quantities of antiprotons.

  17. Ch. 37, Inertial Fusion Energy Technology

    SciTech Connect

    Moses, E

    2010-06-09

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  18. Inertial confinement fusion at the Los Alamos National Laboratory

    SciTech Connect

    Lindman, E.; Baker, D.; Barnes, C.; Bauer, B.; Beck, J.B.

    1997-11-01

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed.

  19. Scientific and technological advancements in inertial fusion energy

    DOE PAGESBeta

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  20. Scientific and technological advancements in inertial fusion energy

    SciTech Connect

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  1. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  2. Diagnosing magnetized liner inertial fusion experiments on Z

    DOE PAGESBeta

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; et al

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  3. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  4. Inertial-Electrostatic Confinement (IEC) Fusion For Space Propulsion

    NASA Technical Reports Server (NTRS)

    Nadler, Jon

    1999-01-01

    An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using IEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois @ Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.

  5. Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Nadler, Jon

    1999-01-01

    An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using EEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois@Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.

  6. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect

    Robert J. Goldston

    2011-04-28

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  7. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  8. Experimental Test of the Polarization Persistence in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Didelez, J. P.; Deutsch, C.; Fujiwara, M.; Nakai, M.; Utsuro, M.

    2016-03-01

    The complete deuteron and triton polarization in the DT fusion increases the reactivity by 50%. For Inertial Confinement Fusion (ICF), due to the dynamics of the fusion reaction process, the fusion rate could even be further increased. It has been argued that the polarization would survive as well in magnetic as in inertial confinements. Recently, we have proposed an experiment to test the persistence of the polarization in a fusion process, using a powerful laser hitting a polarized HD target.The polarized deuterons heated in the plasma induced by the laser can fuse. The corresponding reaction is: D + D → 3He + n. The angular distribution of the emitted neutrons and the change in the corresponding total cross section are signatures to estimate the polarization persistency. A proposal to test the persistence of the polarization in ICF has been accepted at ILE: the POLAF project (POlarization in LAser Fusion Process). It uses the polarized HD targets produced at RCNP and the powerful ILE lasers, as well as the neutron detectors existing there. Both institutions are on the same campus at Osaka University. The description of the POLAF experiment and of the corresponding set-up is given.

  9. Lead (Pb) hohlraum: target for inertial fusion energy.

    PubMed

    Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285

  10. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGESBeta

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; et al

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  11. Nonlinear laser-plasma interaction in magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.

    2016-03-01

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.

  12. Lead (Pb) Hohlraum: Target for Inertial Fusion Energy

    PubMed Central

    Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285

  13. Laser targets compensate for limitations in inertial confinement fusion drivers

    NASA Astrophysics Data System (ADS)

    Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.

    2005-10-01

    Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.

  14. Inertial-fusion-reactor studies at Lawrence Livermore National Laboratory

    SciTech Connect

    Monsler, M.J.; Meier, W.R.

    1982-08-01

    We present results of our reactor studies for inertial-fusion energy production. Design studies of liquid-metal wall chambers have led to reactors that are remarkably simple in design, and that promise long life and low cost. Variants of the same basic design, called HYLIFE, can be used for electricity production, as a fissile-fuel factory, a dedicated tritium breeder, or hybrids of each.

  15. Inertial confinement fusion method producing line source radiation fluence

    DOEpatents

    Rose, Ronald P.

    1984-01-01

    An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.

  16. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Bose, A.; Woo, K. M.

    2016-05-01

    Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to understanding the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement due to alpha particle heating (before ignition occurs) depends on the generalized Lawson parameter that can be inferred from experimental observables. A universal curve valid for arbitrary laser-fusion targets shows the yield amplification due to alpha heating for a given value of the Lawson parameter. The same theory is used to determine the onset of the burning plasma regime when the alpha heating exceeds the compression work. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility.

  17. Neutronics issues and inertial fusion energy: a summary of findings

    SciTech Connect

    Latkowski, J. F., LLNL

    1998-05-29

    We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES&H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES&H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions.

  18. Target fabrication for inertial confinement fusion research

    NASA Astrophysics Data System (ADS)

    Mah, Richard; Duchane, David V.; Young, Ainslie T.; Rhorer, Richard L.

    1985-05-01

    The design of both laser fusion and particle beam fusion targets has become increasingly more complex with greater demands on both target tolerances and the physical and mechanical properties of target materials. The Materials Technology Group at Los Alamos has been given the responsibility for fabricating these targets. In order to meet the demands of the ICF program, the target fabrication effort maintains a wide variety of processes to provide metallic, non-metallic and composite materials for target components. These processes are also geared to provide superior surface finishes, wall uniformity and, in the case of metals, a fine grained equiaxed structure. The materials technologies that will be described include chemical vapor deposition (CVD), physical vapor deposition (PVD), electrochemical deposition, vapor phase pyrolysis (VPP), low pressure plasma coating (LPP) and the sorption/diffusion (SD) process. This paper will also discuss the materials and the material properties that can be obtained by these processes. The result of maintaining all these technologies and processes is to allow the greatest latitude for ICF target designers.

  19. Systematic analysis of advanced fusion fuel in inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.

    1997-04-01

    Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.

  20. High-energy krypton fluoride lasers for inertial fusion.

    PubMed

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications. PMID:26560597

  1. Status of inertial fusion and prospects for practical power plants

    SciTech Connect

    Blink, J.A.; Monsler, M.J.

    1982-06-30

    We have produced a series of reactor designs to meet the variety of driver-target combinations that could possibly result from the inertial-confinement fusion program. In this paper we discuss four reactor designs, the goals of which are low cost; a low probability of risk to the public, the plant employees, and the utility investment; and a minimal environmental impact under normal plant operation. HYLIFE is a low pulse rate, lithium-cooled reactor. Pulse*Star and Cascade are high pulse rate reactors. In Pulse*Star, fusion energy is absorbed in the PbLi pool; in Cascade it is absorbed by Li/sub 2/O particles. Sunburst, a very low pulse rate, lithium-cooled reactor, directly converts over 40% of the fusion energy to electricity using a pulsed magnetic field.

  2. A cost-effective target supply for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Goodin, D. T.; Alexander, N. B.; Brown, L. C.; Frey, D. T.; Gallix, R.; Gibson, C. R.; Maxwell, J. L.; Nobile, A.; Olson, C.; Petzoldt, R. W.; Raffray, R.; Rochau, G.; Schroen, D. G.; Tillack, M.; Rickman, W. S.; Vermillion, B.

    2004-12-01

    A central feature of an inertial fusion energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. This is true whether the driver is a laser system, heavy ion beams or Z-pinch system. The IFE target fabrication, injection and tracking programmes are focusing on methods that will scale to mass production. We are working closely with target designers, and power plant systems specialists, to make specifications and material selections that will satisfy a wide range of required and desirable target characteristics. One-of-a-kind capsules produced for today's inertial confinement fusion experiments are estimated to cost about US2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have suggested a cost goal of about 0.25-0.30 for each injected target (corresponding to ~10% of the 'electricity value' in a target). While a four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the design, specifications, requirements and proposed manufacturing processes for the future for laser fusion, heavy ion fusion and Z-pinch driven targets. These target manufacturing processes have been developed—and are proposed—based on the unique materials science and technology programmes that are ongoing for each of the target concepts. We describe the paradigm shifts in target manufacturing methodologies that will be needed to achieve orders of magnitude reductions in target costs, and summarize the results of 'nth-of-a-kind' plant layouts and cost estimates for future IFE power plant fuelling. These engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for electricity production.

  3. Fuel gain exceeding unity in an inertially confined fusion implosion.

    PubMed

    Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R

    2014-02-20

    Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite. PMID:24522535

  4. Impact of target modifications on Magnetized Liner Inertial Fusion performance

    NASA Astrophysics Data System (ADS)

    Gomez, Matthew; Knapp, Patrick; Sefkow, Adam; Slutz, Stephen; Awe, Thomas; Hansen, Stephanie; Hahn, Kelly; Harding, Eric; Jennings, Christopher; McBride, Ryan; Sinars, Daniel; Rochau, Gregory; Peterson, Kyle

    2015-11-01

    Magnetized Liner Inertial Fusion (MagLIF) is a magnetically-driven fusion concept in which an axial magnetic field and laser heating are used to relax the implosion requirements of inertial confinement fusion. Initial experiments demonstrated the promise of the concept with relatively high yields (primary DD = 2e12), ion temperatures (2.5 keV), and magnetic field-radius products (>0.3 MG-cm). In order to better understand the portions of parameter space in which MagLIF can operate effectively, a series of experiments are being conducted to test the impact of various changes (e.g., laser-entrance-hole window thickness, imploding height of the target, endcap material, laser energy, laser spot size, initial fuel density). The impact of these changes on target performance (primary neutron yield, ion temperature, stagnation volume, etc.) will be discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  5. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  6. Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick

    2014-10-01

    The goal of Magneto-Inertial Fusion (MIF) is to relax the extreme pressure requirements of inertial confinement fusion by magnetizing the fuel. Understanding the level of magnetization at stagnation is critical for charting the performance of any MIF concept. We show here that the secondary nuclear reactions in magnetized deuterium plasma can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The secondary neutron yields and spectra are examined and shown to be extremely sensitive to BR. In particular, embedded magnetic fields are shown to affect profoundly the isotropy of the secondary neutron spectra. Detailed modeling of these spectra along with the ratio of overall secondary to primary neutron yields is used to form the basis of a diagnostic technique used to infer BR at stagnation. Effects of gradients in density, temperature and magnetic field strength are examined, as well as other possible non-uniform fuel configurations. Computational results employing a fully kinetic treatment of charged reaction product transport and Monte Carlo treatment of secondary reactions are compared to results from recent experiments at Sandia National Laboratories' Z machine testing the MAGnetized Liner Inertial Fusion (MagLIF) concept. The technique reveals that the charged reaction products were highly magnetized in these experiments. Implications for eventual ignition-relevant experiments with deuterium-tritium fuel are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  7. KrF lasers for inertial confinement fusion

    SciTech Connect

    Harris, D.B.; Cartwright, D.C.; Figueira, J.F.; McDonald, T.E.; Sorem, M.E.

    1989-01-01

    The KrF laser has been proposed for inertial confinement fusion (ICF) since its discovery in 1975. Since that time, the laser has seen significant development and has been increased in energy many orders of magnitude to the several kilojoule energy level. The suitability of the KrF laser as a driver for ICF energy applications has been continually reviewed. The latest assessments indicate that the KrF laser still appears to be the leading laser candidate. A worldwide effort exists to advance the KrF laser for ICF applications. 21 refs., 1 fig.

  8. Multibeam seeded brillouin sidescatter in inertial confinement fusion experiments.

    PubMed

    Turnbull, D; Michel, P; Ralph, J E; Divol, L; Ross, J S; Berzak Hopkins, L F; Kritcher, A L; Hinkel, D E; Moody, J D

    2015-03-27

    We present the first observations of multibeam weakly seeded Brillouin sidescatter in indirect-drive inertial confinement fusion (ICF) experiments. Two seeding mechanisms have been identified and quantified: specular reflections ("glint") from opposite hemisphere beams, and Brillouin backscatter from neighboring beams with a different angle of incidence. Seeded sidescatter can dominate the overall coupling losses, so understanding this process is crucial for proper accounting of energy deposition and drive symmetry. Glint-seeded scattered light could also be used to probe hydrodynamic conditions inside ICF targets. PMID:25860748

  9. Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions.

    PubMed

    Michel, P; Divol, L; Dewald, E L; Milovich, J L; Hohenberger, M; Jones, O S; Hopkins, L Berzak; Berger, R L; Kruer, W L; Moody, J D

    2015-07-31

    Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur. PMID:26274426

  10. High-performance inertial confinement fusion target implosions on OMEGA

    SciTech Connect

    Meyerhofer, D. D.; McCrory, R L; Betti, R; Boehly, T R; Casey, D T; Collins, T.J.B.; Craxton, R S; Delettrez, J A; Edgell, D H; Epstein, R; Fletcher, K A; Frenje, J A; Glebov, Y Yu; Goncharov, V N; Harding, D R; Hu, S X; Igumenshchev, I V; Knauer, J P; Li, C K; Marozas, J A; Marshall, F J; McKenty, P W; Nilson, P M; Padalino, S P; Petrasso, R D; Radha, P B; Regan, S P; Sangster, T C; Seguin, F H; Seka, W; Short, R W; Shvarts, D; Skupsky, S; Soures, J M; Stoeckl, C; Theobald, W; Yaakobi, B

    2011-04-18

    The Omega Laser Facility is used to study inertial confinement fusion (ICF) concepts. This paper describes progress in direct-drive central hot-spot (CHS) ICF, shock ignition (SI) and fast ignition (FI) since the 2008 IAEA FEC conference. CHS cryogenic deuterium-tritium (DT) target implosions on OMEGA have produced the highest DT areal densities yet measured in ICF implosions (~300 mg cm{sup -2}). Integrated FI experiments have shown a significant increase in neutron yield caused by an appropriately timed high-intensity, high-energy laser pulse.

  11. Prospects for inertial fusion as an energy source

    SciTech Connect

    Hogan, W.J.

    1989-06-26

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

  12. Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions

    NASA Astrophysics Data System (ADS)

    Michel, P.; Divol, L.; Dewald, E. L.; Milovich, J. L.; Hohenberger, M.; Jones, O. S.; Hopkins, L. Berzak; Berger, R. L.; Kruer, W. L.; Moody, J. D.

    2015-07-01

    Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur.

  13. Diode-pumped solid state laser for inertial fusion energy

    SciTech Connect

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW {center_dot} hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness.

  14. Uniform fuel target implosion in heavy ion inertial fusion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Karino, T.; Kondo, S.; Iinuma, T.; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.

    2016-05-01

    For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the non-uniformity mitigation mechanisms in the heavy ion beam (HIB) illumination are discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to the radiation energy smoothing for the HIB illumination non-uniformity. The large density-gradient scale, which is typically ∼500μm in HIF targets, also contributes to a reduction of the Rayleigh- Taylor instability growth rate. In HIF a wobbling HIBs illumination would also reduce the Rayleigh-Taylor instability growth and to realize a uniform implosion.

  15. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    SciTech Connect

    Stelmack, Larry

    2003-11-17

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  16. Inertial Fusion Program. Progress report, January-December 1980

    SciTech Connect

    Not Available

    1982-05-01

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO/sub 2/-laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized.

  17. Radiation Hydrodynamic Simulations of an Inertial Fusion Energy Reactor Chamber

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan Foster

    Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is carried out using the 1-D BUCKY radiation hydrodynamics code for a variety of differing chamber fills, radii, chamber obstructions and first wall materials. Discussion of the first wall temperature rise, x-ray spectrum incident on the wall, shock timing and maximum overpressure are presented. An additional discussion of the impact of different gas opacities and their effect on overall chamber dynamics, including the formation of two shock fronts, is also presented. This work is performed under collaboration with Lawrence Livermore National Laboratory at the University of Wisconsin-Madison's Fusion Technology Institute.

  18. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    SciTech Connect

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  19. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    DOE PAGESBeta

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  20. Utilization of Practice Session Average Inertial Load to Quantify College Football Injury Risk.

    PubMed

    Wilkerson, Gary B; Gupta, Ashish; Allen, Jeff R; Keith, Clay M; Colston, Marisa A

    2016-09-01

    Wilkerson, GB, Gupta, A, Allen, JR, Keith, CM, and Colston, MA. Utilization of practice session average inertial load to quantify college football injury risk. J Strength Cond Res 30(9): 2369-2374, 2016-Relatively few studies have investigated the potential injury prevention value of data derived from recently developed wearable technology for measurement of body mass accelerations during the performance of sport-related activities. The available evidence has been derived from studies focused on avoidance of overtraining syndrome, which is believed to induce a chronically fatigued state that can be identified through monitoring of inertial load accumulation. Reduced variability in movement patterns is also believed to be an important injury risk factor, but no evidence currently exists to guide interpretation of data derived from inertial measurement units (IMUs) in this regard. We retrospectively analyzed archived data for a cohort of 45 National Collegiate Athletic Association Division 1-football bowl subdivision football players who wore IMUs on the upper back during practice sessions to quantify any associations between average inertial load measured during practice sessions and occurrence of musculoskeletal sprains and strains. Both the coefficient of variation for average inertial load and frequent exposure to game conditions were found to be strongly associated with injury occurrence. Having either or both of the 2 risk factors provided strong discrimination between injured and noninjured players (χ = 9.048; p = 0.004; odds ratio = 8.04; 90% CI: 2.39, 27.03). Our findings may facilitate identification of individual football players who are likely to derive the greatest benefit from training activities designed to reduce injury risk through improved adaptability to rapidly changing environmental demands. PMID:26849792

  1. Progress in Z-pinch inertial fusion energy.

    SciTech Connect

    Weed, John Woodruff

    2010-03-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented.

  2. Octahedral spherical hohlraum and its laser arrangement for inertial fusion

    SciTech Connect

    Lan, Ke; He, Xian-Tu; Liu, Jie; Zheng, Wudi; Lai, Dongxian

    2014-05-15

    A recent publication [K. Lan et al., Phys. Plasmas 21, 010704 (2014)] proposed a spherical hohlraum with six laser entrance holes of octahedral symmetry at a specific hohlraum-to-capsule radius ratio of 5.14 for inertial fusion study, which has robust high symmetry during the capsule implosion and superiority on low backscatter without supplementary technology. This paper extends the previous one by studying the laser arrangement and constraints of octahedral hohlraum in detail. As a result, it has serious beam crossing at θ{sub L}≤45°, and θ{sub L}=50° to 60° is proposed as the optimum candidate range for the golden octahedral hohlraum, here θ{sub L} is the opening angle that the laser quad beam makes with the Laser Entrance Hole (LEH) normal direction. In addition, the design of the LEH azimuthal angle should avoid laser spot overlapping on hohlraum wall and laser beam transferring outside hohlraum from a neighbor LEH. The octahedral hohlraums are flexible and can be applicable to diverse inertial fusion drive approaches. This paper also applies the octahedral hohlraum to the recent proposed hybrid indirect-direct drive approach.

  3. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-01

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (˜100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  4. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  5. Inertial Fusion Program. Progress report, July 1-December 31, 1979

    SciTech Connect

    Skoberne, F.

    1981-10-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements in the Los Alamos National Laboratory eight-beam Helios system are described. These improvements increased the reliability of the laser and permitted the firing of 290 shots, most of which delivered energies of approximately 8 kJ to the target. Modifications to Gemini are outlined, including the installation of a new target-insertion mechanism. The redirection of the Antares program is discussed in detail, which will achieve a total energy of approximatey 40 kJ with two beams. This redirection will bring Antares on-line almost two years earlier than was possible with the full six-beam system, although at a lower energy. Experiments with isentropically imploded Sirius-B targets are discussed, and x-ray radiation-loss data from gold microballoons are presented, which show that these results are essentially identical with those obtained at glass-laser wavelengths. Significant progress in characterizing laser fusion targets is reported. New processes for fabricating glass miroballoon x-ray diagnostic targets, the application of high-quality metallic coatings, and the deposition of thick plastic coatings are described. Results in the development of x-ray diagnostics are reported, and research in the Los Alamos heavy-ion fusion program is summarized. Results of investigations of phase-conjugation research of gaseous saturable absorbers and of the use of alkali-halide crystals in a new class of saturable absorbers are summarized. New containment-vessel concepts for Inertial Confinement Fusion reactors are discussed, and results of a scoping study of four fusion-fission hybrid concepts are presented.

  6. Laser-plasma interactions relevant to Inertial Confinement Fusion

    SciTech Connect

    Wharton, K.B.

    1998-11-02

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  7. Data Fusion Algorithms for Multiple Inertial Measurement Units

    PubMed Central

    Bancroft, Jared B.; Lachapelle, Gérard

    2011-01-01

    A single low cost inertial measurement unit (IMU) is often used in conjunction with GPS to increase the accuracy and improve the availability of the navigation solution for a pedestrian navigation system. This paper develops several fusion algorithms for using multiple IMUs to enhance performance. In particular, this research seeks to understand the benefits and detriments of each fusion method in the context of pedestrian navigation. Three fusion methods are proposed. First, all raw IMU measurements are mapped onto a common frame (i.e., a virtual frame) and processed in a typical combined GPS-IMU Kalman filter. Second, a large stacked filter is constructed of several IMUs. This filter construction allows for relative information between the IMUs to be used as updates. Third, a federated filter is used to process each IMU as a local filter. The output of each local filter is shared with a master filter, which in turn, shares information back with the local filters. The construction of each filter is discussed and improvements are made to the virtual IMU (VIMU) architecture, which is the most commonly used architecture in the literature. Since accuracy and availability are the most important characteristics of a pedestrian navigation system, the analysis of each filter’s performance focuses on these two parameters. Data was collected in two environments, one where GPS signals are moderately attenuated and another where signals are severely attenuated. Accuracy is shown as a function of architecture and the number of IMUs used. PMID:22163985

  8. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  9. Free-electron laser-fusion drivers for inertial-confinement fusion

    SciTech Connect

    Schlitt, L.G.

    1980-01-01

    The use of tapered wiggler, free electron lasers as drivers for inertial confinement fusion requires an electron beam source which must meet specific and stringent requirements. The characteristics of ICF targets are combined with those of the free electron laser to obtain a general set of requirements and to define parameter tradeoffs. In particular, low beam emittance is essential to the system. A conceptual point design of an ICF-FEL driver is discussed.

  10. Plasma Stopping Power Measurements Relevant to Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Herrmann, Hans; Kim, Yongho; Hoffman, Nelson; Schmitt, Mark; Rubery, Michael; Garbett, Warren; Horsfield, Colin; Gales, Steve; Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Petrasso, Richard; Marshall, Frederic; Batha, Steve

    2015-11-01

    Ignition in inertial confinement fusion (ICF) experiments may be achieved if the alpha particle energy deposition results in a thermonuclear burn wave induced in the dense DT fuel layer surrounding the hotspot. As such, understanding the physics of particle energy loss in a plasma is of critical importance to designing ICF experiments. Experiments have validated various stopping power models under select ne and Te conditions, however there remain unexplored regimes where models predict differing rates of energy deposition. An upcoming experiment at the Omega laser facility will explore charged particle stopping in CH plastic capsule ablators across a range of plasma conditions (ne between 1024 cm-3 and 1025 cm-3 and Te on the order of hundreds of eV). Plasma conditions will be measured using x-ray and gamma ray diagnostics, while plasma stopping power will be measured using charged particle energy loss measurements. Details on the experiment and the theoretical models to be tested will be presented.

  11. An inertial fusion propulsion scheme for solar system exploration

    NASA Technical Reports Server (NTRS)

    Kammash, Terry; Galbraith, David L.

    1991-01-01

    The paper analyzes a novel fusion scheme that combines the favorable aspects of both inertial and magnetic confinement approaches as a propulsion device for potential application in solar system exploration. An appropriate set of equations for the plasma dynamics and the magnetic nozzle is used to assess the system's propulsive capability by applying the results to a round trip mission to Mars. It is found that such a device would allow a massive vehicle to make the journey in less than five months. It is shown that catalyzed deuterium-deuterium fuel results in a somewhat poorer propulsion performance than deuterium-tritium though at a significantly lower neutron production. The velocity increment generated by this system and the corresponding trip time are in excellent agreement with the predictions of Irving and Blum (1959).

  12. Development of Compton radiography of inertial confinement fusion implosions

    SciTech Connect

    Tommasini, R.; Hatchett, S. P.; Hey, D. S.; Iglesias, C.; Izumi, N.; Koch, J. A.; Landen, O. L.; MacKinnon, A. J.; Sorce, C.; Delettrez, J. A.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2011-05-15

    An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60 to 200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The radiographs have a spatial and temporal resolution of {approx}10 {mu}m and {approx}10 ps, respectively. A statistical accuracy of {approx}0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D nonuniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities.

  13. KULL: LLNL's ASCI Inertial Confinement Fusion Simulation Code

    SciTech Connect

    Rathkopf, J. A.; Miller, D. S.; Owen, J. M.; Zike, M. R.; Eltgroth, P. G.; Madsen, N. K.; McCandless, K. P.; Nowak, P. F.; Nemanic, M. K.; Gentile, N. A.; Stuart, L. M.; Keen, N. D.; Palmer, T. S.

    2000-01-10

    KULL is a three dimensional, time dependent radiation hydrodynamics simulation code under development at Lawrence Livermore National Laboratory. A part of the U.S. Department of Energy's Accelerated Strategic Computing Initiative (ASCI), KULL's purpose is to simulate the physical processes in Inertial Confinement Fusion (ICF) targets. The National Ignition Facility, where ICF experiments will be conducted, and ASCI are part of the experimental and computational components of DOE's Stockpile Stewardship Program. This paper provides an overview of ASCI and describes KULL, its hydrodynamic simulation capability and its three methods of simulating radiative transfer. Particular emphasis is given to the parallelization techniques essential to obtain the performance required of the Stockpile Stewardship Program and to exploit the massively parallel processor machines that ASCI is procuring.

  14. Antimatter Assisted Inertial Confinement Fusion Propulsion Systems for Interstellar Missions

    NASA Astrophysics Data System (ADS)

    Halyard, R. J.

    Current developments such as the Ion Compressed Antimatter Nuclear (ICAN-II) propulsion system proposed by the Pennsylvania State University Center for Space Propulsion Engineering open the way to the possible use of available supplies of antiprotons to power antimatter assisted inertial confinement fusion (AAICF) propulsion systems for interstellar missions. Analysis indicates that light weight AAICF propulsion systems with specific impulses in excess of seven hundred thousand seconds may be feasible within the next 30 years. AAICF should prove to be the optimum propulsion system since it possesses high thrust, low weight and high exhaust velocity. The purpose of this paper is to evaluate the potential of AAICF propulsion for interstellar missions such as NASA Administrator Dan Goldin's Alpha Centauri Flyby and a Barnard's Star Orbital Mission, and to compare these projections with previous performance estimates for ICF Laser Beam propulsion systems.

  15. Inertial fusion target development for ignition and energy

    SciTech Connect

    Schultz, K.R.; Norimatsu, T.

    1994-12-01

    The target needs of the next ICF experiments that will lead toward ignition and energy are different from those of today`s experiments. The future experiments on OMEGA Upgrade, GEKKO XII Upgrade, the National Ignition Facility and Megajoule will need large, precise, cryogenic targets. Development is needed on a number of aspects of these targets, including shell fabrication, characterization, cryogenic layering and target handling. However, coordinated R and D programs are in place and work is in process to carry out the needed development. It is vital to the success of inertial fusion that this work be sustained. Coordinated effort, like the National Cryogenic Target Program in the USA, will help make the development activities as efficient and effective as possible, and should be encouraged.

  16. Development of Compton radiography of inertial confinement fusion implosionsa)

    NASA Astrophysics Data System (ADS)

    Tommasini, R.; Hatchett, S. P.; Hey, D. S.; Iglesias, C.; Izumi, N.; Koch, J. A.; Landen, O. L.; MacKinnon, A. J.; Sorce, C.; Delettrez, J. A.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2011-05-01

    An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60 to 200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The radiographs have a spatial and temporal resolution of ˜10 μm and ˜10 ps, respectively. A statistical accuracy of ˜0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D nonuniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities.

  17. Computer modeling and simulation in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    McCrory, R. L.; Verdon, C. P.

    1989-03-01

    The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper we describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics.

  18. Computer modeling and simulation in inertial confinement fusion

    SciTech Connect

    McCrory, R.L.; Verdon, C.P.

    1989-03-01

    The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper we describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.

  19. Development of Compton Radiography Diagnostics for Inertial Confinement Fusion Implosions

    SciTech Connect

    Tommasini, R; Hatchett, S P; Hey, D S; Izumi, N; Koch, J A; Landen, O L; Mackinnon, A J; Delettrez, J; Glebov, V; Stoeckl, C

    2010-11-16

    An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60-200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton Radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility. The radiographs have a spatial and temporal resolution of {approx}10 {micro}m and {approx}10ps, respectively. A statistical accuracy of {approx}0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D non-uniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities.

  20. Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions

    SciTech Connect

    Hu, S.X.; Militzer, B.; Goncharov, V.N.; Skupsky, S.

    2010-06-10

    Accurate knowledge about the equation of state (EOS) of deuterium is critical to inertial confinement fusion (ICF). Low-adiabat ICF implosions routinely access strongly coupled and degenerate plasma conditions. Using the path integral Monte Carlo method, we have derived a first-principles EOS (FPEOS) table of deuterium. It is the first ab initio EOS table which completely covers typical ICF implosion trajectory in the density and temperature ranges of rho = 0.002–1596 g/cm^3 and T = 1.35 eV–5.5 keV. Discrepancies in internal energy and pressure have been found in strongly coupled and degenerate regimes with respect to SESAME EOS. Hydrodynamics simulations of cryogenic ICF implosions using the FPEOS table have indicated significant differences in peak density, areal density, and neutron yield relative to SESAME simulations.

  1. Production of {sup 13}N Via Inertial Electrostatic Confinement Fusion

    SciTech Connect

    Weidner, J.W.; Kulcinski, G.L.; Santarius, J.F.; Ashley, R.P.; Piefer, G.; Cipiti, B.; Radel, R.; Murali, S. Krupakar

    2003-09-15

    This paper describes a proof of principle experiment to produce {sup 13}N using an inertial electrostatic confinement (IEC) fusion device. This radioisotope is often used in positron emission tomography scans to image the heart. The 10-minute half-life of {sup 13}N limits its use to those areas and clinics that possess an accelerator. A portable IEC device could be brought to remote locations, however, and produce short-lived PET isotopes on-site. Using the 14.7 MeV protons produced from the D-{sup 3}He fuel cycle, University of Wisconsin IEC device was used to produce approximately 4 - 8 Bq of {sup 13}N during two separate experiments.

  2. Integrated diagnostic analysis of inertial confinement fusion capsule performancea)

    NASA Astrophysics Data System (ADS)

    Cerjan, Charles; Springer, Paul T.; Sepke, Scott M.

    2013-05-01

    A conceptual model is developed for typical inertial confinement fusion implosion conditions that integrates available diagnostic information to determine the stagnation properties of the interior fill and surrounding shell. Assuming pressure equilibrium at peak compression and invoking radiative and equation-of-state relations, the pressure, density, and electron temperature are obtained by optimized fitting of the experimental output to smooth, global functional forms. Typical observational data that may be used includes x-ray self-emission, directional neutron time-of-flight signals, neutron yield, high-resolution x-ray spectra, and radiographic images. This approach has been validated by comparison with radiation-hydrodynamic simulations, producing semi-quantitative agreement. Model results implicate poor kinetic energy coupling to the hot core as the primary cause of the observed low thermonuclear burn yields.

  3. Design considerations for an inertial confinement fusion reactor power plant

    SciTech Connect

    Massey, J.V.; Simpson, J.E.

    1981-08-10

    To further define the engineering and economic concerns for inertial confinement fusion reactors (ICR's), a conceptual design study was performed by Bechtel Group Incorporated under the direction of Lawrence Livermore National Laboratory (LLNL). The study examined alternatives to the LLNL HYLIFE concept and expanded the previous balance of plant design to incorporate information from recent liquid metal cooled fast breeder reactor (LMFBR) power plant studies. The majority of the effort was to incorporate present laser and target physics models into a reactor design with a low coolant flowrate and a high driver repetition rate. An example of such a design is the LLNL JADE concept. In addition to producing a power plant design for LLNL using the JADE example, Bechtel has also examined the applicability of the EAGLE (Energy Absorbing Gas Lithium Ejector) concept.

  4. Status of Safety& Environmental Activities for Inertial Fusion Energy

    SciTech Connect

    Latkowski, J F; Reyes, S; Cadwallader, L C; Sharpe, J P; Marshall, T D; Merrill, B J; Moore, R L; Petti, D A; Falquina, R; Rodriguez, A; Sanz, J; Cabellos, O

    2002-11-25

    Over the past several years, significant progress has been made in the analysis of safety and environmental (S&E) issues for inertial fusion energy (IFE). Detailed safety assessments have been performed for the baseline power plant concepts, as well as for a conceptual target fabrication facility. Safety analysis results are helping to drive the agenda for experiments. A survey of the S&E characteristics--both radiological and chemical--of candidate target materials has been completed. Accident initiating events have been identified and incorporated into master logic diagrams, which will be essential to the detailed safety analyses that will be needed in the future. Studies of aerosol generation and transport will have important safety implications. A Monte Carlo-based uncertainty analysis procedure has been developed for use in neutron activation calculations. Finally, waste management issues are receiving increased attention and are deserving of further discussion.

  5. Fuel Encapsulation for Inertial Electrostatic Confinement Nuclear Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Macleod, C.

    Inertial Electrostatic Confinement (IEC) is an approach to nuclear fusion which utilises the properties of electrostatically accelerated ion-beams instead of hot plasmas. The best known device which uses the principle is the Farnsworth-Hirsch fusor. It has been argued that such devices have some potential advantages in spaceflight and in-particular as power-supplies for trans-atmospheric propulsion. This paper builds on previous work in the field and focuses on how the fixing of the fuel for such reactors in a solid, liquid or encapsulated form may provide a high enough energy-density to make such devices practical power sources. Several methods of fixing the fuel are discussed; theoretical calculations are presented and applicable literature is reviewed. Finally, there is a discussion of practical issues and feasibility, together with suggestions for further work.

  6. Polyvinyl alcohol coating of polystyrene inertial confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Lee, M. C.; Crawley, R. L.; Downs, R. L.

    1985-01-01

    An inertial confinement fusion (ICF) target made of polystyrene is first levitated in an acoustic field. The surface of the target is then etched using an appropriate solution (e.g., cyclohexane) to enhance the wetting characteristics. A specially prepared polyvinyl alcohol solution is atomized using an acoustic atomizer and deposited on the surface of the target. The solution is air dried to form a thin coating (2 microns) on the target (outside diameter of about 350-850 microns). Thicker coatings are obtained by repeated applications of the coating solutions. Preliminary results indicate that uniform coatings may be achievable on the targets with a background surface smoothness in the order of 1000 A.

  7. Uniform hydrogen fuel layers for inertial fusion targets by microgravity

    NASA Technical Reports Server (NTRS)

    Parks, P. B.; Fagaly, Robert L.

    1994-01-01

    A critical concern in the fabrication of targets for inertial confinement fusion (ICF) is ensuring that the hydrogenic (D(sub 2) or DT) fuel layer maintains spherical symmetry. Solid layered targets have structural integrity, but lack the needed surface smoothness. Liquid targets are inherently smooth, but suffer from gravitationally induced sagging. One method to reduce the effective gravitational field environment is freefall insertion into the target chamber. Another method to counterbalance field gravitational force is to use an applied magnetic field combined with a gradient field to induce a magnetic dipole force on the liquid fuel layer. Based on time dependent calculations of the dynamics of the liquid fuel layer in microgravity environments, we show that it may be possible to produce a liquid layered ICF target that satisfies both smoothness and symmetry requirements.

  8. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusion propulsion applications

    SciTech Connect

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-10-02

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  9. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  10. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experimentsa)

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Rochau, G. A.; Savage, M. E.; Schroen, D. G.; Stygar, W. A.; Vesey, R. A.

    2015-05-01

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6-8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2-0.4 g/cm3. In these experiments, up to 5 × 1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1-2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  11. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    DOE PAGESBeta

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Ruiz, Carlos L.; Sinars, Daniel Brian; Harding, Eric C.; et al

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as highmore » as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less

  12. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  13. Status of target physics for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    1990-03-01

    A four day review to assess the status of target physics of inertial confinement fusion was held at U.S. Department of Energy (DOE) Headquarters on November 14 to 17, 1988. This review completes the current series of reviews of the inertial fusion program elements to assess the status of the data base for a decision to proceed with the proposed Laboratory Microfusion Facility (LMF) that is being planned. In addition to target physics, the program elements that have been reviewed previously include the driver technology development for KrF and solid-state lasers, and the light-on beam pulsed power system. This series of reviews was undertaken for internal DOE assessment in anticipation of the ICF program review mandated by the Congress in 1988 to be completed in 1990 to assess the significance and implications of the progress that has been realized in the laboratory and the underground Halite/Centurion experiments. For this target physics review, both the direct and the indirect drive approaches were considered. The principal issues addressed in this review were: (1) the adequacy of the present target physics data base in making a decision to proceed with design and construction of LMF now as opposed to continuing planning activities at this time; (2) the desirability of specific additional target physics data in reducing the risk involved in a DOE decision to construct an LMF; (3) the continuing role of Halite/Centurion experiments; (4) the priority given to the direct drive approach; and (5) the optimal program-elements structure to resolve the critical issues of an LMF decision. Specific findings relating to these five issues are summarized.

  14. An Inertial-Fusion Z-Pinch Power Plant Concept

    SciTech Connect

    DERZON,MARK S.; ROCHAU,GARY E.; DEGROOT,J.; OLSON,CRAIG L.; PETERSON,P.; PETERSON,R.R.; SLUTZ,STEPHEN A.; ZAMORA,ANTONIO J.

    2000-12-15

    With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30

  15. Inertial Confinement Fusion: Quarterly report, April-June 1996

    SciTech Connect

    Correll, D.

    1996-06-01

    The lead article, `Ion-beam propagation in a low-density reactor chamber for heavy-ion inertial fusion` (p. 89), explores the ability of heavy-ion beams to be adequately transported and focused in an IFE reactor. The next article, `Efficient production and applications of 2- to 10-keV x rays by laser-heated underdense radiators` (p. 96), explores the ability of the NIF to produce sufficient high-energy x rays for diagnostic backlighting, target preheating, or uniform irradiation of large test objects for Nuclear Weapons Effects Testing. For capsule implosion experiments, the increasing energies and distances involved in the NIF compared to Nova require the development of new diagnostics methods. The article `Fusion reaction-rate measurements--Nova and NIF` (p. 115) first reviews the use of time-resolved neutron measurements on Nova to monitor fusion burn histories and then explores the limitations of that technique, principally Doppler broadening, for the proposed NIF. It also explores the use of gamma rays on Nova, thereby providing a proof-of-principle for using gamma rays for monitoring fusion burn histories on the NIF. The articles `The energetics of gas-filled hohlraums` (p. 110) and `Measurements of laser- speckle-induced perturbations in laser-driven foils` (p. 123) report measurements on Nova of two important aspects of implosion experiments. The first characterizes the amount of energy lost from a hohlraum by stimulated Brillouin and Raman scattering as a function of gas fill and laser-beam uniformity. The second of these articles shows that the growth of density nonuniformities implanted on smooth capsule surfaces by laser speckle can be correlated with the effects of physical surface roughness. The article `Laser-tissue interaction modeling with the LATIS computer program` (p. 103) explores the use of modeling to enhance the effectiveness--maximize desired effects and minimize collateral damage--of lasers for medical purposes.

  16. A semi-analytic model of magnetized liner inertial fusion

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  17. Inertial Fusion Target Physics Advantages with the Krypton Fluoride Laser

    NASA Astrophysics Data System (ADS)

    Obenschain, Stephen

    2010-11-01

    The krypton fluoride (KrF) laser's short wavelength, broad bandwidth and capability to provide extremely uniform target illumination are advantages towards obtaining high gain direct drive implosions. The short wavelength helps suppress deleterious laser-plasma instabilities, and allows one to employ higher ablation pressures. In addition, the KrF architecture allows one to zoom down the focal diameter to follow the size of the imploding pellet, thereby improving the coupling efficiency. The NRL researchers have been conducting theoretical and experimental studies to quantify the beneficial effects of utilizing KrF light. Experiments using the Nike facility have confirmed that KrF light significantly increases the threshold for laser-plasma instability. This presentation will discuss the observed target physics with KrF light and its effects towards facilitating the high gains needed for power production with inertial fusion. Simulations indicate that shock ignited designs can achieve gains above 200 with KrF energies as low a 1 megajoule. For fusion energy a laser driver must be capable of high repetition rates (5-10 Hz) along with adequate efficiency and durability. The Electra KrF 30-cm aperture electron-beam-pumped amplifier has demonstrated long duration continuous operation at high-repetition rates. This and other advances show that the KrF laser should be able to meet the requirements.

  18. Innovative approaches to inertial confinement fusion reactors: Final report

    SciTech Connect

    Bourque, R.F.; Schultz, K.R.

    1986-11-01

    Three areas of innovative approaches to inertial confinement fusion (ICF) reactor design are given. First, issues pertaining to the Cascade reactor concept are discussed. Then, several innovative concepts are presented which attempt to directly recover the blast energy from a fusion target. Finally, the Turbostar concept for direct recovery of that energy is evaluated. The Cascade issues discussed are combustion of the carbon granules in the event of air ingress, the use of alternate granule materials, and the effect of changes in carbon flow on details of the heat exchanger. Carbon combustion turns out to be a minor problem. Four ICF innovative concepts were considered: a turbine with ablating surfaces, a liquid piston system, a wave generator, and a resonating pump. In the final analysis, none show any real promise. The Turbostar concept of direct recovery is a very interesting idea and appeared technically viable. However, it shows no efficiency gain or any decrease in capital cost compared to reactors with conventional thermal conversion systems. Attempts to improve it by placing a close-in lithium sphere around the target to increase gas generation increased efficiency only slightly. It is concluded that these direct conversion techniques require thermalization of the x-ray and debris energy, and are Carnot limited. They therefore offer no advantage over existing and proposed methods of thermal energy conversion or direct electrical conversion.

  19. Experimental progress toward magnetized liner inertial fusion on Z

    NASA Astrophysics Data System (ADS)

    Sinars, Daniel; Herrmann, Mark; Cuneo, Michael; Lamppa, Derek; Lopez, Andrew; McBride, Ryan; Rovang, Dean; Hanson, David; Harding, Eric; Nakhleh, Charles; Slutz, Stephen; Vesey, Roger; Sefkow, Adam; Peterson, Kyle

    2011-10-01

    Yields exceeding 100 kJ may be possible on the 25 MA Z facility at Sandia using the implosion of cylindrical metal liners onto magnetized (>10 T) and preheated (100-500 eV) deuterium-tritium fuel [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. The fusion fuel in such targets absorbs about 100 kJ, so a 100 kJ yield would be `scientific breakeven.' Suitable liner targets (Al and Be) have been fabricated and used in experiments on the magneto-Rayleigh-Taylor instability. Magnetic field coil prototypes for >10 T axial fields are being tested. Preheat experiments using the multi-kJ Z-Beamlet laser are planned. Cryogenic deuterium fuel systems have been developed. Integrated magnetized liner inertial fusion (MagLIF) tests using deuterium fuel are expected in 2013. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Inertial confinement fusion based on the ion-bubble trigger

    SciTech Connect

    Jafari, S. Nilkar, M.; Ghasemizad, A.; Mehdian, H.

    2014-10-15

    Triggering the ion-bubble in an inertial confinement fusion, we have developed a novel scheme for the fast ignition. This scheme relies on the plasma cavitation by the wake of an intense laser pulse to generate an ion-bubble. The bubble acts both as an intense electron accelerator and as an electron wiggler. Consequently, the accelerated electrons trapped in the bubble can emit an intense tunable laser light. This light can be absorbed by an ablation layer on the outside surface of the ignition capsule, which subsequently drills it and thereby produces a guide channel in the pellet. Finally, the relativistic electron beam created in the bubble is guided through the channel to the high density core igniting the fusion fuel. The normalized beam intensity and beam energy required for triggering the ignition have been calculated when core is heated by the e-beam. In addition, through solving the momentum transfer, continuity and wave equations, a dispersion relation for the electromagnetic and space-charge waves has been analytically derived. The variations of growth rate with the ion-bubble density and electron beam energy have been illustrated. It is found that the growth rates of instability are significantly controlled by the ions concentration and the e-beam energy in the bubble.

  1. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.

    2015-11-01

    In inertial confinement fusion, a spherical capsule of cryogenic DT is accelerated inward at a high velocity. Near stagnation, a dense hot spot is formed where the deuterium and tritium ions begin to fuse, creating a 3.5-MeV alpha particle per reaction. These alpha particles deposit energy back into the plasma, thereby increasing the pressure, temperature, and reaction rate. This feedback process is called ``alpha heating,'' and ignition is a direct consequence of this thermal instability. The onset of a burning-plasma regime occurs when the total alpha-particle energy produced exceeds the shell compression work. Using an analytic compressible-shell model for the implosion, it is found that the onset of the burning-plasma regime is a unique function of the neutron yield enhancement caused by alpha particles for any target, direct or indirect drive. This yield enhancement can then be inferred from experimentally measureable quantities, such as the Lawson parameter. From this analysis, the onset of a burning plasma occurs at yields exceeding 50 kJ for implosions at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  2. Complexity versus availability for fusion: The potential advantages of inertial fusion energy

    SciTech Connect

    Perkins, L.J.,

    1996-09-05

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. We examine these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compare these factors with corresponding scheduled and unscheduled outage data from present day fission experience. We stress that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself Given we must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. We indicate that such requirements can probably be met for IFE plants. We recommend that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggest that databases are probably adequate for this task.

  3. Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction

    PubMed Central

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J.

    2014-01-01

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model. PMID:25157546

  4. Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.

    PubMed

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J

    2014-01-01

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model. PMID:25157546

  5. Direct-drive inertial confinement fusion: A review

    NASA Astrophysics Data System (ADS)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Schmitt, A. J.; Sethian, J. D.; Short, R. W.; Skupsky, S.; Theobald, W.; Kruer, W. L.; Tanaka, K.; Betti, R.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D.

    2015-11-01

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser-plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon-decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct

  6. Direct-drive inertial confinement fusion: A review

    SciTech Connect

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; and others

    2015-11-15

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline

  7. Direct-drive inertial confinement fusion: A review

    DOE PAGESBeta

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; et al

    2015-11-25

    In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser

  8. Direct-drive inertial confinement fusion: A review

    SciTech Connect

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Schmitt, A. J.; Sethian, J. D.; Short, R. W.; Skupsky, S.; Theobald, W.; Kruer, W. L.; Tanaka, K.; Betti, R.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D.

    2015-11-25

    In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for

  9. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    SciTech Connect

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Hess, M. H.; and others

    2015-05-15

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10{sup 12} have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm{sup 3}. In these experiments, up to 5 × 10{sup 10} secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm{sup 2}, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10{sup 10}. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  10. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    SciTech Connect

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Ruiz, Carlos L.; Sinars, Daniel Brian; Harding, Eric C.; Jennings, Christopher A.; Awe, Thomas James; Geissel, Matthias; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Harvey-Thompson, Adam James; Herrmann, Mark C.; Mark Harry Hess; Lamppa, Derek C.; Martin, Matthew R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, Gregory A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger Alan

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  11. Inertial Confinement Fusion quarterly report, January--March 1995. Volume 5, No. 2

    SciTech Connect

    1995-09-01

    The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included this quarter include: the role of the National Ignition Facility in the development of Inertial Confinement Fusion, laser-plasma interactions in large gas-filled hohlraums, evolution of solid-state induction modulators for a heavy-ion recirculator, the National Ignition Facility project, and terminal-level relaxation in Nd-doped laser material.

  12. Cluster ion beam polishing for inertial confinement fusion target capsules

    SciTech Connect

    McEachern, R., LLNL

    1998-06-09

    Targets for Inertial Confinement Fusion (ICF) typically consist of a hollow, spherical capsule filled with a mixture of hydrogen isotopes. Typically, these capsules are irradiated by short, intense pulses of either laser light (``direct drive``) or laser-generated. x-rays (``indirect drive``), causing them to implode This compresses and heats the fuel, leading to thermonuclear fusion. This process is highly sensitive to hydrodynamic (e.g., Rayleigh-Taylor) instabilities, which can be initiated by imperfections in the target. Thus, target capsules must be spherical and smooth One of the lead capsule designs for the National Ignition Facility, a 1.8 MJ laser being built at Livermore, calls for a 2-mm- diam capsule with a 150-{micro}m-thick copper-doped beryllium wall. These capsules can be fabricated by sputter depositing the metal onto a spherical plastic mandrel. This results in surfaces with measured Rq`s of 50 to 150 nm, as measured with an atomic force microscope For optimal performance the roughness should be below 10 nm rms We have begun studying the use of ion cluster beam polishing as a means of improving the surface finish of as-deposited capsules In this approach, a batch of capsules would be agitated in a bounce pan inside a vacuum chamber during exposure to the cluster beam. This would ensure a uniform beam dose around the capsule. We have performed preliminary experiments on both Be flats and on a stationary Be capsule On the capsule, the measured Rq went from 64 nm before polishing to 15 nm after This result was obtained without any effort at process optimization. Similar smoothing was observed on the planar samples

  13. Adiabat-shaping in indirect drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Giraldez, E.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; Lafortune, K. N.; MacGowan, B. J.; Moody, J. D.; Nikroo, A.; Widmayer, C. C.

    2015-05-01

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  14. Thermal management in inertial fusion energy slab amplifiers

    NASA Astrophysics Data System (ADS)

    Sutton, Steven B.; Albrecht, George F.

    1995-12-01

    As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, cooling flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, we introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system.

  15. Recirculating induction accelerators for inertial fusion: Prospects and status

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cable, M.D.

    1995-09-03

    The US is developing the physics and technology of induction accelerators for heavy-ion beam-driven inertial fusion. The recirculating induction accelerator repeatedly passes beams through the same set of accelerating and focusing elements, thereby reducing both the length and gradient of the accelerator structure. This promises an attractive driver cost, if the technical challenges associated with recirculation can be met. Point designs for recirculator drivers were developed in a multi-year study by LLNL, LBNL, and FM Technologies, and that work is briefly reviewed here. To validate major elements of the recirculator concept, we are developing a small (4-5-m diameter) prototype recirculator which will accelerate a space-charge-dominated beam of K{sup +} ions through 15 laps, from 80 to 320 keV and from 2 to 8 mA. Transverse beam confinement is effected via permanent-magnet quadrupoles; bending is via electric dipoles. This ``Small Recirculator`` is being developed in a build-and-test sequence of experiments. An injector, matching section, and linear magnetic channel using seven half-lattice periods of permanent-magnet quadrupole lenses are operational. A prototype recirculator half-lattice period is being fabricated. This paper outlines the research program, and presents initial experimental results.

  16. Z-Pinch Driven Isentropic Compression for Inertial Fusion

    SciTech Connect

    Asay, J.R.; Hall, C.A.; Holland, K.G.; Slutz, S.A.; Spielman, R.B.; Stygar, W.A.

    1999-02-01

    The achievement of high gain with inertial fusion requires the compression of hydrogen isotopes to high density and temperatures. High densities can be achieved most efficiently by isentropic compression. This requires relatively slow pressure pulses on the order of 10-20 nanoseconds; however, the pressure profile must have the appropriate time. We present 1-D numerical simulations that indicate such a pressure profile can be generated by using pulsed power driven z pinches. Although high compression is calculated, the initial temperature is too low for ignition. Ignition could be achieved by heating a small portion of this compressed fuel with a short (-10 ps) high power laser pulse as previously described. Our 1-D calculations indicate that the existing Z-accelerator could provide the driving current (-20 MA) necessary to compress fuel to roughly 1500 times solid density. At this density the required laser energy is approximately 10 kJ. Multidimensional effects such as the Rayleigh-Taylor were not addressed in this brief numerical study. These effects will undoubtedly lower fuel compression for a given chive current. Therefore it is necessary to perform z-pinch driven compression experiments. Finally, we present preliminary experimental data from the Z-accelerator indicating that current can be efficiently delivered to appropriately small loads (- 5 mm radius) and that VISAR can be used measure high pressure during isentropic compression.

  17. Adiabat-shaping in indirect drive inertial confinement fusion

    SciTech Connect

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others

    2015-05-15

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  18. Neutron imaging development for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Caillaud, Tony; Landoas, Olivier; Thfoin, Isabelle; Philippe, Franck; Casner, Alexis; Bourgade, Jean-Luc; Glebov, Vladimir; Marshall, Frederic J.; Sangster, Craig; Park, Hye Sook; Robey, Harry; Amendt, Peter

    2009-11-01

    Various failure mechanisms may limit fuel compression and ignition during Inertial Confinement Fusion (ICF) experiments with MegaJoule class lasers (e.g., the Laser M'egaJoule: LMJ and the National Ignition Facility: NIF). A Neutron Imaging System (NIS) may be used to determine the asymmetries in the hot core and the surrounding cold fuel shell. To reveal such asymmetries, a NIS must record both a primary (14 MeV) and a down-scattered (5-10 MeV) neutron image with high SNR and an image plane spatial resolution as low as 5 μm. We report on the continuing development of an NIS diagnostic at the OMEGA laser facility, using coded apertures. A new large neutron camera (150 mm entrance diameter: scaled for LMJ/NIF design) has been activated at OMEGA. This camera will allow 5 μm resolution for LMJ neutron source. We have tested a set of three detectors that can be used for various NIS diagnostic experiments on OMEGA from low yield (10^9-10^10 neutrons) low resolution (32 μm) measurements at 4 m from the neutron source to high yield (10^12-10^14 neutrons) high resolution (15 μm) measurements at 13 m. The low yield configuration allowed us to record, the first neutron image on an indirect drive shot with pure deuterium filled capsules.

  19. Recirculating induction accelerators for inertial fusion: Prospects and status

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cable, M.D.

    1995-11-29

    The U.S. is developing the physics and technology of induction accelerators for heavy-ion beam-driven inertial fusion. The recirculating induction accelerator repeatedly passes beams through the same set of accelerating and focusing elements, thereby reducing both the length and gradient of the accelerator structure. This promises an attractive driver cost, if the technical challenges associated with recirculation can be met. Point designs for recirculator drivers were developed in a multi-year study by LLNL, LBNL, and FM Technologies, and that work is briefly reviewed here. To validate major elements of the recirculator concept, we are developing a small (4.5-m diameter) prototype recirculator which will accelerate a space-charge-dominated beam of K{sup +} ions through 15 laps, from 80 to 320 keV and from 2 to 8 mA. Transverse beam confinement is effected via permanent-magnet quadrupoles; bending is via electric dipoles. This {open_quotes}Small Recirculator{close_quotes} is being developed through a sequence of experiments. An injector, matching section, and linear magnetic channel using seven half-lattice periods of permanent-magnet quadrupole lenses are operational. A prototype recirculator half-lattice period is being fabricated. This paper outlines the research program, and presents initial experimental results.

  20. Production of hollow microspheres for inertial confinement fusion experiments

    SciTech Connect

    Cook, R.

    1994-12-01

    The targets used in inertial confinement fusion (ICF) experiments at the Lawrence Livermore National Laboratory are plastic capsules roughly 0.5 mm in diameter. The capsules, which typically have wall thicknesses from 20 to 60 {mu}m, must possess extraordinary symmetry and concentricity and must have surface finishes of less than 1000 {Angstrom} peak-to-valley variation over surface contours of from 10 to 100`s of {mu}m. This paper reviews the fabrication of these capsules, focusing on the production of the thin-walled polystyrene microshell mandrel around which the capsule is built. The relationship between the capsule characteristics, especially surface finish, and capsule performance is discussed, as are the methods of surface characterization and modification necessary for experiments designed to study the effects of surface roughness on implosion dynamics. Targets for the next generation of ICF facilities using more powerful laser drivers will have to be larger while meeting the same or even more stringent symmetry and surface finish requirements. Some of the technologies for meeting these needs are discussed briefly.

  1. Monte Carlo Particle Transport Capability for Inertial Confinement Fusion Applications

    SciTech Connect

    Brantley, P S; Stuart, L M

    2006-11-06

    A time-dependent massively-parallel Monte Carlo particle transport calculational module (ParticleMC) for inertial confinement fusion (ICF) applications is described. The ParticleMC package is designed with the long-term goal of transporting neutrons, charged particles, and gamma rays created during the simulation of ICF targets and surrounding materials, although currently the package treats neutrons and gamma rays. Neutrons created during thermonuclear burn provide a source of neutrons to the ParticleMC package. Other user-defined sources of particles are also available. The module is used within the context of a hydrodynamics client code, and the particle tracking is performed on the same computational mesh as used in the broader simulation. The module uses domain-decomposition and the MPI message passing interface to achieve parallel scaling for large numbers of computational cells. The Doppler effects of bulk hydrodynamic motion and the thermal effects due to the high temperatures encountered in ICF plasmas are directly included in the simulation. Numerical results for a three-dimensional benchmark test problem are presented in 3D XYZ geometry as a verification of the basic transport capability. In the full paper, additional numerical results including a prototype ICF simulation will be presented.

  2. Magnetized Inertial Fusion (MIF) Research at the Shiva Star Facility

    NASA Astrophysics Data System (ADS)

    Degnan, James; Grabowski, C.; Domonkos, M.; Ruden, E. L.; Amdahl, D. J.; White, W. M.; Frese, M. H.; Frese, S. D.; Wurden, G. A.; Weber, T. E.

    2015-11-01

    The AFRL Shiva Star capacitor bank (1300 μF, up to 120 kV) used typically at 4 to 5 MJ stored energy, 10 to 15 MA current, 10 μs current rise time, has been used to drive metal shell (solid liner) implosions for compression of axial magnetic fields to multi-megagauss levels, suitable for compressing magnetized plasmas to MIF conditions. MIF approaches use magnetic field to reduce thermal conduction relative to inertial confinement fusion (ICF). MIF substantially reduces required implosion speed and convergence. Using profiled thickness liner enables large electrode apertures and field-reversed configuration (FRC) injection. Using a longer capture region, FRC trapped flux lifetime was made comparable to implosion time and an integrated compression test was conducted. The FRC was radially compressed a factor of ten, to 100x density >1018 cm-3 (a world FRC record), but temperatures were only 300-400 eV, compared to intended several keV. Compression to megabar pressures was inferred by the observed liner rebound, but the heating rate during the first half of the compression was less than the normal FRC decay rate. Principal diagnostics were soft x-ray imaging, soft x-ray diodes, and neutron measurements. This work has been supported by DOE-OFES.

  3. Measurements of fusion neutrons from Magnetized Liner Inertial Fusion Experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E. C.; Awe, T. J.; Torres, J. A.; Jones, B.; Bur, J. A.; Cooper, G. W.; Styron, J. D.; Glebov, V. Yu.

    2015-11-01

    Strong evidence of thermonuclear neutron production has been observed during Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z accelerator. So far, these experiments have utilized deuterium fuel and produced primary DD fusion neutron yields up to 2e12 with electron and ion stagnation temperatures in the 2-3 keV range. We present MagLIF neutron measurements and compare to other data and implosion simulations. In addition to primary DD and secondary DT yields and ion temperatures, other complex physics regarding the degree of fuel magnetization and liner density are elucidated by the neutron measurements. Neutron diagnostic development for deuterium and future deuterium-tritium fuel experiments are also discussed. Sandia is sponsored by the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  4. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  5. The role of the National Ignition Facility in the development of inertial fusion energy

    SciTech Connect

    Logan, B.G.

    1996-06-01

    The authors have completed a conceptual design for a 1.8-MJ, 500-TW, 0.35-{mu}m solid-state laser system for the National Ignition Facility (NIF), which will demonstrate inertial fusion ignition and gain for national security, energy, and science applications. The technical goal of the U.S. Inertial Confinement Fusion (ICF) Program as stated in the current ICF Five-Year Program Plan is {open_quotes}to produce pure fusion ignition and burn in the laboratory, with fusion yields of 200 to 1000 MJ, in support of three missions: (1) to play an essential role in accessing physics regimes of interest in nuclear weapon design...; (2) to provide an above-ground simulation capability for nuclear weapon effects...; and (3) to develop inertial fusion energy for civilian power production.{close_quotes} This article addresses the third goal-- the development of inertial fusion energy (IFE). This article reports a variety of potential contributions the NIF could make to the development of IFE, drawn from a nationally attended workshop held at the University of California at Berkeley in Feb, 1994. In addition to demonstrating fusion ignition as a fundamental basis for IFE, the findings of the workshop, are that the NIF could also provide important data for target physics and fabrication technology, for IFE target chamber phenomena such as materials responses to target emissions, and for fusion power technology-relevant tests.

  6. Inertial Confinement Fusion quarterly report, April--June 1995. Volume 5, No. 3

    SciTech Connect

    1995-12-31

    The ICF Quarterly Reports is published four times each fiscal year by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. The journal reports selected current research within the ICF Program. Major areas of investigation presented here include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology.

  7. Improved computational methods for simulating inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Fatenejad, Milad

    This dissertation describes the development of two multidimensional Lagrangian code for simulating inertial confinement fusion (ICF) on structured meshes. The first is DRACO, a production code primarily developed by the Laboratory for Laser Energetics. Several significant new capabilities were implemented including the ability to model radiative transfer using Implicit Monte Carlo [Fleck et al., JCP 8, 313 (1971)]. DRACO was also extended to operate in 3D Cartesian geometry on hexahedral meshes. Originally the code was only used in 2D cylindrical geometry. This included implementing thermal conduction and a flux-limited multigroup diffusion model for radiative transfer. Diffusion equations are solved by extending the 2D Kershaw method [Kershaw, JCP 39, 375 (1981)] to three dimensions. The second radiation-hydrodynamics code developed as part of this thesis is Cooper, a new 3D code which operates on structured hexahedral meshes. Cooper supports the compatible hydrodynamics framework [Caramana et al., JCP 146, 227 (1998)] to obtain round-off error levels of global energy conservation. This level of energy conservation is maintained even when two temperature thermal conduction, ion/electron equilibration, and multigroup diffusion based radiative transfer is active. Cooper is parallelized using domain decomposition, and photon energy group decomposition. The Mesh Oriented datABase (MOAB) computational library is used to exchange information between processes when domain decomposition is used. Cooper's performance is analyzed through direct comparisons with DRACO. Cooper also contains a method for preserving spherical symmetry during target implosions [Caramana et al., JCP 157, 89 (1999)]. Several deceleration phase implosion simulations were used to compare instability growth using traditional hydrodynamics and compatible hydrodynamics with/without symmetry modification. These simulations demonstrate increased symmetry preservation errors when traditional hydrodynamics

  8. Laser beam propagation through inertial confinement fusion hohlraum plasmasa)

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Divol, L.; Meezan, N. B.; Dixit, S.; Neumayer, P.; Moody, J. D.; Pollock, B. B.; Ross, J. S.; Suter, L.; Glenzer, S. H.

    2007-05-01

    A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (Te=3.5keV), dense (ne=5×1020cm-3), long-scale length (L˜2mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I <2×1015Wcm-2. The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2keV to 3.5keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R=10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (ne=1021cm-3) in these targets, the inner beam ignition hohlraum conditions are accessed. In this case, stimulated Raman scattering dominates the backscattering processes and we show that scattering is small for gains less than 20 which can be achieved through proper choice of the laser beam intensity.

  9. HYLIFE-II inertial confinement fusion reactor design

    SciTech Connect

    Moir, R.W.

    1990-12-14

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li{sub 2}BeF{sub 4}) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW{center dot}h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 15 refs., 9 figs., 3 tabs.

  10. HYLIFE-II inertial confinement: Fusion power plant design

    SciTech Connect

    Moir, R.W.

    1990-12-14

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li{sub 2}BeF{sub 4}) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW{center dot}h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 16 refs., 6 figs., 2 tabs.

  11. Inertial confinement fusion. Quarterly report, July--September 1993: Volume 3, No. 4

    SciTech Connect

    Sacks, R.A.; Murphy, P.W.; Schleich, D.P.

    1993-12-31

    This report discusses the following research: Diode-pumped solid- state-laser driver for inertial fusion energy power plants; Longitudinal beam dynamics in heavy ion fusion accelerators; Design of the ion sources for heavy ion fusion; Measurement of electron density in laser-produced plasma with a soft x-ray moire deflectometer; and Analysis of weakly nonlinear three-dimensional Rayleigh-Taylor instability growth.

  12. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  13. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  14. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    SciTech Connect

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S.; Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H.

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ``drive`` inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

  15. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    SciTech Connect

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. ); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. (Lawrence Liver

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

  16. Use of the National Ignition Facility for the development of inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Tobin, M.; Logan, G.; Anderson, A.; Delarubiadiaz, T.

    1994-06-01

    The primary purpose of the workshop was to gather input from the inertial confinement fusion (ICF) laboratories, private industry, and universities on the potential use of the NIF to conduct experiments in support of the development of Inertial Fusion Energy (IFE). To accomplish this, we asked over 60 workshop participants to identify key credibility and development issues for IFE in four areas: Target Physics --Issues related to the design and performance of targets for IFE; Chamber Dynamics -- Issues in IFE chambers resulting from the deposition of x-rays and debris; Inertial Fusion Power Technology -- Issues for energy conversion, tritium breeding and processing, and radiation shielding; interactions of neutrons with materials; and chamber design; Target System -- Issues related to automated, high-production-rate manufacture of low-cost targets for IFE, target handling and transport, target injection, tracking, and beam pointing. These topics are discussed in this report.

  17. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  18. SAFIRE: A systems analysis code for ICF (inertial confinement fusion) reactor economics

    SciTech Connect

    McCarville, T.J.; Meier, W.R.; Carson, C.F.; Glasgow, B.B.

    1987-01-12

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code incorporates analytical models for scaling the cost and performance of several inertial confinement fusion reactor concepts for electric power. The code allows us to vary design parameters (e.g., driver energy, chamber pulse rate, net electric power) and evaluate the resulting change in capital cost of power plant and the busbar cost of electricity. The SAFIRE code can be used to identify the most attractive operating space and to identify those design parameters with the greatest leverage for improving the economics of inertial confinement fusion electric power plants.

  19. A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

    SciTech Connect

    Zhou, C. D.; Betti, R.

    2008-01-01

    This article demonstrates how the ignition condition (Lawson criterion) for inertial confinement fusion (ICF) can be cast in a form depending on the only two parameters of the compressed fuel assembly that can be measured with methods already in existence: the hot spot ion temperature and the total areal density.

  20. Inertial confinement fusion quarterly report, July--September 1994. Volume 4, Number 4

    SciTech Connect

    Honea, E.

    1994-09-01

    The ICF Quarterly continues with six articles in this issue describing recent developments in the Inertial Confinement Fusion (ICF) Program at Lawrence Livermore National Laboratory. The topics include plasma characterization, production of millimeter scale-length plasmas for studying laser-plasma instabilities, hohlraum physics, three-dimensional hydrodynamic modeling, crystal growth, and laser-beam smoothing.

  1. Engineering design of the Nova Laser Facility for inertial-confinement fusion

    SciTech Connect

    Simmons, W W; Godwin, R O; Hurley, C A; Wallerstein, E. P.; Whitham, K.; Murray, J. E.; Bliss, E. S.; Ozarski, R. G.; Summers, M. A.; Rienecker, F.; Gritton, D. G.; Holloway, F. W.; Suski, G. J.; Severyn, J. R.

    1982-01-25

    The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility.

  2. Nuclear-data needs for inertial-confinement fusion (ICF)

    SciTech Connect

    Haight, R.C.; Motz, H.T.

    1983-05-09

    Our survey was limited to ICF programs in the United States. It included researchers in laser and heavy ion fusion, target design, target diagnostics, and conceptual reactor design. We asked each of these people to read the current data needs for magnetic fusion energy and to comment on additional data that they require.

  3. Integrated systems for pulsed-power driven inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Cuneo, M. E.; Slutz, S. A.; Stygar, W. A.; Herrmann, M. C.; Sinars, D. B.; McBride, R. D.; Vesey, R. A.; Sefkow, A. B.; Mazarakis, M. G.; Vandevender, J. P.; Waisman, E. M.; Hansen, D. L.; Owen, A. C.; Jones, J. F.; Romero, J. A.; McKenney, J.

    2011-10-01

    Pulsed power fusion concepts integrate: (i) directly-magnetically-driven fusion targets that absorb large energies (10 MJ), (ii) efficient, rep-rated driver modules, (iii) compact, scalable, integrated driver architectures, (iv) driver-to-target coupling techniques with standoff and driver protection, and (v) long lifetime fusion chambers shielded by vaporizing blankets and thick liquid walls. Large fusion yields (3-30 GJ) and low rep-rates (0.1-1 Hz) may be an attractive path for IFE. Experiments on the ZR facility are validating physics issues for magnetically driven targets. Scientific breakeven (fusion energy = fuel energy) may be possible in the next few years. Plans for system development and integration will be discussed. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Inertial fusion technology spin-offs-history provides a glimpse of the future

    SciTech Connect

    Powell, H

    2000-03-07

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10{sup 6} J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10{sup -6} m) with picosecond (10{sup -12} s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet (EUV) lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. It is noteworthy that more than 40 R&D 100 awards, the ''Oscars of applied research'' have been received by members of the inertial fusion community over this period. Not surprisingly, the inertial fusion community has created many new companies based on these advances. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the United States, Europe, and Japan. The capabilities of inertial fusion research have also been exploited in numerous and diverse specific lines of scientific research. Examples include laboratory simulation of astrophysical phenomena; studies of the equation of state (EOS) of matter under conditions relevant to the interior of planets and

  5. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  6. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  7. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion.

    PubMed

    Gomez, M R; Slutz, S A; Sefkow, A B; Sinars, D B; Hahn, K D; Hansen, S B; Harding, E C; Knapp, P F; Schmit, P F; Jennings, C A; Awe, T J; Geissel, M; Rovang, D C; Chandler, G A; Cooper, G W; Cuneo, M E; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Peterson, K J; Porter, J L; Robertson, G K; Rochau, G A; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2). PMID:25375714

  8. Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.

    2014-10-01

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 T axial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te≈Ti, and produces up to 2×1012 thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 1010 secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  9. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE PAGESBeta

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; et al

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expandmore » the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  10. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    DOE PAGESBeta

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; et al

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclearmore » DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.« less

  11. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    SciTech Connect

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; Awe, Thomas James; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Harvey-Thompson, Adam James; Herrmann, Mark; Hess, M. H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Robertson, Grafton Kincannon; Rochau, Gregory A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  12. Inertial Confinement Fusion Program at Lawrence Livermore National Laboratory:. The National Ignition Facility, Inertial Fusion Energy, 100-1000 TW Lasers, and the Fast Igniter Concept

    NASA Astrophysics Data System (ADS)

    Howard Lowdermilk, W.

    The ultimate goal of worldwide research in inertial confinement fusion (ICF) is to develop fusion as an inexhaustible, economic, environmentally safe source of electric power. Following nearly thirty years of laboratory and underground fusion experiments, the next step toward this goal is to demonstrate ignition and propagating burn of fusion fuel in the laboratory. The National Ignition Facility (NIF) Project is being constructed at Lawrence Livermore National Laboratory (LLNL) for just this purpose. NIF will use advanced Nd-glass laser technology to deliver 1.8 MJ of 0.35 μm laser light in a shaped pulse, several nanoseconds in duration, achieving a peak power of 500 TW. A national community of U.S. laboratories is participating in this project, now in its final design phase. France and the United Kingdom are collaborating on development of required technology under bilateral agreements with the US. This paper presents key aspects of the laser design, and descriptions of principal laser and optical components. Follow-on development of lasers to meet the demands of an inertial fusion energy (IFE) power plant is reviewed. In parallel with the NIF Project and IFE developments, work is proceeding on ultrashort pulse lasers with peak power in the range of 100-1000 TW. A beamline on the Nova laser at LLNL recently delivered nearly 600 J of 1 μm light in a 0.5 ps duration pulse, for a peak power in excess of a petawatt (1015 W). This beamline, with advanced adaptive optics, will be capable of focused intensities in excess of 1021 W/cm2. Its primary purpose will be to test technological and scientific aspects of an alternate ignition concept, called the "Fast Igniter", that has the potential to produce higher fusion gain than conventional ICF.

  13. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.

    PubMed

    Gauthier, P; Chaland, F; Masse, L

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas. PMID:15600681

  14. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets

    SciTech Connect

    Gauthier, P.; Chaland, F.; Masse, L.

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas.

  15. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  16. Heavy ion beam propagation through a gas-filled chamber for inertial confinement fusion

    SciTech Connect

    Barboza, N.O.

    1996-10-01

    The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of {approximately}17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, {approximately}200 g/cm{sup 3} and {approximately}20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases {approximately}350 MJ of energy in optimized power plant scenarios.

  17. Inertial Sensor Error Reduction through Calibration and Sensor Fusion.

    PubMed

    Lambrecht, Stefan; Nogueira, Samuel L; Bortole, Magdo; Siqueira, Adriano A G; Terra, Marco H; Rocon, Eduardo; Pons, José L

    2016-01-01

    This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking. PMID:26901198

  18. Inertial Sensor Error Reduction through Calibration and Sensor Fusion

    PubMed Central

    Lambrecht, Stefan; Nogueira, Samuel L.; Bortole, Magdo; Siqueira, Adriano A. G.; Terra, Marco H.; Rocon, Eduardo; Pons, José L.

    2016-01-01

    This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking. PMID:26901198

  19. Knudsen and inverse Knudsen layer effect on tail ion distribution and fusion reactivity in inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas-pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. It is found that while the fast ion distribution can be significantly depleted in the hot spot, leading to a reduction of the fusion reactivity in this region, a surplus of fast ions is present in the neighboring cold region. The presence of this fast ion surplus in the neighboring cold region is shown to lead to a partial recovery of the fusion yield lost in the hot spot.

  20. Inertial fusion program. Progress report, July 1-December 31, 1978

    SciTech Connect

    Perkins, R.B.

    1980-11-01

    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

  1. Inertial fusion program, January 1-June 30, 1979

    SciTech Connect

    Skoberne, F.

    1981-06-01

    Progress in the development of high-energy short-pulse carbon dioxide laser systems for fusion research is reported. Improvements are outlined for the Los Alamos National Laboratory's Gemini System, which permitted over 500 shots in support of 10 different target experiments; the transformation of our eight-beam system, Helios, from a developmental to an operational facility that is capable of irradiating targets on a routine basis is described; and progress made toward completion of Antares, our 100- to 200-TW target irradiation system, is detailed. Investigations of phenomena such as phase conjugation by degenerate four-wave mixing and its applicability to laser fusion systems, and frequency multiplexing as a means toward multipulse energy extraction are summarized. Also discussed are experiments with targets designed for adiabatic compression. Progress is reported in the development of accurate diagnostics, especially for the detection of expanding ions, of neutron yield, and of x-ray emission. Significant advances in our theoretical efforts are summarized, such as the adaptation of our target design codes for use with the CRAY-1 computer, and new results leading to a better understanding of implosion phenomena are reported. The results of various fusion reactor studies are summarized, including the development of an ICF reactor blanket that offers a promising alternative to the usual lithium blanket, and the formulation of a capital-cost data base for laser fusion reactors to permit meaningful comparisons with other technologies.

  2. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  3. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ. PMID:26197131

  4. Alpha heating and burning plasmas in inertial confinement fusion

    SciTech Connect

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  5. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation

    PubMed Central

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-01-01

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191

  6. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.

    PubMed

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-01-01

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191

  7. Pre-Amplifier Module for Laser Inertial Confinement Fusion

    SciTech Connect

    Heebner, J E; Bowers, M W

    2008-02-06

    The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

  8. Index of light ion inertial confinement fusion publications and presentations January 1989 through December 1993

    SciTech Connect

    Sweeney, M.A.

    1995-11-01

    This report lists publications and presentations that are related to inertial confinement fusion and were authored or coauthored by Sandians in the Pulsed Power Sciences Center from 1989 through 1993. The 661 publications and presentations are categorized into the following general topics: (1) reviews, (2) ion sources, (3) ion diodes, (4) plasma opening switches, (5) ion beam transport, (6) targets and deposition physics, (7) advanced driver and pulsed power technology development, (8) diagnostics, and (9) code development. Research in these areas is arranged by topic in chronological order, with the early efforts under each topic presented first. The work is also categorized alphabetically by first author. A list of acronyms, abbreviations, and definitions of use in understanding light ion inertial confinement fusion research is also included.

  9. Development of backlighting sources for a Compton Radiography diagnostic of Inertial Confinement Fusion targets

    SciTech Connect

    Tommasini, R

    2010-04-23

    An important diagnostic tool for inertial confinement fusion is time-resolved imaging of the dense cold fuel surrounding the hot spot. Here we report on the source and diagnostic development of hard x-ray radiography and on the first radiographs of direct drive implosions obtained at photon energies up to about 100keV, where the Compton effect is the dominant contributor to the shell opacity. The radiographs of direct drive, plastic shell implosions obtained at the OMEGA laser facility have a spatial resolution of {approx}10um and a temporal resolution of {approx}10ps. This novel Compton Radiography is an invaluable diagnostic tool for Inertial Confinement Fusion targets, and will be integrated at the National Ignition Facility (NIF).

  10. Effects of large-angle Coulomb collisions on inertial confinement fusion plasmas.

    PubMed

    Turrell, A E; Sherlock, M; Rose, S J

    2014-06-20

    Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30)  m(-3) and temperatures around 1 keV. PMID:24996093

  11. Compression and combustion of non-cryogenic targets with a solid thermonuclear fuel for inertial fusion

    SciTech Connect

    Gus'kov, S. Yu.; Zmitrenko, N. V.; Sherman, V. E.

    2013-04-15

    Variants of a target with a solid thermonuclear fuel in the form of deuterium-tritium hydrides of light metals for an inertial fusion have been proposed. The laser-pulse-induced compression of non-cryogenic targets, as well as ignition and combustion of such targets, has been examined. The numerical calculations show that, despite a decrease in the caloric content of the fuel and an increase in the energy losses on intrinsic radiation in the target containing deuterium-tritium hydrides of light metals as compared to the target containing deuterium-tritium ice, the non-cryogenic target can ensure the fusion gain sufficient for its use in the energy cycle of a thermonuclear power plant based on the inertial plasma confinement method.

  12. Direct drive heavy-ion-beam inertial fusion at high coupling efficiency

    SciTech Connect

    Logan, B.G.; Perkins, L.J.; Barnard, J.J.

    2008-05-16

    Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.

  13. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments

    SciTech Connect

    Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.

    2012-06-15

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. This observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  14. The Rayleigh Taylor instability in inertial fusion, astrophysical plasma and flames

    NASA Astrophysics Data System (ADS)

    Bychkov, V.; Modestov, M.; Akkerman, V.; Eriksson, L.-E.

    2007-12-01

    Previous results are reviewed and new results are presented on the Rayleigh Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer).

  15. Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics

    SciTech Connect

    McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Betti, R.; Boehly, T.R.; Collins, T.J.B.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Igumenshchev, I.V.; Keck, R.L.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Marciante, J.; Marozas, J.a.; Marshall, F.J.; Maximov, A.V.; McKenty, P.W.; Morse, S.F.B.; Myatt, J.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J.D.

    2006-06-28

    Direct-drive inertial confinement fusion (ICF) is expected to demonstrate high gain on the National Ignition Facility (NIF) in the next decade and is a leading candidate for inertial fusion energy production. The NIF will initially be configured for x-ray drive and with no beams placed at the target equator to provide a symmetric irradiation of a direct-drive capsule. LLE is developing the “polar-direct-drive” (PDD) approach that repoints beams toward the target equator. Initial 2-D simulations have shown ignition. A unique “Saturn-like” plastic ring around the equator refracts the laser light incident near the equator toward the target, improving the drive uniformity.

  16. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    SciTech Connect

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N.

    1997-09-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade.

  17. Three-dimensional simulations of the implosion of inertial confinement fusion targets

    SciTech Connect

    Town, R.P.J.; Bell, A.R. )

    1991-09-30

    The viability of inertial confinement fusion depends crucially on implosion symmetry. A spherical three-dimensional hydrocode called PLATO has been developed to model the growth in asymmetries during an implosion. Results are presented in the deceleration phase which show indistinguishable linear growth rates, but greater nonlinear growth of the Rayleigh-Taylor instability than is found in two-dimensional cylindrical simulations. The three-dimensional enhancement of the nonlinear growth is much smaller than that found by Sakagami and Nishihara.

  18. Inertial Confinement Fusion quarterly report, October--December 1994. Volume 5, No. 1

    SciTech Connect

    1995-09-01

    The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included in this issue include: system description and initial performance results for beamlet, design and performance of the beamlet amplifiers and optical switch, beamlet pulse-generation and wavefront-control system, large-aperture, high- damage-threshold optics for beamlet, beamlet pulsed power system, beamlet laser diagnostics, and beam propagation and frequency conversion modeling for the beamlet laser.

  19. Ion Deflection for Final Optics In Laser Inertial Fusion Power Plants

    SciTech Connect

    Abbott, R P; Latkowski, J F

    2006-11-17

    Left unprotected, both transmissive and reflective final optics in a laser inertial fusion power plant would quickly fail from melting, pulsed thermal stresses, or degradation of optical properties as a result of ion implantation. One potential option for mitigating this threat is to magnetically deflect the ions such that they are directed into a robust energy dump. In this paper we detail integrated studies that have been carried out to asses the viability of this approach for protecting final optics.

  20. Systems modeling and analysis of heavy ion drivers for inertial fusion energy

    SciTech Connect

    Meier, W. R.

    1998-06-03

    A computer model for systems analysis of heavy ion drivers based on induction linac technology has been used to evaluate driver designs for inertial fusion energy (IFE). Design parameters and estimated costs have been determined for drivers with various ions, different charge states, different front-end designs, with and without beam merging, and various pulse compression and acceleration schedules. We have examined the sensitivity of the results to variations in component cost assumptions, design constraints, and selected design parameters

  1. The role of the NIF in the development of inertial fusion energy

    SciTech Connect

    Logan, B.G.

    1995-03-16

    Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-{micro}m-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE.

  2. Heavy ion beam transport in an inertial confinement fusion reactor

    SciTech Connect

    Barboza, N.

    1995-08-01

    A new code, bimc, is under development to determine if a beam of heavy ions can be focused to the necessary spot-size radius of about 2 mm within an inertial confinement reactor chamber where the background gas densities are on the order of 10{sup 14}--10{sup 15} cm{sup {minus}3} Lithium (or equivalent). Beam transport is expected to be strongly affected by stripping and collective plasma phenomena; however, if propagation is possible in this regime, it could lead to simplified reactor designs. The beam is modeled using a 2 1/2 D particle-in-cell (PIC) simulation code coupled with a Monte Carlo (MC) method for analyzing collisions. The MC code follows collisions between the beam ions and neutral background gas atoms that account for the generation of electrons and background gas ions (ionization), and an increase of the charge state of the beam ions (stripping). The PIC code models the complete dynamics of the interaction of the various charged particle species with the self generated electromagnetic fields. Details of the code model and preliminary results are presented.

  3. Mercury and Beyond: Diode-Pumped Solid-State Lasers for Inertial Fusion Energy

    SciTech Connect

    Bibeau, C.; Beach, R.J.; Bayramian, A.; Chanteloup, J.C.; Ebbers, C.A.; Emanuel, M.A.; Orth, C.D.; Rothenberg, J.E.; Schaffers, K.I.; Skidmore, J.A.; Sutton, S.B.; Zapata, L.E.; Payne, S.A.; Powell, H.T.

    1999-10-19

    We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule energy levels for fusion energy applications. The primary performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 pm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple target chambers for high energy density physics research.

  4. Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.

    PubMed

    Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao

    2013-08-01

    Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes. PMID:23702102

  5. Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Svyatskiy, D.; Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Huang, C.-K.; McDevitt, C. J.

    2015-09-01

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at the National Ignition Facility.

  6. Primary heat transfer loop design for the Cascade inertial confinement fusion reactor

    SciTech Connect

    Murray, K.A.; McDowell, M.W.

    1984-05-01

    This study investigates a heat exchanger and balance of plant design to accompany the Cascade inertial confinement fusion reaction chamber concept. The concept uses solid Li/sub 2/O or other lithium-ceramic granules, held to the wall of a rotating reaction chamber by centrifugal action, as a tritium breeding blanket and first wall protection. The Li/sub 2/O granules enter the chamber at 800 K and exit at 1200 K after absorbing the thermal energy produced by the fusion process.

  7. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    SciTech Connect

    Hedditch, John Bowden-Reid, Richard Khachan, Joe

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  8. Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions.

    PubMed

    Kagan, Grigory; Svyatskiy, D; Rinderknecht, H G; Rosenberg, M J; Zylstra, A B; Huang, C-K; McDevitt, C J

    2015-09-01

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at the National Ignition Facility. PMID:26382682

  9. Demonstration of Radiation Symmetry Control for Inertial Confinement Fusion in Double Z-Pinch Hohlraums

    NASA Astrophysics Data System (ADS)

    Vesey, R. A.; Cuneo, M. E.; Bennett, G. R.; Porter, J. L.; Adams, R. G.; Aragon, R. A.; Rambo, P. K.; Ruggles, L. E.; Simpson, W. W.; Smith, I. C.

    2003-01-01

    Simulations of a double Z-pinch hohlraum, relevant to the high-yield inertial-confinement-fusion concept, predict that through geometry design the time-integrated P2 Legendre mode drive asymmetry can be systematically controlled from positive to negative coefficient values. Studying capsule elonga­tion, recent experiments on Z confirm such control by varying the secondary hohlraum length. Since the experimental trend and optimum length are correctly modeled, confidence is gained in the simu­lation tools; the same tools predict capsule drive uniformity sufficient for high-yield fusion ignition.

  10. Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    SciTech Connect

    Kagan, Grigory; Svyatskiy, D.; Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Huang, C. -K.; McDevitt, C. J.

    2015-09-03

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. Thus, the ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at the National Ignition Facility.

  11. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  12. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 1: Executive Summary & Overview

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C.D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability economics, and technology development needs.

  13. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  14. The National Ignition Facility - Applications for Inertial Fusion Energy and High Energy Density Science

    SciTech Connect

    Campbell, E.M.; Hogan, W.J.

    1999-08-12

    Over the past several decades, significant and steady progress has been made in the development of fusion energy and its associated technology and in the understanding of the physics of high-temperature plasmas. While the demonstration of net fusion energy (fusion energy production exceeding that required to heat and confine the plasma) remains a task for the next millennia and while challenges remain, this progress has significantly increased confidence that the ultimate goal of societally acceptable (e.g. cost, safety, environmental considerations including waste disposal) central power production can be achieved. This progress has been shared by the two principal approaches to controlled thermonuclear fusion--magnetic confinement (MFE) and inertial confinement (ICF). ICF, the focus of this article, is complementary and symbiotic to MFE. As shown, ICF invokes spherical implosion of the fuel to achieve high density, pressures, and temperatures, inertially confining the plasma for times sufficient long (t {approx} 10{sup -10} sec) that {approx} 30% of the fuel undergoes thermonuclear fusion.

  15. Inertial and optical sensor fusion to compensate for partial occlusions in surgical tracking systems

    NASA Astrophysics Data System (ADS)

    He, Changyu; Liu, Yue

    2015-08-01

    To solve the occlusion problem in optical tracking system (OTS) for surgical navigation, this paper proposes a sensor fusion approach and an adaptive display method to handle cases where partial or total occlusion occurs. In the sensor fusion approach, the full 6D pose information provided by the optical tracker is used to estimate the bias of the inertial sensors when all of the markers are visible. When partial occlusion occurs, the optical system can track the position of at least one marker which can be combined with the orientation estimated from the inertial measurements to recover the full 6D pose information. When all the markers are invisible, the position tracking will be realized based on outputs of the Inertial Measurement Unit (IMU) which may generate increasing drifting error. To alert the user when the drifting error is great enough to influence the navigation, the images adaptive to the drifting error are displayed in the field of the user's view. The experiments are performed with an augmented reality HMD which displays the AR images and the hybrid tracking system (HTS) which consists of an OTS and an IMU. Experimental result shows that with proposed sensor fusion approach the 6D pose of the head with respect to the reference frame can be estimated even under partial occlusion conditions. With the help of the proposed adaptive display method, the users can recover the scene of markers when the error is considered to be relatively high.

  16. Inertial fusion program. Progress report, January 1-June 30, 1978

    SciTech Connect

    Skoberne, F.

    1980-05-01

    Studies and experiments aimed at investigating the possibility of restoring wavefront quality in optical systems through phase conjugation are summarized, and work that could lead to the development of highly damage-resistant isolators is discussed. The effects of various parameters on pulse-energy uniformity and of multipass extraction on laser efficiency are reported. Results of equation-of-state, shock propagation, multiburst simulation, and opacity measurements are discussed. Target designs are described that should provide a smooth transition from the exploding-pusher regime of experiments to that of isentropic compression. Progress in target fabrication techniques toward creating a 20-times-liquid-density target are outlined, and efforts that led to the extension of our neutron detection capability to levels of less than 10/sup 3/ n are summarized. The results of various studies of laser fusion application, e.g., for producing ultrahigh-temperature process heat or hydrogen from water decomposition are presented, as well as investigations of fusion-fission hybrids for the production of /sup 233/U from /sup 232/Th.

  17. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  18. Role of hydrodynamic instability growth in hot-spot mass gain and fusion performance of inertial confinement fusion implosions

    SciTech Connect

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2014-10-15

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified.

  19. Laser plasma interaction experiments in the context of inertial fusion

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Bandulet, H.; Depierreux, S.; Lewis, K.; Michel, P.; Michard, A.; Baldis, H. A.; Hulin, S.; Pesme, D.; Hüller, S.; Tikhonchuk, V.; Riconda, C.; Weber, S.

    2004-12-01

    In laser fusion, the coupling and the propagation of the laser beams in the plasma surrounding the pellet must be well controlled for to succeed in producing a high energy level. To achieve thermonuclear ignition and high gain, the coupling efficiency must be as high as possible, the uniformity of the energy deposition must be very good and the fast electron generation must be minimized. This implies a deep understanding of the laser plasma interaction mechanisms to keep the nonlinear processes at a low level. Important advances in laser plasma interaction physics have been achieved thanks to the converging efforts of the experimental and theoretical approaches. Among the different studies of the last few years, we will report results on three themes which are important for future fusion experiments. The first concerns the ability of plasmas to induce temporal and spatial incoherence to the laser beams during their propagation. Beam smoothing, beam spraying and increased incoherence may in turn reduce the level of backscattering instabilities. In laser fusion, multiple beams are used to irradiate the target. The effect of the overlap of the laser beams on parametric instabilities may complicate the problem. Not only is there the interplay between instabilities driven by one beam, but also the interplay between instabilities driven by different beams. In the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) experiment, although the overall stimulated Brillouin scattering (SBS) reflectivity was reduced, a well-defined resonance of the amplitude of ion acoustic waves (IAWs) associated with SBS has been observed for waves propagating along the bisecting direction between two laser beams. Energy transfer between two identical laser beams has been observed and correlated with plasma induced incoherence. The nonlinear saturation of stimulated scattering instabilities is a fundamental ingredient of the understanding of the observed and future reflectivity levels

  20. High convergence, indirect drive inertial confinement fusion experiments at Nova

    SciTech Connect

    Lerche, R.A.; Cable, M.D.; Hatchett, S.P.

    1995-06-02

    High convergence, indirect drive implosion experiments have been done at the Nova Laser Facility. The targets were deuterium and deuterium/tritium filled, glass microballoons driven symmetrically by x rays produced in a surrounding uranium hohlraum. Implosions achieved convergence ratios of 24:1 with fuel densities of 19 g/cm{sup 3}; this is equivalent to the range required for the hot spot of ignition scale capsules. The implosions used a shaped drive and were well characterized by a variety of laser and target measurements. The primary measurement was the fuel density using the secondary neutron technique (neutrons from the reaction {sup 2}H({sup 3}H,n){sup 4}He in initially pure deuterium fuel). Laser measurements include power, energy and pointing. Simultaneous measurement of neutron yield, fusion reaction rate, and x-ray images provide additional information about the implosion process. Computer models are in good agreement with measured results.

  1. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition

  2. Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Schmit, P. F.; Knapp, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.

    2014-10-01

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014), 10.1103/PhysRevLett.113.155003] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  3. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    PubMed

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs. PMID:25375715

  4. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  5. Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility.

    PubMed

    Perkins, L J; Betti, R; LaFortune, K N; Williams, W H

    2009-07-24

    Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of approximately 120-250 MJ may be possible with laser drive energies of 1-1.6 MJ, while gains of approximately 50 may still be achievable at only approximately 0.2 MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G approximately 126E (MJ);{0.510}. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path. PMID:19659364

  6. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  7. Inertial confinement fusion research and development studies. Final report, October 1979-August 1980

    SciTech Connect

    Bullis, R.; Finkelman, M.; Leng, J.; Luzzi, T.; Ojalvo, I.; Powell, E.; Sedgley, D.

    1980-08-01

    These Inertial Confinement Fusion (ICF) research and development studies were selected for structural, thermal, and vacuum pumping analyses in support of the High Yield Lithium Injection Fusion Energy (HYLIFE) concept development. An additional task provided an outlined program plan for an ICF Engineering Test Facility, using the HYLIFE concept as a model, although the plan is generally applicable to other ICF concepts. The HYLIFE is one promising type of ICF concept which features a falling array of liquid lithium jets. These jets surround the fusion reaction to protect the first structural wall (FSW) of the vacuum chamber by absorbing the fusion energy, and to act as the tritium breeder. The fusion energy source is a deuterium-tritium pellet injected into the chamber every second and driven by laser or heavy ion beams. The studies performed by Grumman have considered the capabilities of specific HYLIFE features to meet life requirements and the requirement to recover to preshot conditions prior to each subsequent shot. The components under investigation were the FSW which restrains the outward motion of the liquid lithium, the nozzle plate which forms the falling jet array, the graphite shield which is in direct top view of the fusion pellet, and the vacuum pumping system. The FSW studies included structural analysis, and definition of an experimental program to validate computer codes describing lithium motion and the resulting impact on the wall.

  8. Fusion of inertial and visual: a geometrical observer-based approach

    SciTech Connect

    Bonnabel, S.; Rouchon, P.

    2009-03-05

    The problem of combination between inertial sensors and CCD cameras is of paramount importance in various applications in robotics and autonomous navigation. In this paper we develop a totally geometric model for analysis of this problem, independently from a camera model and from the structure of the scene (landmarks etc.). This formulation can be used for data fusion in several inertial navigation problems. The estimation is then decoupled from the structure of the scene. We use it in the particular case of the estimation of the gyroscopes bias and we build a nonlinear observer which is easy to compute, provides an estimation of the biais, filters the image, and is by construction very robust to noise.

  9. Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement

    SciTech Connect

    Betti, R.; Chang, P.Y.; Spears, B.K.; Anderson, K.S.; Edwards, J.; Fatenejad, M.; Lindl, J.D.; McCrory, R.L.; Nora, R.; Shvarts, D.

    2010-04-23

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.

  10. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    SciTech Connect

    Betti, R.; Chang, P. Y.; Anderson, K. S.; Nora, R.; Spears, B. K.; Edwards, J.; Lindl, J. D.; Fatenejad, M.; McCrory, R. L.; Shvarts, D.

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.

  11. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    SciTech Connect

    1996-06-01

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Heavy-ion inertial fusion: influence of target gain on accelerator parameters for vacuum-propagation regimes in reaction chambers

    SciTech Connect

    Mark, J.W.K.; Bangerter, R.O.; Barletta, W.A.; Fawley, W.M.; Judd, D.L.

    1982-03-04

    Target physics imposes requirements on the design of inertial fusion drivers. The influence of beam propagation in near vacuum fusion reaction chambers is evaluated for the relation between target gain and the phase-space requirements of heavy-ion accelerators. Initial results suggest that neutralization of the ion beam has a much greater positive effect than the deleterious one of beam stripping provided that the fusion chamber pressure is < 10/sup -3/ torr (of Li vapor or equivalent).

  13. Contributions of the National Ignition Facility to the development of Inertial Fusion Energy

    NASA Astrophysics Data System (ADS)

    Tobin, M.; Logan, G.; Diazdelarubia, T.; Schrock, V.; Schultz, K.; Tokheim, Robert E.; Abdou, M.; Bangerter, R.

    1994-06-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NIF will use a (ge) 1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. The benefits of a micro-fusion capability in the laboratory include: essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF. Additionally, we believe it is feasible to inject up to four targets and engage them with the NIF laser by triggering the beams in groups of approximately 50 separated in time by approximately 0.1 s. Sub-ignition neutron yields would allow an indication of symmetry achieved in such proof-of-principle rep-rate experiments.

  14. Contributions of the National Ignition Facility to the development of inertial fusion energy. Revision 1

    SciTech Connect

    Tobin, M.; Logan, G.; Diaz De La Rubia, T.; Schrock, V.; Schultz, K.; Tokheim, R.; Abdou, M.; Bangerter, R.

    1994-10-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NM will use a {ge}1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. NIF will conduct more than 600 shots per year. The benefits of a micro-fusion capability in the laboratory include: Essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development, such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF.

  15. Inertial fusion results from Nova and implication for the future of ICF

    SciTech Connect

    Kilkenny, J.D.; Cable, M.D.; Campbell, E.M.; Coleman, L.W.; Correll, D.L.; Drake, R.P.; Ellis, R.J.; Glendinning, S.G.; Hatcher, C.W.; Hatchett, S.P.

    1988-10-01

    A key objective of the US Inertial Confinement Fusion Program is to obtain high yield (100-1000 MJ) implosions in a laboratory environment. This requires high grain from an inertial fusion target from a driver capable of delivering about 10 MJ. Recent results have been sufficiently encouraging that the US Department of Energy is planning for such a capability called the Laboratory Microfusion Facility (LMF). In the past two years, we have conducted implosion-related experiments with approximately 20 kJ of 0.35-{mu}m laser light in 1-ns temporally flat-topped pulses. These experiments were done with the Nova laser, the primary US facility devoted to radiatively driven inertial confinement fusion. Our results show that we can accurately model a significant fraction of the phenomena required to obtain the fuel conditions needed for high gain. Both the x-ray conversion efficiency and the growth of Rayleigh-Taylor hydrodynamic instabilities are shown to be at acceptable levels. Targets designed so that the shape of the stagnated fuel can be imaged show that the x-ray drive in our hohlraums can be made isotropic to better than 3%. With this optimized drive and temporally unshaped laser pulses many critical implosion parameters are measured on targets designed for higher density. Good agreement is obtained with one-dimensional simulations. Maximum compressions of between 20--30 in radius are measured with a variety of diagnostics. Improvements in the driver technology are demonstrated; we anticipate operation of Nova at the 50-kJ level at 3{omega}. 18 refs., 6 figs., 1 tab.

  16. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect

    Latkowski, J.F.

    1996-11-01

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  17. Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    SciTech Connect

    Glenzer, S. H.; MacGowan, B. J.; Meezan, N. B.; Adams, P. A.; Alfonso, J. B.; Alger, E. T.; Alherz, Z.; Alvarez, L. F.; Alvarez, S. S.; Amick, P. V.; Andersson, K. S.; Andrews, S. D.; Antonini, G. J.; Arnold, P. A.; Atkinson, D. P.; Auyang, L.; Azevedo, S. G.; Balaoing, B. N. M.; Baltz, J. A.; Barbosa, F.

    2011-02-25

    We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of T{sub RAD}=300 eV and a symmetric implosion to a 100 {mu}m diameter hot core.

  18. High temperatures in inertial confinement fusion radiation cavities heated with 0. 35 [mu]m light

    SciTech Connect

    Kauffman, R.L.; Suter, L.J.; Darrow, C.B.; Kilkenny, J.D.; Kornblum, H.N.; Montgomery, D.S.; Phillion, D.W.; Rosen, M.D.; Theissen, A.R.; Wallace, R.J.; Ze, F. )

    1994-10-24

    We have demonstrated efficient coupling of 0.35 [mu]m laser light for radiation production in inertial confinement fusion (ICF) cavity targets. Temperatures of 270 eV are measured in cavities used for implosions and 300 eV in smaller cavities, significantly extending the temperature range attained in the laboratory to those required for high-gain indirect drive ICF. High-contrast, shaped drive pulses required for implosion experiments have also been demonstrated for the first time. Low levels of scattered light and fast electrons are observed, indicating that plasma instability production is not significant.

  19. Sensitivity of mix in Inertial Confinement Fusion simulations to diffusion processes

    NASA Astrophysics Data System (ADS)

    Melvin, Jeremy; Cheng, Baolian; Rana, Verinder; Lim, Hyunkyung; Glimm, James; Sharp, David H.

    2015-11-01

    We explore two themes related to the simulation of mix within an Inertial Confinement Fusion (ICF) implosion, the role of diffusion (viscosity, mass diffusion and thermal conduction) processes and the impact of front tracking on the growth of the hydrodynamic instabilities. Using the University of Chicago HEDP code FLASH, we study the sensitivity of post-shot simulations of a NIC cryogenic shot to the diffusion models and front tracking of the material interfaces. Results of 1D and 2D simulations are compared to experimental quantities and an analysis of the current state of fully integrated ICF simulations is presented.

  20. Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; MacGowan, B. J.; Meezan, N. B.; Adams, P. A.; Alfonso, J. B.; Alger, E. T.; Alherz, Z.; Alvarez, L. F.; Alvarez, S. S.; Amick, P. V.; Andersson, K. S.; Andrews, S. D.; Antonini, G. J.; Arnold, P. A.; Atkinson, D. P.; Auyang, L.; Azevedo, S. G.; Balaoing, B. N. M.; Baltz, J. A.; Barbosa, F.; Bardsley, G. W.; Barker, D. A.; Barnes, A. I.; Baron, A.; Beeler, R. G.; Beeman, B. V.; Belk, L. R.; Bell, J. C.; Bell, P. M.; Berger, R. L.; Bergonia, M. A.; Bernardez, L. J.; Berzins, L. V.; Bettenhausen, R. C.; Bezerides, L.; Bhandarkar, S. D.; Bishop, C. L.; Bond, E. J.; Bopp, D. R.; Borgman, J. A.; Bower, J. R.; Bowers, G. A.; Bowers, M. W.; Boyle, D. T.; Bradley, D. K.; Bragg, J. L.; Braucht, J.; Brinkerhoff, D. L.; Browning, D. F.; Brunton, G. K.; Burkhart, S. C.; Burns, S. R.; Burns, K. E.; Burr, B.; Burrows, L. M.; Butlin, R. K.; Cahayag, N. J.; Callahan, D. A.; Cardinale, P. S.; Carey, R. W.; Carlson, J. W.; Casey, A. D.; Castro, C.; Celeste, J. R.; Chakicherla, A. Y.; Chambers, F. W.; Chan, C.; Chandrasekaran, H.; Chang, C.; Chapman, R. F.; Charron, K.; Chen, Y.; Christensen, M. J.; Churby, A. J.; Clancy, T. J.; Cline, B. D.; Clowdus, L. C.; Cocherell, D. G.; Coffield, F. E.; Cohen, S. J.; Costa, R. L.; Cox, J. R.; Curnow, G. M.; Dailey, M. J.; Danforth, P. M.; Darbee, R.; Datte, P. S.; Davis, J. A.; Deis, G. A.; Demaret, R. D.; Dewald, E. L.; di Nicola, P.; di Nicola, J. M.; Divol, L.; Dixit, S.; Dobson, D. B.; Doppner, T.; Driscoll, J. D.; Dugorepec, J.; Duncan, J. J.; Dupuy, P. C.; Dzenitis, E. G.; Eckart, M. J.; Edson, S. L.; Edwards, G. J.; Edwards, M. J.; Edwards, O. D.; Edwards, P. W.; Ellefson, J. C.; Ellerbee, C. H.; Erbert, G. V.; Estes, C. M.; Fabyan, W. J.; Fallejo, R. N.; Fedorov, M.; Felker, B.; Fink, J. T.; Finney, M. D.; Finnie, L. F.; Fischer, M. J.; Fisher, J. M.; Fishler, B. T.; Florio, J. W.; Forsman, A.; Foxworthy, C. B.; Franks, R. M.; Frazier, T.; Frieder, G.; Fung, T.; Gawinski, G. N.; Gibson, C. R.; Giraldez, E.; Glenn, S. M.; Golick, B. P.; Gonzales, H.; Gonzales, S. A.; Gonzalez, M. J.; Griffin, K. L.; Grippen, J.; Gross, S. M.; Gschweng, P. H.; Gururangan, G.; Gu, K.; Haan, S. W.; Hahn, S. R.; Haid, B. J.; Hamblen, J. E.; Hammel, B. A.; Hamza, A. V.; Hardy, D. L.; Hart, D. R.; Hartley, R. G.; Haynam, C. A.; Heestand, G. M.; Hermann, M. R.; Hermes, G. L.; Hey, D. S.; Hibbard, R. L.; Hicks, D. G.; Hinkel, D. E.; Hipple, D. L.; Hitchcock, J. D.; Hodtwalker, D. L.; Holder, J. P.; Hollis, J. D.; Holtmeier, G. M.; Huber, S. R.; Huey, A. W.; Hulsey, D. N.; Hunter, S. L.; Huppler, T. R.; Hutton, M. S.; Izumi, N.; Jackson, J. L.; Jackson, M. A.; Jancaitis, K. S.; Jedlovec, D. R.; Johnson, B.; Johnson, M. C.; Johnson, T.; Johnston, M. P.; Jones, O. S.; Kalantar, D. H.; Kamperschroer, J. H.; Kauffman, R. L.; Keating, G. A.; Kegelmeyer, L. M.; Kenitzer, S. L.; Kimbrough, J. R.; King, K.; Kirkwood, R. K.; Klingmann, J. L.; Knittel, K. M.; Kohut, T. R.; Koka, K. G.; Kramer, S. W.; Krammen, J. E.; Krauter, K. G.; Krauter, G. W.; Krieger, E. K.; Kroll, J. J.; La Fortune, K. N.; Lagin, L. J.; Lakamsani, V. K.; Landen, O. L.; Lane, S. W.; Langdon, A. B.; Langer, S. H.; Lao, N.; Larson, D. W.; Latray, D.; Lau, G. T.; Le Pape, S.; Lechleiter, B. L.; Lee, Y.; Lee, T. L.; Li, J.; Liebman, J. A.; Lindl, J. D.; Locke, S. F.; Loey, H. K.; London, R. A.; Lopez, F. J.; Lord, D. M.; Lowe-Webb, R. R.; Lown, J. G.; Ludwigsen, A. P.; Lum, N. W.; Lyons, R. R.; Ma, T.; MacKinnon, A. J.; Magat, M. D.; Maloy, D. T.; Malsbury, T. N.; Markham, G.; Marquez, R. M.; Marsh, A. A.; Marshall, C. D.; Marshall, S. R.; Maslennikov, I. L.; Mathisen, D. G.; Mauger, G. J.; Mauvais, M.-Y.; McBride, J. A.; McCarville, T.; McCloud, J. B.; McGrew, A.; McHale, B.; Macphee, A. G.; Meeker, J. F.; Merill, J. S.; Mertens, E. P.; Michel, P. A.; Miller, M. G.; Mills, T.; Milovich, J. L.; Miramontes, R.; Montesanti, R. C.; Montoya, M. M.; Moody, J.; Moody, J. D.; Moreno, K. A.; Morris, J.; Morriston, K. M.; Nelson, J. R.; Neto, M.; Neumann, J. D.; Ng, E.; Ngo, Q. M.; Olejniczak, B. L.; Olson, R. E.; Orsi, N. L.; Owens, M. W.; Padilla, E. H.; Pannell, T. M.; Parham, T. G.; Patterson, R. W., Jr.; Pavel, G.; Prasad, R. R.; Pendlton, D.; Penko, F. A.; Pepmeier, B. L.; Petersen, D. E.; Phillips, T. W.; Pigg, D.; Piston, K. W.; Pletcher, K. D.; Powell, C. L.; Radousky, H. B.; Raimondi, B. S.; Ralph, J. E.; Rampke, R. L.; Reed, R. K.; Reid, W. A.; Rekow, V. V.; Reynolds, J. L.; Rhodes, J. J.; Richardson, M. J.; Rinnert, R. J.; Riordan, B. P.; Rivenes, A. S.; Rivera, A. T.; Roberts, C. J.; Robinson, J. A.; Robinson, R. B.; Robison, S. R.; Rodriguez, O. R.; Rogers, S. P.; Rosen, M. D.; Ross, G. F.; Runkel, M.; Runtal, A. S.; Sacks, R. A.; Sailors, S. F.; Salmon, J. T.; Salmonson, J. D.; Saunders, R. L.; Schaffer, J. R.; Schindler, T. M.; Schmitt, M. J.; Schneider, M. B.; Segraves, K. S.; Shaw, M. J.; Sheldrick, M. E.; Shelton, R. T.; Shiflett, M. K.; Shiromizu, S. J.; Shor, M.; Silva, L. L.; Silva, S. A.; Skulina, K. M.; Smauley, D. A.; Smith, B. E.; Smith, L. K.; Solomon, A. L.; Sommer, S.; Soto, J. G.; Spafford, N. I.; Speck, D. E.; Springer, P. T.; Stadermann, M.; Stanley, F.; Stone, T. G.; Stout, E. A.; Stratton, P. L.; Strausser, R. J.; Suter, L. J.; Sweet, W.; Swisher, M. F.; Tappero, J. D.; Tassano, J. B.; Taylor, J. S.; Tekle, E. A.; Thai, C.; Thomas, C. A.; Thomas, A.; Throop, A. L.; Tietbohl, G. L.; Tillman, J. M.; Town, R. P. J.; Townsend, S. L.; Tribbey, K. L.; Trummer, D.; Truong, J.; Vaher, J.; Valadez, M.; van Arsdall, P.; van Prooyen, A. J.; Vergel de Dios, E. O.; Vergino, M. D.; Vernon, S. P.; Vickers, J. L.; Villanueva, G. T.; Vitalich, M. A.; Vonhof, S. A.; Wade, F. E.; Wallace, R. J.; Warren, C. T.; Warrick, A. L.; Watkins, J.; Weaver, S.; Wegner, P. J.; Weingart, M. A.; Wen, J.; White, K. S.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wilhelmsen, K.; Williams, E. A.; Williams, W. H.; Willis, L.; Wilson, E. F.; Wilson, B. A.; Witte, M. C.; Work, K.; Yang, P. S.; Young, B. K.; Youngblood, K. P.; Zacharias, R. A.; Zaleski, T.; Zapata, P. G.; Zhang, H.; Zielinski, J. S.; Kline, J. L.; Kyrala, G. A.; Niemann, C.; Kilkenny, J. D.; Nikroo, A.; van Wonterghem, B. M.; Atherton, L. J.; Moses, E. I.

    2011-02-01

    We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of TRAD=300eV and a symmetric implosion to a 100μm diameter hot core.

  1. Simulations of mixing in Inertial Confinement Fusion with front tracking and sub-grid scale models

    NASA Astrophysics Data System (ADS)

    Rana, Verinder; Lim, Hyunkyung; Melvin, Jeremy; Cheng, Baolian; Glimm, James; Sharp, David

    2015-11-01

    We present two related results. The first discusses the Richtmyer-Meshkov (RMI) and Rayleigh-Taylor instabilities (RTI) and their evolution in Inertial Confinement Fusion simulations. We show the evolution of the RMI to the late time RTI under transport effects and tracking. The role of the sub-grid scales helps capture the interaction of turbulence with diffusive processes. The second assesses the effects of concentration on the physics model and examines the mixing properties in the low Reynolds number hot spot. We discuss the effect of concentration on the Schmidt number. The simulation results are produced using the University of Chicago code FLASH and Stony Brook University's front tracking algorithm.

  2. K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

    SciTech Connect

    Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

    2006-11-21

    The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

  3. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-01

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the "adiabat shaping" mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  4. Stability of shocks relating to the shock ignition inertial fusion energy scheme

    SciTech Connect

    Davie, C. J. Bush, I. A.; Evans, R. G.

    2014-08-15

    Motivated by the shock ignition approach to improve the performance of inertial fusion targets, we make a series of studies of the stability of shock waves in planar and converging geometries. We examine stability of shocks moving through distorted material and driving shocks with non-uniform pressure profiles. We then apply a fully 3D perturbation, following this spherically converging shock through collapse to a distorted plane, bounce and reflection into an outgoing perturbed, broadly spherical shock wave. We find broad shock stability even under quite extreme perturbation.

  5. A 3-D Model of Hot-Spot Formation in Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Gong, X.; Goncharov, V. N.; Igumenshchev, I. V.

    2015-11-01

    A 3-D model describing the formation of a hot-spot in inertial confinement fusion (ICF) implosions is presented. The model includes thermal conduction and mass ablation effects in a 3-D distorted hot spot using an approach developed by Sanz. Evolution of the nonuniformity growth is calculated based on a sharp boundary model. The results of the model will be compared against 2-D DRACO and 3-D hydrodynamic code calculations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Transport vehicle for manned Mars missions powered by inertial confinement fusion

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nathan; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial confinement fusion (ICF) is an ideal engine power source for manned spacecraft to Mars because of its inherently high power-to-mass ratios and high specific impulses. In this paper a concept is produced for a vehicle powered by ICF and utilizing a magnetic thrust chamber to avoid plasma thermalization with wall structures and the resultant degradation of specific impulse, that are unavoidable with the use of mechanical thrust chambers. This vehicle is capable of 100-day manned Mars missions with a 100-metric-ton payload and a total vehicle launch mass near 6000 metric tons, based on advanced technology assumed to be available by A.D. 2020.

  7. Multi-fluid studies of plasma shocks relevant to inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Srinivasan, B.; Kagan, G.; Adams, C. S.

    2016-05-01

    Results from inertial confinement fusion (ICF) experiments performed at the Omega laser facility suggest the potential role of kinetic effects in plasmas during implosion. Recent theoretical and numerical work has indicated the importance of diffusion effects in the presence of multiple ion species as well as the importance of ion viscosity. This provides the motivation to adequately develop multi-fluid plasma models capable of capturing kinetic physics including concentration diffusion and ion species separation driven by the ion concentration gradient, the ion pressure gradient, the electron and ion temperature gradients, and the electric field. Benchmarks between the newly developed code and analytical results are presented for multi-fluid plasma shocks.

  8. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE PAGESBeta

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; et al

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  9. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  10. Multiple-beam laser–plasma interactions in inertial confinement fusion

    SciTech Connect

    Myatt, J. F. Zhang, J.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V.; Froula, D. H.; Hinkel, D. E.; Michel, P.; Moody, J. D.

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  11. Numerical analysis corresponding with experiment in compact beam simulator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Sakai, Y.; Komori, T.; Sato, T.; Hasegawa, J.; Horioka, K.; Takahashi, K.; Sasaki, T.; Harada, Nob

    2016-05-01

    Tune depression in a compact beam equipment is estimated, and numerical simulation results are compared with an experimental one for the compact beam simulator in a driver of heavy ion inertial fusion. The numerical simulation with multi-particle tracking is carried out, corresponding to the experimental condition, and the result is discussed with the experimental one. It is expected that the numerical simulation developed in this paper is useful tool to investigate the beam dynamics in the experiment with the compact beam simulator.

  12. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  13. Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept

    SciTech Connect

    Knapp, C. E.; Kirkpatrick, R. C.

    2014-07-15

    A one-dimensional parameter study of a Magneto-Inertial Fusion (MIF) concept indicates that significant gain may be achievable. This concept uses a dynamically formed plasma shell with inwardly directed momentum to drive a magnetized fuel to ignition, which in turn partially burns an intermediate layer of unmagnetized fuel. The concept is referred to as Plasma Jet MIF or PJMIF. The results of an adaptive mesh refinement Eulerian code (Crestone) are compared to those of a Lagrangian code (LASNEX). These are the first published results using the Crestone and LASNEX codes on the PJMIF concept.

  14. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    SciTech Connect

    Martens, Daniel; Hsu, Scott C.

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  15. Charged-particle probing of x-ray-driven inertial-fusion implosions.

    PubMed

    Li, C K; Séguin, F H; Frenje, J A; Rosenberg, M; Petrasso, R D; Amendt, P A; Koch, J A; Landen, O L; Park, H S; Robey, H F; Town, R P J; Casner, A; Philippe, F; Betti, R; Knauer, J P; Meyerhofer, D D; Back, C A; Kilkenny, J D; Nikroo, A

    2010-03-01

    Measurements of x-ray-driven implosions with charged particles have resulted in the quantitative characterization of critical aspects of indirect-drive inertial fusion. Three types of spontaneous electric fields differing in strength by two orders of magnitude, the largest being nearly one-tenth of the Bohr field, were discovered with time-gated proton radiographic imaging and spectrally resolved proton self-emission. The views of the spatial structure and temporal evolution of both the laser drive in a hohlraum and implosion properties provide essential insight into, and modeling validation of, x-ray-driven implosions. PMID:20110464

  16. Indirect-drive inertial confinement fusion using highly supersonic, radiatively cooled, plasma slugs.

    PubMed

    Chittenden, J P; Dunne, M; Zepf, M; Lebedev, S V; Ciardi, A; Bland, S N

    2002-06-10

    We present a new approach to indirect-drive inertial confinement fusion which makes use of highly supersonic, radiatively cooled, slugs of plasma to energize a hohlraum. 2D resistive magnetohydrodynamic simulations of slug formation in shaped liner Z-pinch implosions are presented along with 2D-radiation-hydrodynamic simulations of the slug impacting a converter foil and 3D-view-factor simulations of a double-ended hohlraum. Results for the Z facility at Sandia National Laboratory indicate that two synchronous slugs of 250 kJ kinetic energy could be produced, resulting in a capsule surface temperature of approximately 225 eV. PMID:12059369

  17. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas.

    PubMed

    Srinivasan, Bhuvana; Dimonte, Guy; Tang, Xian-Zhu

    2012-04-20

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion implosions are expected to generate magnetic fields. A Hall-MHD model is used to study the field generation by 2D single-mode and multimode RTI in a stratified two-fluid plasma. Self-generated magnetic fields are predicted and these fields grow as the RTI progresses via the ∇n(e)×∇T(e) term in the generalized Ohm's law. Scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, Atwood number, and perturbation wavelength. PMID:22680725

  18. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    SciTech Connect

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate.

  19. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-05-01

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  20. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    SciTech Connect

    Makowitz, H; Powell, J R; Wiswall, R

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements.

  1. Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement

    SciTech Connect

    Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.

    1996-12-31

    Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

  2. Inertial confinement fusion quarterly report, April--June 1994. Volume 4, Number 3

    SciTech Connect

    Shaw, M.J.

    1994-06-01

    This issue of the ICF Quarterly contains six articles covering a wide range of activities within the Inertial Confinement Fusion (ICF) Program. It concentrates on target design; theoretical spectral analysis of ICF capsule surfaces; laser fusion experimental methods; and an alternative ICF design, based on ultrafast, ultrapowerful lasers. A key issue for the success of the ICF process is the hydrodynamic stability of the imploding capsule. There are two primary sources of instability growth in the ICF process: (1) asymmetries in the x-ray flux that drive the compression lead to asymmetric in the imploding surface; (2) imperfections on the capsule surface can grow into large perturbations, degrading the capsule performance. In recent years, a great deal of effort, both experimentally and theoretically, has been spent to enhance the Program`s ability to measure, model, and minimize instability growth during an implosion. Four the articles in this issue discuss this subject.

  3. Experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Svyatskiy, Daniil; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Huang, Cheng-Kun; McDevitt, Christopher

    2015-11-01

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot-spots. By utilizing this feature, interference between the hydro-instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at National Ignition Facility. This work is performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  4. Target Designs for an Inertial Fusion Energy Power Plant Driven by Heavy Ions

    SciTech Connect

    Callahan, D A; Tabak, M

    2001-08-23

    We present two indirect drive inertial fusion targets driven by heavy ions beams for fusion energy production. Because there are uncertainties in the ion beam focal spot size and uncertainties in the accelerator cost, we have tried to design targets that cover a large parameter space. One of the designs requires small ion beam focal spots but produces more than adequate gain at low driver energy (gain 130 from 3.3 MJ of beam energy). The other design allows a large beam spot, but requires more driver energy (gain 55 from 6.7 MJ of beam energy). Target physics issues as well as the implications for the accelerator from each design are discussed.

  5. Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    DOE PAGESBeta

    Kagan, Grigory; Svyatskiy, D.; Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Huang, C. -K.; McDevitt, C. J.

    2015-09-03

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. Thus, the ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT atmore » the National Ignition Facility.« less

  6. Progress in accident analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Latkowski, J F; Gomez del Rio, J; Sanz, J

    2000-10-11

    The present work continues our effort to perform an integrated safety analysis for the HYLIFE-II inertial fusion energy (IFE) power plant design. Recently we developed a base case for a severe accident scenario in order to calculate accident doses for HYLIFE-II. It consisted of a total loss of coolant accident (LOCA) in which all the liquid flibe (Li{sub 2}BeF{sub 4}) was lost at the beginning of the accident. Results showed that the off-site dose was below the limit given by the DOE Fusion Safety Standards for public protection in case of accident, and that his dose was dominated by the tritium released during the accident.

  7. Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations

    NASA Astrophysics Data System (ADS)

    Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.

    2014-10-01

    The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag < 75 μm, temperatures around 3 keV, and isotropic neutron yields up to YnDD = 2 ×1012 from imploded liners reaching peak velocities around 70 km/s over an implosion time of about 60 ns. We present comparisons between the experimental observables and post-shot degraded integrated simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  8. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    SciTech Connect

    Waltz, J.; Canfield, T.R.; Morgan, N.R.; Risinger, L.D.; Wohlbier, J.G.

    2014-06-15

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamics and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.

  9. The National Ignition Facility and the Promise of Inertial Fusion Energy

    SciTech Connect

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  10. Hard x-ray backlighters for high resolution Compton radiography of Inertial Confinement Fusion targets

    NASA Astrophysics Data System (ADS)

    Tommasini, R.; Macphee, A.; Hey, D.; Ma, T.; Chen, C.; Izumi, N.; MacKinnon, A.; Hatchett, S. P.; Koch, J. A.; Springer, P.; Landen, O. L.

    2008-11-01

    Radiographs of the final stages of imploding DT fuel in inertial confinement fusion experiments will be extremely valuable for checking the convergence, areal density and areal density uniformity of the fuel. For x-rays with energies between 30 and 200 keV, the main opacity will be due to Compton scattering. Here we present the demonstration of 75-200 keV point backlighter sources generated by gold targets irradiated by picosecond laser pulses. In experiments performed at the Titan laser facility at Lawrence Livermore National Laboratory, we measured the source size and the Bremsstrahlung spectrum, as a function of laser intensity and pulse length, from by 5e17-5e18 W/cm^2 using 2-40 ps pulses. We achieved 1D and 2D source sizes of 10 μm, and conversion efficiencies exceeding 1e-3 J/J into x-ray photons with energies in the 100-200 keV spectral range. These sources meet the requirements for radiographing the fuel in inertial confinement fusion implosions at both OMEGA and the National Ignition Facility (NIF) whose experimental designs will also be discussed.

  11. Elise - the next step in development of induction heavy ion drivers for inertial fusion energy

    SciTech Connect

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.

    1994-11-01

    LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or {open_quotes}drive{close_quotes} inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act.

  12. Efficient Energy Conversion of the 14 MeV Neutrons in DT Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2013-02-01

    In DT fusion 80 % of the energy released goes into 14 MeV neutrons, and only the remaining 20 % into charged particles. Unlike the charged particles, the uncharged neutrons cannot be confined by a magnetic field, and for this reason cannot be used for a direct conversion into electric energy. Instead, the neutrons have to be slowed down in some medium, heating this medium to a temperature of less than 103 K, with the heat removed from this medium to drive a turbo-generator. This conversion of nuclear into electric energy has a Carnot efficiency of about 30 %. For the 80 % of the energy released into neutrons, the efficiency is therefore no more than 24 %. While this low conversion efficiency cannot be overcome in magnetic confinement concepts, it can be overcome in inertial confinement concepts, by surrounding the inertial confinement fusion target with a sufficiently thick layer of liquid hydrogen and a thin outer layer of boron, to create a hot plasma fire ball. The hydrogen layer must be chosen just thick and dense enough to be heated by the neutrons to 100,000 K. The thusly generated, fully ionized, and rapidly expanding fire ball can drive a pulsed magnetohydrodynamic generator at an almost 100 % Carnot efficiency, or possibly be used to generate hydrocarbons.

  13. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  14. Assessing the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human Body Tracking

    PubMed Central

    Ligorio, Gabriele; Bergamini, Elena; Pasciuto, Ilaria; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2016-01-01

    Information from complementary and redundant sensors are often combined within sensor fusion algorithms to obtain a single accurate observation of the system at hand. However, measurements from each sensor are characterized by uncertainties. When multiple data are fused, it is often unclear how all these uncertainties interact and influence the overall performance of the sensor fusion algorithm. To address this issue, a benchmarking procedure is presented, where simulated and real data are combined in different scenarios in order to quantify how each sensor’s uncertainties influence the accuracy of the final result. The proposed procedure was applied to the estimation of the pelvis orientation using a waist-worn magnetic-inertial measurement unit. Ground-truth data were obtained from a stereophotogrammetric system and used to obtain simulated data. Two Kalman-based sensor fusion algorithms were submitted to the proposed benchmarking procedure. For the considered application, gyroscope uncertainties proved to be the main error source in orientation estimation accuracy for both tested algorithms. Moreover, although different performances were obtained using simulated data, these differences became negligible when real data were considered. The outcome of this evaluation may be useful both to improve the design of new sensor fusion methods and to drive the algorithm tuning process. PMID:26821027

  15. Transport implications of hydrodynamic mix on hot-spot performance in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhuvana; Tang, Xianzhu

    2014-10-01

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to the Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. We quantify this mix-enhanced transport effect on hot-spot fusion-performance degradation using contrasting 1-D and 2-D hydrodynamic simulations, and identify its dependence on effective acceleration, Atwood number, and ablation speed. In the presence of magnetic fields, the thermal conduction is reduced which reduces the effect of ablative stabilization on mix mitigation while also reducing the amount of cold fuel being ablated into the hot-spot. A characterization of the transport enhanced mix characteristics with and without magnetic fields is performed to identify a regime where fusion-performance degradation is reduced by mix mitigation, through which the amount of cold fuel being ablated into the hot-spot is minimized.

  16. Assessing the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human Body Tracking.

    PubMed

    Ligorio, Gabriele; Bergamini, Elena; Pasciuto, Ilaria; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2016-01-01

    Information from complementary and redundant sensors are often combined within sensor fusion algorithms to obtain a single accurate observation of the system at hand. However, measurements from each sensor are characterized by uncertainties. When multiple data are fused, it is often unclear how all these uncertainties interact and influence the overall performance of the sensor fusion algorithm. To address this issue, a benchmarking procedure is presented, where simulated and real data are combined in different scenarios in order to quantify how each sensor's uncertainties influence the accuracy of the final result. The proposed procedure was applied to the estimation of the pelvis orientation using a waist-worn magnetic-inertial measurement unit. Ground-truth data were obtained from a stereophotogrammetric system and used to obtain simulated data. Two Kalman-based sensor fusion algorithms were submitted to the proposed benchmarking procedure. For the considered application, gyroscope uncertainties proved to be the main error source in orientation estimation accuracy for both tested algorithms. Moreover, although different performances were obtained using simulated data, these differences became negligible when real data were considered. The outcome of this evaluation may be useful both to improve the design of new sensor fusion methods and to drive the algorithm tuning process. PMID:26821027

  17. Production and measurement of engineered surfaces for inertial confinement fusion research

    SciTech Connect

    Day, Robert D; Hatch, Douglas J; Rivera, Gerald

    2011-01-19

    Inertial Confinement Fusion uses the optical energy from a very high power laser to implode spherical capsules that contain a fuel mixture of deuterium and tritium. The capsules are made of either Beryllium, plastic, or glass and range from 0.1 mm to 2 mm in diameter. As a capsule implodes, thereby compressing the fuel to reach nuclear fusion conditions, it achieves temperatures of millions of degrees Centigrade and very high pressures. In this state, the capsule materials act like fluids and often a low density fluidic material will push on a higher density material which can be a very unstable condition depending upon the smoothness of the interface between the two materials. This unstable condition is called a hydrodynamic instabillity which results in the mixing of the two materials. If the mixing occurs between the fuel and a non-fuel material, it can stop the fusion reaction just like adding significant amounts of water to gasoline can stop the operation of an automobile. Another region in the capsule where surface roughness can cause capsule performance degradation is at a joint. For instance, many capsules are made of hemispheres that are joined together. If the joint surfaces are too rough, then there will an effective reduction in density at the joint. This density reduction can cause a non-uniform implosion which will reduce the fusion energy coming out of the capsule.

  18. Creation of a high density, high flux target plasmoid for magneto-inertial fusion

    NASA Astrophysics Data System (ADS)

    Weber, Thomas; Intrator, Thomas; Sears, Jason

    2011-10-01

    Magneto-inertial fusion utilizes embedded magnetic fields to reduce thermal transport and enhance alpha particle heating during an implosion reducing the required areal density, implosion speed, and convergence for fusion ignition. This enables the use of efficient inexpensive pulsed power, reducing the gain required for breakeven (e.g. ηG = 0 . 5 * 10 (MIF), = 0 . 05 * 100 (ICF)). The FRX-L and FRCHX experiments at Los Alamos National Laboratory and the Air Force Research Laboratory at Kirtland AFB are investigating a subset of MIF called Magnetized Target Fusion (MTF) in which a Field Reversed Configuration (FRC) plasmoid is injected into a converging solid, conductive liner and compressed to fusion conditions. Traditional FRC formation techniques utilizing ringing- θ pre-ionization have proved to be incapable of forming target plasmoids with enough density and magnetic flux, limiting the particle inventory, confinement, and lifetime. An alternative formation technique utilizing magnetoplasmadynamic arc sources has been developed to increase the density and trapped flux of the target plasmoid. Plasma source technology and operation are presented, as well as changes to the target formation process, plasmoid characteristics, and implications to MTF. Work supported by the DOE, OFES, under LANS Contract No. DE-AC52-06NA25369. Public release number LA-UR 11-03950.

  19. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    SciTech Connect

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm/sup 3/ are required for a practical fusion-based fission product transmutation system.

  20. Progress in heavy ion driven inertial fusion energy: From scaledexperiments to the integrated research experiment

    SciTech Connect

    Barnard, J.J.; Ahle, L.E.; Baca, D.; Bangerter, R.O.; Bieniosek,F.M.; Celata, C.M.; Chacon-Golcher, E.; Davidson, R.C.; Faltens, A.; Friedman, A.; Franks, R.M.; Grote, D.P.; Haber, I.; Henestroza, E.; deHoon, M.J.L.; Kaganovich, I.; Karpenko, V.P.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.; Prost, L.R.; Qin, H.; Rose, D.; Sabbi, G-L.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.; Shuman, D.; Vay, J.L.; Waldron, W.L.; Welch, D.; Yu, S.S.

    2001-06-22

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents ({approx}100s Amperesheam) and ion energies ({approx}1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions. and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial Fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned.

  1. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    SciTech Connect

    Moses, E

    2009-10-15

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  2. SIRIUS-T: A study of a symmetrically illuminated inertial confinement fusion tritium production facility

    SciTech Connect

    Badger, B.; Sviatoslavksy, I.N.; Bruggink, D.; Engelstad, R.L.; Kulcinski, G.L.; Larsen, E.M.; Lovell, E.G.; MacFarlane, J.J.; Mogahed, E.A.; Moses, G.A.; Moucha, A.; Peterson, R.R.; Powers, J.; Sawan, M.E.; Wittenberg, L.J.

    1990-12-01

    The aging US tritium production reactors are slowly being phased out and the US Department of Energy has initiated a New Production Reactors Program'' which will provide for the design, construction and operation of new facilities for the production of tritium and other special nuclear materials. Preliminary requirements are currently being prepared, leading to construction and operation by the year 2000. Unfortunately, inertial confinement fusion (ICF) cannot possibly be ready to perform such a task on this short time scale. However, it is instructive to see how well it can do in producing tritium when ICF has been demonstrated and a comparison with the proposed production schemes is conducted here. SIRIUS-T is conceptual design study of a tritium production facility utilizing direct drive symmetrically illuminated inertial confinement fusion. The T'' designation distinguishes it from SIRIUS-M, a materials facility, and SIRIUS-C, a commercial power plant. As in any other fusion related design study, a certain amount of technical extrapolation has been made in SIRIUS-T. It should be said early on, however, that in areas of uncertainty, we have always taken the conservative approach. This is evident in our choice of target gain, number of beams selected for symmetric illumination and elsewhere throughout the study. In performing the economic analysis we have also attempted to err on the conservative side. This too is evident in our costing of the driver and the reactor chamber. For these reasons, we feel that this study projects enough confidence as to make it worthy of comparison with the other proposed production systems.

  3. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE PAGESBeta

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore » of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  4. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-01

    The significance and nature of ion kinetic effects in D3He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ˜ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  5. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    SciTech Connect

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  6. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    NASA Astrophysics Data System (ADS)

    Reyes, S.; Latkowski, J. F.; Gomez del Rio, J.; Sanz, J.

    2001-05-01

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  7. The quest for laboratory inertial fusion burn in the United States

    NASA Astrophysics Data System (ADS)

    Crandall, D. H.

    2016-05-01

    Ignition and significant fusion yield from inertial confinement fusion (ICF) remains a grand scientific challenge with significant near-term and long-term applications. The ICF community in the U.S. is executing a coordinated effort to explore three viable approaches: laser x-ray drive, laser direct drive, and magnetic direct drive. Cooperative efforts from multiple institutions are directed at the physics basis of each of the three approaches with advancing diagnostics, precision targets, and improved simulations being the basis for the quest. X-ray drive experiments between 2010 and 2012 at the National Ignition Facility (NIF) gave yields much lower than expected because of both challenging hydrodynamics associated with high capsule convergence (∼35×) and laser-plasma instabilities (LPI's) in the hohlraum. Recent experiments employing a variation of the laser pulse and resulting in lower convergence and lower hydrodynamic instability growth gave higher yields approaching 1016 neutrons (for the first time with significant fusion heating of the fuel), roughly in agreement with predictions for that approach. At the Omega Laser Facility the direct laser drive of the capsule is being developed to determine what could be expected if the NIF were reconfigured for spherical direct drive. Recent experiments on OMEGA, hydrodynamically scaled to the NIF, project to yields similar in nature to those of the best x-ray drive cases. Mitigation of cross-beam energy transfer (CBET) is required for improvement in direct-drive implosions. At the Z pulsed-power facility, a new approach of magnetically pinching a cylinder containing magnetized and laser- heated plasma shows promise for attaining significant fusion yield. Improvements in this technique are being addressed at a number of facilities. In addition to the fusion-yield experiments, a number of basic science studies use the advanced facilities to study plasma physics, materials science, and astrophysical phenomena at

  8. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Gomez del Rio, J; Sanz, J

    2000-02-23

    Previous studies of the safety and environmental (S and E) aspects of the HYLIFE-II inertial fusion energy (IFE) power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work a set of computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) has been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here the authors consider a severe lost of coolant accident (LOCA) producing simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the containment) and of the two barriers surrounding the chamber (inner shielding and containment building it self). Even though containment failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product release and transport. The results of these calculations show that the estimated off-site dose is less than 6 mSv (0.6 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  9. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.

    PubMed

    Atrsaei, Arash; Salarieh, Hassan; Alasty, Aria

    2016-09-01

    Due to various applications of human motion capture techniques, developing low-cost methods that would be applicable in nonlaboratory environments is under consideration. MEMS inertial sensors and Kinect are two low-cost devices that can be utilized in home-based motion capture systems, e.g., home-based rehabilitation. In this work, an unscented Kalman filter approach was developed based on the complementary properties of Kinect and the inertial sensors to fuse the orientation data of these two devices for human arm motion tracking during both stationary shoulder joint position and human body movement. A new measurement model of the fusion algorithm was obtained that can compensate for the inertial sensors drift problem in high dynamic motions and also joints occlusion in Kinect. The efficiency of the proposed algorithm was evaluated by an optical motion tracker system. The errors were reduced by almost 50% compared to cases when either inertial sensor or Kinect measurements were utilized. PMID:27428461

  10. Overview of University of Wisconsin Inertial-Electrostatic Confinement Fusion Research

    SciTech Connect

    Santarius, J.F.; Kulcinski, G.L.; Ashley, R.P.; Boris, D.R.; Cipiti, B.B.; Murali, S. Krupakar; Piefer, G.R.; Radel, R.F.; Radel, T.E.; Wehmeyer, A.L.

    2005-05-15

    In Inertial Electrostatic Confinement (IEC) devices, a voltage difference between concentric, nearly transparent spherical grids accelerates ions to fusion-relevant velocities. The University of Wisconsin (UW) operates two IEC devices: a cylindrical aluminum chamber and a spherical, water-cooled, stainless-steel chamber, with a power supply capable of 75 mA and 200 kV. The research program aims to generate fusion reaction products for various applications, including protons for creating radioisotopes for nuclear medicine and neutrons for detecting clandestine materials. Most IEC devices worldwide, including the UW devices, presently operate primarily in a pressure range (1-10 mtorr) that allows ions to make only a few passes through the core before they charge exchange and lose substantial energy or they collide with cathode grid wires. It is believed that fusion rates can be raised by operating at a pressure where neutral gas does not impede ion flow, and a helicon ion source has been developed to explore operation at pressures of {approx}0.05 mtorr. The UW IEC research group uses proton detectors, neutron detectors, residual gas analyzers, and spectroscopic diagnostics. New diagnostic techniques have also been developed, including eclipse disks to localize proton production and chordwires to estimate ion fluxes using power balance.

  11. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber

    SciTech Connect

    Hunt, R. M.; Abbott, R. P.; Havstad, M. A.; Dunne, A. M.

    2013-06-01

    Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80–100 μm into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 μm without assistance from creep or grain erosion phenomena.

  12. Inertial confinement fusion reaction chamber and power conversion system study. Final report

    SciTech Connect

    Maya, I.; Schultz, K.R.; Bourque, R.F.; Cheng, E.T.; Creedon, R.L.; Norman, J.H.; Price, R.J.; Porter, J.; Schuster, H.L.; Simnad, M.J.

    1985-10-01

    This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO/sub 2/ granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO/sub 2/ granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs.

  13. Numerical model for simulating the dynamic response of an inertial confinement fusion cavity gas to a target explosion

    SciTech Connect

    McCarville, T.J.

    1982-01-01

    One of the methods suggested for protecting the first wall of an inertial confinement fusion cavity from the x-rays and ions emitted by an exploding target is to fill the cavity with a buffer gas. A computer code package is developed in this thesis for studying the radiative and hydrodynamic response of the gas to an exploding target.

  14. Low mass recyclable transmission lines for Z-pinch driven inertial fusion

    NASA Astrophysics Data System (ADS)

    Slutz, S. A.; Olson, C. L.; Peterson, Per

    2003-02-01

    Recyclable transmission lines (RTLs) are being studied as a means to repetitively drive Z pinches. Minimizing the mass of the RTL should also minimize the reprocessing costs. Low mass RTLs could also help reduce the cost of a single shot facility such as the proposed X-1 accelerator and make Z-pinch driven nuclear space propulsion feasible. Calculations are presented to determine the minimum electrode mass to provide sufficient inertia against the magnetic pressure produced by the large currents needed to drive the Z pinches. The results indicate an electrode thickness which is much smaller than the initial resistive skin depth. This suggests that the minimum electrode thickness may be not be solely determined by inertial effects, but also by the ability of the electrode to efficiently carry the current. A series of experiments have been performed to determine the ability of the electrodes to carry current as a function of the electrode thickness. The results indicate that electrodes much thinner than the initial resistive skin depth can efficiently carry large currents presumably due to the formation of a highly conducting plasma. This result implies that a transmission line with only a few tens of kilograms of material can carry the large Z-pinch currents needed for inertial fusion.

  15. Energy gain of a thin DT shell target in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Khoshbinfar, Soheil

    2014-11-01

    Estimation of maximum possible energy gain for a given energy of driver has always become a key point in inertial confinement fusion. It has direct impact on the cost of produced electricity. Here, we employ a hydrodynamics model to assess energy gain in the case of a symmetrical hydrodynamics implosion where a narrow fuel shell consisting of deuterium-tritium (DT), can experience an isentropic compression in a self-similar regime. Introducing a set of six state parameters {Hhs, Ths, Uimp, αc, ξhs and μhs}, the final fuel state close to ignition is fully described. It enables us to calculate energy gain curves for specific set of these state variables. The envelope of the energy gain family curves provide a limiting gain curve Gfuel fuel* ∝ Ef0.36. Next, we took into account the inertial of cold surrounding fuel on the ignition process. It changes the limiting gain curve slope to 0.41. Finally, the analytical model results assessed and validated using numerical simulation code.

  16. Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3

    SciTech Connect

    MacGowan, B.J.; Kotowski, M.; Schleich, D.

    1993-11-01

    This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; the role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.

  17. Change in inertial confinement fusion implosions upon using an ab initio multiphase DT equation of state.

    PubMed

    Caillabet, L; Canaud, B; Salin, G; Mazevet, S; Loubeyre, P

    2011-09-01

    Improving the description of the equation of state (EOS) of deuterium-tritium (DT) has recently been shown to change significantly the gain of an inertial confinement fusion target [S. X. Hu et al., Phys. Rev. Lett. 104, 235003 (2010)]. Here we use an advanced multiphase EOS, based on ab initio calculations, to perform a full optimization of the laser pulse shape with hydrodynamic simulations starting from 19 K in DT ice. The thermonuclear gain is shown to be a robust estimate over possible uncertainties of the EOS. Two different target designs are discussed, for shock ignition and self-ignition. In the first case, the areal density and thermonuclear energy can be recovered by slightly increasing the laser energy. In the second case, a lower in-flight adiabat is needed, leading to a significant delay (3 ns) in the shock timing of the implosion. PMID:22026681

  18. Investigation of methods for fabricating, characterizing, and transporting cryogenic inertial-confinement-fusion tartets

    SciTech Connect

    Fanning, J.J.; Kim, K.

    1981-01-01

    The objective of this work is to investigate methods for fabricating, characterizing and transporting cryogenic inertial confinement fusion targets on a continuous basis. A microprocessor-based data acquisition system has been built that converts a complete target image to digital data, which are then analyzed by automated software procedures. The low temperatures required to freeze the hydrogen isotopes contained in a target is provided by a cryogenic cold chamber capable of attaining 15 K. A new method for target manipulation and positioning is studied that employs molecular gas beams to levitate a target and an electrostatic quadrupole structure to provide for its lateral containment. Since the electrostatic target-positioning scheme requires that the targets be charged, preliminary investigation has been carried out for a target-charging mechanism based on ion-bombardment.

  19. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    SciTech Connect

    Harvey-Thompson, Adam James; Sefkow, Adam B.; Nagayama, Taisuke N.; Wei, Mingsheng; Campbell, Edward Michael; Fiksel, Gennady; Chang, Po -Yu; Davies, Jonathan R.; Barnak, Daniel H.; Glebov, Vladimir Y.; Fitzsimmons, Paul; Fooks, Julie; Blue, Brent E.

    2015-12-22

    In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 1020 cm-3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.

  20. Solid Deuterium-Tritium Surface Roughness In A Beryllium Inertial Confinement Fusion Shell

    SciTech Connect

    Kozioziemski, B J; Sater, J D; Moody, J D; Montgomery, D S; Gautier, C

    2006-04-19

    Solid deuterium-tritium (D-T) fuel layers for inertial confinement fusion experiments were formed inside of a 2 mm diameter beryllium shell and were characterized using phase-contrast enhanced x-ray imaging. The solid D-T surface roughness is found to be 0.4 {micro}m for modes 7-128 at 1.5 K below the melting temperature. The layer roughness is found to increase with decreasing temperature, in agreement with previous visible light characterization studies. However, phase-contrast enhanced x-ray imaging provides a more robust surface roughness measurement than visible light methods. The new x-ray imaging results demonstrate clearly that the surface roughness decreases with time for solid D-T layers held at 1.5 K below the melting temperature.

  1. Development of position measurement unit for flying inertial fusion energy target

    NASA Astrophysics Data System (ADS)

    Tsuji, R.; Endo, T.; Yoshida, H.; Norimatsu, T.

    2016-03-01

    We have reported the present status in the development of a position measurement unit (PMU) for a flying inertial fusion energy (IFE) target. The PMU, which uses Arago spot phenomena, is designed to have a measurement accuracy smaller than 1 μm. By employing divergent, pulsed orthogonal laser beam illumination, we can measure the time and the target position at the pulsed illumination. The two-dimensional Arago spot image is compressed into one-dimensional image by a cylindrical lens for real-time processing. The PMU are set along the injection path of the flying target. The local positions of the target in each PMU are transferred to the controller and analysed to calculate the target trajectory. Two methods are presented to calculate the arrival time and the arrival position of the target at the reactor centre.

  2. Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging

    SciTech Connect

    Kozioziemski, B J; Koch, J A; Barty, A; Martz, H E; Lee, W; Fezzaa, K

    2004-05-07

    Current designs for inertial confinement fusion capsules for the National Ignition Facility (NIF) consist of a solid deuterium-tritium (D-T) fuel layer inside of a copper doped beryllium capsule. Phase contrast enhanced x-ray imaging is shown to render the D-T layer visible inside the Be(Cu) capsule. Phase contrast imaging is experimentally demonstrated for several surrogate capsules and validates computational models. Polyimide and low density divinyl benzene foam capsules were imaged at the Advanced Photon Source synchrotron. The surrogates demonstrate that phase contrast enhanced imaging provides a method to characterize surfaces when absorption imaging cannot be used. Our computational models demonstrate that a rough surface can be accurately reproduced in phase contrast enhanced x-ray images.

  3. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

    PubMed

    Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S

    2012-10-01

    Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments. PMID:23126911

  4. Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Manuel, M J-E; Rinderknecht, H G; Sinenian, N; Séguin, F H; Li, C K; Petrasso, R D; Radha, P B; Delettrez, J A; Glebov, V Yu; Meyerhofer, D D; Sangster, T C; McNabb, D P; Amendt, P A; Boyd, R N; Rygg, J R; Herrmann, H W; Kim, Y H; Bacher, A D

    2012-02-17

    Measurements of the D(d,p)T (dd) and T(t,2n)(4)He (tt) reaction yields have been compared with those of the D(t,n)(4)He (dt) reaction yield, using deuterium-tritium gas-filled inertial confinement fusion capsule implosions. In these experiments, carried out on the OMEGA laser, absolute spectral measurements of dd protons and tt neutrons were obtained. From these measurements, it was concluded that the dd yield is anomalously low and the tt yield is anomalously high relative to the dt yield, an observation that we conjecture to be caused by a stratification of the fuel in the implosion core. This effect may be present in ignition experiments planned on the National Ignition Facility. PMID:22401216

  5. Diagnostic for determining the mix in inertial confinement fusion capsule hotspot

    NASA Astrophysics Data System (ADS)

    He, Shibei; Ding, Yongkun; Miao, Wenyong; Zhang, Xing; Tu, Shaoyong; Yuan, Yongteng; Pu, Yudong; Yan, Ji; Wei, Minxi; Yin, Chuansheng

    2016-07-01

    A diagnostic is developed for determining the hotspot mix in inertial confinement fusion experiments. A multi-channel pinhole camera measures Bremsstrahlung emissions from implosion capsules ranging from 6 keV to 30 keV and records an image of the hotspot. Meanwhile, a planar crystal spectrometer measures Ar line emissions used to deduce the electron density of the hotspot. An X-ray streaked camera records the burn duration. With the Bremsstrahlung spectrum, electron density, hotspot volume, and burn duration, the mix quantity is determined by solving a pair of linear equations. This inferred mix amount has an uncertainty due to the uncertainty of the electron density, but with the help of the measured neutron product, the most likely mix quantity value can be determined. This technique is applied to experimental images to infer the quantity of CH ablator mix into the hotspot.

  6. Limitation on Prepulse Level for Cone-Guided Fast-Ignition Inertial Confinement Fusion

    SciTech Connect

    MacPhee, A. G.; Divol, L.; Kemp, A. J.; Chen, C. D.; Chen, H.; Hey, D. S.; Henesian, M.; Key, M. H.; Le Pape, S.; Mackinnon, A. J.; Patel, P. K.; Phillips, T. W.; Tabak, M.; Town, R.; Wilks, S. C.; Akli, K. U.; Stephens, R. B.; Beg, F. N.; Wei, M. S.; Fedosejevs, R. J.

    2010-02-05

    The viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K{sub {alpha}} radiation. Simulation of the radiation hydrodynamics of the preplasma and particle in cell modeling of the main pulse interaction agree well with the measured deposition zones and provide an insight into the energy deposition mechanism and electron distribution. It was demonstrated that a under these conditions a 100 mJ prepulse eliminates the forward going component of {approx}2-4 MeV electrons.

  7. Implosion dynamics measurements by monochromatic x-ray radiography in inertial confinement fusion

    SciTech Connect

    Chen, Bolun Yang, Zhenghua; Wei, Minxi; Pu, Yudong; Hu, Xin; Chen, Tao; Liu, Shenye; Yan, Ji; Huang, Tianxuan; Jiang, Shaoen; Ding, Yongkun

    2014-12-15

    The implosion dynamics is the most important metrics for assessing the progress toward ignition of an inertially confined fusion experiment. A high spatial resolution monochromatic x-ray imaging system based on the spherically bent crystal is developed to measure the implosion trajectory. The density distribution of the imploding capsules can be inferred with more accurately from monochromatic trajectories. The self emission of the imploded core will be restrained by spectral resolution and the setup of the imaging system. Also the variations of the backlighters' intensity will not be seen in the images. It has been demonstrated on SGII laser facility at the first time. The ablator remaining mass and the implosion velocity, which are the important ablator parameters, are calculated from the monochromatic trajectories. And the results are contrasted to the 1D hydrodynamics simulations.

  8. An improved deconvolution method for X-ray coded imaging in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Zhao, Zong-Qing; He, Wei-Hua; Wang, Jian; Hao, Yi-Dan; Cao, Lei-Feng; Gu, Yu-Qiu; Zhang, Bao-Han

    2013-10-01

    In inertial confinement fusion (ICF), X-ray coded imaging is considered as the most potential means to diagnose the compressed core. The traditional Richardson—Lucy (RL) method has a strong ability to deblur the image where the noise follows the Poisson distribution. However, it always suffers from over-fitting and noise amplification, especially when the signal-to-noise ratio of image is relatively low. In this paper, we propose an improved deconvolution method for X-ray coded imaging. We model the image data as a set of independent Gaussian distributions and derive the iterative solution with a maximum-likelihood scheme. The experimental results on X-ray coded imaging data demonstrate that this method is superior to the RL method in terms of anti-overfitting and noise suppression.

  9. Implosion dynamics measurements by monochromatic x-ray radiography in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Chen, Bolun; Yang, Zhenghua; Wei, Minxi; Pu, Yudong; Hu, Xin; Chen, Tao; Liu, Shenye; Yan, Ji; Huang, Tianxuan; Jiang, Shaoen; Ding, Yongkun

    2014-12-01

    The implosion dynamics is the most important metrics for assessing the progress toward ignition of an inertially confined fusion experiment. A high spatial resolution monochromatic x-ray imaging system based on the spherically bent crystal is developed to measure the implosion trajectory. The density distribution of the imploding capsules can be inferred with more accurately from monochromatic trajectories. The self emission of the imploded core will be restrained by spectral resolution and the setup of the imaging system. Also the variations of the backlighters' intensity will not be seen in the images. It has been demonstrated on SGII laser facility at the first time. The ablator remaining mass and the implosion velocity, which are the important ablator parameters, are calculated from the monochromatic trajectories. And the results are contrasted to the 1D hydrodynamics simulations.

  10. MULTI-IFE-A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.

    2016-06-01

    The code MULTI-IFE is a numerical tool devoted to the study of Inertial Fusion Energy (IFE) microcapsules. It includes the relevant physics for the implosion and thermonuclear ignition and burning: hydrodynamics of two component plasmas (ions and electrons), three-dimensional laser light ray-tracing, thermal diffusion, multigroup radiation transport, deuterium-tritium burning, and alpha particle diffusion. The corresponding differential equations are discretized in spherical one-dimensional Lagrangian coordinates. Two typical application examples, a high gain laser driven capsule and a low gain radiation driven marginally igniting capsule are discussed. In addition to phenomena relevant for IFE, the code includes also components (planar and cylindrical geometries, transport coefficients at low temperature, explicit treatment of Maxwell's equations) that extend its range of applicability to laser-matter interaction at moderate intensities (<1016  W cm-2). The source code design has been kept simple and structured with the aim to encourage user's modifications for specialized purposes.

  11. Interactive tools designed to study mix in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Welser-Sherrill, L.; Cooley, J. H.; Wilson, D. C.

    2009-06-01

    Graphical user interface tools have been built in IDL to study mix in inertial confinement fusion (ICF) implosion cores. FLAME, a code which investigates yield degradation due to mix, was designed to post-process 1D hydrodynamic simulation output by implementing a variety of mix models. Three of these mix models are based on the physics of the fall-line. In addition, mixing data from other sources can be incorporated into the yield degradation analysis. Two independent tools called HAME and YAME were developed to calculate the spatial extent of the mix region according to the Haan saturation model and Youngs' phenomenological model, respectively. FLAME facilitates a direct comparison to experimental data. The FLAME, HAME, and YAME interfaces are user-friendly, flexible, and platform-independent.

  12. Transport vehicle for manned Mars missions powered by inertial confinement fusion

    SciTech Connect

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-06-26

    Inertial confinement fusion (ICF) is an ideal engine power source for manned spacecraft to Mars because of its inherently high power-to-mass ratios and high specific impulses. We have produced a concept for a vehicle powered by ICF and utilizing a magnetic thrust chamber to avoid plasma thermalization with wall structures and the resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. This vehicle is capable of 100-day manned Mars missions with a 100-metric-ton payload and a total vehicle launch mass near 6000 metric tons, based on advanced technology assumed to be available by A.D. 2020. Such short-duration missions minimize radiation exposures and physiological deterioration of astronauts.

  13. A Freon-Filled Bubble Chamber for Neutron Detection in Inertial Confinement Fusion Experiments

    SciTech Connect

    Ghilea, M.C.; Meyerhofer, D.D.; Sangster, T.C.

    2011-03-24

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron–Freon interactions were observed at neutron yields of 1013 emitted from deuterium–tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  14. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments

    SciTech Connect

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-03-15

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10{sup 13} emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  15. Compact Intense Neutron Generators Based on Inertial Electrostatic Confinement of D-D Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Inoue, K.; Kajiwara, T.; Nakamatsu, R.

    2015-10-01

    A neutron generator based on inertial electrostatic confinement (IEC) of fusion plasmas is being developed for a non-destructive inspection system of special nuclear materials hidden in sea containers. The new IEC device is equipped with a multistage feedthrough which was designed aiming at both capability of a high bias voltage and enhancement of ion recirculation by modification of electric fields in the IEC device. Experimental comparison was made with a conventional single-stage IEC device developed in an earlier work. As the results, both the increase in the applied voltage and the modified field symmetry by the new multistage scheme showed significant enhancement in the neutron output. As a consequence, neutron output per input discharge current was enhanced drastically by a factor of ~30 in total. Also, the first pulsing experiments of the newly developed IEC neutron generator showed pulsed neutron output with a rapid pulse fall-off of ~ 1 μsec successfully.

  16. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.

    PubMed

    Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I

    2013-08-23

    Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance. PMID:24010449

  17. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility.

    PubMed

    Shaughnessy, D A; Moody, K J; Gharibyan, N; Grant, P M; Gostic, J M; Torretto, P C; Wooddy, P T; Bandong, B B; Despotopulos, J D; Cerjan, C J; Hagmann, C A; Caggiano, J A; Yeamans, C B; Bernstein, L A; Schneider, D H G; Henry, E A; Fortner, R J

    2014-06-01

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of (198m+g)Au and (196g)Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF. PMID:24985820

  18. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.

    PubMed

    Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-04-10

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating. PMID:25910132

  19. Hot-spot mix in ignition-scale inertial confinement fusion targets.

    PubMed

    Regan, S P; Epstein, R; Hammel, B A; Suter, L J; Scott, H A; Barrios, M A; Bradley, D K; Callahan, D A; Cerjan, C; Collins, G W; Dixit, S N; Döppner, T; Edwards, M J; Farley, D R; Fournier, K B; Glenn, S; Glenzer, S H; Golovkin, I E; Haan, S W; Hamza, A; Hicks, D G; Izumi, N; Jones, O S; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Ma, T; MacFarlane, J J; MacKinnon, A J; Mancini, R C; McCrory, R L; Meezan, N B; Meyerhofer, D D; Nikroo, A; Park, H-S; Ralph, J; Remington, B A; Sangster, T C; Smalyuk, V A; Springer, P T; Town, R P J

    2013-07-26

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50)  ng and 4000(-2970,+17 160)  ng are observed. PMID:23931375

  20. Equations of State for Ablator Materials in Inertial Confinement Fusion Simulations

    NASA Astrophysics Data System (ADS)

    Sterne, P. A.; Benedict, L. X.; Hamel, S.; Correa, A. A.; Milovich, J. L.; Marinak, M. M.; Celliers, P. M.; Fratanduono, D. E.

    2016-05-01

    We discuss the development of the tabular equation of state (EOS) models for ablator materials in current use at Lawrence Livermore National Laboratory in simulations of inertial confinement fusion (ICF) experiments at the National Ignition Facility. We illustrate the methods with a review of current models for ablator materials and discuss some of the challenges in performing hydrocode simulations with high-fidelity multiphase models. We stress the importance of experimental data, as well as the utility of ab initio electronic structure calculations, in regions where data is not currently available. We illustrate why Hugoniot data alone is not sufficient to constrain the EOS models. These cases illustrate the importance of experimental EOS data in multi-megabar regimes, and the vital role they play in the development and validation of EOS models for ICF simulations.

  1. A technique for thick polymer coating of inertial-confinement-fusion targets

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I.-A.; Wang, T. G.; Kim, H.-G.

    1983-01-01

    A technique to coat a stalk-mounted inertial-confinement fusion (ICF) target with a thick polymer layer has been successfully demonstrated. The polymer solution is first atomized, allowed to coalesce into a droplet, and positioned in a stable acoustic levitating field. The stalk-mounted ICF target is then moved into the acoustic field by manipulating a 3-D positioner to penetrate the surface membrane of the droplet, thus immersing the target in the levitated coating solution. The target inside the droplet is maintained at the center of the levitated liquid using the 3-D positional information provided by two orthogonally placed TV cameras until the drying process is completed. The basic components of the experimental apparatus, including an acoustic levitator, liquid sample deployment device, image acquisition instrumentation, and 3-D positioner, are briefly described.

  2. Models and analyses for inertial-confinement fusion-reactor studies

    SciTech Connect

    Bohachevsky, I.O.

    1981-05-01

    This report describes models and analyses devised at Los Alamos National Laboratory to determine the technical characteristics of different inertial confinement fusion (ICF) reactor elements required for component integration into a functional unit. We emphasize the generic properties of the different elements rather than specific designs. The topics discussed are general ICF reactor design considerations; reactor cavity phenomena, including the restoration of interpulse ambient conditions; first-wall temperature increases and material losses; reactor neutronics and hydrodynamic blanket response to neutron energy deposition; and analyses of loads and stresses in the reactor vessel walls, including remarks about the generation and propagation of very short wavelength stress waves. A discussion of analytic approaches useful in integrations and optimizations of ICF reactor systems concludes the report.

  3. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ma, T.; Hurricane, O. A.; Callahan, D. A.; Barrios, M. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S. W.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; MacPhee, A. G.; Pak, A.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P.; Cerjan, C. J.; Church, J. A.; Dixit, S.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Grim, G.; Guler, N.; Hatarik, R.; Herrmann, H. W.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Knauer, J.; Kohut, T.; Kozioziemski, B.; Kritcher, A.; Kyrala, G.; Landen, O. L.; MacGowan, B. J.; Mackinnon, A. J.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Nagel, S. R.; Nikroo, A.; Parham, T.; Ralph, J. E.; Rosen, M. D.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Spears, B. K.; Town, R. P. J.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-04-01

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μ m in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1 /2 the neutron yield coming from α -particle self-heating.

  4. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE PAGESBeta

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Geissel, Matthias; Harvey-Thompson, Adam James; et al

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  5. Exploring magnetized liner inertial fusion with a semi-analytic model

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Geissel, Matthias; Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Harding, Eric C.; Awe, Thomas James; Rovang, Dean C.; Hahn, Kelly D.; Martin, Matthew R.; Cochrane, Kyle R.; Peterson, Kyle J.; Rochau, Gregory A.; Porter, John L.; Stygar, William A.; Campbell, Edward Michael; Nakhleh, Charles W.; Herrmann, Mark C.; Cuneo, Michael E.; Sinars, Daniel B.

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.

  6. Yb:YAG ceramic-based laser driver for Inertial Fusion Energy (IFE)

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.

    2016-03-01

    We report on a new class of laser amplifiers for inertial confinement fusion (ICF) drivers based on a Yb:YAG ceramic disk in an edge-pumped configuration and cooled by a high-velocity gas flow. The Yb lasant offers very high efficiency and low waste heat. The ceramic host material has a thermal conductivity nearly 15-times higher than the traditionally used glass and it is producible in sizes suitable for a typical 10- to 20-kJ driver beam line. The combination of high lasant efficiency, low waste heat, edge-pumping, and excellent thermal conductivity of the host, enable operation at 10 to 20 Hz at over 20% wall plug efficiency while being comparably smaller and less costly than recently considered face-pumped alternative drivers using Nd:glass, Yb:S-FAP, and cryogenic Yb:YAG. Scalability of the laser driver over a broad range of sizes is presented.

  7. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F.

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10--100.

  8. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  9. Exploring magnetized liner inertial fusion with a semi-analytic model

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Slutz, S. A.; Vesey, R. A.; Gomez, M. R.; Sefkow, A. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Geissel, M.; Harvey-Thompson, A. J.; Jennings, C. A.; Harding, E. C.; Awe, T. J.; Rovang, D. C.; Hahn, K. D.; Martin, M. R.; Cochrane, K. R.; Peterson, K. J.; Rochau, G. A.; Porter, J. L.; Stygar, W. A.; Campbell, E. M.; Nakhleh, C. W.; Herrmann, M. C.; Cuneo, M. E.; Sinars, D. B.

    2016-01-01

    In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.

  10. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    SciTech Connect

    Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.

    2008-08-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  11. Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy

    SciTech Connect

    Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2008-08-12

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  12. Interactive tools designed to study mix in inertial confinement fusion implosions

    SciTech Connect

    Welser-sherrill, Leslie; Cooley, James H; Wilson, Doug C

    2008-01-01

    Graphical user interface tools have been built in IDL to study mix in inertial confinement fusion (ICF) implosion cores. FLAME (Fall-Line Analysis Mix Evaluator), a code which investigates yield degradation due to mix , was designed to post-process 1D hydrodynamic simulation output by implementing a variety of mix models. Three of these mix models are based on the physics of the fall-line. In addition, mixing data from other sources can be incorporated into the yield degradation analysis. Two independent tools called HAME (Haan Analysis Mix Evaluator) and YAME (Youngs Analysis Mix Evaluator) were developed to calculate the spatial extent of the mix region according to the Haan saturation model and Youngs' phenomenological model, respectively. FLAME facilitates a direct comparison to experimental data. The FLAME, HAME, and YAME interfaces are user-friendly, flexible, and platform-independent.

  13. Study on optimal inertial-confinement-fusion hohlraum wall radial density and wall loss

    SciTech Connect

    Zhang Lu; Wu Shunchao; Ding Yongkun; Yang Jiamin; Jiang Shaoen

    2011-03-15

    Reducing hohlraum wall loss is one of the most important ways to improve hohlraum coupling efficiency in laser indirect drive inertial-confinement fusion. It is appeared that a high Z metallic foam as hohlraum wall material will reduce wall loss. By adjusting initial hohlraum wall density distribution along radial axes to {rho}{sub 0}(r)=kr, the numerical simulation results show that it can indeed bring best savings of {approx}40% general wall loss. We conclude that absorbed energy mainly decreases by restraining rarefactions, and a proper slope k can optimize internal energy loss of low density and increased kinetic loss by subsonic. Also saved energy ratio reduces with source temperature decreasing. This approach would cut the reactor driver that needs quite substantially if experiments demonstrate it.

  14. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science

    SciTech Connect

    Seguin, F. H.; Sinenian, N.; Rosenberg, M.; Zylstra, A.; Manuel, M. J.-E.; Sio, H.; Waugh, C.; Rinderknecht, H. G.; Johnson, M. Gatu; Frenje, J.; Li, C. K.; Petrasso, R.; Sangster, T. C.; Roberts, S.

    2012-10-15

    Compact wedge-range-filter proton spectrometers cover proton energies {approx}3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D{sup 3}He protons in D{sup 3}He implosions, secondary D{sup 3}He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  15. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    DOE PAGESBeta

    Harvey-Thompson, Adam James; Sefkow, Adam B.; Nagayama, Taisuke N.; Wei, Mingsheng; Campbell, Edward Michael; Fiksel, Gennady; Chang, Po -Yu; Davies, Jonathan R.; Barnak, Daniel H.; Glebov, Vladimir Y.; et al

    2015-12-22

    In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 1020 cm-3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheatmore » stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.« less

  16. Flyer-Plate-Based Current Diagnostic for Magnetized Liner Inertial Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Reneker, Joseph; Gomez, Matthew; Hess, Mark; Jennings, Christopher

    2015-11-01

    Accurate measurements of the current delivered to Magnetized Liner Inertial Fusion (MagLIF) loads on the Z machine are important for understanding the dynamics of liner implosions. Difficulty acquiring a reliable load current measurement with the standard Z load B-dots has spurred the development of alternative load current diagnostics. Velocimetry of an electromagnetically-accelerated flyer plate can be used to infer the drive current on a flyer surface. A load current diagnostic design is proposed using a cylindrical flyer plate in series with the MagLIF target. Aspects of the flyer plate design were optimized using magnetohydrodynamic simulations. Design and preliminary results will be presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Development of aerogel-lined targets for inertial confinement fusion experiments

    SciTech Connect

    Braun, Tom

    2013-03-28

    This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD polymer aerogels to serve as a scaffold for the deuterium-tritium mix was analyzed. Four different factors were evaluated: the dependency of different factors such as thickness or composition of a precursor solution on the uniformity of the aerogel layer, how to bring the optimal composition inside of the ablator shell, the mechanical stability of ultra-low density p-DCPD aerogel bulk pieces during wetting and freezing with hydrogen, and the wetting behavior of thin polymer foam layers in HDC carbon ablator shells with liquid deuterium. The research for thesis was done at Lawrence Livermore National Laboratory in cooperation with the Technical University Munich.

  18. Studies of Plastic-Ablator Compressibility for Direct-Drive Inertial Confinement Fusion on Omega

    SciTech Connect

    Hu, S. X.; Smalyuk, V. A.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Igumenshchev, I. V.; Marozas, J. A.; Stoeckl, C.; Yaakobi, B.; Shvarts, D.; Sangster, T. C.; McKenty, P. W.; Meyerhofer, D. D.; Skupsky, S.; McCrory, R. L.

    2008-05-09

    The compression of planar plastic targets was studied with x-ray radiography in the range of laser intensities of I{approx}0.5 to 1.5x10{sup 15} W/cm{sup 2} using square (low-compression) and shaped (high-compression) pulses. Two-dimensional simulations with the radiative hydrocode DRACO show good agreement with measurements at laser intensities up to I{approx}10{sup 15} W/cm{sup 2}. These results provide the first experimental evidence for low-entropy, adiabatic compression of plastic shells in the laser intensity regime relevant to direct-drive inertial confinement fusion. A density reduction near the end of the drive at a high intensity of I{approx}1.5x10{sup 15} W/cm{sup 2} has been correlated with the hard x-ray signal caused by hot electrons from two-plasmon-decay instability.

  19. Studies of Plastic-Ablator Compresibility for Direct-Drive Inertial Confinement Fusion on OMEGA

    SciTech Connect

    Hu, S.X.; Smalyuk, V.A.; Goncharov, V.N.; Knauer, J.P.; Radha, P.B.; Igumenshchev, I.V.; Marozas, J.A.; Stoeckl, C.; Yaakobi, B.; Shvarts, D.; Sangster, T.C.; McKenty, P.W.; Meyerhofer, D.D.; Skupsky, S.; McCrory, R.L.

    2008-05-07

    The compression of planar plastic targets was studied with x-ray radiography in the range of laser intensities of I ~ 0.5 to 1.5 x 10^15 W/cm^2 using square (low-compression) and shaped (high-compression) pulses. Two-dimensional simulations with the radiative hydrocode DRACO show good agreement with measurements at laser intensities up to I ~ 10^15 W/cm^2. These resulsts provide the first experimental evidence for low-entropy, adiabatic compression of plastic shells in the laser intensity regime relevant to direct-drive inertial confinement fusion. A density reduction near the end of the drive at a high intensity of I ~ 1.5 x 10^15 W/cm^2 has been correlated with the hard x-ray signal caused by hot electrons from two-plasmon-decay instability.

  20. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Yamaguchi, K.; Yamagajo, T.; Nakano, T.; Kasai, T.; Urano, T.; Azechi, H.; Nakai, S.; Iida, T.

    1999-01-01

    We have developed the highly efficient neutron detector system MANDALA for the inertial-confinement-fusion experiment. The MANDALA system consists of 842 elements plastic scintillation detectors and data acquisition electronics. The detection level is the yield of 1.2×105 for 2.5 MeV and 1×105 for 14.1 MeV neutrons (with 100 detected hits). We have calibrated the intrinsic detection efficiencies of the detector elements using a neutron generator facility. Timing calibration and integrity test of the system were also carried out with a 60Co γ ray source. MANDALA system was applied to the implosion experiments at the GEKKO XII laser facility. The integrity test was carried out by implosion experiments.

  1. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    SciTech Connect

    Ma, T.; Hurricane, O. A.; Callahan, D. A.; Barrios, M. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Doppner, T.; Haan, S. W.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; MacPhee, A. G.; Pak, A.; Park, H. S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P.; Cerjan, C. J.; Church, J. A.; Dixit, S.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Grim, G.; Guler, N.; Hatarik, R.; Herrmann, H. W.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Knauer, J.; Kohut, T.; Kozioziemski, B.; Kritcher, A.; Kyrala, G.; Landen, O. L.; MacGowan, B. J.; Mackinnon, A. J.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Nagel, S. R.; Nikroo, A.; Parham, T.; Ralph, J. E.; Rosen, M. D.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Spears, B. K.; Town, R.P. J.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-04-06

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Earlier results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  2. Ion beam heated target simulations for warm dense matter physics and inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Barnard, J. J.; Armijo, J.; Bailey, D. S.; Friedman, A.; Bieniosek, F. M.; Henestroza, E.; Kaganovich, I.; Leung, P. T.; Logan, B. G.; Marinak, M. M.; More, R. M.; Ng, S. F.; Penn, G. E.; Perkins, L. J.; Veitzer, S.; Wurtele, J. S.; Yu, S. S.; Zylstra, A. B.

    2009-07-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy-related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single-pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam-target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies.

  3. Stability of the lithium 'waterfall' first wall protection concept for inertial confinement fusion reactors

    SciTech Connect

    Esser, P.D.; Paul, D.D.; Abdel-Khalik, S.I.

    1981-01-01

    Uncertainties regarding the feasibility of using an annular waterfall of liquid lithium to protect the first wall in inertial confinement fusion reactor cavities have prompted a theoretical investigation of annular jet stability. Infinitesimal perturbation techniques are applied to an idealized model of the jet with disturbances acting upon either or both of the free surfaces. Dispersion relations are derived that predict the range of disturbance frequencies leading to instability, as well as the perturbation growth rates and jet break-up length. The results are extended to turbulent annular jets and are evaluated for the lithium waterfall design. It is concluded that inherent instabilities due to turbulent fluctuations will not cause the jet to break up over distances comparable to the height of the reactor cavity.

  4. Stability of the lithium ''WATERFALL'' first wall protection concept for inertial confinement fusion reactors

    SciTech Connect

    Esser, P.D.; Abel-Khalik, S.I.; Paul, D.D.

    1981-04-01

    Uncertainties regarding the feasibility of using an annular ''waterfall'' of liquid lithium to protect the first wall in inertial confinement fusion reactor cavities have prompted a theoretical investigation of annular jet stability. Infinitesimal perturbation techniques are applied to an idealized model of the jet with disturbances acting upon either or both of the free surfaces. Dispersion relations are derived that predict the range of disturbance frequencies leading to instability, as well as the perturbation growth rates and jet breakup length. The results are extended to turbulent annular jets and are evaluated for the lithium waterfall design. It is concluded that inherent instabilities due to turbulent fluctuations will not cause the jet to break up over distances comparable to the height of the reactor cavity.

  5. Plasma kinetic effects on interfacial mix in settings relevant to inertial confinement fusion and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Bergen, B.; Bowers, K. J.; Vold, E. L.; Molvig, K.; Fernández, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Hegelich, B. M.; Dyer, G.; Roycroft, R.

    2015-11-01

    Mixing of high-Z/low-Z interfaces in dense plasma media is a problem of importance for understanding mix in inertial confinement fusion experiments and recent experiments at the LANL Trident facility. In this presentation, we apply the VPIC particle-in-cell code with a binary collision model to explore kinetic effects of the atomic mixing. Comparisons are made to published analytic theory and hybrid modeling results and conditions are identified under which plasma kinetic behavior may lead to anomalously rapid atomic mixing. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  6. The status of Fast Ignition Realization Experiment (FIREX) and prospects for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Azechi, H.; FIREX Project Team

    2016-05-01

    Here we report recent progress for the fast ignition inertial confinement fusion demonstration. The fraction of low energy (< 1 MeV) component of the relativistic electron beam (REB), which efficiently heats the fuel core, increases by a factor of 4 by enhancing pulse contrast of heating laser and removing preformed plasma sources. Kilo-tesla magnetic field is studied to guide the diverging REB to the fuel core. The transport simulation of the REB accelerated by the heating laser in the externally applied and compressed magnetic field indicates that the REB can be guided efficiently to the fuel core. The integrated simulation shows > 4% of the heating efficiency and > 4 keV of ion temperature are achievable by using GEKKO-XII and LFEX, properly designed cone-fuel and an external magnetic field.

  7. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility

    SciTech Connect

    Shaughnessy, D. A. Moody, K. J.; Gharibyan, N.; Grant, P. M.; Gostic, J. M.; Torretto, P. C.; Wooddy, P. T.; Bandong, B. B.; Cerjan, C. J.; Hagmann, C. A.; Caggiano, J. A.; Yeamans, C. B.; Bernstein, L. A.; Schneider, D. H. G.; Henry, E. A.; Fortner, R. J.; Despotopulos, J. D.

    2014-06-15

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of {sup 198m+g}Au and {sup 196g}Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

  8. Second Review of the Department of Energy's Inertial Confinement Fusion Program

    NASA Astrophysics Data System (ADS)

    1990-09-01

    This report of the second review by the National Research Council of inertial confinement fusion (ICF) contains the appointed committee's final conclusions and recommendations. An interim report was issued in January 1990. The charge to the committee was as follows: determine whether the recommendations of the 1985 NAS review are still appropriate to advance the technology efficaciously. Provide an assessment of the most promising technologies for continuation of the program. Assess the potential contributions of the program under the following scenarios: a comprehensive test ban on underground nuclear testing and prohibition of underground nuclear testing to levels of 1 kiloton, 5 kilotons, and 10 kilotons. Assess the civilian energy potential of ICF. Assess the adequacy of the ICF target performance data base for supporting program plans and decision milestones. Identify major technical and programmatic issues facing the program. Determine the status of each major candidate inertial fusion driver, and specify the critical issues involved in the development of each. Recommend program priorities, particularly with regard to the Centurion/halite program, driver development, and laboratory experiments and theory. Recommend relative priorities of individual support laboratory activities. Examine the strategies and plans of the ICF Program, comment on their soundness, cohesiveness, and programmatic effectiveness, and recommend management initiatives that could improve the progress of the program toward achieving of its goals. The major difference between the 1985 and 1989 reviews is the request for greater attention to the energy potential of the ICF Program and the heavy-ion work being carried out by the Lawrence Berkeley Laboratory at the University of California.

  9. Gas transport and control in thick-liquid inertial fusion power plants

    NASA Astrophysics Data System (ADS)

    Debonnel, Christophe Sylvain

    Among the numerous potential routes to a commercial fusion power plant, the inertial path with thick-liquid protection is explored in this doctoral dissertation. Gas dynamics phenomena in such fusion target chambers have been investigated since the early 1990s with the help of a series of simulation codes known as TSUNAMI. For this doctoral work, the code was redesigned and rewritten entirely to enable the use of modern programming techniques, languages and software; improve its user-friendliness; and refine its ability to model thick-liquid protected chambers. The new ablation and gas dynamics code is named "Visual Tsunami" to emphasize its graphics-based pre- and post-processors. It is aimed at providing a versatile and user-friendly design tool for complex systems for which transient gas dynamics phenomena play a key role. Simultaneously, some of these improvements were implemented in a previous version of the code; the resulting code constitutes the version 2.8 of the TSUNAMI series. Visual Tsunami was used to design and model the novel Condensation Debris Experiment (CDE), which presents many aspects of a typical Inertial Fusion Energy (IFE) system and has therefore been used to exercise the code. Numerical and experimental results are in good agreement. In a heavy-ion IFE target chamber, proper beam and target propagation set stringent requirements for the control of ablation debris transport in the target chamber and beam tubes. When the neutralized ballistic transport mode is employed, the background gas density should be adequately low and the beam tube metallic surfaces upstream of the neutralizing region should be free of contaminants. TSUNAMI 2.8 was used for the first simulation of gas transport through the complex geometry of the liquid blanket of a hybrid target chamber and beam lines. Concurrently, the feasibility of controlling the gas density was addressed with a novel beam tube design, which introduces magnetic shutters and a long low

  10. (Experimental development, testing and research work in support of the inertial confinement fusion program)

    SciTech Connect

    Johnson, R.; Luckhardt, R.; Terry, N.; Drake, D.; Gaines, J.

    1990-04-27

    This KMS Fusion Semi-Annual Technical Report covers the period October 1989 through March 1990. It contains a review of work performed by KMS Fusion, Inc. (KMSF), in support of the national program to achieve inertially confined fusion (ICF). A major section of the report is devoted to target technology, a field which is expected to play an increasingly important role in the overall KMSF fusion effort. Among the highlights of our efforts in this area covered in this report are: improvements and new developments in target fabrication techniques, including a discussion of techniques for introducing gaussian bumps and bands on target surfaces. Development of a single automated system for the interferometric characterization of transparent shells. Residual gas analysis of the blowing gases contained in glass shells made from xerogels. These usually include CO{sub 2}, O{sub 2} and N{sub 2}, and are objectionable because they dilute the fuel. Efforts to observe the ice layers formed in the {beta}-layering process in cryogenic targets, and to simulate the formation of these layers. In addition to our work on target technology, we conducted experiments with the Chroma laser and supported the ICF effort at other labs with theoretical and computational support as well as diagnostic development. Included in the work covered in this report are: experiments on Chroma to study interpenetration of and ionization balance in laser generated plasmas. Diagnostic development, including an optical probe for the Aurora laser at Los Alamos National Laboratory, and a high energy x-ray continuum spectrograph for Aurora. Investigation of the radiation cooling instability as a possible mechanism for the generation of relatively cold, dense jets observed in ICF experiments.

  11. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1999-06-01

    Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is

  12. Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept

    NASA Technical Reports Server (NTRS)

    Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. Magneto-Inertial Fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small fusion reactor/engine assembly (1). The Z-Pinch dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an estimated axial current of approximately 100 MA. Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4) (2). The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this is repeated over short timescales (10(exp -6) sec). This plasma formation is widely used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, as well as in fusion energy research. There is a wealth of literature characterizing Z-Pinch physics and existing models (3-5). In order to be useful in engineering analysis, a simplified Z-Pinch fusion thermodynamic model was developed to determine the quantity of plasma, plasma temperature, rate of expansion, energy production, etc. to calculate the parameters that characterize a propulsion system. The amount of nuclear fuel per pulse, mixture ratio of the D-T and nozzle liner propellant, and assumptions about the efficiency of the engine, enabled the sizing of the propulsion system and resulted in an estimate of the thrust and Isp of a Z-Pinch fusion propulsion system for the concept vehicle. MIF requires a magnetic nozzle to contain and direct the nuclear pulses, as well as a robust structure and radiation shielding. The structure

  13. Project Icarus: Analysis of Plasma jet driven Magneto-Inertial Fusion as potential primary propulsion driver for the Icarus probe

    NASA Astrophysics Data System (ADS)

    Stanic, M.; Cassibry, J. T.; Adams, R. B.

    2013-05-01

    Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.

  14. A Heavy Ion Inertial Fusion Target with a Large Beam Spot

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    2000-10-01

    Because the achievable beam spot size for a heavy ion accelerator appropriate for heavy ion inertial fusion is uncertain, it is important to have a portfolio of target designs that cover the possible parameter space. While we have demonstrated that very high gains can be achieved with small spots [1], we are now concentrating on targets with larger spots and lower gains. Integrated Lasnex calculations of a target that is a hybrid between the ``end radiator'' [2] and the ``distributed radiator'' [3] predict that gain 60 is achievable from 6.7 MJ of beam energy in a 4.5 mm radius beam spot. Since accelerators are efficient (η ~ 25-35%), gain 60 is still adequate to get the η G > 10 required by the reactor. This ``hybrid'' target increases the beam spot radius by 66% over the distributed radiator target with an energy penalty of only 15%. [1] D. A. Callahan-Miller, M. Tabak, Phys. Plasmas, 7, 2083 (2000). [2] D. D.-M. Ho, J. A. Harte, M. Tabak, Nuc. Fusion, 38, 701 (1998). [3] M. Tabak, D. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).

  15. Neutron Induced D Breakup in Inertial Confinement Fusion at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schroder, W. U.; Frenje, J. A.; Gatu Johnson, M.

    2015-11-01

    High-resolution neutron spectroscopy is used to study the deuteron breakup reaction D(n,n ') np in the thermonuclear environment created in inertial confinement fusion experiments at the Omega Laser Facility. Neutrons with an energy of 14.1 MeV generated in the primary D-T fusion reactions scatter elastically and inelastically off the dense (cryogenic) D-T fuel assembly surrounding the central hot spot at peak fuel compression. These neutrons also induce a breakup of the fuel deuterons. The corresponding breakup cross section is measured relative to elastic n -D and n -T scattering, i.e., simultaneously in the same environment. Apart from astrophysical and technological interest, the neutron-induced deuteron breakup reaction is of interest to the physics of nucleon -nucleon forces. For example, theoretical calculations predict a noticeable influence of nucleonic three-body forces on the magnitude of the breakup cross section. Preliminary results from measurements of the neutron contribution in the 2- to 6-MeV range show reasonable agreement with the published ENDL 2008.2 semi-empirical cross-section. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Hydrodynamic Scaling of the Deceleration-Phase Rayleigh-Taylor Instability for Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Bose, A.; Betti, R.; Woo, K.; Nora, R.

    2014-10-01

    Hydrodynamic equivalence and ignition theory allow for the extrapolation of OMEGA experiments to ignition-scale implosions. The yield-over-clean (YOC = measured yield/1-D yield) depicts the effect of hydro-instabilities on inertial confinement fusion implosions. A 2-D study of the deceleration-phase Rayleigh-Taylor instability (RTI) is carried out to assess the YOC scaling with target size at varying nonuniformity levels. The deceleration-phase ablative RTI is mitigated by the hot-spot thermal and radiation transport, which do not scale hydro-equivalently. Scaling of the thermal conduction shows that hot-spot ablation velocity is higher on OMEGA than on the National Ignition Facility (NIF), resulting in higher RTI growth factors on the NIF. Radiation emitted in the hot-spot makes the implosion nearly hydro-equivalent by increasing the density gradient scale length on the NIF. Thermal conduction and radiation both are nonscalable physics in the deceleration phase, with complementary impacts the scaling of deceleration-phase RTI. Analytic and numerical study of the deceleration-phase RTI on OMEGA and NIF-scale targets show that YOCNIF ~ YOCΩ considering identical laser imprinting and normalized ice roughness levels. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  17. Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion

    SciTech Connect

    Nuckolls, J.H.

    1994-06-01

    Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

  18. Semi-analytic modeling and simulation of magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Slutz, S. A.; Hansen, S. B.

    2013-10-01

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) pre-heat of the fuel; (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, and internal magnetic pressure and heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) deuterium-deuterium and deuterium-tritium primary fusion reactions; and (9) magnetized alpha-particle heating. We will first show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper. We will then use this model to illustrate the MagLIF parameter space, energetics, and efficiencies, and to show the experimental challenges that we will likely be facing as we begin testing MagLIF using the infrastructure presently available at the Z facility. Finally, we will demonstrate how this scenario could likely change as various facility upgrades are made over the next three to five years and beyond. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Production and Metrology of Cylindrical Inertial Confinement Fusion Targets with Sinusoidal Perturbations

    SciTech Connect

    Balkey, M.M.; Day, R.D.; Batha, S.H.; Elliot, N.E.; Pierce, T.; Sandoval, D.L.; Garrard, K.P.; Sohn, A.

    2004-03-15

    Shock waves generated during inertial confinement fusion implosions propagate toward the center of the capsule encountering interfaces between materials with different densities, such as between the ablator and the DT fuel. These interactions are hydrodynamically unstable and the resulting instability causes mixing of the materials at the interface, which is predicted to have detrimental effects on fusion burn. In this experiment, the growth of a single-mode perturbation machined into a radiographically opaque marker layer, driven by a strong shock, is measured during a cylindrically symmetric implosion. These measurements are used to validate simulations and theories of the complex hydrodynamics. Since any perturbation on the marker layer surface will lead to instability growth, precise knowledge of the initial conditions is critical. The targets used in this experiment have up to a 3.0-{mu}m-amplitude, mode 28 ({lambda} = 98 {mu}m) sinusoidal perturbation machined into a 438-{mu}m-outerradius aluminum band with a nominal thickness of 8 {mu}m. The perturbations were machined using a fast-tool servo [B. JARED and T. A. DOW, Precision Engineering Center Annual Report, North Carolina State University, Raleigh NC, p. 123 (1996)] and were metrologized using a linear variable differential transformer [FRANK J. OLIVER, Practical Instrumentation Tranducers, p. 42-45, Hayden Book Company (1971)]. In this paper, the importance of metrology is discussed and is shown to be critical to the interpretation of experimental results.

  20. Progress in laboratory high gain ICF (inertial confinement fusion): Prospects for the future

    SciTech Connect

    Storm, E.; Lindl, J.D.; Campbell, E.M.; Bernat, T.P.; Coleman, L.W.; Emmett, J.L.; Hogan, W.J.; Hunt, J.T.; Krupke, W.F.; Lowdermilk, W.H.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10/sup 14/ W/cm/sup 2/, an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm/sup 3/ and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs.

  1. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  2. Three-Dimensional Simulations of the Deceleration Phase of Inertial Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Woo, K. M.; Betti, R.; Bose, A.; Epstein, R.; Delettrez, J. A.; Anderson, K. S.; Yan, R.; Chang, P.-Y.; Jonathan, D.; Charissis, M.

    2015-11-01

    The three-dimensional radiation-hydrodynamics code DEC3D has been developed to model the deceleration phase of direct-drive inertial confinement fusion implosions. The code uses the approximate Riemann solver on a moving mesh to achieve high resolution near discontinuities. The domain decomposition parallelization strategy is implemented to maintain high computation efficiency for the 3-D calculation through message passing interface. The implicit thermal diffusion is solved by the parallel successive-over-relaxation iteration. Results from 3-D simulations of low-mode Rayleigh-Taylor instability are presented and compared with 2-D results. A systematic comparison of yields, pressures, temperatures, and areal densities between 2-D and 3-D is carried out to determine the additional degradation in target performance caused by the three-dimensionality of the nonuniformities. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  3. Optimizing Neutron Production Rates from D-D Fusion in an Inertial Electrostatic Confinement Device

    SciTech Connect

    Wehmeyer, A.L.; Radel, R.F.; Kulcinski, G.L.

    2005-05-15

    Detection of explosives has been identified as a near term commercial opportunity for using a fusion plasma. Typical explosive compositions contain low Z material (C, N, O) which are not easily detected using conventional x-rays or metal detectors. However, 2.45 MeV neutrons produced in a D-D fusion reaction can be used for detection of explosives or other clandestine materials in suitcases, packages, or shipping containers.Steady-state D-D operation is possible using an Inertial Electrostatic Confinement (IEC) fusion device. The University of Wisconsin IEC device has produced D-D neutrons at 1.8 x 10{sup 8} neutrons/second at a true cathode voltage of 166 kV and a meter current of 68 mA. These neutron production rates are approaching the levels required for the detection of explosives. In order to increase and optimize the neutron production rate in the IEC device, experiments were performed altering the cathode's size (diameter), geometry, and material composition. Preliminary results indicate that significant differences in neutron production rates are not achieved by altering the geometry or material composition of the cathode. However, the neutron production rate was found to increase approximately 20% by doubling the cathode's diameter from 10 cm to 20 cm. In addition, increasing the cathode voltage from 34 kV to 94 kV at a meter current of 30 mA increased the neutron production rate from 1.24 x 10{sup 6} n/s to 2.83 x 10{sup 7} n/s.

  4. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

    NASA Astrophysics Data System (ADS)

    Slutz, S. A.; Stygar, W. A.; Gomez, M. R.; Peterson, K. J.; Sefkow, A. B.; Sinars, D. B.; Vesey, R. A.; Campbell, E. M.; Betti, R.

    2016-02-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion-relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values: i.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and Bz = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.

  5. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    SciTech Connect

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-07-11

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.

  6. Comparative study on cost evaluation and network visualization of particle accelerator components for heavy ion inertial fusion

    NASA Astrophysics Data System (ADS)

    Inoue, A.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob; Barnard, J. J.

    2016-05-01

    By visualizing accelerator system components in heavy ion inertial fusion, the connection between the components becomes clear. We clarify an influential component on the entire cost by the relation of node connections due to the visualization result. Since a low cost component affects a high cost component, not only the cost estimation but also the relation between the components is considerable and important issue. A cost estimation result changing with an induction core cost indicates no influences in the rate of details.

  7. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 1, Executive summary and overview, Final report

    SciTech Connect

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe.

  8. Applications of deuterium-tritium equation of state based on density functional theory in inertial confinement fusion

    SciTech Connect

    Wang, Cong; He, Xian-Tu; Ye, Wen-Hua; Zhang, Ping; Fan, Zheng-Feng

    2015-06-15

    An accurate equation of state for deuterium-tritium mixture is of crucial importance in inertial confinement fusion. The equation of state can determine the compressibility of the imploding target and the energy deposited into the fusion fuel. In the present work, a new deuterium-tritium equation of state, which is calculated according to quantum molecular dynamic and orbital free molecular dynamic simulations, has been used to study the target implosion hydrodynamics. The results indicate that the peak density predicted by the new equation of state is ∼10% higher than the quotidian equation of state data. During the implosion, the areal density and neutron yield are also discussed.

  9. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE PAGESBeta

    Seguin, F. H.; Li, C. K.; DeCiantis, J. L.; Frenje, J. A.; Rygg, J. R.; Petrasso, R. D.; Marshall, F. J.; Smalyuk, V.; Glebov, V. Yu.; Knauer, J. P.; et al

    2016-03-22

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Here, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  10. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    NASA Astrophysics Data System (ADS)

    Séguin, F. H.; Li, C. K.; DeCiantis, J. L.; Frenje, J. A.; Rygg, J. R.; Petrasso, R. D.; Marshall, F. J.; Smalyuk, V.; Glebov, V. Yu.; Knauer, J. P.; Sangster, T. C.; Kilkenny, J. D.; Nikroo, A.

    2016-03-01

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  11. Liquid Scoping Study for Tritium-Lean, Fast Ignition Inertial Fusion Energy Power Plants

    SciTech Connect

    Schmitt, R C; Latkowski, J F; Durbin, S G; Meier, W R; Reyes, S

    2001-08-14

    In a thick-liquid protected chamber design, such as HYLIFE-II, a molten-salt is used to attenuate neutrons and protect the chamber structures from radiation damage. The molten-salt absorbs some of the material and energy given off by the target explosion. In the case of a fast ignition inertial fusion system, advanced targets have been proposed that may be Self-sufficient in the tritium breeding (i.e., the amount of tritium bred in target exceeds the amount burned). These ''tritium-lean'' targets contain approximately 0.5% tritium and 99.5% deuterium, but require a large pr of 10-20 g/cm{sup 2}. Although most of the yield is provided by D-T reactions, the majority of fusion reactions are D-D, which produces a net surplus of tritium. This aspect allows for greater freedom when selecting a liquid for the protective blanket (lithium-bearing compounds are not required). This study assesses characteristics of many single, binary, and ternary molten-salts. Using the NIST Properties of Molten Salts Database, approximately 4300 molten-salts were included in the study [1]. As an initial screening, salts were evaluated for their safety and environmental (S&E) characteristics, which included an assessment of waste disposal rating, contact dose, and radioactive afterheat. Salts that passed the S&E criteria were then evaluated for neutron shielding ability and pumping power. The pumping power was calculated using three components: velocity head losses, frictional losses, and lift. This assessment left us with 57 molten-salts to recommend for further analysis. Many of these molten-salts contain elements such as sodium, lithium, beryllium, boron, fluorine, and oxygen. Recommendations for further analysis are also made.

  12. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Town, R. P. J.; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Kline, J. L.; Kyrala, G. A.; Ma, T.; Milovich, J. L.; Moody, J. D.; Nagel, S. R.; Pak, A.; Peterson, J. L.; Robey, H. F.; Ross, J. S.; Scott, R. H. H.; Spears, B. K.; Edwards, M. J.; Kilkenny, J. D.; Landen, O. L.

    2014-05-01

    In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.

  13. Inertial Confinement Fusion quarterly report, January-March 1998, volume 8, number 2

    SciTech Connect

    Kruer, W

    1998-03-31

    The coupling of laser light with plasmas is one of the key physics issues for the use of high-power lasers for inertial fusion, high-energy-density physics, and scientific stockpile stewardship. The coupling physics is extremely rich and challenging, particularly in the large plasmas to be accessed on the National Ignition Facility (NIF). The coupling mechanisms span the gamut from classical inverse bremsstrahlung absorption to a variety of nonlinear optical processes. These include stimulated Raman scattering (SRS) from electron plasma waves, stimulated Brillouin scattering (SBS) from ion sound waves, resonant decay into electron plasma and ion sound waves, and laser beam filamentation. These processes depend on laser intensity and produce effects such as changes in the efficiency and location of the energy deposition or generation of a component of very energetic electrons, which can preheat capsules. Coupling physics issues have an extremely high leverage. The coupling models are clearly very important ingredients for detailed calculations of laser-irradiated target behavior. Improved understanding and models enable a more efficient use of laser facilities, which becomes even more important as these facilities become larger and more expensive. Advances in the understanding also allow a more timely and cost-effective identification of new applications of high-power lasers, such as for generation of high-temperature hohlraums and compact x-ray sources, or for discovery of advanced fusion schemes. Finally, the interaction of intense electromagnetic waves with ionized media is a fundamental topic of interest to numerous areas of applied science and is an excellent test bed for advancing plasma science and computational modeling of complex phenomena. This issue of the ICF Quarterly Report is dedicated to laser--plasma interactions. The eight articles present a cross section of the broad progress in understanding the key interaction issues, such as laser beam bending

  14. Overview of the VISTA Spacecraft Concept Powered by Inertial Confinement Fusion

    SciTech Connect

    Orth, C D

    2000-11-21

    VISTA was conceived through a detailed systems analysis as a viable, realistic, and defensible spacecraft concept based on advanced ICF technology but existing or near-term technology for other systems. It is a conical self-contained single-stage piloted spacecraft in which a magnetic thrust chamber directs the plasma emissions from inertial confinement fusion (ICF) targets into a rearward exhaust. VISTA's propulsion system is therefore unique because it is based on (1) a rather mature technology (ICF), which is known to work with sufficient driver input; (2) direct heating of all expellant by the fusion process, thus providing high mass flow rates without significant degradation of jet efficiency; and (3) a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. VISTA therefore has inherently high power/mass ratios and high specific impulses. With advanced ICF technology, ultra-fast roundtrips (RTs) to objects within the solar system are possible (e.g., {ge}145 days RT to Mars, {ge}7 years RT to Pluto). Such short-duration missions are imperative to minimize the human physiological deteriorations arising from zero gravity and the cosmic-radiation. In addition, VISTA offers on-board artificial gravity and propellant-based shielding from cosmic rays, thus reducing the physiological deteriorations to insignificant levels. In this paper, we give an overview of the various vehicle systems for this concept, estimate the general missions performance capabilities for interplanetary missions, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. Items requiring further research include a reduction of the wet mass from its baseline value of 6,000 metric tons, and the development of fast ignition or its equivalent to provide target gains in excess of several hundred. With target gains well

  15. The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion databasea)

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Wilks, S. C.; Bellei, C.; Li, C. K.; Petrasso, R. D.

    2011-05-01

    The generation of strong, self-generated electric fields (GV/m) in direct-drive, inertial-confinement-fusion (ICF) capsules has been reported [Rygg et al., Science 319, 1223 (2008); Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A candidate explanation for the origin of these fields based on charge separation across a plasma shock front was recently proposed [Amendt et al., Plasma Phys. Controlled Fusion 51 124048 (2009)]. The question arises whether such electric fields in imploding capsules can have observable consequences on target performance. Two well-known anomalies come to mind: (1) an observed ≈2× greater-than-expected deficit of neutrons in an equimolar D3He fuel mixture compared with hydrodynamically equivalent D [Rygg et al., Phys. Plasmas 13, 052702 (2006)] and DT [Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuels, and (2) a similar shortfall of neutrons when trace amounts of argon are mixed with D in indirect-drive implosions [Lindl et al., Phys. Plasmas 11, 339 (2004)]. A new mechanism based on barodiffusion (or pressure gradient-driven diffusion) in a plasma is proposed that incorporates the presence of shock-generated electric fields to explain the reported anomalies. For implosions performed at the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)], the (low Mach number) return shock has an appreciable scale length over which the lighter D ions can diffuse away from fuel center. The depletion of D fuel is estimated and found to lead to a corresponding reduction in neutrons, consistent with the anomalies observed in experiments for both argon-doped D fuels and D3He equimolar mixtures. The reverse diffusional flux of the heavier ions toward fuel center also increases the pressure from a concomitant increase in electron number density, resulting in lower stagnation pressures and larger imploded cores in agreement with gated, self-emission, x-ray imaging data.

  16. Fast ignition of an inertial fusion target with a solid noncryogenic fuel by an ion beam

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.; Zmitrenko, N. V.; Il'in, D. V.; Sherman, V. E.

    2015-09-01

    The burning efficiency of a preliminarily compressed inertial confinement fusion (ICF) target with a solid noncryogenic fuel (deuterium-tritium beryllium hydride) upon fast central ignition by a fast ion beam is studied. The main aim of the study was to determine the extent to which the spatial temperature distribution formed under the heating of an ICF target by ion beams with different particle energy spectra affects the thermonuclear gain. The study is based on a complex numerical modeling including computer simulations of (i) the heating of a compressed target with a spatially nonuniform density and temperature distributions by a fast ion beam and (ii) the burning of the target with the initial spatial density distribution formed at the instant of maximum compression of the target and the initial spatial temperature distribution formed as a result of heating of the compressed target by the ion beam. The threshold energy of the igniting ion beam and the dependence of the thermonuclear gain on the energy deposited in the target are determined.

  17. Effect of the mounting membrane on shape in inertial confinement fusion implosions

    SciTech Connect

    Nagel, S. R. Haan, S. W.; Rygg, J. R.; Barrios, M.; Benedetti, L. R.; Bradley, D. K.; Field, J. E.; Hammel, B. A.; Izumi, N.; Jones, O. S.; Khan, S. F.; Ma, T.; Pak, A. E.; Tommasini, R.; Town, R. P. J.

    2015-02-15

    The performance of Inertial Confinement Fusion targets relies on the symmetric implosion of highly compressed fuel. X-ray area-backlit imaging is used to assess in-flight low mode 2D asymmetries of the shell. These time-resolved images of the shell exhibit features that can be related to the lift-off position of the membranes used to hold the capsule within the hohlraum. Here, we describe a systematic study of this membrane or “tent” thickness and its impact on the measured low modes for in-flight and self-emission images. The low mode amplitudes of the shell in-flight shape (P{sub 2} and P{sub 4}) are weakly affected by the tent feature in time-resolved, backlit data. By contrast, time integrated self-emission images along the same axis exhibit a reversal in perceived P{sub 4} mode due to growth of a feature seeded by the tent, which can explain prior inconsistencies between the in-flight P{sub 4} and core P{sub 4}, leading to a reevaluation of optimum hohlraum length. Simulations with a tent-like feature normalized to match the feature seen in the backlit images predict a very large impact on the capsule performance from the tent feature.

  18. Laue transmission x-ray spectrograph for inertial confinement fusion (ICF) diagnostics

    NASA Astrophysics Data System (ADS)

    Burek, A. J.

    1992-01-01

    An absolutely calibrated, focusing Laue transmission crystal spectrograph has been developed for inertial confinement fusion (ICF) diagnostics of high-energy x-ray continuum at NOVA. A single flat EddT 020 crystal, 500-μm thick, provides continuous energy coverage over the 5.5-25 keV energy range. The spectrograph is designed with low dispersion and low resolving power E/ΔE of between 10 and 50 for high sensitivity to continuum. Greater resolving power with lower continuum sensitivity is possible by increasing dispersion. The focusing design achieves very low background and provides a compact flat field for coupling to various position sensitive detectors including streak cameras. In addition to EddT, PET 020 has high efficiency in transmission in this energy range and used in the Cauchois geometry achieves high to moderate resolving power that is independent of ICF source size. Initial experiments with gold targets at NOVA with the EddT spectrograph show high sensitivity for single shot recording of continuum and gold L lines on Kodak DEF film. Factors affecting instrument design, resolving power, and sensitivity will be discussed.

  19. Inertial confinement fusion. ICF quarterly report, October 1993--December 1993, Volume 4, Number 1

    SciTech Connect

    Powell, H.T.; Schleich, D.P.; Murphy, P.W.

    1994-05-01

    In the 1990 National Academy of Sciences (NAS) report of its review of the U.S. Inertial Confinement Fusion (ICF) Program, it was recommended that a high priority be placed on completing the Precision Nova Project and its associated experimental campaign. Since fiscal year 1990, the lab has therefore campaigned vigorously on Nova and in its supporting laboratories to develop the Precision Nova capabilities needed to perform the stressful target experiments recommended in the 1990 NAS report. The activities to enable these experiments have been directed at improvements in three areas - the Nova laser, target fabrication capabilities, and target diagnostics. As summarized in the five articles in this report, the Precision Nova improvements have been successfully completed. These improvements have had a positive impact on target performance and on the ability to diagnose the results, as evidenced by the HEP-1 experimental results. The five articles generally concentrate on improvements to the capabilities rather than on the associated target physics experiments. Separate abstracts are included for each paper.

  20. Ultrafast picket fence pulse trains to enhance frequency conversion of shaped inertial confinement fusion laser pulses.

    PubMed

    Rothenberg, J E

    2000-12-20

    A high-frequency train of 5-100-ps pulses (picket fence) is proposed to improve significantly the third-harmonic frequency conversion of Nd:glass lasers that are used to generate high-contrast-shaped pulses for inertial confinement fusion (ICF) targets. High conversion efficiency of the low-power foot of a shaped ICF pulse is obtained by use of a low duty cycle, multi-gigahertz train of approximately 20-ps pulses with high peak power. Even with less than 10% duty cycle, continuous illumination is maintained on the target by a combination of temporal broadening schemes. The picket fence approach is analyzed, and the practical limits are identified as applied to the National Ignition Facility laser. It is found that the higher conversion efficiency allows approximately 40% more third-harmonic energy to be delivered to the target, potentially enabling the larger drive needed for high-yield ICF target designs. In addition, the frequency conversion efficiency of these short pulses saturates much more readily, which reduces the transfer of fluctuations at the fundamental and thus greatly improves the power stability of the third harmonic. PMID:18354706

  1. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    SciTech Connect

    Ronald Justin, Terence Davies, Frans Janson, Bruce Marshall, Perry Bell, Daniel Kalantar, Joseph Kimbrough, Stephen Vernon, Oliver Sweningsen

    2008-09-18

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called “comb” pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber.

  2. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions.

    PubMed

    Hu, S X; Collins, L A; Goncharov, V N; Kress, J D; McCrory, R L; Skupsky, S

    2015-10-01

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. With first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ=0.1to100g/cm(3) and T=1000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosions on OMEGA using the FPEOS table of CH have predicted ∼30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ∼5% reduction in implosion velocity that is caused by the ∼10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered light from ICF implosions. PMID:26565353

  3. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2015-10-01

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. With first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ =0.1 to 100 g /cm3 and T =1000 to 4 000 000 K ). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosions on OMEGA using the FPEOS table of CH have predicted ˜30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ˜5% reduction in implosion velocity that is caused by the ˜10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered light from ICF implosions.

  4. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants.

    PubMed

    Hu, S X; Fiksel, G; Goncharov, V N; Skupsky, S; Meyerhofer, D D; Smalyuk, V A

    2012-05-11

    Nonuniformities seeded by both long- and short-wavelength laser perturbations can grow via Rayleigh-Taylor (RT) instability in direct-drive inertial confinement fusion, leading to performance reduction in low-adiabat implosions. To mitigate the effect of laser imprinting on target performance, spherical RT experiments have been performed on OMEGA using Si- or Ge-doped plastic targets in a cone-in-shell configuration. Compared to a pure plastic target, radiation preheating from these high-Z dopants (Si/Ge) increases the ablation velocity and the standoff distance between the ablation front and laser-deposition region, thereby reducing both the imprinting efficiency and the RT growth rate. Experiments showed a factor of 2-3 reduction in the laser-imprinting efficiency and a reduced RT growth rate, leading to significant (3-5 times) reduction in the σ(rms) of shell ρR modulation for Si- or Ge-doped targets. These features are reproduced by radiation-hydrodynamics simulations using the two-dimensional hydrocode DRACO. PMID:23003051

  5. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    PubMed

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models. PMID:21867323

  6. Development of the large neutron imaging system for inertial confinement fusion experiments.

    PubMed

    Caillaud, T; Landoas, O; Briat, M; Kime, S; Rossé, B; Thfoin, I; Bourgade, J L; Disdier, L; Glebov, V Yu; Marshall, F J; Sangster, T C

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (~10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution. PMID:22462917

  7. Investigation of radial wire arrays for inertial confinement fusion and radiation effects science.

    SciTech Connect

    Serrano, Jason Dimitri; Bland, Simon Nicholas; McBride, Ryan D.; Chittenden, Jeremy Paul; Suzuki-Vidal, Francisco Andres; Jennings, Christopher A.; Hall, Gareth Neville; Ampleford, David J.; Peyton, Bradley Philip; Lebedev, Sergey V.; Cleveland, Monica; Rogers, Thomas John; Cuneo, Michael Edward; Coverdale, Christine Anne; Jones, Brent Manley; Jones, Michael C.

    2010-02-01

    Radial wire arrays provide an alternative x-ray source for Z-pinch driven Inertial Confinement Fusion. These arrays, where wires are positioned radially outwards from a central cathode to a concentric anode, have the potential to drive a more compact ICF hohlraum. A number of experiments were performed on the 7MA Saturn Generator. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1MA level, where they have been shown to provide similar x-ray outputs to larger diameter cylindrical arrays, to the higher current levels required for ICF. Data indicates that at 7MA radial arrays can obtain higher power densities than cylindrical wire arrays, so may be of use for x-ray driven ICF on future facilities. Even at the 7MA level, data using Saturn's short pulse mode indicates that a radial array should be able to drive a compact hohlraum to temperatures {approx}92eV, which may be of interest for opacity experiments. These arrays are also shown to have applications to jet production for laboratory astrophysics. MHD simulations require additional physics to match the observed behavior.

  8. Development of the large neutron imaging system for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rossé, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (˜10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999), 10.1017/S0263034699173087]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a 60Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997), 10.1016/S0030-4018(96)00325-2] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution.

  9. Development of backlighting sources for a Compton radiography diagnostic of Inertial Confinement Fusion targets

    SciTech Connect

    Tommasini, R; MacPhee, A; Hey, D; Ma, T; Chen, C; Izumi, N; Unites, W; MacKinnon, A; Hatchett, S P; Remington, B A; Park, H S; Springer, P; Koch, J A; Landen, O L; Seely, J; Holland, G; Hudson, L

    2008-05-07

    We present scaled demonstrations of backlighter sources, emitting Bremsstrahlung x-rays with photon energies above 75 keV, that we will use to record x-ray Compton radiographic snapshots of cold dense DT fuel in inertial confinement fusion implosions at the National Ignition Facility (NIF). In experiments performed at the Titan laser facility at Lawrence Livermore National Laboratory, we measured the source size and the Bremsstrahlung spectrum as a function of laser intensity and pulse length, from solid targets irradiated at 2e17-5e18 W/cm{sup 2} using 2-40 ps pulses. Using Au planar foils we achieved source sizes down to 5.5 {micro}m, and conversion efficiencies of about 1e-3 J/J into x-ray photons with energies in the 75-100 keV spectral range. We can now use these results to design NIF backlighter targets and shielding, and to predict Compton radiography performance as a function of the NIF implosion yield and associated background.

  10. Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited)

    SciTech Connect

    Tommasini, R.; MacPhee, A.; Hey, D.; Ma, T.; Chen, C.; Izumi, N.; Unites, W.; MacKinnon, A.; Hatchett, S. P.; Remington, B. A.; Park, H. S.; Springer, P.; Koch, J. A.; Landen, O. L.; Seely, John; Holland, Glenn; Hudson, Larry

    2008-10-15

    We present scaled demonstrations of backlighter sources, emitting bremsstrahlung x rays with photon energies above 75 keV, that we will use to record x-ray Compton radiographic snapshots of cold dense DT fuel in inertial confinement fusion implosions at the National Ignition Facility (NIF). In experiments performed at the Titan laser facility at Lawrence Livermore National Laboratory, we measured the source size and the bremsstrahlung spectrum as a function of laser intensity and pulse length from solid targets irradiated at 2x10{sup 17}-5x10{sup 18} W/cm{sup 2} using 2-40 ps pulses. Using Au planar foils we achieved source sizes down to 5.5 {mu}m and conversion efficiencies of about 1x10{sup -13} J/J into x-ray photons with energies in the 75-100 keV spectral range. We can now use these results to design NIF backlighter targets and shielding and to predict Compton radiography performance as a function of the NIF implosion yield and associated background.

  11. Observations of the Ablative Richtmyer-Meshkov Effect Relevant to Indirect-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steve; Landen, Otto

    2013-10-01

    Recent simulations and experiments have shown that isolated features on the outer surface of Inertial Confinement Fusion (ICF) ignition capsules can profoundly impact capsule performance by leading to material jetting or mixing into the hotspot. Controlling the growth of these artifacts is complicated due to uncertainties in equation of state (EOS) models used in simulation codes. Here we report on measurements pertaining to the growth and decay of isolated defects due to x-ray ablation Richtmyer-Meshkov in CH capsules in order to validate these models. Face-on transmission radiography was used to measure the evolution of Gaussian bump arrays in plastic targets. Au halfraums heated to radiation temperatures near 70 eV using 15 beams in a 7.5 ns pulse from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY) indirectly drove the samples while simultaneous radiographs from Ta and Y backlighter foils were recorded. Shock speed measurements were also made with Omega's Active Shock Break Out (ASBO) diagnostic in conjunction with the x-ray flux recorded by a soft x-ray power diagnostic (DANTE) were used to determine drive conditions in the target. Measurements of 5 micron tall, 17 micron wide bumps show a decrease in bump areal density between 4.5 and 7.5 ns while 33 micron wide bumps saturate near 3 ns consistent with LEOS 5310 and SESAME 7592 simulations.

  12. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser

    SciTech Connect

    Hohenberger, M.; Chang, P.-Y.; Fiksel, G.; Knauer, J. P.; Marshall, F. J.; Betti, R.; Meyerhofer, D. D.; and others

    2012-05-15

    Experiments applying laser-driven magnetic-flux compression to inertial confinement fusion (ICF) targets to enhance the implosion performance are described. Spherical plastic (CH) targets filled with 10 atm of deuterium gas were imploded by the OMEGA Laser, compare Phys. Plasmas 18, 056703 or Phys. Plasmas 18, 056309. Before being imploded, the targets were immersed in an 80-kG magnetic seed field. Upon laser irradiation, the high implosion velocities and ionization of the target fill trapped the magnetic field inside the capsule, and it was amplified to tens of megagauss through flux compression. At such strong magnetic fields, the hot spot inside the spherical target was strongly magnetized, reducing the heat losses through electron confinement. The experimentally observed ion temperature was enhanced by 15%, and the neutron yield was increased by 30%, compared to nonmagnetized implosions [P. Y. Chang et al., Phys. Rev. Lett. 107, 035006 (2011)]. This represents the first experimental verification of performance enhancement resulting from embedding a strong magnetic field into an ICF capsule. Experimental data for the fuel-assembly performance and magnetic field are compared to numerical results from combining the 1-D hydrodynamics code LILAC with a 2-D magnetohydrodynamics postprocessor.

  13. Recycling issues facing target and RTL materials of inertial fusion designs

    NASA Astrophysics Data System (ADS)

    El-Guebaly, L.; Wilson, P.; Sawan, M.; Henderson, D.; Varuttamaseni, A.

    2005-05-01

    Designers of heavy ion (HI) and Z-pinch inertial fusion power plants have explored the potential of recycling the target and recyclable transmission line (RTL) materials as an alternate option to disposal in a geological repository. This work represents the first time a comprehensive recycling assessment was performed on both machines with an exact pulse history. Our results offer two divergent conclusions on the recycling issue. For the HI concept, target recycling is not a "must" requirement and the preferred option is the one-shot use scenario as target materials represent a small waste stream, less than 1% of the total nuclear island waste. We recommend using low-cost hohlraum materials once-through and then disposing of them instead of recycling expensive materials such as Au and Gd. On the contrary, RTL recycling is a "must" requirement for the Z-pinch concept in order to minimize the RTL inventory and enhance the economics. The RTLs meet the low level waste and recycling dose requirements with a wide margin when recycled for the entire plant life even without a cooling period. While recycling offers advantages to the Z-pinch system, it adds complexity and cost to the HI designs.

  14. Fast ignition of a compressed inertial confinement fusion hemispherical capsule by two proton beams

    SciTech Connect

    Temporal, Mauro

    2006-12-15

    A hemispherical conically guided indirectly driven inertial confinement fusion capsule has been considered. The fast ignition of the precompressed capsule driven by one or two laser-accelerated proton beams has been numerically investigated. The energy distribution of the protons is Gaussian with a mean energy of 12 MeV and a full width at half maximum of 1 MeV. A new scheme that uses two laser-accelerated proton beams is proposed. It is found that the energy deposition of 1 kJ provided by a first proton beam generates a low-density cylindrical channel and launches a forward shock. A second proton beam, delayed by a few tens of ps and driving the energy of 6 kJ, crosses the low-density channel and heats the dense shocked region where the ignition of the deuterium-tritium nuclear fuel is achieved. For the considered capsule, this new two-beam configuration reduces the ignition energy threshold to 7 kJ.

  15. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    SciTech Connect

    Vold, E. L.; Molvig, K.; Joglekar, A. S.; Ortega, M. I.; Moll, R.; Fenn, D.

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  16. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.

    PubMed

    Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100. PMID:25353903

  17. Performance of large-aperture optical switches for high-energy inertial-confinement fusion lasers

    SciTech Connect

    Rhodes, M.A.; Woods, B.; DeYoreo, J.J.; Roberts, D.; Atherton, L.J.

    1995-08-20

    We describe the design and performance of large-aperture ({lt}30 cm {times} 30 cm) optical switches that have demonstrated, for the first time to our knowledge, active switching of a high-energy ({lt}5 kJ) optical pulse in an inertial-confinement fusion laser. These optical switches, which consist of a plasma-electrode Pockels cell (PEPC) and a passive polarizer, permit the design of efficient, multipass laser amplifiers. In a PEPC, plasma discharges on the faces of a thin (1-cm) electro-optic crystal (KDP or KD{bold |}P) act as highly conductive and transparent electrodes. These plasma electrodes facilitate rapid ({lt}100 ns) and uniform charging of the crystal to the half-wave voltage and discharging back to 0 V. We discuss the operating principles, design, optical performance, and technical issues of a 32 cm {times} 32 cm prototype PEPC with both KDP and KD{bold |}P crystals, and a 37 cm {times} 37 cm PEPC with a KDP crystal for the Beamlet laser. This PEPC recently switched a 6-kJ, 3-ns pulse in a four-pass cavity.

  18. Neutron attenuation in the laser ducts of an inertial-confinement fusion reactor

    SciTech Connect

    Augustine, F. Jr.

    1981-11-01

    This report deals with the problem of neutron streaming through the laser beam ducts of an inertial confinement fusion power plant. The neutron flux through these ducts must be attenuated by a factor of 10/sup 12/ to meet radiological safety limits. The problem is dealt with by using mirrors to bend the path of the laser beam while cutting off a line of sight path for neutrons. The Monte Carlo Code MCNP was used to analyze the two mirror SOLASE design, which only attenuated the neutron flux by a factor of 10/sup 3/. The Westinghouse design, initially assuming four mirrors, attenuated the neutron flux by 10/sup 4/ per mirror bend, and hence only three mirror bends were needed. Further studies also revealed that the large length/diameter ratio of the ducts and the thinner mirror design were crucial to the large attenuation. It may also be possible to develop a two mirror system, at 10/sup 6/ attenuation per mirror bend, utilizing improvements such as point cross overs, a second flux trap, and acute column-to-column angles. Further studies are needed to check this possibility.

  19. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    NASA Astrophysics Data System (ADS)

    Vold, E. L.; Joglekar, A. S.; Ortega, M. I.; Moll, R.; Fenn, D.; Molvig, K.

    2015-11-01

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  20. Fast ignition of an inertial fusion target with a solid noncryogenic fuel by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2015-09-15

    The burning efficiency of a preliminarily compressed inertial confinement fusion (ICF) target with a solid noncryogenic fuel (deuterium-tritium beryllium hydride) upon fast central ignition by a fast ion beam is studied. The main aim of the study was to determine the extent to which the spatial temperature distribution formed under the heating of an ICF target by ion beams with different particle energy spectra affects the thermonuclear gain. The study is based on a complex numerical modeling including computer simulations of (i) the heating of a compressed target with a spatially nonuniform density and temperature distributions by a fast ion beam and (ii) the burning of the target with the initial spatial density distribution formed at the instant of maximum compression of the target and the initial spatial temperature distribution formed as a result of heating of the compressed target by the ion beam. The threshold energy of the igniting ion beam and the dependence of the thermonuclear gain on the energy deposited in the target are determined.

  1. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    PubMed

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice. PMID:26122974

  2. Exploring magnetized liner inertial fusion with a semi-analytic model

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Slutz, S. A.; Sinars, D. B.; Vesey, R. A.; Gomez, M. R.; Sefkow, A. B.; Hansen, S. B.; Cochrane, K. R.; Schmit, P. F.; Knapp, P. F.; Geissel, M.; Harvey-Thompson, A. J.; Jennings, C. A.; Martin, M. R.; Awe, T. J.; Rovang, D. C.; Lamppa, D. C.; Peterson, K. J.; Rochau, G. A.; Porter, J. L.; Stygar, W. A.; Cuneo, M. E.

    2015-11-01

    In this presentation, we explore magnetized liner inertial fusion (MagLIF) using a semi-analytic model. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories; (d) highlight the experimental challenges presently facing the MagLIF program (as MagLIF is first being tested using the infrastructure presently available at the Z pulsed-power facility); and (e) demonstrate how these challenges could change as various system upgrades are made to the Z facility over the next three to five years and beyond. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    NASA Astrophysics Data System (ADS)

    Melvin, J.; Lim, H.; Rana, V.; Cheng, B.; Glimm, J.; Sharp, D. H.; Wilson, D. C.

    2015-02-01

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  4. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R. Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Mcnaney, J. M.; Munro, D. H.; Knauer, J. P.

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.

  5. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-01

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.

  6. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    SciTech Connect

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J.; Cheng, B.; Sharp, D. H.; Wilson, D. C.

    2015-02-15

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  7. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE PAGESBeta

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2016-04-14

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations on the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm3 and T = 15,625 to 500,000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which exhibits the correct behaviors of continuum lowering and pressure ionization. The thermal conductivities (κQMD) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalizedmore » Coulomb logarithm [(lnΛ)QMD] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Furthermore, hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted –20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  8. Interaction physics for the shock ignition scheme of inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    Depierreux, S.; Goyon, C.; Lewis, K.; Bandulet, H.; Michel, D. T.; Loisel, G.; Yahia, V.; Tassin, V.; Stenz, C.; Borisenko, N. G.; Nazarov, W.; Limpouch, J.; Masson Laborde, P. E.; Loiseau, P.; Casanova, M.; Nicolaï, Ph; Hüller, S.; Pesme, D.; Riconda, C.; Tikhonchuk, V. T.; Labaune, C.

    2011-12-01

    This paper presents an analysis of laser-plasma interaction risks of the shock ignition (SI) scheme and experimental results under conditions relevant to the corona of a compressed target. Experiments are performed on the LIL facility at the 10 kJ level, on the LULI 2000 facility with two beams at the kJ level and on the LULI 6-beam facility with 100 J in each beam. Different aspects of the interaction of the SI pulse are studied exploiting either the flexibility of the LULI 6-beam facility to produce a very high intensity pulse or the high energy of the LIL to produce long and hot plasmas. A continuity is found allowing us to draw some conclusions regarding the coupling quality and efficiency of the SI spike pulse. It is shown that the propagation of the SI beams in the underdense plasma present in the corona of inertial confinement fusion targets could strongly modify the initial spot size of the beam through filamentation. Detailed experimental studies of the growth and saturation of backscattering instabilities in these plasmas indicate that significant levels of stimulated scattering reflectivities (larger than 40%) may be reached at least for some time during the SI pulse.

  9. Advances in HYDRA and its application to simulations of Inertial Confinement Fusion targets

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Kerbel, G. D.; Koning, J. M.; Patel, M. V.; Sepke, S. M.; Brown, P. N.; Chang, B.; Procassini, R.; Veitzer, S. A.

    2008-11-01

    We will outline new capabilities added to the HYDRA 2D/3D multiphysics ICF simulation code. These include a new SN multigroup radiation transport package (1D), constitutive models for elastic-plastic (strength) effects, and a mix model. A Monte Carlo burn package is being incorporated to model diagnostic signatures of neutrons, gamma rays and charged particles. A 3D MHD package that treats resistive MHD is available. Improvements to HYDRA's implicit Monte Carlo photonics package, including the addition of angular biasing, now enable integrated hohlraum simulations to complete in substantially shorter time. The heavy ion beam deposition package now includes a new model for ion stopping power developed by the Tech-X Corporation, with improved accuracy below the Bragg peak. Examples will illustrate HYDRA's enhanced capabilities to simulate various aspects of inertial confinement fusion targets.This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. The work of Tech-X personnel was funded by the Department of Energy under Small Business Innovation Research Contract No. DE-FG02-03ER83797.

  10. Double emulsion generation in the mass production of inertial confinement fusion targets using T-junctions

    NASA Astrophysics Data System (ADS)

    Moynihan, Matthew J.

    This work demonstrates a new device for the continuous controlled production of double emulsions for the manufacturing of inertial confinement fusion targets. This device can be integrated into a microfluidic approach to produce targets which should increase the yield and quality of the targets and at a lower cost. The device is a double T-Junction, which has been scaled, optimized and built to produce oil-in-water-in-oil double emulsions from diameters of roughly 4 mm or less. A T-Junction is an intersection of two channels at a right angle where fluid emerges and is broken off to form droplets. A systematic study presented here has shown that a single T-Junction has four modes of operation: squeezing, dripping, transition and streaming. The droplet size may be controlled by controlling the fluid flow rate through the channels; the droplet increases with increasing dispersed flow and decreasing continuous flow. The device was utilized to produce hundreds of ˜ 2.5 mm diameter resorcinol formaldehyde double emulsions with better than 2 percent reproducibility in diameter. The device was used to produce 2.0 mm shells with an average wall thickness of 510 microns.

  11. Fast-Shock Ignition: A New Concept to Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Ghasemi, Seyed; Farahbod, Amir; Laser Plasma Interaction Team

    2013-03-01

    A new concept for inertial confinement fusion called fast-shock ignition (FSI) is introduced to obtain high target gain. In the proposed model, the separation of fuel ignition into two successive steps, under the suitable conditions, reduces required ignitor energy. The main procedure in FSI concept is at first, compressing the fuel up to stagnation. Then, two high intensity short pulse laser spikes with energy and power lower than those required for shock ignition (SI) and fast ignition (FI) with a proper delay time launched at the fuel which increases the central hot-spot temperature and complete the ignition of the pre compressed fuel. The introduced semi-analytical model indicates that with fast-shock ignition, the total required energy for compression and ignition of the fuel can be slightly reduced in comparison with pure shock ignition. Furthermore, for fuel mass greater than 2mg, the target energy gain increases up to 15 percent and the contribution of fast ignitor could be decreased about 20 percent over pure fast ignition. The FSI scheme is beneficial from technological considerations for the construction of short pulse high power laser drivers. The general advantages of fast-shock ignition over pure shock ignition can be better than 1.3.

  12. The Gevaltig: An inertial fusion powered manned spacecraft design for outer solar system missions

    SciTech Connect

    Murray, K.A.

    1989-10-01

    The Gevaltig is an inertial fusion powered rocket engine capable of manned missions to other planets with round trip mission times as low as 100 days. The Gevaltig design was previously described for a mission to Mars. This effort defines the spacecraft components in terms of mass and presents a mission analysis for a manned trip to Titan, a moon of Saturn. The Gevaltig component masses are provided as a function of fuel pellet ignition frequency. These variable mass components include the fuel tanks, radiators, structure and EM pumps. Fixed mass components include the drivers, coil, coil shield, power processing system, payload, crew shield and laser mirrors. A 6 MW nuclear reactor is included in the design for startup purposes. Various combinations of thrust, mission duration and specific impulse were evaluated to determine a reasonable mission scenario for the Titan mission. The mission analysis yielded several viable mission scenarios, with round trip durations of 370 to 500 days and initial (launch) masses from lunar orbit of 2500 to 20,000 metric tons. 15 refs., 13 figs., 14 tabs.

  13. Collection of solid and gaseous samples to diagnose inertial confinement fusion implosions

    SciTech Connect

    Stoyer, M. A.; Velsko, C. A.; Spears, B. K.; Hicks, D. G.; Hudson, G. B.; Sangster, T. C.; Freeman, C. G.

    2012-02-15

    Collection of representative samples of debris following inertial confinement fusion implosions in order to diagnose implosion conditions and efficacy is a challenging endeavor because of the unique conditions within the target chamber such as unconverted laser light, intense pulse of x-rays, physical chunks of debris, and other ablative effects. We present collection of gas samples following an implosion for the first time. High collection fractions for noble gases were achieved. We also present collection of solid debris samples on flat plate collectors. Geometrical collection efficiencies for Au hohlraum material were achieved and collection of capsule debris (Be and Cu) was also observed. Asymmetric debris distributions were observed for Au and Be samples. Collection of Be capsule debris was higher for solid collectors viewing the capsule through the laser entrance hole in the hohlraum than for solid collectors viewing the capsule around the waist of the hohlraum. Collection of Au hohlraum material showed the opposite pattern: more Au debris was collected around the waist than through the laser entrance hole. The solid debris collectors were not optimized for minimal Cu backgrounds, which limited the conclusions about the symmetry of the Cu debris. The quality of the data limited conclusions on chemical fractionation effects within the burning, expanding, and then cooling plasma.

  14. Angular radiation temperature simulation for time-dependent capsule drive prediction in inertial confinement fusion

    SciTech Connect

    Jing, Longfei; Yang, Dong; Li, Hang; Zhang, Lu; Lin, Zhiwei; Li, Liling; Kuang, Longyu; Jiang, Shaoen Ding, Yongkun; Huang, Yunbao

    2015-02-15

    The x-ray drive on a capsule in an inertial confinement fusion setup is crucial for ignition. Unfortunately, a direct measurement has not been possible so far. We propose an angular radiation temperature simulation to predict the time-dependent drive on the capsule. A simple model, based on the view-factor method for the simulation of the radiation temperature, is presented and compared with the experimental data obtained using the OMEGA laser facility and the simulation results acquired with VISRAD code. We found a good agreement between the time-dependent measurements and the simulation results obtained using this model. The validated model was then used to analyze the experimental results from the Shenguang-III prototype laser facility. More specifically, the variations of the peak radiation temperatures at different view angles with the albedo of the hohlraum, the motion of the laser spots, the closure of the laser entrance holes, and the deviation of the laser power were investigated. Furthermore, the time-dependent radiation temperature at different orientations and the drive history on the capsule were calculated. The results indicate that the radiation temperature from “U20W112” (named according to the diagnostic hole ID on the target chamber) can be used to approximately predict the drive temperature on the capsule. In addition, the influence of the capsule on the peak radiation temperature is also presented.

  15. Collection of solid and gaseous samples to diagnose inertial confinement fusion implosions.

    PubMed

    Stoyer, M A; Velsko, C A; Spears, B K; Hicks, D G; Hudson, G B; Sangster, T C; Freeman, C G

    2012-02-01

    Collection of representative samples of debris following inertial confinement fusion implosions in order to diagnose implosion conditions and efficacy is a challenging endeavor because of the unique conditions within the target chamber such as unconverted laser light, intense pulse of x-rays, physical chunks of debris, and other ablative effects. We present collection of gas samples following an implosion for the first time. High collection fractions for noble gases were achieved. We also present collection of solid debris samples on flat plate collectors. Geometrical collection efficiencies for Au hohlraum material were achieved and collection of capsule debris (Be and Cu) was also observed. Asymmetric debris distributions were observed for Au and Be samples. Collection of Be capsule debris was higher for solid collectors viewing the capsule through the laser entrance hole in the hohlraum than for solid collectors viewing the capsule around the waist of the hohlraum. Collection of Au hohlraum material showed the opposite pattern: more Au debris was collected around the waist than through the laser entrance hole. The solid debris collectors were not optimized for minimal Cu backgrounds, which limited the conclusions about the symmetry of the Cu debris. The quality of the data limited conclusions on chemical fractionation effects within the burning, expanding, and then cooling plasma. PMID:22380089

  16. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    SciTech Connect

    Jiang, Shaoen; Jing, Longfei Ding, Yongkun; Huang, Yunbao

    2014-10-15

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  17. Precision Manufacturing of Inertial Confinement Fusion Double Shell Laser Targets for OMEGA

    SciTech Connect

    Amendt, P A; Bono, M J; Hibbard, R L; Castro, C; Bennett, D W

    2003-11-21

    Double shell targets have been built by Lawrence Livermore National Laboratory (LLNL) for inertial confinement fusion (ICF) experiments on the Omega laser at the University of Rochester and as a prelude to similar experiments on NIF. Of particular interest to ICF studies are high-precision double shell implosion targets for demonstrating thermonuclear ignition without the need for cryogenic preparation. Because the ignition tolerance to interface instabilities is rather low, the manufacturing requirements for smooth surface finishes and shell concentricity are particularly strict. This paper describes a deterministic approach to manufacturing and controlling error sources in each component. Included is the design philosophy of why certain manufacturing techniques were chosen to best reduce the errors within the target. The manufacturing plan developed for this effort created a deterministic process that, once proven, is repeatable. By taking this rigorous approach to controlling all error sources during the manufacture of each component and during assembly, we have achieved the overall 5 {micro}m dimensional requirement with sub-micron surface flaws. Strengths and weaknesses of the manufacturing process will be discussed.

  18. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion

    SciTech Connect

    Weber, C. R. Clark, D. S.; Cook, A. W.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.

    2015-03-15

    The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400–800 eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement.

  19. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    DOE PAGESBeta

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2015-10-14

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. Thus, with first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ = 0.1 to 100 g/cm3 and T = 1,000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosionsmore » on OMEGA using the FPEOS table of CH have predicted ~5% reduction in implosion velocity and ~30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ~10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered lights from ICF implosions.« less

  20. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    SciTech Connect

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2015-10-14

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. Thus, with first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ = 0.1 to 100 g/cm3 and T = 1,000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosions on OMEGA using the FPEOS table of CH have predicted ~5% reduction in implosion velocity and ~30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ~10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered lights from ICF implosions.

  1. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Jiang, Shaoen; Jing, Longfei; Huang, Yunbao; Ding, Yongkun

    2014-10-01

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  2. On the transport coefficients of hydrogen in the inertial confinement fusion regime

    SciTech Connect

    Lambert, Flavien; Recoules, Vanina; Decoster, Alain; Clerouin, Jean; Desjarlais, Michael

    2011-05-15

    Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm{sup -3} and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations are then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.

  3. A novel microfluidic system for the mass production of Inertial Fusion Energy shells

    NASA Astrophysics Data System (ADS)

    Inoue, N. T.

    2016-04-01

    A system which can mass produce millimetre sized spherical polymer shells economically and with high precision will be a great step towards the Inertial Fusion Energy goal. Microfluidics has shown itself to be a disruptive technology, where a rapid and continuous production of compound emulsions can be processed into such shells. Planar emulsion generators co-flow-focus in one step (COFON) and cascaded co-flow- focus (COFUS) enable millimetre compound emulsions to be produced using a one or two step formation process respectively. The co-flow-focus geometry uses symmetric and curved carrier fluid entrance walls to create a focusing orifice-minima and a carrier flow which aids movement and shaping of the dispersed fluid(s) towards the outlet, whilst maintaining operation in the dripping regime. Precision concentric alignment of these compound emulsions remains one of the greatest challenges. However steps to solve this passively using curved channel modulation to perturbate the emulsion have shown that rapid alignment can be achieved. Issues with satellite droplet formation, repeatability of the emulsion generation and cost are also addressed.

  4. Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Gotchev, O. V.; Vianello, E.; Boehly, T. R.; Knauer, J. P.; McKenty, P. W.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Skupsky, S.; Smalyuk, V. A.; Betti, R.; McCrory, R. L.; Meyerhofer, D. D.; Cherfils-Clérouin, C.

    2006-01-01

    Excessive increase in the shell entropy and degradation from spherical symmetry in inertial confinement fusion implosions limit shell compression and could impede ignition. The entropy is controlled by accurately timing shock waves launched into the shell at an early stage of an implosion. The seeding of the Rayleigh-Taylor instability, the main source of the asymmetry growth, is also set at early times during the shock transit across the shell. In this paper we model the shock timing and early perturbation growth of directly driven targets measured on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. By analyzing the distortion evolution, it is shown that one of the main parameters characterizing the growth is the size of the conduction zone Dc, defined as a distance between the ablation front and the laser deposition region. Modes with kDc>1 are stable and experience oscillatory behavior [V. N. Goncharov, Phys. Rev. Lett. 82, 2091 (1999)]. The model shows that the main stabilizing mechanism is the dynamic overpressure due to modulations in the blow-off velocity inside the conduction zone. The long wavelengths with kDc<1 experience growth because of coupled Richtmyer-Meshkov-like and Landau-Darrieus instabilities [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1982)]. To match the simulation results with both the shock timing and perturbation growth measurements a new nonlocal thermal transport model is developed and used in hydrocodes.

  5. Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas

    SciTech Connect

    Srinivasan, Bhuvana; Tang Xianzhu

    2012-08-15

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion (ICF) implosions are expected to generate magnetic fields at the gas-ice interface and at the ice-ablator interface. The focus here is on the gas-ice interface where the temperature gradient is the largest. A Hall-MHD model is used to study the magnetic field generation and growth for 2-D single-mode and multimode RTI in a stratified two-fluid plasma, the two fluids being ions and electrons. Self-generated magnetic fields are observed and these fields grow as the RTI progresses via the {nabla}n{sub e} Multiplication-Sign {nabla}T{sub e} term in the generalized Ohm's law. Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] present results of the magnetic field generation and growth, and some scaling studies in 2-dimensions. The results presented here study the mechanism behind the magnetic field generation and growth, which is related to fluid vorticity generation by RTI. The magnetic field wraps around the bubbles and spikes and concentrates in flux bundles at the perturbed gas-ice interface where fluid vorticity is large. Additionally, the results of Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] are described in greater detail. Additional scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, perturbation wavelength, Atwood number, and ion mass.

  6. Inertial Electrostatic Confinement Fusion: The Laser Elevator Solar System Survey for Propellants Abstract

    NASA Technical Reports Server (NTRS)

    Pryor, Wayne

    1999-01-01

    Dr. Wayne Pryor worked on three projects this summer. These were: 1) Inertial Electrostatic Confinement; 2) The Laser Elevator; and 3) Solar System Survey for Propellants Abstract. We Assisted Jon Nadler from Richland Community College in assembling and operating a table-top nuclear fusion reactor. We successfully demonstrated neutron production in a deuterium plasma. Pryor also obtained basic spectroscopic information on the atomic and molecular emissions in the plasma. The second project consisted of the completion of a paper on a novel propulsion concept (due to Tom Meyer of Colorado, the first author): a laser sail that bounces light back to the laser source. Recycling the photons from source to sail perhaps 100-1000 times dramatically improves the energy efficiency of this system, which may become very important for high-velocity missions in the future. Lastly, we compiled a very basic inventory of solar system propellant resources, their locations, and their accessibility. This initial inventory concentrates on sunlight availability, water availability, and the difficulty (delta-velocity requirement and radiation environment) in getting there.

  7. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton

    2014-09-01

    The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.

  8. Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Bellei, Claudio; Ross, J. Steven; Salmonson, Jay

    2015-02-01

    Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014), 10.1063/1.4874330]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured.

  9. Effects of perturbations and radial profiles on ignition of inertial confinement fusion hotspots

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Chittenden, J. P.

    2014-06-01

    Perturbations of inertial confinement fusion hotspots from spherical symmetry cause an increase in the implosion velocity required for ignition, as investigated analytically by [R. Kishony and D. Shvarts, Phys. Plasmas 8, 4925 (2001)] and in numerical studies by many authors. In this paper, we analyse the mechanisms behind this effect by comparing fully 3D fluid simulations of National Ignition Facility targets to a novel analytic model of the thermal energy balance of the hotspot. The analytic model takes into account the radial variation of the state variables within the hotspot and provides an accurate relationship between the hotspot's 0D parameters (ρc, Tc, R , uR, and q) and its heating and cooling rates. The dominant effect of perturbations appears to be an increase in the inflow velocity at the hotspot's surface due to transverse flow of material between perturbation structures, causing premature thermalisation of kinetic energy before the hotspot is fully compressed. In hotspots with a broad perturbation spectrum, thermalisation of energy is inhibited by nonradial motion introduced by mode-mode interaction, reducing the yield further.

  10. X-ray ablation rates in inertial confinement fusion capsule materials

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Rochau, G. A.; Landen, O. L.; Leeper, R. J.

    2011-03-01

    X-ray ablation rates have been measured in beryllium, copper-doped beryllium, germanium-doped plastic (Ge-doped CH), and diamondlike high density carbon (HDC) for radiation temperatures T in the range of 160-260 eV. In beryllium, the measured ablation rates range from 3 to 12 mg/cm2/ns; in Ge-doped CH, the ablation rates range from 2 to 6 mg/cm2/ns; and for HDC, the rates range from 2 to 9 mg/cm2/ns. The ablation rates follow an approximate T3 dependence and, for T below 230 eV, the beryllium ablation rates are significantly higher than HDC and Ge-doped CH. The corresponding implied ablation pressures are in the range of 20-160 Mbar, scaling as T3.5. The results are found to be well predicted by computational simulations using the physics packages and computational techniques employed in the design of indirect-drive inertial confinement fusion capsules. An iterative rocket model has been developed and used to compare the ablation rate data set to spherical indirect-drive capsule implosion experiments and to confirm the validity of some aspects of proposed full-scale National Ignition Facility ignition capsule designs.

  11. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    SciTech Connect

    Simakov, Andrei N. Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H.; Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D.

    2014-02-15

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  12. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility

    SciTech Connect

    Spears, Brian K. Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J.; Kilkenny, J.; Knauer, J.

    2014-04-15

    Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P{sub 1} has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

  13. Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions.

    PubMed

    Amendt, Peter; Bellei, Claudio; Ross, J Steven; Salmonson, Jay

    2015-02-01

    Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured. PMID:25768614

  14. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  15. Recent US target-physics-related research in heavy-ion inertial fusion: target gains and constraints on accelerator design

    SciTech Connect

    Mark, J.W.K.

    1982-03-09

    Inertial-fusion targets were designed for use with heavy-ion accelerators as drivers in fusion energy power plants. In the interest of providing inputs for understanding the trade-offs among accelerator designs, an initial survey was carried out regarding target gain versus parameters of relevance. This was done in two stages, firstly target gain was related to the beam energy, power, focal radius, and ion range. Secondly, a more comprehensive discussion was made by posing target gain constraints on the beam-occupied phase-space volume of the linacs. This latter discussion had included some rather simplified models of accelerator final focus and beam transport in near-vacuum fusion reaction chambers. Some further analyses of the basic assumptions of this summary are also described.

  16. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    PubMed

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms. PMID:23126842

  17. The role of inertial fusion energy in the energy marketplace of the 21st century and beyond

    NASA Astrophysics Data System (ADS)

    John Perkins, L.

    The viability of inertial fusion in the 21st century and beyond will be determined by its ultimate cost, complexity, and development path relative to other competing, long term, primary energy sources. We examine this potential marketplace in terms of projections for population growth, energy demands, competing fuel sources and environmental constraints (CO 2), and show that the two competitors for inertial fusion energy (IFE) in the medium and long term are methane gas hydrates and advanced, breeder fission; both have potential fuel reserves that will last for thousands of years. Relative to other classes of fusion concepts, we argue that the single largest advantage of the inertial route is the perception by future customers that the IFE fusion power core could achieve credible capacity factors, a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. In particular, we show that the size, cost and complexity of the IFE reactor chamber is little different to a fission reactor vessel of the same thermal power. Therefore, relative to fission, because of IFE's tangible advantages in safety, environment, waste disposal, fuel supply and proliferation, our research in advanced targets and innovative drivers can lead to a certain, reduced-size driver at which future utility executives will be indifferent to the choice of an advanced fission plant or an advanced IFE power plant; from this point on, we have a competitive commercial product. Finally, given that the major potential customer for energy in the next century is the present developing world, we put the case for future IFE "reservations" which could be viable propositions providing sufficient reliability and redundancy can be realized for each modular reactor unit.

  18. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    PubMed Central

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-01-01

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. PMID:25061835

  19. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.

    PubMed

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-01-01

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. PMID:25061835

  20. Inertial confinement fusion using hohlraum radiation generated by heavy-ion clusters

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Lutz, K.-J.; Geb, O.; Maruhn, J. A.; Deutsch, C.; Hoffmann, D. H. H.

    1997-03-01

    This paper discusses the feasibility of employing heavy-ion cluster beams to generate thermal radiation that can be used to drive inertial fusion capsules. The low charge-to-mass ratio of a cluster may allow the driver beam to be focused to a very small spot size with a radius of the order of 100 μm, while the low energy per nucleon (of the order of 10 keV) may lead to a very short range of the driver particles in the converter material. This would result in high specific power deposition that may lead to a very high conversion efficiency. The problem of cluster stopping in cold matter, as well as in hot dense plasmas has been thoroughly investigated. The conversion efficiency of cluster ions using a low-density gold converter has also been calculated over a wide range of parameters including converter density, converter geometry, and specific power deposition. These calculations have been carried out using a one-dimensional hydrodynamic computer code that includes a multigroup radiation transport scheme [Ramis et al., Comput. Phys. Commun. 49, 475 (1988)]. The problem of symmetrization of this radiation field in a hohlraum with solid gold walls has also been thoroughly investigated using a three-dimensional view factor code. The characteristics of the radiation field obtained by this study are used as input to capsule implosion calculations that are done with a three-temperature radiation-hydrodynamic computer code MEDUSA-KAT [Tahir et al., J. Appl. Phys. 60, 898 (1986)]. A reactor-size capsule which contains 5 mg deuterium-tritium (DT) fuel is used in these calculations. The problem of using a fuel mixture with a substantially reduced tritium content has also been discussed.

  1. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    SciTech Connect

    Olson, R. E.; Leeper, R. J.

    2013-09-15

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

  2. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2016-04-01

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm3 and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a "Saha-type" model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atom model in conjunction with the pressure-matching mixing rule. The thermal conductivities (κQMD) of CH, derived directly from the Kohn-Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(lnΛ)QMD] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation-hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium-tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ˜20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.

  3. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.

    2013-09-01

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ˜34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the "fast formed liquid" (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

  4. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; and others

    2013-05-15

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  5. A new ignition hohlraum design for indirect-drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wu, Chang-Shu; Dai, Zhen-Sheng; Zheng, Wu-Di; Gu, Jian-Fa; Gu, Pei-Jun; Zou, Shi-Yang; Liu, Jie; Zhu, Shao-Ping

    2016-08-01

    In this paper, a six-cylinder-port hohlraum is proposed to provide high symmetry flux on capsule. It is designed to ignite a capsule with 1.2-mm radius in indirect-drive inertial confinement fusion (ICF). Flux symmetry and laser energy are calculated by using three-dimensional view factor method and laser energy balance in hohlraum. Plasma conditions are analyzed based on the two-dimensional radiation-hydrodynamic simulations. There is no Y lm (l ⩽ 4) asymmetry in the six-cylinder-port hohlraum when the influences of laser entrance holes (LEHs) and laser spots cancel each other out with suitable target parameters. A radiation drive with 300 eV and good flux symmetry can be achieved by using a laser energy of 2.3 MJ and peak power of 500 TW. According to the simulations, the electron temperature and the electron density on the wall of laser cone are high and low, respectively, which are similar to those of outer cones in the hohlraums on National Ignition Facility (NIF). And the laser intensity is also as low as those of NIF outer cones. So the backscattering due to laser plasma interaction (LPI) is considered to be negligible. The six-cyliner-port hohlraum could be superior to the traditional cylindrical hohlraum and the octahedral hohlraum in both higher symmetry and lower backscattering without supplementary technology at an acceptable laser energy level. It is undoubted that the hohlraum will add to the diversity of ICF approaches. Project supported by the National Natural Science Foundation of China (Grant Nos. 11435011 and 11575034).

  6. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    DOE PAGESBeta

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; Larson, D. J.; Koning, J. M.; Logan, B. G.

    2015-12-02

    The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less

  7. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    SciTech Connect

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; Larson, D. J.; Koning, J. M.; Logan, B. G.

    2015-12-02

    The effects of an imposed, axial magnetic field $B_{z0}$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $B_{z0}=70~\\text{T}$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.

  8. A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

    SciTech Connect

    Zhou, C. D.; Betti, R.

    2008-10-15

    It is shown that the ignition condition (Lawson criterion) for inertial confinement fusion (ICF) can be cast in a form dependent on the only two parameters of the compressed fuel assembly that can be measured with existing techniques: the hot spot ion temperature (T{sub i}{sup h}) and the total areal density ({rho}R{sub tot}), which includes the cold shell contribution. A marginal ignition curve is derived in the {rho}R{sub tot}, T{sub i}{sup h} plane and current implosion experiments are compared with the ignition curve. On this plane, hydrodynamic equivalent curves show how a given implosion would perform with respect to the ignition condition when scaled up in the laser-driver energy. For 3<{sub n}<6 keV, an approximate form of the ignition condition (typical of laser-driven ICF) is {sub n}{sup 2.6}{center_dot}<{rho}R{sub tot}>{sub n}>50 keV{sup 2.6}{center_dot} g/cm{sup 2}, where <{rho}R{sub tot}>{sub n} and {sub n} are the burn-averaged total areal density and hot spot ion temperature, respectively. Both quantities are calculated without accounting for the alpha-particle energy deposition. Such a criterion can be used to determine how surrogate D{sub 2} and subignited DT target implosions perform with respect to the one-dimensional ignition threshold.

  9. The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas

    SciTech Connect

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2013-05-15

    Rayleigh-Taylor (RT) instabilities at interfaces of disparate mass densities have long been known to generate magnetic fields during inertial confinement fusion implosions. An externally applied magnetic field can also be efficiently amplified by RT instabilities. The focus here is on magnetic field generation and amplification at the gas-ice interface which is RT unstable during the deceleration phase of the implosion. RT instabilities lead to undesirable mix of hot and cold plasmas which enhances thermal energy loss and tends to produce a more massive warm-spot instead of a hot-spot. Two mechanisms are shown here to mitigate the thermal energy loss from the hot-spot. The first mechanism is the reduction of electron thermal conductivity with interface-aligned magnetic fields. This can occur through self-generated magnetic fields via the Biermann battery effect as well as through externally applied magnetic fields that undergo an exponential growth via the stretch-and-fold magnetohydrodynamic dynamo. Self-generated magnetic fields during RT evolution can result in a factor of 2−10 decrease in the electron thermal conductivity at the gas-ice interface, while externally applied magnetic fields that are compressed to 6–1000 T at the onset of deceleration (corresponding to pre-implosion external fields of 0.06–10 T) could result in a factor of 2–500 reduction in electron thermal conductivity at the gas-ice interface. The second mechanism to mitigate thermal energy loss from the hot-spot is to decrease the interface mixing area between the hot and cold plasmas. This is achieved through large external magnetic fields of 1000 T at the onset of deceleration which damp short-wavelength RT modes and long-wavelength Kelvin-Helmholtz modes thus significantly slowing the RT growth and reducing mix.

  10. Laser-plasma interaction in the context of inertial fusion: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Lewis, K.; Bandulet, H.; Depierreux, S.; Hüller, S.; Masson-Laborde, P. E.; Pesme, D.; Loiseau, P.

    2007-08-01

    Many nonlinear processes may affect the laser beam propagation and the laser energy deposition in the underdense plasma surrounding the pellet. These processes, associated with anomalous and nonlinear absorption mechanisms, are fundamental issues in the context of Inertial Confinement Fusion. The work presented in this article refers to laser-plasma interaction experiments which were conducted under well-controlled conditions, and to their theoretical and numerical modeling. Thanks to important diagnostics improvements, the plasma and laser parameters were sufficiently characterized in these experiments to make it possible to carry out numerical simulations modeling the laser plasma interaction in which the hydrodynamics conditions were very close to the experimental ones. Two sets of experiments were carried out with the LULI 2000 and the six beam LULI laser facilities. In the first series of experiments, the interaction between two single hot spots was studied as a function of their distance, intensity and light polarization. In the second series, the intensity distribution of stimulated Brillouin scattering (SBS) inside the plasma was studied by means of a new temporally resolved imaging system. Two-dimensional (2D) simulations were carried out with our code Harmony2D in order to model these experiments. For both series of experiments, the numerical results show a very good agreement with the experimental ones for what concerns the main SBS features, namely the spatial and temporal behavior of the SBS-driven acoustic waves, as well as the average SBS reflectivities. Thus, these well diagnosed experiments, carried out with well defined conditions, make it possible to benchmark our theoretical and numerical modelings and, hence, to improve our predictive capabilities for future experiments.

  11. Progress in safety and environmental aspects of inertial fusion energy at Lawrence Livermore National Laboratory

    SciTech Connect

    Latkowski, J F; Reyes, S; Meier, W R

    2000-06-01

    Lawrence Livermore National Laboratory (LLNL) is making significant progress in several areas related to the safety and environmental (S and E) aspects of inertial fusion energy (IFE). A detailed accident analysis has been completed for the HYLIFE-II power plant design. Additional accident analyses are underway for both the HYLIFE-II and Sombrero designs. Other S and E work at LLNL has addressed the issue of the driver-chamber interface and its importance for both heavy-ion and laser-driven IFE. Radiation doses and fluences have been calculated for final focusing mirrors and magnets and shielding optimization is underway to extend the anticipated lifetimes for key components. Target designers/fabrication specialists have been provided with ranking information related to the S and E characteristics of candidate target materials (e.g., ability to recycle, accident consequences, and waste management). Ongoing work in this area will help guide research directions and the selection of target materials. Published and continuing work on fast ignition has demonstrated some of the potentially attractive S and E features of such designs. In addition to reducing total driver energies, fast ignition may ease target fabrication requirements, reduce radiation damage rates, and enable the practical use of advanced (e.g., tritium-lean) labels with significantly reduced neutron production rates, the possibility of self-breeding targets, and dramatically increased flexibility in blanket design. Domestic and international collaborations are key to success in the above areas. A brief summary of each area is given and plans for future work are outlined.

  12. Experimental investigation of opacity models for stellar interiors, inertial fusion, and high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2008-11-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z-pinches depends on the opacities of mid-atomic-number elements in the 150-300 eV temperature range. These models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate opacities. Testing these opacities requires a uniform plasma at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x-rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlighter source must be bright enough to overwhelm the plasma self emission. These problems were overcome using the dynamic hohlraum x-ray source at Sandia's Z facility to measure the transmission of a mixed Mg-Fe plasma heated above 150 eV. This capability will also advance opacity science for other high energy density plasmas. This tutorial describes opacity experiment challenges including accurate transmission measurements, plasma diagnostics, and quantitative model comparisons. The solar interior serves as a focal problem and Z facility experiments are used to illustrate the techniques. **In collaboration with C. Iglesias (LLNL), R. Mancini (U. Nevada), J.MacFarlane, I. Golovkin and P. Wang (Prism), C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, and J.C. Pain (CEA), J. Abdallah Jr. (LANL), and G.A. Rochau and P.W. Lake (Sandia). ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  13. SIRIUS-P: An inertially confined direct drive laser fusion power reactor

    SciTech Connect

    Sviatoslavsky, I.N.; Kulcinski, G.L.; Moses, G.A.; Bruggink, D.; Engelstad, R.L.; Khater, H.Y.; Larsen, E.M.; Lovell, E.G.; MacFarlane, J.J.; Mogahed, E.A.; Peterson, R.R.; Sawan, M.E.; Wang, P.; Wittenberg, L.J.

    1993-03-01

    The SIRIUS-P conceptual design study is of a 1000 MWe laser driven inertial confinement fusion power reactor utilizing near symmetric illumination of direct drive targets. The reference driver is a KrF laser; however, any other laser capable of delivering short wavelength energy can be substituted. Sixty beams providing a total of 3.4 MJ of energy are used at a repetition rate of 6.7 Hz and a target gain of 118. The spherical chamber has an internal diameter of 6.5 m and consists of two independent components, a first wall assembly fabricated from a c/c composite and a blanket assembly made of SiC. First wall protection is provided by a xenon buffer gas at a pressure of 0.5 torr. The chamber is cooled by a flowing granular bed of solid ceramic material, TiO[sub 2] for the first wall assembly and Li[sub 2]O for the blanket assembly. The chamber is housed within a 42 m radius cylindrical reactor building which is 86 m high and which shares the same vacuum space as the chamber. All the laser beams are brought in at the bottom of the building, first onto a dielectrically coated final focusing mirror and finally onto a metallic grazing incidence mirror which reflects them into the chamber through beam ports open to the building. Neutron traps behind the grazing incidence mirrors are used to prolong the lifetimes of the final focusing optics. The nominal cost of electricity from this system is 65 mills/kwh assuming an 8% interest rate on capital.

  14. SIRIUS-P: An inertially confined direct drive laser fusion power reactor

    SciTech Connect

    Sviatoslavsky, I.N.; Kulcinski, G.L.; Moses, G.A.; Bruggink, D.; Engelstad, R.L.; Khater, H.Y.; Larsen, E.M.; Lovell, E.G.; MacFarlane, J.J.; Mogahed, E.A.; Peterson, R.R.; Sawan, M.E.; Wang, P.; Wittenberg, L.J.

    1993-03-01

    The SIRIUS-P conceptual design study is of a 1000 MWe laser driven inertial confinement fusion power reactor utilizing near symmetric illumination of direct drive targets. The reference driver is a KrF laser; however, any other laser capable of delivering short wavelength energy can be substituted. Sixty beams providing a total of 3.4 MJ of energy are used at a repetition rate of 6.7 Hz and a target gain of 118. The spherical chamber has an internal diameter of 6.5 m and consists of two independent components, a first wall assembly fabricated from a c/c composite and a blanket assembly made of SiC. First wall protection is provided by a xenon buffer gas at a pressure of 0.5 torr. The chamber is cooled by a flowing granular bed of solid ceramic material, TiO{sub 2} for the first wall assembly and Li{sub 2}O for the blanket assembly. The chamber is housed within a 42 m radius cylindrical reactor building which is 86 m high and which shares the same vacuum space as the chamber. All the laser beams are brought in at the bottom of the building, first onto a dielectrically coated final focusing mirror and finally onto a metallic grazing incidence mirror which reflects them into the chamber through beam ports open to the building. Neutron traps behind the grazing incidence mirrors are used to prolong the lifetimes of the final focusing optics. The nominal cost of electricity from this system is 65 mills/kwh assuming an 8% interest rate on capital.

  15. On the Utility of Antiprotons as Drivers for Inertial Confinement Fusion

    SciTech Connect

    Perkins, L J; Orth, C D; Tabak, M

    2003-10-20

    By contrast to the large mass, complexity and recirculating power of conventional drivers for inertial confinement fusion (ICF), antiproton annihilation offers a specific energy of 90MJ/{micro}g and thus a unique form of energy packaging and delivery. In principle, antiproton drivers could provide a profound reduction in system mass for advanced space propulsion by ICF. We examine the physics underlying the use of antiprotons ({bar p}) to drive various classes of high-yield ICF targets by the methods of volumetric ignition, hotspot ignition and fast ignition. The useable fraction of annihilation deposition energy is determined for both {bar p}-driven ablative compression and {bar p}-driven fast ignition, in association with 0-D and 1-D target burn models. Thereby, we deduce scaling laws for the number of injected antiprotons required per capsule, together with timing and focal spot requirements. The kinetic energy of the injected antiproton beam required to penetrate to the desired annihilation point is always small relative to the deposited annihilation energy. We show that heavy metal seeding of the fuel and/or ablator is required to optimize local deposition of annihilation energy and determine that a minimum of {approx}3x10{sup 15} injected antiprotons will be required to achieve high yield (several hundred megajoules) in any target configuration. Target gains - i.e., fusion yields divided by the available p - {bar p} annihilation energy from the injected antiprotons (1.88GeV/{bar p}) - range from {approx}3 for volumetric ignition targets to {approx}600 for fast ignition targets. Antiproton-driven ICF is a speculative concept, and the handling of antiprotons and their required injection precision - temporally and spatially - will present significant technical challenges. The storage and manipulation of low-energy antiprotons, particularly in the form of antihydrogen, is a science in its infancy and a large scale-up of antiproton production over present supply

  16. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    SciTech Connect

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; Séguin, Fredrick H.; Frenje, Johan A.; Li, C. K.; Petrasso, Richard D.; Higdon, David M.; Srinivasan, Gowri; Glebov, Vladimir Yu.; Stoeckl, Christian; Seka, Wolf; Sangster, T. Craig

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method described here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach

  17. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE PAGESBeta

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; et al

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore » here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple

  18. Quantitative studies of kinetic effects in direct- and indirect-drive Inertial Confinement Fusion implosions

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans

    2013-10-01

    A comprehensive set of experiments using shock-driven implosions has been conducted to quantitatively study kinetic effects by exploring deviations from hydrodynamic behavior in plasmas relevant to inertial confinement fusion (ICF). Two types of targets were imploded at OMEGA to create ~10 keV, ~1022 cm-3 plasmas with conditions comparable to the incipient hotspot in ignition designs: thin-glass targets filled with mixtures of D2 and 3He gas; and thin deuterated-plastic shells filled with 3He. In the thin-glass experiments, the gas pressure was varied from 1 to 25 atm to scan the ion-mean-free path in the plasma at shock burn. The observed nuclear yields and temperatures deviated more strongly from hydrodynamic predictions as the ion-mean-free path increased to the order of the plasma size. This result provides the first direct experimental evidence how kinetic effects impact yields and ion temperature. The ratio of D to 3He was also varied while maintaining the fuel mass density. As the D fraction was reduced, the DD and D3He fusion products displayed an anomalous yield reduction. Separation of the D and 3He ion species across the strong (Mach ~10) shock-front will be discussed as the likely cause of this result. Finally, thin-CD shells filled with 3He produced significantly more D3He-protons when imploded than is explained by hydrodynamic mix models. This result suggests a kinetic form of mix dominates at the strongly-shocked shell-gas interface. This work was performed in collaboration with C. Li, M. Rosenberg, A. Zylstra, H. Sio, M. Gatu Johnson, F. Séguin, J. Frenje, and R. Petrasso (MIT), V. Glebov, C. Stoeckl, J. Delettrez, and C. Sangster (LLE), J. Pino, P. Amendt, C. Bellei, and S. Wilks (LLNL), G. Kagan, N. Hoffmann and K. Molvig (LANL), and A. Nikroo (GA) and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL and LLE.

  19. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    NASA Astrophysics Data System (ADS)

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Gatu Johnson, Maria; Séguin, Fredrick H.; Frenje, Johan A.; Li, C. K.; Petrasso, Richard D.; Higdon, David M.; Srinivasan, Gowri; Glebov, Vladimir Yu.; Stoeckl, Christian; Seka, Wolf; Sangster, T. Craig

    2015-05-01

    "Reduced" (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method described here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach

  20. VISTA -- A Vehicle for Interplanetary Space Transport Application Powered by Inertial Confinement Fusion

    SciTech Connect

    Orth, C D

    2005-03-31

    Inertial Confinement Fusion (ICF) is an ideal technology to power self-contained single-stage piloted (manned) spacecraft within the solar system because of its inherently high power/mass ratios and high specific impulses (i.e., high exhaust velocities). These technological advantages are retained when ICF is utilized with a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. We started with Rod Hyde's 1983 description of an ICF-powered engine concept using a magnetic thrust chamber, and conducted a more detailed systems study to develop a viable, realistic, and defensible spacecraft concept based on ICF technology projected to be available in the first half of the 21st century. The results include an entirely new conical spacecraft conceptual design utilizing near-existing radiator technology. We describe the various vehicle systems for this new concept, estimate the missions performance capabilities for general missions to the planets within the solar system, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. For this mission, we show that roundtrips totaling {ge}145 days are possible with advanced DT fusion technology and a total (wet) spacecraft mass of about 6000 metric tons. Such short-duration missions are advantageous to minimize the known cosmic-radiation hazards to astronauts, and are even more important to minimize the physiological deteriorations arising from zero gravity. These ICF-powered missions are considerably faster than those available using chemical or nuclear-electric-propulsion technologies with minimum-mass vehicle configurations. VISTA also offers onboard artificial gravity and propellant-based shielding from cosmic rays, thus reducing the known hazards and physiological deteriorations to insignificant levels. We emphasize, however, that the degree to

  1. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.; Grim, Gary P.; Fincke, James R.; Shah, Rahul C.; Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B.

    2016-07-01

    We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a "CD Mixcap," is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long

  2. Flibe Coolant Cleanup and Processing in the HYLIFE-II Inertial Fusion Energy Power Plant

    SciTech Connect

    Moir, R W

    2001-03-23

    In the HYLIFE-II chamber design, a thick flowing blanket of molten-salt (Li{sub 2}BeF{sub 4}) called flibe is used to protect structures from radiation damage. Since it is directly exposed to the fusion target, the flibe will absorb the target debris. Removing the materials left over from target explosions at the rate of {approx}6/s and then recycling some of these materials poses a challenge for the inertial fusion energy power plant. The choice of target materials derives from multi-disciplinary criteria such as target performance, fabricability, safety and environment, corrosion, and cost of recycle. Indirect-drive targets require high-2 materials for the hohlraum. Gold and gadolinium are favorite target materials for laboratory experiments but cost considerations may preclude their use in power plants or at least requires cost effective recycle because a year's supply of gold and gadolinium is estimated at 520 M$ and 40 M$. Environmental and waste considerations alone require recycle of this material. Separation by volatility appears to be the most attractive (e.g., Hg and Xe); centrifugation (e.g., Pb) is acceptable with some problems (e.g., materials compatibility) and chemical separation is the least attractive (e.g. Gd and Hf). Mercury, hafnium and xenon might be substituted with equal target performance and have advantages in removal and recycle due to their high volatility, except for hafnium. Alternatively, lead, tungsten and xenon might be used due to the ability to use centrifugation and gaseous separation. Hafnium or tantalum form fluorides, which will complicate materials compatibility, corrosion and require sufficient volatility of the fluoride for separation. Further complicating the coolant cleanup and processing is the formation of free fluorine due to nuclear transformation of lithium and beryllium in the flibe, which requires chemical control of the fluoride level to minimize corrosion. The study of the choice of target materials and the

  3. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    SciTech Connect

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0

  4. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    SciTech Connect

    Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.; Key, M.; MacKinnon, Andrew J.; Wei, Mingsheng

    2014-02-27

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to

  5. Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report

    SciTech Connect

    Stephens, Richard Burnite; Foord, Mark N.; Wei, Mingsheng; Beg, Farhat N.; Schumacher, Douglass W.

    2013-10-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet of energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded

  6. Second Symposium on ``Current trends in international fusion research: review and assessment`` Chairman`s summary of session

    SciTech Connect

    Post, R.F.

    1998-02-26

    This session began with a keynote speech by B. Coppi of M.I.T., entitled: ``Physics of Fusion Burning Plasmas, Ignition, and Relevant Technology Issues.`` It continued with a second paper on the tokamak approach to fusion, presented by E. Mazzucato of the Princeton Plasma Physics Laboratory, entitled ``High Confinement Plasma Confinement Regime in TFTR Configurations with Reversed Magnetic Shear.`` The session continued with three talks discussing various aspects of the so-called ``Field Reversed Configuration`` (FRC), and concluded with a talk on a more general topic. The first of the three FRC papers, presented by J. Slough of the University of Washington, was entitled ``FRC Reactor for Deep Space Propulsion.`` This paper was followed by a paper by S. Goto of the Plasma Physics Laboratory of Osaka University in Japan, entitled ``Experimental Initiation of Field-Reversed Configuration (FRC) Toward Helium-3 Fusion.`` The third of the FRC papers, authored by H. Mimoto and Y. Tomito of the National Institute for Fusion Science, Nagoya, Japan, and presented by Y. Tomita was entitled ``Helium-3 Fusion Based on a Field-Reversed Configuration.`` The session was concluded with a paper presented by D. Ryutov of the Lawrence Livermore National Laboratory entitled: ``A User Facility for Research on Fusion Systems with Dense Plasmas.``

  7. Developing a commercial production process for 500,000 targets per day: A key challenge for inertial fusion energy

    SciTech Connect

    Goodin, D.T.; Alexander, N.B.; Besenbruch, G.E.; Bozek, A.S.; Brown, L.C.; Flint, G.W.; Kilkenny, J.D.; McQuillan, B.W.; Nikroo, A.; Paguio, R.R.; Petzoldt, R.W.; Schroen, D.G.; Sheliak, J.D.; Vermillion, B.A.; Carlson, L.C.; Goodman, P.; Maksaereekul, W.; Raffray, R.; Spalding, J.; Tillack, M.S.

    2006-05-15

    As is true for current-day commercial power plants, a reliable and economic fuel supply is essential for the viability of future Inertial Fusion Energy (IFE) [Energy From Inertial Fusion, edited by W. J. Hogan (International Atomic Energy Agency, Vienna, 1995)] power plants. While IFE power plants will utilize deuterium-tritium (DT) bred in-house as the fusion fuel, the 'target' is the vehicle by which the fuel is delivered to the reaction chamber. Thus the cost of the target becomes a critical issue in regard to fuel cost. Typically six targets per second, or about 500 000/day are required for a nominal 1000 MW(e) power plant. The electricity value within a typical target is about $3, allocating 10% for fuel cost gives only 30 cents per target as-delivered to the chamber center. Complicating this economic goal, the target supply has many significant technical challenge - fabricating the precision fuel-containing capsule, filling it with DT, cooling it to cryogenic temperatures, layering the DT into a uniform layer, characterizing the finished product, accelerating it to high velocity for injection into the chamber, and tracking the target to steer the driver beams to meet it with micron-precision at the chamber center.

  8. Single Crystal Growth and Formation of Defects in Deuterium-Tritium Ice Layers for Inertial Confinement Fusion

    SciTech Connect

    Chernov, A A; Kozioziemski, B J; Koch, J A; Atherton, L J; Johnson, M A; Hamza, A V; Kucheyev, S O; Lugten, J B; Mapoles, E A; Moody, J D; Salmonson, J D; Sater, J D

    2008-09-05

    We identify vapor-etched grain boundary grooves on the solid-vapor interface as the main source of surface roughness in the Deuterium-Tritium (D-T) fuel layers which are solidified and then cooled. Current inertial confinement fusion target designs impose stringent limits to the cross sectional area and total volume of these grooves. Formation of these grain boundaries occurs over timescales of hours as the dislocation network anneals, and is inevitable in a plastically deformed material. Therefore, either cooling on a much shorter time scale or a technique that requires no cooling after solidification should be used to minimize the fuel layer surface roughness.

  9. Fabrication of cryogenic inertial-confinement-fusion targets using target free-fall technique. Report No. 2-82

    SciTech Connect

    Kim, K.; Murphy, M.J.

    1982-04-01

    Techniques for fabricating cryogenic inertial confinement fusion targets (i.e., spherical shells containing a uniform layer of DT ice) are investigated using target free-fall concept. Detection and characterization of the moving targets are effected by optoelectronic means, of which the principal is an RF ac-interferometer. This interferometer system demonstrates, for the first time, the speed capabilities of the phase-modulation ac-interferometry. New techiques developed for handling, holding, launching, and transporting targets are also described. Results obtained at both room and cryogenic temperatures are presented.

  10. Direct asymmetry measurement of temperature and density spatial distributions in inertial confinement fusion plasmas from pinhole space-resolved spectra

    SciTech Connect

    Nagayama, T.; Mancini, R. C.; Florido, R.; Mayes, D.; Tommasini, R.; Koch, J. A.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.

    2014-05-15

    Two-dimensional space-resolved temperature and density images of an inertial confinement fusion (ICF) implosion core have been diagnosed for the first time. Argon-doped, direct-drive ICF experiments were performed at the Omega Laser Facility and a collection of two-dimensional space-resolved spectra were obtained from an array of gated, spectrally resolved pinhole images recorded by a multi-monochromatic x-ray imager. Detailed spectral analysis revealed asymmetries of the core not just in shape and size but in the temperature and density spatial distributions, thus characterizing the core with an unprecedented level of detail.

  11. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks

    PubMed Central

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-01-01

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided. PMID:25302810

  12. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks.

    PubMed

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-01-01

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided. PMID:25302810

  13. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    SciTech Connect

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  14. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Kress, J. D.; Goncharov, V. N.; Skupsky, S.

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ˜20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  15. Inertial Confinement Fusion quarterly report April-June 1999, volume 9, number 3

    SciTech Connect

    MacGowan, B

    1999-06-01

    enhance significantly our understanding of the details of how radiation and matter interact with one another in contexts relevant both to inertial confinement fusion (ICF) and to other applications. The first of these two articles describes these experiments. The second one describes the application of such radiative heating techniques to development of a ''piston'' for shocklessly accelerating materials. This new experimental technique, first developed on Nova, shows promise as a way to diagnose the development of acceleration-driven hydrodynamic instabilities in the compressible regime, a longstanding ICF problem that is currently only poorly understood.

  16. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.

    PubMed

    Hu, S X; Collins, L A; Goncharov, V N; Boehly, T R; Epstein, R; McCrory, R L; Skupsky, S

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρ(D)=0.5 to 673.518g/cm(3) and temperatures from T=5000K up to the Fermi temperature T(F) for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ∼10% up to a factor of ∼2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling. PMID:25314551

  17. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.

    PubMed

    Hu, S X; Collins, L A; Boehly, T R; Kress, J D; Goncharov, V N; Skupsky, S

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  18. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE PAGESBeta

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  19. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designsa)

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium-tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF "path" to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ˜2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT

  20. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    SciTech Connect

    Hu, S. X. Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-15

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κ{sub QMD}), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ∼2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP