Science.gov

Sample records for infarcted rat heart

  1. The isolated working heart model in infarcted rat hearts.

    PubMed

    Itter, G; Jung, W; Schoelkens, B A; Linz, W

    2005-04-01

    Congestive heart failure (CHF) is one of the most common causes of death in western countries. The aim of this study was to establish and validate the working heart model in rat hearts with CHF. In the rat model the animals show parameters and symptoms that can be extrapolated to the clinical situation of patients with end-stage heart failure. The focus of attention was the evaluation of cardiodynamics (e.g.contractility) in the isolated 'working heart' model. The geometric properties of the left ventricle were measured by planimetry (stereology). Formulae available in the past for determining certain parameters in the working heart model (e.g.external heart work) have to be fitted to the circumstances of the infarcted rat hearts with its different organ properties.CHF was induced in Wistar Kyoto (WKY/NHsd) and spontaneously hypertensive rats (SHR/NHsd) by creating a permanent (8 week) occlusion of the left coronary artery, 2 mm distal to the origin from the aorta, by a modified technique (Itter et al. 2004). This resulted in a large infarction of the free left ventricular wall. We were able to establish and adapt a new and predictive working heart model in spontaneously hypertensive rat hearts with myocardial infarction (MI) 8-12 weeks after coronary artery ligation. At this stage the WKY rat did not show any symptoms of CHF. The SHR rat represented characteristic parameters and symptoms that could be extrapolated to the clinical situation of patients with end-stage heart failure (NYHA III-IV). Upon inspection, severe clinical symptoms of CHF such as dyspnoea, subcutaneous oedema, palebluish limbs and impaired motion were prominent. On necropsy the SHR showed lung oedema, hydrothorax, large dilated left and right ventricular chambers and hypertrophy of the septum. In the working heart model the infarcted animals showed reduced heart power, diminished contractility and enhanced heart work, much more so in the SHR/NHsd than in the Wistar Kyoto rat (WKY/NHsd). The

  2. Association between Functional Variables and Heart Failure after Myocardial Infarction in Rats

    PubMed Central

    Polegato, Bertha F.; Minicucci, Marcos F.; Azevedo, Paula S.; Gonçalves, Andréa F.; Lima, Aline F.; Martinez, Paula F.; Okoshi, Marina P.; Okoshi, Katashi; Paiva, Sergio A. R.; Zornoff, Leonardo A. M.

    2016-01-01

    Background Heart failure prediction after acute myocardial infarction may have important clinical implications. Objective To analyze the functional echocardiographic variables associated with heart failure in an infarction model in rats. Methods The animals were divided into two groups: control and infarction. Subsequently, the infarcted animals were divided into groups: with and without heart failure. The predictive values were assessed by logistic regression. The cutoff values predictive of heart failure were determined using ROC curves. Results Six months after surgery, 88 infarcted animals and 43 control animals were included in the study. Myocardial infarction increased left cavity diameters and the mass and wall thickness of the left ventricle. Additionally, myocardial infarction resulted in systolic and diastolic dysfunction, characterized by lower area variation fraction values, posterior wall shortening velocity, E-wave deceleration time, associated with higher values of E / A ratio and isovolumic relaxation time adjusted by heart rate. Among the infarcted animals, 54 (61%) developed heart failure. Rats with heart failure have higher left cavity mass index and diameter, associated with worsening of functional variables. The area variation fraction, the E/A ratio, E-wave deceleration time and isovolumic relaxation time adjusted by heart rate were functional variables predictors of heart failure. The cutoff values of functional variables associated with heart failure were: area variation fraction < 31.18%; E / A > 3.077; E-wave deceleration time < 42.11 and isovolumic relaxation time adjusted by heart rate < 69.08. Conclusion In rats followed for 6 months after myocardial infarction, the area variation fraction, E/A ratio, E-wave deceleration time and isovolumic relaxation time adjusted by heart rate are predictors of heart failure onset. PMID:26815462

  3. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction.

    PubMed Central

    Neubauer, S; Horn, M; Naumann, A; Tian, R; Hu, K; Laser, M; Friedrich, J; Gaudron, P; Schnackerz, K; Ingwall, J S

    1995-01-01

    The purpose of this study was to test the hypothesis that energy metabolism is impaired in residual intact myocardium of chronically infarcted rat heart, contributing to contractile dysfunction. Myocardial infarction (MI) was induced in rats by coronary artery ligation. Hearts were isolated 8 wk later and buffer-perfused isovolumically. MI hearts showed reduced left ventricular developed pressure, but oxygen consumption was unchanged. High-energy phosphate contents were measured chemically and by 31P-NMR spectroscopy. In residual intact left ventricular tissue, ATP was unchanged after MI, while creatine phosphate was reduced by 31%. Total creatine kinase (CK) activity was reduced by 17%, the fetal CK isoenzymes BB and MB increased, while the "adult" mitochondrial CK isoenzyme activity decreased by 44%. Total creatine content decreased by 35%. Phosphoryl exchange between ATP and creatine phosphate, measured by 31P-NMR magnetization transfer, fell by 50% in MI hearts. Thus, energy reserve is substantially impaired in residual intact myocardium of chronically infarcted rats. Because phosphoryl exchange was still five times higher than ATP synthesis rates calculated from oxygen consumption, phosphoryl transfer via CK may not limit baseline contractile performance 2 mo after MI. In contrast, when MI hearts were subjected to acute stress (hypoxia), mechanical recovery during reoxygenation was impaired, suggesting that reduced energy reserve contributes to increased susceptibility of MI hearts to acute metabolic stress. PMID:7883957

  4. Metabolic imaging of acute and chronic infarction in the perfused rat heart using hyperpolarised [1-13C]pyruvate.

    PubMed

    Ball, Daniel R; Cruickshank, Rachel; Carr, Carolyn A; Stuckey, Daniel J; Lee, Philip; Clarke, Kieran; Tyler, Damian J

    2013-11-01

    Hyperpolarised (13)C MRI can be used to generate metabolic images of the heart in vivo. However, there have been no similar studies performed in the isolated perfused heart. Therefore, the aim of this study was to develop a method for the creation of (13)C metabolite maps of the perfused rat heart and to demonstrate the technique in a study of acute and chronic myocardial infarction. Male Wistar rat hearts were isolated, perfused and imaged before and after occlusion of the left anterior descending (LAD) coronary artery, creating an acute infarct group. In addition, a chronic infarct group was generated from hearts which had their LAD coronary artery occluded in vivo. Four weeks later, hearts were excised, perfused and imaged to generate metabolic maps of infused pyruvate and its metabolites lactate and bicarbonate. Myocardial perfusion and energetics were assessed by first-pass perfusion imaging and (31)P MRS, respectively. In both acute and chronically infarcted hearts, perfusion was reduced to the infarct region, as revealed by reduced gadolinium influx and lower signal intensity in the hyperpolarised pyruvate images. In the acute infarct region, there were significant alterations in the lactate (increased) and bicarbonate (decreased) signal ratios. In the chronically infarcted region, there was a significant reduction in both bicarbonate and lactate signals. (31)P-derived energetics revealed a significant decrease between control and chronic infarcted hearts. Significant decreases in contractile function between control and both acute and chronic infracted hearts were also seen. In conclusion, we have demonstrated that hyperpolarised pyruvate can detect reduced perfusion in the rat heart following both acute and chronic infarction. Changes in lactate and bicarbonate ratios indicate increased anaerobic metabolism in the acute infarct, which is not observed in the chronic infarct. Thus, this study has successfully demonstrated a novel imaging approach to assess

  5. Preconditioning ischemia time determines the degree of glycogen depletion and infarct size reduction in rat hearts.

    PubMed

    Barbosa, V; Sievers, R E; Zaugg, C E; Wolfe, C L

    1996-02-01

    The cardioprotective effect of preconditioning is associated with glycogen depletion and attenuation of intracellular acidosis during subsequent prolonged ischemia. This study determined the effects of increasing preconditioning ischemia time on myocardial glycogen depletion and on infarct size reduction. In addition, this study determined whether infarct size reduction by preconditioning correlates with glycogen depletion before prolonged ischemia. Anesthetized rats underwent a single episode of preconditioning lasting 1.25, 2.5, 5, or 10 minutes or multiple episodes cumulating in 10 (2 x 5 min) or 20 minutes (4 x 5 or 2 x 10 min) of preconditioning ischemia time, each followed by 5 minutes of reperfusion. Then both preconditioned and control rats underwent 45 minutes of ischemia induced by left coronary artery (LCA) occlusion and 120 minutes of reperfusion. After prolonged ischemia, infarct size was determined by dual staining with triphenyltetrazolium chloride and phthalocyanine blue dye. Glycogen levels were determined by an enzymatic assay in selected rats from each group before prolonged ischemia. We found that increasing preconditioning ischemia time resulted in glycogen depletion and infarct size reduction that could both be described by exponential functions. Furthermore, infarct size reduction correlated with glycogen depletion before prolonged ischemia (r = 0.98; p < 0.01). These findings suggest a role for glycogen depletion in reducing ischemic injury in the preconditioned heart. PMID:8579012

  6. MODIFICATION OF OXIDATIVE STRESS ON GENE EXPRESSION PROFILING IN THE RAT INFARCTED HEART

    PubMed Central

    Zhao, Wenyuan; Zhao, Tieqiang; Chen, Yuanjian; Qu, Yanhua; Gerling, Ivan C; Sun, Yao

    2013-01-01

    Cardiac oxidative stress is developed following myocardial infarction (MI) particularly in the first week of MI. The influence of reactive oxygen species (ROS) on gene expression profiling and molecular pathways in the infarcted myocardium remains uncertain and is explored in the present study. Rats with MI were treated with or without antioxidants for one week. Normal rats served as controls. Cardiac oxidative stress and gene profiling were investigated. Compared to normal hearts, malondialdehyde (MDA), a marker of oxidative stress, was significantly increased in the infarcted myocardium, which was significantly suppressed by antioxidants. Microarray assay showed that over a thousand genes were differentially expressed in the infarcted myocardium. Antioxidants significantly altered the expression of 159 genes compared to untreated MI rats. Ingenuity pathway analysis (IPA) indicated that multiple pathway networks were affected by antioxidants, including those related to cell movement, growth/development, death, and inflammatory/fibrotic responses. IPA further identified that these changes were primarily related to NFκB, p38 MAPK, and ERκ1/2 pathways. Hub genes were identified in the associated gene networks. This study reveals the gene networks associated with cardiac oxidative stress postMI. These observations indicate that ROS regulate various molecular and cellular actions related to cardiac repair/remodeling through multiple gene networks. PMID:23716180

  7. Modification of oxidative stress on gene expression profiling in the rat infarcted heart.

    PubMed

    Zhao, Wenyuan; Zhao, Tieqiang; Chen, Yuanjian; Qu, Yanhua; Gerling, Ivan C; Sun, Yao

    2013-07-01

    Cardiac oxidative stress is developed following myocardial infarction (MI) particularly in the first week of MI. The influence of reactive oxygen species (ROS) on gene expression profiling and molecular pathways in the infarcted myocardium remains uncertain and is explored in the present study. Rats with MI were treated with or without antioxidants for 1 week. Normal rats served as controls. Cardiac oxidative stress and gene profiling were investigated. Compared to normal hearts, malondialdehyde, a marker of oxidative stress, was significantly increased in the infarcted myocardium, which was significantly suppressed by antioxidants. Microarray assay showed that over a thousand genes were differentially expressed in the infarcted myocardium. Antioxidants significantly altered the expression of 159 genes compared to untreated MI rats. Ingenuity pathway analysis indicated that multiple pathway networks were affected by antioxidants, including those related to cell movement, growth/development, death, and inflammatory/fibrotic responses. IPA further identified that these changes were primarily related to NFκB, p38 MAPK, and ERκ1/2 pathways. Hub genes were identified in the associated gene networks. This study reveals the gene networks associated with cardiac oxidative stress postMI. These observations indicate that ROS regulate various molecular and cellular actions related to cardiac repair/remodeling through multiple gene networks. PMID:23716180

  8. Streptomycin inhibits electrophysiological changes induced by stretching of chronically infarcted rat hearts*

    PubMed Central

    Cao, Jun-xian; Fu, Lu; Gao, Qian-ping; Xie, Rong-sheng; Qu, Fan

    2014-01-01

    Objective: To investigate stretch-induced electrophysiological changes in chronically infarcted hearts and the effect of streptomycin (SM) on these changes in vivo. Methods: Sixty Wistar rats were divided randomly into four groups: a control group (n=15), an SM group (n=15), a myocardial infarction (MI) group (n=15), and an MI+SM group (n=15). Chronic MI was obtained by ligating the left anterior descending branch (LAD) of rat hearts for eight weeks. The in vivo blockade of stretch-activated ion channels (SACs) was achieved by intramuscular injection of SM (180 mg/(kg∙d)) for seven days after operation. The hearts were stretched for 5 s by occlusion of the aortic arch. Suction electrodes were placed on the anterior wall of left ventricle to record the monophasic action potential (MAP). The effect of stretching was examined by assessing the 90% monophasic action potential duration (MAPD90), premature ventricular beats (PVBs), and ventricular tachycardia (VT). Results: The MAPD90 decreased during stretching in both the control (from (50.27±5.61) ms to (46.27±4.51) ms, P<0.05) and MI groups (from (65.47±6.38) ms to (57.47±5.76 ms), P<0.01). SM inhibited the decrease in MAPD90 during inflation ((46.27±4.51) ms vs. (49.53±3.52) ms, P<0.05 in normal hearts; (57.47±5.76) ms vs. (61.87±5.33) ms, P<0.05 in MI hearts). The occurrence of PVBs and VT in the MI group increased compared with that in the control group (PVB: 7.93±1.66 vs. 1.80±0.86, P<0.01; VT: 7 vs. 1, P<0.05). SM decreased the occurrence of PVBs in both normal and MI hearts (0.93±0.59 vs. 1.80±0.86 in normal hearts, P<0.05; 5.40±1.18 vs. 7.93±1.66 in MI hearts, P<0.01). Conclusions: Stretch-induced MAPD90 changes and arrhythmias were observed in chronically infarcted myocardium. The use of SM in vivo decreased the incidence of PVBs but not of VT. This suggests that SACs may be involved in mechanoelectric feedback (MEF), but that there might be other mechanisms involved in causing VT in chronic MI

  9. Long-term evaluation of myoblast seeded patches implanted on infarcted rat hearts.

    PubMed

    Giraud, Marie-Noëlle; Flueckiger, Remy; Cook, Stéphane; Ayuni, Erick; Siepe, Matthias; Carrel, Thierry; Tevaearai, Hendrik

    2010-06-01

    Cell transplantation presents great potential for treatment of patients with severe heart failure. However, its clinical application was revealed to be more challenging than initially expected in experimental studies. Further investigations need to be undertaken to define the optimal treatment conditions. We previously reported on the epicardial implantation of a bio-engineered construct of skeletal myoblast-seeded polyurethane and its preventive effect on progression toward heart failure. In the present study, we present a long-term evaluation of this functional outcome. Left anterior descending coronary ligation was performed in female Lewis rats. Two weeks later, animals were treated with either epicardial implantation of biograft, acellular scaffold, sham operation, or direct intramyocardial skeletal myoblast injection. Functional assessments were performed with serial echocardiographies every 3 months and end point left ventricle pressure was assessed. Hearts were then harvested for histological examinations. Myocardial infarction induced a slow and progressive reduction in fractional shortening after 3 months. Progression toward heart failure was significantly prevented for up to 6 months after injection of myoblasts and for up to 9 months following biograft implantation. Nevertheless, this effect vanished after 12 months, with immunohistological examinations revealing an absence of the transplanted myoblasts within the scaffold. We demonstrated that tissue therapy is superior to cell therapy for stabilization of heart function. However, beneficial effects are transient. PMID:20482708

  10. Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts

    PubMed Central

    Gerbin, Kaytlyn A.; Yang, Xiulan; Murry, Charles E.; Coulombe, Kareen L. K.

    2015-01-01

    Cardiac tissue engineering is a promising approach to provide large-scale tissues for transplantation to regenerate the heart after ischemic injury, however, integration with the host myocardium will be required to achieve electromechanical benefits. To test the ability of engineered heart tissues to electrically integrate with the host, 10 million human embryonic stem cell (hESC)-derived cardiomyocytes were used to form either scaffold-free tissue patches implanted on the epicardium or micro-tissue particles (~1000 cells/particle) delivered by intramyocardial injection into the left ventricular wall of the ischemia/reperfusion injured athymic rat heart. Results were compared to intramyocardial injection of 10 million dispersed hESC-cardiomyocytes. Graft size was not significantly different between treatment groups and correlated inversely with infarct size. After implantation on the epicardial surface, hESC-cardiac tissue patches were electromechanically active, but they beat slowly and were not electrically coupled to the host at 4 weeks based on ex vivo fluorescent imaging of their graft-autonomous GCaMP3 calcium reporter. Histologically, scar tissue physically separated the patch graft and host myocardium. In contrast, following intramyocardial injection of micro-tissue particles and suspended cardiomyocytes, 100% of the grafts detected by fluorescent GCaMP3 imaging were electrically coupled to the host heart at spontaneous rate and could follow host pacing up to a maximum of 300–390 beats per minute (5–6.5 Hz). Gap junctions between intramyocardial graft and host tissue were identified histologically. The extensive coupling and rapid response rate of the human myocardial grafts after intramyocardial delivery suggest electrophysiological adaptation of hESC-derived cardiomyocytes to the rat heart’s pacemaking activity. These data support the use of the rat model for studying electromechanical integration of human cardiomyocytes, and they identify lack of

  11. Heart failure progression is accelerated following myocardial infarction in type II diabetic rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clinical studies have shown a greater incidence of myocardial infarction in diabetic patients and following an infarction, diabetes is associated with an increased risk for the development of left ventricular dysfunction and heart failure. The goal of this study was to determine if the progression o...

  12. Adenylyl cyclase regulation in heart failure due to myocardial infarction in rats.

    PubMed

    Bräunig, Jörg H; Albrecht-Küpper, Barbara; Seifert, Roland

    2014-04-01

    Cardiac adenylyl cyclase (AC) activity was described to be differentially regulated in left and right ventricles (LVs and RVs) of rats with heart failure (HF) due to LV myocardial infarction (MI) (Sethi et al. Am J Physiol 272:H884-H893, 1997). AC activities in LVs and RVs were increased and decreased respectively in rats 8 and 16 weeks post MI under basal and stimulatory conditions including AC activation via β-adrenergic receptors (β-ARs), stimulatory G protein (Gs), and direct AC activation with forskolin (FS). The current study aimed to detect alterations in rat heart AC activities in a comparable model of HF 9 weeks post LV MI. Therefore, cardiac AC activities were measured under basal and β-AR-, Gs-, or FS-stimulated conditions as well as under inhibition with various MANT [2'(3')-O-(N-methylanthraniloyl)]-nucleotide AC inhibitors and the P-site AC inhibitors NKY80 [2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone] and vidarabine (9-β-D-arabinosyladenine, AraAde). Basal and stimulated AC activities along with AC inhibition experiments did not reveal evidence for changes in AC activity in LVs and RVs from MI group animals despite the presence of congestive HF. However, our study is indeterminate. Further studies are required to identify the factors responsible for previously described changes in cardiac AC activity in MI induced HF and to elucidate the role of altered AC regulation in the pathophysiology of HF. In order to detect small changes in AC regulation, larger group sizes than the ones used in our present study are required. PMID:24276219

  13. Cardiac effects of the extract and active components of radix stephaniae tetrandrae. II. Myocardial infarct, arrhythmias, coronary arterial flow and heart rate in the isolated perfused rat heart.

    PubMed

    Yu, X C; Wu, S; Wang, G Y; Shan, J; Wong, T M; Chen, C F; Pang, K T

    2001-05-11

    The primary purpose of the present study was to compare the cardioprotective effects of the extract from radix stephaniae tetrandrae (RST) and its individual compounds, tetrandrine (Tet) and fanchinoline (Fan). Secondly, we also compared the cardiac effects of the individual compounds and the RST extract with those of verapamil, a classical Ca2+ channel blocker. The Langendorff isolated perfused rat heart preparation was used. Regional ischaemia and reperfusion was employed to induce myocardial infarct and arrhythmia. Infarct, arrhythmia, heart rate and coronary artery flow were determined in hearts treated with vehicle, RST extract, Tet, Fan, or verapamil. It was found that RST extract, of which only 9% was Tet, and Tet alone produced equally potent ameliorating effects on arrhythmia and infarct induced by ischaemia and reperfusion without further inhibiting ischaemia-reduced heart rate and coronary artery flow. Fan had no effects on arrhythmia and infarct induced by ischaemia and reperfusion; but it induced S-T segment elevation and further reduced heart rate and coronary artery flow during ischaemia. Verapamil also ameliorated the effects of ischaemia and reperfusion on arrhythmia and infarct. It should be noted that 1 microM verapamil, that produced comparable effects on infarct and arrhythmia to the RST extract and Tet, further inhibited heart rate during ischaemia. The results indicate that the RST extract produces equally potent cardioprotective and anti-arrhythmic effects as Tet alone. Both RST extract and Tet may be better choices for the treatment of arrhythmia and infarct induced by myocardial ischaemia and reperfusion than the classical Ca2+ channel blocker, verapamil as they do not further reduce heart rate during ischaemia. PMID:11432452

  14. Baroreflex sensitivity and heart rate variability in conscious rats with myocardial infarction.

    PubMed

    Krüger, C; Kalenka, A; Haunstetter, A; Schweizer, M; Maier, C; Rühle, U; Ehmke, H; Kübler, W; Haass, M

    1997-11-01

    The baroreflex sensitivity (BRS) and the heart rate variability (HRV) were studied in conscious rats after myocardial infarction (MI; induced by coronary artery ligation) and after sham operation (SH). BRS was determined by linear regression of R-R interval vs. arterial pressure changes induced by nitroprusside or methoxamine (intravenous bolus). HRV was calculated from 3-min electrocardiogram recordings. Left ventricular end-diastolic pressure and plasma atrial natriuretic peptide were increased after MI; plasma norepinephrine and basal heart rate (HR) remained unchanged. At 3 and 28 days after MI, BRS was reduced as indicated by decreased reflex bradycardia (RB) (MI, 0.66 +/- 0.13 and 0.78 +/- 0.07 ms/mmHg; SH, 1.27 +/- 0.16 and 1.48 +/- 0.14 ms/mmHg, respectively; P < 0.05 MI vs. SH). At 56 days after MI, BRS was normalized. RB was unaffected by atropine 3 and 28 days after MI but reduced in all other groups. The increase of basal HR by atropine 3 and 28 days after MI was less than in all other groups. HRV (SD of mean N-N interval, coefficient of variance, low- and high-frequency power; studied at 28 and 56 days) was similar in all groups. It is concluded that BRS is transiently depressed in rats with left ventricular dysfunction after MI probably due to a reduced reflex vagal activity. Even though basal HR and HRV are unchanged after MI, a temporary attenuation of tonic vagal activity is unmasked after autonomic blockade. PMID:9374759

  15. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-01-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. PMID:25388908

  16. Differential microRNA Expression and Regulation in the Rat Model of Post-Infarction Heart Failure

    PubMed Central

    Liu, Xueyan; Meng, Heyu; Jiang, Chao; Yang, Sibao; Cui, Fengwen; Yang, Ping

    2016-01-01

    Background Heart failure is a complex end stage of various cardiovascular diseases with a poor prognosis, and the mechanisms for development and progression of heart failure have always been a hot point. However, the molecular mechanisms underlying the post transcriptional regulation of heart failure have not been fully elucidated. Current data suggest that microRNAs (miRNAs) are involved in the pathogenesis of heart failure and could serve as a new biomarker, but the precise regulatory mechanisms are still unclear. Methods The differential miRNA profile in a rat model of post-infarction heart failure was determined using high throughout sequencing and analyzed through bioinformatics approaches. The results were validated using qRT-PCR for 8 selected miRNAs. Then the expression patterns of 4 miRNAs were analyzed in different periods after myocardial infarction. Finally, gain- and loss-of-function experiments of rno-miR-122-5p and rno-miR-184 were analyzed in H2O2 treated H9c2 cells. Results In the heart failure sample, 78 miRNAs were significantly upregulated and 28 were downregulated compared to the controls. GO and KEGG pathway analysis further indicated the likely roles of these miRNAs in heart failure. Time-course analysis revealed different expression patterns of 4 miRNAs: rno-miR-122-5p, rno-miR-199a-5p, rno-miR-184 and rno-miR-208a-3p. Additionally, rno-miR-122-5p and rno-miR-184 were proved to promote apoptosis in vitro. Conclusions Differential profile and expression patterns of miRNAs in the rats model of post-infarction heart failure were found, and the pro-apoptotic roles of rno-miR-122-5p and rno-miR-184 were revealed. These findings may provide a novel way that may assist in heart failure diagnosis and treatment. PMID:27504893

  17. Expression of the multifunctional Y-box protein, YB-1, in myofibroblasts of the infarcted rat heart

    SciTech Connect

    Kamalov, German; Varma, Balwantkumar R.; Lu Li; Sun Yao; Weber, Karl T.; Guntaka, Ramareddy V. . E-mail: rguntaka@utmem.edu

    2005-08-19

    Intracellular signaling mechanisms regulating the turnover of {alpha}-SMA-positive myofibroblasts (myoFbs) at the site of myocardial infarction (MI) are poorly understood. Y-Box (YB)-1, a multifunctional protein, may be involved in regulation of proliferation, migration and apoptosis of myoFbs. Our objective was to study the expression of YB-1 in the infarcted rat heart and its localization in myoFbs. On days 3-28 following MI, we monitored YB-1 expression and its colocalization with {alpha}-SMA, and proliferation markers PCNA and Ki-67 in infarcted tissue by Western blot, immunohistochemistry, and immunofluorescent double-labeling. YB-1 is barely detectable in normal myocardium. At the infarct site, however, YB-1 is markedly elevated from day 3 post-MI concomitant with the induction of cell proliferation. MyoFbs are the major source of YB-1 and retain it up to day 28 post-MI. We suggest early expression of YB-1 promotes proliferation and migration of myoFbs, whereas prolonged expression may be responsible for scar formation.

  18. Thyroid hormones improve cardiac function and decrease expression of pro-apoptotic proteins in the heart of rats 14 days after infarction.

    PubMed

    de Castro, Alexandre Luz; Fernandes, Rafael Oliveira; Ortiz, Vanessa D; Campos, Cristina; Bonetto, Jéssica H P; Fernandes, Tânia R G; Conzatti, Adriana; Siqueira, Rafaela; Tavares, Angela Vicente; Schenkel, Paulo Cavalheiro; Belló-Klein, Adriane; da Rosa Araujo, Alex Sander

    2016-02-01

    Apoptosis is a key process associated with pathological cardiac remodelling in early-phase post-myocardial infarction. In this context, several studies have demonstrated an anti-apoptotic effect of thyroid hormones (TH). The aim of this study was to evaluate the effects of TH on the expression of proteins associated with the apoptotic process 14 days after infarction. Male Wistar rats (300-350 g) (n = 8/group) were divided into four groups: Sham-operated (SHAM), infarcted (AMI), sham-operated + TH (SHAMT) and infarcted + TH (AMIT). For 12 days, the animals received T3 and T4 [2 and 8 µg/(100 g day)] by gavage. After this, the rats were submitted to haemodynamic and echocardiographic analysis, and then were sacrificed and the heart tissue was collected for molecular analysis. Statistical analyses included two-way ANOVA with Student-Newman-Keuls post test. Ethics Committee number: 23262. TH administration prevented the loss of ventricular wall thickness and improved cardiac function in the infarcted rats 14 days after the injury. AMI rats presented an increase in the pro-apoptotic proteins p53 and JNK. The hormonal treatment prevented this increase in AMIT rats. In addition, TH administration decreased the Bax:Bcl-2 ratio in the infarcted rats. TH administration improved cardiac functional parameters, and decreased the expression of pro-apoptotic proteins 14 days after myocardial infarction. PMID:26659365

  19. Effect of an Ilex paraguariensis (yerba mate) extract on infarct size in isolated rat hearts: the mechanisms involved.

    PubMed

    González Arbeláez, Luisa F; Fantinelli, Juliana C; Ciocci Pardo, Alejandro; Caldiz, Claudia I; Ríos, José Luis; Schinella, Guillermo R; Mosca, Susana M

    2016-02-17

    Tea made from Ilex paraguariensis (IP) dried and minced leaves is a beverage widely consumed by large populations in South America as a source of caffeine (stimulant action) and for its medicinal properties. However, there is little information about the action of IP on the myocardium in the ischemia-reperfusion condition. Therefore, the objective of this study was to examine the effects of an aqueous extract of IP on infarct size in a model of regional ischemia. Isolated rat hearts were perfused by the Langendorff technique and subjected to 40 min of coronary artery occlusion followed by 60 min of reperfusion (ischemic control hearts). Other hearts received IP 30 μg mL(-1) during the first 10 min of reperfusion in the absence or presence of l(G)-nitro-l-arginine methyl ester [l-NAME, a nitric oxide synthase (NOS) inhibitor]. The infarct size was determined by triphenyltetrazolium chloride (TTC) staining. Post-ischemic myocardial function and coronary perfusion were also assessed. Cardiac oxidative damage was evaluated by using the thiobarbituric acid reactive substance (TBARS) concentration and the reduced glutathione (GSH) content. To analyze the mechanisms involved, the expressions of phosphorylated forms of eNOS and Akt were measured. In isolated mitochondria the Ca(2+)-induced mitochondrial permeability transition pore (mPTP) opening was determined. IP significantly decreased the infarct size and improved post-ischemic myocardial function and coronary perfusion. TBARS decreased, GSH was partially preserved, the levels of P-eNOS and P-Akt increased and mPTP opening diminished after IP addition. These changes were abolished by l-NAME. Therefore, our data demonstrate that acute treatment with IP only during reperfusion was effective in reducing myocardial post-ischemic alterations. These actions would be mediated by a decrease of mitochondrial permeability through IP-activated Akt/eNOS-dependent pathways. PMID:26661577

  20. Dietary Phenolic Acids of Macrotyloma uniflorum (Horse Gram) Protect the Rat Heart Against Isoproterenol-Induced Myocardial Infarction.

    PubMed

    Panda, Vandana; Laddha, Ankit; Nandave, Mukesh; Srinath, Sudhamani

    2016-07-01

    The present study investigates the cardioprotective activity of the Macrotyloma uniflorum seed extract (MUSE) and its phenolic acids (p-coumaric acid and ferulic acid) in isoproterenol (ISO)-induced myocardial infarction in rats. The previously mentioned phenolic acids were isolated and quantified from MUSE by HPLC. Pretreatment of gemfibrozil (reference standard), MUSE (250 and 500 mg/kg) and the phenolic acids for 30 days to rats treated with ISO (85 mg/kg) on the last 2 days resulted in a significant attenuation of the ISO-elevated levels of serum marker enzymes (aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase MB), total cholesterol, triglycerides, uric acid, C-reactive protein and malondialdehyde and a restoration of the levels of the ISO-depleted marker enzymes, reduced glutathione and the antioxidant enzymes-superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in heart. Restoration of the ISO-altered electrocardiogram pattern and haemodynamic parameters (left ventricular end diastolic pressure, heart rate, systolic, diastolic and mean arterial pressure) was also brought about by treatment with MUSE and the phenolic acids. It may be concluded that MUSE treatment to ISO-challenged rats exhibits a significant cardioprotective effect probably because of the potent antioxidant activity of its phenolic acids that salvage the myocardium from the deleterious effects of ISO. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27091200

  1. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure.

    PubMed

    Sadredini, Mani; Danielsen, Tore Kristian; Aronsen, Jan Magnus; Manotheepan, Ravinea; Hougen, Karina; Sjaastad, Ivar; Stokke, Mathis Korseberg

    2016-01-01

    Abnormal cellular Ca2+ handling contributes to both contractile dysfunction and arrhythmias in heart failure. Reduced Ca2+ transient amplitude due to decreased sarcoplasmic reticulum Ca2+ content is a common finding in heart failure models. However, heart failure models also show increased propensity for diastolic Ca2+ release events which occur when sarcoplasmic reticulum Ca2+ content exceeds a certain threshold level. Such Ca2+ release events can initiate arrhythmias. In this study we aimed to investigate if both of these aspects of altered Ca2+ homeostasis could be found in left ventricular cardiomyocytes from rats with different states of cardiac function six weeks after myocardial infarction when compared to sham-operated controls. Video edge-detection, whole-cell Ca2+ imaging and confocal line-scan imaging were used to investigate cardiomyocyte contractile properties, Ca2+ transients and Ca2+ waves. In baseline conditions, i.e. without beta-adrenoceptor stimulation, cardiomyocytes from rats with large myocardial infarction, but without heart failure, did not differ from sham-operated animals in any of these aspects of cellular function. However, when exposed to beta-adrenoceptor stimulation, cardiomyocytes from both non-failing and failing rat hearts showed decreased sarcoplasmic reticulum Ca2+ content, decreased Ca2+ transient amplitude, and increased frequency of Ca2+ waves. These results are in line with a decreased threshold for diastolic Ca2+ release established by other studies. In the present study, factors that might contribute to a lower threshold for diastolic Ca2+ release were increased THR286 phosphorylation of Ca2+/calmodulin-dependent protein kinase II and increased protein phosphatase 1 abundance. In conclusion, this study demonstrates both decreased sarcoplasmic reticulum Ca2+ content and increased propensity for diastolic Ca2+ release events in ventricular cardiomyocytes from rats with heart failure after myocardial infarction, and that these

  2. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure

    PubMed Central

    Danielsen, Tore Kristian; Aronsen, Jan Magnus; Manotheepan, Ravinea; Hougen, Karina; Sjaastad, Ivar; Stokke, Mathis Korseberg

    2016-01-01

    Abnormal cellular Ca2+ handling contributes to both contractile dysfunction and arrhythmias in heart failure. Reduced Ca2+ transient amplitude due to decreased sarcoplasmic reticulum Ca2+ content is a common finding in heart failure models. However, heart failure models also show increased propensity for diastolic Ca2+ release events which occur when sarcoplasmic reticulum Ca2+ content exceeds a certain threshold level. Such Ca2+ release events can initiate arrhythmias. In this study we aimed to investigate if both of these aspects of altered Ca2+ homeostasis could be found in left ventricular cardiomyocytes from rats with different states of cardiac function six weeks after myocardial infarction when compared to sham-operated controls. Video edge-detection, whole-cell Ca2+ imaging and confocal line-scan imaging were used to investigate cardiomyocyte contractile properties, Ca2+ transients and Ca2+ waves. In baseline conditions, i.e. without beta-adrenoceptor stimulation, cardiomyocytes from rats with large myocardial infarction, but without heart failure, did not differ from sham-operated animals in any of these aspects of cellular function. However, when exposed to beta-adrenoceptor stimulation, cardiomyocytes from both non-failing and failing rat hearts showed decreased sarcoplasmic reticulum Ca2+ content, decreased Ca2+ transient amplitude, and increased frequency of Ca2+ waves. These results are in line with a decreased threshold for diastolic Ca2+ release established by other studies. In the present study, factors that might contribute to a lower threshold for diastolic Ca2+ release were increased THR286 phosphorylation of Ca2+/calmodulin-dependent protein kinase II and increased protein phosphatase 1 abundance. In conclusion, this study demonstrates both decreased sarcoplasmic reticulum Ca2+ content and increased propensity for diastolic Ca2+ release events in ventricular cardiomyocytes from rats with heart failure after myocardial infarction, and that these

  3. Protective effect of betaine on changes in the levels of lysosomal enzyme activities in heart tissue in isoprenaline-induced myocardial infarction in Wistar rats

    PubMed Central

    Anandan, Rangasamy

    2009-01-01

    Myocardial infarction is one of the most common manifestations of cardiovascular disease. In the present study, we investigated the protective effect of betaine, a potent lipotropic molecule, on changes in the levels of lysosomal enzymes and lipid peroxidation in isoprenaline-induced myocardial infarction in Wistar rats, an animal model of myocardial infarction in man. Male albino Wistar rats were pretreated with betaine (250 mg/kg body weight) daily for a period of 30 days. After the treatment period, isoprenaline (11 mg/100 g body weight) was intraperitoneally administered to rats at intervals of 24 h for 2 days. The activities of lysosomal enzymes (β-glucuronidase, β-galactosidase, β-glucosidase, and acid phosphatase) were significantly (p < 0.05) increased in plasma with a concomitant decline in the activities of these enzymes in heart tissue of isoprenaline-administered rats. Also, the level of lipid peroxidation was higher in heart lysosomes of isoprenaline-injected rats. Pretreatment with betaine daily for a period of 30 days to isoprenaline-induced rats prevented the changes in the activities of these lysosomal enzymes. Oral treatment with betaine (250 mg/kg body weight) to normal control rats did not show any significant effect in all the biochemical parameters studied. Thus, the results of our study show that betaine protects the lysosomal membrane against isoprenaline-induced myocardial infarction. The observed effects might be due to the free radical-scavenging and membrane-stabilizing properties of betaine. PMID:19294532

  4. Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction.

    PubMed

    Liepinsh, Edgars; Vilskersts, Reinis; Loca, Dagnija; Kirjanova, Olga; Pugovichs, Osvalds; Kalvinsh, Ivars; Dambrova, Maija

    2006-12-01

    The inhibition of gamma-butyrobetaine (GBB) hydroxylase, a key enzyme in the biosynthesis of carnitine, contributes to lay ground for the cardioprotective mechanism of action of mildronate. By inhibiting the biosynthesis of carnitine, mildronate is supposed to induce the accumulation of GBB, a substrate of GBB hydroxylase. This study describes the changes in content of carnitine and GBB in rat plasma and heart tissues during long-term (28 days) treatment of mildronate [i.p. (intraperitoneal) 100 mg/kg/daily]. Obtained data show that in concert with a decrease in carnitine concentration, the administration of mildronate caused a significant increase in GBB concentration. We detected about a 5-fold increase in GBB contents in the plasma and brain and a 7-fold increase in the heart. In addition, we tested the cardioprotective effect of mildronate in isolated rat heart infarction model after 3, 7, and 14 days of administration. We found a statistically significant decrease in necrotic area of infarcted rat hearts after 14 days of treatment with mildronate. The cardioprotective effect of mildronate correlated with an increase in GBB contents. In conclusion, our study, for the first time, provides experimental evidence that the long-term administration of mildronate not only decreases free carnitine concentration, but also causes a significant increase in GBB concentration, which correlates with the cardioprotection of mildronate. PMID:17204911

  5. Aerobic training and l-arginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction.

    PubMed

    Ranjbar, Kamal; Rahmani-Nia, Farhad; Shahabpour, Elham

    2016-09-01

    Arteriogenesis is a main defense mechanism to prevent heart and local tissues dysfunction in occlusive artery disease. TGF-β and angiostatin have a pivotal role in arteriogenesis. We tested the hypothesis that aerobic training and l-arginine supplementation promotes cardiac and skeletal muscles arteriogenesis after myocardial infarction (MI) parallel to upregulation of TGF-β and downregulation of angiostatin. For this purpose, 4 weeks after LAD occlusion, 50 male Wistar rats were randomly distributed into five groups: (1) sham surgery without MI (sham, n = 10), (2) control-MI (Con-MI, n = 10), (3) l-arginine-MI (La-MI, n = 10), (4) exercise training-MI (Ex-MI, n = 10), and (5) exercise and l-arginine-MI (Ex + La-MI). Exercise training groups running on a treadmill for 10 weeks with moderate intensity. Rats in the l-arginine-treated groups drank water containing 4 % l-arginine. Arteriolar density with different diameters (11-25, 26-50, 51-75, and 76-150 μm), TGF-β, and angiostatin gene expression were measured in cardiac (area at risk) and skeletal (soleus and gastrocnemius) muscles. Smaller arterioles decreased in cardiac after MI. Aerobic training and l-arginine increased the number of cardiac arterioles with 11-25 and 26-50 μm diameters parallel to TGF-β overexpression. In gastrocnemius muscle, the number of arterioles/mm(2) was only increased in the 11 to 25 μm in response to training with and without l-arginine parallel to angiostatin downregulation. Soleus arteriolar density with different size was not different between experimental groups. Results showed that 10 weeks aerobic exercise training and l-arginine supplementation promotes arteriogenesis of heart and gastrocnemius muscles parallel to overexpression of TGF-β and downregulation of angiostatin in MI rats. PMID:27121159

  6. Intermedin attenuates myocardial infarction through activation of autophagy in a rat model of ischemic heart failure via both cAMP and MAPK/ERK1/2 pathways

    PubMed Central

    Wei, Peng; Yang, Xiang-Jun; Fu, Qiang; Han, Bing; Ling, Lin; Bai, Jie; Zong, Bin; Jiang, Chun-Ying

    2015-01-01

    Intermedin is a proopiomelanocortin-derived peptide before opioid promoting cortical hormone, its main function embodies in mononuclear macrophages and neutrophilic granulocytes to inhibit the proinflammatory cytokines. The aim of this study is to determine intermedin attenuates myocardial infarction and its related mechanisms in a rat model of ischemic heart failure. After rat model of ischemic heart failure was set up, myocardial infarction, blood levels of activities of creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) were effectively reduced by treatment with intermedin. Tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) in a rat model of ischemic heart failure were recovered by pretreatment with intermedin. Administrate of intermedin availably promoted cAMP contents and suppressed caspase-3 protein in ischemic heart failure rat. ERK1/2 and LC3 protein expression were significantly activated and autophagy was significantly promoted by intermedin in a rat model of ischemic heart failure. These results indicate that intermedin protected rat heart, attenuates myocardial infarction from ischemic heart failure in the rat model. The underlying mechanisms may include upregulation of cAMP, ERK1/2 and LC3 protein expression and activating of autophagy. PMID:26617693

  7. Preservation of the cardiac function in infarcted rat hearts by the transplantation of adipose-derived stem cells with injectable fibrin scaffolds.

    PubMed

    Zhang, Xuelian; Wang, Haibin; Ma, Xiang; Adila, Azhati; Wang, Baozhu; Liu, Fen; Chen, Bangdang; Wang, Changyong; Ma, Yitong

    2010-12-01

    Cell-based therapy can improve cardiac function but is limited by the low cell retention and survival within ischemic tissues. Injectable cardiac tissue engineering aims to support cell-based therapies and enhance their efficacy for cardiac diseases. So far, no research has been devoted to studying the usefulness of the combination of fibrin glue (as scaffold) and adipose-derived stem cells (ADSCs) to treat myocardial infarction. In our study, the rat ADSCs were isolated from subcutaneous adipose tissues. The surface phenotype of these cells was analyzed by flow cytometry. The fibrin glue was then co-injected with ADSCs into the left ventricular wall of rat infarction models. The structure and functional consequences of transplantation were determined by detailed histological analysis and echocardiography. Most cultured ADSCs expressed CD105 and CD90, and were negative for CD34 and CD45. After injection, both the 24-h cell retention and four-week graft size were significantly higher and larger in the Fibrin + ADSCs group than those of the ADSCs group alone (P < 0.01). The heart function improved significantly in the Fibrin + ADSCs group compared with that of the ADSCs group four weeks after transplantation (P < 0.01). In addition, the arteriole densities within the infarcted area improved significantly in the Fibrin + ADSCs group compared with those in the ADSCs group four weeks after transplantation (P < 0.01). In conclusion, the ADSCs with the fibrin glue has the therapeutic potential to improve the function of infarcted hearts. The method of in situ injectable tissue engineering combining fibrin glue with ADSCs is promising clinically. PMID:21127347

  8. Partially Silencing Brain Toll-Like Receptor 4 Prevents in Part Left Ventricular Remodeling with Sympathoinhibition in Rats with Myocardial Infarction-Induced Heart Failure

    PubMed Central

    Ogawa, Kiyohiro; Hirooka, Yoshitaka; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2013-01-01

    Background Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. Methodology/Principal Findings MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. Conclusions Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure. PMID:23874864

  9. 5-Methoxyleoligin, a Lignan from Edelweiss, Stimulates CYP26B1-Dependent Angiogenesis In Vitro and Induces Arteriogenesis in Infarcted Rat Hearts In Vivo

    PubMed Central

    Messner, Barbara; Kern, Johann; Wiedemann, Dominik; Schwaiger, Stefan; Türkcan, Adrian; Ploner, Christian; Trockenbacher, Alexander; Aumayr, Klaus; Bonaros, Nikolaos; Laufer, Günther; Stuppner, Hermann; Untergasser, Gerold; Bernhard, David

    2013-01-01

    Background Insufficient angiogenesis and arteriogenesis in cardiac tissue after myocardial infarction (MI) is a significant factor hampering the functional recovery of the heart. To overcome this problem we screened for compounds capable of stimulating angiogenesis, and herein investigate the most active molecule, 5-Methoxyleoligin (5ML), in detail. Methods and Results 5ML potently stimulated endothelial tube formation, angiogenic sprouting, and angiogenesis in a chicken chorioallantoic membrane assay. Further, microarray- and knock down- based analyses revealed that 5ML induces angiogenesis by upregulation of CYP26B1. In an in vivo rat MI model 5ML potently increased the number of arterioles in the peri-infarction and infarction area, reduced myocardial muscle loss, and led to a significant increase in LV function (plus 21% 28 days after MI). Conclusion The present study shows that 5ML induces CYP26B1-dependent angiogenesis in vitro, and arteriogenesis in vivo. Whether or not CYP26B1 is relevant for in vivo arteriogenesis is not clear at the moment. Importantly, 5ML-induced arteriogenesis in vivo makes the compound even more interesting for a post MI therapy. 5ML may constitute the first low molecular weight compound leading to an improvement of myocardial function after MI. PMID:23554885

  10. Thyroid Hormone Replacement Therapy Attenuates Atrial Remodeling and Reduces Atrial Fibrillation Inducibility in a Rat Myocardial Infarction-Heart Failure Model

    PubMed Central

    Zhang, Youhua; Dedkov, Eduard I.; Lee, Bianca; Li, Ying; Pun, Khusbu; Gerdes, A. Martin

    2014-01-01

    Introduction Heart failure (HF) is associated with increased atrial fibrillation (AF) risk. Accumulating evidence suggests the presence of myocardial tissue hypothyroidism in HF, which may contribute to HF development. Our recent report demonstrated that hypothyroidism, like hyperthyroidism, leads to increased AF inducibility. This study was designed to investigate the effect of thyroid hormone (TH) replacement therapy on AF arrhythmogenesis in HF. Methods and Results Myocardial infarction (MI) was produced in rats by coronary artery ligation. Rats with large MIs (>40%) were randomized into L-thyroxine (T4, n=14) and placebo (n=15) groups 2 weeks after MI. Rats received 3.3 mg T4 (in 60-day release form) or placebo pellets in respective groups for 2 months. Compared with the placebo, T4 treatment improved cardiac function and decreased left ventricular internal diameters as well as left atrial diameter. T4 treatment attenuated atrial effective refractory period prolongation (45±1.5 ms in placebo group vs 37±1.6 ms in T4 group, P<0.01) and reduced AF inducibility (AF/atrial flutter /tachycardia were inducible in 11/15 rats, or 73% in placebo vs 4/14 rats, or 29% in the T4 treated group, P<0.05). Arrhythmia reduction was associated with decreased atrial fibrosis but was not associated with connexin 43 changes. Conclusion To our knowledge this is the first study demonstrating that TH replacement therapy in HF attenuates atrial remodeling and reduces AF inducibility post MI-HF. Clinical studies are needed to confirm such benefits in patients. PMID:25305503

  11. Cardio-protecteffect of qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction

    PubMed Central

    Liang, Tuo; Zhang, Yuhui; Yin, Shijie; Gan, Tianyi; An, Tao; Zhang, Rongcheng; Wang, Yunhong; Huang, Yan; Zhou, Qiong; Zhang, Jian

    2016-01-01

    Background: Qiliqiangxin (QL) capsule is a traditional Chinese medicine which has been approved for the treatment of chronic heart failure. Evidences proved that QL capsules further reduced the NT-proBNP levels and improved left ventricular ejection fraction in CHF patients but the evidence supporting its underlying mechanism is still unclear. Methods and Results: Myocardial infarction (MI) -Heart failure (HF) Sprague-Dawley ratsmodel and neonatal rat cardiac myocytes (NRCMs) were used. Animals were assigned into 4 groups, normal group (n=6), shame-operation group (n=6), MI rats 4 weeks after left anterior descending coronary artery ligation were randomized into vehicle group (n=8), QL group (n=8). QL significantly attenuated cardiac dysfunction and ventricle remodeling as echocardiography and hemodynamic measurements showed improvement in left ventricular ejection fraction, fractional shortening, ±dp/dt and left ventricular end diastolic and systolic diameters in QL treated group compared with the vehicle group. Improvements ininterstitial fibrosisand mitochondrial structures were also exhibited by Sirius Red staining, RT-PCR and electron microscopy. QL treatment improved apoptosis and VEGF expression in rats marginal infract area. Complementary experiments analyzed the improved apoptosis and up-regulate of VEGF in ischemia-hypoxia cultivated NRCMs is in an Akt dependent manner and can be reversed by Akt inhibitor. Conclusion: QL capsule can improve cardiac dysfunction and ventricular remodeling in MI-HF ratsmodel, this cardiac protective efficacy may be concerned with attenuated apoptosis and cardiac fibrosis. Up-regulated VEGF expression and Akt phosphorylation may take part in this availability. PMID:27347313

  12. Roles of endothelial nitric oxide synthase (eNOS) and mitochondrial permeability transition pore (MPTP) in epoxyeicosatrienoic acid (EET)-induced cardioprotection against infarction in intact rat hearts.

    PubMed

    Gross, Garrett J; Hsu, Anna; Pfeiffer, Adam W; Nithipatikom, Kasem

    2013-06-01

    We previously demonstrated that 11,12 and 14,15-epoxeicosatrienoic acids (EETs) produce cardioprotection against ischemia-reperfusion injury in dogs and rats. Several signaling mechanisms have been implicated in the cardioprotective actions of the EETs; however, their mechanisms remain largely elusive. Since nitric oxide (NO) plays a significant role in cardioprotection and EETs have been demonstrated to induce NO production in various tissues, we hypothesized that NO is involved in mediating the EET actions in cardioprotection. To test this hypothesis, we used an in vivo rat model of infarction in which intact rat hearts were subjected to 30-min occlusion of the left coronary artery and 2-hr reperfusion. 11,12-EET or 14,15-EET (2.5mg/kg) administered 10min prior to the occlusion reduced infarct size, expressed as a percentage of the AAR (IS/AAR), from 63.9±0.8% (control) to 45.3±1.2% and 45.5±1.7%, respectively. A nonselective nitric oxide synthase (NOS) inhibitor, L-NAME (1.0mg/kg) or a selective endothelial NOS inhibitor, L-NIO (0.30mg/kg) alone did not affect IS/AAR but they completely abolished the cardioprotective effects of the EETs. On the other hand, a selective neuronal NOS inhibitor, nNOS I (0.03mg/kg) and a selective inducible NOS inhibitor, 1400W (0.10mg/kg) did not affect IS/AAR or block the cardioprotective effects of the EETs. Administration of 11,12-EET (2.5mg/kg) to the rats also transiently increased the plasma NO concentration. 14,15-EET (10μM) induced the phosphorylation of eNOS (Ser(1177)) as well as a transient increase of NO production in rat cardiomyoblast cell line (H9c2 cells). When 11,12-EET or 14,15-EET was administered at 5min prior to reperfusion, infarct size was also reduced to 42.8±2.2% and 42.6±1.9%, respectively. Interestingly, L-NAME (1.0mg/kg) and a mitochondrial KATP channel blocker, 5-HD (10mg/kg) did not abolish while a sarcolemmal KATP channel blocker, HMR 1098 (6.0mg/kg) and a mitochondrial permeability transition

  13. The role of apelin in central cardiovascular regulation in rats with post-infarct heart failure maintained on a normal fat or high fat diet.

    PubMed

    Czarzasta, Katarzyna; Cudnoch-Jedrzejewska, Agnieszka; Szczepanska-Sadowska, Ewa; Fus, Lukasz; Puchalska, Liana; Gondek, Agata; Dobruch, Jakub; Gomolka, Ryszard; Wrzesien, Robert; Zera, Tymoteusz; Gornicka, Barbara; Kuch, Marek

    2016-10-01

    Based on the available literature, it can be assumed that in cases of post-infarct heart failure (HF) and obesity, a significant change in the central regulation of the cardiovascular system takes place with, among others, the involvement of the apelinergic system. The main objective of the present study was to clarify the role of apelin-13 in the central regulation of the cardiovascular system in Sprague Dawley rats with HF or sham operated (SO) and fed on a normal fat (NFD) or a high fat diet (HFD). The study was divided into two parts: Part I, hemodynamic studies; and Part II, biochemical and molecular studies. The animals were subjected to the following research procedures. Part I and II: feeding NFD or HFD; experimental induction of HF or SO; Part I: intracerebroventricular (ICV) infusion of the examined substances, monitoring of mean arterial blood pressure (MABP) and heart rate (HR); Part II: venous blood and tissue samples collected. ICV infusion of apelin-13 caused significantly higher changes in ΔMABP in the SO NFD group. No changes were noted in ΔHR in any of the studied groups. Apelin and apelin receptor (APJ) mRNA expression in the brain and adipose tissues was higher in the HF rats. HFD causes significant increase in expression of apelin and APJ mRNA in the left ventricle. In conclusion, HF and HFD appear to play an important role in modifying the activity of the central apelinergic system and significant changes in mRNA expression of apelin and APJ receptor. PMID:27378063

  14. Tumorigenesis of nuclear transfer-derived embryonic stem cells is reduced through differentiation and enrichment following transplantation in the infarcted rat heart.

    PubMed

    Fu, Qiang; Su, Dechun; Wang, Ke; Zhao, Yingjun

    2016-06-01

    The aim of the present study was to evaluate the tumorigenic potential of nuclear transfer-derived (nt) mouse embryonic stem cells (mESCs) transplanted into infarcted rat hearts. The nt‑mESCs were cultured using a bioreactor system to develop embryoid bodies, which were induced with 1% ascorbic acid to differentiate into cardiomyocytes. The nt‑mESC‑derived cardiomyocytes (nt‑mESCs‑CMs) were enriched using Percoll density gradient separation to generate nt‑mESCs‑percoll‑enriched (PE)‑CMs. Ischemia was induced by ligating the left anterior descending coronary artery in female Sprague‑Dawley rats. Immunosuppressed rats (daily intraperitoneal injections of cyclosporine A and methylprednisolone) were randomly assigned to receive an injection containing 5x106 mESCs, nt‑mESCs, nt‑mESC‑CMs or nt‑mESC‑PE‑CMs. Analysis performed 8 weeks following transplantation revealed teratoma formation in 80, 86.67 and 33.33% of the rats administered with the mESCs, nt‑mESCs and nt‑mESC‑CMs, respectively, indicating no significant difference between the mESCs and nt‑mESCs; but significance (P<0.05) between the nt‑mESC‑CMs and nt‑mESCs. The mean tumor volumes were 82.72±6.52, 83.17±3.58 and 50.40±5.98 mm3, respectively (P>0.05 mESCs, vs. nt‑mESCs; P<0.05 nt‑mESC‑CMs, vs. nt‑mESCs). By contrast, no teratoma formation was detected in the rats, which received nt‑mESC‑PE‑CMs. Octamer‑binding transcription factor‑4, a specific marker of undifferentiated mESCs, was detected using polymerase chain reaction in the rats, which received nt‑mESCs and nt‑mESC‑CMs, but not in rats administered with nt‑mESC‑PE‑CMs. In conclusion, nt‑mESCs exhibited the same pluripotency as mESCs, and teratoma formation following nt‑mESC transplantation was reduced by cell differentiation and enrichment. PMID:27082733

  15. Fibroblast KATP currents modulate myocyte electrophysiology in infarcted hearts.

    PubMed

    Benamer, Najate; Vasquez, Carolina; Mahoney, Vanessa M; Steinhardt, Maximilian J; Coetzee, William A; Morley, Gregory E

    2013-05-01

    Cardiac metabolism remains altered for an extended period of time after myocardial infarction. Studies have shown fibroblasts from normal hearts express KATP channels in culture. It is unknown whether fibroblasts from infarcted hearts express KATP channels and whether these channels contribute to scar and border zone electrophysiology. KATP channel subunit expression levels were determined in fibroblasts isolated from normal hearts (Fb), and scar (sMI-Fb) and remote (rMI-Fb) regions of left anterior descending coronary artery (LAD) ligated rat hearts. Whole cell KATP current density was determined with patch clamp. Action potential duration (APD) was measured with optical mapping in myocyte-only cultures and heterocellular cultures with fibroblasts with and without 100 μmol/l pinacidil. Whole heart optical mapping was used to assess KATP channel activity following LAD ligation. Pinacidil activated a potassium current (35.4 ± 7.5 pA/pF at 50 mV) in sMI-Fb that was inhibited with 10 μmol/l glibenclamide. Kir6.2 and SUR2 transcript levels were elevated in sMI-Fb. Treatment with Kir6.2 short interfering RNA decreased KATP currents (87%) in sMI-Fb. Treatment with pinacidil decreased APD (26%) in co-cultures with sMI-Fb. APD values were prolonged in LAD ligated hearts after perfusion with glibenclamide. KATP channels are present in fibroblasts from the scar and border zones of infarcted hearts. Activation of fibroblast KATP channels could modulate the electrophysiological substrate beyond the acute ischemic event. Targeting fibroblast KATP channels could represent a novel therapeutic approach to modify border zone electrophysiology after cardiac injury. PMID:23436329

  16. Nitrendipine binding in congestive heart failure due to myocardial infarction

    SciTech Connect

    Dixon, I.M.; Lee, S.L.; Dhalla, N.S. )

    1990-03-01

    Depressed cardiac pump function is the hallmark of congestive heart failure, and it is suspected that decreased influx of Ca2+ into the cardiac cell is responsible for depressed contractile function. Since Ca2+ channels in the sarcolemmal membrane are considered to be an important route for the entry of Ca2+, we examined the status of Ca2+ receptors/channels in failing rat hearts after myocardial infarction of the left ventricular free wall. For this purpose, the left coronary artery was ligated and hearts were examined 4, 8, and 16 weeks later; sham-operated animals served as controls. Hemodynamic assessment revealed decreased total mechanical energy (left ventricular systolic pressure x heart rate), increased left ventricular diastolic pressure, and decreased positive and negative dP/dt in experimental animals at 4, 8, and 16 weeks. Although accumulation of ascites in the abdominal cavity was evident at 4 weeks, other clinical signs of congestive heart failure in experimental rats were evident from the presence of lung congestion and cardiac dilatation at 8 and 16 weeks after induction of myocardial infarction. The density of Ca2+ receptors/channels in crude membranes, as assessed by (3H)nitrendipine binding assay, was found to be decreased in the uninfarcted experimental left ventricle at 8 and 16 weeks; however, no change in the affinity of nitrendipine was evident. A similar depression in the specific binding of another dihydropyridine compound, (3H)PN200-110, was also evident in failing hearts. Brain and skeletal muscle crude membrane preparations, unlike those of the right ventricle and liver, revealed a decrease in Ca2+ receptors/channels density in experimental animals at 16 weeks.

  17. Cardiac PET imaging of 18F-FDG metabolism: study of healthy and infarcted hearts of rats.

    PubMed

    Mabrouk, R; Dubeau, F; Bentabet, L

    2013-01-01

    This paper, considers the evolution of a method presented previously by authors to correct for cross contamination effect on the dynamic image sequences and shows how this development allows for a robust voxel by voxel implementation yielding parametric images for healthy and unhealthy subjects. Our approach is based on the decomposition of image pixel intensity into blood and tissue components using Bayesian statistics. The method uses an a priori knowledge of the probable distribution of blood and tissue in the images. Likelihood measures are computed by a General Gaussian Distribution (GGD) model. Bayes' rule is then applied to compute weights that account for the concentrations of the radiotracer in blood and tissue and their relative contributions in each image pixel. We tested the method on a set of dynamic cardiac (18)F-fluoro-deoxy-d-glucose PET of healthy rats and unhealthy rats. The results show the benefit of our correction on the generation of parametric images of myocardial metabolic rates for glucose (MMRG). PMID:24110230

  18. Attenuated response to atrial natriuretic peptide in rats with myocardial infarction.

    PubMed

    Kohzuki, M; Hodsman, G P; Johnston, C I

    1989-02-01

    The natriuretic, diuretic, and hypotensive effects of atrial natriuretic peptide (ANP) were examined in rats 4 wk after myocardial infarction induced by left coronary artery ligation. Synthetic rat ANP (fragment 1-28) was infused intravenously in doses of 0.1, 0.3, and 1.0 micrograms.kg-1.min-1 for 30 min. There was a significant decrease in systolic blood pressure in controls and rats with infarction, although only in control rats was there a significant decrease in diastolic blood pressure. Changes in systolic and diastolic blood pressure were attenuated in rats with infarction compared with controls (P less than 0.01). The diuretic and natriuretic effects of ANP were observed in both groups of rats, but the effects were significantly less in rats with infarction (P less than 0.01). The ANP infusion did not induce significant changes in heart rate or hematocrit in controls or rats with infarction. The results indicate that rats with chronic left heart failure are less sensitive to the natriuretic, diuretic, and hypotensive effects of ANP when compared with controls. The attenuated renal response to ANP may contribute to the impaired sodium and water excretion in chronic heart failure, although other mechanisms are involved. PMID:2521777

  19. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.

    PubMed

    Wang, Qingjie; Yang, Hui; Bai, Aobing; Jiang, Wei; Li, Xiuya; Wang, Xinhong; Mao, Yishen; Lu, Chao; Qian, Ruizhe; Guo, Feng; Ding, Tianling; Chen, Haiyan; Chen, Sifeng; Zhang, Jianyi; Liu, Chen; Sun, Ning

    2016-10-01

    With the advent of induced pluripotent stem cells and directed differentiation techniques, it is now feasible to derive individual-specific cardiac cells for human heart tissue engineering. Here we report the generation of functional engineered human cardiac patches using human induced pluripotent stem cells-derived cardiac cells and decellularized natural heart ECM as scaffolds. The engineered human cardiac patches can be tailored to any desired size and shape and exhibited normal contractile and electrical physiology in vitro. Further, when patching on the infarct area, these patches improved heart function of rats with acute myocardial infarction in vivo. These engineered human cardiac patches can be of great value for normal and disease-specific heart tissue engineering, drug screening, and meet the demands for individual-specific heart tissues for personalized regenerative therapy of myocardial damages in the future. PMID:27509303

  20. The myocardial infarct size-limiting and antiarrhythmic effects of acyl-CoA:cholesterol acyltransferase inhibitor VULM 1457 protect the hearts of diabetic-hypercholesterolaemic rats against ischaemia/reperfusion injury both in vitro and in vivo.

    PubMed

    Adameová, Adriana; Ravingerová, Tána; Svec, Pavel; Faberová, Viera; Kuzelová, Magdaléna

    2007-12-01

    The study was designed to characterise the influence of a novel acyl-CoA:cholesterol acyltransferase inhibitor, VULM 1457, on the severity of myocardial ischaemia-reperfusion injury in a model of diabetes mellitus and hypercholesterolaemia induced by co-administration of streptozotocin and a high fat-cholesterol diet. We used Langendorff-perfused rat hearts to measure the size of myocardial infarction after 30 min of regional ischaemia, followed by a 2-h reperfusion period, and open-chest rats were exposed to 6 min of ischaemia and 10 min of reperfusion to analyse ventricular arrhythmias. In addition to the high fat-cholesterol diet, VULM 1457 was administered to the diabetic-hypercholesterolaemic rats for 5 days. Decreased plasma and liver cholesterol levels and a significantly reduced occurrence of ventricular fibrillation (29% vs. 100%, P<0.01), determined via the mean number and duration of episodes (0.6+/-0.4 and 2.1+/-1.4 s vs. 2.8+/-0.8 and 53.5+/-14.4 s in diabetic-hypercholesterolaemic rats, both P<0.01), were observed in these animals. Lethal ventricular fibrillation was suppressed, and arrhythmia severity was also significantly decreased in these animals as compared to the non-treated animals (2.9+/-0.6 vs. 4.9+/-0.2; P<0.05). A smaller infarct size, normalised to the size of area at risk, was observed in the treated diabetic-hypercholesterolaemic group as compared to the non-treated group (16.3+/-1.9% vs. 37.3+/-3.1%; P<0.01). Aside from remarkable hypolipidaemic activity, VULM 1457 improved the overall myocardial ischaemia-reperfusion injury outcomes in the diabetic-hypercholesterolaemic rats by suppressing arrhythmogenesis as well as by reducing myocardial necrosis. PMID:17764671

  1. Optical projection tomography permits efficient assessment of infarct volume in the murine heart postmyocardial infarction

    PubMed Central

    Zhao, X.; Wu, J.; Gray, C. D.; McGregor, K.; Rossi, A. G.; Morrison, H.; Jansen, M. A.

    2015-01-01

    The extent of infarct injury is a key determinant of structural and functional remodeling following myocardial infarction (MI). Infarct volume in experimental models of MI can be determined accurately by in vivo magnetic resonance imaging (MRI), but this is costly and not widely available. Experimental studies therefore commonly assess injury by histological analysis of sections sampled from the infarcted heart, an approach that is labor intensive, can be subjective, and does not fully assess the extent of injury. The present study aimed to assess the suitability of optical projection tomography (OPT) for identification of injured myocardium and for accurate and efficient assessment of infarct volume. Intact, perfusion-fixed, optically cleared hearts, collected from mice 7 days after induction of MI by coronary artery occlusion, were scanned by a tomograph for autofluorescence emission after UV excitation, generating >400 transaxial sections for reconstruction. Differential autofluorescence permitted discrimination between viable and injured myocardium and highlighted the heterogeneity within the infarct zone. Two-dimensional infarct areas derived from OPT imaging and Masson's trichrome staining of slices from the same heart were highly correlated (r2 = 0.99, P < 0.0001). Infarct volume derived from reconstructed OPT sections correlated with volume derived from in vivo late gadolinium enhancement MRI (r2 = 0.7608, P < 0.005). Tissue processing for OPT did not compromise subsequent immunohistochemical detection of endothelial cell and inflammatory cell markers. OPT is thus a nondestructive, efficient, and accurate approach for routine in vitro assessment of murine myocardial infarct volume. PMID:26071543

  2. Enhanced thromboxane synthesis in atria from infarcted rabbit hearts

    SciTech Connect

    Dunkel, C.G.; Evers, A.S.; Needleman, P.

    1986-03-05

    The authors have previously shown that left ventricular myocardial infarction (MI) results in enhanced thromboxane (Tx) synthesis in response to n-formylmethionyl-leucyl-phenylalanine (fMLP). To anatomically localize this response, cardiac atria and ventricles were removed from normal rabbits and rabbits subjected 4 days previously to MI. Atria were placed in a tissue bath, ventricles were perfused with buffer via the vasculature and both preparations were challenged with fMLP. TxB/sub 2/ in the bath media or ventricular effluent was measured by specific RIA. Atria from normal and infarcted hearts produced similar basal levels of Tx. Following fMLP stimulation, atria from infarcted hearts produced 10X more Tx than normal atria. Ventricles from normal and infarcted hearts produced no Tx basally and only small quantities with fMLP stimulation. Incubation of microsomes prepared from the various chambers of the heart with (/sup 14/-C) arachidonate showed that Tx synthetic capacity in both normal and infarcted hearts resides almost exclusively in the right cardiac atria. These results show that cardiac Tx synthesis is largely an atrial phenomenon and that left ventricular myocardial infarction results in enhanced fMLP-stimulated Tx synthesis.

  3. Heart Rate Turbulence as Risk-Predictor after Myocardial Infarction

    PubMed Central

    Zuern, Christine S.; Barthel, Petra; Bauer, Axel

    2011-01-01

    Heart rate turbulence (HRT) is the baroreflex-mediated short-term oscillation of cardiac cycle lengths after spontaneous ventricular premature complexes. HRT is composed of a brief heart rate acceleration followed by a gradual heart rate deceleration. In high risk patients after myocardial infarction (MI) HRT is blunted or diminished. Since its first description in 1999 HRT emerged as one of the most potent risk factors after MI. Predictive power of HRT has been studied in more than 10,000 post-infarction patients. This review is intended to provide an overview of HRT as risk-predictor after MI. PMID:22180744

  4. RNA interference targeting SHP-1 attenuates myocardial infarction in rats.

    PubMed

    Sugano, Masahiro; Tsuchida, Keiko; Hata, Tomoji; Makino, Naoki

    2005-12-01

    The Src homology domain 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1) plays a key role in apoptosis and decreases phosphorylation of Akt. Apoptosis of cardiomyocytes is thought to contribute to the increased area of acute myocardial infarction (AMI), and Akt activation exerts a powerful cardioprotective effect after ischemia. Thus, a therapeutic strategy designed to inhibit expression of SHP-1 would be beneficial in AMI. Here we report that siRNA targeting SHP-1 reduced infarct size in a rat model of AMI. Upon injection into the ischemic left ventricular wall, the vector-based siRNA significantly suppressed the increase in the SHP-1 mRNA and the SHP-1 protein levels. The siRNA vector also significantly reduced the SHP-1 that bound to Fas-R. The SHP-1 siRNA vector increased phospho-Akt and reduced DNA fragmentation and caspase activity compared with the scramble siRNA vector. Finally, the area of myocardial infarction was significantly smaller with the SHP-1 siRNA vector than with the scramble siRNA vector at 2 days after LCA ligation. In conclusion, SHP-1 in the heart increased from the early stage of AMI, and this increase was thought to contribute to the increased area of myocardial infarction. Suppression of SHP-1 with the SHP-1 siRNA vector markedly reduced the infarct size in AMI. PMID:16223786

  5. Hyperbaric oxygenation enhances transplanted cell graft and functional recovery in the infarct heart

    PubMed Central

    Khan, Mahmood; Meduru, Sarath; Mohan, Iyyapu K.; Kuppusamy, M. Lakshmi; Wisel, Sheik; Kulkarni, Aditi; Rivera, Brian K.; Hamlin, Robert L.; Kuppusamy, Periannan

    2009-01-01

    A major limitation to the application of stem-cell therapy to repair ischemic heart damage is the low survival of transplanted cells in the heart, possibly due to poor oxygenation. We hypothesized that hyperbaric oxygenation (HBO) can be used as an adjuvant treatment to augment stem-cell therapy. Therefore, the goal of this study was to evaluate the effect of HBO on the engraftment of rat bone-marrow-derived mesenchymal stem cells (MSCs) transplanted in infarct rat hearts. Myocardial infarction (MI) was induced in Fisher-344 rats by permanently ligating the left-anterior-descending coronary artery. MSCs, labeled with fluorescent superparamagnetic iron oxide (SPIO) particles, were transplanted in the infarct and peri-infarct regions of the MI hearts. HBO (100% oxygen at 2 ATA for 90 min) was administered daily for 2 weeks. Four MI groups were used: untreated (MI); HBO; MSC; MSC+HBO. Echocardiography, electro-vectorcardiography, and magnetic resonance imaging were used for functional evaluations. The engraftment of transplanted MSCs in the heart was confirmed by SPIO fluorescence and Prussian-blue staining. Immunohistochemical staining was used to identify key cellular and molecular markers including CD29, troponin-T, connexin-43, VEGF, α-smooth-muscle actin, and von-Willebrand factor in the tissue. Compared to MI and MSC groups, the MSC+HBO group showed a significantly increased recovery of cardiac function including left-ventricular (LV) ejection fraction, fraction-shortening, LV wall-thickness, and QRS vector. Further, HBO treatment significantly increased the engraftment of CD29-positive cells, expression of connexin-43, troponin-T and VEGF, and angiogenesis in the infarct tissue. Thus, HBO appears to be a potential and clinically-viable adjuvant treatment for myocardial stem-cell therapy. PMID:19376124

  6. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression.

    PubMed

    Sirry, Mazin S; Butler, J Ryan; Patnaik, Sourav S; Brazile, Bryn; Bertucci, Robbin; Claude, Andrew; McLaughlin, Ron; Davies, Neil H; Liao, Jun; Franz, Thomas

    2016-10-01

    Understanding the passive mechanical properties of infarcted tissue at different healing stages is essential to explore the emerging biomaterial injection-based therapy for myocardial infarction (MI). Although rats have been widely used as animal models in such investigations, the data in literature that quantify the passive mechanical properties of rat heart infarcts is very limited. MI was induced in rats and hearts were harvested immediately (0 day), 7, 14 and 28 days after infarction onset. Left ventricle anterioapical samples were cut and underwent equibiaxial and non equibiaxial tension followed by uniaxial compression mechanical tests. Histological analysis was conducted to confirm MI and to quantify the size of the induced infarcts. Infarcts maintained anisotropy and the nonlinear biaxial and compressive mechanical behaviour throughout the healing phases with the circumferential direction being stiffer than the longitudinal direction. Mechanical coupling was observed between the two axes in all infarct groups. The 0, 7, 14 and 28 days infarcts showed 438, 693, 1048 and 1218kPa circumferential tensile moduli. The 28 day infarct group showed a significantly higher compressive modulus compared to the other infarct groups (p=0.0060, 0.0293, and 0.0268 for 0, 7 and 14 days groups). Collagen fibres were found to align in a preferred direction for all infarct groups supporting the observed mechanical anisotropy. The presented data are useful for developing material models for healing infarcts and for setting a baseline for future assessment of emerging mechanical-based MI therapies. PMID:27434651

  7. Cardiac Motion Analysis Using High-Speed Video Images in a Rat Model for Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Ishii, Idaku; Okuda, Toshikazu; Nie, Yuman; Takaki, Takeshi; Orito, Kensuke; Tanaka, Akane; Matsuda, Hiroshi

    In this study, we performed a cardiac motion analysis by using 1000-frames per second (fps) stereo images to capture the three-dimensional motion of small color markers in a rat heart. This method of recording cardiac motion could quantify the rate of change in the myocardial area, which indicated localized myocardial activity of rhythmic expansion and contraction. We analyzed the three-dimensional motion distributions in a rat model for myocardial infarction, in which the heart rate was 4 times/s or more. In the analysis, we spatiotemporally quantified the characteristic cardiac motion in ischemic heart diseases and found that infarction due to ischemia in the rat heart was spread around the left ventricle.

  8. Low-Level Vagus Nerve Stimulation Reverses Cardiac Dysfunction and Subcellular Calcium Handling in Rats With Post-Myocardial Infarction Heart Failure.

    PubMed

    Zhang, Yunhe; Chen, Ao; Song, Lei; Li, Min; Luo, Zhangyuan; Zhang, Wenzan; Chen, Yingmin; He, Ben

    2016-05-25

    Vagus nerve stimulation (VNS), targeting the imbalanced autonomic nervous system, is a promising therapeutic approach for chronic heart failure (HF). Moreover, calcium cycling is an important part of cardiac excitation-contraction coupling (ECC), which also participates in the antiarrhythmic effects of VNS. We hypothesized that low-level VNS (LL-VNS) could improve cardiac function by regulation of intracellular calcium handling properties. The experimental HF model was established by ligation of the left anterior descending coronary artery (LAD). Thirty-two male Sprague-Dawley rats were divided into 3 groups as follows; control group (sham operated without coronary ligation, n = 10), HF-VNS group (HF rats with VNS, n = 12), and HF-SS group (HF rats with sham nerve stimulation, n = 10). After 8 weeks of treatment, LL-VNS significantly improved left ventricular ejection fraction (LVEF) and attenuated myocardial interstitial fibrosis in the HF-VNS group compared with the HF-SS group. Elevated plasma norepinephrine and dopamine, but not epinephrine, were partially reduced by LL-VNS. Additionally, LL-VNS restored the protein and mRNA levels of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a), Na(+)-Ca(2+) exchanger 1 (NCX1), and phospholamban (PLB) whereas the expression of ryanodine receptor 2 (RyR2) as well as mRNA level was unaffected. Thus, our study results suggest that the improvement of cardiac performance by LL-VNS is accompanied by the reversal of dysfunctional calcium handling properties including SERCA2a, NCX1, and PLB which may be a potential molecular mechanism of VNS for HF. PMID:27181040

  9. Functional Effects of Delivering Human Mesenchymal Stem Cell-Seeded Biological Sutures to an Infarcted Heart.

    PubMed

    Hansen, Katrina J; Favreau, John T; Guyette, Jacques P; Tao, Ze-Wei; Coffin, Spencer T; Cunha-Gavidia, Anny; D'Amore, Brian; Perreault, Luke R; Fitzpatrick, John P; DeMartino, Angelica; Gaudette, Glenn R

    2016-01-01

    Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p < 0.05). The delivery of unseeded biological sutures to the infarcted hearts did not change regional mechanical function compared with the infarcted hearts (RSW: 0.032 ± 0.004, SAC: 0.037 ± 0.008, n = 6). The delivery of hMSC-seeded sutures exerted a trend toward increase of regional mechanical function compared with the infarcted heart (RSW: 0.057 ± 0.011; SAC: 0.051 ± 0.014, n = 6). Global function showed no significant differences between any group (p > 0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area was

  10. Functional Effects of Delivering Human Mesenchymal Stem Cell-Seeded Biological Sutures to an Infarcted Heart

    PubMed Central

    Hansen, Katrina J.; Favreau, John T.; Guyette, Jacques P.; Tao, Ze-Wei; Coffin, Spencer T.; Cunha-Gavidia, Anny; D'Amore, Brian; Perreault, Luke R.; Fitzpatrick, John P.; DeMartino, Angelica; Gaudette, Glenn R.

    2016-01-01

    Abstract Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p < 0.05). The delivery of unseeded biological sutures to the infarcted hearts did not change regional mechanical function compared with the infarcted hearts (RSW: 0.032 ± 0.004, SAC: 0.037 ± 0.008, n = 6). The delivery of hMSC-seeded sutures exerted a trend toward increase of regional mechanical function compared with the infarcted heart (RSW: 0.057 ± 0.011; SAC: 0.051 ± 0.014, n = 6). Global function showed no significant differences between any group (p > 0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area

  11. Infarcted rat myocardium: Data from biaxial tensile and uniaxial compressive testing and analysis of collagen fibre orientation.

    PubMed

    Sirry, Mazin S; Butler, J Ryan; Patnaik, Sourav S; Brazile, Bryn; Bertucci, Robbin; Claude, Andrew; McLaughlin, Ron; Davies, Neil H; Liao, Jun; Franz, Thomas

    2016-09-01

    Myocardial infarction was experimentally induced in rat hearts and harvested immediately, 7, 14 and 28 days after the infarction induction. Anterior wall infarct samples underwent biaxial tensile and uniaxial compressive testing. Orientation of collagen fibres was analysed following mechanical testing. In this paper, we present the tensile and compressive stress-strain raw data, the calculated tensile and compressive moduli and the measured angles of collagen orientation. The presented data is associated with the research article titled "Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression" (Sirry et al., 2016) [1]. PMID:27579338

  12. [Painless anterior acute myocardial infarction in a transplanted heart].

    PubMed

    Poyet, R; Capilla, E; Tortat, A V; Brocq, F X; Pons, F; Kerebel, S; Jego, C; Cellarier, G R

    2015-11-01

    Cardiac allograft vasculopathy is the major determinant of long-term survival in patients after heart transplantation. Clinical presentations are congestive heart failure, ventricular arrhythmias and sudden cardiac death. Acute coronary syndrome is a rare presentation of cardiac allograft vasculopathy due to myocardial denervation. We present the case of a 31-year-old patient, who had undergone heart transplantation 6 months earlier and who developed a painless anterior myocardial infarction revealed by syncope. He was successfully treated by percutaneous coronary intervention with drug eluting stent implantation. PMID:26472502

  13. Circadian Dependence of Infarct Size and Acute Heart Failure in ST Elevation Myocardial Infarction

    PubMed Central

    Devi, Anju; Carvalho, Leonardo P.; Chua, Terrance; Koh, Tian-Hai; Tan, Huay-Cheem; Foo, David; Tong, Khim-Leng; Ong, Hean-Yee; Richards, A. Mark; Yew, Chow Khuan; Chan, Mark Y.

    2015-01-01

    Objectives There are conflicting data on the relationship between the time of symptom onset during the 24-hour cycle (circadian dependence) and infarct size in ST-elevation myocardial infarction (STEMI). Moreover, the impact of this circadian pattern of infarct size on clinical outcomes is unknown. We sought to study the circadian dependence of infarct size and its impact on clinical outcomes in STEMI. Methods We studied 6,710 consecutive patients hospitalized for STEMI from 2006 to 2009 in a tropical climate with non-varying day-night cycles. We categorized the time of symptom onset into four 6-hour intervals: midnight–6:00 A.M., 6:00 A.M.–noon, noon–6:00 P.M. and 6:00 P.M.–midnight. We used peak creatine kinase as a surrogate marker of infarct size. Results Midnight–6:00 A.M patients had the highest prevalence of diabetes mellitus (P = 0.03), more commonly presented with anterior MI (P = 0.03) and received percutaneous coronary intervention less frequently, as compared with other time intervals (P = 0.03). Adjusted mean peak creatine kinase was highest among midnight–6:00 A.M. patients and lowest among 6:00 A.M.–noon patients (2,590.8±2,839.1 IU/L and 2,336.3±2,386.6 IU/L, respectively, P = 0.04). Midnight–6:00 A.M patients were at greatest risk of acute heart failure (P<0.001), 30-day mortality (P = 0.03) and 1-year mortality (P = 0.03), while the converse was observed in 6:00 A.M.–noon patients. After adjusting for diabetes, infarct location and performance of percutaneous coronary intervention, circadian variations in acute heart failure incidence remained strongly significant (P = 0.001). Conclusion We observed a circadian peak and nadir in infarct size during STEMI onset from midnight–6:00A.M and 6:00A.M.–noon respectively. The peak and nadir incidence of acute heart failure paralleled this circadian pattern. Differences in diabetes prevalence, infarct location and mechanical reperfusion may account partly for the observed circadian

  14. In vivo transfer of soluble TNF-alpha receptor 1 gene improves cardiac function and reduces infarct size after myocardial infarction in rats.

    PubMed

    Sugano, Masahiro; Tsuchida, Keiko; Hata, Tomoji; Makino, Naoki

    2004-05-01

    Increased circulating and cardiac TNF-alpha levels during myocardial ischemia have been found in both experimental animals and patients with ischemic heart disease and advanced heart failure. Soluble TNF-alpha receptor 1 (sTNFR1) is an antagonist to TNF-alpha. In the present study, we examined whether sTNFR1 improves cardiac function in rats after myocardial infarction. Male Wistar rats were subjected to left coronary artery (LCA) ligation. Immediately after the ligation, a total of 200 microg of either the sTNFR1 or LacZ plasmid was injected into three different sites in the left ventricular wall. From 1 to 21 days after LCA ligation, TNF-alpha bioactivity in the heart was higher in rats receiving LacZ plasmid than in sham-operated rats, whereas sTNFR1 plasmid significantly suppressed the increase. The LV diastolic dimension was significantly lower, and the fractional shortening was significantly higher in rats treated with the sTNFR1 plasmid than in those treated with the LacZ plasmid. At 21 days after LCA ligation, the LV end-diastolic pressure was also significantly lower in the rats treated with the sTNFR1 plasmid. In addition, the sTNFR1 expression plasmid had significantly reduced the infarct size. In conclusion, TNF-alpha bioactivity in the heart increased during the early stage of infarction and remained elevated. This elevation seemed partially responsible for the impairment of LV function and the increased infarct size. Suppression of TNF-alpha bioactivity from the early stage of infarction with the sTNFR1 plasmid improved cardiac function and reduced infarct size. PMID:15117889

  15. Dental Calculus Is Associated with Death from Heart Infarction

    PubMed Central

    Söder, Birgitta; Meurman, Jukka H.; Söder, Per-Östen

    2014-01-01

    Objectives. We studied whether the amount of dental calculus is associated with death from heart infarction in the dental infection—atherosclerosis paradigm. Materials. Participants were 1676 healthy young Swedes followed up from 1985 to 2011. At the beginning of the study all subjects underwent oral clinical examination including dental calculus registration scored with calculus index (CI). Outcome measure was cause of death classified according to WHO International Classification of Diseases. Unpaired t-test, Chi-square tests, and multiple logistic regressions were used. Results. Of the 1676 participants, 2.8% had died during follow-up. Women died at a mean age of 61.5 years and men at 61.7 years. The difference in the CI index score between the survivors versus deceased patients was significant by the year 2009 (P < 0.01). In multiple regression analysis of the relationship between death from heart infarction as a dependent variable and CI as independent variable with controlling for age, gender, dental visits, dental plaque, periodontal pockets, education, income, socioeconomic status, and pack-years of smoking, CI score appeared to be associated with 2.3 times the odds ratio for cardiac death. Conclusions. The results confirmed our study hypothesis by showing that dental calculus indeed associated statistically with cardiac death due to infarction. PMID:24511535

  16. EFFECTS OF CHRONIC ACTIVATION OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-ALPHA OR HIGH-FAT FEEDING IN A RAT INFARCT MODEL OF HEART FAILURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intracardiac accumulation of lipid and related intermediates (e.g., ceramide) is associated with cardiac dysfunction and may contribute to the progression of heart failure (HF). Overexpression of nuclear receptor peroxisome proliferator-activated receptor-alpha (PPAR-alpha) increases intramyocellula...

  17. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts

    PubMed Central

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S.; Fa’ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M. David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K.; Schwartz, Robert J.

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it’s transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1’s transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1Cre/+; Rosa26EYFP/+ ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  18. PET/MRI assessment of the infarcted mouse heart

    NASA Astrophysics Data System (ADS)

    Buonincontri, Guido; Methner, Carmen; Krieg, Thomas; Hawkes, Robert C.; Adrian Carpenter, T.; Sawiak, Stephen J.

    2014-01-01

    Heart failure originating from myocardial infarction (MI) is a leading cause of death worldwide. Mouse models of ischaemia and reperfusion injury (I/R) are used to study the effects of novel treatment strategies targeting MI, however staging disease and treatment efficacy is a challenge. Damage and recovery can be assessed on the cellular, tissue or whole-organ scale but these are rarely measured in concert. Here, for the first time, we present data showing measures of injury in infarcted mice using complementary techniques for multi-modal characterisation of the heart. We use in vivo magnetic resonance imaging (MRI) to assess heart function with cine-MRI, hindered perfusion with late gadolinium enhancement imaging and muscular function with displacement encoded with stimulated echoes (DENSE) MRI. These measures are followed by positron emission tomography (PET) with 18-F-fluorodeoxyglucose to assess cellular metabolism. We demonstrate a protocol combining each of these measures for the same animal in the same imaging session and compare how the different markers can be used to quantify cardiac recovery on different scales following injury.

  19. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts.

    PubMed

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S; Fa'ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K; Schwartz, Robert J

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it's transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1's transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1(Cre/+); Rosa26(EYFP/+) ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  20. Analyzing the Release of Copeptin from the Heart in Acute Myocardial Infarction Using a Transcoronary Gradient Model.

    PubMed

    Boeckel, Jes-Niels; Oppermann, Jana; Anadol, Remzi; Fichtlscherer, Stephan; Zeiher, Andreas M; Keller, Till

    2016-01-01

    Copeptin is the C-terminal end of pre-provasopressin released equimolar to vasopressin into circulation and recently discussed as promising cardiovascular biomarker amendatory to established markers such as troponins. Vasopressin is a cytokine synthesized in the hypothalamus. A direct release of copeptin from the heart into the circulation is implied by data from a rat model showing a cardiac origin in hearts put under cardiovascular wall stress. Therefore, evaluation of a potential release of copeptin from the human heart in acute myocardial infarction (AMI) has been done. PMID:26864512

  1. Analyzing the Release of Copeptin from the Heart in Acute Myocardial Infarction Using a Transcoronary Gradient Model

    PubMed Central

    Boeckel, Jes-Niels; Oppermann, Jana; Anadol, Remzi; Fichtlscherer, Stephan; Zeiher, Andreas M.; Keller, Till

    2016-01-01

    Copeptin is the C-terminal end of pre-provasopressin released equimolar to vasopressin into circulation and recently discussed as promising cardiovascular biomarker amendatory to established markers such as troponins. Vasopressin is a cytokine synthesized in the hypothalamus. A direct release of copeptin from the heart into the circulation is implied by data from a rat model showing a cardiac origin in hearts put under cardiovascular wall stress. Therefore, evaluation of a potential release of copeptin from the human heart in acute myocardial infarction (AMI) has been done. PMID:26864512

  2. Metabolomic Analysis of Pressure-overloaded and Infarcted Mouse Hearts

    PubMed Central

    Sansbury, Brian E.; De Martino, Angelica M.; Xie, Zhengzhi; Brooks, Alan C.; Brainard, Robert E.; Watson, Lewis J.; DeFilippis, Andrew P.; Cummins, Timothy D.; Harbeson, Matthew A.; Brittian, Kenneth R.; Prabhu, Sumanth D.; Bhatnagar, Aruni; Jones, Steven P.; Hill, Bradford G.

    2014-01-01

    Background Cardiac hypertrophy and heart failure are associated with metabolic dysregulation and a state of chronic energy deficiency. Although several disparate changes in individual metabolic pathways have been described, there has been no global assessment of metabolomic changes in hypertrophic and failing hearts in vivo. Here, we investigated the impact of pressure overload and infarction on myocardial metabolism. Methods and Results Male C57BL/6J mice were subjected to transverse aortic constriction (TAC) or permanent coronary occlusion (myocardial infarction; MI). A combination of LC/MS/MS and GC/MS techniques was used to measure 288 metabolites in these hearts. Both TAC and MI were associated with profound changes in myocardial metabolism affecting up to 40% of all metabolites measured. Prominent changes in branched amino acids acids (BCAAs) were observed after 1 week of TAC and 5 days after MI. Changes in BCAAs after MI were associated with myocardial insulin resistance. Longer duration of TAC and MI led to a decrease in purines, acylcarnitines, fatty acids and several lysolipid and sphingolipid species, but a marked increase in pyrimidines as well as ascorbate, heme and other indices of oxidative stress. Cardiac remodeling and contractile dysfunction in hypertrophied hearts were associated also with large increases in myocardial, but not plasma, levels of the polyamines putrescine and spermidine as well as the collagen breakdown product prolylhydroxyproline. Conclusions These findings reveal extensive metabolic remodeling common to both hypertrophic and failing hearts that are indicative of extensive extracellular matrix remodeling, insulin resistance and perturbations in amino acid, lipid and nucleotide metabolism. PMID:24762972

  3. Hyperoxic preconditioning fails to confer additional protection against ischemia-reperfusion injury in acute diabetic rat heart

    PubMed Central

    Pourkhalili, Khalil; Hajizadeh, Sohrab; Akbari, Zahra; Dehaj, Mansour Esmaili; Akbarzadeh, Samad; Alizadeh, Alimohammad

    2012-01-01

    Experimental studies show that detrimental effects of ischemia-reperfusion (I/R) injury can be attenuated by hyperoxic preconditioning in normal hearts, however, there are few studies about hyperoxia effects in diseased myocardium. The present study was designed to assess the cardioprotective effects of hyperoxia pretreatment (≥ 95 % O2) in acute diabetic rat hearts. Normal and one week acute diabetic rats were either exposed to 60 (H60) and 180 (H180) min of hyperoxia or exposed to normal atmospheric air (21 % O2). Then hearts were isolated immediately and subjected to 30 min of regional ischemia followed by 120 min of reperfusion. Infarct size, cardiomyocyte apoptosis, enzymes release and ischemia induced arrhythmias were determined. Heart of diabetic control rats had less infarct size and decreased LDH and CK-MB release compared to normal hearts. 60 and 180 min of hyperoxia reduced myocardial infarct size and enzymes release in normal hearts. 180 min of hyperoxia also decreased cardiomyocytes apoptosis in normal state. On the other hand, protective values of hyperoxia were not significantly different in diabetic hearts. Moreover, hyperoxia reduced severity of ventricular arrhythmias in normal rat hearts whereas; it did not confer any additional antiarrhythmic protection in diabetic hearts. These findings suggest that diabetic hearts are less susceptible to ischemia-induced arrhythmias and infarction. Hyperoxia greatly protects rat hearts against I/R injury in normal hearts, however, it could not provide added cardioprotective effects in acute phase of diabetes.

  4. Cardiac Extracellular Vesicles in Normal and Infarcted Heart

    PubMed Central

    Chistiakov, Dimitry A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2016-01-01

    Heart is a complex assembly of many cell types constituting myocardium, endocardium and epicardium that intensively communicate to each other in order to maintain the proper cardiac function. There are many types of intercellular intracardiac signals, with a prominent role of extracellular vesicles (EVs), such as exosomes and microvesicles, for long-distant delivering of complex messages. Cardiomyocytes release EVs, whose content could significantly vary depending on the stimulus. In stress, such as hypoxia, inflammation or injury, cardiomyocytes increase secretion of EVs. In hypoxic conditions, cardiac EVs are enriched with angiogenic and prosurvival factors. In acute myocardial infarction (AMI), damaged cardiac muscle cells produce EVs with increased content of angiogenic, anti-apoptotic, mitogenic and growth factors in order to induce repair and healing of the infarcted myocardium. Exosomal microRNAs play a central role in cardiac regeneration. In AMI, circulating cardiac EVs abundantly contain cardiac-specific miRNAs that serve as indicators of cardiac damage and have a big diagnostic potential as AMI biomarkers. Cardioprotective and regenerative properties of exosomes derived from cardiac and non-cardiac stem/progenitor cells are very helpful to be used in cell-free cardiotherapy and regeneration of post-infarct myocardium. PMID:26742038

  5. Acute Myocardial Infarction Quality of Care: The Strong Heart Study

    PubMed Central

    Best, Lyle G.; Butt, Amir; Conroy, Britt; Devereux, Richard B.; Galloway, James M.; Jolly, Stacey; Lee, Elisa T.; Silverman, Angela; Yeh, Jeun-Liang; Welty, Thomas K.; Kedan, Ilan

    2014-01-01

    Objectives Evaluate the quality of care provided patients with acute myocardial infarction and compare with similar national and regional data. Design Case series. Setting The Strong Heart Study has extensive population-based data related to cardiovascular events among American Indians living in three rural regions of the United States. Participants Acute myocardial infarction cases (72) occurring between 1/1/2001 and 12/31/2006 were identified from a cohort of 4549 participants. Outcome measures The proportion of cases that were provided standard quality of care therapy, as defined by the Healthcare Financing Administration and other national organizations. Results The provision of quality services, such as administration of aspirin on admission and at discharge, reperfusion therapy within 24 hours, prescription of beta blocker medication at discharge, and smoking cessation counseling were found to be 94%, 91%, 92%, 86% and 71%, respectively. The unadjusted, 30 day mortality rate was 17%. Conclusion Despite considerable challenges posed by geographic isolation and small facilities, process measures of the quality of acute myocardial infarction care for participants in this American Indian cohort were comparable to that reported for Medicare beneficiaries nationally and within the resident states of this cohort. PMID:21942161

  6. PDE5 inhibitors protect against post-infarction heart failure.

    PubMed

    Li, Na; Yuan, Yuan; Li, Shuang; Zeng, Cao; Yu, Wenjun; Shen, Mingzhi; Zhang, Rongqing; Li, Congye; Zhang, Yingmei; Wang, Haichang

    2016-01-01

    Heart failure (HF) is one of the main causes for cardiovascular morbidity and mortality. This study was designed to examine the effect of PDE-5 inhibition on cardiac geometry, function and apoptosis in post-infarct HF. Our data revealed that treatment of the PDE-5 inhibitor sildenafil, beginning 3 days after left anterior descending coronary artery ligation, attenuated LV remodeling, cardiac dysfunction, cardiomyocyte apoptosis and mitochondrial anomalies including ATP production, mitochondrial respiratory defects, decline of mitochondrial membrane potential (MMP) and compromised mitochondrial ultrastructure. Sildenafil partially ameliorated the downregulation of Sirt3 protein and acetylation of PGC-1alpha in peri-infarct myocardial regions. In cultured neonatal mouse ventricular myocytes subjected to hypoxia for 24 hrs, sildenafil suppressed apoptosis, promoted ATP production and elevated MMP, along with the increased Sirt3 protein expression and decreased PGC-1alpha acetylation. Interestingly, knock down of Sirt3 attenuated or nullified sildenafil-offered beneficial effects. Our findings demonstrated that sildenafil exerts its cardioprotective effect against post-infarction injury by improving mitochondrial ultrastructure and function via the Sirt3/PGC-1alpha pathway. This observation should shed some lights towards application of sildenafil in energy-related cardiovascular diseases. PMID:27100500

  7. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    SciTech Connect

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice; Washko, Daniel; Takagawa, Junya; Ye, Jianqin; Grossman, William; Su Hua

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.

  8. Improved survival with simendan after experimental myocardial infarction in rats.

    PubMed

    Levijoki, J; Pollesello, P; Kaheinen, P; Haikala, H

    2001-05-11

    This study compared the effects of simendan, a calcium sensitizer, with those of milrinone and enalapril on survival of rats with healed myocardial infarction. Seven days after ligation-induced myocardial infarction, the rats were randomized to control, milrinone, enalapril, or simendan groups. All compounds were administered via the drinking water for 312 days, at which time there was 80% mortality in the control group--the study's primary endpoint. The infarct sizes were similar across all groups. At endpoint, the mortality rates were: 63% (milrinone), 56% (enalapril) and 53% (simendan); the risk reductions were 25% (P = 0.04 vs. control) and 28% (P = 0.02 vs. control) with enalapril and simendan, respectively. Milrinone had no statistically significant effect on the survival rate. These findings suggest that, like enalapril, simendan improved survival in rats with healed myocardial infarction. PMID:11426847

  9. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation in Hearts with Post-Infarct LV Remodeling

    PubMed Central

    Chen, Yong; Ye, Lei; Zhong, Jia; Li, Xin; Yan, Chen; Chandler, Margaret P.; Calvin, Steve; Xiao, Feng; Negia, Mesfin; Low, Walter C.; Zhang, Jianyi; Yu, Xin

    2015-01-01

    Cellular therapy for myocardial repair has been one of the most intensely investigated interventional strategies for acute myocardium infarction. Although the therapeutic potential of stem cells has been demonstrated in various studies, the underlying mechanisms for such improvement are poorly understood. In the present study, we investigated the long-term effects of stem cell therapy on both myocardial fiber organization and regional contractile function using a rat model of post-infarct remodeling. Human non-hematopoietic umbilical cord blood stem cells (nh-UCBSCs) were administered via tail vein to rats 2 days after infarct surgery. Animals were maintained without immunosuppressive therapy. In vivo and ex vivo MR imaging was performed on infarct hearts ten months after cell transplantation. Compared to the age-matched rats exposed to the identical surgery, both global and regional cardiac function of the nh-UCBSC-treated hearts, such as ejection fraction, ventricular strain and torsion, were significantly improved. More importantly, the treated hearts exhibited preserved fiber orientation and water diffusivities that were similar to those in sham-operated control hearts. These data provide the first evidence that nh-UCBSC treatment may prevent/delay untoward structural remodeling in post-infarct hearts, which supports the improved LV function observed in vivo in the absence of immunosuppression, suggesting a beneficial paracrine effect that occurred with the cellular therapy. PMID:24332083

  10. Photoacoustic tomography of ex vivo mouse hearts with myocardial infarction

    NASA Astrophysics Data System (ADS)

    Holotta, Markus; Grossauer, Harald; Kremser, Christian; Torbica, Pavle; Völkl, Jakob; Degenhart, Gerald; Esterhammer, Regina; Nuster, Robert; Paltauf, Günther; Jaschke, Werner

    2011-03-01

    In the present study, we evaluated the applicability of ex vivo photoacoustic imaging (PAI) on small animal organs. We used photoacoustic tomography (PAT) to visualize infarcted areas within murine hearts and compared these data to other imaging techniques [magnetic resonance imaging (MRI), micro-computed tomography] and histological slices. In order to induce ischemia, an in vivo ligation of the left anterior descending artery was performed on nine wild-type mice. After varying survival periods, the hearts were excised and fixed in formaldehyde. Samples were illuminated with nanosecond laser pulses delivered by a Nd:YAG pumped optical parametric oscillator. Ultrasound detection was achieved using a Mach-Zehnder interferometer (MZI) working as an integrating line detector. The voxel data were computed using a Fourier-domain based reconstruction algorithm, followed by inverse Radon transforms. The results clearly showed the capability of PAI to visualize myocardial infarction and to produce three-dimensional images with a spatial resolution of approximately 120 μm. Regions of affected muscle tissue in PAI corresponded well with the results of MRI and histology. Photoacoustic tomography utilizing a MZI for ultrasound detection allows for imaging of small tissue samples. Due to its high spatial resolution, good soft tissue contrast and comparatively low cost, PAT offers great potentials for imaging.

  11. Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart.

    PubMed

    Savi, Monia; Bocchi, Leonardo; Rossi, Stefano; Frati, Caterina; Graiani, Gallia; Lagrasta, Costanza; Miragoli, Michele; Di Pasquale, Elisa; Stirparo, Giuliano G; Mastrototaro, Giuseppina; Urbanek, Konrad; De Angelis, Antonella; Macchi, Emilio; Stilli, Donatella; Quaini, Federico; Musso, Ezio

    2016-06-01

    c-Kit(pos) cardiac progenitor cells (CPCs) represent a successful approach in healing the infarcted heart and rescuing its mechanical function, but electrophysiological consequences are uncertain. CPC mobilization promoted by hepatocyte growth factor (HGF) and IGF-1 improved electrogenesis in myocardial infarction (MI). We hypothesized that locally delivered CPCs supplemented with HGF + IGF-1 (GFs) can concur in ameliorating electrical stability of the regenerated heart. Adult male Wistar rats (139 rats) with 4-wk-old MI or sham conditions were randomized to receive intramyocardial injection of GFs, CPCs, CPCs + GFs, or vehicle (V). Enhanced green fluorescent protein-tagged CPCs were used for cell tracking. Vulnerability to stress-induced arrhythmia was assessed by telemetry-ECG. Basic cardiac electrophysiological properties were examined by epicardial multiple-lead recording. Hemodynamic function was measured invasively. Hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. Compared with V and at variance with individual CPCs, CPCs + GFs approximately halved arrhythmias in all animals, restoring cardiac anisotropy toward sham values. GFs alone reduced arrhythmias by less than CPCs + GFs, prolonging ventricular refractoriness without affecting conduction velocity. Concomitantly, CPCs + GFs reactivated the expression levels of Connexin-43 and Connexin-40 as well as channel proteins of key depolarizing and repolarizing ion currents differently than sole GFs. Mechanical function and anatomical remodeling were equally improved by all regenerative treatments, thus exhibiting a divergent behavior relative to electrical aspects. Conclusively, we provided evidence of distinctive antiarrhythmic action of locally injected GF-supplemented CPCs, likely attributable to retrieval of Connexin-43, Connexin-40, and Cav1.2 expression, favoring intercellular coupling and spread of excitation in mended heart. PMID:26993221

  12. Autophagy Signaling in Skeletal Muscle of Infarcted Rats

    PubMed Central

    Jannig, Paulo R.; Moreira, Jose B. N.; Bechara, Luiz R. G.; Bozi, Luiz H. M.; Bacurau, Aline V.; Monteiro, Alex W. A.; Dourado, Paulo M.; Wisløff, Ulrik; Brum, Patricia C.

    2014-01-01

    Background Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats. Methods/Principal Findings Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats. Conclusions Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics. PMID:24427319

  13. Effects of dipeptidyl peptidase-4 inhibitor in insulin-resistant rats with myocardial infarction.

    PubMed

    Apaijai, Nattayaporn; Inthachai, Tharnwimol; Lekawanvijit, Suree; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-06-01

    Adverse cardiac remodeling after myocardial infarction (MI) leads to progressive heart failure. Obese-insulin resistance increases risks of MI and heart failure. Although dipeptidyl peptidase-4 (DPP4) inhibitor is known to exert cardioprotection, its effects on adverse remodeling after MI in obese-insulin-resistant rats are unclear. We hypothesized that DPP4 inhibitor reduces adverse left ventricular (LV) remodeling and LV dysfunction in obese-insulin-resistant rats with MI. Rats were fed either normal diet (ND) or high-fat diet (HFD) for 12 weeks to induce obese-insulin resistance, followed by left anterior descending coronary artery ligation to induce MI. Then, rats in each dietary group were divided into five subgroups to receive vehicle, enalapril (10mg/kg/day), metformin (30mg/kg/day), DPP4 inhibitor vildagliptin (3mg/kg/day), or combined metformin and vildagliptin for 8 weeks. Heart rate variability (HRV), LV function, pathological and biochemical studies for LV remodeling, and cardiomyocyte apoptosis were determined. Obese-insulin-resistant rats had severe insulin resistance and LV dysfunction. HFD rats had a higher mortality rate than ND rats, and all treatments reduced the mortality rate in obese-insulin-resistant rats. Although all drugs improved insulin resistance, HRV, LV function as well as reduced cardiac hypertrophy and fibrosis, vildagliptin effectively reduced cardiomyocyte cross-sectional areas more than enalapril and was related to markedly decreased ERK1/2 phosphorylation. In ND rats with MI, metformin neither improved LV ejection fraction nor reduced cardiac fibrosis. The infarct size and transforming growth factor-β expression were not different among groups. In obese-insulin-resistant rats with chronic MI, DPP4 inhibitor vildagliptin exerts better cardioprotection than enalapril in attenuating adverse LV remodeling. PMID:27044778

  14. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart.

    PubMed

    Roche, Ellen T; Hastings, Conn L; Lewin, Sarah A; Shvartsman, Dmitry E; Brudno, Yevgeny; Vasilyev, Nikolay V; O'Brien, Fergal J; Walsh, Conor J; Duffy, Garry P; Mooney, David J

    2014-08-01

    Cell delivery to the infarcted heart has emerged as a promising therapy, but is limited by very low acute retention and engraftment of cells. The objective of this study was to compare a panel of biomaterials to evaluate if acute retention can be improved with a biomaterial carrier. Cells were quantified post-implantation in a rat myocardial infarct model in five groups (n = 7-8); saline injection (current clinical standard), two injectable hydrogels (alginate, chitosan/β-glycerophosphate (chitosan/ß-GP)) and two epicardial patches (alginate, collagen). Human mesenchymal stem cells (hMSCs) were delivered to the infarct border zone with each biomaterial. At 24 h, retained cells were quantified by fluorescence. All biomaterials produced superior fluorescence to saline control, with approximately 8- and 14-fold increases with alginate and chitosan/β-GP injectables, and 47 and 59-fold increases achieved with collagen and alginate patches, respectively. Immunohistochemical analysis qualitatively confirmed these findings. All four biomaterials retained 50-60% of cells that were present immediately following transplantation, compared to 10% for the saline control. In conclusion, all four biomaterials were demonstrated to more efficiently deliver and retain cells when compared to a saline control. Biomaterial-based delivery approaches show promise for future development of efficient in vivo delivery techniques. PMID:24862441

  15. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart

    PubMed Central

    Lewin, Sarah A.; Shvartsman, Dmitry; Brudno, Yevgeny; Vasilyev, Nikolay V.; O'Brien, Fergal J.; Walsh, Conor J.; Duffy, Garry P.; Mooney, David J.

    2014-01-01

    Cell delivery to the infarcted heart has emerged as a promising therapy, but is limited by very low acute retention and engraftment of cells. The objective of the study was to compare a panel of biomaterials to evaluate if acute retention can be improved with a biomaterial carrier. Cells were quantified post-implantation in a rat myocardial infarct model in five groups (n=7–8); saline injection (current clinical standard), two injectable hydrogels (alginate, chitosan/β-glycerophosphate) and two epicardial patches (alginate, collagen). Human mesenchymal stem cells (hMSCs) were delivered to the infarct border zone with each biomaterial. At 24 hours, retained cells were quantified by fluorescence. All biomaterials had superior fluorescence to saline control, with 8 and 14-fold increases with alginate and chitosan/β-GP injectables, and 47 and 59-fold increases achieved with collagen and alginate patches, respectively. Immunohistochemical analysis qualitatively confirmed these findings. All four biomaterials retained 50–60% of cells that were present immediately following transplantation, compared to 10% for the saline control. In conclusion, all four injectable hydrogels and epicardial patches were demonstrated to more efficiently deliver and retain cells when compared to a saline control. Biomaterial-based delivery approaches show promise for future development of efficient in vivo delivery techniques. PMID:24862441

  16. Sundarban Honey Confers Protection against Isoproterenol-Induced Myocardial Infarction in Wistar Rats

    PubMed Central

    Karim, Nurul; Hossain, Md. Sabir; Alam, Nadia

    2016-01-01

    The present study was designed to investigate the cardioprotective effects of Sundarban honey (SH) in rats with isoproterenol- (ISO-) induced myocardial infarction. Adult male Wistar Albino rats were pretreated with Sundarban honey (5 g/kg) daily for a period of 6 weeks. After the treatment period, ISO (85 mg/kg) was subcutaneously injected into the rats at 24 h intervals for 2 days. ISO-induced myocardial damage was indicated by increased serum cardiac specific troponin I levels and cardiac marker enzyme activities including creatine kinase-MB, lactate dehydrogenase, aspartate transaminase, and alanine transaminase. Significant increases in serum total cholesterol, triglycerides, and low-density lipoprotein-cholesterol levels were also observed, along with a reduction in the serum high-density lipoprotein-cholesterol level. In addition to these diagnostic markers, the levels of lipid peroxide products were significantly increased. The activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase were significantly decreased in the hearts after ISO-induced myocardial infarction. However, pretreatment of ischemic rats with Sundarban honey brought the biochemical parameters to near normalcy, indicating the protective effect of Sundarban honey against ISO-induced ischemia in rats. Histopathological findings of the heart tissues further confirmed the biochemical findings, indicating that Sundarban honey confers protection against ISO-induced oxidative stress in the myocardium. PMID:27294126

  17. Sundarban Honey Confers Protection against Isoproterenol-Induced Myocardial Infarction in Wistar Rats.

    PubMed

    Afroz, Rizwana; Tanvir, E M; Karim, Nurul; Hossain, Md Sabir; Alam, Nadia; Gan, Siew Hua; Khalil, Md Ibrahim

    2016-01-01

    The present study was designed to investigate the cardioprotective effects of Sundarban honey (SH) in rats with isoproterenol- (ISO-) induced myocardial infarction. Adult male Wistar Albino rats were pretreated with Sundarban honey (5 g/kg) daily for a period of 6 weeks. After the treatment period, ISO (85 mg/kg) was subcutaneously injected into the rats at 24 h intervals for 2 days. ISO-induced myocardial damage was indicated by increased serum cardiac specific troponin I levels and cardiac marker enzyme activities including creatine kinase-MB, lactate dehydrogenase, aspartate transaminase, and alanine transaminase. Significant increases in serum total cholesterol, triglycerides, and low-density lipoprotein-cholesterol levels were also observed, along with a reduction in the serum high-density lipoprotein-cholesterol level. In addition to these diagnostic markers, the levels of lipid peroxide products were significantly increased. The activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase were significantly decreased in the hearts after ISO-induced myocardial infarction. However, pretreatment of ischemic rats with Sundarban honey brought the biochemical parameters to near normalcy, indicating the protective effect of Sundarban honey against ISO-induced ischemia in rats. Histopathological findings of the heart tissues further confirmed the biochemical findings, indicating that Sundarban honey confers protection against ISO-induced oxidative stress in the myocardium. PMID:27294126

  18. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction.

    PubMed

    Zouggari, Yasmine; Ait-Oufella, Hafid; Bonnin, Philippe; Simon, Tabassome; Sage, Andrew P; Guérin, Coralie; Vilar, José; Caligiuri, Giuseppina; Tsiantoulas, Dimitrios; Laurans, Ludivine; Dumeau, Edouard; Kotti, Salma; Bruneval, Patrick; Charo, Israel F; Binder, Christoph J; Danchin, Nicolas; Tedgui, Alain; Tedder, Thomas F; Silvestre, Jean-Sébastien; Mallat, Ziad

    2013-10-01

    Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6C(hi) monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell-selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction. PMID:24037091

  19. Protective Effects of Repetitive Injections of Radiographic Contrast Media on the Subsequent Tolerance to Ischemia in the Isolated Rat Heart

    SciTech Connect

    Falck, Geir; Bruvold, Morten; Schjott, Jan; Jynge, Per

    2000-11-15

    Purpose: Despite detailed knowledge of the effects of X-ray contrast media on cardiac function, no studies have examined the effect of contrast media injections on the subsequent tolerance to ischemia in the heart.Methods: Isolated perfused rat hearts were exposed to repetitive injections of iohexol, iodixanol, or ioxaglate before 30 min of global ischemia and 120 min of reperfusion. These groups were compared with control (no pretreatment) and ischemic preconditioning known to reduce infarct size. Physiologic variables and infarct size were measured. Results: Pretreatment with iodixanol reduced infarct size significantly compared with control and thus afforded protection against ischemia. Injections with iohexol and ioxaglate reduced infarct size, although not significantly, compared with control.Conclusion: Pretreatment of the isolated rat heart with commonly used contrast media enhances the cardiac tolerance to subsequent ischemia. The mechanism behind this protective effect could not be determined, but could involve stretching of the heart and/or generation of nitric oxide.

  20. Increased ANF secretion after volume expansion is preserved in rats with heart failure

    SciTech Connect

    Chien, Young Wei; Barbee, R.W.; MacPhee, A.L.; Frohlich, E.D.; Trippodo, N.C. )

    1988-02-01

    To examine whether the failing heart has reached a maximal capacity to increase plasma atrial natriuretic factor (ANF) concentration, the change in plasma immunoreactive ANF, measured by radioimmunoassay level due to acute blood volume expansion was determined in conscious rats with chronic heart failure. Varying degrees of myocardial infarction and thus heart failure were induced by coronary artery ligation 3 wk before study. Compared with controls, infarcted rats had decreases in mean arterial pressure cardiac index, renal blood flow, and peak left ventricle-developed pressure after aortic occlusion, and increases in central venous pressure, left ventricular end-diastolic pressure, total peripheral resistance, plasma ANF level. Plasma ANF was correlated with infarct size, cardiac filling pressures, and left ventricle pressure-generating ability. At 5 min after 25% blood volume expansion, plasma ANF in rats with heart failure increased by 2,281 {plus minus} 345 pg/ml; the magnitude of the changes in circulating ANF and hemodynamic measurements was similar in controls. The results suggest that plasma ANF level can be used as a reliable index of the severity of heart failure, and that the capacity to increase plasma ANF concentration after acute volume expansion is preserved in rats with heart failure. There was no evidence of a relative deficiency of circulating ANF in this model of heart failure.

  1. Effects of histidine and vitamin C on isoproterenol-induced acute myocardial infarction in rats

    PubMed Central

    Moradi-Arzeloo, Masoumeh; Farshid, Amir Abbas; Tamaddonfard, Esmaeal; Asri-Rezaei, Siamak

    2016-01-01

    In the present study, we investigated the effects of histidine and vitamin C (alone or in combination) treatments against isoproterenol (a β-adrenergic receptor agonist)-induced acute myocardial infarction in rats. We used propranolol (a β-adrenergic receptor blocker) to compare the results. Rats were given intraperitoneal injections of histidine (40 mg kg-1) and vitamin C (40 mg kg-1) alone and combined daily for 21 days. Propranolol (10 mg kg-1) was orally administered daily for 10 days (from day 11 to day 21). Myocardial infarction was induced by subcutaneous injections of 150 mg kg-1 of isoproterenol at an interval of 24 hr on days 20 and 21. Blood and tissue samples were taken for histopathological and biochemical evaluations following electrocardiography recording on day 21. Isoproterenol elevated ST segment, increased heart weight, heart rate, serum activities of aspartate transaminase, lactate dehydrogenase, creatine kinase-MB and heart tissue content of malondialdehyde, and decreased R wave amplitude and superoxide dismutase and catalase activities of heart tissue. Necrosis, edema and inflammatory cells infiltration were observed in myocardial tissue sections. Our results indicated that histidine and vitamin C alone, and especially in combination prevent isoproterenol-induced cardiotoxicity and have similar protective effects with propranolol. Cardioprotective effects of histidine and vitamin C may be associated with their ability to reduce free radical-induced toxic effects. PMID:27226887

  2. Effects of histidine and vitamin C on isoproterenol-induced acute myocardial infarction in rats.

    PubMed

    Moradi-Arzeloo, Masoumeh; Farshid, Amir Abbas; Tamaddonfard, Esmaeal; Asri-Rezaei, Siamak

    2016-01-01

    In the present study, we investigated the effects of histidine and vitamin C (alone or in combination) treatments against isoproterenol (a β-adrenergic receptor agonist)-induced acute myocardial infarction in rats. We used propranolol (a β-adrenergic receptor blocker) to compare the results. Rats were given intraperitoneal injections of histidine (40 mg kg(-1)) and vitamin C (40 mg kg(-1)) alone and combined daily for 21 days. Propranolol (10 mg kg(-1)) was orally administered daily for 10 days (from day 11 to day 21). Myocardial infarction was induced by subcutaneous injections of 150 mg kg(-1) of isoproterenol at an interval of 24 hr on days 20 and 21. Blood and tissue samples were taken for histopathological and biochemical evaluations following electrocardiography recording on day 21. Isoproterenol elevated ST segment, increased heart weight, heart rate, serum activities of aspartate transaminase, lactate dehydrogenase, creatine kinase-MB and heart tissue content of malondialdehyde, and decreased R wave amplitude and superoxide dismutase and catalase activities of heart tissue. Necrosis, edema and inflammatory cells infiltration were observed in myocardial tissue sections. Our results indicated that histidine and vitamin C alone, and especially in combination prevent isoproterenol-induced cardiotoxicity and have similar protective effects with propranolol. Cardioprotective effects of histidine and vitamin C may be associated with their ability to reduce free radical-induced toxic effects. PMID:27226887

  3. A model of chronic heart failure in spontaneous hypertensive rats (SHR).

    PubMed

    Itter, G; Jung, W; Juretschke, P; Schoelkens, B A; Linz, W

    2004-04-01

    Common models of chronic heart failure (CHF) do not always result in parameters and symptoms that can be extrapolated to the clinical situation of patients with end-stage heart failure. The aim of this study was to establish and validate a new model of CHF in the rat. CHF was induced in Wistar Kyoto (WKY/NHsd) and spontaneously hypertensive (SHR/NHsd) rats by creating a permanent (8-week) occlusion of the left coronary artery 2 mm distal to the origin from the aorta by a modified technique. This resulted in a large infarction of the free left ventricular wall. The focus of attention was the validation of the geometric properties of the left ventricle and its contractility. The validation of the geometric properties of the left ventricle was done by a non-invasive magnetic resonance imaging (MRI) technique and by planimetry (stereology). Cardiodynamics (e.g. contractility) were evaluated in the isolated 'working heart' model. We were able to establish a new and predictive model of heart failure in the spontaneously hypertensive rat 8 weeks after coronary artery ligation. At this time point, the WKY rat did not show any symptoms of CHF. The model represents characteristic parameters and symptoms that can be extrapolated to the clinical situation of patients with end-stage heart failure (NYHA III-IV). Upon inspection, severe clinical symptoms of congestive heart failure were prominent, such as dyspnoea, subcutaneous oedema, pale-bluish limbs and impaired motion. Non-invasive sequential measurements by NMR techniques showed lung oedema, hydrothorax, large dilated left and right ventricular chambers and hypertrophy of the septum. The infarcted animals showed a reduced heart power, diminished contractility and enhanced heart work, much more so in the SHR/NHsd rat than in the WKY/NHsd rat. Furthermore the infarcted animals showed enhanced levels of hydroxyproline/proline ratios, again much more so in the SHR/NHsd rat than in the WKY/NHsd rat. PMID:15070453

  4. When heart goes “BOOM” to fast. Heart rate greater than 80 as mortality predictor in acute myocardial infarction

    PubMed Central

    Davidovic, Goran; Iric-Cupic, Violeta; Milanov, Srdjan; Dimitijevic, Aleksandra; Petrovic-Janicijevic, Mirjana

    2013-01-01

    Many prospective studies established association between high heart rate and increased cardiovascular morbidity and mortality, independently of other risk factors. Heart rate over 80 beats per minute more often leads to atherosclerotic plaque disruption, the main step in developing acute coronary syndrome. Purpose was to investigate the incidence of higher heart rate levels in patients with anterior wall acute myocardial infarction with ST-segment elevation and the influence of heart rate on mortality. Research included 140 patients with anterior wall acute myocardial infarction with ST-segment elevation treated in Coronary Unit, Clinical Center Kragujevac in the period from January 2001-June 2006. Heart rate was calculated as the mean value of baseline and heart rate in the first 30 minutes after admission. Other risk factors were also followed to determine their connection with elevated heart rate. Results showed that the majority of patients survived (over 70%). In a total number of patients, more than 75% had a heart rate levels greater than 80 beats per minute. There was a significant difference in heart rate on addmision between survivors and patients who died, with a greater levels in patients with fatal outcome. Both, univariate and multivariate regression analysis singled out heart rate greater than 80 beats per minute as independent mortality predictor in these patients. Heart rate greater than 80 beats per minute is a major, independent risk factor for morbidity and important predictor of mortality in patients with acute myocardial infarction. PMID:23991346

  5. GLUTAMINE CYCLING IN ISOLATED WORKING RAT HEART

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To what extent does glutamine turnover keep pace with oxidative metabolism in the rat heart? To address this question, the following substrates were presented to the isolated, working rat heart: (1) glucose (5 mM), insulin (40 mU/ml) and [2-13C]acetate (5mM) (high workload, n= 5); (2) pyruvate (2....

  6. PET/MRI in the infarcted mouse heart with the Cambridge split magnet

    NASA Astrophysics Data System (ADS)

    Buonincontri, Guido; Sawiak, Stephen J.; Methner, Carmen; Krieg, Thomas; Hawkes, Robert C.; Adrian Carpenter, T.

    2013-02-01

    Chronic heart failure, as a result of acute myocardial infarction, is a leading cause of death worldwide. Combining diagnostic imaging modalities may aid the direct assessment of experimental treatments targeting heart failure in vivo. Here we present preliminary data using the Cambridge combined PET/MRI imaging system in a mouse model of acute myocardial infarction. The split-magnet design can deliver uncompromised MRI and PET performance, for better assessment of disease and treatment in a preclinical environment.

  7. Coconut Haustorium Maintains Cardiac Integrity and Alleviates Oxidative Stress in Rats Subjected to Isoproterenol-induced Myocardial Infarction

    PubMed Central

    Chikku, A. M.; Rajamohan, T.

    2012-01-01

    The present study evaluates the effect of aqueous extract of coconut haustorium on isoproterenol-induced myocardial infarction in Sprague Dawley rats. Rats were pretreated with aqueous extract of coconut haustorium (40 mg/100 g) orally for 45 days. After pretreatment, myocardial infarction was induced by injecting isoproterenol subcutaneously (20 mg/100 g body weight) twice at an interval of 24 h. Activity of marker enzymes like lactate dehydrogenase, creatinine kinase-MB, aspartate transaminase and alanine transaminase were increased in the serum and decreased in the heart of isoproterenol treated rats indicating cardiac damage. These changes were significantly reduced in haustorium pretreated rats. Moreover, an increase in the activities of antioxidant enzymes and decrease in the levels of peroxidation products were observed in the myocardium of coconut haustorium pretreated rats. Histopathology of the heart of these rats showed almost normal tissue morphology. From these results, it is clear that aqueous extract of coconut haustorium possess significant cardioprotective and antioxidant properties during isoproterenol-induced myocardial infarction in rats. PMID:23716867

  8. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats

    PubMed Central

    Fernandes, S; Naumova, AV; Zhu, WZ; Laflamme, MA; Gold, J; Murry, CE

    2010-01-01

    Background Previous studies indicated that, in an acute myocardial infarction model, human embryonic stem cell-derived cardiomyocytes (hESC-CM) injected with a pro-survival cocktail (PSC) can preserve contractile function. Because patients with established heart failure may also benefit from cell transplantation, we evaluated the physiological effects of hESC-CM transplanted into a chronic model of myocardial infarction. Methods and Results Intramyocardial injection of hESC-CM with PSC was performed in nude rats at 1 month following ischemia-reperfusion. The left ventricular function of hESC-CM injected rats was evaluated at 1, 2 and 3 months after the cell injection procedure and was compared to 3 control groups (rats injected with serum-free media, PSC-only, or non-cardiac human cells in PSC). Histology at 3 months revealed that human cardiomyocytes survive, develop increased sarcomere organization and are still proliferating. Despite successful engraftment, both echocardiography and MRI analyses showed no significant difference in left ventricular structure or function between these 4 groups at any time point of the study, suggesting that human cardiomyocytes do not affect cardiac remodeling in a rat model of chronic myocardial infarction. Conclusion When injected into a chronic infarct model, hESC-CM can engraft, survive and form grafts with striated cardiomyocytes at least as well as was previously observed in an acute myocardial infarction model. However, although hESC-CM transplantation can attenuate the progression of heart failure in an acute model, the same hESC-CM injection protocol is insufficient to restore heart function or to alter adverse remodeling of a chronic myocardial infarction model. PMID:20854826

  9. Increase in cholinergic modulation with pyridostigmine induces anti-inflammatory cell recruitment soon after acute myocardial infarction in rats.

    PubMed

    Rocha, Juraci Aparecida; Ribeiro, Susan Pereira; França, Cristiane Miranda; Coelho, Otávio; Alves, Gisele; Lacchini, Silvia; Kallás, Esper Georges; Irigoyen, Maria Cláudia; Consolim-Colombo, Fernanda M

    2016-04-15

    We tested the hypothesis that an increase in the anti-inflammatory cholinergic pathway, when induced by pyridostigmine (PY), may modulate subtypes of lymphocytes (CD4+, CD8+, FOXP3+) and macrophages (M1/M2) soon after myocardial infarction (MI) in rats. Wistar rats, randomly allocated to receive PY (40 mg·kg(-1)·day(-1)) in drinking water or to stay without treatment, were followed for 4 days and then were subjected to ligation of the left coronary artery. The groups-denominated as the pyridostigmine-treated infarcted (IP) and infarcted control (I) groups-were submitted to euthanasia 3 days after MI; the heart was removed for immunohistochemistry, and the peripheral blood and spleen were collected for flow cytometry analysis. Noninfarcted and untreated rats were used as controls (C Group). Echocardiographic measurements were registered on the second day after MI, and heart rate variability was measured on the third day after MI. The infarcted groups had similar MI areas, degrees of systolic dysfunction, blood pressures, and heart rates. Compared with the I Group, the IP Group showed a significant higher parasympathetic modulation and a lower sympathetic modulation, which were associated with a small, but significant, increase in diastolic function. The IP Group showed a significant increase in M2 macrophages and FOXP3(+)cells in the infarcted and peri-infarcted areas, a significantly higher frequency of circulating Treg cells (CD4(+)CD25(+)FOXP3(+)), and a less extreme decrease in conventional T cells (CD25(+)FOXP3(-)) compared with the I Group. Therefore, increasing cholinergic modulation with PY induces greater anti-inflammatory cell recruitment soon after MY in rats. PMID:26791829

  10. Thrombospondin-1 is induced in rat myocardial infarction and its induction is accelerated by ischemia/reperfusion.

    PubMed

    Sezaki, Satoshi; Hirohata, Satoshi; Iwabu, Akihiro; Nakamura, Keigo; Toeda, Kenichi; Miyoshi, Toru; Yamawaki, Hitoshi; Demircan, Kadir; Kusachi, Shozo; Shiratori, Yasushi; Ninomiya, Yoshifumi

    2005-10-01

    Thrombospondin-1 (TSP-1) is a multifunctional, rapid-turnover matricellular protein. Recent studies demonstrated that TSP-1 has a role in regulating inflammatory reactions. Myocardial infarction (MI) is associated with an inflammatory response, ultimately leading to healing and scar formation. In particular, an enhanced inflammatory reaction and a massive accumulation of monocytes/macrophages is seen with reperfusion after MI. To examine the role of TSP-1 in MI, we isolated rat TSP-1 complementary DNA (cDNA) and analyzed the level and distribution of the mRNA expression. In infarcted rat hearts, TSP-1 mRNA increased markedly at 6 and 12 hrs after coronary artery ligation (27.97 +/- 3.40-fold and 22.77 +/- 1.83-fold, respectively, compared with sham-operated hearts). Western blot analysis revealed that TSP-1 protein was transiently induced in the infarcted heart. Using in situ hybridization analysis, TSP-1 mRNA signals were observed in the infiltrating cells at the border area of infarction. We then examined the effect of ischemia/reperfusion (I/R) on TSP-1 mRNA induction in the rats with infarcted hearts. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) demonstrated that I/R enhanced the TSP-1 mRNA expression approximately 4-fold, as compared with the level in the permanently ligated heart. Finally, we examined the effect of TSP-1 on proinflammatory cytokine release in mononuclear cells. The releases of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) from human mononuclear cells were enhanced by TSP-1 in a dose-dependent manner. Thus, the immediate and marked increase of TSP-1 expression suggests that TSP-1 has an inflammatory-associated role in MI. PMID:16179730

  11. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction

    PubMed Central

    Awada, Hassan K.; Johnson, Noah R.; Wang, Yadong

    2015-01-01

    Treatment of ischemia through therapeutic angiogenesis faces significant challenges. Growth factor (GF)-based therapies can be more effective when concerns such as GF spatiotemporal presentation, bioactivity, bioavailability, and localization are addressed. During angiogenesis, vascular endothelial GF (VEGF) is required early to initiate neovessel formation while platelet-derived GF (PDGF-BB) is needed later to stabilize the neovessels. The spatiotemporal delivery of multiple bioactive GFs involved in angiogenesis, in a close mimic to physiological cues, holds great potential to treat ischemic diseases. To achieve sequential release of VEGF and PDGF, we embed VEGF in fibrin gel and PDGF in a heparin-based coacervate that is distributed in the same fibrin gel. In vitro, we show the benefits of this controlled delivery approach on cell proliferation, chemotaxis, and capillary formation. A rat myocardial infarction (MI) model demonstrated the effectiveness of this delivery system in improving cardiac function, ventricular wall thickness, angiogenesis, cardiac muscle survival, and reducing fibrosis and inflammation in the infarct zone compared to saline, empty vehicle, and free GFs. Collectively, our results show that this delivery approach mitigated the injury caused by MI and may serve as a new therapy to treat ischemic hearts pending further examination. PMID:25836592

  12. Efficient Differentiation of Human Induced Pluripotent Stem Cells Generates Cardiac Cells That Provide Protection Following Myocardial Infarction in the Rat

    PubMed Central

    Carr, Carolyn; Yang, Cheng Tao; Stuckey, Daniel J.; Clarke, Kieran; Watt, Suzanne M.

    2012-01-01

    Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers, and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein, we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer, which routinely yielded a mixed population in which over 50% were cardiomyocytes, endothelium, or smooth muscle cells. When differentiating, cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion, we were able to show that human iPS cell-derived cardiac progenitor cells engrafted, differentiated into cardiomyocytes and smooth muscle, and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction, as assessed by magnetic resonance imaging at 10 weeks, such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%, compared to that of control infarcted hearts at 45%±9% (P<0.2). In conclusion, we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart, and reduced remodeling of the heart after ischemic damage. PMID:22182484

  13. Cardiosphere-derived cell sheet primed with hypoxia improves left ventricular function of chronically infarcted heart

    PubMed Central

    Hosoyama, Tohru; Samura, Makoto; Kudo, Tomoaki; Nishimoto, Arata; Ueno, Koji; Murata, Tomoaki; Ohama, Takashi; Sato, Koichi; Mikamo, Akihito; Yoshimura, Koichi; Li, Tao-Sheng; Hamano, Kimikazu

    2015-01-01

    Cardiosphere-derived cells (CDCs) isolated from postnatal heart tissue are a convenient and efficientresource for the treatment of myocardial infarction. However, poor retention of CDCs in infarcted hearts often causes less than ideal therapeutic outcomes. Cell sheet technology has been developed as a means of permitting longer retention of graft cells, and this therapeutic strategy has opened new avenues of cell-based therapy for severe ischemic diseases. However, there is still scope for improvement before this treatment can be routinely applied in clinical settings. In this study, we investigated whether hypoxic preconditioning enhances the therapeutic efficacy of CDC monolayer sheets. To induce hypoxia priming, CDC monolayer sheets were placed in an incubator adjusted to 2% oxygen for 24 hours, and then preconditioned mouse CDC sheets were implanted into the infarcted heart of old myocardial infarction mouse models. Hypoxic preconditioning of CDC sheets remarkably increased the expression of vascular endothelial growth factor through the PI3-kinase/Akt signaling pathway. Implantation of preconditioned CDC sheets improved left ventricular function inchronically infarcted hearts and reduced fibrosis. The therapeutic efficacy of preconditioned CDC sheets was higher than the CDC sheets that were cultured under normaxia condition. These results suggest that hypoxic preconditioning augments the therapeutic angiogenic and anti-fibrotic activity of CDC sheets. A combination of cell sheets and hypoxic preconditioning offers an attractive therapeutic protocol for CDC transplantation into chronically infarcted hearts. PMID:26885271

  14. Cardiosphere-derived cell sheet primed with hypoxia improves left ventricular function of chronically infarcted heart.

    PubMed

    Hosoyama, Tohru; Samura, Makoto; Kudo, Tomoaki; Nishimoto, Arata; Ueno, Koji; Murata, Tomoaki; Ohama, Takashi; Sato, Koichi; Mikamo, Akihito; Yoshimura, Koichi; Li, Tao-Sheng; Hamano, Kimikazu

    2015-01-01

    Cardiosphere-derived cells (CDCs) isolated from postnatal heart tissue are a convenient and efficientresource for the treatment of myocardial infarction. However, poor retention of CDCs in infarcted hearts often causes less than ideal therapeutic outcomes. Cell sheet technology has been developed as a means of permitting longer retention of graft cells, and this therapeutic strategy has opened new avenues of cell-based therapy for severe ischemic diseases. However, there is still scope for improvement before this treatment can be routinely applied in clinical settings. In this study, we investigated whether hypoxic preconditioning enhances the therapeutic efficacy of CDC monolayer sheets. To induce hypoxia priming, CDC monolayer sheets were placed in an incubator adjusted to 2% oxygen for 24 hours, and then preconditioned mouse CDC sheets were implanted into the infarcted heart of old myocardial infarction mouse models. Hypoxic preconditioning of CDC sheets remarkably increased the expression of vascular endothelial growth factor through the PI3-kinase/Akt signaling pathway. Implantation of preconditioned CDC sheets improved left ventricular function inchronically infarcted hearts and reduced fibrosis. The therapeutic efficacy of preconditioned CDC sheets was higher than the CDC sheets that were cultured under normaxia condition. These results suggest that hypoxic preconditioning augments the therapeutic angiogenic and anti-fibrotic activity of CDC sheets. A combination of cell sheets and hypoxic preconditioning offers an attractive therapeutic protocol for CDC transplantation into chronically infarcted hearts. PMID:26885271

  15. Cardioprotective potential of Punica granatum extract in isoproterenol-induced myocardial infarction in Wistar rats

    PubMed Central

    Mohan, Mahalaxmi; Patankar, Pankaj; Ghadi, Prakash; Kasture, Sanjay

    2010-01-01

    Objective: To determine the protective role of Punica granatum L. (Punicaceae) seed juice extract and its butanolic fraction on heart rate, electrocardiographic patterns, vascular reactivity to catecholamines, cardiac marker enzymes, antioxidant enzymes together with morphologic and histopathological changes in isoproterenol-induced myocardial infarction in male Wistar rats. Materials and Methods: The effects of Punica granatum seed juice extract (100 mg/kg, p.o. and 300 mg/kg, p.o.) and butanolic fraction of Punica granatum seed juice extract (100 mg/kg., p.o.) on cardiac parameters were studied. Isoproterenol hydrochloride was used to induce myocardial infarction in Wistar rats. At the end of the experiment, heart rate, ECG, pressure rate index and cardiac marker enzyme levels were assessed. Results: Rats treated with isoproterenol (85 mg/kg, administered subcutaneously twice at an interval of 24 h) showed a significant increase in heart rate, ST elevation in ECG, pressure rate index and a significant increase in the levels of cardiac marker enzymes- lactate dehydrogenase, and creatine kinase in serum. Isoproterenol significantly reduced superoxide dismutase and catalase activity and increased vascular reactivity to various catecholamines. Pretreatment with PJ (100 mg/kg, p.o. and 300 mg/kg, p.o.) and B-PJ (100 mg/kg., p.o.) for a period of 21 days significantly inhibited the effects of ISO on heart rate, PRI, ECG patterns, levels of LDH, CK, SOD, CAT, and vascular reactivity changes. Treatment with PJ (100 mg/kg and 300 mg/kg) and B-PJ (100 mg/kg., p.o.) alone did not alter any of the parameters as compared to vehicle-treated Wistar rats. Punica granatum-treated animals showed a lesser degree of cellular infiltration in histopathological studies. Conclusion: Punica granatum ameliorates cardiotoxic effects of isoproterenol and may be of value in the treatment of MI. PMID:21808588

  16. Number of Coronary Heart Disease Risk Factors and Mortality in Patients With First Myocardial Infarction

    PubMed Central

    Canto, John G.; Kiefe, Catarina I.; Rogers, William J.; Peterson, Eric D.; Frederick, Paul D.; French, William J.; Gibson, C. Michael; Pollack, Charles V.; Ornato, Joseph P.; Zalenski, Robert J.; Penney, Jan; Tiefenbrunn, Alan J.; Greenland, Philip

    2013-01-01

    Context Few studies have examined the association between the number of coronary heart disease risk factors and outcomes of acute myocardial infarction in community practice. Objective To determine the association between the number of coronary heart disease risk factors in patients with first myocardial infarction and hospital mortality. Design Observational study from the National Registry of Myocardial Infarction, 1994-2006. Patients We examined the presence and absence of 5 major traditional coronary heart disease risk factors (hypertension, smoking, dyslipidemia, diabetes, and family history of coronary heart disease) and hospital mortality among 542 008 patients with first myocardial infarction and without prior cardiovascular disease. Main Outcome Measure All-cause in-hospital mortality. Results A majority (85.6%) of patients who presented with initial myocardial infarction had at least 1 of the 5 coronary heart disease risk factors, and 14.4% had none of the 5 risk factors. Age varied inversely with the number of coronary heart disease risk factors, from a mean age of 71.5 years with 0 risk factors to 56.7 years with 5 risk factors (P for trend <.001). The total number of in-hospital deaths for all causes was 50 788. Unadjusted in-hospital mortality rates were 14.9%, 10.9%, 7.9%, 5.3%, 4.2%, and 3.6% for patients with 0, 1, 2, 3, 4, and 5 risk factors, respectively. After adjusting for age and other clinical factors, there was an inverse association between the number of coronary heart disease risk factors and hospital mortality adjusted odds ratio (1.54; 95% CI, 1.23-1.94) among individuals with 0 vs 5 risk factors. This association was consistent among several age strata and important patient subgroups. Conclusion Among patients with incident acute myocardial infarction without prior cardiovascular disease, in-hospital mortality was inversely related to the number of coronary heart disease risk factors. PMID:22089719

  17. In Vivo Detection of Stem Cells Grafted in Infarcted Rat Myocardium

    PubMed Central

    Zhou, Rong; Thomas, Daniel H.; Qiao, Hui; Bal, Harshali S.; Choi, Seok-Rye; Alavi, Abass; Ferrari, Victor A.; Kung, Hank F.; Acton, Paul D.

    2008-01-01

    The evaluation of stem cell–mediated cardiomyoplasty by noninvasive in vivo imaging is critical for its clinical application. We hypothesized that dual-tracer small-animal SPECT would allow simultaneous imaging of 99mTc-sestamibi to assess myocardial perfusion and of 111In-labeled stem cells to delineate stem cell engraftment. Methods Three to 4 million rat embryonic cardiomyoblasts (H9c2 cells) were labeled with 11.1–14.8 MBq (0.3–0.4 mCi) of 111In-oxyquinoline and then injected into the border zones of infarcted myocardium of rats. 111In images were acquired with a SPECT scanner 2, 24, 48, 72, and 96 h after the stem cells were injected into the infarcted myocardium. To visualize the perfusion deficit in the infarcted myocardium, we injected 74 MBq (2 mCi) of 99mTc-sestamibi (Cardiolite) intravenously 48 h after grafting. Dual-isotope pinhole SPECT was used to image 99mTc-sestamibi uptake simultaneously with 111In to delineate retention of 111In-labeled stem cells. The presence of labeled stem cells was confirmed by autoradiography and histology. Results SPECT of 99mTc-sestamibi was used to delineate perfusion deficits and infarcted myocardium. Bull's-eye plots indicated that the 111In signal from the labeled stem cells overlapped the perfusion deficits identified from the 99mTc-sestamibi images. The 111In signal associated with the radiolabeled stem cells could be detected with SPECT of the heart for 96 h after engraftment. Conclusion This study demonstrated the feasibility of using dual-isotope pinhole SPECT for high-resolution detection of perfusion deficits with 99mTc-sestamibi and with 111In-labeled stem cells grafted into the region of the infarct. PMID:15872356

  18. Coenzyme Q10 protects against acute consequences of experimental myocardial infarction in rats

    PubMed Central

    Eleawa, Samy M; Alkhateeb, Mahmoud; Ghosh, Sanjoy; Al-Hashem, Fahaid; Shatoor, Abdullah S; Alhejaily, Abdulmohsen; Khalil, Mohammad A

    2015-01-01

    Aim: Myocardial infarction (MI) due to sudden occlusion of a major coronary artery leads to a complex series of events that result in left ventricle (LV) impairment eventual heart failure. Therapeutic options are limited to reverse such trends post MI. The aim of this study was to compare the acute cardioprotective effects of the antioxidants, resveratrol (RES) and coenzyme Q10 (CoQ10), either individually or in combination, on infracts size, LV hemodynamics, inflammation and oxidative stress markers in rats with experimentally induced MI. Methods: Male Wistar rats were randomly divided into six groups: control without surgery, sham without occlusion, MI without antioxidants, RES pre-treated then MI (20 mg/kg, orally), CoQ10 then MI (20 mg/kg, intramuscular.), and combined RES and CoQ10 then MI with (each group n = 10). Pretreatment commenced 7 days prior to the permanent occlusion of the left anterior descending (LAD) coronary artery. Infarct area, hemodynamics, inflammation and oxidative stress markers were assessed 24 hours post-MI. Results: Compared to RES alone, CoQ10 pre-administration either by itself or in combination with RES, significantly reduced LV infarct area (57%), and normalized LV hemodynamic parameters like LVEDP (100%), LVSP (95.4%), LV +dp/dt and -dp/dt (102 and 73.1%, respectively). CoQ10 also decreased serum levels of brain natriuretic peptide (70%), and various circulating inflammatory markers like TNF-α (83.2%) and IL-6 (83.2%). Regarding oxidative stress, TBARS scores were lowered with a concurrent increase in both superoxide dismutase and glutathione peroxidase activities with CoQ10 alone or in combination with RES. Conclusion: Coenzyme Q10 protects against the acute sequelae of myocardial infarction. It profoundly reduced infarct area, inflammation and oxidative stress while normalizing LV hemodynamics post MI. PMID:26069524

  19. MicroRNA-133a engineered mesenchymal stem cells augment cardiac function and cell survival in the infarct heart

    PubMed Central

    Dakhlallah, Duaa; Zhang, Jianying; Yu, Lianbo; Marsh, Clay B.; Angelos, Mark G.; Khan, Mahmood

    2015-01-01

    Cardiovascular disease is the number one cause of morbidity and mortality in the United States. The most common manifestation of cardiovascular disease is myocardial infarction (MI), which can ultimately lead to congestive heart failure (CHF). Cell therap (cardiomyoplasty) is a new potential therapeutic treatment alternative for the damaged heart. Recent preclinical and clinical studies have shown that mesenchymal stem cells (MSCs) are a promising cell type for cardiomyoplasty applications. However, a major limitation is the poor survival rate of transplanted stem cells in the infarcted heart. miR-133a is an abundantly expressed microRNA in the cardiac muscle and is down-regulated in patients with MI. We hypothesized that reprogramming MSCs using microRNA-mimics (double-stranded oligonucleotides) will improve survival of stem cells in the damaged heart. MSCs were transfected with miR-133a mimic and antagomirs and the levels of miR-133a were measured by qRT-PCR. Rat hearts were subjected to MI and MSCs transfected with miR-133a mimic or antagomir were implanted in the ischemic heart. Four weeks after MI, cardiac function, cardiac fibrosis, miR-133a levels and apoptosis related genes (Apaf-1, Capase-9 and Caspase-3) were measured in the heart. We found that transfecting MSCs with miR-133a mimic improves survival of MSCs as determined by the MTT assay. Similarly, transplantation of miR-133a mimic transfected MSCs in rat hearts subjected to MI led to a significant increase in cell engraftment, cardiac function and decreased fibrosis when compared with MSCs only or MI groups. At the molecular level, qRT-PCR data demonstrated a significant decrease in expression of the pro-apoptotic genes; Apaf-1, caspase-9 and caspase-3 in the miR-133a mimic transplanted group. Further, luciferase reporter assay confirmed that miR- 133a is a direct target for Apaf-1. Overall, bioengineering of stem cells through miRNAs manipulation could potentially improve the therapeutic outcome of

  20. A "second window of protection" occurs 24 h after ischemic preconditioning in the rat heart.

    PubMed

    Yamashita, N; Hoshida, S; Taniguchi, N; Kuzuya, T; Hori, M

    1998-06-01

    We and others found that cardioprotection is acquired not only soon after, but also 24 h after ischemic preconditioning in canine and rabbit myocardial infarction models (second window of protection). However, a second window phenomenon against myocardial infarction was dependent on species limitations and has not been observed in porcine hearts. In this study, we examined whether the "second window of protection" against myocardial infarction is observed in the rat heart. In the ischemic preconditioning (IP) group, the left main coronary artery (LCA) of rats was occluded four times for 3 min. each separated by reperfusion for 10 min. After 0, 3, and 24 h, the rats were subjected to a 20-min LCA occlusion followed by 48-h reperfusion. At 0 and 24 h after IP, infarct size and the incidence of ventricular fibrillation (VF) during ischemia were significantly reduced compared with corresponding sham-operated groups without preconditioning. After 3 h of IP, there were no differences either in the incidence of VF during ischemia or in infarct size. Manganese superoxide dismutase (Mn-SOD) content in ischemic (LCA) region of myocardium significantly increased as compared with that of sham-operated rats 24 h after IP. Treatment with N-2-mercaptopropionyl glycine, an antioxidant and a hydroxyl radical scavenger, during IP abolished the early-phase (0 h after IP) and late-phase (24 h after IP) cardioprotection and the corresponding late increase in Mn-SOD content. These results indicate that a "second window of protection" against myocardial infarction also exists in rat hearts and the induction of an intrinsic scavenger, Mn-SOD, via free radical production during IP may be important in the second window of protection. PMID:9689592

  1. Effect of verapamil on heart rate variability after an acute myocardial infarction. Danish Verapamil Infarction Trial II.

    PubMed

    Vaage-Nilsen, M; Rasmussen, V

    1998-07-01

    Because decreased heart rate variability measured after an acute myocardial infarction (AMI) has been demonstrated to predict subsequent mortality and sudden death, and an efficacy analysis of the Danish Verapamil Infarction Trial II (DAVIT II) demonstrated that long-term postinfarction treatment with verapamil significantly reduced sudden death, the aim of the present substudy was to evaluate the effect of verapamil on heart-rate variability in the time and frequency domain, measured in two 5-minute segments during the day and night. Thirty-eight patients were examined by Holter monitoring, at 1 week, that is, before randomization, and at 1 month after infarction; 22 of the patients were examined 12-16 months after infarction as well. In both treatment groups (verapamil and placebo) no significant alteration of heart rate variability during the day-time was demonstrated from before to after 1 and 12-16 months of treatment. In accord with the known reduction of overall heart rate by verapamil, a significant increase of mean NN interval from before to after 1 (P = 0.0004) and 12-16 months (P = 0.004) of treatment was seen in the verapamil, but not in the placebo, group at night. Parameters generally interpreted as an index of parasympathetic modulation, that is, RMSSD, pNN50, and high-frequency power, increased significantly at 1 month (P = 0.04, P = 0.03, NS, respectively) and 12-16 months (P = 0.03, P = 0.04, P < 0.05) after AMI in the verapamil, but not in the placebo, group. In conclusion, the present study indicates that verapamil shifts the autonomic balance to a vagal preponderance or sympathetic attenuation in the postinfarction period. PMID:9784908

  2. Reduction of Leukocyte Counts by Hydroxyurea Improves Cardiac Function in Rats with Acute Myocardial Infarction

    PubMed Central

    Zhu, Guiyue; Yao, Yucai; Pan, Lingyun; Zhu, Wei; Yan, Suhua

    2015-01-01

    Background This study aimed to decrease leukocytes counts by hydroxyurea (Hu) in an acute myocardial infarction (AMI) rat model and examine its effect on the inflammatory response of myocardial infarction and cardiac functions. Material/Methods AMI was successfully caused in 36 rats, and 12 control rats received sham operation. Rats in the AMI group were then randomly divided into Hu and vehicle group with 18 rats each. Rats in the Hu AMI group received Hu (200 mg/kg) intragastrically while vehicle AMI group received saline. Leukocytes counts, cardiac functions, myocardial tissue morphology, and levels of soluble intercellular adhesion molecule-1 (sICAM), P-selectin and platelet activating factor (PAF) were measured and compared among the three groups four weeks after AMI induction. Results Leukocytes, neutrophils, and leukomonocyte counts in vehicle AMI rats were significantly higher than that of the normal control group (p<0.05). However, Hu treatment decreased their counts significantly (p<0.05). sICAM, P-selectin, and PAF level in vehicle AMI group were significantly higher than those of the normal group, and their level was also decreased by Hu treatment (p<0.05). Echocardiography analysis showed that Hu treatment increased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) compared to that of vehicle AMI group (p<0.05). Histopathological examination showed that Hu significantly reduced the swelling of the heart muscle fiber in necrotic foci and the number of inflammatory cells infiltrated into myocardial interstitium compared to vehicle AMI group. Conclusions Decrease leukocytes counts by Hu significantly reduced inflammatory reaction and improved cardiac functions in AMI rats. PMID:26675565

  3. Purinoceptors in the rat heart.

    PubMed Central

    Fleetwood, G.; Gordon, J. L.

    1987-01-01

    The effects of an intracoronary bolus of adenosine triphosphate (ATP), alpha, beta-methylene ATP (APCPP), beta, gamma-methylene ATP (APPCP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and adenosine on coronary tone and ventricular myocardial contraction were investigated in the perfused rat heart. Adenine nucleotides, given by bolus injection were negatively inotropic in amounts greater than 3 X 10(-7) mol. The potency order was ATP greater than ADP greater than AMP. Adenosine (less than 1 X 10(-5)mol) had no effect on ventricular myocardial contraction. Adenine nucleotides and adenosine (1 X 10(-10)-1 X 10(-7) mol) reduced coronary tone. The potency order was ATP greater than ADP greater than AMP = adenosine. The ATP analogue APPCP was less active than ATP at reducing coronary tone, and APCPP had no vasodilator effect. This suggests the presence of a P2-purinoceptor, subclass P2Y, which mediates vasodilation. ATP and ADP increased the concentration of prostacyclin (measured as 6-keto prostaglandin F1 alpha) in the perfusate, but only after injection of greater than 3 X 10(-7) mol, suggesting that the vasodilator responses to ATP and ADP were not mediated by prostacyclin. AMP and adenosine had no effect, even at 1 X 10(-5) mol. At a dose of 3 X 10(-9) mol, approximately 40% of ATP and 70% of ADP was converted to AMP and adenosine whilst passing through the heart. The amounts of AMP and adenosine formed, however, were insufficient to account for the vasodilator effects of ATP and ADP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3814919

  4. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction

    PubMed Central

    Serrano, Rosa; Tejera, Agueda; Ayuso, Eduard; Jimenez, Veronica; Formentini, Ivan; Bobadilla, Maria; Mizrahi, Jacques; de Martino, Alba; Gomez, Gonzalo; Pisano, David; Mulero, Francisca; Wollert, Kai C.; Bosch, Fatima; Blasco, Maria A.

    2016-01-01

    Coronary heart disease is one of the main causes of death in the developed world, and treatment success remains modest, with high mortality rates within 1 year after myocardial infarction (MI). Thus, new therapeutic targets and effective treatments are necessary. Short telomeres are risk factors for age-associated diseases, including heart disease. Here we address the potential of telomerase (Tert) activation in prevention of heart failure after MI in adult mice. We use adeno-associated viruses for cardiac-specific Tert expression. We find that upon MI, hearts expressing Tert show attenuated cardiac dilation, improved ventricular function and smaller infarct scars concomitant with increased mouse survival by 17% compared with controls. Furthermore, Tert treatment results in elongated telomeres, increased numbers of Ki67 and pH3-positive cardiomyocytes and a gene expression switch towards a regeneration signature of neonatal mice. Our work suggests telomerase activation could be a therapeutic strategy to prevent heart failure after MI. PMID:25519492

  5. Short-term pretreatment with atorvastatin attenuates left ventricular dysfunction, reduces infarct size and apoptosis in acute myocardial infarction rats

    PubMed Central

    Chen, Tie-Long; Zhu, Guang-Li; He, Xiao-Long; Wang, Jian-An; Wang, Yu; Qi, Guo-An

    2014-01-01

    Background: Atorvastatin showed a number of cardiovascular benefits, however, the role and underlying molecular mechanisms of short-term atorvastatin-mediated protection remain unclear. Methods: 30 rats were randomly divided into 3 groups: sham group, acute myocardial infarction model group and atorvastatin group. The rats of acute myocardial infarction model were established by ligation of the left anterior descending of coronary arteries. Before surgery, rats in the atorvastatin group received 20 mg/kg/d atorvastatin for 7 days in atorvastatin group. After 4 hours of model established, changes in hemodynamics parameters were recorded and myocardial infarct size was achieved by Evans blue-TTC staining. Myocardium apoptosis was evaluated by TUNEL. The expression of FAS, FAS-L, Bcl-2, Bax, p-BAD, Caspase-8 and Caspase-3 in myocardium were examined by Western blot. Results: In the atorvastatin group, left ventricular function was elevated and infarct size was decreased compared with the model group. Moreover, in the atorvastatin group, the cell apoptosis index was reduced in response to myocardial infarction. The expressions of Bcl-2 were increased and Bax, p-BAD, Fas, Fas-L, caspase-8 and caspase-3 in myocardium were decreased in atorvastatin group. Conclusions: Short-term atorvastatin pretreatment restored left ventricular function and limited infarct size in acute myocardial infarction, which were associated with reduction of the apoptosis in myocardium through Bcl-2 and Fas pathway. PMID:25663976

  6. Heart Block in Acute Myocardial Infarction: Prognostic Factors and Role of Transvenous Catheter Pacemaker

    PubMed Central

    Narvas, R. M.; Kilgour, J. M.; Basu, S. K.

    1970-01-01

    A prospective study was carried out to determine the prognostic factors in patients with second-degree and complete heart block following acute myocardial infarction and to re-examine the indications for artificial transvenous pacing. Of the 117 consecutive patients with proved acute myocardial infarction, 15 developed advanced heart block (second degree and complete). The presence of the following factors, either alone or in combinations, were attended with poor prognosis: preceding Stokes-Adams syndrome, cardiogenic shock, congestive heart failure, complications secondary to cardiac arrest, anterior infarction and wide QRS complex. In the nine cases requiring artificial transvenous pacemaker because of Stokes-Adams attacks, congestive heart failure or frequent multifocal ventricular ectopic beats, there were five deaths. The remaining six patients, who were without complications and were not paced, all survived; these patients had normal QRS duration with heart rates above 60 per minute. This study indicates that prophylactic transvenous catheter insertion in acute heart block does not appear justified unless specific indication(s) arise. Postmortem studies revealed significant narrowing of all the major coronary vessels in all five fatalities. The overall mortality in this series of cases of acute heart block was 33%. PMID:5410415

  7. Decreased sulfhydryl groups in the reperfused myocardial tissue of a rat model of myocardial infarction.

    PubMed

    Maezawa, H; Manaka, K; Yamakawa, K; Ogawa, K; Iizuka, M

    1997-02-01

    The aim of this study was to determine whether myocardial injury resulting from temporary ischemia followed by reperfusion can be measured by assaying sulfhydryl groups in the affected tissue of a rat model of myocardial infarction. We studied 3 groups: a control group (n = 6), which underwent surgery without left coronary artery (LCA) ligation; group NoR (n = 9), in which the LCA was ligated for 3 h; and group I + R (n = 7), in which 30 min LCA ligation was followed by 3 h reperfusion. The sulfhydryl group content of myocardial tissue was assayed by measuring the fluorescence produced by incubating heart sections with N-(7-dimethylamino-4-methyl-3-coumarinyl) maleimide (DACM), which binds sulfhydryl groups. The fluorescence intensity (FI) of normal and infarcted myocardium was quantified by our computerized system of microscopic fluorophotometry. Indices such as sulfhydryl group content, the size of the low-FI area [% AREA(lower FI)] and the relative decrease in FI [%FI(decrease)]) in the infarct zone were calculated. Both %AREA(lower FI) and %FI(decrease) were significantly higher in the infarcted zone of animals in NoR and I + R groups than in control animals. Both indices were higher in infarct tissue from animals in the I + R group than in the NoR group. These changes suggest that sulfhydryl group content is significantly reduced in tissue that has been subjected to ischemia-reperfusion. Microscopic fluorophotometry, as defined by DACM staining of myocardial tissue, may help to delineate areas of myocardial reperfusion injury. PMID:9070971

  8. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure?

    PubMed

    Creemers, E E; Cleutjens, J P; Smits, J F; Daemen, M J

    2001-08-01

    Increased activity of matrix metalloproteinases (MMPs) has been implicated in numerous disease processes, including tumor growth and metastasis, arthritis, and periodontal disease. It is now becoming increasingly clear that extracellular matrix degradation by MMPs is also involved in the pathogenesis of cardiovascular disease, including atherosclerosis, restenosis, dilated cardiomyopathy, and myocardial infarction. Administration of synthetic MMP inhibitors in experimental animal models of these cardiovascular diseases significantly inhibits the progression of, respectively, atherosclerotic lesion formation, neointima formation, left ventricular remodeling, pump dysfunction, and infarct healing. This review focuses on the role of MMPs in cardiovascular disease, in particular myocardial infarction and the subsequent progression to heart failure. MMPs, which are present in the myocardium and capable of degrading all the matrix components of the heart, are the driving force behind myocardial matrix remodeling. The recent finding that acute pharmacological inhibition of MMPs or deficiency in MMP-9 attenuates left ventricular dilatation in the infarcted mouse heart led to the proposal that MMP inhibitors could be used as a potential therapy for patients at risk for the development of heart failure after myocardial infarction. Although these promising results encourage the design of clinical trials with MMP inhibitors, there are still several unresolved issues. This review describes the biology of MMPs and discusses new insights into the role of MMPs in several cardiovascular diseases. Attention will be paid to the central role of the plasminogen system as an important activator of MMPs in the remodeling process after myocardial infarction. Finally, we speculate on the use of MMP inhibitors as potential therapy for heart failure. PMID:11485970

  9. Activation of β1-adrenoceptor triggers oxidative stress mediated myocardial membrane destabilization in isoproterenol induced myocardial infarcted rats: 7-hydroxycoumarin and its counter action.

    PubMed

    Jagadeesh, Govindan Sangaran; Nagoor Meeran, Mohamed Fizur; Selvaraj, Palanisamy

    2016-04-15

    Activation of β1-adrenoceptor stimulates myocardial membrane destabilization in isoproterenol induced rats. Male albino Wistar rats were pre and co-treated with 7-hydroxycoumarin (16mg/kg body weight) daily for 8 days. Myocardial infarction was induced into rats by the subcutaneous administration of isoproterenol (100mg/kg body weight) at an interval of 24h daily for a period of two days (7th and 8th day). The levels/activities of serum cardiac troponin-T, lactate dehydrogenase and the concentrations of heart lipid peroxidation products were significantly increased and the antioxidant status was significantly decreased in isoproterenol induced rats. Furthermore, the activity of sodium/potassium-dependent adenosine triphosphatase was significantly decreased and the activities of calcium and magnesium-dependent adenosine triphosphatases were significantly increased in the heart of isoproterenol induced myocardial infarcted rats. Isoproterenol induced rats also revealed increased concentrations of sodium and calcium and decreased concentrations of potassium in the heart. 7-hydroxycoumarin pre- and co-treatment showed considerable impact on all biochemical parameters assessed. Also, 7-HC greatly reduced the infarct size of the myocardium. The in vitro study confirmed its potent free radical scavenging activity. Thus, the present study revealed that 7-HC attenuates myocardial membrane destabilization by reinstating the activities/levels of adenosine triphosphatases and minerals in isoproterenol induced rats by inhibiting oxidative stress. These effects are attributed to the membrane stabilizing and free radical scavenging properties of 7-hydroxycoumarin. PMID:26930228

  10. Post-Infarct biomaterials, left ventricular remodeling, and heart failure: Is good good enough?

    PubMed Central

    Zouein, Fouad A.; Zgheib, Carlos; Liechty, Kenneth W.; Booz, George W.

    2012-01-01

    Infarct expansion and extension of the border zone play a key role in the progression of heart failure after myocardial infarction. Increased wall stress, along with complex cellular and extracellular changes in the surviving myocardium, underlie these events and contributes to the adverse cardiac remodeling that drives ventricular dilation and progression of heart failure. Recently, there has been much interest in the development of biopolymers that can be injected into the infarcted myocardium in order to increase its stiffness and thus reduce mechanical stress on the surrounding myocardium. Here we discuss the findings of recent animal studies that have noted improvements in contractile function or cardiac remodeling using either natural or synthetic biomaterials, as well as several that did not. Besides offering physical support to the injured myocardium, injectable biomaterials could also serve the purpose of fostering cardiac repair by functioning as a protective scaffold for stem cell or drug delivery. PMID:22612796

  11. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    PubMed Central

    Santana, Aline Alves; Santamarina, Aline Boveto; Oyama, Lila Missae; Caperuto, Érico Chagas; de Souza, Cláudio Teodoro; Barboza, Catarina de Andrade; Rocha, Leandro Yanase; Figueroa, Diego; Mostarda, Cristiano; Irigoyen, Maria Cláudia; Lira, Fábio Santos

    2014-01-01

    The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week) and detraining (DT) on inflammatory and metabolic profile after myocardial infarction (MI) in rats. Male Wistar rats were divided into control (C, n = 8), sedentary infarcted (SI, n = 9), trained infarcted (TI, n = 10; 3 months of ET), and detrained infarcted (DI, n = 11; 2 months of ET + 1 month of DT). After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis), and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI. PMID:25045207

  12. [Changes in heart rate variability after myocardial infarction. Value of Poincareé's diagram].

    PubMed

    Copie, X; Le Heuzey, J Y; Iliou, M C; Pousset, F; Lavergne, T; Guize, L

    1995-11-01

    The variability of the heart rate is reduced after myocardial infarction. It then progressively increases, to return to near normal values after several months. However, these changes in heart rate variability occur at the same time as slowing of the heart rate which makes interpretation difficult. Poincaré's diagram is constructed from a Holter recording plotting each RR interval against the preceding RR interval. The authors have developed a geometric approach to this diagram to evaluate parasympathetic tone for a given heart rate. By measuring the dispersion in height of the Poincaré's diagram, the authors evaluate the shor-term variability for a given RR interval. Two 24 hr Holter recordings were performed in 52 patients at one and two weeks after a myocardial infarction. The dispersion in the height of the Poincaré's diagrams was measured at the 10th, 25th, 50th, 75th and 90th percentiles of the total dispersion. The authors have shown an increase in the short-term variability of the shortest RR intervals (1th, 25th and 50th percentiles) which is not observed in the longer RR intervals (75th and 90th percentiles). In conclusion, theres is an increase in the heart rate variability at the shortest RR intervals. This suggests that the recovery of parasympathic tone after myocardial infarction occurs mainly at the fastest heart rates. PMID:8745997

  13. High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats.

    PubMed

    Moreira, José B N; Bechara, Luiz R G; Bozi, Luiz H M; Jannig, Paulo R; Monteiro, Alex W A; Dourado, Paulo M; Wisløff, Ulrik; Brum, Patricia C

    2013-04-01

    Poor skeletal muscle performance was shown to strongly predict mortality and long-term prognosis in a variety of diseases, including heart failure (HF). Despite the known benefits of aerobic exercise training (AET) in improving the skeletal muscle phenotype in HF, the optimal exercise intensity to elicit maximal outcomes is still under debate. Therefore, the aim of the present study was to compare the effects of high-intensity AET with those of a moderate-intensity protocol on skeletal muscle of infarcted rats. Wistar rats underwent myocardial infarction (MI) or sham surgery. MI groups were submitted either to an untrained (MI-UNT); moderate-intensity (MI-CMT, 60% Vo(2)(max)); or matched volume, high-intensity AET (MI-HIT, intervals at 85% Vo(2)(max)) protocol. High-intensity AET (HIT) was superior to moderate-intensity AET (CMT) in improving aerobic capacity, assessed by treadmill running tests. Cardiac contractile function, measured by echocardiography, was equally improved by both AET protocols. CMT and HIT prevented the MI-induced decay of skeletal muscle citrate synthase and hexokinase maximal activities, and increased glycogen content, without significant differences between protocols. Similar improvements in skeletal muscle redox balance and deactivation of the ubiquitin-proteasome system were also observed after CMT and HIT. Such intracellular findings were accompanied by prevented skeletal muscle atrophy in both MI-CMT and MI-HIT groups, whereas no major differences were observed between protocols. Taken together, our data suggest that despite superior effects of HIT in improving functional capacity, skeletal muscle adaptations were remarkably similar among protocols, leading to the conclusion that skeletal myopathy in infarcted rats was equally prevented by either moderate-intensity or high-intensity AET. PMID:23429866

  14. Quality of life in patients with coronary heart disease after myocardial infarction and with ischemic heart failure

    PubMed Central

    Bellwon, Jerzy; Höfer, Stefan; Rynkiewicz, Andrzej; Gruchała, Marcin

    2015-01-01

    Introduction Quality of life measures are useful when interventions or treatments are indicated for several reasons such as improvement of physical functioning, pain relief, to estimate the effectiveness of therapies or to predict mortality. The aim of the current study was to describe quality of life in patients with stable coronary artery disease, myocardial infarction and heart failure and to evaluate the relationship between depression and health-related quality of life. Material and methods Patients after STEMI, with stable coronary artery disease, and heart failure (n = 332) completed the MacNew Heart Disease Health-related Quality of Life Questionnaire and the Hospital Anxiety and Depression Scale. Results Patients with myocardial infarction had significantly higher scores than patients with stable coronary artery disease or heart failure on the MacNew global scale (p < 0.001) and the physical (p < 0.001), emotional (p < 0.001) and social (p < 0.001) subscales. The anxiety scores were significantly higher in the group of patients with stable coronary artery disease than in patients with myocardial infarction (p < 0.05). The depression scores were significantly higher in patients with heart failure (p < 0.01). Conclusions In patients with stable CAD, anxiety correlated mainly with symptoms, i.e. angina, than with the history of MI. Patients with symptoms of angina react to the illness with anxiety more than depression, whereas patients with heart failure with dyspnea react to the illness with depressive symptoms more than anxiety. In patients after MI and with stable CAD, cognitive-behavioral techniques could be useful to quickly reduce the level of anxiety, while patients with heart failure require long-term support therapy to reduce the risk of depressive symptoms. PMID:27186176

  15. Exercise Training Reduces Cardiac Dysfunction and Remodeling in Ovariectomized Rats Submitted to Myocardial Infarction

    PubMed Central

    de Almeida, Simone Alves; Claudio, Erick Roberto Gonçalves; Mengal, Vinícius Franskoviaky; de Oliveira, Suelen Guedes; Merlo, Eduardo; Podratz, Priscila Lang; Gouvêa, Sônia Alves; Graceli, Jones Bernardes; de Abreu, Gláucia Rodrigues

    2014-01-01

    The aim of this study was to evaluate whether exercise training (ET) prevents or minimizes cardiac dysfunction and pathological ventricular remodeling in ovariectomized rats subjected to myocardial infarction (MI) and to examine the possible mechanisms involved in this process. Ovariectomized Wistar rats were subjected to either MI or fictitious surgery (Sham) and randomly divided into the following groups: Control, OVX+SHAMSED, OVX+SHAMET, OVX+MISED and OVX+MIET. ET was performed on a motorized treadmill (5x/wk, 60 min/day, 8 weeks). Cardiac function was assessed by ventricular catheterization and Dihydroethidium fluorescence (DHE) was evaluated to analyze cardiac oxidative stress. Histological analyses were made to assess collagen deposition, myocyte hypertrophy and infarct size. Western Blotting was performed to analyze the protein expression of catalase and SOD-2, as well as Gp91phox and AT1 receptor (AT1R). MI-trained rats had significantly increased in +dP/dt and decreased left ventricular end-diastolic pressure compared with MI-sedentary rats. Moreover, oxidative stress and collagen deposition was reduced, as was myocyte hypertrophy. These effects occurred in parallel with a reduction in both AT1R and Gp91phox expression and an increase in catalase expression. SOD-2 expression was not altered. These results indicate that ET improves the functional cardiac parameters associated with attenuation of cardiac remodeling in ovariectomized rats subjected to MI. The mechanism seems to be related to a reduction in the expression of both the AT1 receptor and Gp91phox as well as an increase in the antioxidant enzyme catalase, which contributes to a reduction in oxidative stress. Therefore, ET may be an important therapeutic target for the prevention of heart failure in postmenopausal women affected by MI. PMID:25551214

  16. Effect of Wenxin Granule on Ventricular Remodeling and Myocardial Apoptosis in Rats with Myocardial Infarction

    PubMed Central

    Wu, Aiming; Zhai, Jianying; Zhang, Dongmei; Lou, Lixia; Zhu, Haiyan; Gao, Yonghong; Chai, Limin; Xing, Yanwei; Lv, Xiying; Zhu, Lingqun; Zhao, Mingjing; Wang, Shuoren

    2013-01-01

    Aim. To determine the effect of a Chinese herbal compound named Wenxin Granule on ventricular remodeling and myocardial apoptosis in rats with myocardial infarction (MI). Methods. Male Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the model group, the metoprolol group, and the Wenxin Granule group (WXKL group) with sample size (n) of 7 rats in each group. An MI model was established in all rats by occlusion of the left anterior descending coronary artery (the control group was without occlusion). Wenxin Granule (1.35 g/kg/day), metoprolol (12 mg/kg/day), and distilled water (5 mL/kg/day for the control and model groups) were administered orally for 4 weeks. Ultrasonic echocardiography was used to examine cardiac structural and functional parameters. Myocardial histopathological changes were observed using haematoxylin and eosin (H&E) dyeing. Myocardial apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Serum angiotensin II (Ang II) concentration was measured using the enzyme-linked immunosorbent assay (ELISA). Results. It was found that Wenxin Granule could partially reverse ventricular remodeling, improve heart function, alleviate the histopathological damage, inhibit myocardial apoptosis, and reduce Ang II concentration in rats with MI. Conclusions. The results of the current study suggest that Wenxin Granule may be a potential alternative and complementary medicine for the treatment of MI. PMID:23997803

  17. MicroRNA-208b Alleviates Post-Infarction Myocardial Fibrosis in a Rat Model by Inhibiting GATA4

    PubMed Central

    Zhou, Chaoyuan; Cui, Qintao; Su, Guobao; Guo, Xiaoliang; Liu, Xiaochen; Zhang, Jie

    2016-01-01

    Background Myocardial infarction affects the health of many people. Post-infarction myocardial fibrosis has attracted much attention, but details of the mechanism remain elusive. In this study, the role of microRNA-208b (miR-208b) in modulating post-infarction myocardial fibrosis and the related mechanism were investigated. Material/Methods A rat model of myocardial infarction induced by ligating the left anterior descending artery was used to analyze the expression and roles of miR-208b by overexpression with the lentivirus vector of pre-miR-208b. Myocardial function was assessed and the expression of fibrosis-related factors type I collagen (COL1) and ACTA2 (alias αSMA) was detected. Myocardial fibroblasts isolated from newborn rats were transfected with luciferase reporter vectors containing wild-type or mutant Gata4 3′ UTR to verify the relationship between Gata4 and miR-208b. We then transfected the specific small interference RNA of Gata4 to detect changes in COL1 and ACTA2. Results miR-208b was down-regulated in hearts of model rats (P<0.01). Overexpressing miR-208b improved myocardial functions, such as reducing the infarction area (P<0.05) and promoting LVEF and LVFS (P<0.01), and inhibited COL1 and ACTA2 (P<0.01). Luciferase reporter assay proved Gata4 to be the direct target of miR-208b, with the target sequence in the 3′UTR. Inhibiting GATA4 resulted in the down-regulation of COL1 and ACTA2, suggesting that the role of miR-208b was achieved via regulating GATA4. Conclusions This study demonstrates the protective function of miR-208b via GATA4 in post-infarction myocardial fibrosis, providing a potential therapeutic target for treating myocardial fibrosis. PMID:27236543

  18. Expression of phospholipase D isozymes in scar and viable tissue in congestive heart failure due to myocardial infarction.

    PubMed

    Dent, Melissa R; Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2004-01-01

    The phospholipase D (PLD) associated with the cardiac sarcolemmal (SL) membrane hydrolyses phosphatidylcholine to produce phosphatidic acid, an important phospholipid signaling molecule known to influence cardiac function. The present study was undertaken to examine PLD isozyme mRNA expression, protein contents and activities in congestive heart failure (CHF) subsequent to myocardial infarction (MI). MI was induced in rats by occlusion of the left anterior descending coronary artery. At 8 weeks after the surgical procedure, hemodynamic assessment revealed that these experimental rats were at a moderate stage of CHF. Semi-quantitative reverse transcriptase-polymerase chain reaction revealed that PLD1 and PLD2 mRNA amounts were unchanged in viable left ventricular (LV) tissue of the failing heart. Furthermore, this technique demonstrated the presence of PLD1 and PLD2 mRNA in the scar tissue. While SL PLD1 and PLD2 protein contents were elevated in the viable LV tissue of the failing heart, SL PLD1 activity was significantly decreased, whereas SL PLD2 activity was significantly increased. On the other hand, although PLD1 protein was undetectable, PLD2 protein and activity were detected in the scar tissue. Our findings suggest that differential changes in PLD isozymes may contribute to the pathophysiology of CHF and may also be involved in the processes of scar remodeling. PMID:15601581

  19. Hypercholesterolaemia exacerbates ventricular remodelling after myocardial infarction in the rat: role of angiotensin II type 1 receptors

    PubMed Central

    Mączewski, M; Mączewska, J; Duda, M

    2008-01-01

    Background and purpose: Diet-induced hypercholesterolaemia exacerbates post-myocardial infarction (MI) ventricular remodelling and heart failure, but the mechanism of this phenomenon remains unknown. This study examined whether worsening of post-MI ventricular remodelling induced by dietary hypercholesterolaemia was related to upregulation of angiotensin II type 1 (AT1) receptor in the rat heart. Experimental approach: MI was induced surgically in rats fed normal or high cholesterol diet. Both groups of rats were then assigned to control, atorvastatin, losartan or atorvastatin+losartan-treated subgroups and followed for 8 weeks. Left ventricular (LV) function was assessed with echocardiography. In isolated hearts, LV pressures were measured with a latex balloon and a tip catheter. AT1-receptor density was assessed in LV membranes with radioligand-binding assays. Key results: High cholesterol diet exacerbated LV dilation and dysfunction in post-MI hearts. Atorvastatin or losartan prevented these hypercholesterolaemia-induced effects, whereas their combination was not more effective than each drug alone. AT1 receptors were upregulated 8 weeks after MI, this was further increased by hypercholesterolaemia and restored to baseline levels by atorvastatin. Conclusions and implications: Hypercholesterolaemia exacerbated LV remodelling and dysfunction in post-MI rat hearts and upregulated cardiac AT1 receptors. All these effects were effectively prevented by atorvastatin. Thus, the pleiotropic statin effects may include interference with the renin-angiotensin system through downregulation of AT1 receptors. PMID:18536757

  20. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models.

    PubMed

    Arevalo, Hermenegild J; Vadakkumpadan, Fijoy; Guallar, Eliseo; Jebb, Alexander; Malamas, Peter; Wu, Katherine C; Trayanova, Natalia A

    2016-01-01

    Sudden cardiac death (SCD) from arrhythmias is a leading cause of mortality. For patients at high SCD risk, prophylactic insertion of implantable cardioverter defibrillators (ICDs) reduces mortality. Current approaches to identify patients at risk for arrhythmia are, however, of low sensitivity and specificity, which results in a low rate of appropriate ICD therapy. Here, we develop a personalized approach to assess SCD risk in post-infarction patients based on cardiac imaging and computational modelling. We construct personalized three-dimensional computer models of post-infarction hearts from patients' clinical magnetic resonance imaging data and assess the propensity of each model to develop arrhythmia. In a proof-of-concept retrospective study, the virtual heart test significantly outperformed several existing clinical metrics in predicting future arrhythmic events. The robust and non-invasive personalized virtual heart risk assessment may have the potential to prevent SCD and avoid unnecessary ICD implantations. PMID:27164184

  1. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models

    PubMed Central

    Arevalo, Hermenegild J.; Vadakkumpadan, Fijoy; Guallar, Eliseo; Jebb, Alexander; Malamas, Peter; Wu, Katherine C.; Trayanova, Natalia A.

    2016-01-01

    Sudden cardiac death (SCD) from arrhythmias is a leading cause of mortality. For patients at high SCD risk, prophylactic insertion of implantable cardioverter defibrillators (ICDs) reduces mortality. Current approaches to identify patients at risk for arrhythmia are, however, of low sensitivity and specificity, which results in a low rate of appropriate ICD therapy. Here, we develop a personalized approach to assess SCD risk in post-infarction patients based on cardiac imaging and computational modelling. We construct personalized three-dimensional computer models of post-infarction hearts from patients' clinical magnetic resonance imaging data and assess the propensity of each model to develop arrhythmia. In a proof-of-concept retrospective study, the virtual heart test significantly outperformed several existing clinical metrics in predicting future arrhythmic events. The robust and non-invasive personalized virtual heart risk assessment may have the potential to prevent SCD and avoid unnecessary ICD implantations. PMID:27164184

  2. Factors determining case fatality in myocardial infarction "who dies in a heart attack"?

    PubMed Central

    Wannamethee, G.; Whincup, P. H.; Shaper, A. G.; Walker, M.; MacFarlane, P. W.

    1995-01-01

    OBJECTIVE--To examine the determinants of case fatality in the first major ischaemic heart disease event (heart attack) after screening. METHODS--Prospective study of 7735 middle aged men drawn from general practices in 24 British towns. RESULTS--During 11.5 years follow up there were 743 major ischaemic heart disease events of which 302 (40.6%) were fatal within 28 days of onset. Previous definite myocardial infarction or stroke and age at time of event were most strongly associated with case fatality. In men with no previous myocardial infarction or stroke, after adjustment for a range of risk factors, antihypertensive treatment (odds ratio (OR) = 1.97, P < 0.05), arrhythmia (OR = 1.93, P = 0.06), increased heart rate (OR = 2.03, P = 0.06), and diabetes (OR = 2.61, P = 0.07) were associated with increased case fatality. High levels of physical activity (OR = 0.53, P < 0.05) and moderate drinking (16-42 units/week) (OR = 0.61, P < 0.05) were associated with lower case fatality, although moderate drinking was not associated with a lower incidence of major ischaemic heart disease events. Current smoking, serum total cholesterol, and systolic blood pressure were not significantly associated with case fatality. In men with previous myocardial infarction or stroke, arrhythmia and to a lesser degree antihypertensive treatment, moderate or heavy drinking, and diabetes were associated with higher case fatality. CONCLUSION--These findings suggest that physical activity may be an important modifiable factor influencing the incidence of ischaemic heart disease and the chance of survival in men without a previous heart attack or stroke. Arrhythmia, increased heart rate, diabetes, and treatment for hypertension are also areas of concern. PMID:7547031

  3. Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart.

    PubMed

    Jamwal, Sumit; Kumar, Kushal; Reddy, B V Krishna

    2016-05-01

    Ischemic preconditioning (IPC) is well demonstrated to produce cardioprotection by phosphorylation and subsequent inactivation of glycogen synthase kinase-3β (GSk-3β) in the normal rat heart, but its effect is attenuated in the diabetic rat heart. This study was designed to investigate the effect of zinc chloride and zinc ionophore pyrithione (ZIP) on the attenuated cardioprotective potential of IPC in the diabetic rat heart. Diabetes mellitus (DM) was induced by a single intraperitoneal administration of streptozotocin (STZ) (50 mg/kg; i.p). The isolated perfused rat heart was subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and cardiac injury was measured by estimating lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in the coronary effluent. Also, GSK-3β was measured and neutrophil accumulation was measured by estimating myeloperoxidase (MPO) levels. IPC significantly decreased the myocardial infarct size, the release of LDH and CK-MB, the GSK-3β levels and the MPO levels in the normal rat heart. Pre- and post-ischemic treatment with zinc chloride and zinc ionophore pyrithione (ZIP) in the normal and diabetic rat hearts significantly decreased the myocardial infarct size, the level of CK-MB and LDH in the coronary effluent and GSK-3β and MPO levels. Our results suggest that pharmacological preconditioning with zinc chloride and ZIP significantly restored the attenuated cardioprotective potential of IPC in the diabetic rat heart. PMID:26423303

  4. Prenatal cocaine exposure increases apoptosis of neonatal rat heart and heart susceptibility to ischemia–reperfusion injury in 1-month-old rat

    PubMed Central

    Bae, Soochan; Zhang, Lubo

    2005-01-01

    Maternal cocaine administration during pregnancy increased apoptosis in near-term fetal rat heart. The present study tested the hypothesis that prenatal cocaine exposure increases the heart susceptibility to ischemia/reperfusion injury in the offspring. Pregnant Sprague–Dawley rats received cocaine (30 mg kg−1 day−1) or saline from days 15 to 21 of gestational age. Maternal body weights were not significantly different at the end of cocaine treatment, but body weights of offspring were decreased slightly at ages of 1, 3, and 7 days. Although heart-to-body weight ratio was not affected at all ages examined, prenatal cocaine significantly increased left ventricular myocyte size at an age of 30 days. Additionally, prenatal cocaine increased DNA fragmentation measured in the hearts isolated from offspring of 1, 3, 7, and 21 days, but not of 30 days, with the peak at 3-day neonates. Antiapoptotic (Bcl-2 and Bcl-XL) and proapoptotic (Bax and Bad) proteins were expressed in neonatal rat hearts of both groups. Prenatal cocaine exposure decreased levels of Bcl-2 in 21-day and increased Bax in 21- and 30-day rat hearts. In addition, hearts of 30-day-old male progeny were studied using the Langendorff preparation, and were subjected to 25 min of ischemia and 60 min of reperfusion. Preischemic baseline values of left ventricular (LV) function were the same between the two groups. However, prenatal cocaine exposure significantly attenuated postischemic recovery of LV function, and significantly increased elevated LV end diastolic pressure during reperfusion. This was associated with a significant increase in ischemia/reperfusion-induced LV myocardial infarct size. The results suggest that prenatal cocaine exposure induces abnormal apoptosis and myocyte hypertrophy in postnatal heart, leading to an increased heart susceptibility to ischemic insults in postnatal life. PMID:15685203

  5. Inhibition of the nitric oxide/cyclic guanosine monophosphate pathway limited the cardioprotective effect of post-conditioning in hearts with apical myocardial infarction.

    PubMed

    Correa, Francisco; Buelna-Chontal, Mabel; Chagoya, Victoria; García-Rivas, Gerardo; Vigueras, Rosa María; Pedraza-Chaverri, José; García-Niño, Wylly Ramsés; Hernández-Pando, Rogelio; León-Contreras, Juan Carlos; Zazueta, Cecilia

    2015-10-15

    Reperfusion damage involves opening of the mitochondrial permeability transition pore (mPTP) and loss of ATP synthesis. Several cardioprotective pathways are activated by ischemic or pharmacological post-conditioning (PC). The mechanisms that are activated by PC in no co-morbidity murine models include: activation of rescue kinases, oxidative stress reduction, glycolytic flux regulation and preservation of ATP synthesis. However, relatively scarce efforts have been made to define whether the efficacy of PC signaling is blunted by risk factors or systemic diseases associated with ischemic heart pathology. Experimental evidence has shown that the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling is a main mechanism activated by PC in hearts without pathological history. In this work we evaluated the participation of the NO pathway, through downstream kinase activation and inhibition of mPTP in hearts with previous infarct. Myocardial infarction was induced with a single dose of isoproterenol (85 mg/kg i.p.) to male Wistar rats. After 24 h, the hearts were mounted into the Langendorff system and subjected to 30 min of ischemia and 60 min of reperfusion. PC consisted of 5 cycles of 30 s of reperfusion/30 s of ischemia, then the hearts were reperfused with or without inhibitors of the NO/cGMP pathway. PC activates the NO/cGMP pathway, as increased cGMP and NO levels were detected in isoproterenol-treated hearts. The cardioprotective effect of PC was abolished with both L-NAME (inhibitor of constitutive NO synthase) and ODQ (inhibitor of soluble guanylate cyclase), whereas the NO donor (DETA-NO) restored cardioprotection even in the presence of L-NAME or ODQ. We also found that mitochondrial structure and function was preserved in PC hearts. We conclude that PC exerts cardioprotection in hearts with previous infarct by maintaining mitochondrial structure and function through NO-dependent pathway. PMID:26387613

  6. [Comparative cytophotometric analysis of the nucleic acid content in the cardiomyocytes of normal rats and following experimental infarct].

    PubMed

    Selivanova, G V; Nilova, V K; Vlasova, T D; Bushmarina, M S; Rumiantsev, P P

    1988-12-01

    The cytophotometrical investigation of gallocyanine-chrome alum stained cardiac muscle cells allows to ascertain that a mean content of the nucleic acids calculated for a single nucleus is essentially higher in the left ventricle myocytes in comparison with the left auricle cells of healthy adult rats. These values in 1-, 2- and 3-nuclear cells of the ventricle are, respectively, 21.3, 19.3, and 18.0, and 14.1, 13.7, 13.5 of arbitrary units (a. u.) in the auricle cells. A difference in cytoplasmic RNA contents of the same cells is more significant, these values are 65.7, 116.4, and 158.9 a. u. in ventricle myocytes, and 33.4, 60.8 and 95.2 a. u. in auricle cells. The nucleic acids content in the nuclei and RNA content in the cytoplasm increase with the development of proliferation in myocytes after experimental myocardial infarction. A relative increase in the nucleic acids content in the nuclei of the same cell types reaches 50, 24, and 10% 11 days after infarction and 56, 38, and 45% 31 days after infarction. A relative increase in cytoplasmic RNA of the same cells reaches, respectively, 52, 17, and 25%, and 70, 57, and 53% 11 and 31 days after infarction. These findings evidence on the greatest synthetic activity of the single-nuclear auricle muscle cells in the process of heart restoration after infarction. PMID:2470177

  7. Comparison of cardioprotective effects using ramipril and DanShen for the treatment of acute myocardial infarction in rats.

    PubMed

    Ji, XinYan; Tan, Benny K-H; Zhu, Yi Chun; Linz, Wolfgang; Zhu, Yi Zhun

    2003-08-01

    In the present study, we compared cardioprotective effects of DanShen (an extract from Salvia miltiorrhiza) and the angiotensin-converting enzyme inhibitor, ramipril, in rats. With both treatment regimens, DanShen- and ramipril similar effects were observed: (1) a higher survival rate, (2) a significant reduction of infarct size, (3) significantly lower ratios of heart weight to the body weight as well as the left and right ventricular weights to body weight. DanShen showed some unique effects in the following aspects: (1) higher activities of antioxidant defense enzymes such as superoxide dismutase (SOD), catalase (CAT), glutatione perioxidase (GSH-Px) and glutathione S-transferase (GST) in the liver of rats with acute myocardial infarction (AMI), (2) lower myocardial and hepatic TBARS values; (3) augmented VEGF mRNA expressions in the non-ischemic parts of rat hearts with AMI. These results were consistent with the findings of a slight increase in myocardial capillary density and the special distribution pattern of coronary blood vessels in DanShen-treated rats. PMID:12850502

  8. Anti-Inflammatory Effects of the Chinese Herbal Formula Sini Tang in Myocardial Infarction Rats

    PubMed Central

    Liu, Jiangang; Peter, Karoline; Shi, Dazhuo; Zhang, Lei; Dong, Guoju; Zhang, Dawu; Breiteneder, Heimo; Bauer, Rudolf; Ma, Yan

    2014-01-01

    The aim of this study was to evaluate the anti-inflammatory profiling of the Chinese herbal formula Sini Tang (SNT) in myocardial infarction (MI) rats. SNT, a decoction consisting of four herbs: Aconitum carmichaelii, Cinnamomum cassia, Zingiber officinale, and Glycyrrhiza uralensis, was characterized as a remedy to treat syndromes corresponding to heart failure and MI in China. Potential biomarkers, which reflect the extent of myocardial necrosis and correlate with cardiac outcomes following MI, such as atrial natriuretic peptide (ANP), high sensitivity C-reactive protein (hs-CRP), and proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1β (TNF-α, IL-6, and IL-1β) were determined in plasma, serum, and in myocardial tissue of MI rats after treatment with SNT. Our data indicate that SNT decreased significantly the levels of hs-CRP, TNF-α, IL-6, and IL-1β in MI rats. SNT decreased the expression of ANP levels in plasma and increased the vascular active marker nitric oxide, which limits vascular inflammation. In addition, SNT could decrease the expression of endothelin-1 levels in rat plasma post-MI. Our data suggest that the Chinese herbal formula SNT has the potential to improve cardiac function after MI. SNT may be a candidate for treating MI and its associated inflammatory responses. PMID:24723959

  9. Trajectories of risk after hospitalization for heart failure, acute myocardial infarction, or pneumonia: retrospective cohort study

    PubMed Central

    Hsieh, Angela F; Kulkarni, Vivek T; Lin, Zhenqiu; Ross, Joseph S; Horwitz, Leora I; Kim, Nancy; Suter, Lisa G; Lin, Haiqun; Normand, Sharon-Lise T; Krumholz, Harlan M

    2015-01-01

    Objective To characterize the absolute risks for older patients of readmission to hospital and death in the year after hospitalization for heart failure, acute myocardial infarction, or pneumonia. Design Retrospective cohort study. Setting 4767 hospitals caring for Medicare fee for service beneficiaries in the United States, 2008-10. Participants More than 3 million Medicare fee for service beneficiaries, aged 65 years or more, surviving hospitalization for heart failure, acute myocardial infarction, or pneumonia. Main outcome measures Daily absolute risks of first readmission to hospital and death for one year after discharge. To illustrate risk trajectories, we identified the time required for risks of readmission to hospital and death to decline 50% from maximum values after discharge; the time required for risks to approach plateau periods of minimal day to day change, defined as 95% reductions in daily changes in risk from maximum daily declines after discharge; and the extent to which risks are higher among patients recently discharged from hospital compared with the general elderly population. Results Within one year of hospital discharge, readmission to hospital and death, respectively, occurred following 67.4% and 35.8% of hospitalizations for heart failure, 49.9% and 25.1% for acute myocardial infarction, and 55.6% and 31.1% for pneumonia. Risk of first readmission had declined 50% by day 38 after hospitalization for heart failure, day 13 after hospitalization for acute myocardial infarction, and day 25 after hospitalization for pneumonia; risk of death declined 50% by day 11, 6, and 10, respectively. Daily change in risk of first readmission to hospital declined 95% by day 45, 38, and 45; daily change in risk of death declined 95% by day 21, 19, and 21. After hospitalization for heart failure, acute myocardial infarction, or pneumonia, the magnitude of the relative risk for hospital admission over the first 90 days was 8, 6, and 6 times greater than that

  10. Carperitide induces coronary vasodilation and limits infarct size in canine ischemic hearts: role of NO.

    PubMed

    Asanuma, Hiroshi; Sanada, Shoji; Asakura, Masanori; Asano, Yoshihiro; Kim, Jiyoong; Shinozaki, Yoshiro; Mori, Hidezo; Minamino, Tetsuo; Takashima, Seiji; Kitakaze, Masafumi

    2014-08-01

    Carperitide is effective for heart failure (HF) owing to its diuretic and vasodilatory effects. This recombinant peptide may also have direct cardioprotective effects because carperitide reduces the severity of heart failure and limits infarct size. Because coronary vasodilation is an important cardioprotective treatment modality, we investigated whether carperitide increased coronary blood flow (CBF) and improved myocardial metabolic and contractile dysfunction during ischemia in canine hearts. We also tested whether carperitide is directly responsible for limiting the infarct size. We infused carperitide at 0.025-0.2 μg kg(-1) min(-1) into the canine coronary artery. A minimum dose of 0.1 μg kg(-1) min(-1) was required to obtain maximal vasodilation. To test the effects of carperitide on ischemic hearts, we reduced perfusion pressure in the left anterior descending coronary artery such that CBF decreased to one-third of the baseline value. At 10 min after carperitide was infused at a dose of 0.1 μg kg(-1) min(-1), we observed increases in CBF, fractional shortening (FS) and pH levels in coronary venous blood without concomitant increases in cardiac nitric oxide (NO) levels; these changes were attenuated using either the atrial natriuretic peptide receptor antagonist HS-142-1 or the NO synthase inhibitor L(ω)-nitroarginine methyl ester (L-NAME). Cyclic guanosine monophosphate (GMP) levels in the coronary artery were elevated in response to carperitide that also limited the infarct size after 90 min of ischemia and subsequent reperfusion. Again, these effects were blunted by L-NAME. Carperitide increases CBF, reduces myocardial contractile and metabolic dysfunction and limits infarct size. In addition, NO is necessary for carperitide-induced vasodilation and cardioprotection in ischemic hearts. PMID:24694647

  11. Long-Term Left Ventricular Remodelling in Rat Model of Nonreperfused Myocardial Infarction: Sequential MR Imaging Using a 3T Clinical Scanner

    PubMed Central

    Saleh, Muhammad G.; Sharp, Sarah-Kate; Alhamud, Alkathafi; Spottiswoode, Bruce S.; van der Kouwe, Andre J. W.; Davies, Neil H.; Franz, Thomas; Meintjes, Ernesta M.

    2012-01-01

    Purpose. To evaluate whether 3T clinical MRI with a small-animal coil and gradient-echo (GE) sequence could be used to characterize long-term left ventricular remodelling (LVR) following nonreperfused myocardial infarction (MI) using semi-automatic segmentation software (SASS) in a rat model. Materials and Methods. 5 healthy rats were used to validate left ventricular mass (LVM) measured by MRI with postmortem values. 5 sham and 7 infarcted rats were scanned at 2 and 4 weeks after surgery to allow for functional and structural analysis of the heart. Measurements included ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), and LVM. Changes in different regions of the heart were quantified using wall thickness analyses. Results. LVM validation in healthy rats demonstrated high correlation between MR and postmortem values. Functional assessment at 4 weeks after MI revealed considerable reduction in EF, increases in ESV, EDV, and LVM, and contractile dysfunction in infarcted and noninfarcted regions. Conclusion. Clinical 3T MRI with a small animal coil and GE sequence generated images in a rat heart with adequate signal-to-noise ratio (SNR) for successful semiautomatic segmentation to accurately and rapidly evaluate long-term LVR after MI. PMID:23118511

  12. Control of ribosome formation in rat heart

    SciTech Connect

    Russo, L.A.

    1987-01-01

    Diabetes of 9 days duration produced a 17% diminution in the rate of total protein synthesis in rat hearts perfused as Langendorff preparations supplied with glucose, plasma levels of amino acids, and 400 ..mu..U/ml insulin. This reduction was attributable to a decrease in efficiency of protein synthesis and total RNA content. Total messenger RNA content decreased in diabetic hearts in proportion to the reduction in total RNA. Diabetes also resulted in diminished ribosome content as reflected by the induction in total RNA. Ribosome production was investigated by monitoring incorporation of (/sup 3/H)phenylalanine into the proteins of cytoplasmic ribosomes. Rates of ribosome formation in diabetic hearts were as fast as control rates in the presence of insulin, and were faster than control rates in the absence of the hormone. These results indicated that ribosome content fell in diabetic hearts despite unchanged or faster rates of ribosome formation.

  13. [The relation between the low T3 syndrome in the clinical course of myocardial infarction and heart failure].

    PubMed

    Frączek, Magdalena M Aria; Gackowski, Andrzej; Przybylik-Mazurek, Elwira; Nessler, Jadwiga

    2016-06-01

    It has been proven that either excess or deficiency of thyroid hormones has harmful influence on the cardiovascular system function. On the other hand, severe systemic conditions like myocardial infarction or severe heart failure may affect thyroid hormones secretion and their peripheral conversion, leading to low T3 syndrome. Amongst many mechanisms causing T4 to T3 conversion disturbances, important role plays decreased activity of D1 deiodinase and increased activity of D3 deiodinase. The animal research confirmed that thyroid hormones influence cardiomiocytes phenotype and morphology. They inhibit inflammation, apoptosis and cardiac remodelling after myocardial infarction. It was also proven that free triiodothyronine similarly to brain natriuretic peptide predict long-term prognosis in chronic and acute heart failure patients. Potential influence of low T3 syndrome on the course of myocardial infarction and heart failure may have significant impact on the future research on individualization of myocardial infarction and heart failure treatment depending on patient's thyroid status. PMID:27403906

  14. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction

    PubMed Central

    HUO, LIANYING; SHI, WENBING; CHONG, LING; WANG, JINLONG; ZHANG, KAI; LI, YUFENG

    2016-01-01

    Left ventricular remodeling results in cardiac dysfunction and accounts for the majority of the morbidity and mortality following myocardial infarction (MI). The aim of the present study was to investigate the effect of asiatic acid (AA) on cardiac function and left ventricular remodeling in a rat model of MI and explore the underlying mechanisms. Rats were subjected to coronary artery ligation to model MI and orally treated with AA. After 4 weeks, cardiac function was assessed by echocardiography. Cardiomyocyte cross-sectional area was recorded, and the expression levels of a number of inflammatory cytokines were detected using ELISA. The degree of interstitial fibrosis was determined by evaluating the mRNA expression levels of collagen II and III. Western blot analysis was performed to detect the expression levels of total and phosphorylated p38 MAPK and ERK1/2, to investigate whether they are involved in the mechanism underlying the effect of AA on the heart. Rats subjected to MI displayed significantly impaired cardiac function compared with those subjected to a sham procedure, while this change was reversed by treatment with AA. Furthermore, AA markedly inhibited cardiac hypertrophy, reduced the mRNA expression levels of inflammatory cytokines and decreased interstitial fibrosis in the infarct border zone of MI model rats compared with those in vehicle-treated MI model rats. Furthermore, the phosphorylation of p38 MAPK and ERK1/2 was blocked by AA in the MI rats but not in the sham rats. In summary, AA treatment preserved cardiac function and inhibited left ventricular remodeling, potentially by blocking the phosphorylation of p38 MAPK and ERK1/2 in the infarct border zone of the ischemic myocardium, indicating that AA may be a novel candidate for development as a therapy for MI. PMID:26889217

  15. Local delivery of soluble TNF-alpha receptor 1 gene reduces infarct size following ischemia/reperfusion injury in rats.

    PubMed

    Sugano, Masahiro; Hata, Tomoji; Tsuchida, Keiko; Suematsu, Nobuhiro; Oyama, Jun-Ichi; Satoh, Shinji; Makino, Naoki

    2004-11-01

    Apoptosis in the myocardium is linked to ischemia/reperfusion injury, and TNF-alpha induces apoptosis in cardiomyocytes. A significant amount of TNF-alpha is detected after ischemia and reperfusion. Soluble TNF-alpha receptor 1 (sTNFR1) is an extracellular domain of TNF-alpha receptor 1 and is an antagonist to TNF-alpha. In the present study, we examined the effects of sTNFR1 on infarct size in acute myocardial infarction (AMI) following ischemia/reperfusion. Male Wistar rats were subjected to left coronary artery (LCA) ligation. After 30 min of LCA occlusion, the temporary ligature on the LCA was released and blood flow was restored. Immediately after reperfusion, a total of 200 microg of sTNFR1 or LacZ plasmid was injected into three different sites of the left ventricular wall. At 6 h, 1 and 2 days after reperfusion, the TNF-alpha bioactivity in the myocardium was significantly higher in rats receiving LacZ plasmid than in sham-operated rats, whereas sTNFR1 plasmid significantly suppressed the increase in the TNF-alpha bioactivity. The sTNFR1 plasmid significantly reduced DNA fragmentation and caspase activity compared to the LacZ plasmid. Finally, the sTNFR1 expression-plasmid treatment significantly reduced the area of myocardial infarction at 2 days after ischemia/reperfusion compared to LacZ plasmid. In conclusion, the TNF-alpha bioactivity in the heart increased from the early stage of ischemia/reperfusion, and this increase was thought to contribute in part to the increased area of myocardial infarction. Suppression of TNF-alpha bioactivity with the sTNFR1 plasmid reduced the infarct size in AMI following ischemia and reperfusion. PMID:15646033

  16. Effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart.

    PubMed

    Kansal, Sunil Kumar; Jyoti, Uma; Sharma, Samridhi; Kaura, Arun; Deshmukh, Rahul; Goyal, Sandeep

    2015-06-01

    Hyperlipidemia is regarded as independent risk factor in the development of ischemic heart disease, and it can increase the myocardial susceptibility to ischemia-/reperfusion (I/R)-induced injury. Hyperlipidemia attenuates the cardioprotective response of ischemic preconditioning (IPC). The present study investigated the effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat hearts. Hyperlipidemia was induced in rat by feeding high-fat diet (HFD) for 6 weeks then the serum lipid profile was observed. In experiment, the isolated Langendorff rat heart preparation was subjected to 4 cycles of ischemic preconditioning (IPC), then 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was elaborated morphologically by triphenyltetrazolium chloride (TTC) staining and biochemically by lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) release from coronary effluent and left ventricular collagen content. However, the effect of zinc supplement, i.e., zinc pyrithione (10 μM) perfused during reperfusion for 120 min, significantly abrogated the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart whereas administration of chelator of this zinc ionophore, i.e., N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN; 10 μM), perfused during reperfusion 2 min before the perfusion of zinc pyrithione abrogated the cardioprotective effect of zinc supplement during experiment in hyperlipidemic rat heart. Thus, the administration of zinc supplements limits the infarct size, LDH, and CK-MB and enhanced the collagen level which suggests that the attenuated cardioprotective effect of IPC in hyperlipidemic rat is due to zinc loss during reperfusion caused by ischemia/reperfusion. PMID:25743572

  17. Statin and Resveratrol in Combination induces Cardioprotection against Myocardial Infarction in Hypercholesterolemic Rat

    PubMed Central

    Penumathsa, Suresh Varma; Thirunavukkarasu, Mahesh; Koneru, Srikanth; Juhasz, Bela; Zhan, Lijun; Pant, Rima; Menon, Venugopal P; Otani, Hajime; Maulik, Nilanjana

    2007-01-01

    Hypercholesterolemia (HC) is a common health problem that significantly increases risk of cardiovascular disease. Both statin (S) and resveratrol (R) demonstrated cardioprotection through nitric oxide dependent mechanism. Therefore the present study was undertaken to determine whether combination therapy with statin and resveratrol are more cardioprotective than individual treatment groups in ischemic rat heart model. The rats were fed rats with 2% high cholesterol diet and after 8 weeks of high cholesterol diet the animals were treated with statin (1mg/kg bw/day) and resveratrol (20mg/kg bw/day) for 2 weeks. The rats were assigned to: 1) Control (C) 2) HC 3) HCR 4) HCS and 5) HCRS. The hearts, subjected to 30 min global ischemia followed by 120 min reperfusion were used as experimental model. The left ventricular functional recovery (+dp/dt) was found to be significantly better in the HCRS (1926±43), HCR (1556±65) and HCS (1635±40) compared to HC group (1127±16). The infarct size in the HCRS, HCS and HCR groups were 37±3.6, 43±3.3 and 44±4.2 respectively compared to 53±4.6 in HC. The lipid level was found to be decreased in all the treatment groups when compared to HC more significantly in HCS and HCRS groups when compared to HCR. Increased phosphorylation of Akt and eNOS was also observed in all the treatment groups resulting in decreased extent of cardiomyocyte apoptosis but the extent of reduction in apoptosis was more significant in HCRS group compared to all other groups. In-vivo rat myocardial infarction (MI) model subjected to one week of permanent left descending coronary artery (LAD) occlusion documented increased capillary density in HCR and HCRS treated group when compared to HCS treatment group. We also documented increased β-catenin translocation and increased VEGF mRNA expression in all treatment groups. Thus, we conclude that the acute as well as chronic protection afforded by combination treatment with statin and resveratrol may be due to

  18. Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy.

    PubMed

    Lee, Gi-Ja; Chae, Su-Jin; Jeong, Jae Hoon; Lee, So-Ra; Ha, Sang-Jin; Pak, Youngmi Kim; Kim, Weon; Park, Hun-Kuk

    2011-04-01

    Mitochondria play critical roles in both the life and the death of cardiac myocytes. Various factors, such as the loss of ATP synthesis and increase of ATP hydrolysis, impairment in ionic homeostasis, formation of reactive oxygen species (ROS), and release of proapoptotic proteins are related to the generation of irreversible damage. It has been proposed that the release of cytochrome c is caused by a swelling of the mitochondrial matrix triggered by the apoptotic stimuli. However, there is a controversy about whether or not the mitochondria, indeed, swell during apoptosis. The major advantages of atomic force microscopy (AFM) over conventional optical and electron microscopes for bio-imaging include the fact that no special coating and vacuum are required and imaging can be done in all environments--air, vacuum or aqueous conditions. In addition, AFM force-distance curve measurements have become a fundamental tool in the fields of surface chemistry, biochemistry, and material science. In this study, we used AFM to observe the morphological and property changes in heart mitochondria that were isolated from a rat myocardial infarction model. From the shape parameters of the mitochondria in the AFM topographic image, it seemed that myocardial infarction caused the mitochondrial swelling. Also, the results of force-distance measurements showed that the adhesion force of heart mitochondria was significantly decreased by myocardial in infarction. Therefore, we suggested that myocardial infarction might be the cause of mitochondrial swelling and the changes in outer membrane of heart mitochondria. PMID:21050769

  19. Advanced Heart Block During Acute Myocardial Infarction Treated with an Electrode Pacing Catheter

    PubMed Central

    Peretz, Dwight I.

    1967-01-01

    The mortality rate is high from advanced atrioventricular block associated with acute myocardial infarction. There is reason to believe that if in these patients the hearts are electrically paced with an endocardial pacing catheter, the mortality rate can be considerably decreased. Five patients in second- and third-degree heart block associated with acute myocardial infarction were paced with a considerable lowering of the expected mortality rate. Twenty-three cases from the literature are also presented and discussed. A silastic bipolar electrode catheter was used in these five cases. Four of the five cases returned to normal sinus rhythm within the first 10 days. The average duration of pacing was 6.7 days. It is the opinion of the author that second- and third-degree heart block associated with acute myocardial infarction should have a pacing catheter introduced at the earliest possible moment for continuous or demand endocardial pacing. ImagesFig. 1Fig. 2Fig. 3Fig. 4 PMID:6019960

  20. Inhibition of KV7 Channels Protects the Rat Heart against Myocardial Ischemia and Reperfusion Injury.

    PubMed

    Hedegaard, Elise R; Johnsen, Jacob; Povlsen, Jonas A; Jespersen, Nichlas R; Shanmuganathan, Jeffrey A; Laursen, Mia R; Kristiansen, Steen B; Simonsen, Ulf; Bøtker, Hans Erik

    2016-04-01

    The voltage-gated KV7 (KCNQ) potassium channels are activated by ischemia and involved in hypoxic vasodilatation. We investigated the effect of KV7 channel modulation on cardiac ischemia and reperfusion injury and its interaction with cardioprotection by ischemic preconditioning (IPC). Reverse-transcription polymerase chain reaction revealed expression of KV7.1, KV7.4, and KV7.5 in the left anterior descending rat coronary artery and all KV7 subtypes (KV7.1-KV7.5) in the left and right ventricles of the heart. Isolated hearts were subjected to no-flow global ischemia and reperfusion with and without IPC. Infarct size was quantified by 2,3,5-triphenyltetrazolium chloride staining. Two blockers of KV7 channels, XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone] (10 µM) and linopirdine (10 µM), reduced infarct size and exerted additive infarct reduction to IPC. An opener of KV7 channels, flupirtine (10 µM) abolished infarct size reduction by IPC. Hemodynamics were measured using a catheter inserted in the left ventricle and postischemic left ventricular recovery improved in accordance with reduction of infarct size and deteriorated with increased infarct size. XE991 (10 µM) reduced coronary flow in the reperfusion phase and inhibited vasodilatation in isolated small branches of the left anterior descending coronary artery during both simulated ischemia and reoxygenation. KV7 channels are expressed in rat coronary arteries and myocardium. Inhibition of KV7 channels exerts cardioprotection and opening of KV7 channels abrogates cardioprotection by IPC. Although safety issues should be further addressed, our findings suggest a potential role for KV7 blockers in the treatment of ischemia-reperfusion injury. PMID:26869667

  1. Blueberry-Enriched Diet Protects Rat Heart from Ischemic Damage

    PubMed Central

    Ahmet, Ismayil; Spangler, Edward; Shukitt-Hale, Barbara; Juhaszova, Magdalena; Sollott, Steven J.; Joseph, James A.; Ingram, Donald K.; Talan, Mark

    2009-01-01

    Objectives to assess the cardioprotective properties of a blueberry enriched diet (BD). Background Reactive oxygen species (ROS) play a major role in ischemia-related myocardial injury. The attempts to use synthetic antioxidants to block the detrimental effects of ROS have produced mixed or negative results precipitating the interest in natural products. Blueberries are readily available product with the highest antioxidant capacity among fruits and vegetables. Methods and Results Following 3-mo of BD or a regular control diet (CD), the threshold for mitochondrial permeability transition (tMPT) was measured in isolated cardiomyocytes obtained from young male Fischer-344 rats. Compared to CD, BD resulted in a 24% increase (p<0.001) of ROS indexed tMPT. The remaining animals were subjected to a permanent ligation of the left descending coronary artery. 24 hrs later resulting myocardial infarction (MI) in rats on BD was 22% less than in CD rats (p<0.01). Significantly less TUNEL(+) cardiomyocytes (2% vs 9%) and 40% less inflammation cells were observed in the myocardial area at risk of BD compared to CD rats (p<0.01). In the subgroup of rats, after coronary ligation the original diet was either continued or switched to the opposite one, and cardiac remodeling and MI expansion were followed by serial echocardiography for 10 weeks. Measurements suggested that continuation of BD or its withdrawal after MI attenuated or accelerated rates of post MI cardiac remodeling and MI expansion. Conclusion A blueberry-enriched diet protected the myocardium from induced ischemic damage and demonstrated the potential to attenuate the development of post MI chronic heart failure. PMID:19536295

  2. Late prognostic value of scintigraphic parameters of acute myocardial infarction size in complicated myocardial infarction without heart failure

    SciTech Connect

    Botvinick, E.H.; Perez-Gonzalez, J.F.; Dunn, R.; Ports, T.; Chatterjee, K.; Parmley, W.

    1983-04-01

    Perfusion scintigraphy with thallium-201, infarct scintigraphy with technetium-99m pyrophosphate (TcPYP), and equilibrium blood pool scintigraphy were performed during the initial hospitalization for acute myocardial infarction (MI) in 25 patients without evidence of heart failure who presented with advanced electrocardiographic rhythm and conduction disturbances requiring treatment. Scintigraphic findings during short-term hospitalization were related to the late clinical follow-up performed an average of 14 months later, where patients were grouped as asymptomatic, 8 patients; symptomatic, 9 patients; and deceased, 8 patients. Quantitation of perfusion abnormalities, TcPYP image abnormalities, and left ventricular ejection fraction (EF) revealed that the deceased group had significantly larger TcPYP abnormalities (36 +/- 20 cm2), absolute perfusion abnormalities (32 +/- 16 cm2), and perfusion abnormalities expressed as a percentage of the projected left ventricular area (42 +/- 8%) than the asymptomatic group (13 +/- 8 cm2, 14 +/- 6 cm2, and 20 +/- 9%; p less than 0.05, p greater than 0.05, and p less than 0.01, respectively). The percent perfusion abnormality was significantly larger in the deceased group (42 +/- 8%, p less than 0.01) than in either the symptomatic group (35 +/- 13%, p less than 0.01) or the asymptomatic group (20 +/- 9%), and this parameter in the symptomatic group also differed from that in the asymptomatic group (p less than 0.01). The study indicates that patients with rhythm and conduction disturbances and without congestive heart failure during acute MI may follow an uncomplicated or a complicated late clinical course. Early scintigraphic measurements of MI and perfusion correlate well with this outcome; however, EF could not differentiate among prognostic subgroups.

  3. hHGF Overexpression in Myoblast Sheets Enhances Their Angiogenic Potential in Rat Chronic Heart Failure

    PubMed Central

    Siltanen, Antti; Kitabayashi, Katsukiyo; Lakkisto, Päivi; Mäkelä, Johanna; Pätilä, Tommi; Ono, Masamichi; Tikkanen, Ilkka; Sawa, Yoshiki; Kankuri, Esko; Harjula, Ari

    2011-01-01

    After severe myocardial infarction (MI), heart failure results from ischemia, fibrosis, and remodeling. A promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in MI is myoblast sheet transplantation. We hypothesized that in a rat model of MI-induced chronic heart failure, this therapy could be further improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF) in the myoblast sheets. We studied the ability of wild type (L6-WT) and human HGF-expressing (L6-HGF) L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression profiles by use of microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD) ligation and allowed heart failure to develop for 4 weeks. Thereafter, we administered L6-WT (n = 15) or L6-HGF (n = 16) myoblast sheet therapy. Control rats (n = 13) underwent LAD ligation and rethoracotomy without therapy, and five rats underwent a sham operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy, and analyzed cardiac angiogenesis and left ventricular architecture from histological sections at 4 weeks. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further enhanced by h

  4. Protective Effects of Cardamom in Isoproterenol-Induced Myocardial Infarction in Rats

    PubMed Central

    Goyal, Sameer N.; Sharma, Charu; Mahajan, Umesh B.; Patil, Chandragouda R.; Agrawal, Yogeeta O.; Kumari, Santosh; Arya, Dharamvir Singh; Ojha, Shreesh

    2015-01-01

    Cardamom is a popular spice that has been commonly used in cuisines for flavor since ancient times. It has copious health benefits such as improving digestion, stimulating metabolism, and exhibits antioxidant and anti-inflammatory effects. The current study investigated the effect of cardamom on hemodynamic, biochemical, histopathological and ultrastructural changes in isoproterenol (ISO)-induced myocardial infarction. Wistar male albino rats were randomly divided and treated with extract of cardamom (100 and 200 mg/kg per oral) or normal saline for 30 days with concomitant administration of ISO (85 mg/kg, subcutaneous) on 29th and 30th days, at 24 h interval. ISO injections to rats caused cardiac dysfunction evidenced by declined arterial pressure indices, heart rate, contractility and relaxation along with increased preload. ISO also caused a significant decrease in endogenous antioxidants, superoxide dismutase, catalase, glutathione peroxidase, depletion of cardiomyocytes enzymes, creatine kinase-MB, lactate dehydrogenase and increase in lipid peroxidation. All these changes in cardiac and left ventricular function as well as endogenous antioxidants, lipid peroxidation and myocyte enzymes were ameliorated when the rats were pretreated with cardamom. Additionally, the protective effects were strengthened by improved histopathology and ultrastructural changes, which specifies the salvage of cardiomyocytes from the deleterious effects of ISO. The present study findings demonstrate that cardamom significantly protects the myocardium and exerts cardioprotective effects by free radical scavenging and antioxidant activities. PMID:26593900

  5. Protective Effects of Cardamom in Isoproterenol-Induced Myocardial Infarction in Rats.

    PubMed

    Goyal, Sameer N; Sharma, Charu; Mahajan, Umesh B; Patil, Chandragouda R; Agrawal, Yogeeta O; Kumari, Santosh; Arya, Dharamvir Singh; Ojha, Shreesh

    2015-01-01

    Cardamom is a popular spice that has been commonly used in cuisines for flavor since ancient times. It has copious health benefits such as improving digestion, stimulating metabolism, and exhibits antioxidant and anti-inflammatory effects. The current study investigated the effect of cardamom on hemodynamic, biochemical, histopathological and ultrastructural changes in isoproterenol (ISO)-induced myocardial infarction. Wistar male albino rats were randomly divided and treated with extract of cardamom (100 and 200 mg/kg per oral) or normal saline for 30 days with concomitant administration of ISO (85 mg/kg, subcutaneous) on 29th and 30th days, at 24 h interval. ISO injections to rats caused cardiac dysfunction evidenced by declined arterial pressure indices, heart rate, contractility and relaxation along with increased preload. ISO also caused a significant decrease in endogenous antioxidants, superoxide dismutase, catalase, glutathione peroxidase, depletion of cardiomyocytes enzymes, creatine kinase-MB, lactate dehydrogenase and increase in lipid peroxidation. All these changes in cardiac and left ventricular function as well as endogenous antioxidants, lipid peroxidation and myocyte enzymes were ameliorated when the rats were pretreated with cardamom. Additionally, the protective effects were strengthened by improved histopathology and ultrastructural changes, which specifies the salvage of cardiomyocytes from the deleterious effects of ISO. The present study findings demonstrate that cardamom significantly protects the myocardium and exerts cardioprotective effects by free radical scavenging and antioxidant activities. PMID:26593900

  6. Alternatively activated macrophages determine repair of the infarcted adult murine heart

    PubMed Central

    Shiraishi, Manabu; Shintani, Yasunori; Shintani, Yusuke; Ishida, Hidekazu; Saba, Rie; Yamaguchi, Atsushi; Adachi, Hideo; Yashiro, Kenta

    2016-01-01

    Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI. PMID:27140396

  7. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    PubMed

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  8. Low-Dose Bisphenol A and Estrogen Increase Ventricular Arrhythmias Following Ischemia-Reperfusion in Female Rat Hearts

    PubMed Central

    Yan, Sujuan; Song, Weizhong; Chen, Yamei; Hong, Kui; Rubinstein, Jack; Wang, Hong-Sheng

    2013-01-01

    Bisphenol A (BPA) is an environmental estrogenic endocrine disruptor that may have adverse health impacts on a range of tissue/systems. In previous studies, we reported that BPA rapidly promoted arrhythmias in female rodent hearts through alteration of myocyte calcium handling. In the present study we investigated the acute effects of BPA on ventricular arrhythmias and infarction following ischemia-reperfusion in rat hearts. Rat hearts were subjected to 20 minutes of global ischemia followed by reperfusion. In female, but not male hearts, acute exposure to 1 nM BPA, either alone or combined with 1 nM 17β-estradiol (E2), during reperfusion resulted in a marked increase in the duration of sustained ventricular arrhythmias. BPA plus E2 increased the duration ventricular fibrillation, and the duration of VF as a fraction of total duration of sustained ventricular arrhythmia. The pro-arrhythmic effects of estrogens were abolished by MPP combined with PHTPP, suggesting the involvements of both ERα and ERβ signaling. In contrast to their pro-arrhythmic effects, BPA and E2 reduced infarction size, agreeing with previously described protective effect of estrogen against cardiac infarction. In conclusion, rapid exposure to low dose BPA, particularly when combined with E2, exacerbates ventricular arrhythmia following IR injury in female rat hearts. PMID:23429042

  9. SRF binding to SRE in the rat heart: influence of age.

    PubMed

    Lu, X G; Azhar, G; Liu, L; Tsou, H; Wei, J Y

    1998-01-01

    One important promoter element at the 5' end of the c-fos gene is the serum response element (SRE). SRE is the site of attachment of the 67-kDa protein serum response factor (SRF) and several accessory proteins (Elk1, SAP1, SAP2/NET), termed the ternary complex factors. The binding of SRF to SRE plays an integral role in c-fos transcription and may occur independently of the association of the ternary complex factors. In the current study, we found that SRF protein expression was increased in the hearts of the old vs young adult rats in the basal condition. The hearts of old rats may have posttranslationally modified SRF proteins that are different compared to that of the young adults. The SRF increase was present both in the cytoplasm as well as in the nucleus in the old hearts. To test whether SRF protein levels in response to acute stress might be altered with age, we studied hearts of young adult and old rats during myocardial infarction. The young adult rat hearts responded to acute ischemic stress with an increase in both p62 and p67 SRF. The hearts of the old rats, however, did not exhibit a significant change in SRF protein expression. These findings demonstrate qualitative as well as quantitative age differences in SRF protein levels, both at baseline and following stimulation. The reduced SRF expression in response to acute cardiac ischemic stress in the old rats might contribute to the observed age-related decrease in the induction of immediate early genes such as c-fos in the heart. PMID:9467416

  10. Transcriptional profiling of left ventricle and peripheral blood mononuclear cells in a rat model of postinfarction heart failure

    PubMed Central

    2013-01-01

    Background Myocardial infarction (MI) often results in left ventricular (LV) remodeling followed by heart failure (HF). It is of great clinical importance to understand the molecular mechanisms that trigger transition from compensated LV injury to HF and to identify relevant diagnostic biomarkers. The aim of this study was to investigate gene expression in the LV and to evaluate their reflection in peripheral blood mononuclear cells (PBMCs). Methods MI was induced in rats by ligation of the proximal left coronary artery. Rats with small, moderate, and large MI size were included into the experiment two months after the operation. The development of heart failure was estimated by echocardiography and catheterization. Microarrays were used to compare the LV and PBMCs transcriptomes of control and experimental animals. Results Only rats with a large MI developed extensive LV remodeling and heart failure. 840 transcripts were altered in LV of failing hearts, and especially numerous were those associated with the extracellular matrix. In contrast, no significant gene expression changes were seen in LVs of rats with moderate or small MI that had compensated LV injury. We showed that ceruloplasmin was similarly overexpressed in the heart and blood in response to HF, whereas downregulation of tetraspanin 12 was significant only in the PBMCs. Conclusion A large size of infarcted area is critical for progression of LV remodeling and HF development, associated with altered gene expression in the heart. Ceruloplasmin and tetraspanin 12 are potential convenient markers in readily obtainable PBMCs. PMID:24206753

  11. MALDI Mass Spectrometric Imaging of Cardiac Tissue Following Myocardial Infarction in a Rat Coronary Artery Ligation Model

    PubMed Central

    Menger, Robert F.; Stutts, Whitney L.; Anbukumar, Dhanam S.; Bowden, John A.; Ford, David A.; Yost, Richard A.

    2011-01-01

    Although acute myocardial infarction (MI) is consistently among the top causes of death in the United States, the spatial distribution of lipids and metabolites following MI remains to be elucidated. This work presents the investigation of an in vivo rat model of MI using mass spectrometric imaging (MSI) and multivariate data analysis. MSI was conducted on cardiac tissue following a 24-hour left anterior descending coronary artery ligation in order to analyze multiple compound classes. First, the spatial distribution of a small metabolite, creatine, was used to identify areas of infarcted myocardium. Second, multivariate data analysis and tandem mass spectrometry were used to identify phospholipid (PL) markers of MI. A number of lysophospholipids demonstrated increased ion signal in areas of infarction. In contrast, select intact PLs demonstrated decreased ion signal in the area of infarction. The complementary nature of these two lipid classes suggest increased activity of phospholipase A2, an enzyme that has been implicated in coronary heart disease and inflammation. PMID:22141424

  12. FSTL1 as a Potential Mediator of Exercise-Induced Cardioprotection in Post-Myocardial Infarction Rats.

    PubMed

    Xi, Yue; Gong, Da-Wei; Tian, Zhenjun

    2016-01-01

    Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI), but the underlying mechanisms are poorly understood. Follistatin-like1 (FSTL1) is a cardioprotective factor against ischemic injury and is induced in cardiomyocytes and skeletal muscle in ischemic and hypoxic conditions. To test the hypothesis that FSTL1 may be a molecular link between exercise and improved heart function post MI, we subjected MI-rats, induced by left coronary artery ligation, to two modes of exercise: intermittent aerobic exercise (IAE) or mechanical vibration training (MVT), for four weeks and examined the relevance of FSTL1 to exercise-mediated cardiac effects. Exercise improved the functional performance, reduced fibrosis of MI-hearts and induced FSTL1 expression, the TGFβ-Smad2/3 signaling and angiogenesis in myocardium. In gastrocnemius, exercise increased the cross-sectional area of myocytes and FSTL1 expression. Importantly, exercise increased circulating FSTL1 levels, which were positively correlated with the skeletal muscle FSTL1 expression and negatively correlated with heart fibrosis. Overall, the IAE was more effective than that of MVT in cardioprotection. Finally, exogenous FSTL1 administration directly improved angiogenesis as well as functionality of post-MI hearts. Taken together, we have demonstrated that FSTL1 is a potential mediator of exercise-induced cardioprotection in post-MI rats. PMID:27561749

  13. FSTL1 as a Potential Mediator of Exercise-Induced Cardioprotection in Post-Myocardial Infarction Rats

    PubMed Central

    Xi, Yue; Gong, Da-Wei; Tian, Zhenjun

    2016-01-01

    Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI), but the underlying mechanisms are poorly understood. Follistatin-like1 (FSTL1) is a cardioprotective factor against ischemic injury and is induced in cardiomyocytes and skeletal muscle in ischemic and hypoxic conditions. To test the hypothesis that FSTL1 may be a molecular link between exercise and improved heart function post MI, we subjected MI-rats, induced by left coronary artery ligation, to two modes of exercise: intermittent aerobic exercise (IAE) or mechanical vibration training (MVT), for four weeks and examined the relevance of FSTL1 to exercise-mediated cardiac effects. Exercise improved the functional performance, reduced fibrosis of MI-hearts and induced FSTL1 expression, the TGFβ-Smad2/3 signaling and angiogenesis in myocardium. In gastrocnemius, exercise increased the cross-sectional area of myocytes and FSTL1 expression. Importantly, exercise increased circulating FSTL1 levels, which were positively correlated with the skeletal muscle FSTL1 expression and negatively correlated with heart fibrosis. Overall, the IAE was more effective than that of MVT in cardioprotection. Finally, exogenous FSTL1 administration directly improved angiogenesis as well as functionality of post-MI hearts. Taken together, we have demonstrated that FSTL1 is a potential mediator of exercise-induced cardioprotection in post-MI rats. PMID:27561749

  14. Cortical infarction of the right parietal lobe and neurogenic heart disease: A report of three cases.

    PubMed

    Li, Fang; Jia, Yujie

    2012-04-25

    Three male patients were diagnosed with new cortical infarctions of the right parietal lobe on the basis of head magnetic resonance imaging; high-intensity signals indicating lesions in the right parietal lobe were noted on diffusion-weighted images at admission. Two of them presented with left hand weakness, and one exhibited left upper limb weakness. Treatment for improving blood supply to the brain was administered. One patient died suddenly because of ventricular fibrillation 3 days after admission. The other two patients had increased troponin levels and abnormal electrocardiograms, and were diagnosed with acute myocardial infarction half a month after admission. When lesions exist in field 7 of the parietal cortex (resulting in paralysis of the contralateral hand), the sympathetic center of the posterior lateral nucleus of the hypothalamus demonstrates compensatory excitement, which easily causes tachyarrhythmia and sudden death. Our experimental findings indicate that close electrocardiograph monitoring and cerebral infarction treatment should be standard procedures to predict and help prevent heart disease in patients with cerebral infarction in the right parietal lobe and left upper limb weakness as the main complaint. PMID:25722680

  15. Hemolytic anemia, thrombosis, and infarction in male and female F344 rats following gavage exposure to 2-butoxyethanol.

    PubMed

    Ghanayem, B I; Long, P H; Ward, S M; Chanas, B; Nyska, M; Nyska, A

    2001-06-01

    2-butoxyethanol (BE; ethylene glycol monobutyl ether) is used extensively in the manufacture of a wide range of domestic and industrial products which may result in human exposure and toxicity. BE causes severe hemolytic anemia in male and female rats and mice. In a recent report, female F344 rats exposed to 500 ppm BE by inhalation and sacrificed moribund on day 4 of treatment exhibited disseminated thrombosis associated with infarction in several organs. In contrast, no such lesions were observed in male rats similarly exposed to BE. Additional studies were therefore undertaken to compare the effects of BE in rats of both sexes. Rats received 250 mg BE/kg/day by gavage for 1, 2 or 3 days and were sacrificed 24 or 48 hr after the last dose. Control rats received 5 ml/kg water. Progressive time-dependent hemolytic anemia--macrocytic, hypochromic, and regenerative--was observed in both sexes of rats exposed to BE. Additionally, BE caused significant morphological changes in erythrocytes, first observed 24 hr after a single dose, including stomatocytosis, macrocytosis with moderate rouleaux formation, and spherocytosis. These morphological changes became progressively more severe as BE dosing continued and included the occasional occurrence of schistocytes and ghost cells, rouleaux formation in rats of both sexes, and an increased number of red blood cells with micronuclei in female rats. Overall, the progression of hemolytic anemia and morphological changes as a function of the number of days of exposure varied with gender and suggested a faster onset of hemolysis in female rats. The range of BE-related histopathological changes noted in both sexes was comparable; however, while these lesions were observed in female rats following a single dose, similar effects were first observed in males after 3 consecutive days of exposure to BE. Pathological changes involved disseminated thrombosis in the lungs, nasal submucosa, eyes, liver, heart, bones and teeth, with evidence

  16. Atrial natriuretic peptide infusion in chronic heart failure in the rat.

    PubMed

    Kohzuki, M; Hodsman, G P; Harrison, R W; Western, P S; Johnston, C I

    1989-01-01

    The natriuretic, diuretic, and hypotensive responses to infused atrial natriuretic peptide (ANP) were measured in rats 4 weeks after myocardial infarction induced by coronary artery ligation. Rat [1-28]-ANP was infused intravenously in doses of 0.1, 0.3, and 1.0 microgram/kg/min for 30 min each under pentobarbital anesthesia. There was a marked natriuresis, diuresis, and fall in blood pressure in rats with infarction but each response was significantly attenuated when compared with sham-operated controls (ANOVA: p less than 0.01, p less than 0.05, and p less than 0.01, respectively). Urinary cyclic guanosine monophosphate (cGMP) excretion in rats with infarction was higher than that of controls but rose to the same absolute level in both groups in response to ANP infusion (0.3 microgram/kg/min). Reduced ANP responsiveness may result from impaired postreceptor mechanisms or from physiological antagonism by angiotensin II. Reduced ANP responsiveness may partly explain impaired salt handling in heart failure. PMID:2473348

  17. Review on CFD simulation in heart with dilated cardiomyopathy and myocardial infarction.

    PubMed

    Chan, Bee Ting; Lim, Einly; Chee, Kok Han; Abu Osman, Noor Azuan

    2013-05-01

    The heart is a sophisticated functional organ that plays a crucial role in the blood circulatory system. Hemodynamics within the heart chamber can be indicative of exert cardiac health. Due to the limitations of current cardiac imaging modalities, computational fluid dynamics (CFD) have been widely used for the purposes of cardiac function assessment and heart disease diagnosis, as they provide detailed insights into the cardiac flow field. An understanding of ventricular hemodynamics and pathological severities can be gained through studies that employ the CFD method. In this research the hemodynamics of two common myocardial diseases, dilated cardiomyopathy (DCM) and myocardial infarction (MI) were investigated, during both the filling phase and the whole cardiac cycle, through a prescribed geometry and fluid structure interaction (FSI) approach. The results of the research indicated that early stage disease identification and the improvement of cardiac assisting devices and therapeutic procedures can be facilitated through the use of the CFD method. PMID:23428371

  18. Human relaxin gene expression delivered by bioreducible dendrimer polymer for post-infarct cardiac remodeling in rats.

    PubMed

    Lee, Young Sook; Choi, Joung-Woo; Oh, Jung-Eun; Yun, Chae-Ok; Kim, Sung Wan

    2016-08-01

    In consensus, myocardial infarction (MI) is defined as irreversible cell death secondary to prolonged ischemia in heart. The aim of our study was to evaluate the therapeutic potential of anti-fibrotic human Relaxin-expressing plasmid DNA with hypoxia response element (HRE) 12 copies (HR1) delivered by a dendrimer type PAM-ABP polymer G0 (HR1/G0) after MI on functional, hemodynamic, geometric, and cardiac extracellular matrix (ECM) remodeling in rats. HR1/G0 demonstrated significantly improved LV systolic function, hemodynamic parameters, and geometry on 1 wk and 4 wks after MI in rats, compared with I/R group. The resolution of regional wall motional abnormalities and the increased blood flow of infarct-related coronary artery supported functional improvements of HR1/G0. Furthermore, HR1/G0 polyplex showed favorable post-infarct cardiac ECM remodeling reflected on the favorable cardiac ECM compositions. Overall, this is the first study, which presented an advanced platform for the gene therapy that reverses adverse cardiac remodeling after MI with a HR1 gene delivered by a bioreducible dendrimer polymer in the cardiac ECM. PMID:27174688

  19. Overexpression of protein kinase C ɛ improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction

    PubMed Central

    He, H; Zhao, Z-H; Han, F-S; Liu, X-H; Wang, R; Zeng, Y-J

    2016-01-01

    We assessed the effects of protein kinase C ɛ (PKCɛ) for improving stem cell therapy for acute myocardial infarction (AMI). Primary mesenchymal stem cells (MSCs) were harvested from rat bone marrow. PKCɛ-overexpressed MSCs and control MSCs were transplanted into infarct border zones in a rat AMI model. MSCs and PKCɛ distribution and expression of principal proteins involved in PKCɛ signaling through the stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) axis and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by immunofluorescence and western blot 1 day after transplantation. Echocardiographic measurements and histologic studies were performed at 4 weeks after transplantation, and MSC survival, expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGFβ), cardiac troponin I (cTnI), von Willebrand factor (vWF), smooth muscle actin (SMA) and factor VIII and apoptosis in infarct border zones were assessed. Rat heart muscles retained more MSCs and SDF-1, CXCR4, PI3K and phosphorylated AKT increased with PKCɛ overexpression 1 day after transplantation. MSC survival and VEGF, bFGF, TGFβ, cTnI, vWF, SMA and factor VIII expression increased in animals with PKCɛ-overexpressed MSCs at 4 weeks after transplantation and cardiac dysfunction and remodeling improved. Infarct size and apoptosis decreased as well. Inhibitory actions of CXCR4 or PI3K partly attenuated the effects of PKCɛ. Activation of PKCɛ may improve retention, survival and differentiation of transplanted MSCs in myocardia. Augmentation of PKCɛ expression may enhance the therapeutic effects of stem cell therapy for AMI. PMID:26775707

  20. Graded exercise in three cases of heart rupture after acute myocardial infarction.

    PubMed

    Mineo, K; Takizawa, A; Shimamoto, M; Yamazaki, F; Kimura, A; Chino, N; Izumi, S

    1995-01-01

    Despite advances in the study of exercise for acute myocardial infarction (AMI) patients, few studies on exercise for post-AMI heart rupture patients have been reported. We assessed three cases of heart rupture (of the left ventricular free wall in two cases and of the ventricular septum in one case) in post-AMI patients who underwent three-graded exercise. Two of the three patients were operated on, whereas one patient was managed conservatively for heart rupture. Two of the three cases had also suffered cerebral infarction post-AMI. The exercise program was composed of three grades, slow level walking (grade 1), mild reconditioning and activities of daily living (ADL) exercises (grade 2), and optional endurance training using machines below 75% of predicted maximal heart rate (grade 3). Electrocardiograms and blood pressure were monitored during all exercises. All patients had muscle weakness, poor endurance capacity, as well as low cardiac function (28-47% of left ventricular ejection fraction). Two patients underwent grades 1 and 2 exercise programs, and the other performed grades 1, 2, and 3 exercise programs over a 3- to 10-wk period. We observed improvement in the double product, work capacity, and ADL without congestive heart failure, ischemic attack, or serious arrhythmias. However, the youngest patient, who underwent the grade 3 exercise program, died from a cardiac event 10 mo after onset of AMI. We conclude that post-AMI heart rupture patients should undergo delayed, gradual, low-level graded exercise (4-6 metabolic equivalents), with monitoring of blood pressure and electrocardiograms to improve work capacity, ADL, and the quality of life. However, daily activity and exercise intensity should be promptly supervised for those with severely deteriorated cardiac functions to prevent sudden cardiac event. PMID:8534391

  1. The stem cell adjuvant with Exendin-4 repairs the heart after myocardial infarction via STAT3 activation

    PubMed Central

    Liu, Jianfeng; Wang, Haibin; Wang, Yan; Yin, Yujing; Du, Zhiyan; Liu, Zhiqiang; Yang, Junjie; Hu, Shunying; Wang, Changyong; Chen, Yundai

    2014-01-01

    The poor survival of cells in ischaemic myocardium is a major obstacle for stem cell therapy. Exendin-4 holds the potential of cardioprotective effect based on its pleiotropic activity. This study investigated whether Exendin-4 in conjunction with adipose-derived stem cells (ADSCs) could improve the stem cell survival and contribute to myocardial repairs after infarction. Myocardial infarction (MI) was induced by the left anterior descending artery ligation in adult male Sprague-Dawley rats. ADSCs carrying double-fusion reporter gene [firefly luciferase and monomeric red fluorescent protein (fluc-mRFP)] were quickly injected into border zone of MI in rats treated with or without Exendin-4. Exendin-4 enhanced the survival of transplanted ADSCs, as demonstrated by the longitudinal in vivo bioluminescence imaging. Moreover, ADSCs adjuvant with Exendin-4 decreased oxidative stress, apoptosis and fibrosis. They also improved myocardial viability and cardiac function and increased the differentiation rates of ADSCs into cardiomyocytes and vascular smooth muscle cells in vivo. Then, ADSCs were exposed to hydrogen peroxide/serum deprivation (H2O2/SD) to mimic the ischaemic environment in vitro. Results showed that Exendin-4 decreased the apoptosis and enhanced the paracrine effect of ADSCs. In addition, Exendin-4 activated signal transducers and activators of transcription 3 (STAT3) through the phosphorylation of Akt and ERK1/2. Furthermore, Exendin-4 increased the anti-apoptotic protein Bcl-2, but decreased the pro-apoptotic protein Bax of ADSCs. In conclusion, Exendin-4 could improve the survival and therapeutic efficacy of transplanted ADSCs through STAT3 activation via the phosphorylation of Akt and ERK1/2. This study suggests the potential application of Exendin-4 for stem cell–based heart regeneration. PMID:24779911

  2. Protective effects of drag-reducing polymers on ischemic reperfusion injury of isolated rat heart.

    PubMed

    Hu, Feng; Wang, Yali; Gong, Kaizheng; Ge, Gaoyuan; Cao, Mingqiang; Zhao, Pei; Sun, Xiaoning; Zhang, Zhengang

    2016-01-01

    Drag-reducing polymers (DRPs) are blood-soluble macromolecules that can increase blood flow and reduce vascular resistance. The purpose of the present study was to observe the effect of DRPs on ischemic reperfusion (I/R) injury of isolated rat hearts. Experiments were performed on isolated rat hearts subjected to 30 min of ischemia followed by 90 min of reperfusion in Langendorff preparations. Adult Wistar rats were divided into the following five groups: control group, I/R group, group III (I/R and 2×10(-7)  g/ml PEO reperfusion), group IV (I/R and 1×10(-6)  g/ml PEO reperfusion), and group V (I/R and 5×10(-6)  g/ml PEO reperfusion). Left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), maximum rate of ventricular pressure increase and decrease ( ± dp/dtmax), heart rate (HR) and coronary flow were measured. Lactate dehydrogenase (LDH) and creatine kinase (CK) activity and coronary flow, myocardial infarction size and cardiomyocytes apoptosis were also assayed. Our results showed that PEO decreased LVEDP and increased LVSP, ± dP/dtmax in group IV and group V compared with the I/R group (all P <  0.05). The coronary flow significantly increased and the activities of LDH and CK in the coronary flow significantly decreased in group IV and group V compared with those in the I/R group (all P <  0.05). Cell apoptosis and myocardial infarction size were reduced in group IV and group V compared with the I/R group (all P <  0.05). Collectively, these results suggested that DRPs had a protective effect on cardiac I/R injury of isolated rat hearts and it may offer a new potential approach for the treatment of acute ischemic heart diseases. PMID:25633566

  3. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    SciTech Connect

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike; Ramos, Meg; Fisher, Robyn L.; Vickers, Alison E.M.

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol

  4. Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts.

    PubMed

    Du, Jianfeng; Zhang, Ling; Wang, Zhengke; Yano, Naohiro; Zhao, Yu Tina; Wei, Lei; Dubielecka-Szczerba, Patrycja; Liu, Paul Y; Zhuang, Shougang; Qin, Gangjian; Zhao, Ting C

    2016-02-15

    We have demonstrated that glucagon like peptide-1 (GLP-1) protects the heart against ischemic injury. However, the physiological mechanism by which GLP-1 receptor (GLP-1R) initiates cardioprotection remains to be determined. The objective of this study is to elucidate the functional roles of MAPK kinase 3 (MKK3) and Akt-1 in mediating exendin-4-elicited protection in the infarcted hearts. Adult mouse myocardial infarction (MI) was created by ligation of the left descending artery. Wild-type, MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice were divided into one of several groups: 1) sham: animals underwent thoracotomy without ligation; 2) MI: animals underwent MI and received a daily dose of intraperitoneal injection of vehicle (saline); 3) MI + exendin-4: infarcted mice received daily injections of exendin-4, a GLP-1R agonist (0.1 mg/kg, ip). Echocardiographic measurements indicate that exendin-4 treatment resulted in the preservation of ventricular function and increases in the survival rate, but these effects were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. Exendin-4 treatments suppressed cardiac hypotrophy and reduced scar size and cardiac interstitial fibrosis, respectively, but these beneficial effects were lost in genetic elimination of MKK3, Akt-1, or Akt-1(-/-);MKK3(-/-) mice. GLP-1R stimulation stimulated angiogenic responses, which were also mitigated by deletion of MKK3 and Akt-1. Exendin-4 treatment increased phosphorylation of MKK3, p38, and Akt-1 at Ser129 but decreased levels of active caspase-3 and cleaved poly (ADP-ribose) polymerase; these proteins were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. These results reveal that exendin-4 treatment improves cardiac function, attenuates cardiac remodeling, and promotes angiogenesis in the infarcted myocardium through MKK3 and Akt-1 pathway. PMID:26739490

  5. Role of Cardiac Myocytes Heart Fatty Acid Binding Protein Depletion (H-FABP) in Early Myocardial Infarction in Human Heart (Autopsy Study)

    PubMed Central

    Shabaiek, Amany; Ismael, Nour El-Hoda; Elsheikh, Samar; Amin, Hebat Allah

    2016-01-01

    BACKGROUND: Many immunohistochemical markers have been used in the postmortem detection of early myocardial infarction. AIM: In the present study we examined the role of Heart-type fatty acid binding protein (H-FABP), in the detection of early myocardial infarction. MATERIAL AND METHODS: We obtained samples from 40 human autopsy hearts with/without histopathological signs of ischemia. RESULTS: All cases of definite and probable myocardial infarction showed a well-defined area of H-FABP depletion. All of the control cases showed strong H-FABP expression, except two markedly autolysed myocardial samples that showed affected antigenicity. CONCLUSION: Thus, we suggest H-FABP as being one of the valuable tools facing the problem of postmortem detection of early myocardial infarction/ischemia, but not in autolysis.

  6. Bone marrow mononuclear cells enhance anti-inflammatory effects of pravastatin against isoproterenol-induced myocardial infarction in rats.

    PubMed

    El-Mahdy, Nageh; Salem, Mohamed L; El-Sayad, Magda; El-Desouky, Karima I; Zaghow, Nesma

    2016-05-01

    The current study investigated the combinatorial effect of pravastatin (PRAV) and bone marrow mononuclear cells (BM-MNC) on acute myocardial infarction (AMI) induced experimentally in rats. After induction of MI, rats were given oral PRAV (20 mg/kg/day) for 28 days or a bolus intravenous injection (via lateral vein) of a total of 14 × 10(6) autologous BM-MNC or a combination of both. Serum brain natriuretic peptide (BNP) and histologic changes in cardiac tissues were assessed. Cardiac contents of lipid peroxides, superoxide dismutase (SOD) and inflammatory biomarkers including tumor necrosis factor (TNF)-α and interleukin (IL)-1β as well as vascular endothelial growth factor (VEGF) and nitric oxide (NO) were also measured. Combined PRAV and BM-MNC treatment significantly suppressed serum BNP. Cardiac cell apoptosis and inflammatory cell infiltration in heart tissue decreased significantly in both the PRAV and the PRAV + BM-MNC groups. Cardiac lipid peroxides along with TNFα and IL-1β levels were significantly reduced in both the PRAV and PRAV + BM-MNC hosts with an increase in SOD levels. However, the combined treatment increased cardiac NO levels and did not modify cardiac VEGF levels. The current results indicated that administration of BM-MNC improved the therapeutic efficacy of PRAV treatment by improving the morphology of infarcted hearts as well as decreasing inflammation in a host, but did not do so by inducing therapeutic angiogenesis. PMID:26606075

  7. Neuroendocrine prediction of left ventricular function and heart failure after acute myocardial infarction

    PubMed Central

    Richards, A; Nicholls, M; Yandle, T; Ikram, H; Espiner, E; Turner, J; Buttimore, R; Lainchbury, J; Elliott, J; Frampton, C; Crozier, I; Smyth, D

    1999-01-01

    independent predictor of left ventricular function, heart failure, or death over the subsequent 14 months, and superior to ANF, N-ANF, cGMP, and plasma catecholamines.

 Keywords: cardiac natriuretic peptides; noradrenaline; myocardial infarction; heart failure PMID:9922344

  8. ACE inhibition reduces infarction in normotensive but not hypertensive rats: correlation with cortical ACE activity

    PubMed Central

    Porritt, Michelle J; Chen, Michelle; Rewell, Sarah S J; Dean, Rachael G; Burrell, Louise M; Howells, David W

    2010-01-01

    Angiotensin-converting enzyme (ACE) inhibition can reduce stroke risk by up to 43% in humans and reduce the associated disability, and hence understanding the mechanism of improvement is important. In animals and humans, these effects may be independent of the blood pressure-lowering effects of ACE inhibition. Normotensive (Wistar–Kyoto (WKY)) and hypertensive (spontaneously hypertensive rat (SHR)) animals were treated with the ACE inhibitors ramipril or lisinopril for 7 or 42 days before 2 hours of transient middle cerebral artery occlusion (MCAo). Blood pressure, serum ACE, and blood glucose levels were measured and stroke infarct volume was recorded 24 hours after stroke. Despite greater reductions in blood pressure, infarct size was not improved by ACE inhibition in hypertensive animals. Short-term ACE inhibition produced only a modest reduction in blood pressure, but WKY rats showed marked reductions in infarct volume. Long-term ACE inhibition had additional reductions in blood pressure; however, infarct volumes in WKY rats did not improve further but worsened. WKY rats differed from SHR in having marked cortical ACE activity that was highly sensitive to ACE inhibition. The beneficial effects of ACE inhibition on infarct volume in normotensive rats do not correlate with changes in blood pressure. However, WKY rats have ACE inhibitor-sensitive cortical ACE activity that is lacking in the SHR. PMID:20407464

  9. Effect of myocardial infarction on the function and metabolism of the non-infarcted muscle

    SciTech Connect

    Hansen, C.A.

    1985-01-01

    Rat hearts were infarcted in vivo by ligation of the left ventricular coronary artery. After one or three weeks, the hearts were isolated and perfused in vitro. Despite the onset of hypertrophy, ventricular function was more depressed in the one- and three-week infarcted hearts than in acutely ligated hearts. These data suggested that the depressed mechanical function was due not only to the loss of viable tissue, but also to alterations occurring in the non-infarcted tissue. The inotropic response to extracellular calcium was depressed in infarcted hearts, such that the mechanical performance of the infarcted heart was likely to be limited by the availability of extracellular calcium under physiological conditions. No limitation in energy production was found as indicated by the maintenance of ATP levels, the creatine phosphate/creatine ratio and normal lactate concentrations in the infarcted hearts. Comparison of the rates of substrate oxidation with MVO/sub 2/ revealed that, in both the sham and infarcted hearts, substrate oxidation, as estimated by /sup 14/CO/sub 2/ production, could not account for the observed MVO/sub 2/. It was found that the rate of /sup 14/CO/sub 2/ production from exogenous labeled palmitate underestimated the actual rate of fatty acid oxidation. This resulted from incomplete equilibration of added (/sup 14/C)-palmitate with the fatty acyl moieties present in acyl carnitine. However, the rate of /sup 14/CO/sub 2/ production from exogenous palmitate was lower in the infarcted than sham hearts.

  10. Hypercholesterolemia abrogates an increased resistance of diabetic rat hearts to ischemia-reperfusion injury.

    PubMed

    Adameová, A; Kuzelová, M; Andelová, E; Faberová, V; Pancza, D; Svec, P; Ziegelhöffer, A; Ravingerová, T

    2007-01-01

    Both, diabetes mellitus (DM) and hypercholesterolemia (HCH) are known as risk factors of ischemic heart disease, however, the effects of experimental DM, as well as of HCH alone, on ischemia/reperfusion-induced myocardial injury are not unequivocal. We have previously demonstrated an enhanced resistance to ischemia-induced arrhythmias in rat hearts in the acute phase of DM. Our objectives were thus to extend our knowledge on how DM in combination with HCH, a model that is relevant to diabetic patients with altered lipid metabolism, may affect the size of myocardial infarction and susceptibility to arrhythmias. A combination of streptozotocin (STZ; 80 mg/kg, i.p.) and the fat-cholesterol diet (1% cholesterol, 1% coconut oil; FCHD) was used as a double-disease model mimicking DM and HCH simultaneosly occurring in humans. Following 5 days after STZ injection and FCHD leading to increased blood glucose and cholesterol levels, anesthetized open-chest diabetic, diabetic-hypercholesterolemic (DM-HCH) and age-matched control rats were subjected to 6-min ischemia (occlusion of LAD coronary artery) followed by 10 reperfusion to test susceptibility to ventricular arrhythmias in the in vivo experiments and to 30-min ischemia and subsequent 2-h reperfusion for the evaluation of the infarct size (IS) in the Langendorff-perfused hearts. The incidence of the most life-threatening ventricular arrhythmia, ventricular fibrillation, was significantly increased in the DM-HCH rats as compared with non-diabetic control animals (100% vs. 50%; p<0.05). Likewise, arrhythmia severity score (AS) was significantly higher in the DM-HCH rats than in the controls (4.9+/-0.2 vs. 3.5+/-0.5; p<0.05), but was not increased in the diabetic animals (AS 3.7+/-0.9; p>0.05 vs. controls). Diabetic hearts exhibited a reduced IS (15.1+/-3.0% of the area at risk vs. 37.6+/-2.8% in the control hearts; p<0.05), however, a combination of DM and HCH increased the size of myocardial infarction to that observed in

  11. Eplerenone: the evidence for its place in the treatment of heart failure after myocardial infarction

    PubMed Central

    Nadin, Carole

    2005-01-01

    Introduction: Heart failure is a frequent complication after acute myocardial infarction (MI) and carries a poor prognosis. Current treatments inhibit the renin-angiotensin-aldosterone system but suppression of aldosterone may be incomplete. The aldosterone antagonist spironolactone has been shown to improve survival in patients with chronic, severe heart failure. Eplerenone is a selective aldosterone antagonist expected to have a lower incidence of hormonal side effects than spironolactone. Aims: To assess the evidence on the therapeutic value of eplerenone for treatment of heart failure in adults. Evidence review: The evidence base consists of one large double-blind placebo-controlled multicenter randomized trial in over 6000 patients with postmyocardial infarction (MI) heart failure, comparing eplerenone plus standard therapy with placebo plus standard therapy. All the main outcomes were patient-oriented. Evidence from this trial shows that eplerenone improves survival and reduces cardiovascular hospitalization/mortality, compared with standard treatment alone. The incidence of hormonal side effects is no greater than with placebo. The risk of hyperkalemia is significantly increased, especially in patients with low creatinine clearance. Eplerenone was both more effective and more costly than standard treatment alone. The cost-effectiveness ratio has been estimated at $US10 402–21 876 per life-year gained. Place in therapy: Eplerenone reduces mortality compared with current treatment alone in patients with post-MI heart failure, at additional cost. Direct comparative evidence is needed to assess its efficacy versus spironolactone. It may be valuable in patients who are intolerant to the hormonal side effects of spironolactone. PMID:22500149

  12. Sympathetic Hyperinnervation and Inflammatory Cell NGF Synthesis Following Myocardial Infarction in Rats

    PubMed Central

    Hasan, Wohaib; Jama, Abdi; Donohue, Timothy; Wernli, Gwenaelle; Onyszchuk, Gregory; Al-Hafez, Baraa; Bilgen, Mehmet; Smith, Peter G.

    2006-01-01

    Sympathetic hyperinnervation occurs in human ventricular tissue after myocardial infarction and may contribute to arrhythmias. Aberrant sympathetic sprouting is associated with elevated nerve growth factor (NGF) in many contexts, including ventricular hyperinnervation. However, it is unclear whether cardiomyocytes or other cell types are responsible for increased NGF synthesis. In this study, left coronary arteries were ligated and ventricular tissue examined in rats 1-28 days post-infarction. Infarct and peri-infarct tissue was essentially devoid of sensory and parasympathetic nerves at all time points. However, areas of increased sympathetic nerve density were observed in the peri-infarct zone between post-ligation days 4-14. Hyperinnervation occurred in regions containing accumulations of macrophages and myofibroblasts. To assess whether these inflammatory cells synthesize NGF, sections were processed for NGF in situ hybridization and immunohistochemistry. Both macrophage1 antigen-positive macrophages and α-smooth muscle actin immunoreactive myofibroblasts expressed NGF in areas where they were closely proximate to sympathetic nerves. To investigate whether NGF produced by peri-infarct cells induces sympathetic outgrowth, we co-cultured adult sympathetic ganglia with peri-infarct explants. Neurite outgrowth from sympathetic ganglia was significantly greater at post-ligation days 7-14 as compared to control tissue. Addition of an NGF function-blocking antibody prevented the increased neurite outgrowth induced by peri-infarct tissue. These findings provide evidence that inflammatory cell NGF synthesis plays a causal role in sympathetic hyperinnervation following myocardial infarction. Section: Disease-Related Neuroscience PMID:17084822

  13. Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFβ1 expression and activation of p38-MAPK and ERK1/2

    PubMed Central

    Pan, Zhenwei; Zhao, Weiming; Zhang, Xiangying; Wang, Bing; Wang, Jinghao; Sun, Xuelin; Liu, Xuantong; Feng, Shuya; Yang, Baofeng; Lu, Yanjie

    2011-01-01

    BACKGROUND AND PURPOSE Interstitial fibrosis plays a causal role in the development of heart failure after chronic myocardial infarction (MI), and anti-fibrotic therapy represents a promising strategy to mitigate this pathological process. The purpose of this study was to investigate the effect of long-term administration of scutellarin (Scu) on cardiac interstitial fibrosis of myocardial infarct rats and the underlying mechanisms. EXPERIMENTAL APPROACH Scu was administered to rats that were subjected to coronary artery ligation. Eight weeks later, its effects on cardiac fibrosis were assessed by examining cardiac function and histology. The number and collagen content of cultured cardiac fibroblasts exposed to angiotensin II (Ang II) were determined after the administration of Scu in vitro. Protein expression was detected by Western blot technique, and mRNA levels by quantitative reverse transcription-PCR. KEY RESULTS The echocardiographic and haemodynamic measurements showed that Scu improved the impaired cardiac function of infarct rats and decreased interstitial fibrosis. Scu inhibited the expression of FN1 and TGFβ1, but produced no effects on inflammatory cytokines (TNFα, IL-1β and IL-6) in the 8 week infarct hearts. Scu inhibited the proliferation and collagen production of cardiac fibroblasts (CFs) and the up-regulation of FN1 and TGFβ1 induced by Ang II. The enhanced phosphorylation of p38-MAPK and ERK1/2 in both infarct cardiac tissue and cultured CFs challenged by Ang II were suppressed by Scu. CONCLUSIONS AND IMPLICATIONS Long-term administration of Scu improved the cardiac function of MI rats by inhibiting interstitial fibrosis, and the mechanisms may involve the suppression of pro-fibrotic cytokine TGFβ1 expression and inhibition of p38 MAPK and ERK1/2 phosphorylation. PMID:20942814

  14. Acute Effects of Vagotomy on Baroreflex Equilibrium Diagram in Rats with Chronic Heart Failure.

    PubMed

    Kawada, Toru; Li, Meihua; Zheng, Can; Sugimachi, Masaru

    2016-01-01

    The arterial baroreflex system can be divided into the neural arc, from pressure input to efferent sympathetic nerve activity (SNA), and the peripheral arc, from SNA to arterial pressure (AP). Plotting the neural and peripheral arcs on a pressure-SNA plane yields a baroreflex equilibrium diagram. We examined the effects of vagotomy on the open-loop static characteristics of the carotid sinus baroreflex in normal control rats (NC, n = 10) and rats with heart failure after myocardial infarction (MI, n = 10). In the NC group, vagotomy shifted the neural arc toward higher SNA and decreased the slope of the peripheral arc. Consequently, the operating-point SNA increased without a significant change in the operating-point AP on the baroreflex equilibrium diagram. These vagotomy-induced effects were not observed in the MI group, suggesting a loss of vagal modulation of the carotid sinus baroreflex function in heart failure. PMID:27594790

  15. Acute Effects of Vagotomy on Baroreflex Equilibrium Diagram in Rats with Chronic Heart Failure

    PubMed Central

    Kawada, Toru; Li, Meihua; Zheng, Can; Sugimachi, Masaru

    2016-01-01

    The arterial baroreflex system can be divided into the neural arc, from pressure input to efferent sympathetic nerve activity (SNA), and the peripheral arc, from SNA to arterial pressure (AP). Plotting the neural and peripheral arcs on a pressure–SNA plane yields a baroreflex equilibrium diagram. We examined the effects of vagotomy on the open-loop static characteristics of the carotid sinus baroreflex in normal control rats (NC, n = 10) and rats with heart failure after myocardial infarction (MI, n = 10). In the NC group, vagotomy shifted the neural arc toward higher SNA and decreased the slope of the peripheral arc. Consequently, the operating-point SNA increased without a significant change in the operating-point AP on the baroreflex equilibrium diagram. These vagotomy-induced effects were not observed in the MI group, suggesting a loss of vagal modulation of the carotid sinus baroreflex function in heart failure. PMID:27594790

  16. Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats.

    PubMed

    Lam, Vy; Su, Jidong; Hsu, Anna; Gross, Garrett J; Salzman, Nita H; Baker, John E

    2016-01-01

    Intestinal microbiota determine severity of myocardial infarction in rats. We determined whether low molecular weight metabolites derived from intestinal microbiota and transported to the systemic circulation are linked to severity of myocardial infarction. Plasma from rats treated for seven days with the non-absorbed antibiotic vancomycin or a mixture of streptomycin, neomycin, polymyxin B and bacitracin was analyzed using mass spectrometry-based metabolite profiling platforms. Antibiotic-induced changes in the abundance of individual groups of intestinal microbiota dramatically altered the host's metabolism. Hierarchical clustering of dissimilarities separated the levels of 284 identified metabolites from treated vs. untreated rats; 193 were altered by the antibiotic treatments with a tendency towards decreased metabolite levels. Catabolism of the aromatic amino acids phenylalanine, tryptophan and tyrosine was the most affected pathway comprising 33 affected metabolites. Both antibiotic treatments decreased the severity of an induced myocardial infarction in vivo by 27% and 29%, respectively. We then determined whether microbial metabolites of the amino acids phenylalanine, tryptophan and tyrosine were linked to decreased severity of myocardial infarction. Vancomycin-treated rats were administered amino acid metabolites prior to ischemia/reperfusion studies. Oral or intravenous pretreatment of rats with these amino acid metabolites abolished the decrease in infarct size conferred by vancomycin. Inhibition of JAK-2 (AG-490, 10 μM), Src kinase (PP1, 20 μM), Akt/PI3 kinase (Wortmannin, 100 nM), p44/42 MAPK (PD98059, 10 μM), p38 MAPK (SB203580, 10 μM), or KATP channels (glibenclamide, 3 μM) abolished cardioprotection by vancomycin, indicating microbial metabolites are interacting with cell surface receptors to transduce their signals through Src kinase, cell survival pathways and KATP channels. These inhibitors have no effect on myocardial infarct size in

  17. Size of myocardial infarction induced by ischaemia/reperfusion is unaltered in rats with metabolic syndrome.

    PubMed

    Thim, Troels; Bentzon, Jacob F; Kristiansen, Steen B; Simonsen, Ulf; Andersen, Heidi L; Wassermann, Karsten; Falk, Erling

    2006-06-01

    Obesity is associated with metabolic syndrome and increased incidence of and mortality from myocardial infarction. The aim of the present study was to develop an animal model with metabolic syndrome and examine how that influences size of myocardial infarcts induced by occlusion and reperfusion of the left anterior descending coronary artery. Sprague-Dawley rats (n = 105) were fed either LF (low-fat) or MHF (moderately high-fat) diets for 13 weeks before coronary occlusion for 45 min, followed by reperfusion for 60 min. Compared with LF-fed and lean MHF-fed rats, obese MHF-fed rats developed metabolic disturbances similar to those seen in the metabolic syndrome, including being overweight by 24% (compared with lean MHF-fed rats), having 74% more visceral fat (compared with LF-fed rats), 15% higher blood pressure (compared with LF-fed rats), 116% higher plasma insulin (compared with lean MHF-fed rats), 10% higher fasting plasma glucose (compared with LF-fed rats), 35% higher non-fasting plasma glucose (compared with lean MHF-fed rats), 36% higher plasma leptin (compared with lean MHF-fed rats) and a tendency to lower plasma adiponectin and higher plasma non-esterified fatty acids. Infarct size was similar in the three groups of rats (36+/-14, 42+/-18 and 41+/-14% in obese MHF-fed, lean MHF-fed and LF-fed rats respectively). In conclusion, rats fed a MHF diet developed metabolic syndrome, but this did not influence myocardial infarct size. PMID:16448385

  18. Preparation of Highly Coupled Rat Heart Mitochondria

    PubMed Central

    Gostimskaya, Irina; Galkin, Alexander

    2010-01-01

    The function of mitochondria in generation of cellular ATP in the process of oxidative phosphorylation is widely recognised. During the past decades there have been significant advances in our understanding of the functions of mitochondria other than the generation of energy. These include their role in apoptosis, acting as signalling organelles, mammalian development and ageing as well as their contribution to the coordination between cell metabolism and cell proliferation. Our understanding of biological processes modulated by mitochondria is based on robust methods for isolation and handling of intact mitochondria from tissues of the laboratory animals. Mitochondria from rat heart is one of the most common preparations for past and current studies of cellular metabolism including studies on knock-out animals. Here we describe a detailed rapid method for isolation of intact mitochondria with a high degree of coupling. Such preparation of rat heart mitochondria is an excellent object for functional and structural research on cellular bioenergetics, transport of biomolecules, proteomic studies and analysis of mitochondrial DNA, proteins and lipids. PMID:20972393

  19. Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles.

    PubMed

    Giricz, Zoltán; Varga, Zoltán V; Baranyai, Tamás; Sipos, Péter; Pálóczi, Krisztina; Kittel, Ágnes; Buzás, Edit I; Ferdinandy, Péter

    2014-03-01

    Remote ischemic preconditioning (RIPC) of the heart is exerted by brief ischemic insults affected on a remote organ or a remote area of the heart before a sustained cardiac ischemia. To date, little is known about the inter-organ transfer mechanisms of cardioprotection by RIPC. Exosomes and microvesicles/microparticles are vesicles of 30-100 nm and 100-1000 nm in diameter, respectively (collectively termed extracellular vesicles [EVs]). Their content of proteins, mRNAs and microRNAs, renders EV ideal conveyors of inter-organ communication. However, whether EVs are involved in RIPC, is unknown. Therefore, here we investigated whether (1) IPC induces release of EVs from the heart, and (2) EVs are necessary for cardioprotection by RIPC. Hearts of male Wistar rats were isolated and perfused in Langendorff mode. A group of donor hearts was exposed to 3 × 5-5 min global ischemia and reperfusion (IPC) or 30 min aerobic perfusion, while coronary perfusates were collected. Coronary perfusates of these hearts were given to another set of recipient isolated hearts. A group of recipient hearts received IPC effluent depleted of EVs by differential ultracentrifugation. Infarct size was determined after 30 min global ischemia and 120 min reperfusion. The presence or absence of EVs in perfusates was confirmed by dynamic light scattering, the EV marker HSP60 Western blot, and electron microscopy. IPC markedly increased EV release from the heart as assessed by HSP60. Administration of coronary perfusate from IPC donor hearts attenuated infarct size in non-preconditioned recipient hearts (12.9 ± 1.6% vs. 25.0 ± 2.7%), similarly to cardioprotection afforded by IPC (7.3 ± 2.7% vs. 22.1 ± 2.9%) on the donor hearts. Perfusates of IPC hearts depleted of EVs failed to exert cardioprotection in recipient hearts (22.0 ± 2.3%). This is the first demonstration that EVs released from the heart after IPC are necessary for cardioprotection by RIPC, evidencing the importance of vesicular

  20. Prevention of anemia alleviates heart hypertrophy in copper deficient rats

    SciTech Connect

    Lure, M.D.; Fields, M.; Lewis, C.G. Univ. of Maryland, College Park Georgetown Univ., Washington, DC )

    1991-03-11

    The present investigation was designed to examine the role of anemia in the cardiomegaly and myocardial pathology of copper deficiency. Weanling rats were fed a copper deficient diet containing either starch (ST) or fructose (FRU) for five weeks. Six rats consuming the FRU diet were intraperitoneally injected once a week with 1.0 ml/100g bw of packed red blood cells (RBC) obtained from copper deficient rats fed ST. FRU rats injected with RBC did not develop anemia. Additionally, none of the injected rats exhibited heart hypertrophy or gross pathology and all survived. In contrast, non-injected FRU rats were anemic, exhibited severe signs of copper deficiency which include heart hypertrophy with gross pathology, and 44% died. Maintaining the hematocrit with RBC injections resulted in normal heart histology and prevented the mortality associated with the fructose x copper interaction. The finding suggest that the anemia associated with copper deficiency contributes to heart pathology.

  1. Non-photic solar associations of heart rate variability and myocardial infarction

    NASA Astrophysics Data System (ADS)

    Cornélissen, Germaine; Halberg, Franz; Breus, Tamara; Syutkina, Elena V.; Baevsky, Roman; Weydahl, Andi; Watanabe, Yoshihiko; Otsuka, Kuniaki; Siegelova, Jarmila; Fiser, Bohumil; Bakken, Earl E.

    2002-03-01

    Alignment of serial epidemiological, physiological, including electrocardiographic data with variations in galactic cosmic rays, geomagnetic activity, and atmospheric pressure suggests the possibility of links among these physical environmental variations and health risks, such as myocardial infarctions and ischemic strokes, among others. An increase in the incidence of myocardial infarction in association with magnetic storms, reported by several investigators from Russia, Israel, Italy and Mexico, accounts in Minnesota for a 5% (220cases/year) increase in mortality during years of maximal solar activity by comparison with years of minimal solar activity. Magnetic storms are also found to decrease heart rate variability (HRV), indicating a possible mechanism since a reduced HRV is a prognostic factor for coronary artery disease and myocardial infarction. Longitudinal electrocardiographic monitoring for a week or much longer spans in different geographic locations, notably in the auroral oval, further suggests that the decrease in HRV affects spectral regions other than that around 3.6s (0.15-0.40Hz), reportedly associated with the parasympathetic nervous system. Differences in some associations are observed from solar cycle to solar cycle, and as a function of solar cycle stage, a finding resolving controversies. Coordinated physiological and physical monitoring, the scope of an international project on the Biosphere and the Cosmos, seeks reference values for a better understanding of environmental effects on human health and for testing the merit of space weather reports that could prompt countermeasures in space and on earth. Physiological data being collected systematically worldwide and morbidity/mortality statistics from causes such as myocardial infarction and stroke constitute invaluable data bases for assessing changes within the physiological range, for detecting environmental effects and for recognizing endogenous as well as exogenous disease

  2. Granulocyte colony-stimulating factor does not enhance recruitment of bone marrow-derived cells in rats with acute myocardial infarction.

    PubMed

    Sato, Daisuke; Otani, Hajime; Fujita, Masanori; Shimazu, Takayuki; Yoshioka, Kei; Enoki, Chiharu; Minato, Naoki; Iwasaka, Toshiji

    2012-09-01

    Despite the potential benefit of granulocyte colony-stimulating factor (G-CSF) therapy in patients with acute myocardial infarction (MI), the efficacy of G-CSF in regenerating the heart after MI remains controversial. The authors hypothesize that the limited efficacy of G-CSF is related to its inhibitory effect on recruitment of bone marrow-derived cells (BMCs) to the infarcted tissue. MI was induced in rats with intrabone marrow-bone marrow transplantation from syngenic rats expressing green fluorescence protein to track BMCs. G-CSF was administered for five days after the onset of MI. G-CSF increased the number of CD45(+) cells in the peripheral circulation but did not increase their recruitment to the heart. G-CSF had no effect on myocardial stromal-derived factor-1 alpha and chemokine (C-X-C motif) receptor 4 (CXCR4) expression in mononuclear cells in the peripheral blood and CXCR4(+) cells in the heart. G-CSF had no effect on angiogenesis, myocardial fibrosis or left ventricular function four weeks after MI. These results suggest that G-CSF mobilizes BMCs to the peripheral circulation but does not increase recruitment to the infarcted myocardium despite preservation of the stromal-derived factor-1 alpha/CXCR4 axis. PMID:23620693

  3. Adipose stem cell sheets improved cardiac function in the rat myocardial infarction, but did not alter cardiac contractile responses to β-adrenergic stimulation.

    PubMed

    Otsuki, Yuki; Nakamura, Yoshinobu; Harada, Shingo; Yamamoto, Yasutaka; Ogino, Kazuhide; Morikawa, Kumi; Ninomiya, Haruaki; Miyagawa, Shigeru; Sawa, Yoshiki; Hisatome, Ichiro; Nishimura, Motonobu

    2015-01-01

    Adipose stem cells (ASCs) are a source of regenerative cells available for autologous transplantation to hearts. We compared protective actions of ASC sheets on rat myocardial infarction (MI) in comparison with those of skeletal myoblast cell sheets. Their effects on infarcted hearts were evaluated by biological, histochemical as well as physiological analyses. ASC sheets secreted higher concentrations of angiogenic factors (HGF, VEGF, and bFGF; P < 0.05) under normoxic and hypoxic conditions than those of myoblast cell sheets, associated with reduction of cell apoptosis (P < 0.05). Like myoblast cell sheets, ASC sheets improved cardiac function (P < 0.05) and decreased the plasma level of ANP (P < 0.05) in MI hearts. ASC sheets restored cardiac remodeling characterized by fibrosis, cardiac hypertrophy and impaired angiogenesis (P < 0.05), which was associated with increases in angiogenic factors (P < 0.05). In isolated perfused rat hearts, ASC sheets improved both systolic and diastolic functions, which was comparable to cardiac functions of myoblast cell sheets, while both cell sheets failed to restore cardiac contractile response to either isoproterenol, pimobendan or dibutyryl cAMP. These results indicated that ASC sheets improved cardiac function and remodeling of MI hearts mediated by their paracrine action and this improvement was comparable to those by myoblast cell sheets. PMID:25749147

  4. Functional evaluation of rat hearts transplanted after preservation in a high-pressure gaseous mixture of carbon monoxide and oxygen.

    PubMed

    Hatayama, Naoyuki; Inubushi, Masayuki; Naito, Munekazu; Hirai, Shuichi; Jin, Yong-Nan; Tsuji, Atsushi B; Seki, Kunihiro; Itoh, Masahiro; Saga, Tsuneo; Li, Xiao-Kang

    2016-01-01

    We recently succeeded in resuscitating an extracted rat heart following 24-48 hours of preservation in a high-pressure gaseous mixture of carbon monoxide (CO) and oxygen (O2). This study aimed to examine the function of rat hearts transplanted after being preserved in the high-pressure CO and O2 gas mixture. The hearts of donor rats were preserved in a chamber filled with CO and O2 under high pressure for 24 h (CO24h) or 48 h at 4 °C. For the positive control (PC) group, hearts immediately extracted from donor rats were used for transplantation. The preserved hearts were transplanted into recipient rats by heterotopic cervical heart transplantation. CO toxicity does not affect the grafts or the recipients. Light microscopy and [(18)F]-fluorodeoxyglucose positron emission tomography revealed that there were no significant differences in the size of the myocardial infarction or apoptosis of myocardial cells in post-transplant hearts between the PC and CO24h groups. Furthermore, at 100 days after the transplantation, the heart rate, weight and histological staining of the post-transplanted hearts did not differ significantly between the PC and CO24h groups. These results indicate that the function of rat hearts is well preserved after 24 hours of high-pressure preservation in a CO and O2 gas mixture. Therefore, high-pressure preservation in a gas mixture can be a useful method for organ preservation. PMID:27562456

  5. Functional evaluation of rat hearts transplanted after preservation in a high-pressure gaseous mixture of carbon monoxide and oxygen

    PubMed Central

    Hatayama, Naoyuki; Inubushi, Masayuki; Naito, Munekazu; Hirai, Shuichi; Jin, Yong-Nan; Tsuji, Atsushi B.; Seki, Kunihiro; Itoh, Masahiro; Saga, Tsuneo; Li, Xiao-Kang

    2016-01-01

    We recently succeeded in resuscitating an extracted rat heart following 24–48 hours of preservation in a high-pressure gaseous mixture of carbon monoxide (CO) and oxygen (O2). This study aimed to examine the function of rat hearts transplanted after being preserved in the high-pressure CO and O2 gas mixture. The hearts of donor rats were preserved in a chamber filled with CO and O2 under high pressure for 24 h (CO24h) or 48 h at 4 °C. For the positive control (PC) group, hearts immediately extracted from donor rats were used for transplantation. The preserved hearts were transplanted into recipient rats by heterotopic cervical heart transplantation. CO toxicity does not affect the grafts or the recipients. Light microscopy and [18F]-fluorodeoxyglucose positron emission tomography revealed that there were no significant differences in the size of the myocardial infarction or apoptosis of myocardial cells in post-transplant hearts between the PC and CO24h groups. Furthermore, at 100 days after the transplantation, the heart rate, weight and histological staining of the post-transplanted hearts did not differ significantly between the PC and CO24h groups. These results indicate that the function of rat hearts is well preserved after 24 hours of high-pressure preservation in a CO and O2 gas mixture. Therefore, high-pressure preservation in a gas mixture can be a useful method for organ preservation. PMID:27562456

  6. Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms.

    PubMed

    Sui, Xizhong; Gao, Changqing

    2014-01-01

    Huperzine A (HupA), an alkaloid used in traditional Chinese medicine and isolated from Huperzia serrata, has been shown to possess diverse biological activities. The present study was undertaken to evaluate the cardioprotective potential of HupA in myocardial ischemic damage using a rat model of acute myocardial infarction. HupA significantly diminished the infarct size and inhibited the activities of myocardial enzymes, including creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT). A significantly reduced activity of malondialdehyde (MDA) and elevated activities of superoxide dismutase (SOD), of the non-enzymatic scavenger enzyme, glutathione (GSH), as well as of glutathione peroxidase (GSH-PX) were found in the HupA-treated groups. Furthermore, decreased protein levels of caspase-3 and Bax, and increased levels of Bcl-2 were observed in the infarcted hearts of the rats treated with various concentrations of HupA. In addition, treatment with HupA markedly inhibited the expression of the nuclear factor-κB (NF-κB) subunit p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). These findings suggest that the cardioprotective potential of HupA is associated with its antioxidant, anti-apoptotic and anti-inflammatory properties in acute myocardial infarction in rats. PMID:24190328

  7. Diosmin exhibits anti-hyperlipidemic effects in isoproterenol induced myocardial infarcted rats.

    PubMed

    Queenthy, S Sharmila; John, Babu

    2013-10-15

    The aim of the present study was to evaluate the protective effects of diosmin on experimentally induced myocardial infarcted rats. Diosmin (5 and 10mg/kg body weight) was administered orally as pretreatment daily for a period of 10 days. Then isoproterenol (100mg/kg) was injected subcutaneously into rats at an interval of 24h for 2 days (on 11th and 12th day). Isoproterenol-induced myocardial infarcted rats showed significant changes in electrocardiogram and an increase in the levels of cardiac markers, compared with normal rats. Additionally, increased plasma lipid peroxidation products and altered lipid metabolism in the plasma were observed in the isoproterenol-induced myocardial infarcted rats. Pretreatment with diosmin (5 and 10mg/kg body weight) minimized the electrocardiographic changes, decreased the levels of serum cardiac marker enzymes reduced plasma lipid peroxidation and minimized the alterations in the lipid metabolism of isoproterenol-induced myocardial infarcted rats. Also, diosmin inhibited the enhanced activity of liver HMG CoA reductase. The in vitro study revealed the free radical scavenging activity of diosmin. The free radical scavenging and anti-hyperlipidaemic effects are the reasons for the cardioprotective effects of diosmin. PMID:24036254

  8. Side effects of using nitrates to treat heart failure and the acute coronary syndromes, unstable angina and acute myocardial infarction.

    PubMed

    Thadani, Udho; Ripley, Toni L

    2007-07-01

    Nitrates are potent venous dilators and anti-ischemic agents. They are widely used for the relief of chest pain and pulmonary congestion in patients with acute coronary syndromes and heart failure. Nitrates, however, do not reduce mortality in patients with acute coronary syndromes. Combination of nitrates and hydralazine when given in addition to beta-blockers and angiotensin-converting enzyme (ACE) inhibitors reduce mortality and heart failure hospitalizations in patients with heart failure due to left ventricular systolic dysfunction who are of African-American origin. Side effects during nitrate therapy are common but are less well described in the literature compared with the reported side effects in patients with stable angina pectoris. The reported incidence of side effects varies highly among different studies and among various disease states. Headache is the most commonly reported side effect with an incidence of 12% in acute heart failure, 41-73% in chronic heart failure, 3-19% in unstable angina and 2-26% in acute myocardial infarction. The reported incidence of hypotension also differs: 5-10% in acute heart failure, 20% in chronic heart failure, 9% in unstable angina and < 1-48% in acute myocardial infarction, with the incidence being much higher with concomitant nitrate therapy plus angiotensin-converting enzyme inhibitors. Reported incidence of dizziness is as low as 1% in patients with acute myocardial infarction to as high as 29% in patients with heart failure. Severe headaches and/or symptomatic hypotension may necessitate discontinuation of nitrate therapy. Severe life threatening hypotension or even death may occur when nitrates are used in patients with acute inferior myocardial infarction associated with right ventricular dysfunction or infarction, or with concomitant use of phosphodiesterase-5 inhibitors or N-acetylcysteine. Despite the disturbing observational reports in the literature that continuous and prolonged use of nitrates may lead to

  9. Comparing the effects of MSCs and CD34+ cell therapy in a rat model of myocardial infarction.

    PubMed

    Shalaby, Sally M; El-Shal, Amal S; Zidan, Haidy E; Mazen, Nehad F; Abd El-Haleem, Manal R; Abd El Motteleb, Dalia M

    2016-05-01

    Stem cell therapy is considered as a promising approach in the treatment of myocardial infarction (MI). This study was designed as a comparison of human umbilical cord blood (HUCB)-derived CD34+ and HUCB-derived MSCs for the repair of cardiac tissue by induction of the angiogenesis. Forty-eight male rats were randomized into four groups: sham-operated group, MI group, MSCs-treated group, and CD34+ cells-treated group. After 4 weeks, the rats were sacrificed. All sections from left ventricles of all groups were subjected to hematoxylin & eosin, Masson's trichrome, and immunohistochemical stains (CD133, CD44, and α-smooth muscle actin). RNA was extracted for gene expression of the angiogenic markers. A significant reduction of the infarct size and the amplitude of T-wave in the CD34+ cells-treated group when compared with the MSCs-treated group were determined. Histologically, the MI group showed scar tissue, congested blood capillaries around the infarcted area, some necrotic cells, and inflammatory cells. Administration of either MSCs or CD34+ cells had a therapeutic potential to induce regenerative changes in the myocardium with better results in CD34+cells-treated group. Quantitative RT-PCR analysis revealed a significant increase in the expression of vascular endothelial growth factor (VEGF), VEGFR-2, Ang-1, and Tie-2 and a significant decreased expression of Ang-2 in stem cells transplanted groups when compared with the noncell transplanted hearts. A significant increase of VEGF, VEGFR-2, Ang-1, and Tie-2 expression in the group receiving CD34+ cells than those receiving MSCs was found. Finally, there was an upregulation of both human VEGF and human hypoxia-inducible factor 1α in the infarcted hearts treated by CD34+ cells than that treated by MSCs. We first revealed a superior efficacy of CD34+ cells when compared with MSCs in induction of regenerative changes in the MI model. Both cell therapies may repair the damaged heart tissue primarily by secretion of

  10. Protective effect of apigenin on ischemia/reperfusion injury of the isolated rat heart.

    PubMed

    Hu, Jing; Li, Zilin; Xu, Li-ting; Sun, Ai-jun; Fu, Xiao-yan; Zhang, Li; Jing, Lin-lin; Lu, An-dong; Dong, Yi-fei; Jia, Zheng-ping

    2015-07-01

    Apigenin (Api), a mainly bioactive component of Apium graveolens L. var. dulce DC. (a traditional Chinese medicinal herb), possesses a wide range of biological activities, including antioxidant effects. It also has been shown to associate with lower prevalence of cardiovascular diseases, but its mechanisms of action remain unclear. The aim of the present study is to investigate the role of Api in isolated rat heart model of ischemia/reperfusion (I/R). Langendorff-perfused isolated rat hearts were used in our study. Api was added to the perfusate before ischemia and during reperfusion in the isolated pulsed rat heart exposed to 30-min ischemia followed by 50-min reperfusion. The treatment with Api conferred a cardioprotective effect, and the treated hearts demonstrated an improved ischemic cardiac functional recovery, a decreased myocardial infarct size, a reduced activities of creatine kinase isoenzyme and lactate dehydrogenase in the coronary flow, a reduced number of apoptotic cardiomyocytes, a reduced activity of caspase-3, up-regulation of the anti-apoptotic protein Bcl-2 and down-regulation of the pro-apoptotic protein Bax. In addition, Api inhibited the phosphorylation of p38 MAPKS during I/R. In conclusion, these observations provide preliminary evidence that Api can protect cardiomyocytes from I-/R-induced injury, at least partially, through the inhibition of p38 MAPKS signaling pathway. PMID:25377428

  11. Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury.

    PubMed

    Banu, Shakila A; Ravindran, Sriram; Kurian, Gino A

    2016-07-01

    Cardiac mitochondrial dysfunction is considered to be the main manifestation in the pathology of ischemia reperfusion injury, and by restoring its functional activity, hydrogen sulfide (H2S), a novel endogenous gaseotransmitter renders cardioprotection. Given that interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria are the two main types in the heart, the present study investigates the specific H2S-mediated action on IFM and SSM during ischemic reperfusion in the Langendorff rat heart model. Rats were randomly divided into five groups, namely normal, ischemic control, reperfusion control (I/R), ischemic post-conditioning (POC), and H2S post-conditioning (POC_H2S). In reperfusion control, cardiac contractility decreased, and lactate dehydrogenase, creatine kinase, and infracted size increased compared to both normal and ischemic group. In hearts post-conditioned with H2S and the classical method improved cardiac mechanical function and decreased cardiac markers in the perfusate and infarct size significantly. Both POC and POC_H2S exerts its cardioprotective effect of preserving the IFM, as evident by significant improvement in electron transport chain enzyme activities and mitochondrial respiration. The in vitro action of H2S on IFM and SSM from normal and I/R rat heart supports H2S and mediates cardioprotection via IFM preservation. Our study indicates that IFM play an important role in POC_H2S mediated cardioprotection from reperfusion injury. PMID:26951457

  12. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction.

    PubMed

    Hall, A R; Burke, N; Dongworth, R K; Kalkhoran, S B; Dyson, A; Vicencio, J M; Dorn Ii, G W; Yellon, D M; Hausenloy, D J

    2016-01-01

    Mitochondria alter their shape by undergoing cycles of fusion and fission. Changes in mitochondrial morphology impact on the cellular response to stress, and their interactions with other organelles such as the sarcoplasmic reticulum (SR). Inhibiting mitochondrial fission can protect the heart against acute ischemia/reperfusion (I/R) injury. However, the role of the mitochondrial fusion proteins, Mfn1 and Mfn2, in the response of the adult heart to acute I/R injury is not clear, and is investigated in this study. To determine the effect of combined Mfn1/Mfn2 ablation on the susceptibility to acute myocardial I/R injury, cardiac-specific ablation of both Mfn1 and Mfn2 (DKO) was initiated in mice aged 4-6 weeks, leading to knockout of both these proteins in 8-10-week-old animals. This resulted in fragmented mitochondria (electron microscopy), decreased mitochondrial respiratory function (respirometry), and impaired myocardial contractile function (echocardiography). In DKO mice subjected to in vivo regional myocardial ischemia (30 min) followed by 24 h reperfusion, myocardial infarct size (IS, expressed as a % of the area-at-risk) was reduced by 46% compared with wild-type (WT) hearts. In addition, mitochondria from DKO animals had decreased MPTP opening susceptibility (assessed by Ca(2+)-induced mitochondrial swelling), compared with WT hearts. Mfn2 is a key mediator of mitochondrial/SR tethering, and accordingly, the loss of Mfn2 in DKO hearts reduced the number of interactions measured between these organelles (quantified by proximal ligation assay), attenuated mitochondrial calcium overload (Rhod2 confocal microscopy), and decreased reactive oxygen species production (DCF confocal microscopy) in response to acute I/R injury. No differences in isolated mitochondrial ROS emissions (Amplex Red) were detected in response to Ca(2+) and Antimycin A, further implicating disruption of mitochondria/SR tethering as the protective mechanism. In summary, despite apparent

  13. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction

    PubMed Central

    Hall, A R; Burke, N; Dongworth, R K; Kalkhoran, S B; Dyson, A; Vicencio, J M; Dorn II, G W; Yellon, D M; Hausenloy, D J

    2016-01-01

    Mitochondria alter their shape by undergoing cycles of fusion and fission. Changes in mitochondrial morphology impact on the cellular response to stress, and their interactions with other organelles such as the sarcoplasmic reticulum (SR). Inhibiting mitochondrial fission can protect the heart against acute ischemia/reperfusion (I/R) injury. However, the role of the mitochondrial fusion proteins, Mfn1 and Mfn2, in the response of the adult heart to acute I/R injury is not clear, and is investigated in this study. To determine the effect of combined Mfn1/Mfn2 ablation on the susceptibility to acute myocardial I/R injury, cardiac-specific ablation of both Mfn1 and Mfn2 (DKO) was initiated in mice aged 4–6 weeks, leading to knockout of both these proteins in 8–10-week-old animals. This resulted in fragmented mitochondria (electron microscopy), decreased mitochondrial respiratory function (respirometry), and impaired myocardial contractile function (echocardiography). In DKO mice subjected to in vivo regional myocardial ischemia (30 min) followed by 24 h reperfusion, myocardial infarct size (IS, expressed as a % of the area-at-risk) was reduced by 46% compared with wild-type (WT) hearts. In addition, mitochondria from DKO animals had decreased MPTP opening susceptibility (assessed by Ca2+-induced mitochondrial swelling), compared with WT hearts. Mfn2 is a key mediator of mitochondrial/SR tethering, and accordingly, the loss of Mfn2 in DKO hearts reduced the number of interactions measured between these organelles (quantified by proximal ligation assay), attenuated mitochondrial calcium overload (Rhod2 confocal microscopy), and decreased reactive oxygen species production (DCF confocal microscopy) in response to acute I/R injury. No differences in isolated mitochondrial ROS emissions (Amplex Red) were detected in response to Ca2+ and Antimycin A, further implicating disruption of mitochondria/SR tethering as the protective mechanism. In summary, despite apparent

  14. [Efficacy of various antioxidants in experimental ischemia and myocardial infarct in the rat].

    PubMed

    Poliukhovich, G S; Vasil'eva, L P; Maslova, G T; Boboriko, T L; Speranskiĭ, S D

    1991-01-01

    Complex of vitamins E and C showed the most effective antinecrotic action in rats with simulated myocardial infarction in series of antioxidants studied: ascorbate, alpha-tocopherol, quercetine, derivatives of o-benzoquinone OBQ2 and OBQ3. Stabilization of lipid peroxidation in cardiomyocytes, increase in biomembranes stability and absence of distinct alterations in the antioxidative enzymatic system were found in rats with ischemia and myocardial infarction after treatment with the complex. Protective effect of the vitamins E and C complex was realised via antiradical mechanism. PMID:1750212

  15. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs

    PubMed Central

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-01-01

    Background The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. Material/Methods MI and RSD were induced in Sprague–Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. Results In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. Conclusions The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21. PMID:27490896

  16. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs.

    PubMed

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-01-01

    BACKGROUND The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. MATERIAL AND METHODS MI and RSD were induced in Sprague-Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. RESULTS In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. CONCLUSIONS The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21. PMID:27490896

  17. Acute Myocardial Histopathology in Normal and Arteriosclerotic Rats During Isoproterenol-induced Infarction

    PubMed Central

    Wexler, B. C.; Judd, J. T.

    1970-01-01

    Arteriosclerotic and non-arteriosclerotic, male Sprague-Dawley rats were given 2 s.c. injections of isoproterenol known to produce extensive myocardial infarction. The appearance of positive fuchsinophilia was used as an index of focal myocardial acidosis and of anaerobic metabolism. After one injection of isoproterenol, positive fuchsinophilia appeared within 30 min., reached a zenith at 4 hr and then promptly disappeared. Following the second injection of isoproterenol, fuchsinophilia reappeared briefly but was not as intense. The arteriosclerotic animals showed markedly less evidence of heart failure outwardly and less evidence of fuchsinophilia, histopathologically. Apparently, the first episode of cardiac stimulation caused only temporary cardiac ischaemia, positive fuchsinophilia and anaerobic cardiac metabolism. After the second injection, however, irreversible cardiac damage occurred and despite an abortive attempt towards anaerobic metabolic readjustment overt cardiac necrosis became dominant. ImagesFigs. 9-10Figs. 11-12Figs. 1-2Figs. 13-14Figs. 7-8Figs. 5-6Figs. 3-4 PMID:4099593

  18. Chronological and morphological study of heart development in the rat.

    PubMed

    Marcela, Salazar García; Cristina, Revilla Monsalve María; Angel, Palomino Garibay Miguel; Manuel, Arteaga Martínez; Sofía, Díaz-Cintra; Patricia, De La Rosa-Santander; Bladimir, Roque-Ramírez; Concepción, Sánchez Gómez

    2012-08-01

    Adult and embryonic laboratory rats have been used as a mammalian model organism in biomedical research, descriptive and experimental cardiac embryology, and experimental teratology. There have been, however, considerable variations and discrepancies concerning the developmental staging of the rat embryo in the reported literature, which have resulted in several controversies and inconsistencies. Therefore, we carried out a careful anatomical and histological study of rat cardiac morphogenesis from the premorphogenetic period to the mature heart in a newborn pup. A correlation between the chronology and morphological features of the heart and embryo or newborn was made. We provide a simple and comprehensive guide relating the developmental timing and fate of the embryonic components of the heart and their morphological changes in the rat based on in vivo labeling studies in the chick. We also compare the timing of heart development in rats, humans, and mice. PMID:22715162

  19. Survival and Cardioprotective Benefits of Long-Term Blueberry Enriched Diet in Dilated Cardiomyopathy Following Myocardial Infarction in Rats

    PubMed Central

    Ahmet, Ismayil; Spangler, Edward; Shukitt-Hale, Barbara; Joseph, James A.; Ingram, Donald K.; Talan, Mark

    2009-01-01

    Background Despite remarkable progress in treatment of chronic heart failure (CHF) over the last two decades, mortality, personal suffering and cost remain staggering, and effective interventions are still a challenge. Previously we reported that a blueberry-enriched diet (BD) attenuated necroapoptosis and inflammation in periinfarct area in a rat model of myocardial infarction (MI). Objectives To test the hypothesis that BD will attenuate the course of CHF, including mortality and cardiac remodeling during the first year after induction of MI in rats. Method and Results Two weeks after coronary artery ligation, rats were divided into two groups of similar average MI size, measured by echocardiography, and then12-mo dietary regimens were initiated as follows: ad libitum regular diet (control, CD, n = 27) and isocaloric food with 2% blueberry supplement (BD, n = 27) also available ad libitum. These dietary groups were compared to each other and to sham group (SH). Mortality over the 12 mo was reduced by 22% in BD compared with CD (p<0.01). In the course of developing CHF, BD had no effect on the body weight, heart rate or blood pressure. Bi-monthly Echo revealed significant attenuation of the LV chamber remodeling, LV posterior wall thinning, and MI expansion in BD compared with CD. In fact, BD arrested the MI expansion. Conclusion This is the first experimental evidence that a blueberry-enriched diet has positive effects on the course of CHF and thus warrants consideration for clinical evaluation. PMID:19936253

  20. Inhibition of Histone Deacetylase-induced Myocardial Repair Is Mediated by c-kit in Infarcted Hearts*

    PubMed Central

    Zhang, Ling; Chen, Bing; Zhao, Yu; Dubielecka, Patrycja M.; Wei, Lei; Qin, Gang J.; Chin, Y. Eugene; Wang, Yigang; Zhao, Ting C.

    2012-01-01

    Histone deacetylases (HDACs) play a critical role in the regulation of gene transcription, cardiac development, and diseases. The aim of this study was to test whether inhibition of HDACs induces myocardial repair and cardiac function restoration through c-kit signaling in mouse myocardial infarction models. Myocardial infarction in wild type Kit+/+ and KitW/KitW-v mice was created following thoracotomy by applying permanent ligation to the left anterior descending artery. The HDAC inhibitor, trichostatin A (TSA, 0.1 mg/kg), was intraperitoneally injected daily for a consecutive 8 weeks after myocardial infarction. 5-Bromo-2-deoxyuridine (BrdU, 50 mg/kg) was intraperitoneally delivered every other day to pulse-chase label in vivo endogenous cardiac replication. Eight weeks later, inhibition of HDACs in vivo resulted in an improvement in ventricular functional recovery and the prevention of myocardial remodeling in Kit+/+mice, which was eliminated in KitW/KitW-v mice. HDAC inhibition promoted cardiac repairs and neovascularization in the infarcted myocardium, which were absent in KitW/KitW-v mice. Re-introduction of TSA-treated wild type c-kit+ CSCs into KitW/KitW-v myocardial infarction heart restored myocardial functional improvement and cardiac repair. To further validate that HDAC inhibition stimulates c-kit+ cardiac stem cells (CSCs) to facilitate myocardial repair, GFP+ c-kit+ CSCs were preconditioned with TSA (50 nmol/liter) for 24 h and re-introduced into infarcted hearts for 2 weeks. Preconditioning of c-kit+ CSCs via HDAC inhibition with trichostatin A significantly increased c-kit+ CSC-derived myocytes and microvessels and enhanced functional recovery in myocardial infarction hearts in vivo. Our results provide evidence that HDAC inhibition promotes myocardial repair and prevents cardiac remodeling, which is dependent upon c-kit signaling. PMID:23024362

  1. Exogenous connexin43-expressing autologous skeletal myoblasts ameliorate mechanical function and electrical activity of the rabbit heart after experimental infarction

    PubMed Central

    Antanavičiūtė, Ieva; Ereminienė, Eglė; Vysockas, Vaidas; Račkauskas, Mindaugas; Skipskis, Vilius; Rysevaitė, Kristina; Treinys, Rimantas; Benetis, Rimantas; Jurevičius, Jonas; Skeberdis, Vytenis A

    2015-01-01

    Acute myocardial infarction is one of the major causes of mortality worldwide. For regeneration of the rabbit heart after experimentally induced infarction we used autologous skeletal myoblasts (SMs) due to their high proliferative potential, resistance to ischaemia and absence of immunological and ethical concerns. The cells were characterized with muscle-specific and myogenic markers. Cell transplantation was performed by injection of cell suspension (0.5 ml) containing approximately 6 million myoblasts into the infarction zone. The animals were divided into four groups: (i) no injection; (ii) sham injected; (iii) injected with wild-type SMs; and (iv) injected with SMs expressing connexin43 fused with green fluorescent protein (Cx43EGFP). Left ventricular ejection fraction (LVEF) was evaluated by 2D echocardiography in vivo before infarction, when myocardium has stabilized after infarction, and 3 months after infarction. Electrical activity in the healthy and infarction zones of the heart was examined ex vivo in Langendorff-perfused hearts by optical mapping using di-4-ANEPPS, a potential sensitive fluorescent dye. We demonstrate that SMs in the coculture can couple electrically not only to abutted but also to remote acutely isolated allogenic cardiac myocytes through membranous tunnelling tubes. The beneficial effect of cellular therapy on LVEF and electrical activity was observed in the group of animals injected with Cx43EGFP-expressing SMs. L-type Ca2+ current amplitude was approximately fivefold smaller in the isolated SMs compared to healthy myocytes suggesting that limited recovery of LVEF may be related to inadequate expression or function of L-type Ca2+ channels in transplanted differentiating SMs. PMID:25529770

  2. Effect of Inducible Co-Stimulatory Molecule siRNA in Cerebral Infarction Rat Models

    PubMed Central

    Luo, Yingquan; Yang, Yu; Zhang, Hui; Zhang, Ting; Wang, Yina; Tan, Shengyu; Xu, Yan; Li, Dan; Ye, Ling; Chen, Ping

    2015-01-01

    Background T cell-induced inflammatory response and related cytokine secretion at the injury site may participate in the pathogenesis of cerebral infarction. Recent studies established inducible co-stimulatory molecule (ICOS) as a novel T cell-related factor for its activation and functions. We thus investigate the role of ICOS in cerebral infarction. Material/Methods The siRNA of ICOS was first used to suppress the gene expression in cultured lymphocytes. An in vivo study was then performed by intravenous application of ICOS siRNA in cerebral infarction rats. Survival rates, neurological scores, serum tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-17 levels were observed. Results The expression of ICOS in cultured lymphocytes was significantly suppressed by siRNA. In the in vivo study, the application of siRNA effectively lowered mortality rates of rats, in addition to the improvement of neurological behaviors and amelioration of cerebral tissue damage. Serum levels of TNF-α, IL-1 and IL-17 were all significantly suppressed after siRNA injection. Conclusions ICOS siRNA can protect brain tissues from ischemia injuries after cerebral infarction, improve limb movement and coordination, lower the mortality rate of rats, and inhibit T cell-induced cytokines. These results collectively suggest the potential treatment efficacy of ICOS siRNA against cerebral infarction. PMID:26436531

  3. Lack of cardioprotection by single-dose magnesium prophylaxis on isoprenaline-induced myocardial infarction in adult Wistar rats

    PubMed Central

    Garson, Christie; Kelly-Laubscher, Roisin; Gwanyanya, Asfree; Blackhurst, Dee

    2015-01-01

    Summary Aim Magnesium (Mg2+) is effective in treating cardiovascular disorders such as arrhythmias and pre-eclampsia, but its role during myocardial infarction (MI) remains uncertain. In this study, we investigated the effects of Mg2+ pre-treatment on isoprenaline (ISO)-induced MI in vivo. Methods Rats divided into four groups were each pre-treated with either MgSO4 (270 mg/kg intraperitoneally) or an equivalent volume of physiological saline, prior to the ISO (67 mg/kg subcutaneously) or saline treatments. One day post-treatment, the electrocardiogram and left ventricular blood pressures were recorded. Infarcts were determined using 2,3,5-triphenyltetrazolium chloride staining, and serum markers of lipid peroxidation were measured with spectrophotometric assays. Results Mg2+ pre-treatment neither altered the ISO-induced infarct size compared with ISO treatment alone (p > 0.05), nor reversed the low-voltage electrocardiogram or the prominent Q waves induced by ISO, despite a trend to decreased Q waves. Similarly, Mg2+ did not prevent the ISO-induced decrease in peak left ventricular blood pressure or the decrease in minimal rate of pressure change. Mg2+ did not reverse the ISO-induced gain in heart weight or loss of body weight. Neither ISO nor Mg2+ altered the concentrations of lipid peroxidation markers 24 hours post MI induction. Conclusion Although Mg2+ had no detrimental effects on electrical or haemodynamic activity in ISO-induced MI, the lack of infarct prevention may detract from its utility in MI therapy. PMID:26212925

  4. Cardioprotective Effects of Essential Oil of Lavandula angustifolia on Isoproterenol-induced Acute Myocardial Infarction in Rat

    PubMed Central

    Ziaee, Mojtaba; Khorrami, Arash; Ebrahimi, Maryam; Nourafcan, Hassan; Amiraslanzadeh, Masoumeh; Rameshrad, Maryam; Garjani, Mehraveh; Garjani, Alireza

    2015-01-01

    Myocardial infarction (MI) is a common presentation of the ischemic heart disease. Lavandula angustifolia is an herbaceous plant with antioxidative effects. This study was designed to investigate the cardioprotective effects of lavandula angustifolia essential oil against isoproterenol-induced MI in rats. The dried sample was subjected to hydrodistillation by using a Clevenger and the oils were dried over anhydrous Na2SO4. Male Wistar rats were assigned to 6 groups of control, sham, isoproterenol and treatment with 5, 10, 20 mg/Kg of the essential oil. MI was induced by subcutaneous injection of Isoproterenol (100 mg/Kg) for 3 consecutive days at an interval of 24 h. The essential oil was given intraperitoneally every 24 h started at MI induction. Following anesthesia, hemodynamic parameters were measured. After sacrificing the animals, the hearts were removed to measure the heart to body weight ratio and histopathological examination. Myeloperoxidase (MPO) and Malondialdehyde (MDA) were measured in heart tissues for evaluating the activity of neutrophils and lipid peroxidation, respectively. The essential oil amended ECG pattern by suppressing ST-segment elevation and increasing R-amplitude. 10 mg/Kg of the essential oil significantly decreased heart to body weight ratio (P<0.001) and the elevation of MDA and MPO in myocardium, it also increased dp/dtmax from 2793 ± 210 to 4488 ± 253 mmHg/sec (P<0.001), and 20 mg/Kg of it significantly lowered LVEDP from 14 ± 3.43 to 4.3 ± 0.83 mmHg (P<0.001).The results demonstrated that L. angustifolia protects myocardium against isoproterenol-induced MI that it could be related to its antioxidant properties. PMID:25561934

  5. Cardioprotective Effects of Essential Oil of Lavandula angustifolia on Isoproterenol-induced Acute Myocardial Infarction in Rat.

    PubMed

    Ziaee, Mojtaba; Khorrami, Arash; Ebrahimi, Maryam; Nourafcan, Hassan; Amiraslanzadeh, Masoumeh; Rameshrad, Maryam; Garjani, Mehraveh; Garjani, Alireza

    2015-01-01

    Myocardial infarction (MI) is a common presentation of the ischemic heart disease. Lavandula angustifolia is an herbaceous plant with antioxidative effects. This study was designed to investigate the cardioprotective effects of lavandula angustifolia essential oil against isoproterenol-induced MI in rats. The dried sample was subjected to hydrodistillation by using a Clevenger and the oils were dried over anhydrous Na2SO4. Male Wistar rats were assigned to 6 groups of control, sham, isoproterenol and treatment with 5, 10, 20 mg/Kg of the essential oil. MI was induced by subcutaneous injection of Isoproterenol (100 mg/Kg) for 3 consecutive days at an interval of 24 h. The essential oil was given intraperitoneally every 24 h started at MI induction. Following anesthesia, hemodynamic parameters were measured. After sacrificing the animals, the hearts were removed to measure the heart to body weight ratio and histopathological examination. Myeloperoxidase (MPO) and Malondialdehyde (MDA) were measured in heart tissues for evaluating the activity of neutrophils and lipid peroxidation, respectively. The essential oil amended ECG pattern by suppressing ST-segment elevation and increasing R-amplitude. 10 mg/Kg of the essential oil significantly decreased heart to body weight ratio (P<0.001) and the elevation of MDA and MPO in myocardium, it also increased dp/dtmax from 2793 ± 210 to 4488 ± 253 mmHg/sec (P<0.001), and 20 mg/Kg of it significantly lowered LVEDP from 14 ± 3.43 to 4.3 ± 0.83 mmHg (P<0.001).The results demonstrated that L. angustifolia protects myocardium against isoproterenol-induced MI that it could be related to its antioxidant properties. PMID:25561934

  6. Caspase-3 Activity in the Rat Amygdala Measured by Spectrofluorometry After Myocardial Infarction

    PubMed Central

    Gilbert, Kim; Godbout, Roger; Rousseau, Guy

    2016-01-01

    Myocardial infarction (MI) has dramatic mid- and long-term consequences at the physiological and behavioral levels, but the mechanisms involved are still unclear. Our laboratory has developed a rat model of post-MI syndrome that displays impaired cardiac functions, neuronal loss in the limbic system, cognitive deficits and behavioral signs of depression. At the neuronal level, caspase-3 activation mediates post-MI apoptosis in different limbic regions, such as the amygdala – peaking at 3 days post-MI. Cognitive and behavioral impairments appear 2-3 weeks post-MI and these correlate statistically with measures of caspase-3 activity. The protocol described here is used to induce MI, collect amygdala tissue and measure caspase-3 activity using spectrofluorometry. To induce MI, the descending coronary artery is occluded for 40 min. The protocol for evaluation of caspase-3 activation starts 3 days after MI: the rats are sacrificed and the amygdala isolated rapidly from the brain. Samples are quickly frozen in liquid nitrogen and kept at -80 °C until actual analysis. The technique performed to assess caspase-3 activation is based on cleavage of a substrate (DEVD-AMC) by caspase-3, which releases a fluorogenic compound that can be measured by spectrofluorometry. The methodology is quantitative and reproducible but the equipment required is expensive and the procedure for quantifying the samples is time-consuming. This technique can be applied to other tissues, such as the heart and kidneys. DEVD-AMC can be replaced by other substrates to measure the activity of other caspases. PMID:26862955

  7. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model

    PubMed Central

    Wang, Shaojun; Zhou, Jun; Kang, Weijie; Dong, Zhaoni; Wang, Hezuo

    2016-01-01

    Cerebral infarction is a severe hypoxic ischemic necrosis with accelerated neuronal cell apoptosis in the brain. As a monoclonal antibody against interleukin 6, tocilizumab (TCZ) is widely used in immune diseases, whose function in cerebral infarction has not been studied. This study aims to reveal the role of TCZ in regulating neuronal cell apoptosis in cerebral infarction. The cerebral infarction rat model was constructed by middle cerebral artery occlusion and treated with TCZ. Cell apoptosis in hippocampus and cortex of the brain was examined with TUNEL method. Rat neuronal cells cultured in oxygen-glucose deprivation (OGD) conditions and treated with TCZ were used to compare cell viability and apoptosis. Apoptosis-related factors including B-cell lymphoma extra large (Bcl-xL) and Caspase 3, as well as the phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in brain cortex were analyzed from the protein level. Results indicated that TCZ treatment could significantly prevent the promoted cell apoptosis caused by cerebral infarction or OGD (P < 0.05 or P < 0.01). In brain cortex of the rat model, TCZ up-regulated Bcl-xL and down-regulated Caspase 3, consistent with the inhibited cell apoptosis. It also promoted tyrosine 705 phosphorylation of STAT3, which might be the potential regulatory mechanism of TCZ in neuronal cells. This study provided evidence for the protective role of TCZ against neuronal cell apoptosis in cerebral infarction. Based on these fundamental data, TCZ is a promising option for treating cerebral infarction, but further investigations on related mechanisms are still necessary. PMID:26773188

  8. Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats

    PubMed Central

    Allred, Rachel P.; Jones, Theresa A.

    2009-01-01

    It is common following stroke to focus early rehabilitation efforts on developing compensatory use of the less-affected body side. Here we used a rat model of focal cortical infarct to examine how motor skill acquisition with the less-affected (“intact”) forelimb influences sensorimotor function of the infarct-impaired forelimb and neural activity in peri-infarct cortex. Rats proficient in skilled reaching with one forelimb were given focal ischemic lesions in the contralateral sensorimotor cortex (SMC). Recovery in this forelimb was tested following a period of reach training focused on the intact forelimb or control procedures. Quantitative measures of the cumulatively expressed transcription factor, FosB/ΔFosB, were used to assay intact forelimb training effects on neuronal activity in remaining SMC of the infarcted hemisphere. Intact forelimb training worsened behavioral recovery in the impaired forelimb following unilateral focal ischemia. Furthermore, it decreased neuronal FosB/ΔFosB expression in layer II/III of peri-infarct SMC. These effects were not found in sham-operated rats trained sequentially with both forelimbs or in animals receiving bilateral forelimb training after unilateral infarcts. Thus, focused use of the intact forelimb has detrimental effects on recovery of impaired forelimb function following a focal ischemic injury and this is linked to reduced neuronal activation in remaining cortex. These results suggest that peri-infarct cortex becomes vulnerable to early post-stroke experience with the less-affected forelimb and that this experience may drive neural plasticity here in a direction that is maladaptive for functional outcome. PMID:18054917

  9. Quantitative comparison of myocardial blood flow in normal and infarcted hearts by high resolution scintigraphy

    SciTech Connect

    Hung, C.Y.; Burow, R.D.; Scherlag, B.J.; Basmadjian, G.P.; Lazzara, R.

    1984-01-01

    The standard method for measuring myocardial blood flow (MBF) with radioactive microspheres requires processing of selected tissue samples and consequent loss of exact relation to myocardial morphology. Also, in myocardial infarction (MI) there are inaccuracies due to overlap of tissues from borders of normal and MI. A new method uses Tc-99m labeled microspheres (20..mu..) which were injected into the left atrium in 18 normal dogs and 12 dogs with MI (5 had 1 day and 7 had 4 day old MI). The excised hearts were rinsed and frozen before ''bread-loaf'' sections, 3 mm thick, were cut. Images were acquired on a gamma camera with a volume resolution of 12 mm/sup 3/. A computer program for determining MBF was checked against the conventional microsphere method. The volume resolution of the latter method was 100 mm/sup 3/. The correlation coefficient between the two methods was r=0.96. Average MBF for a given section of normal RV and LV was 95 +- 13 and 119 +- 15 ml/min/100 g of tissue, respectively. Average MBF was compared in normal LV and from ischemic epicardium (IsZ) of the central MI and endocardial infarcted zone (IZ). The authors' new method, accurately and with high resolution, delineates zones of differing MBF and confirms the increase of MBF in surviving myocardium with healing.

  10. Influence of psychiatric comorbidity on 30-day readmissions for heart failure, myocardial infarction, and pneumonia

    PubMed Central

    Ahmedani, Brian K.; Solberg, Leif I.; Copeland, Laurel; Fang, Ying; Stewart, Christine; Hu, Jianhui; Nerenz, David R.; Williams, L. Keoki; Cassidy-Bushrow, Andrea E.; Waxmonsky, Jeanette; Lu, Christine Y.; Waitzfelder, Beth E.; Owen-Smith, Ashli A.; Coleman, Karen J.; Lynch, Frances L.; Ahmed, Ameena T.; Beck, Arne L.; Rossom, Rebecca C.; Simon, Gregory E.

    2014-01-01

    Objective The Centers for Medicare and Medicaid Services (CMS) implemented a policy in 2012 that penalizes hospitals for ‘excessive’ all-cause hospital readmissions within 30 days after discharge for heart failure (HF), acute myocardial infarction (AMI), and pneumonia. The aim of this study is to investigate the influence of psychiatric comorbidities on 30-day all-cause readmissions for heart failure, acute myocardial infarction, and pneumonia. Methods Longitudinal study from 2009-2011 within 11 Mental Health Research Network (MHRN) affiliated health systems. Data were derived from the HMO Research Network Virtual Data Warehouse. Participants were individuals admitted to the hospital for HF, AMI, and pneumonia. All index inpatient hospitalizations for HF, AMI and pneumonia were captured (n=160,169 patient index admissions). Psychiatric diagnoses were measured for the year prior to admission. All-cause readmissions within 30 days of discharge were the outcome variable. Results Approximately 18% of all individuals with these conditions were readmitted within 30-days. The rate was 5% greater for individuals with a past-year psychiatric comorbidity (21.7%) than for those without (16.5%; p<.001). Depression, anxiety, and dementia were associated with more readmissions for those with index hospitalizations for all three conditions independently and combined (p<.05). Substance use and bipolar disorders were linked with higher readmissions for those with initial HF and pneumonia hospitalizations (p<.05). Readmission rates declined overall from 2009-2011. Conclusions Individuals with HF, AMI, and pneumonia experience high rates of readmission, but psychiatric comorbidities appear to increase that risk. Future readmission interventions should consider adding mental health components. PMID:25642610

  11. Reprogramming of skeletal myoblasts for induction of pluripotency for tumor free cardiomyogenesis in the infarcted heart

    PubMed Central

    Ahmed, Rafeeq PH; Haider, Husnain Kh; Buccini, Stephanie; Li, Longhu; Jiang, Shujia; Ashraf, Muhammad

    2011-01-01

    Rationale Skeletal myoblasts (SMs) with inherent myogenic properties are better candidates for reprogramming to pluripotency. Objective To reprogram SMs to pluripotency and show that reprogrammed SMs (SiPs) express embryonic gene and microRNA profiles and transplantation of predifferentiated cardiac progenitors reduce tumor formation. Methods and Results The pMXs vector containing mouse cDNAs for Yamanaka’s quartet of stemness factors were used for transduction of SMs purified from male Oct4-GFP+ transgenic mouse. Three weeks later, GFP+ colonies of SiPS were isolated and propagated in vitro. SiPS were positive for alkaline phosphatase, expressed SSEA1 and displayed a panel of embryonic stem (ES) cell specific pluripotency markers. Embryoid body formation yielded beating cardiomyocyte-like cells which expressed early and late cardiac specific markers. SiPS also had embryonic microRNA profile which was altered during their cardiomyogenic differentiation. Noticeable abrogation of let-7 family and significant upregulation of miR-200a–c and miR-290 to 295 was observed in SiPS and SiPS derived cardiomyocytes respectively. In vivo studies in an experimental model of acute myocardial infarction showed extensive survival of SiPS and SiPS derived cardiomyocytes in mouse heart after transplantation. Our results from 4-week studies in DMEM without cells (group-1), SMs (group-2), SiPS (group-3) and SiPS derived cardiomyocytes (group-4) showed extensive myogenic integration of the transplanted cells in group-4 with attenuated infarct size and improved cardiac function without tumorgenesis. Conclusions Successful reprogramming was achieved in SMs with ES cell-like microRNA profile. Given the tumorgenic nature of SiPS, their pre-differentiation into cardiomyocytes would be important for tumor-free cardiogenesis in the heart. PMID:21566212

  12. Tongxinluo Enhances Neurogenesis and Angiogenesis in Peri-Infarct Area and Subventricular Zone and Promotes Functional Recovery after Focal Cerebral Ischemic Infarction in Hypertensive Rats

    PubMed Central

    Chen, Li; Wang, Xiaoting; Zhang, Jian; Dang, Chao; Liu, Gang; Liang, Zhijian; Huang, Gelun; Zhao, Weijia; Zeng, Jinsheng

    2016-01-01

    Background. Tongxinluo is a traditional Chinese medicine compound with the potential to promote the neuronal functional recovery in cerebral ischemic infarction. Objective. This study aimed to disclose whether tongxinluo promotes neurological functional recovery and neurogenesis and angiogenesis in the infarcted area and SVZ after cerebral ischemic infarction in hypertensive rats. Methods. The ischemic model was prepared by distal middle cerebral artery occlusion (MCAO) in hypertensive rats. Tongxinluo was administrated 24 h after MCAO and lasted for 3, 7, or 14 days. Behavioral tests were performed to evaluate the protection of tongxinluo. Immunochemical staining was applied on brain tissue to evaluate the effects of tongxinluo on neurogenesis and vascularization in the MCAO model rats. Results. Postinjury administration of tongxinluo ameliorated the neuronal function deficit in the MCAO model rats. As evidenced by the immunochemical staining, BrdU+/DCX+, BrdU+/nestin+, and BrdU+ vascular endothelial cells were promoted to proliferate in SVZ after tongxinluo administration. The matured neurons stained by NeuN and vascularization by laminin staining were observed after tongxinluo administration in the peri-infarct area. Conclusion. Tongxinluo postischemia administration could ameliorate the neurological function deficit in the model rats. Possible mechanisms are related to neurogenesis and angiogenesis in the peri-infarct area and SVZ. PMID:27069496

  13. Neural Mechanisms and Delayed Gastric Emptying of Liquid Induced Through Acute Myocardial Infarction in Rats

    PubMed Central

    Nunez, Wilson Ranu Ramirez; Ozaki, Michiko Regina; Vinagre, Adriana Mendes; Collares, Edgard Ferro; de Almeida, Eros Antonio

    2015-01-01

    Background In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN. PMID:25494017

  14. Altered carnitine transport in pressure-overload hypertrophied rat hearts

    SciTech Connect

    O'Rourke, B.; Foster, K.; Reibel, D.K.

    1986-03-01

    The authors have previously observed reduced carnitine levels in hypertrophied hearts of rats subjected to aortic constriction. In an attempt to determine the mechanism for reduced myocardial carnitine content, carnitine transport was examined in isolated perfused hearts. Hearts were excised from sham-operated and aortic-constricted rats 3 weeks following surgery and perfused at 60 mm Hg aortic pressure with buffer containing various concentrations of L-/sup 14/C-carnitine. Carnitine uptake by control and hypertrophied hearts was linear throughout 30 minutes of perfusion with 40 ..mu..M carnitine. Total carnitine uptake was significantly reduced by 25% in hypertrophied hearts at each time point examined. The reduction in uptake by hypertrophied hearts was also evident when hearts were perfused with 100 or 200 ..mu..M carnitine. When 0.05 mM mersalyl acid was included in the buffer to inhibit the carrier-mediated component of transport, no difference in carnitine uptake was observed indicating that the transport of carnitine by diffusion was unaltered in the hypertrophied myocardium. Carrier-mediated carnitine uptake (total uptake - uptake by diffusion) was significantly reduced by approximately 40% in hypertrophied hearts at all concentrations examined. Thus, the reduction in carnitine content in the pressure-overload hypertrophied rat heart appears to be due to a reduction in carrier-mediated carnitine uptake by the heart.

  15. Complete inhibition of creatine kinase in isolated perfused rat hearts

    SciTech Connect

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts are able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.

  16. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation, oxidative stress and P38MAPK pathway in rat

    PubMed Central

    Sun, Shen-Jie; Wu, Xiao-Peng; Song, Heng-Liang; Li, Gui-Qi

    2015-01-01

    Baicalin is one of the active ingredients in the skullcap, with a variety of pharmacological effects, such as blood pressure reduction, sedation, liver-protection, gallbladder-protection, anti-bacteria, anti-inflammation, etc. The aim of this study was to investigate the potential cardioprotective effects of baicalin ameliorates isoproterenol-induced acute myocardial infarction (AMI) through inducible nitric oxide synthase (iNOS), inflammation, oxidative stress and P38MAPK passageway in rat. Rat model of AMI was induced by isoproterenol (100 mg/kg) and then treated baicalin (various does of baicalin: 1 mg/kg, 10 mg/kg and 100 mg/kg, respectively) for 24 h. Infarct size, the heart weight to body weight ratio and creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) of rats with AMI induced by isoproterenol were used to evaluate curative effect of baicalin on AMI. Meanwhile, iNOS and phosphorylation-p38 MAPK (p-p38) protein expressions, inflammatory factor and oxidative stress were inspected using western blot and commercial kits, respectively. In the present study, pre-treatment with baicalin (10 or 100 mg/kg) significantly ameliorated infarct size, the heart weight to body weight ratio and CK, CK-MB, LDH and cTnT levels in rats with AMI induced by isoproterenol. iNOS protein expression, the serum TNF-α, IL-6, MDA and SOD levels and p-38 protein expressions were significantly suppressed by treatment with baicalin (10 or 100 mg/kg). These results suggest that acute treatment with baicalin ameliorates AMI, iNOS, inflammation, oxidative stress and P38MAPK pathway in rat with AMI induced by isoproterenol. PMID:26885181

  17. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats

    PubMed Central

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session. PMID:27314672

  18. Influence of HMGB1 and MSCs transplantation on rat cardiac angiogenesis with acute myocardial infarction.

    PubMed

    Jiang, Youxu; Wang, Xiaoman; Jiang, Xiaodong; Niu, Shaohui; Zhang, Lihua

    2016-07-01

    To observe whether HMGB1could enhance the paracrine effect of MSCs when the Mesenchymal stem cells (Mesenchymal stem cells, MSCs) are pre-proccessed by High Mobility Group Box-1 (High Mobility Group Box-1, HMGB1). And to observe whether it can further increase the quantity of local angiogenesis in myocardial infarcts on the rat model with acute myocardial infarction, HMGB1 was combined with MSCs transplantation. MSCs in rats were cultivated with adherence and centrifugation method. Receptors of TLR4and RAGE in HMGB1 were tested. The MSCs were interfered by HMGB1 with different concentration gradient respectively, then the expression of VEGF was tested with ELISA method. SD male rats were divided into four groups: the model group, the MSCs transplantation group, the HMGB1 injection group, the HMGB1 injection plus MSCs transplantation group (n = 24), preparing rat model with acute myocardial infarction. The serum VEGF concentration levels were detected on the 3rd day, 7th and 28th day with ELISA method. On the 28th day after post operation the density of angiogenesis in infarction area was detected by immunohistochemal. (1) MSCs owned the expression of TLR4 and RAGE. (2) the secretion of VEGF increased significantly after the intervention of HMGB1 with concentration of 12.5 ng/mL, 25 ng/mL, 50 ng/mL, 100 ng/mL and 200ng/ml on MSCs compared with the control group. While the concentration was 400ng/ml or 800ng/ml, the secretion of VEGF decreased compared with the control group (P < 0.05). (3) detection of the serum VEGF on the 3rd or7th day after post operation was arranged: The results showed that: HMGB1 injection plus MSCs transplantation group > MSCs transplantation group >HMGB1 injection group >model group (P < 0.05). (4) the quantity of CD31 stained angiogenesis in HMGB1 injection plus MSCs transplantation group increased obviously. Combining MSCs transplantation, contributed to new angiogenesis of rats with acute myocardial infarction in myocardial infarction

  19. Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats

    PubMed Central

    Lam, Vy; Su, Jidong; Hsu, Anna; Gross, Garrett J.; Salzman, Nita H.

    2016-01-01

    Intestinal microbiota determine severity of myocardial infarction in rats. We determined whether low molecular weight metabolites derived from intestinal microbiota and transported to the systemic circulation are linked to severity of myocardial infarction. Plasma from rats treated for seven days with the non-absorbed antibiotic vancomycin or a mixture of streptomycin, neomycin, polymyxin B and bacitracin was analyzed using mass spectrometry-based metabolite profiling platforms. Antibiotic-induced changes in the abundance of individual groups of intestinal microbiota dramatically altered the host’s metabolism. Hierarchical clustering of dissimilarities separated the levels of 284 identified metabolites from treated vs. untreated rats; 193 were altered by the antibiotic treatments with a tendency towards decreased metabolite levels. Catabolism of the aromatic amino acids phenylalanine, tryptophan and tyrosine was the most affected pathway comprising 33 affected metabolites. Both antibiotic treatments decreased the severity of an induced myocardial infarction in vivo by 27% and 29%, respectively. We then determined whether microbial metabolites of the amino acids phenylalanine, tryptophan and tyrosine were linked to decreased severity of myocardial infarction. Vancomycin-treated rats were administered amino acid metabolites prior to ischemia/reperfusion studies. Oral or intravenous pretreatment of rats with these amino acid metabolites abolished the decrease in infarct size conferred by vancomycin. Inhibition of JAK-2 (AG-490, 10 μM), Src kinase (PP1, 20 μM), Akt/PI3 kinase (Wortmannin, 100 nM), p44/42 MAPK (PD98059, 10 μM), p38 MAPK (SB203580, 10 μM), or KATP channels (glibenclamide, 3 μM) abolished cardioprotection by vancomycin, indicating microbial metabolites are interacting with cell surface receptors to transduce their signals through Src kinase, cell survival pathways and KATP channels. These inhibitors have no effect on myocardial infarct size in

  20. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    PubMed

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089

  1. High morbidity in myocardial infarction and heart failure patients after gastric cancer surgery

    PubMed Central

    Jeong, Sang-Ho; Kim, Young-Woo; Yu, Wansik; Lee, Sang Ho; Park, Young Kyu; Park, Seong-Heum; Jeong, In Ho; Lee, Sang Eok; Park, Yongwhi; Lee, Young-Joon

    2015-01-01

    AIM: To evaluate to morbidity and mortality differences between 4 underlying heart diseases, myocardial infarction (MI), angina pectoris (Angina), heart failure (HF), and atrial fibrillation (AF), after radical surgery for gastric cancer. METHODS: We retrospectively collected data from 221 patients of a total of 15167 patients who underwent radical gastrectomy and were preoperatively diagnosed with a history of Angina, MI, HF, or AF in 8 hospitals. RESULTS: We find that the total morbidity rate is significantly higher in the MI group (44%) than the Angina (15.7%), AF (18.8%), and HF (23.1%) groups (P < 0.01). Moreover, we note that the risk for postoperative cardiac problems is higher in patients with a history of HF (23.1%) than patients with a history of Angina (2.2%), AF (4.3%), or MI (6%; P = 0.01). The HF and MI groups each have 1 case of cardiogenic mortality. CONCLUSION: We conclude that MI patients have a higher risk of morbidity, and HF patients have a higher risk of postoperative cardiac problems than Angina or AF. PMID:26074701

  2. Heart attack

    MedlinePlus

    ... infarction; Non-ST-elevation myocardial infarction; NSTEMI; CAD-heart attack; Coronary artery disease-heart attack ... made up of cholesterol and other cells. A heart attack may occur when: A tear in the ...

  3. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat

    PubMed Central

    Chen, Huaguo; Xu, Yongfu; Wang, Jianzhong; Zhao, Wei; Ruan, Huihui

    2015-01-01

    Baicalin belongs to glucuronic acid glycosides and after hydrolysisbaicalein and glucuronic acid come into being. It has such effects as clearing heat and removing toxicity, anti-inflammation, choleresis, bringing high blood pressure down, diuresis, anti-allergic reaction and so on. In this study, we investigated whether baicalin ameliorates isoproterenol-induced acute myocardial infarction and its mechanism. Rat model of acute myocardial infarction was induced by isoproterenol. Casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH), cardiac troponin T (cTnT) and infarct size measurement were used to measure the protective effect of baicalin on isoproterenol-induced acute myocardial infarction. iNOS protein expression in rat was analyzed using western blot analysis. Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), malondialdehyde (MDA) and superoxide dismutase (SOD) and caspase-3 activation levels were explored using commercial ELISA kits. In the acute myocardial infarction experiment, baicalin effectively ameliorates the level of CK, CK-MB, LDH and cTnT, reduced infarct size in acute myocardial infarction rat model. Meanwhile, treatment with baicalin effectively decreased the iNOS protein expression, inflammatory factors and oxidative stresses in a rat model of acute myocardial infarction. However, baicalin emerged that anti-apoptosis activity and suppressed the activation of caspase-3 in a rat model of acute myocardial infarction. The data suggest that the protective effect of baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat. PMID:26617721

  4. Ouabain triggers preconditioning through activation of the Na+,K+-ATPase signaling cascade in rat hearts

    PubMed Central

    Pierre, Sandrine V.; Yang, Changjun; Yuan, Zhaokan; Seminerio, Jennifer; Mouas, Christian; Garlid, Keith D.; Dos-Santos, Pierre; Xie, Zijian

    2007-01-01

    Objective Because ouabain activates several pathways that are critical to cardioprotective mechanisms such as ischemic preconditioning, we tested if this digitalis compound could protect the heart against ischemia-reperfusion injury through activation of the Na+,K+-ATPase/c-Src receptor complex. Methods and Results In Langendorff-perfused rat hearts, a short (4 min) administration of ouabain 10 μM followed by an 8-minute washout before 30 minutes of global ischemia and reperfusion improved cardiac function, decreased lactate dehydrogenase release and reduced infarct size by 40%. Western blot analysis revealed that ouabain activated the cardioprotective phospholipase Cγ1/protein kinase Cε (PLC-γ1/PKCε) pathway. Pre-treatment of the hearts with the Src kinase family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2) blocked not only ouabain-induced activation of PLC-γ1/PKCε pathway, but also cardiac protection. This protection was also blocked by a PKCε translocation inhibitor peptide (PKCε TIP). Conclusion Short exposure to a low concentration of ouabain protects the heart against ischemia/reperfusion injury. This effect of ouabain on the heart is most likely due to the activation of the Na+,K+-ATPase/c-Src receptor complex and subsequent stimulation of key mediators of preconditioning, namely PLC-γ1 and PKCε. PMID:17157283

  5. Plasminogen regulates cardiac repair after myocardial infarction through its non-canonical function in stem cell homing to the infarcted heart

    PubMed Central

    Gong, Yanqing; Zhao, Yujing; Li, Ying; Fan, Yi; Hoover-Plow, Jane

    2014-01-01

    Objective The purpose of this study was to investigate the role of Plasminogen (Plg) in stem cell-mediated cardiac repair and regeneration after myocardial infarction (MI) Background MI induces irreversible tissue damage, eventually leading to heart failure. Bone marrow (BM)-derived stem cells promote tissue repair and regeneration after MI. Thrombolytic treatment with Plg activators significantly improves the clinical outcome in MI by restoring cardiac perfusion. However, the role of Plg in stem cell-mediated cardiac repair remains unclear. Methods MI was induced in Plg deficient (Plg−/−) and wild-type (Plg+/+) mice by ligation of left anterior descending coronary artery (LAD). Stem cells were visualized by in vivo tracking of GFP-expressing BM cells after BM transplantation. Cardiac function, stem cell homing, signaling pathways downstream of Plg were examined. Results G-CSF, a stem cell mobilizer, significantly promoted BM-derived stem cells (GFP+c-kit+ cells) recruitment into infarcted heart and stem cell-meidated cardiac repair in Plg+/+ mice. However, Plg deficiency markedly inhibited stem cell homing and cardiac repair, suggesting that Plg is critical for stem cell-mediated cardiac repair. Moreover, Plg regulated CXCR4 expression in stem cells in vivo and in vitro through MMP-9. Lentiviral reconstitution of CXCR4 expression in BM cells rescued stem cell homing to the infarcted heart in Plg-deficient mice, indicating that a critical role of CXCR4 in Plg-mediated stem cell homing after MI. Conclusions These findings have identified a novel role of Plg in stem cell-mediated cardiac repair after MI. Thus, targeting Plg may offer a new therapeutic strategy for stem cell-mediated cardiac repair after MI. PMID:24681141

  6. Prenatal cocaine exposure increases heart susceptibility to ischaemia–reperfusion injury in adult male but not female rats

    PubMed Central

    Bae, Soochan; Gilbert, Raymond D; Ducsay, Charles A; Zhang, Lubo

    2005-01-01

    The present study tested the hypothesis that prenatal cocaine exposure differentially regulates heart susceptibility to ischaemia–reperfusion (I/R) injury in adult offspring male and female rats. Pregnant rats were administered intraperitoneally either saline or cocaine (15 mg kg−1) twice daily from day 15 to day 21 of gestational age. There were no differences in maternal weight gain and birth weight between the two groups. Hearts were isolated from 2-month-old male and female offspring and were subjected to I/R (25 min/60 min) in a Langendorff preparation. Preischaemic values of left ventricular (LV) function were the same between the saline control and cocaine-treated hearts for both male and female rats. Prenatal cocaine exposure significantly increased I/R-induced myocardial apoptosis and infarct size, and significantly attenuated the postischaemic recovery of LV function in adult male offspring. In contrast, cocaine did not affect I/R-induced injury and postischaemic recovery of LV function in the female hearts. There was a significant decrease in PKCɛ and phospho-PKCɛ levels in LV in the male, but not female, offspring exposed to cocaine before birth. These results suggest that prenatal cocaine exposure causes a sex-specific increase in heart susceptibility to I/R injury in adult male offspring, and the decreased PKCɛ gene expression in the male heart may play an important role. PMID:15677681

  7. Constant magnetic field influence on a heart beat in rats

    SciTech Connect

    Lazetic, B.; Pekaric-Nadj, N.; Kasas-Lazetic, K.

    1991-03-11

    The authors used uretan narcose to implant constant magnets of 50 mT under the skin of rats in head region. The ECG was registrated in the next 6 hours. From it they found much slower heart beat which culminated in the first 105 minutes. After 6 weeks of continual exposure the heart beat of the exposed rats was still slower then in the controls. It is concluded that a chronical exposition to the constant magnetic field affected rats organisms and no regulatory mechanism could prevent it.

  8. Mechanisms for altered carnitine content in hypertrophied rat hearts

    SciTech Connect

    Reibel, D.K.; O'Rourke, B.; Foster, K.A.

    1987-03-01

    Carnitine levels are reduced in hypertrophied hearts of rats subjected to aortic constriction (banding) and evaluated in hypertrophied hearts of spontaneously hypertensive rats (SHR). In an attempt to determine the mechanisms for these alterations, L-(/sup 14/C)carnitine transport was examined in isolated perfused hearts. Total carnitine uptake was significantly reduced by approx.20% in hypertrophied hearts of banded rats at all perfusate carnitine concentrations employed. The reduction in total uptake was due to a 40% reduction in carrier-mediated carnitine uptake with no difference in uptake by diffusion. In contrast, carnitine uptake was not altered in isolated hypertrophied hearts of SHR. However, serum carnitine levels were elevated in SHR, which could result in increased myocardial carnitine uptake in vivo. The data suggest that altered carnitine content in hypertrophied hearts of aortic-banded rats is due to an alteration in the carrier-mediated carnitine transport system in the myocardium. However, altered carnitine content in hypertrophied hearts of SHR is not due to a change in the carnitine transport system per se but may rather be due to a change in serum carnitine levels.

  9. Serum complements and heart fatty acid binding protein in Bangladeshi patients with acute myocardial infarction

    PubMed Central

    Akhtar, Nayareen; Taher, Abu; Rahman, Rezwanur; Chowdhury, Ashesh Kumar

    2012-01-01

    The complement system is activated following acute myocardial infarction (AMI). Heart fatty acid binding protein (H-FABP) is a sensitive early biomarker of myocardial necrosis that can be used to confirm or exclude a diagnosis of AMI and to monitor recurrent infarction. This study was designed to detect changes in C3, C4 and H-FABP after AMI. Forty patients with AMI and a control group of 40 apparently healthy people were included. Selections were based on inclusion and exclusion criteria. The baseline characteristics were not significantly different between the groups. Patients’ blood samples were collected within 12 h of admission. Significant increases in C3 (AMI group 1.4260+0.04, healthy group 1.26040+0.04; p<0.05), C4 (AMI group 0.29305±0.013, healthy group 0.20860±0.012; p<0.05) and H-FABP (AMI group 12.3±1.69, healthy group 0.16±0.057; p<0.001) were seen in patients with AMI. The correlation between serum C3 and body mass index (BMI, r=0.33; p<0.05), serum C4 and BMI(r=0.313; p<0.05), serum C3 and total cholesterol high density lipoprotein (HDL, r=0.32; p<0.05), serum C4 and HbA1C (r=0.335; p<0.05) and serum C3 and troponin I (r= 0.325p<0.05) was found to be significant. But the correlation between serum C3 and waist:hip ratio (p=0.56), serum C4 and waist:hip ratio (p=0.83), serum C4 and total cholesterol HDL (p=0.993), serum C3 and HbA1C (p=0.440), serum C3 and random blood sugar (p=0.563), serum C4 and random blood sugar (p=0.828) and serum C4 and troponin I (p=0.373) was not significant. The significant complement activation detected in the plasma of patients with AMI indicated that complement plays a part in the pathogenesis of myocardial infarction. A significant increase of H-FABP improves the diagnosis of AMI.

  10. Transplantation of adipose tissue-derived stem cells improves cardiac contractile function and electrical stability in a rat myocardial infarction model.

    PubMed

    Gautam, Milan; Fujita, Daiki; Kimura, Kazuhiro; Ichikawa, Hinako; Izawa, Atsushi; Hirose, Masamichi; Kashihara, Toshihide; Yamada, Mitsuhiko; Takahashi, Masafumi; Ikeda, Uichi; Shiba, Yuji

    2015-04-01

    The transplantation of adipose tissue-derived stem cells (ADSCs) improves cardiac contractility after myocardial infarction (MI); however, little is known about the electrophysiological consequences of transplantation. The purpose of this study was to clarify whether the transplantation of ADSCs increases or decreases the incidence of ventricular tachyarrhythmias (VT) in a rat model of MI. MI was induced experimentally by permanent occlusion of the left anterior descending artery of Lewis rats. ADSCs were harvested from GFP-transgenic rats, and were cultured until passage four. ADSCs (10×10(6)) resuspended in 100μL saline or pro-survival cocktail (PSC), which enhances cardiac graft survival, were injected directly into syngeneic rat hearts 1week after MI. The recipients of ADSCs suspended in PSC had a larger graft area compared with those receiving ASDCs suspended in saline at 1week post-transplantation (number of graft cells/section: 148.7±10.6 vs. 22.4±3.4, p<0.05, n=5/group). Thereafter, all ADSC recipients were transplanted with ASDCs in PSC. ADSCs were transplanted into infarcted hearts, and the mechanical and electrophysiological functions were assessed. Echocardiography revealed that ADSC recipients had improved contractile function compared with those receiving PSC vehicle (fractional shortening: 21.1±0.9 vs. 14.1±1.2, p<0.05, n≥12/group). Four weeks post-transplantation, VT was induced via in vivo programmed electrical stimulation. The recipients of ADSCs showed a significantly lower incidence of induced VT compared with the control (31.3% vs. 83.3%, p<0.05, n≥12/group). To understand the electrical activity following transplantation, we performed ex vivo optical mapping using a voltage sensitive dye, and found that ADSC transplantation decreased conduction velocity and its dispersion in the peri-infarct area. These results suggest that ADSC transplantation improved cardiac mechanical and electrophysiological functions in subacute MI. PMID

  11. Puerarin accelerate scardiac angiogenesis and improves cardiac function of myocardial infarction by upregulating VEGFA, Ang-1 and Ang-2 in rats

    PubMed Central

    Ai, Fen; Chen, Manhua; Yu, Bo; Yang, Yang; Xu, Guizhong; Gui, Feng; Liu, Zhenxing; Bai, Xiangyan; Chen, Zhen

    2015-01-01

    Objective: The traditional Chinese medicinal puerarin, has long been used to treat cardiovascular diseases, however, the mechanism underlying its effects remain unclear. Here, this study would to investigate the role of puerarin on cardiac angiogenesis and myocardial function induced by myocardial infarction. Methods: Puerarin was treated in rats after left anterior descending coronary artery (LAD) ligation and maintained for 4 weeks (diets containing about 50 mg/kg/day or 100 mg/kg/day). After treatment, cardiac function was evaluated by echocardiography and markers of heart failure. Paraffin sections of the heart tissues were used for isolect in GS-IB4 staining. The Mrna and protein expression levels of VEGFA, Ang-1 and Ang-2 were detected by real-time polymerase chain reaction and western blot. Results: Significantly damaged angiogenesis and slightly increase of VEGFA, Ang-1 and Ang-2 were showed after LAD ligation. Impaired angiogenesis and cardiac function were remarkably improved in puerarin treatment rats with great increase of VEGFA, Ang-1 and Ang-2. Conclusion: The above results demonstrated that puerarin could accelerate cardiac angiogenesis and improve cardiac function of myocardial infarction rats by upregulating VEGFA, Ang-1 and Ang-2. PMID:26885006

  12. Ex Vivo Treatment with a Polyphenol-Enriched Cocoa Extract Ameliorates Myocardial Infarct and Postischemic Mitochondrial Injury in Normotensive and Hypertensive Rats.

    PubMed

    González Arbeláez, Luisa F; Ciocci Pardo, Alejandro; Fantinelli, Juliana C; Caldiz, Claudia; Ríos, José Luis; Schinella, Guillermo R; Mosca, Susana M

    2016-06-29

    Our objective was to determine the effects of a polyphenol-enriched cocoa extract (PCE) on myocardial postischemic alterations in normotensive (Wistar rats, W) and spontaneously hypertensive rats (SHR). Isolated hearts were submitted to 110 min of perfusion or 20 min stabilization, 30 min global ischemia, and 60 min reperfusion (R). Other hearts were treated with PCE at the onset of R. Infarct size, the reduced glutathione (GSH), and the expression of phospho-Akt, P-GSK-3β, and P-eNOS were assessed. In isolated mitochondria, the Ca(2+)-mediated response of mitochondrial permeability transition pore (mPTP), membrane potential (Δψm), and superoxide production were determined. PCE decreased infarct size, partly preserved GSH, increased the P-Akt, P-GSK-3β, and P-eNOS contents, improved mPTP response to Ca(2+), decreased the superoxide production, and restored Δψm. These data show that PCE decreases the cardiac postischemic damage in W rats and SHR and suggest that Akt/GSK-3β/eNOS dependent pathways are involved. PMID:27281548

  13. Kinetics of the electrocardiographic changes after permanent coronary occlusion in rats: Relationship with infarct size.

    PubMed

    Pimentel, Enildo Broetto; de Moraes, Andrea Cruz; Forechi, Ludimila; Machado, Rebeca Caldeira; Baldo, Marcelo Perim; Mill, Jose Geraldo

    2012-09-01

    The electrocardiogram (ECG) has been a useful tool to identify ischemia in humans and laboratory animals. Previous ECG studies showed that presence of pathological Q waves in lead DI in rats submitted to ligature of the left coronary artery (LCA) is a good predictor of successful myocardial infarction (MI). This study aimed to determine the sensitivity and the specificity of these ECG findings to predict successful MI. Male Wistar rats were submitted to surgical ligature of the LCA (N=86) or sham-operation (SO, N=16). ECG was recorded under halothane/ether anesthesia before surgery and 1, 3, 5, 7, and 15 days later. MI was determined by the presence of a transmural fibrous scar. Sixty-nine rats survived and 60 showed fibrous scar indicating a successful production of MI (18 and 42 animals were analyzed 1 or 15 days after MI, respectively). Twenty-four hours after, Q amplitude was linearly related to infarct size (r=-0.778; P<0.01), but not 15 days after (r=-0.416; P>0.05). In 53 out of 60 rats with transmural scar, Q wave in lead DI was identified in the ECG. Absence of Q wave occurred in 7 animals. The sensitivity was 88% (CI(95)=83-93%). Nine animals submitted to coronary ligature did not show infarct scar. One of these animals, however, showed Q wave in DI, indicating a specificity of 77% (CI(95)=65-104%). In conclusion, ECG can be used as a reliable tool to identify MI and can be used to predict the infarct size as earlier as 1 day after LCA ligation in rats. PMID:23037502

  14. Cardioprotection by ranolazine in perfused rat heart.

    PubMed

    Ghelardoni, Sandra; Chiellini, Grazia; Frascarelli, Sabina; Zucchi, Riccardo

    2014-12-01

    : We used the isolated working rat model to evaluate the effect of therapeutic concentrations (5-10 μM) of ranolazine on contractile performance, oxygen consumption, irreversible ischemic injury, and sarcoplasmic reticulum (SR) function. Ischemic injury was induced by 30 minutes of global ischemia followed by 120 minutes of Langendorff reperfusion and evaluated on the basis of triphenyltetrazolium chloride staining. SR function was determined on the basis of [H]-ryanodine binding, the kinetics of calcium-induced calcium release, measured by quick filtration technique, and oxalate-supported calcium uptake. In working hearts, ranolazine significantly reduced oxygen consumption (P = 0.031), in the absence of significant changes in contractile performance, and decreased irreversible ischemic injury (P = 0.011), if administered either before ischemia-reperfusion (25.4% ± 4.7% vs. 42.7% ± 6.0%) or only at the time of reperfusion (20.2% ± 5.2% vs. 43.7% ± 9.9%). In SR experiments, treatment with ranolazine determined a significant reduction in [H]-ryanodine binding (P = 0.029), because of decreased binding site density (369 ± 9 vs. 405 ± 12 fmol/mg), and in the kinetics of SR calcium release (P = 0.011), whose rate constant was decreased, whereas active calcium uptake was not affected. Ranolazine effectiveness at reperfusion and its ability to module SR calcium release suggest that this drug might be particularly useful to induce cardioprotection during coronary revascularization interventions, although the relevance of the effects on calcium homeostasis remains to be determined. PMID:25490416

  15. How Biomaterials Can Influence Various Cell Types in the Repair and Regeneration of the Heart after Myocardial Infarction

    PubMed Central

    Lister, Zachary; Rayner, Katey J.; Suuronen, Erik J.

    2016-01-01

    The healthy heart comprises many different cell types that work together to preserve optimal function. However, in a diseased heart the function of one or more cell types is compromised which can lead to many adverse events, one of which is myocardial infarction (MI). Immediately after MI, the cardiac environment is characterized by excessive cardiomyocyte death and inflammatory signals leading to the recruitment of macrophages to clear the debris. Proliferating fibroblasts then invade, and a collagenous scar is formed to prevent rupture. Better functional restoration of the heart is not achieved due to the limited regenerative capacity of cardiac tissue. To address this, biomaterial therapy is being investigated as an approach to improve regeneration in the infarcted heart, as they can possess the potential to control cell function in the infarct environment and limit the adverse compensatory changes that occur post-MI. Over the past decade, there has been considerable research into the development of biomaterials for cardiac regeneration post-MI; and various effects have been observed on different cell types depending on the biomaterial that is applied. Biomaterial treatment has been shown to enhance survival, improve function, promote proliferation, and guide the mobilization and recruitment of different cells in the post-MI heart. This review will provide a summary on the biomaterials developed to enhance cardiac regeneration and remodeling post-MI with a focus on how they control macrophages, cardiomyocytes, fibroblasts, and endothelial cells. A better understanding of how a biomaterial interacts with the different cell types in the heart may lead to the development of a more optimized biomaterial therapy for cardiac regeneration. PMID:27486578

  16. Cardioprotective Effects of Astragalin against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart

    PubMed Central

    Qu, Daoxu; Ren, Huanhuan; Yang, Wenxiao; Zhang, Xinjie; Zheng, Qiusheng; Wang, Dong

    2016-01-01

    This study aims to evaluate the cardioprotective effects of astragalin against myocardial ischemia/reperfusion (I/R) injury in isolated rat heart. The cardioprotective effects of astragalin on myocardial I/R injury were investigated on Langendorff apparatus. Adult male Sprague-Dawley rats were randomly divided into five groups. The results showed that astragalin pretreatment improved myocardial function. Compared with I/R group, lactate dehydrogenase (LDH) and creatine kinase (CK) activities in coronary flow decreased in astragalin pretreatment groups, whereas superoxide dismutase (SOD) activity and glutathione/glutathione disulfide (GSH/GSSG) ratio significantly increased. The levels of malondialdehyde (MDA), intracellular reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) decreased in astragalin-treated groups. The infarct size (IS) and apoptosis rate in hearts from astragalin-treated groups were lower than those in hearts from the I/R group. Western blot analysis also revealed that astragalin preconditioning significantly reduced Bax level, whereas Bcl-2 was increased in the myocardium. Therefore, astragalin exhibited cardioprotective effects via its antioxidative, antiapoptotic, and anti-inflammatory activities. PMID:26788251

  17. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway.

    PubMed

    Han, Dong; Huang, Wei; Li, Xiang; Gao, Lei; Su, Tao; Li, Xiujuan; Ma, Sai; Liu, Tong; Li, Congye; Chen, Jiangwei; Gao, Erhe; Cao, Feng

    2016-03-01

    Mesenchymal stem cells (MSCs)-based therapy provides a promising therapy for the ischemic heart disease (IHD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment, characterized by excessive inflammation and oxidative stress in the host's infarcted myocardium. Melatonin, an indole, which is produced by many organs including pineal gland, has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Using a murine model of myocardial infarction (MI), this study was designed to evaluate the impact of melatonin on adipose-derived mesenchymal stem cells (AD-MSCs)-based therapy for MI and the underlying mechanism involved with a focus on silent information regulator 1(SIRT1) signaling. Our results demonstrated that melatonin promoted functional survival of AD-MSCs in infarcted heart and provoked a synergetic effect with AD-MSCs to restore heart function. This in vivo effect of melatonin was associated with alleviated inflammation, apoptosis, and oxidative stress in infarcted heart. In vitro studies revealed that melatonin exert cytoprotective effects on AD-MSCs against hypoxia/serum deprivation (H/SD) injury via attenuating inflammation, apoptosis, and oxidative stress. Mechanistically, melatonin enhanced SIRT1 signaling, which was accompanied with the increased expression of anti-apoptotic protein Bcl2, and decreased the expression of Ac-FoxO1, Ac-p53, Ac-NF-ΚB, and Bax. Taken together, our findings indicated that melatonin facilitated AD-MSCs-based therapy in MI, possibly through promoting survival of AD-MSCs via SIRT1 signaling. Our data support the promise of melatonin as a novel strategy to improve MSC-based therapy for IHD, possibly through SIRT1 signaling evocation. PMID:26607398

  18. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  19. Positron emission tomography imaging of CD105 expression in a rat myocardial infarction model with 64Cu-NOTA-TRC105

    PubMed Central

    Orbay, Hakan; Zhang, Yin; Valdovinos, Hector F; Song, Guoqing; Hernandez, Reinier; Theuer, Charles P; Hacker, Timothy A; Nickles, Robert J; Cai, Weibo

    2014-01-01

    Biological changes following myocardial infarction (MI) lead to increased secretion of angiogenic factors that subsequently stimulate the formation of new blood vessels as a compensatory mechanism to reverse ischemia. The goal of this study was to assess the role of CD105 expression during MI-induced angiogenesis by positron emission tomography (PET) imaging using 64Cu-labeled TRC105, an anti-CD105 monoclonal antibody. MI was induced by ligation of the left anterior descending (LAD) artery in female rats. Echocardiography and 18F-fluoro-2-deoxy-D-glucose (18F-FDG) PET scans were performed on post-operative day 3 to confirm the presence of MI in the infarct group and intact heart in the sham group, respectively. Ischemia-induced angiogenesis was non-invasively monitored with 64Cu-NOTA-TRC105 (an extensively validated PET tracer in our previous studies) PET on post-operative days 3, 10, and 17. Tracer uptake in the infarct zone was highest on day 3 following MI, which was significantly higher than that in the sham group (1.41 ± 0.45 %ID/g vs 0.57 ± 0.07 %ID/g; n=3, p<0.05). Subsequently, tracer uptake in the infarct zone decreased over time to the background level on day 17, whereas tracer uptake in the heart of sham rats remained low at all time points examined. Histopathology documented increased CD105 expression following MI, which corroborated in vivo findings. This study indicated that PET imaging of CD105 can be a useful tool for MI-related research, which can potentially improve MI patient management in the future upon clinical translation of the optimized PET tracers. PMID:24380040

  20. Positron emission tomography imaging of CD105 expression in a rat myocardial infarction model with (64)Cu-NOTA-TRC105.

    PubMed

    Orbay, Hakan; Zhang, Yin; Valdovinos, Hector F; Song, Guoqing; Hernandez, Reinier; Theuer, Charles P; Hacker, Timothy A; Nickles, Robert J; Cai, Weibo

    2013-01-01

    Biological changes following myocardial infarction (MI) lead to increased secretion of angiogenic factors that subsequently stimulate the formation of new blood vessels as a compensatory mechanism to reverse ischemia. The goal of this study was to assess the role of CD105 expression during MI-induced angiogenesis by positron emission tomography (PET) imaging using (64)Cu-labeled TRC105, an anti-CD105 monoclonal antibody. MI was induced by ligation of the left anterior descending (LAD) artery in female rats. Echocardiography and (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET scans were performed on post-operative day 3 to confirm the presence of MI in the infarct group and intact heart in the sham group, respectively. Ischemia-induced angiogenesis was non-invasively monitored with (64)Cu-NOTA-TRC105 (an extensively validated PET tracer in our previous studies) PET on post-operative days 3, 10, and 17. Tracer uptake in the infarct zone was highest on day 3 following MI, which was significantly higher than that in the sham group (1.41 ± 0.45 %ID/g vs 0.57 ± 0.07 %ID/g; n=3, p<0.05). Subsequently, tracer uptake in the infarct zone decreased over time to the background level on day 17, whereas tracer uptake in the heart of sham rats remained low at all time points examined. Histopathology documented increased CD105 expression following MI, which corroborated in vivo findings. This study indicated that PET imaging of CD105 can be a useful tool for MI-related research, which can potentially improve MI patient management in the future upon clinical translation of the optimized PET tracers. PMID:24380040

  1. Voluntary Exercise Protects Heart from Oxidative Stress in Diabetic Rats

    PubMed Central

    Naderi, Roya; Mohaddes, Gisou; Mohammadi, Mustafa; Ghaznavi, Rana; Ghyasi, Rafigheh; Vatankhah, Amir Mansour

    2015-01-01

    Purpose: Oxidative stress plays a key role in the onset and development of diabetes complications. In this study, we evaluated whether voluntary exercise could alleviate oxidative stress in the heart and blood of streptozotocin - induced diabetic rats. Methods: 28 male Wistar rats were randomly divided into four groups (n=7): control, exercise, diabetes and exercise + diabetes. Diabetes was induced by injection of streptozotocin in male rats. Rats in the trained groups were subjected to voluntary running wheel exercise for 6 weeks. At the end of six weeks blood and heart tissue samples were collected and used for determination of antioxidant enzymes (including SOD, GPX and CAT activities) and MDA level. Results: Exercise significantly reduced MDA levels both in the heart tissue (p<0.01) and blood samples (p<0.05). In addition, exercise significantly increased SOD (p<0.05), GPX (p<0.001) and CAT (p<0.05) in the heart tissue. Voluntary exercise also significantly increased SOD (p<0.01), GPX (p<0.05) and CAT (p<0.001) in the blood. Conclusion: Voluntary exercise diminishes the MDA level in blood and heart tissue of diabetic rats. It also accentuates activities of SOD, GPX and CAT. Therefore, it may be considered a useful tool for the reduction of oxidative stress in diabetes. PMID:26236662

  2. Omentum-derived stromal cells improve myocardial regeneration in pig post-infarcted heart through a potent paracrine mechanism

    SciTech Connect

    De Siena, Rocco; Balducci, Luigi; Blasi, Antonella; Montanaro, Manuela Gessica; Saldarelli, Marilisa; Saponaro, Vittorio; Martino, Carmela; Logrieco, Gaetano; Soleti, Antonio; Fiobellot, Simona; Madeddu, Paolo; Rossi, Giacomo; Ribatti, Domenico; Crovace, Antonio; Cristini, Silvia; Invernici, Gloria; Parati, Eugenio Agostino; Alessandri, Giulio

    2010-07-01

    Cell-based therapy could be a valid option to treat myocardial infarct (MI). Adipose-derived stromal cells (ADStCs) have demonstrated tissue regenerative potential including cardiomyogenesis. Omentum is an extremely rich source of visceral fat and its accumulation seems to correlate with cardiovascular diseases. We investigated the capacity of human fat Omentum-derived StCs (FOStCs) to affect heart function upon acute infarct in pigs induced by permanent ligation of the anterior interventricular artery (IVA). We demonstrated for the first time that the local injection of 50 x 10{sup 6} of FOStCs ameliorates the functional parameters of post-infarct heart. Most importantly, histology of FOStCs treated hearts demonstrated a substantial improvement of cardiomyogenesis. In culture, FOStCs produced an impressive number and amount of angiogenic factors and cytokines. Moreover, the conditioned medium of FOStCs (FOStCs-CM) stimulates in vitro cardiac endothelial cells (ECs) proliferation and vascular morphogenesis and inhibits monocytes, EC activation and cardiomyocyte apoptosis. Since FOStCs in vivo did not trans-differentiate into cardiomyocyte-like cells, we conclude that FOStCs efficacy was presumably mediated by a potent paracrine mechanism involving molecules that concomitantly improved angiogenesis, reduced inflammation and prevented cardiomyocytes death. Our results highlight for the first time the important role that human FOStCs may have in cardiac regeneration.

  3. The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure.

    PubMed

    Hwee, Darren T; Kennedy, Adam R; Hartman, James J; Ryans, Julie; Durham, Nickie; Malik, Fady I; Jasper, Jeffrey R

    2015-04-01

    Heart failure-mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca(2+) sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure-mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca(2+) relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure-associated exercise intolerance. PMID:25678535

  4. Previous exercise training increases levels of PPAR-α in long-term post-myocardial infarction in rats, which is correlated with better inflammatory response

    PubMed Central

    Santos, Marília Harumi Higuchi; de Lourdes Higuchi, Maria; Tucci, Paulo J F; Garavelo, Shérrira M; Reis, Márcia M; Antonio, Ednei L; Serra, Andrey J; Maranhão, Raul Cavalcante

    2016-01-01

    OBJECTIVE: Exercise is a protective factor for cardiovascular morbidity and mortality, with unclear mechanisms. Changing the myocardial metabolism causes harmful consequences for heart function and exercise contributes to metabolic adjustment modulation. Peroxisome proliferator-activated receptors (PPARs) are also myocardium metabolism regulators capable of decreasing the inflammatory response. We hypothesized that PPAR-α is involved in the beneficial effects of previous exercise on myocardial infarction (MI) and cardiac function, changing the expression of metabolic and inflammatory response regulators and reducing myocardial apoptosis, which partially explains the better outcome. METHODS AND RESULTS: Exercised rats engaged in swimming sessions for 60 min/day, 5 days/week, for 8 weeks. Both the exercised rats and sedentary rats were randomized to MI surgery and followed for 1 week (EI1 or SI1) or 4 weeks (EI4 or SI4) of healing or to sham groups. Echocardiography was employed to detect left ventricular function and the infarct size. Additionally, the TUNEL technique was used to assess apoptosis and immunohistochemistry was used to quantitatively analyze the PPAR-α, TNF-α and NF-κB antigens in the infarcted and non-infarcted myocardium. MI-related mortality was higher in SI4 than in EI4 (25% vs 12%), without a difference in MI size. SI4 exhibited a lower shortening fraction than EI4 did (24% vs 35%) and a higher apoptosis/area rate (3.97±0.61 vs 1.90±1.82) in infarcted areas (both p=0.001). Immunohistochemistry also revealed higher TNF-α levels in SI1 than in EI1 (9.59 vs 4.09, p<0.001) in infarcted areas. In non-infarcted areas, EI4 showed higher levels of TNF-α and positive correlations between PPAR-α and NF-κB (r=0.75, p=0.02), in contrast to SI4 (r=0.05, p=0.87). CONCLUSION: Previously exercised animals had better long-term ventricular function post-MI, in addition to lower levels of local inflammatory markers and less myocardial apoptosis, which

  5. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3K/Akt pathway

    PubMed Central

    Li, Hua; Song, Fan; Duan, Lin-Rui; Sheng, Juan-Juan; Xie, Yan-Hua; Yang, Qian; Chen, Ying; Dong, Qian-Qian; Zhang, Bang-Le; Wang, Si-Wang

    2016-01-01

    Paeonol and danshensu is the representative active ingredient of traditional Chinese medicinal herbs Cortex Moutan and Radix Salviae Milthiorrhizae, respectively. Paeonol and danshensu combination (PDSS) has putative cardioprotective effects in treating ischemic heart disease (IHD). However, the evidence for the protective effect is scarce and the pharmacological mechanisms of the combination remain unclear. The present study was designed to investigate the protective effect of PDSS on isoproterenol (ISO)-induced myocardial infarction in rats and to elucidate the potential mechanism. Assays of creatine kinase-MB, cardiac troponin I and T and histopathological analysis revealed PDSS significantly prevented myocardial injury induced by ISO. The ISO-induced profound elevation of oxidative stress was also suppressed by PDSS. TUNEL and caspase-3 activity assay showed that PDSS significantly inhibited apoptosis in myocardia. In exploring the underlying mechanisms of PDSS, we found PDSS enhanced the nuclear translocation of Nrf2 in myocardial injured rats. Furthermore, PDSS increased phosphorylated PI3K and Akt, which may in turn activate antioxidative and antiapoptotic signaling events in rat. These present findings demonstrated that PDSS exerts significant cardioprotective effects against ISO-induced myocardial infarction in rats. The protective effect is, at least partly, via activation of Nrf2/HO-1 signaling and involvement of the PI3K/Akt cell survival signaling pathway. PMID:27021411

  6. Lasting pure-motor deficits after focal posterior internal capsule white-matter infarcts in rats.

    PubMed

    Blasi, Francesco; Whalen, Michael J; Ayata, Cenk

    2015-06-01

    Small white-matter infarcts of the internal capsule are clinically prevalent but underrepresented among currently available animal models of ischemic stroke. In particular, the assessment of long-term outcome, a primary end point in clinical practice, has been challenging due to mild deficits and the rapid and often complete recovery in most experimental models. We, therefore, sought to develop a focal white-matter infarction model that can mimic the lasting neurologic deficits commonly observed in stroke patients. The potent vasoconstrictor endothelin-1 (n=24) or vehicle (n=9) was stereotactically injected into the internal capsule at one of three antero-posterior levels (1, 2, or 3 mm posterior to bregma) in male Sprague-Dawley rats. Endothelin-injected animals showed highly focal (~1 mm(3)) and reproducible ischemic infarcts, with severe axonal and myelin loss accompanied by cellular infiltration when examined 2 and 4 weeks after injection. Only those rats injected with endothelin-1 at the most posterior location developed robust and pure-motor deficits in adhesive removal, cylinder and foot-fault tests that persisted at 1 month, without detectable sensory impairments. In summary, we present an internal capsule stroke model optimized to produce lasting pure-motor deficits in rats that may be suitable to study neurologic recovery and rehabilitation after white-matter injury. PMID:25649992

  7. Aromatase Inhibition Attenuates Desflurane-Induced Preconditioning against Acute Myocardial Infarction in Male Mouse Heart In Vivo

    PubMed Central

    Jazbutyte, Virginija; Stumpner, Jan; Redel, Andreas; Lorenzen, Johan M.; Roewer, Norbert

    2012-01-01

    The volatile anesthetic desflurane (DES) effectively reduces cardiac infarct size following experimental ischemia/reperfusion injury in the mouse heart. We hypothesized that endogenous estrogens play a role as mediators of desflurane-induced preconditioning against myocardial infarction. In this study, we tested the hypothesis that desflurane effects local estrogen synthesis by modulating enzyme aromatase expression and activity in the mouse heart. Aromatase metabolizes testosterone to 17β- estradiol (E2) and thereby significantly contributes to local estrogen synthesis. We tested aromatase effects in acute myocardial infarction model in male mice. The animals were randomized and subjected to four groups which were pre-treated with the selective aromatase inhibitor anastrozole (A group) and DES alone (DES group) or in combination (A+DES group) for 15 minutes prior to surgical intervention whereas the control group received 0.9% NaCl (CON group). All animals were subjected to 45 minutes ischemia following 180 minutes reperfusion. Anastrozole blocked DES induced preconditioning and increased infarct size compared to DES alone (37.94±15.5% vs. 17.1±3.62%) without affecting area at risk and systemic hemodynamic parameters following ischemia/reperfusion. Protein localization studies revealed that aromatase was abundant in the murine cardiovascular system with the highest expression levels in endothelial and smooth muscle cells. Desflurane application at pharmacological concentrations efficiently upregulated aromatase expression in vivo and in vitro. We conclude that desflurane efficiently regulates aromatase expression and activity which might lead to increased local estrogen synthesis and thus preserve cellular integrity and reduce cardiac damage in an acute myocardial infarction model. PMID:22876297

  8. Physiologic consequences of local heart irradiation in rats

    SciTech Connect

    Geist, B.J.; Lauk, S.; Bornhausen, M.; Trott, K.R. )

    1990-05-01

    Noninvasive methods have been used to study the long-term cardiovascular and pulmonary functional changes at rest and after exercise in adult rats following local heart irradiation with single x-ray doses of 15, 17.5 or 20 Gy, and in non-irradiated control animals. Rats that had undergone a chronic exercise program were compared with untrained cohorts. The earliest dysfunction detected was an increased respiratory rate (f) at 10 weeks after irradiation in the highest dose group. In contrast, both telemetric heart-rate (HR) and rhythm and indirect systolic blood pressure measurements performed at rest only revealed changes starting at 43 weeks after irradiation with 20 Gy, up to which point the rats showed no clinical signs of heart failure. However, the number of minutes required for the recovery of the HR to pre-exercise levels following the implementation of a standardized exercise challenge was elevated in untrained rats compared with their trained cohorts at 18 weeks after irradiation with 20 Gy. Increases in recovery times were required in the two lowest dose groups, starting at 26 weeks after irradiation. It was concluded that the reserve capacity of the cardiopulmonary system masks functional decrements at rest for many months following local heart irradiation, necessitating the use of techniques which reveal reductions in reserve capacities. Further, the influence of local irradiation to the heart and lungs deserves closer scrutiny due to mutual interactions.

  9. Validation of a simple and inexpensive method for the quantitation of infarct in the rat brain.

    PubMed

    Schilichting, C L R; Lima, K C M; Cestari, L A; Sekiyama, J Y; Silva, F M; Milani, H

    2004-04-01

    A gravimetric method was evaluated as a simple, sensitive, reproducible, low-cost alternative to quantify the extent of brain infarct after occlusion of the medial cerebral artery in rats. In ether-anesthetized rats, the left medial cerebral artery was occluded for 1, 1.5 or 2 h by inserting a 4-0 nylon monofilament suture into the internal carotid artery. Twenty-four hours later, the brains were processed for histochemical triphenyltetrazolium chloride (TTC) staining and quantitation of the schemic infarct. In each TTC-stained brain section, the ischemic tissue was dissected with a scalpel and fixed in 10% formalin at 0 masculine C until its total mass could be estimated. The mass (mg) of the ischemic tissue was weighed on an analytical balance and compared to its volume (mm(3)), estimated either by plethysmometry using platinum electrodes or by computer-assisted image analysis. Infarct size as measured by the weighing method (mg), and reported as a percent (%) of the affected (left) hemisphere, correlated closely with volume (mm(3), also reported as %) estimated by computerized image analysis (r = 0.88; P < 0.001; N = 10) or by plethysmography (r = 0.97-0.98; P < 0.0001; N = 41). This degree of correlation was maintained between different experimenters. The method was also sensitive for detecting the effect of different ischemia durations on infarct size (P < 0.005; N = 23), and the effect of drug treatments in reducing the extent of brain damage (P < 0.005; N = 24). The data suggest that, in addition to being simple and low cost, the weighing method is a reliable alternative for quantifying brain infarct in animal models of stroke. PMID:15064814

  10. The beginning of the calcium transient in rat embryonic heart.

    PubMed

    Kobayashi, Takeshi; Maeda, Sachiko; Ichise, Nobutoshi; Sato, Tatsuya; Iwase, Takehito; Seki, Sumihiko; Yamada, Yoichi; Tohse, Noritsugu

    2011-03-01

    Although many researchers have tried to observe the beginning of the heartbeat, no study has shown the beginning of the calcium transient. Here, we evaluate the beginning of the calcium transient in the Wistar rat heart. We first tried to reveal when the heart of the Wistar rat begins to contract because no previous study has evaluated the beginning of the heartbeat in Wistar rats. Observation of embryos transferred to a small incubator mounted on a microscope revealed that the heart primordium, the so-called cardiac crescent, began to contract at embryonic day 9.99-10.13. Observation of embryos loaded with fluo-3 AM revealed that the beginning of the calcium transient precedes the initiation of contraction which precedes the appearance of the linear heart tube. Nifedipine (1 μM), but not ryanodine (1 μM), abolished the calcium transients. These results indicate that calcium transients in the early embryonic period involve exclusively calcium entry through L-type calcium channels in contrast to the situation in mature hearts. This study provides the first demonstration of the relationship between morphological changes in the heart primordium and the beginning of the calcium transient and contraction. PMID:21267689

  11. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress.

    PubMed

    Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P

    2016-01-25

    Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats. PMID:26721194

  12. Activated Protein C Protects Myocardium Via Activation of Anti-apoptotic Pathways of Survival in Ischemia-reperfused Rat Heart

    PubMed Central

    Ding, Jia-Wang; Yang, Jun; Liu, Zhao-Qi; Zhang, Yan; Yang, Jian; Li, Song; Li, Li

    2010-01-01

    Activated protein C (APC) is known to be beneficial on ischemia reperfusion injury in myocardium. However, the protection mechanism of APC is not fully understood. The purpose of this study was to investigate the effects and possible mechanisms of APC on myocardial ischemic damage. Artificially ventilated anaesthetized Sprague-Dawley rats were subjected to a 30 min of left anterior descending coronary artery occlusion followed by 2 hr of reperfusion. Rats were randomly divided into four groups; Sham, I/R, APC preconditioning and postconditioning group. Myocardial infarct size, apoptosis index, the phosphorylation of ERK1/2, Bcl-2, Bax and cytochrome c genes and proteins were assessed. In APC-administrated rat hearts, regardless of the timing of administration, infarct size was consistently reduced compared to ischemia/reperfusion (I/R) rats. APC improved the expression of ERK1/2 and anti-apoptotic protein Bcl-2 which were significantly reduced in the I/R rats. APC reduced the expression of pro-apoptotic genes, Bax and cytochrome c. These findings suggest that APC produces cardioprotective effect by preserving the expression of proteins and genes involved in anti-apoptotic pathways, regardless of the timing of administration. PMID:21060750

  13. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke

    PubMed Central

    Vani, Javad Rasouli; Mohammadi, Mohammad Taghi; Foroshani, Mahsa Sarami; Jafari, Mahvash

    2016-01-01

    Oxidative stress is the common underlying mechanism of damage in ischemic stroke. Therefore, we aimed to evaluate the possible protective effects of polyhydroxylated fullerene derivatives on brain infarction and oxidative/nitrosative stress in a rat model of ischemic stroke. The experiment was performed by four groups of rats (each; n=12); Sham, Control ischemia, and ischemic treatment groups (Pretreatment and Posttreatment). Brain ischemia was induced by 90 min middle cerebral artery occlusion (MCAO) followed by 24 hours reperfusion. Rats received fullerene nanoparticles at dose of 1 mg/kg 30 min before MCAO and immediately after beginning of reperfusion. Infarct volume, contents of malondialdehyde (MDA), glutathione (GSH) and nitrate as well as superoxide dismutase (SOD) activity were assessed 24 hours after termination of MCAO. Brain infarct volume was 310 ± 21 mm3 in control group. Administration of fullerene nanoparticles before and after MCAO significantly decreased the infarct volume by 53 % (145 ± 45 mm3) and 81 % (59 ± 13 mm3), respectively. Ischemia also enhanced MDA and nitrate contents of ischemic hemispheres by 45 % and 25 % , respectively. Fullerene nanoparticles considerably reduced the MDA and nitrate contents of ischemic hemispheres before MCAO by 58 % and 17 % , respectively, and after MCAO by 38 % and 21 % , respectively. Induction of MCAO significantly decreased GSH content (19 % ) and SOD activity (52 % ) of ischemic hemispheres, whereas fullerene nanoparticles increased the GSH content and SOD activity of ischemic hemispheres by 19 % and 52 % before MCAO, respectively, and 21 % and 55 % after MCAO, respectively. Our findings indicate that fullerene nanoparticles, as a potent scavenger of free radicals, protect the brain cells against ischemia/reperfusion injury and inhibit brain oxidative/nitrosative damage. PMID:27540350

  14. Responses of the working rat heart to carbon monoxide.

    PubMed

    Lin, H; McGrath, J J

    1989-07-01

    The effects of carbon monoxide (CO) were studied in the isolated working rat heart. Hearts removed from male laboratory rats were perfused via the left atrium with Krebs-Henseleit solution (KH) oxygenated with 95% O2-5% CO2 (O2). Heart rate and arterial pressures were measured by a transducer inserted in the aortic outflow line and connected to a data logger. Aortic flow was determined by collecting the effluent from the aortic bubble trap in a graduated cylinder. Coronary flow through the pulmonary cannula was collected and measured in a graduated cylinder. After 30 min, the hearts were challenged with solutions containing either CO (5% CO-90% O2-5% CO2) or N2 (5% N2-90% O2-5% CO2) for 10 min (Challenge I). After recovery in O2, the hearts were challenged with the alternate test solution (Challenge II). CO increased coronary flow (CF) and coronary flow as a percent of cardiac output (CF%) 13 and 16% respectively. N2 had no significant effect on CF or CF%. CO and N2 had no significant effect on heart rate, cardiac output, oxygen consumption or on aortic flow or pressure. These results indicate that vasodilation is the major response of the working heart to CO, and this response is not mediated by simple hypoxia. PMID:2813558

  15. The effect of Ligustrum delavayanum on isolated perfused rat heart

    PubMed Central

    Stankovičová, Tatiana; Frýdl, Miroslav; Kubicová, Mária; Baróniková, Slávka; Nagy, Milan; Grančai, Daniel; Švec, Pavel

    2001-01-01

    BACKGROUND: Extract of ligustrum leaves (Ligustrum delavayanum Hariot [Oleaceae]) is well known in traditional Chinese medicine. One of the active components, oleuropein, displays vasodilating and hypotensive effects. OBJECTIVE: To analyze the effect of 0.008% lyophilized extract of ligustrum dissolved in 0.5% ethanol on heart function. ANIMALS AND METHODS: Experiments were done on isolated rat hearts perfused by the Langendorff method in control conditions and during ischemic-reperfusion injury. RESULTS: Application of ligustrum induced positive inotropic and vasodilating effects in spontaneously beating hearts. Pretreatment of the hearts with ligustrum reduced left ventricular diastolic pressure measured during reperfusion and improved left ventricular contraction compared with hearts without any pretreatment. Ligustrum significantly suppressed the incidence and duration of cardiac reperfusion arrhythmias, expressed as G-score, from 7.40±0.58 in nontreated rats to 1.97±0.50. DISCUSSION: Application of ligustrum or ethanol alone induced changes in coordination between atria and ventricles during ischemia-reperfusion injury. The ‘g-score’, a new parameter summing the incidence and duration of atrioventricular blocks, atrioventricular dissociation and cardiac arrest, is introduced. The g-scores with ligustrum pretreatment were higher during ischemia than during reperfusion. Ethanol significantly depressed myocardial contractility and coronary flow, and nonsignificantly decreased heart rate of isolated rat hearts. Electrical changes observed during coronary reperfusion in the presence of ethanol were accompanied by deterioration of contractile function. CONCLUSIONS: Ligustrum had a significant protective effect on rat myocardium against ischemic-reperfusion injury. Ethanol partially attenuated the protective effect of ligustrum. PMID:20428448

  16. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    SciTech Connect

    Reibel, D.K.; O'Rourke, B.

    1986-03-05

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H/sub 2/O left atrial filling pressure with a ventricular afterload of 80 cm of H/sub 2/O with buffer containing 1.2 mM /sup 14/C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. /sup 14/CO/sub 2/ production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by /sup 14/CO/sub 2/ production during this time was 0.728 +/- 0.06 ..mu..moles/min/g dry in control hearts and 0.710 +/- 0.02 ..mu..moles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O/sub 2/ consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 ..mu..moles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine.

  17. Acyloin production from aldehydes in the perfused rat heart: the potential role of pyruvate dehydrogenase.

    PubMed Central

    Montgomery, J A; Jetté, M; Huot, S; Des Rosiers, C

    1993-01-01

    Aldehydes represent an important class of cytotoxic products derived from free radical-induced lipid peroxidation which may contribute to reperfusion injury following myocardial infarct. Metabolism of aldehydes in the heart has not been well characterized aside from conjugation of unsaturated aldehydes with glutathione. However, aliphatic aldehydes like hexanal do not form stable glutathione conjugates. We have recently demonstrated in vitro that pig heart pyruvate dehydrogenase catalyses a reaction between pyruvate and saturated aldehydes to produce acyloins (3-hydroxyalkan-2-ones). In the present study, rat hearts were perfused with various aldehydes and pyruvate. Acyloins were generated from saturated aldehydes (butanal, hexanal or nonanal), but not from 2-hexanal (an unsaturated aldehyde) or malondialdehyde. Hearts perfused with 2 mM pyruvate and 10-100 microM hexanal rapidly took up hexanal in a dose-related manner (140-850 nmol/min), and released 3-hydroxyoctan-2-one (0.7-30 nmol/min), 2,3-octanediol (0-12 nmol/min) and hexanol (10-200 nmol/min). Small quantities of hexanoic acid (about 10 nmol/min) were also released. The rate of release of acyloin metabolites rose with increased concentration of hexanal, whereas hexanol release attained a plateau when hexanal infusion concentrations rose above 50 microM. Up to 50% of hexanal uptake could be accounted for by metabolite release. Less than 0.5% of hexanal uptake was found to be bound to acid-precipitable macromolecules. When hearts perfused with 50 microM hexanal and 2 mM pyruvate were subjected to a 15 min ischaemic period, the rates of release of 2,3-octanediol, 3-hydroxyoctan-2-one, hexanol and hexanoate during the reperfusion period were not significantly different from those in the pre-ischaemic period. Our results indicate that saturated aldehydes can be metabolically converted by the heart into stable diffusible compounds. PMID:8379929

  18. Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion.

    PubMed

    Yang, Xi-Ming; Cui, Lin; White, James; Kuck, Jamie; Ruchko, Mykhaylo V; Wilson, Glenn L; Alexeyev, Mikhail; Gillespie, Mark N; Downey, James M; Cohen, Michael V

    2015-03-01

    Recent reports indicate that elevating DNA glycosylase/AP lyase repair enzyme activity offers marked cytoprotection in cultured cells and a variety of injury models. In this study, we measured the effect of EndoIII, a fusion protein construct that traffics Endonuclease III, a DNA glycosylase/AP lyase, to the mitochondria, on infarct size in a rat model of myocardial ischemia/reperfusion. Open-chest, anesthetized rats were subjected to 30 min of occlusion of a coronary artery followed by 2 h of reperfusion. An intravenous bolus of EndoIII, 8 mg/kg, just prior to reperfusion reduced infarct size from 43.8 ± 1.4% of the risk zone in control animals to 24.0 ± 1.3% with no detectable hemodynamic effect. Neither EndoIII's vehicle nor an enzymatically inactive EndoIII mutant (K120Q) offered any protection. The magnitude of EndoIII's protection was comparable to that seen with the platelet aggregation inhibitor cangrelor (25.0 ± 1.8% infarction of risk zone). Because loading with a P2Y12 receptor blocker to inhibit platelets is currently the standard of care for treatment of acute myocardial infarction, we tested whether EndoIII could further reduce infarct size in rats treated with a maximally protective dose of cangrelor. The combination reduced infarct size to 15.1 ± 0.9% which was significantly smaller than that seen with either cangrelor or EndoIII alone. Protection from cangrelor but not EndoIII was abrogated by pharmacologic blockade of phosphatidylinositol-3 kinase or adenosine receptors indicating differing cellular mechanisms. We hypothesized that EndoIII protected the heart from spreading necrosis by preventing the release of proinflammatory fragments of mitochondrial DNA (mtDNA) into the heart tissue. In support of this hypothesis, an intravenous bolus at reperfusion of deoxyribonuclease I (DNase I) which should degrade any DNA fragments escaping into the extracellular space was as protective as EndoIII. Furthermore, the combination of EndoIII and DNase I

  19. Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion

    PubMed Central

    Yang, Xi-Ming; Cui, Lin; White, James; Kuck, Jamie; Ruchko, Mykhaylo V.; Wilson, Glenn L.; Alexeyev, Mikhail; Gillespie, Mark N.; Downey, James M.

    2016-01-01

    Recent reports indicate that elevating DNA glycosylase/AP lyase repair enzyme activity offers marked cytoprotection in cultured cells and a variety of injury models. In this study, we measured the effect of EndoIII, a fusion protein construct that traffics Endonuclease III, a DNA glycosylase/AP lyase, to the mitochondria, on infarct size in a rat model of myocardial ischemia/reperfusion. Open-chest, anesthetized rats were subjected to 30 min of occlusion of a coronary artery followed by 2 h of reperfusion. An intravenous bolus of EndoIII, 8 mg/kg, just prior to reperfusion reduced infarct size from 43.8 ± 1.4 % of the risk zone in control animals to 24.0 ± 1.3 % with no detectable hemodynamic effect. Neither EndoIII’s vehicle nor an enzymatically inactive EndoIII mutant (K120Q) offered any protection. The magnitude of EndoIII’s protection was comparable to that seen with the platelet aggregation inhibitor cangrelor (25.0 ± 1.8 % infarction of risk zone). Because loading with a P2Y12 receptor blocker to inhibit platelets is currently the standard of care for treatment of acute myocardial infarction, we tested whether EndoIII could further reduce infarct size in rats treated with a maximally protective dose of cangrelor. The combination reduced infarct size to 15.1 ± 0.9 % which was significantly smaller than that seen with either cangrelor or EndoIII alone. Protection from cangrelor but not EndoIII was abrogated by pharmacologic blockade of phosphatidylinositol-3 kinase or adenosine receptors indicating differing cellular mechanisms. We hypothesized that EndoIII protected the heart from spreading necrosis by preventing the release of proinflammatory fragments of mitochondrial DNA (mtDNA) into the heart tissue. In support of this hypothesis, an intravenous bolus at reperfusion of deoxyribonuclease I (DNase I) which should degrade any DNA fragments escaping into the extracellular space was as protective as EndoIII. Furthermore, the combination of EndoIII and

  20. Using decision trees to manage hospital readmission risk for acute myocardial infarction, heart failure, and pneumonia.

    PubMed

    Hilbert, John P; Zasadil, Scott; Keyser, Donna J; Peele, Pamela B

    2014-12-01

    To improve healthcare quality and reduce costs, the Affordable Care Act places hospitals at financial risk for excessive readmissions associated with acute myocardial infarction (AMI), heart failure (HF), and pneumonia (PN). Although predictive analytics is increasingly looked to as a means for measuring, comparing, and managing this risk, many modeling tools require data inputs that are not readily available and/or additional resources to yield actionable information. This article demonstrates how hospitals and clinicians can use their own structured discharge data to create decision trees that produce highly transparent, clinically relevant decision rules for better managing readmission risk associated with AMI, HF, and PN. For illustrative purposes, basic decision trees are trained and tested using publically available data from the California State Inpatient Databases and an open-source statistical package. As expected, these simple models perform less well than other more sophisticated tools, with areas under the receiver operating characteristic (ROC) curve (or AUC) of 0.612, 0.583, and 0.650, respectively, but achieve a lift of at least 1.5 or greater for higher-risk patients with any of the three conditions. More importantly, they are shown to offer substantial advantages in terms of transparency and interpretability, comprehensiveness, and adaptability. By enabling hospitals and clinicians to identify important factors associated with readmissions, target subgroups of patients at both high and low risk, and design and implement interventions that are appropriate to the risk levels observed, decision trees serve as an ideal application for addressing the challenge of reducing hospital readmissions. PMID:25160603

  1. Influence of heart failure on the prognosis of patients with acute myocardial infarction in southwestern China

    PubMed Central

    DENG, FUXUE; XIA, YONG; FU, MICHAEL; HU, YUNFENG; JIA, FANG; RAHARDJO, YEFFRY; DUAN, YINGYI; HE, LINJING; CHANG, JING

    2016-01-01

    The impact of heart failure (HF) on acute myocardial infarction (AMI) in patients from southwestern China remains unclear. The present study aimed to compare in-hospital cardiovascular events, mortality and clinical therapies in AMI patients with or without HF in southwestern China. In total, 591 patients with AMI hospitalized between February 2009 and December 2012 were examined; those with a history of HF were excluded. The patients were divided into four groups according to AMI type (ST-elevated or non-ST-elevated AMI) and the presence of HF during hospitalization. Clinical characteristics, in-hospital cardiovascular events, mortality, coronary angiography and treatment were compared. Clinical therapies, specifically evidence-based drug use were analyzed in patients with HF during hospitalization, including angiotensin converting enzyme inhibitors (ACEIs) and β-blockers (BBs). AMI patients with HF had a higher frequency of co-morbidities, lower left ventricular ejection fraction, longer length of hospital stay and a greater risk of in-hospital mortality compared with AMI patients without HF. AMI patients with HF were less likely to be examined by cardiac angiography or treated with reperfusion therapy or recommended medications. AMI patients with HF co-treated with ACEIs and BBs had a significantly higher survival rate (94.4 vs. 67.5%; P<0.001) compared with untreated patients or patients treated with either ACEIs or BBs alone. Logistic regression analysis revealed that HF and cardiogenic shock in patients with AMI were the strongest predictors of in-hospital mortality. AMI patients with HF were at a higher risk of adverse outcomes. Cardiac angiography and timely standard recommended medications were associated with improved clinical outcomes. PMID:27284294

  2. Regulation of Gene Expression with Thyroid Hormone in Rats with Myocardial Infarction

    PubMed Central

    Chen, Yue-Feng; Pottala, James V.; Weltman, Nathan Y.; Ge, Xijin; Savinova, Olga V.; Gerdes, A. Martin

    2012-01-01

    Introduction The expression of hundreds of genes is altered in response to left ventricular (LV) remodeling following large transmural myocardial infarction (MI). Thyroid hormone (TH) improves LV remodeling and cardiac performance after MI. However, the molecular basis is unknown. Methods MI was produced by ligation of the left anterior descending coronary artery in female SD rats. Rats were divided into the following groups: (1) Sham MI, (2) MI, and (3) MI+T4 treatment (T4 pellet 3.3 mg, 60 days release, implanted subcutaneously immediately following MI). Four weeks after surgery, total RNA was isolated from LV non-infarcted areas for microarray analysis using the Illumina RatRef-12 Expression BeadChip Platform. Results Signals were detected in 13,188 genes (out of 22,523), of which the expression of 154 genes were decreased and the expression of 200 genes were increased in MI rats compared with Sham MI rats (false discovery rate (FDR) <0.05). Compared to MI rats, T4 treatment decreased expression of 27 genes and increased expression of 28 genes. In particular, 6 genes down-regulated by MI and 12 genes up-regulated by MI were reversed by T4. Most of the 55 genes altered by T4 treatment are in the category of molecular function under binding (24) and biological processes which includes immune system process (9), multi-organism process (5) and biological regulation (19) nonexclusively. Conclusions These results suggest that altered expression of genes for molecular function and biological process may be involved in the beneficial effects of thyroid hormone treatment following MI in rats. PMID:22870193

  3. Effect of hydroxy safflower yellow A on myocardial apoptosis after acute myocardial infarction in rats.

    PubMed

    Zhou, M X; Fu, J H; Zhang, Q; Wang, J Q

    2015-01-01

    This study aimed to investigate the effect of hydroxy safflower yellow A (HSYA) on myocardial apoptosis after acute myocardial infarction (AMI) in rats. We randomly divided 170 male Wistar rats into 6 groups (N = 23): normal control, sham, control, SY (90 mg/kg), HSYA high-dose (HSYA-H, 40 mg/kg), and HSYA low-dose groups (HSYA-L, 20 mg/kg). Myocardial ischemic injury was induced by ligating the anterior descending coronary artery, and the degree of myocardial ischemia was evaluated using electrocardiography and nitroblue tetrazolium staining. Bax and Bcl-2 expressions in the ischemic myocardium were determined using immunohistochemical analysis. Peroxisome proliferator-activated receptor-γ (PPAR-γ) expression in the myocardium of rats with AMI was determined using reverse transcription-polymerase chain reaction. Compared to rats in the control group, those in the HYSA-H, HSYA-L, and SY groups showed a decrease in the elevated ST segments and an increase in the infarct size. The rats in the drug-treated groups showed a significantly lower percentage of Bax-positive cells and a significantly higher percentage of Bcl-2-positive cells than those in the control group (P < 0.05). Moreover, mRNA expression of PPAR-γ in the ischemic myocardium of rats in the SY, HSYA-L, and HSYA-H groups was significantly lower than that in the control group (P < 0.05). Thus, HSYA and SY can attenuate myocardial ischemia in rats, possibly by increasing the level of Bcl-2/Bax, and PPAR-γ may be not a necessary link in this process. PMID:25966078

  4. Acute myocardial infarction after heart irradiation in young patients with Hodgkin's disease

    SciTech Connect

    Joensuu, H.

    1989-02-01

    Forty-seven patients younger than 40 years at the time of the diagnosis, and irradiated to the mediastinum for Hodgkin's disease at Turku University Central Hospital from 1977 to 1982, were regularly followed for 56 to 127 months after therapy. Two patients developed an acute myocardial infarction ten and 50 months after cardiac irradiation at the age of only 28 and 24 years, respectively. None of the patients died from lymphoma within five years from the diagnosis, but one of the infarctions was eventually fatal. Since acute myocardial infarction is rare in this age group, the result suggests strongly that prior cardiac irradiation is a risk factor for acute myocardial infarction. The possibility of radiation-induced myocardial infarction should be taken into account both in treatment planning and follow-up of patients with Hodgkin's disease.

  5. Plasma metabonomics study on Chinese medicine syndrome evolution of heart failure rats caused by LAD ligation

    PubMed Central

    2014-01-01

    Background Chinese medicine syndromes (Zheng) in many disease models are not clearly characterized or validated, and the concepts of Chinese medicine syndromes are confounding and controversial. Metabonomics has been applied to the evaluation and classification of the Chinese medicine syndromes both in clinical and nonclinical studies. In this study, we aim to investigate the evolution of the Chinese medicine syndrome in myocardial infarction induced heart failure and to confirm the feasibility of the Zheng classification by plasma metabonomics in a syndrome and disease combination animal model. Methods The heart failure (HF) model was induced by ligation of the left anterior descending coronary artery (LAD) in Sprague–Dawley rats. The rats were divided into the following two groups: the HF model group (LAD ligation) and the sham operated group. GC-MS was used with pattern recognition technology and principal component analysis (PCA) to analyze the plasma samples at 4, 21 and 45 day after operation. Results It was determined that the period from 7 to 28 days was the stable time window of ischemic heart failure with qi deficiency and blood stasis syndrome (QDBS), and the qi deficiency syndrome occurred at 1 to 4 days and 45 to 60 days after operation. The results exhibited 5 plasma metabolite changes in the same trend at 4 and 21 day after the LAD operation, 7 at 21 and 45 day, and 2 at 4 and 45 day. No metabolite showed the same change at all of the 3 time points. At day 21 (the QDBS syndrome time point) after operation, 4 plasma metabolites showed the same trends with the results of our previous study on patients with the blood stasis syndrome. Conclusions The syndrome diagnosis is reliable in the HF rat model in this study. Plasma metabolites can provide a basis for the evaluation of Chinese medicine syndrome animal models. PMID:25012233

  6. Prognostic value of left ventricular diastolic function and association with heart rate variability after a first acute myocardial infarction

    PubMed Central

    Poulsen, S; Jensen, S; Moller, J; Egstrup, K

    2001-01-01

    OBJECTIVE—To study the prognostic value of left ventricular (LV) diastolic function and its relation with autonomic balance expressed by heart rate variability (HRV) in patients after a first acute myocardial infarction.
DESIGN—The study population consisted of 64 consecutive patients with first acute myocardial infarction and 31 control subjects. Long and short term HRV indices were evaluated by 24 hour Holter monitoring, and LV systolic and diastolic function were assessed by two dimensional and Doppler echocardiography before discharge. Patients were divided into two groups: those with restrictive LV filling characteristics (deceleration time ⩽ 140 ms) and those with non-restrictive LV filling characteristics (deceleration time > 140 ms).
RESULTS—Both long and short term HRV indices were significantly reduced in patients with restrictive LV filling compared with the non-restrictive group and control subjects. Mitral deceleration time and isovolumetric relaxation time correlated weakly but significantly with all indices of HRV whereas ejection fraction correlated weakly with the long term HRV indices. The mean follow up time was 14.9 (8.7) months. Multivariate analysis showed that mitral deceleration time (χ2 = 6.4, p < 0.001) and ejection fraction ⩽ 40% (χ2 = 4.4, p < 0.05) were independent predictors of cardiac death and readmission to hospital with congestive heart failure.
CONCLUSIONS—A restrictive LV filling pattern was found to be the strongest predictor of adverse outcome independent of HRV and ejection fraction during follow up after a first acute myocardial infarction. Patients with restrictive LV filling characteristics had more reduced HRV than those with non-restrictive diastolic filling.


Keywords: diastole; infarction; autonomic balance PMID:11559672

  7. Cardioprotective Effects of Lagenaria siceraria Fruit Juice on Isoproterenol-induced Myocardial Infarction in Wistar Rats: A Biochemical and Histoarchitecture Study

    PubMed Central

    Upaganlawar, A; Balaraman, R

    2011-01-01

    The present study was designed to evaluate the cardioprotective effects of Lagenaria siceraria fruit juice in isoproterenol-induced myocardial infarction. Rats injected with isoproterenol (200 mg/kg, s.c.) showed a significant increase in the levels of serum uric acid, tissue Na++ and Ca++ ions and membrane-bound Ca+2-ATPase activity. A significant decrease in the levels of serum protein, tissue K+ ion, vitamin E level, and the activities of Na+/K+-ATPase and mg+2-ATPase was observed. Isoproterenol injected rats also showed a significant increase in the intensity of lactate dehydrogenase isoenzyme and histopathologic alterations in the heart. Treatment with L. siceraria fruit juice (400 mg/kg/day, p.o.) for 30 days and administration of isoproterenol on 29th and 30th days showed a protective effect on altered biochemical and histopathologic changes. These findings indicate the cardioprotective effect of L. siceraria fruit juice in isoproterenol-induced myocardial infarction in rats. PMID:22224036

  8. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats

    PubMed Central

    Lv, Y.; Liu, B.; Wang, H.P.; Zhang, L.

    2016-01-01

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats. PMID:27254663

  9. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats.

    PubMed

    Lv, Y; Liu, B; Wang, H P; Zhang, L

    2016-01-01

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats. PMID:27254663

  10. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host

    PubMed Central

    Léobon, Bertrand; Garcin, Isabelle; Menasché, Philippe; Vilquin, Jean-Thomas; Audinat, Etienne; Charpak, Serge

    2003-01-01

    Survival and differentiation of myogenic cells grafted into infarcted myocardium have raised the hope that cell transplantation becomes a new therapy for cardiovascular diseases. The approach was further supported by transplantation of skeletal myoblasts, which was shown to improve cardiac performance in several animal species. Despite the success of myoblast transplantation and its recent trial in human, the mechanism responsible for the functional improvement remains unclear. Here, we used intracellular recordings coupled to video and fluorescence microscopy to establish whether myoblasts, genetically labeled with enhanced GFP and transplanted into rat infarcted myocardium, retain excitable and contractile properties, and participate actively to cardiac function. Our results indicate that grafted myoblasts differentiate into peculiar hyperexcitable myotubes with a contractile activity fully independent of neighboring cardiomyocytes. We conclude that mechanisms other than electromechanical coupling between grafted and host cells are involved in the improvement of cardiac function. PMID:12805561

  11. Effects of Glucose Concentration on Propofol Cardioprotection against Myocardial Ischemia Reperfusion Injury in Isolated Rat Hearts.

    PubMed

    Yao, Xinhua; Li, Yalan; Tao, Mingzhe; Wang, Shuang; Zhang, Liangqing; Lin, Jiefu; Xia, Zhengyuan; Liu, Hui-Min

    2015-01-01

    The anesthetic propofol confers cardioprotection against myocardial ischemia-reperfusion injury (IRI) by reducing reactive oxygen species (ROS). However, its cardioprotection on patients is inconsistent. Similarly, the beneficial effect of tight glycemic control during cardiac surgery in patients has recently been questioned. We postulated that low glucose (LG) may promote ROS formation through enhancing fatty acid (FA) oxidation and unmask propofol cardioprotection during IRI. Rat hearts were isolated and randomly assigned to be perfused with Krebs-Henseleit solution with glucose at 5.5 mM (LG) or 8 mM (G) in the absence or presence of propofol (5 μg/mL) or propofol plus trimetazidine (TMZ). Hearts were subjected to 35 minutes of ischemia followed by 60 minutes of reperfusion. Myocardial infarct size (IS) and cardiac CK-MB were significantly higher in LG than in G group (P < 0.05), associated with reduced left ventricular developed pressure and increases in postischemic cardiac contracture. Cardiac 15-F2t-isoprostane was higher, accompanied with higher cardiac lipid transporter CD36 protein expression in LG. Propofol reduced IS, improved cardiac function, and reduced CD36 in G but not in LG. TMZ facilitated propofol cardioprotection in LG. Therefore, isolated heart with low glucose lost sensitivity to propofol treatment through enhancing FA oxidation and TMZ supplementation restored the sensitivity to propofol. PMID:26491698

  12. Effects of Glucose Concentration on Propofol Cardioprotection against Myocardial Ischemia Reperfusion Injury in Isolated Rat Hearts

    PubMed Central

    Yao, Xinhua; Li, Yalan; Tao, Mingzhe; Wang, Shuang; Zhang, Liangqing; Lin, Jiefu; Xia, Zhengyuan; Liu, Hui-min

    2015-01-01

    The anesthetic propofol confers cardioprotection against myocardial ischemia-reperfusion injury (IRI) by reducing reactive oxygen species (ROS). However, its cardioprotection on patients is inconsistent. Similarly, the beneficial effect of tight glycemic control during cardiac surgery in patients has recently been questioned. We postulated that low glucose (LG) may promote ROS formation through enhancing fatty acid (FA) oxidation and unmask propofol cardioprotection during IRI. Rat hearts were isolated and randomly assigned to be perfused with Krebs-Henseleit solution with glucose at 5.5 mM (LG) or 8 mM (G) in the absence or presence of propofol (5 μg/mL) or propofol plus trimetazidine (TMZ). Hearts were subjected to 35 minutes of ischemia followed by 60 minutes of reperfusion. Myocardial infarct size (IS) and cardiac CK-MB were significantly higher in LG than in G group (P < 0.05), associated with reduced left ventricular developed pressure and increases in postischemic cardiac contracture. Cardiac 15-F2t-isoprostane was higher, accompanied with higher cardiac lipid transporter CD36 protein expression in LG. Propofol reduced IS, improved cardiac function, and reduced CD36 in G but not in LG. TMZ facilitated propofol cardioprotection in LG. Therefore, isolated heart with low glucose lost sensitivity to propofol treatment through enhancing FA oxidation and TMZ supplementation restored the sensitivity to propofol. PMID:26491698

  13. Cardioprotective effect of aqueous extract of Chichorium intybus on ischemia-reperfusion injury in isolated rat heart

    PubMed Central

    Sadeghi, Najmeh; Dianat, Mahin; Badavi, Mohammad; Malekzadeh, Ahad

    2015-01-01

    Objective: Several studies have shown that Chichorium intybus (C. intybus) which possesses flavonoid compounds has an effective role in treatment of cardiovascular diseases. Contractile dysfunction mostly occurs after acute myocardial infarction, cardiac bypass surgery, heart transplantation and coronary angioplasty. The aim of the present study was to investigate the effect of aqueous extract of C. intybus on ischemia- reperfusion injury in isolated rat heart. Materials and Methods: The animals were divided into four groups (Sham, Control, 1 mg/ml and 3 mg/ml of extract) of 8 rats. The aorta was cannulated, and then the heart was mounted on a Langendorff apparatus. Next, a balloon was inserted into the left ventricle (LV) and peak positive value of time derivate of LV pressure (+dp/dt), coronary flow (CF), and left ventricular systolic pressure (LVSP) in pre-ischemia and reperfusion period were calculated by a Power Lab system. All groups underwent a 30-minute global ischemia followed by a 60-minute reperfusion. Results: The results showed that heart rate (HR), coronary flow, and left ventricular developed pressure (LVDP) and rate of pressure product (RPP) significantly decreased in the control group during reperfusion, while these values in the groups receiving the extract (3mg/ml) improved significantly during reperfusion (p<0.001). Conclusion: It seems that flavonoid compounds of aqueous extract of C. intybus reduce ischemia - reperfusion injuries, suggesting its protective effect on heart function after ischemia. PMID:26693414

  14. Manganese depresses rat heart muscle respiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has previously been reported that moderately high dietary manganese (Mn) in combination with marginal magnesium (Mg) resulted in ultrastructural damage to heart mitochondria. Manganese may replace Mg in biological functions, including the role of enzyme cofactor. Manganese may accumulate and subs...

  15. Acute exposure to Catha edulis depresses contractility and induces myocardial infarction in spontaneously contracting, isolated rabbit’s heart

    PubMed Central

    Al-Hashem, Fahaid H.; Dallak, Mohammad A.; Nwoye, Luke O.; Bin-Jaliah, Ismaeel M.; Al-Amri, Hasan S.; Rezk, Mahmoud H.; Sakr, Hussein F.; Shatoor, Abdullah S.; Al-Khateeb, Mahmoud

    2011-01-01

    Khat chewing is a recreational habit known to pose major socio-economic and medical problems in countries of Southern Arabia and the Horn of Africa. Among other adverse health effects, khat chewing has been associated with an increased risk of myocardial infarction (MI) in heavy consumers. This study was carried out to examine the direct effects of Catha edulis extract on contractility of spontaneously contracting, isolated rabbit heart and to investigate its mechanism of action. Isolated six rabbit’s hearts attached to a Langendorff apparatus were perfused with extract at a constant flow rate and continuously bubbled with a 95% O2/5% CO2 gas mixture. Each heart served as its own control, as responses were recorded before and after administration of C. edulis extract. Varying concentrations of extract (50, 100 and 250 mg/ml) were loaded in the perfusate, their effects recorded and effluent fluid collected for assay of cardiac enzymes. Histological examination of the cardiac tissue was performed at the end of perfusion with 250 mg/ml extract. This study revealed that acute exposure to C. edulis extract exerted negative inotropic and chronotropic effects on isolated hearts. The extract also had a vasoconstrictor effect on coronary vessels, independent of α1 adrenergic receptor stimulation. Histological examination of hearts perfused with 250 mg/ml C. edulis extract revealed the presence of histological changes unique to myocardial infarction, a finding consistent with observed increased levels of cardiac enzymes in perfusates. Thus, we have demonstrated experimentally a direct cardiac depressant- and MI inducing effects of C. edulis extract. These results are consistent with the earlier reported deleterious effects of khat on cardiovascular function among khat chewers. PMID:23961167

  16. Acute exposure to Catha edulis depresses contractility and induces myocardial infarction in spontaneously contracting, isolated rabbit's heart.

    PubMed

    Al-Hashem, Fahaid H; Dallak, Mohammad A; Nwoye, Luke O; Bin-Jaliah, Ismaeel M; Al-Amri, Hasan S; Rezk, Mahmoud H; Sakr, Hussein F; Shatoor, Abdullah S; Al-Khateeb, Mahmoud

    2012-01-01

    Khat chewing is a recreational habit known to pose major socio-economic and medical problems in countries of Southern Arabia and the Horn of Africa. Among other adverse health effects, khat chewing has been associated with an increased risk of myocardial infarction (MI) in heavy consumers. This study was carried out to examine the direct effects of Catha edulis extract on contractility of spontaneously contracting, isolated rabbit heart and to investigate its mechanism of action. Isolated six rabbit's hearts attached to a Langendorff apparatus were perfused with extract at a constant flow rate and continuously bubbled with a 95% O2/5% CO2 gas mixture. Each heart served as its own control, as responses were recorded before and after administration of C. edulis extract. Varying concentrations of extract (50, 100 and 250 mg/ml) were loaded in the perfusate, their effects recorded and effluent fluid collected for assay of cardiac enzymes. Histological examination of the cardiac tissue was performed at the end of perfusion with 250 mg/ml extract. This study revealed that acute exposure to C. edulis extract exerted negative inotropic and chronotropic effects on isolated hearts. The extract also had a vasoconstrictor effect on coronary vessels, independent of α1 adrenergic receptor stimulation. Histological examination of hearts perfused with 250 mg/ml C. edulis extract revealed the presence of histological changes unique to myocardial infarction, a finding consistent with observed increased levels of cardiac enzymes in perfusates. Thus, we have demonstrated experimentally a direct cardiac depressant- and MI inducing effects of C. edulis extract. These results are consistent with the earlier reported deleterious effects of khat on cardiovascular function among khat chewers. PMID:23961167

  17. [Influence of the permeability of the artery responsible for the infarction on the variability of heart rate and late potentials. Its importance in the risk stratification after myocardial infarction].

    PubMed

    Dorado, M; González-Hermosillo, J A; García Arenal, F; Colín, L; Kershenovich, S; Romero, L; Iturralde, P

    1993-02-01

    The use of the heart rate variability for the study of the Autonomic nervous system has been well established. We analyzed late potentials and heart rate variability in 29 control patients and in 102 consecutive patients with a first myocardial infarction. The data obtained were analyzed with both, the medical treatment (thrombolysis and beta-blockers) and the patency of the infarct related vessel. Patients with an infarct had diminished vagal tone as compared with the control group. Those patients with occluded related arteries showed higher incidence of late potentials; interestingly patients with late potentials also had diminished vagal tone. Without looking at the patency of the infarct related artery, thrombolitic and betablocker therapy did not have any effect on vagal tone. All the variables were correlated with the patency of the infarct related artery. Those patients with patent arteries had a preservation of the vagal tone; this was independent of the treatment received and the presence of late potentials. We concluded that the patency of the infarct related artery determines the absence of late potentials and preservation of the vagal tone. This might be one of the mechanisms of how thrombolitic therapy decreases the incidence of cardiac death. PMID:8451487

  18. Activation of immediate-early response gene c-Fos protein in the rat paralimbic cortices after myocardial infarction

    PubMed Central

    Ahn, Ji Yun; Tae, Hyun-Jin; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Park, Joon Ha; Kim, Dong Won; Cho, Jun Hwi; Won, Moo-Ho; Hong, Seongkweon; Lee, Jae-Chul; Seo, Jeong Yeol

    2015-01-01

    c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cingulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining. c-Fos-immunoreactive cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction. PMID:26487852

  19. Effect of insulin and glucose infusion on myocardial infarction size in uraemic rats.

    PubMed

    Dikow, Ralf; Wasserhess, Caroline; Zimmerer, Katrin; Kihm, Lars Philipp; Schaier, Matthias; Schwenger, Vedat; Hardt, Stefan; Tiefenbacher, Christiane; Katus, Hugo; Zeier, Martin; Gross, Lisa Marie

    2009-09-01

    The post myocardial infarction (MI) mortality rate is high in renal patients. One possible explanation is the reduced ischemia tolerance caused by uraemia. Previous investigations showed larger MI size in uraemic rats when compared with sham-operated controls. To explore a possible link between uraemic insulin resistance syndrome and MI size in uraemia, we studied an intervention model with administration of insulin and glucose during acute MI in subtotally nephrectomized (SNX) rats and sham-operated controls. In 16 SNX rats and 16 sham-operated controls, the left coronary artery was ligated for 60 min, followed by reperfusion for 90 min. To visualize the perfused myocardium, lissamine-green ink was injected. The nonperfused area (lissamine exclusion) and the area of total infarction (TTC stain) were assessed in sections of the left ventricle (LV) using image analysis. While eight SNX rats and eight sham-operated controls were treated with a placebo during the procedure, the other animals received an insulin bolus of 85 mU/kg and then a continuous insulin infusion of 8 mU/kg per minute. Blood glucose levels were clamped to baseline levels with an infusion of 25% glucose. Insulin receptor substrates (IRS-1 and IRS-2) and glucose transporter (GLUT 4) were studied by western blot in another seven SNX and seven sham-operated controls without further intervention. The infarcted area, given as a proportion of the nonperfused risk area, was not different in sham-operated controls treated with a hyperinsulinaemic clamp versus untreated (0.55 +/- 0.07 vs. 0.51 +/- 0.13, p = 0.477). The eight SNX animals treated with the hyperinsulinaemic clamp utilized significantly less glucose to stabilize baseline glucose levels when compared with the sham-operated controls (5,637 vs. 3,207 microl Glc 25%, p = 0.007). The infarcted area was significantly lower in SNX rats treated with the hyperinsulinaemic clamp compared to non-treated SNX animals (0.56 +/- 0.06 vs. 0.79 +/- 0.09, p < 0

  20. Association between reduced heart rate variability and left ventricular dilatation in patients with a first anterior myocardial infarction. CATS Investigators. Captopril and Thrombolysis Study.

    PubMed Central

    Dambrink, J H; Tuininga, Y S; van Gilst, W H; Peels, K H; Lie, K I; Kingma, J H

    1994-01-01

    BACKGROUND--Reduced heart rate variability has been identified as an important prognostic factor after myocardial infarction. This factor is thought to reflect an imbalance between sympathetic and parasympathetic activity, which may lead to unfavourable loading conditions and thus promote left ventricular dilatation. PATIENTS AND METHODS--298 patients in a multicentre clinical trial were randomised to captopril or placebo after a first anterior myocardial infarction. All patients were treated with streptokinase before randomisation. In the present substudy full data including heart rate variability and echocardiographic measurements were available from 80 patients. Patients were divided into two groups: those with a reduced (< or = 25) heart rate variability index and those with normal heart rate variability index (> 25). Heart rate variability was evaluated by 24 h Holter monitoring before discharge. Left ventricular volumes were assessed by echocardiography before discharge and three and 12 months after myocardial infarction. Extent of myocardial injury, severity of coronary artery disease, functional class, haemodynamic variables, and medication were also considered as possible determinants of left ventricular dilatation. RESULTS--Before discharge end systolic and end diastolic volumes were not different in the two groups. After 12 months in patients with a reduced heart rate variability, end systolic volume (mean (SD)) had increased by 6 (14) ml/m2 (P = 0.043) and end diastolic volume had increased by 8 (17) ml/m2 (P = 0.024). Left ventricular volumes were unchanged in patients with a normal heart rate variability. Also, patients with left ventricular dilatation had a larger enzymatic infarct size and higher heart rates and rate-pressure products. A reduced heart rate variability index before discharge was an independent risk factor for left ventricular dilatation during follow up. Measurement of heart rate variability after three months had no predictive value

  1. Ischemic preconditioning stimulates sodium and proton transport in isolated rat hearts.

    PubMed Central

    Ramasamy, R; Liu, H; Anderson, S; Lundmark, J; Schaefer, S

    1995-01-01

    One or more brief periods of ischemia, termed preconditioning, dramatically limits infarct size and reduces intracellular acidosis during subsequent ischemia, potentially via enhanced sarcolemmal proton efflux mechanisms. To test the hypothesis that preconditioning increases the functional activity of sodium-dependent proton efflux pathways, isolated rat hearts were subjected to 30 min of global ischemia with or without preconditioning. Intracellular sodium (Nai) was assessed using 23Na magnetic resonance spectroscopy, and the activity of the Na-H exchanger and Na-K-2Cl cotransporter was measured by transiently exposing the hearts to an acid load (NH4Cl washout). Creatine kinase release was reduced by greater than 60% in the preconditioned hearts (P < 0.05) and was associated with improved functional recovery on reperfusion. Preconditioning increased Nai by 6.24 +/- 2.04 U, resulting in a significantly higher level of Nai before ischemia than in the control hearts. Nai increased significantly at the onset of ischemia (8.48 +/- 1.21 vs. 2.57 +/- 0.81 U, preconditioned vs. control hearts; P < 0.01). Preconditioning did not reduce Nai accumulation during ischemia, but the decline in Nai during the first 5 min of reperfusion was significantly greater in the preconditioned than in the control hearts (13.48 +/- 1.73 vs. 2.54 +/- 0.41 U; P < 0.001). Exposure of preconditioned hearts to ethylisopropylamiloride or bumetanide in the last reperfusion period limited in the increase in Nai during ischemia and reduced the beneficial effects of preconditioning. After the NH4Cl prepulse, preconditioned hearts acidified significantly more than control hearts and had significantly more rapid recovery of pH (preconditioned, delta pH = 0.35 +/- 0.04 U over 5 min; control, delta pH = 0.15 +/- 0.02 U over 5 min). This rapid pH recovery was not affected by inhibition of the Na-K-2Cl cotransporter but was abolished by inhibition of the Na-H exchanger. These results demonstrate that

  2. Heart Rate Changes in Electroacupuncture Treated Polycystic Ovary in Rats

    PubMed Central

    Ramadoss, Mukilan; Subbiah, Angelie Jessica; Natrajan, Chidambaranathan

    2016-01-01

    Introduction Polycystic Ovary Syndrome (PCOS) is a common metabolic disorder, it affects both humans and animals. It may induce coronary heart disease, obesity and hyperandrogenism. Previous studies show that Low frequency Electroacupuncture (EA) have an effect on PCOS, however the exact pathway is unclear. Aim To find the effect of EA on autonomic activity of the heart in Estradiol Valerate (EV) induced PCOS rats. Materials and Methods Heart rate variability (HRV) was assessed in 3 groups: 1) Control; 2) PCOS rats; and 3) PCOS rats after EA treatment (n=8 in each group). From the time domain analysis and frequency domain analysis (linear measures) HRV analysis was done. EA stimulation was given at low frequency of 2Hz for 15 min on alternate days for 4-5 weeks. Collected data were statistically analysed using One-Way Analysis of Variance with the application of multiple comparisons of Tukey test. Results EA treatment group shows significant reduction in Heart Rate (HR) and low frequency, high frequency ratio (LF/HF); and increase in RR interval, Total Power (TP) when compared to PCOS group. Conclusion The study concludes that EA treatment has a significant effect on reducing sympathetic tone and decreasing HR in PCOS. PMID:27134868

  3. Simvastatin ameliorates ventricular remodeling via the TGF‑β1 signaling pathway in rats following myocardial infarction.

    PubMed

    Xiao, Xiangbin; Chang, Guanglei; Liu, Jian; Sun, Guangyun; Liu, Li; Qin, Shu; Zhang, Dongying

    2016-06-01

    Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)‑β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post‑myocardial infarction via the TGF‑β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg‑1·d‑1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross‑sectional area and the collagen volume fraction, and also showed that the levels of TGF‑β1, TGF‑activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post‑myocardial infarction rats via the TGF‑β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system. PMID:27121011

  4. Simvastatin ameliorates ventricular remodeling via the TGF-β1 signaling pathway in rats following myocardial infarction

    PubMed Central

    XIAO, XIANGBIN; CHANG, GUANGLEI; LIU, JIAN; SUN, GUANGYUN; LIU, LI; QIN, SHU; ZHANG, DONGYING

    2016-01-01

    Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)-β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post-myocardial infarction via the TGF-β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg−1·d−1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross-sectional area and the collagen volume fraction, and also showed that the levels of TGF-β1, TGF-activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post-myocardial infarction rats via the TGF-β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system. PMID:27121011

  5. My heart will go on—beneficial effects of anti-MiR-30 after myocardial infarction

    PubMed Central

    Li, Yuhuang

    2016-01-01

    MicroRNAs play key roles in the regulation of diverse cellular processes and during cardiovascular disease development and progression, such as myocardial infarction (MI) and heart failure (HF). A recent manuscript by Shen and colleagues provided evidence that the miR-30-CSE-H2S axis contributes to the protection against cardiomyocyte ischemic injury by regulating hydrogen sulfide (H2S) production. Inhibition of the miR-30 family after MI injury offers potential therapeutic value to ‘keep our heart going on’. As this study highlights miRNAs as promising future therapeutic targets, their translational applicability to utilization in humans needs to be viewed with caution. PMID:27162794

  6. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies.

    PubMed

    Schuleri, Karl H; Boyle, Andrew J; Centola, Marco; Amado, Luciano C; Evers, Robert; Zimmet, Jeffrey M; Evers, Kristine S; Ostbye, Katherine M; Scorpio, Diana G; Hare, Joshua M; Lardo, Albert C

    2008-12-01

    Porcine models have become increasingly popular in cardiovascular research. The standard farm pig rapidly increases in body weight and size, potentially confounding serial measurements of cardiac function and morphology. We developed an adult porcine model that does not show physiologic increases in heart mass during the study period and is suitable for long-term study. We compared adult minipigs with the commonly used adolescent Yorkshire swine. Myocardial infarction was induced in adult Göttingen minipigs and adolescent Yorkshire swine by occlusion of the left anterior descending coronary artery followed by reperfusion. At 8 wk after infarction, the left ventricular ejection fraction was 34.1 +/- 2.3% in minipigs and 30.7 +/- 2.0% in Yorkshire swine. The left ventricular end-diastolic mass in Yorkshire pigs assessed by magnetic resonance imaging increased 17 +/- 5 g, from 42.6 +/- 4.3 g at week 1 after infarction to 52.8 +/- 6.6 g at week 8, whereas it remained unchanged in minipigs. Cardiac anatomy and physiology in adult minipigs were evaluated invasively by angiography and noninvasively by Multidetector Computed Tomography and by Magnetic Resonance Imaging at 1.5 T and 3 T prior to myocardial infarction and during folow-up. This porcine heart failure model is reproducible, mimics the pathophysiology in patients who have experienced myocardial infarction, and is suitable for imaging studies. New heart failure therapies and devices can be tested preclinically in this adult animal model of chronic heart failure. PMID:19149414

  7. Protective effects of Labisia pumila var. alata on biochemical and histopathological alterations of cardiac muscle cells in isoproterenol-induced myocardial infarction rats.

    PubMed

    Dianita, Roza; Jantan, Ibrahim; Amran, Athirah Z; Jalil, Juriyati

    2015-01-01

    The study was designed to evaluate the cardioprotective effects of the standardized aqueous and 80% ethanol extracts of Labisia pumila var. alata (LPva) in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. The extracts were administered to Wistar rats orally for 28 days with three doses (100, 200 and 400 mg/kg of body weight) prior to ISO (85 mg/kg)-induced MI in two doses on day 29 and 30. The sera and hearts were collected for biochemical and histopathological analysis after the rats were sacrificed 48 h after the first induction. The main components of the extracts, gallic acid, alkylresorcinols and flavonoids were identified and quantitatively analyzed in the extracts by using a validated reversed phase HPLC method. The extracts showed significant protective effects as pretreated rats showed a significant dose-dependent decrease (p < 0.05) in cardiac enzyme activities, i.e., cardiac troponin I (cTnI), creatine kinase MB isoenzyme (CK-MB), lactate dehydrogenase (LDH), alanine transaminase (ALT) and aspartate transaminase (AST), when compared with ISO-control rats. There were significant rises (p < 0.05) in the activity of oxidase enzymes, i.e., glutathione peroxide (GPx), catalase (CAT) and superoxide dismutase (SOD) of the pretreated rats, when compared with ISO-control group. Histopathological examination showed an improvement in membrane cell integrity in pre-treated rats compared to untreated rats. The major components of LPva extracts can be used as their biomarkers and contributed to the cardioprotective effects against ISO-induced MI rats. PMID:25786162

  8. Apigenin attenuates acute myocardial infarction of rats via the inhibitions of matrix metalloprotease-9 and inflammatory reactions

    PubMed Central

    Du, Hong; Hao, Jie; Liu, Fan; Lu, Jingchao; Yang, Xiuchun

    2015-01-01

    Acute myocardial infarction (AMI) is the myocardial necrosis caused by coronary artery acute and persistent ischemia and hypoxia. Matrix metalloprotease-9 (MMP-9) plays an important role in a series of process of occurrence and development of AMI. Inflammatory reaction plays the key role in all kinds of damage factors in AMI. Apigenin (API) has effectively restrained the activity of MMP-9, anti-inflammatory and hepatic fat oxidizing properties. API significantly improved AMI of rats through inhibiting MMP-9 and inflammatory reactions in a few recent studies. Our investigation detected the infarct size of AMI rats, casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) activities in AMI rats were also analyzed with commercial kits. Additionally, Nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) levels of whole bloods of AMI rats were also detected using commercial kits. Next, MMP-9 protein of cardiac in AMI rats was measured with gelatin zymography assays. Finally, caspase-3 and caspase-9 activities in AMI rats were analyzed with commercial kits. In the present study, our work indicated API might significantly reduce the infarction size of AMI rat. It was shown that the treatment of API could decrease the expression of MMP-9 level and reduce the activities of NF-κB, TNF-α, IL-1β and IL-6 in AMI rats. Next, API treatment could reduce caspase-3 and caspase-9 activities and decrease cellular apoptosis of AMI rats. Our findings concluded that API ameliorates acute myocardial infarction of rats via inhibiting MMP-9 and inflammatory reactions. PMID:26309539

  9. Ischemic postconditioning influences electron transport chain protein turnover in Langendorff-perfused rat hearts

    PubMed Central

    Cao, Song; Liu, Yun; Wang, Haiying; Mao, Xiaowen; Chen, Jincong; Liu, Jiming; Xia, Zhengyuan; Zhang, Lin; Liu, Xingkui

    2016-01-01

    Ischemia postconditioning (IPo) is a promising strategy in reducing myocardial ischemia reperfusion (I/R) injury (MIRI), but its specific molecular mechanism is incompletely understood. Langendorff-perfused isolated rat hearts were subjected to global I/R and received IPo in the absence or presence of the mitochondrial ATP-sensitive potassium channel (mitoKATP) blocker 5-hydroxydecanoate (5-HD). Myocardial mitochondria were extracted and mitochondrial comparative proteomics was analyzed. IPo significantly reduces post-ischemic myocardial infarction and improved cardiac function in I/R rat hearts, while 5-HD basically cancelled IPo’s myocardial protective effect. Joint application of two-dimensional polyacrylamide gel electrophoresis (2DE) and MALDI-TOF MS identified eight differentially expressed proteins between groups. Expression of cardiac succinate dehydrogenase (ubiquinone) flavoprotein subunit (SDHA) increased more than two-fold after I/R, while IPo led to overexpression of dihydrolipoyl dehydrogenase (DLD), NADH dehydrogenase (ubiquinone) flavoprotein 1 and isoform CRA_b (NDUFV1). When the mitoKATP was blocked, MICOS complex subunit Mic60 (IMMT) and Stress-70 protein (Grp75) were over expressed, while DLDH, ATPase subunit A (ATPA) and rCG44606 were decreased. Seven of the differential proteins belong to electron transport chain (ETC) or metabolism regulating proteins, and five of them were induced by closing mitoKATP in I/R hearts. We thus conclude that IPo’s myocardial protective effect relies on energy homeostasis regulation. DLD, SDHA, NDUFV1, Grp75, ATPA and rCG44606 may contribute to IPo’s cardial protective effect. PMID:26925330

  10. Inpatient deaths from acute myocardial infarction, 1982-92: analysis of data in the Nottingham heart attack register.

    PubMed Central

    Brown, N.; Young, T.; Gray, D.; Skene, A. M.; Hampton, J. R.

    1997-01-01

    OBJECTIVE: To assess longitudinal trends in admissions, management, and inpatient mortality from acute myocardial infarction over 10 years. DESIGN: Retrospective analysis based on the Nottingham heart attack register. SETTING: Two district general hospitals serving a defined urban and rural population. SUBJECTS: All patients admitted with a confirmed acute myocardial infarction during 1982-4 and 1989-92 (excluding 1991, when data were not collected). MAIN OUTCOME MEASURES: Numbers of patients, background characteristics, time from onset of symptoms to admission, ward of admission, treatment, and inpatient mortality. RESULTS: Admissions with acute myocardial infarction increased from 719 cases in 1982 to 960 in 1992. The mean age increased from 62.1 years to 66.6 years (P < 0.001), the duration of stay fell from 8.7 days to 7.2 days (P < 0.001), and the proportion of patients aged 75 years and over admitted to a coronary care unit increased significantly from 29.1% to 61.2%. A higher proportion of patients were admitted to hospital within 6 hours of onset of their symptoms in 1989-92 than in 1982-4, but 15% were still admitted after the time window for thrombolysis. Use of beta blockers increased threefold between 1982 and 1992, aspirin was used in over 70% of patients after 1989, and thrombolytic use increased 1.3-fold between 1989 and 1992. Age and sex adjusted odds ratios for inpatient mortality remained unchanged over the study period. CONCLUSIONS: Despite an increasing uptake of the "proved" treatments, inpatient mortality from myocardial infarction did not change between 1982 and 1992. PMID:9251546

  11. After Heart Attack, New Threat: Heart Failure

    MedlinePlus

    ... of heart attack known as STEMI (ST elevation myocardial infarction). "Patients with ischemic heart disease are at the ... failure]. This includes those who have had a myocardial infarction, also called heart attack," Gho said. "Research studying ...

  12. Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model

    PubMed Central

    Alaverdashvili, Mariam; Paterson, Phyllis G.; Bradley, Michael P.

    2015-01-01

    Background The rat photothrombotic stroke model can induce brain infarcts with reasonable biological variability. Nevertheless, we observed unexplained high inter-individual variability despite using a rigorous protocol. Of the three major determinants of infarct volume, photosensitive dye concentration and illumination period were strictly controlled, whereas undetected fluctuation in laser power output was suspected to account for the variability. New method The frequently utilized Diode Pumped Solid State (DPSS) lasers emitting 532 nm (green) light can exhibit fluctuations in output power due to temperature and input power alterations. The polarization properties of the Nd:YAG and Nd:YVO4 crystals commonly used in these lasers are another potential source of fluctuation, since one means of controlling output power uses a polarizer with a variable transmission axis. Thus, the properties of DPSS lasers and the relationship between power output and infarct size were explored. Results DPSS laser beam intensity showed considerable variation. Either a polarizer or a variable neutral density filter allowed adjustment of a polarized laser beam to the desired intensity. When the beam was unpolarized, the experimenter was restricted to using a variable neutral density filter. Comparison with existing method(s) Our refined approach includes continuous monitoring of DPSS laser intensity via beam sampling using a pellicle beamsplitter and photodiode sensor. This guarantees the desired beam intensity at the targeted brain area during stroke induction, with the intensity controlled either through a polarizer or variable neutral density filter. Conclusions Continuous monitoring and control of laser beam intensity is critical for ensuring consistent infarct size. PMID:25840363

  13. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats.

    PubMed

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  14. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  15. Exendin-4 Pretreated Adipose Derived Stem Cells Are Resistant to Oxidative Stress and Improve Cardiac Performance via Enhanced Adhesion in the Infarcted Heart

    PubMed Central

    Yin, Yujing; Wang, Liman; Liu, Zhiqiang; Yang, Junjie; Chen, Yundai; Wang, Changyong

    2014-01-01

    Reactive oxygen species (ROS), which were largely generated after myocardial ischemia, severely impaired the adhesion and survival of transplanted stem cells. In this study, we aimed to determine whether Exendin-4 pretreatment could improve the adhesion and therapeutic efficacy of transplanted adipose derived stem cells (ADSCs) in ischemic myocardium. In vitro, H2O2 was used to provide ROS environments, in which ADSCs pretreated with Exendin-4 were incubated. ADSCs without pretreatment were used as control. Then, cell adhesion and viability were analyzed with time. Compared with control ADSCs, Exendin-4 treatment significantly increased the adhesion of ADSCs in ROS environment, while reduced intracellular ROS and cell injury as determined by dihydroethidium (DHE) staining live/Dead staining, lactate dehydrogenase-release assay and MTT assay. Western Blotting demonstrated that ROS significantly decreased the expression of adhesion-related integrins and integrin-related focal adhesion proteins, which were significantly reversed by Exendin-4 pretreatment and followed by decreases in caspase-3, indicating that Exendin-4 may facilitate cell survival through enhanced adhesion. In vivo, myocardial infarction (MI) was induced by the left anterior descending artery ligation in SD rats. Autologous ADSCs with or without Exendin-4 pretreatment were injected into the border area of infarcted hearts, respectively. Multi-techniques were used to assess the beneficial effects after transplantation. Longitudinal bioluminescence imaging and histological staining revealed that Exendin-4 pretreatment enhanced the survival and differentiation of engrafted ADSCs in ischemic myocardium, accompanied with significant benefits in cardiac function, matrix remodeling, and angiogenesis compared with non-pretreated ADSCs 4 weeks post-transplantation. In conclusion, transplantation of Exendin-4 pretreated ADSCs significantly improved cardiac performance and can be an innovative approach in the

  16. Exendin-4 pretreated adipose derived stem cells are resistant to oxidative stress and improve cardiac performance via enhanced adhesion in the infarcted heart.

    PubMed

    Liu, Jianfeng; Wang, Haibin; Wang, Yan; Yin, Yujing; Wang, Liman; Liu, Zhiqiang; Yang, Junjie; Chen, Yundai; Wang, Changyong

    2014-01-01

    Reactive oxygen species (ROS), which were largely generated after myocardial ischemia, severely impaired the adhesion and survival of transplanted stem cells. In this study, we aimed to determine whether Exendin-4 pretreatment could improve the adhesion and therapeutic efficacy of transplanted adipose derived stem cells (ADSCs) in ischemic myocardium. In vitro, H2O2 was used to provide ROS environments, in which ADSCs pretreated with Exendin-4 were incubated. ADSCs without pretreatment were used as control. Then, cell adhesion and viability were analyzed with time. Compared with control ADSCs, Exendin-4 treatment significantly increased the adhesion of ADSCs in ROS environment, while reduced intracellular ROS and cell injury as determined by dihydroethidium (DHE) staining live/Dead staining, lactate dehydrogenase-release assay and MTT assay. Western Blotting demonstrated that ROS significantly decreased the expression of adhesion-related integrins and integrin-related focal adhesion proteins, which were significantly reversed by Exendin-4 pretreatment and followed by decreases in caspase-3, indicating that Exendin-4 may facilitate cell survival through enhanced adhesion. In vivo, myocardial infarction (MI) was induced by the left anterior descending artery ligation in SD rats. Autologous ADSCs with or without Exendin-4 pretreatment were injected into the border area of infarcted hearts, respectively. Multi-techniques were used to assess the beneficial effects after transplantation. Longitudinal bioluminescence imaging and histological staining revealed that Exendin-4 pretreatment enhanced the survival and differentiation of engrafted ADSCs in ischemic myocardium, accompanied with significant benefits in cardiac function, matrix remodeling, and angiogenesis compared with non-pretreated ADSCs 4 weeks post-transplantation. In conclusion, transplantation of Exendin-4 pretreated ADSCs significantly improved cardiac performance and can be an innovative approach in the

  17. Stereological study of the diabetic heart of male rats

    PubMed Central

    Noorafshan, Ali; Khazraei, Hajar; Mirkhani, Hossein

    2013-01-01

    The present study aimed to quantitatively compare the normal and diabetic hearts of rats using stereological methods. Diabetic and control rats received streptozotocin (60 mg/kg) and no treatments, respectively. On the 56th day, the hearts were removed and their total volume was estimated using isotropic Cavalieri method. The total volume of the connective tissues and vessels, total length and diameter of the vessels, total number of cardiomyocytes nuclei, and the mean volume of the cardiomyocytes were estimated, as well. In comparison to the control animals, 60 and 43% increase was observed in the total volume of the connective tissue and microvessels of the diabetic rats, respectively (P<0.05). The percent of the vessel profiles with the diameter of 2-4 µm was decreased, while the percent of the vessel profiles with the diameter of 4.1-8 µm was increased in the diabetic hearts (P<0.05). No significant difference was found in the vessels with more than 8 µm diameters. The total number of the cardiomyocytes' nuclei and the number-weighted mean volume were respectively decreased by 37 and 64% in the diabetic group (P<0.01). A significant difference was observed between the two groups concerning the left ventricle volume to body weight ratio as an index for ventricular hypertrophy (P<0.05), while no difference was found regarding the right ventricle to body weight ratio. It can be concluded that diabetes can induce structural changes, including loss and/or atrophy of the cardiomyocytes, accompanied with increase in the connective tissue in the rats' hearts. PMID:23573103

  18. Stereological study of the diabetic heart of male rats.

    PubMed

    Noorafshan, Ali; Khazraei, Hajar; Mirkhani, Hossein; Karbalay-Doust, Saied

    2013-03-01

    The present study aimed to quantitatively compare the normal and diabetic hearts of rats using stereological methods. Diabetic and control rats received streptozotocin (60 mg/kg) and no treatments, respectively. On the 56(th) day, the hearts were removed and their total volume was estimated using isotropic Cavalieri method. The total volume of the connective tissues and vessels, total length and diameter of the vessels, total number of cardiomyocytes nuclei, and the mean volume of the cardiomyocytes were estimated, as well. In comparison to the control animals, 60 and 43% increase was observed in the total volume of the connective tissue and microvessels of the diabetic rats, respectively (P<0.05). The percent of the vessel profiles with the diameter of 2-4 µm was decreased, while the percent of the vessel profiles with the diameter of 4.1-8 µm was increased in the diabetic hearts (P<0.05). No significant difference was found in the vessels with more than 8 µm diameters. The total number of the cardiomyocytes' nuclei and the number-weighted mean volume were respectively decreased by 37 and 64% in the diabetic group (P<0.01). A significant difference was observed between the two groups concerning the left ventricle volume to body weight ratio as an index for ventricular hypertrophy (P<0.05), while no difference was found regarding the right ventricle to body weight ratio. It can be concluded that diabetes can induce structural changes, including loss and/or atrophy of the cardiomyocytes, accompanied with increase in the connective tissue in the rats' hearts. PMID:23573103

  19. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart.

    PubMed

    Barton, Gregory P; Sepe, Joseph J; McKiernan, Susan H; Aiken, Judd M; Diffee, Gary M

    2016-01-01

    Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart. PMID:27601998

  20. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart

    PubMed Central

    Barton, Gregory P.; Sepe, Joseph J.; McKiernan, Susan H.; Aiken, Judd M.; Diffee, Gary M.

    2016-01-01

    Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart. PMID:27601998

  1. The novel use of heart transplantation for the management of a case with multiple complications after acute myocardial infarction.

    PubMed

    Cinq-Mars, Alexandre; Veilleux, Simon-Pierre; Voisine, Pierre; Dagenais, François; O'Connor, Kim; Bernier, Mathieu; Sénéchal, Mario

    2015-06-01

    Rupture of the interventricular septum after myocardial infarction (MI) is an uncommon but serious complication, usually leading to congestive heart failure and cardiogenic shock. Surgical repair is usually the only definitive treatment for these patients because medical management is associated with a 30-day mortality approaching 100%. However with conventional surgical repair, operative mortality rates range from 33% to 53%. Furthermore, outcomes in patients with posterior ventricular septal defect (VSD) have been reported to have mortality rates up to 86%. Therefore, alternative treatment should be considered to improve management of this mechanical complication. We report the case of a 63-year-old man in whom VSD developed after an inferior MI. The patient presented with shortness of breath and a recent ST-elevation inferior MI. Transthoracic echocardiography revealed a 50% left ventricular ejection fraction with mild-moderate right ventricular dysfunction. A posterior VSD (diameter ≥ 12 mm), moderate ischemic mitral regurgitation (MR), and a posterior pseudoaneurysm were also seen. The operative risk was considered to be too high for VSD repair because the surgery would have to include bypass grafting, mitral valve replacement, and pseudoaneurysm correction. Consequently, an urgent heart transplantation was considered the best option. The patient underwent heart transplantation 9 days after initial symptoms, and the recovery was unremarkable. To achieve a definitive optimal treatment, we propose that patients with posterior VSD with significant MR or pseudoaneurysm, or both, should be considered as heart transplant candidates. PMID:25921863

  2. Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling.

    PubMed

    Bae, Soochan; Zhang, Lubo

    2005-12-01

    Previous studies have reported the sex differences in heart susceptibility to ischemia/reperfusion (I/R) injury, but the mechanisms are not understood. The present study tested the hypothesis that Akt and protein kinase C (PKC)epsilon play an important role in the sexual dimorphism of heart susceptibility to I/R injury. Isolated hearts from 2-month-old male and female rats were subjected to I/R in the Langendorff preparation. The postischemic recovery of left ventricular function was significantly better, and infarct size was significantly smaller in female (37.1 +/- 1.9%) than in male (48.3 +/- 2.3%) hearts after 25-min ischemia followed by 2-h reperfusion. Inhibition of phosphatidylinositol 3-kinase/Akt pathway by wortmannin or PKC by chelerythrine chloride before ischemia significantly reduced postischemic recovery and increased infarct size in female but not male hearts. There were no differences in myocardial protein levels of heat shock protein 70, Akt, and PKCepsilon, respectively, between male and female rats. However, the ratio of phosphorylated (p)-Akt/Akt (0.58 +/- 0.05 versus 0.22 +/- 0.04; P < 0.05) and p-PKCepsilon/PKCepsilon (0.35 +/- 0.03 versus 0.22 +/- 0.02; P < 0.05) was significantly higher in female than in male hearts. In addition, there were significant increases in p-Akt and p-PKCepsilon levels during reperfusion in female but not in male hearts. The results suggest that increased p-Akt and p-PKCepsilon levels in female hearts contribute to the gender-related differences in heart susceptibility to I/R and play an important role in cardioprotection against I/R injury in females. PMID:16099927

  3. ND-309, a novel compound, ameliorates cerebral infarction in rats by antioxidant action.

    PubMed

    Tian, Jingwei; Li, Guisheng; Liu, Zhifeng; Zhang, Shumin; Qu, Guiwu; Jiang, Wanglin; Fu, Fenghua

    2008-09-19

    Extract of danshen (Salvia miltiorrhiza Bunge.) has been clinically prescribed in China to treat patients with stroke. The novel compound designated ND-309, namely isopropyl-beta-(3,4-dihydroxyphenyl)-alpha-hydroxypropanoate is a new metabolite of danshen in rat brain. The present study was conducted to investigate whether ND-309 has a protective effect on brain injury after focal cerebral ischemia, and to determine the possible mechanism. Adult male SD rats were subjected to middle cerebral artery occlusion (MCAO) by bipolar electro-coagulation. Behavioral tests were used to evaluate the damage to central nervous system. The cerebral infarct volume and edema were assessed to evaluate the brain patho-physiological changes. Spectrophotometric or spectrofluorometric assay methods were used to determine the generation of reactive oxygen species (ROS), activities of superoxide dismutase (SOD) and glutathione-peroxidase (GSH-Px), contents of malondialdehyde (MDA) and adenosine triphosphate (ATP), as well as respiratory control ratio of the brain mitochondria. The results showed that treatment with ND-309 significantly decreased neurological deficit scores, reduced infarct volume and the edema compared with the model group. Meanwhile, ND-309 significantly increased the brain ATP content, improved mitochondrial energy metabolism, attenuated the elevation of MDA content, the decrease in SOD, GSH-Px activity and the generation of ROS in brain mitochondria. All of these findings indicate that ND-309 has the protective potential against cerebral ischemia injury and its protective effects may be due to the amelioration of cerebral energy metabolism and its antioxidant property. PMID:18652875

  4. Oxidative Damage in the Aging Heart: an Experimental Rat Model

    PubMed Central

    Marques, Gustavo Lenci; Neto, Francisco Filipak; Ribeiro, Ciro Alberto de Oliveira; Liebel, Samuel; de Fraga, Rogério; Bueno, Ronaldo da Rocha Loures

    2015-01-01

    Introduction: Several theories have been proposed to explain the cause of ‘aging’; however, the factors that affect this complex process are still poorly understood. Of these theories, the accumulation of oxidative damage over time is among the most accepted. Particularly, the heart is one of the most affected organs by oxidative stress. The current study, therefore, aimed to investigate oxidative stress markers in myocardial tissue of rats at different ages. Methods: Seventy-two rats were distributed into 6 groups of 12 animals each and maintained for 3, 6, 9, 12, 18 and 24 months. After euthanasia, the heart was removed and the levels of non-protein thiols, lipid peroxidation, and protein carbonylation, as well as superoxide dismutase and catalase activities were determined. Results: Superoxide dismutase, catalase activity and lipid peroxidation were reduced in the older groups of animals, when compared with the younger group. However, protein carbonylation showed an increase in the 12-month group followed by a decrease in the older groups. In addition, the levels of non-protein thiols were increased in the 12-month group and not detected in the older groups. Conclusion: Our data showed that oxidative stress is not associated with aging in the heart. However, an increase in non-protein thiols may be an important factor that compensates for the decrease of superoxide dismutase and catalase activity in the oldest rats, to maintain appropriate antioxidant defenses against oxidative insults. PMID:27006709

  5. Acute arterial baroreflex-mediated changes in plasma catecholamine concentrations in a chronic rat model of myocardial infarction.

    PubMed

    Kawada, Toru; Akiyama, Tsuyoshi; Li, Meihua; Zheng, Can; Turner, Michael J; Shirai, Mikiyasu; Sugimachi, Masaru

    2016-08-01

    While it may be predictable that plasma norepinephrine (NE) concentration changes with efferent sympathetic nerve activity (SNA) in response to baroreceptor pressure inputs, an exact relationship between SNA and plasma NE concentration remains to be quantified in heart failure. We examined acute baroreflex-mediated changes in plasma NE and epinephrine (Epi) concentrations in normal control (NC) rats and rats with myocardial infarction (MI) (n = 6 each). Plasma NE concentration correlated linearly with SNA in the NC group (slope: 2.17 ± 0.26 pg mL(-1) %(-1), intercept: 20.0 ± 18.2 pg mL(-1)) and also in the MI group (slope: 19.20 ± 6.45 pg mL(-1) %(-1), intercept: -239.6 ± 200.0 pg mL(-1)). The slope was approximately nine times higher in the MI than in the NC group (P < 0.01). Plasma Epi concentration positively correlated with SNA in the NC group (slope: 1.65 ± 0.79 pg mL(-1) %(-1), intercept: 115.0 ± 69.5 pg mL(-1)) and also in the MI group (slope: 7.74 ± 2.20 pg mL(-1) %(-1), intercept: 24.7 ± 120.1 pg mL(-1)). The slope was approximately 4.5 times higher in the MI than in the NC group (P < 0.05). Intravenous administration of desipramine (1 mg kg(-1)) significantly increased plasma NE concentration but decreased plasma Epi concentration in both groups, suggesting that neuronal NE uptake had contributed to the reduction in plasma NE concentration. These results indicate that high levels of plasma catecholamine in MI rats were still under the influence of baroreflex-mediated changes in SNA, and may provide additional rationale for applying baroreflex activation therapy in patients with chronic heart failure. PMID:27495297

  6. Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Seppanen, T.; Airaksinen, K. E.; Koistinen, J.; Tulppo, M. P.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1997-01-01

    Dynamics analysis of RR interval behavior and traditional measures of heart rate variability were compared between postinfarction patients with and without vulnerability to ventricular tachyarrhythmias in a case-control study. Short-term fractal correlation of heart rate dynamics was better than traditional measures of heart rate variability in differentiating patients with and without life-threatening arrhythmias.

  7. Protective effects of remote ischemic preconditioning in isolated rat hearts

    PubMed Central

    Teng, Xiao; Yuan, Xin; Tang, Yue; Shi, Jingqian

    2015-01-01

    To use Langendorff model to investigate whether remote ischemic preconditioning (RIPC) attenuates post-ischemic mechanical dysfunction on isolated rat heart and to explore possible mechanisms. SD rats were randomly divided into RIPC group, RIPC + norepinephrine (NE) depletion group, RIPC + pertussis toxin (PTX) pretreatment group, ischemia/reperfusion group without treatment (ischemia group) and time control (TC) group. RIPC was achieved through interrupted occlusion of anterior mesenteric artery. Then, Langendorff model was established using routine methods. Heart function was tested; immunohistochemistry and ELISA methods were used to detect various indices related to myocardial injury. Compared with ischemia group in which the hemodynamic parameters deteriorated significantly, heart function recovered to a certain degree among the RIPC, RIPC + NE depletion, and RIPC + PTX groups (P<0.05). More apoptotic nuclei were observed in ischemia group than in the other three groups (P<0.05); more apoptotic nuclei were detected in NE depletion and PTX groups than in RIPC group (P<0.05). While, there was no significant difference between NE depletion and PTX groups. In conclusion, RIPC protection on I/R myocardium extends to the period after hearts are isolated. NE and PTX-sensitive inhibitory G protein might have a role in the protection process. PMID:26550168

  8. Localization of angiotensin converting enzyme in rat heart

    SciTech Connect

    Yamada, H.; Fabris, B.; Allen, A.M.; Jackson, B.; Johnston, C.I.; Mendelsohn, A.O. )

    1991-01-01

    Angiotensin converting enzyme (ACE) was localized in rat heart by quantitative in vitro autoradiography with 125I-351A as the radioligand. The binding association constant (KA) of the radioligand was measured in membrane-rich fractions of atrium, ventricle, and lung by a radioinhibitor binding assay. A single class of high-affinity binding sites was detected in each tissue, and a significant difference was found between KA values for atria and ventricles with a rank order of atria greater than lungs greater than ventricles. For autoradiography, coronal sections (10 micron) of the frozen heart were incubated with 125I-351A and exposed to x-ray film. The autoradiographs were quantitated by computerized image analysis. The highest density of ACE in the heart was found on valve leaflets (aortic, pulmonary, mitral, and tricuspid), which contrasted markedly with very low ACE labeling in the endocardium. The coronary arteries also showed dense labeling of ACE. The right atrium had a moderate density of ACE, which was higher than the left atrium and the ventricles. Both the endothelial and adventitial layers of the aorta and pulmonary artery displayed high densities of ACE, with very low density in the media. ACE was not detected in either the sinoatrial node or atrioventricular node. These results reveal a markedly nonuniform localization of ACE in the rat heart and suggest possible sites for local angiotensin II generation and bradykinin or other peptide metabolism.

  9. Role of Opioid Receptors Signaling in Remote Electrostimulation - Induced Protection against Ischemia/Reperfusion Injury in Rat Hearts

    PubMed Central

    Tsai, Hsin-Ju; Huang, Shiang-Suo; Tsou, Meng-Ting; Wang, Hsiao-Ting; Chiu, Jen-Hwey

    2015-01-01

    Aims Our previous studies demonstrated that remote electro-stimulation (RES) increased myocardial GSK3 phosphorylation and attenuated ischemia/ reperfusion (I/R) injury in rat hearts. However, the role of various opioid receptors (OR) subtypes in preconditioned RES-induced myocardial protection remains unknown. We investigated the role of OR subtype signaling in RES-induced cardioprotection against I/R injury of the rat heart. Methods & Results Male Spraque-Dawley rats were used. RES was performed on median nerves area with/without pretreatment with various receptors antagonists such as opioid receptor (OR) subtype receptors (KOR, DOR, and MOR). The expressions of Akt, GSK3, and PKCε expression were analyzed by Western blotting. When RES was preconditioned before the I/R model, the rat's hemodynamic index, infarction size, mortality and serum CK-MB were evaluated. Our results showed that Akt, GSK3 and PKCε expression levels were significantly increased in the RES group compared to the sham group, which were blocked by pretreatment with specific antagonists targeting KOR and DOR, but not MOR subtype. Using the I/R model, the duration of arrhythmia and infarct size were both significantly attenuated in RES group. The mortality rates of the sham RES group, the RES group, RES group + KOR antagonist, RES group + DOR/MOR antagonists (KOR left), RES group + DOR antagonist, and RES group + KOR/MOR antagonists (DOR left) were 50%, 20%, 67%, 13%, 50% and 55%, respectively. Conclusion The mechanism of RES-induced myocardial protection against I/R injury seems to involve multiple target pathways such as Akt, KOR and/or DOR signaling. PMID:26430750

  10. Human Cardiac Mesenchymal Stromal Cells with CD105+CD34- Phenotype Enhance the Function of Post-Infarction Heart in Mice

    PubMed Central

    Wiśniewska, Ewa; Jarosz-Biej, Magdalena; Smolarczyk, Ryszard; Cichoń, Tomasz; Głowala-Kosińska, Magdalena; Śliwka, Joanna; Garbacz, Marcin; Szczypior, Mateusz; Jaźwiec, Tomasz; Langrzyk, Agnieszka; Zembala, Michał; Szala, Stanisław

    2016-01-01

    Aims The aim of the present study was to isolate mesenchymal stromal cells (MSC) with CD105+CD34- phenotype from human hearts, and to investigate their therapeutic potential in a mouse model of hindlimb ischemia and myocardial infarction (MI). The study aimed also to investigate the feasibility of xenogeneic MSCs implantation. Methods and Results MSC isolated from human hearts were multipotent cells. Separation of MSC with CD105+CD34- phenotype limited the heterogeneity of the originally isolated cell population. MSC secreted a number of anti-inflammatory and proangiogenic cytokines (mainly IL-6, IL-8, and GRO). Human MSC were transplanted into C57Bl/6NCrl mice. Using the mouse model of hindlimb ischemia it was shown that human MSC treated mice demonstrated a higher capillary density 14 days after injury. It was also presented that MSC administrated into the ischemic muscle facilitated fast wound healing (functional recovery by ischemic limb). MSC transplanted into an infarcted myocardium reduced the post-infarction scar, fibrosis, and increased the number of blood vessels both in the border area, and within the post-infarction scar. The improvement of left ventricular ejection fraction was also observed. Conclusion In two murine models (hindlimb ischemia and MI) we did not observe the xenotransplant rejection. Indeed, we have shown that human cardiac mesenchymal stromal cells with CD105+CD34- phenotype exhibit therapeutic potential. It seems that M2 macrophages are essential for healing and repair of the post-infarcted heart. PMID:27415778

  11. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

    PubMed Central

    Lu, Jian

    2014-01-01

    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  12. Regional assessment of LV wall in infarcted heart using tagged MRI and cardiac modelling

    NASA Astrophysics Data System (ADS)

    Jahanzad, Zeinab; Miin Liew, Yih; Bilgen, Mehmet; McLaughlin, Robert A.; Onn Leong, Chen; Chee, Kok Han; Aziz, Yang Faridah Abdul; Ung, Ngie Min; Lai, Khin Wee; Ng, Siew-Cheok; Lim, Einly

    2015-05-01

    A segmental two-parameter empirical deformable model is proposed for evaluating regional motion abnormality of the left ventricle. Short-axis tagged MRI scans were acquired from 10 healthy subjects and 10 postinfarct patients. Two motion parameters, contraction and rotation, were quantified for each cardiac segment by fitting the proposed model using a non-rigid registration algorithm. The accuracy in motion estimation was compared to a global model approach. Motion parameters extracted from patients were correlated to infarct transmurality assessed with delayed-contrast-enhanced MRI. The proposed segmental model allows markedly improved accuracy in regional motion analysis as compared to the global model for both subject groups (1.22-1.40 mm versus 2.31-2.55 mm error). By end-systole, all healthy segments experienced radial displacement by ~25-35% of the epicardial radius, whereas the 3 short-axis planes rotated differently (basal: 3.3° mid:  -1° and apical:  -4.6°) to create a twisting motion. While systolic contraction showed clear correspondence to infarct transmurality, rotation was nonspecific to either infarct location or transmurality but could indicate the presence of functional abnormality. Regional contraction and rotation derived using this model could potentially aid in the assessment of severity of regional dysfunction of infarcted myocardium.

  13. Light-emitting diode therapy (LEDT) improves functional capacity in rats with heart failure.

    PubMed

    Capalonga, Lucas; Karsten, Marlus; Hentschke, Vítor Scotta; Rossato, Douglas Dalcin; Dornelles, Maurício Pinto; Sonza, Anelise; Bagnato, Vanderlei Salvador; Ferraresi, Cleber; Parizotto, Nivaldo Antonio; Dal Lago, Pedro

    2016-07-01

    The syndrome of heart failure (HF) promotes central and peripheral dysfunctions that result in functional capacity decrease, leading to fatigue, dyspnea, and exercise intolerance. The use of light-emitting diode therapy (LEDT) has shown good results reducing fatigue and exercise intolerance, when applied on skeletal muscles before or after exercises. Thereby, the aim of this study was to compare the effects of LEDT on functional capacity, aerobic power, and hemodynamic function in HF rats. Male Wistar rats (230-260 g) were randomly allocated into three experimental groups: Sham (n = 6), Control-HF (n = 4), and LEDT-HF (n = 6). The animals were subjected to an exercise performance test (ET) with gas analysis coupled in a metabolic chamber for rats performed two times (6 and 14 weeks after myocardial infarction). On the day after the baseline aerobic capacity test, the animals were submitted during 8 weeks to the phototherapy protocol, five times/week, 60 s of irradiation, 6 J delivered per muscle group. Statistical analysis was performed by one- and two-way ANOVAs with repeated measures and Student-Newman-Keuls post hoc tests (p ≤ 0.05). Comparing the percentage difference (Δ) between baseline and the final ET, there was no significant difference for the VO2max variable considering all groups. However, Sham and LEDT-HF groups showed higher relative values than the Control-HF group, respectively, for distance covered (27.7 and 32.5 %), time of exercise test (17.7 and 20.5 %), and speed (13.6 and 12.2 %). In conclusion, LEDT was able to increase the functional capacity evaluated by distance covered, time, and speed of exercise in rats with HF. PMID:27059227

  14. Fibroblast Growth Factor-9 Enhances M2 Macrophage Differentiation and Attenuates Adverse Cardiac Remodeling in the Infarcted Diabetic Heart

    PubMed Central

    Singla, Dinender K.; Singla, Reetu D.; Abdelli, Latifa S.; Glass, Carley

    2015-01-01

    Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9) on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI), and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean ± SEM; MI: 2.02% ± 0.23% vs. Sham 0.75% ± 0.07%; p<0.05) and associated pro-inflammatory cytokines (TNF-α, MCP-1, and IL-6), adverse cardiac remodeling (Mean ± SEM; MI: 33% ± 3.04% vs. Sham 2.2% ± 0.33%; p<0.05), and left ventricular dysfunction (Mean ± SEM; MI: 35.4% ± 1.25% vs. Sham 49.19% ± 1.07%; p<0.05) in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean ± SEM; MI+FGF-9: 1.39% ± 0.1% vs. MI: 2.02% ± 0.23%; p<0.05), increased M2 macrophage differentiation (Mean ± SEM; MI+FGF-9: 4.82% ± 0.86% vs. MI: 0.85% ± 0.3%; p<0.05) and associated anti-inflammatory cytokines (IL-10 and IL-1RA), reduced adverse remodeling (Mean ± SEM; MI+FGF-9: 11.59% ± 1.2% vs. MI: 33% ± 3.04%; p<0.05), and improved cardiac function (Fractional shortening, Mean ± SEM; MI+FGF-9: 41.51% ± 1.68% vs. MI: 35.4% ± 1.25%; p<0.05). In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its ability to

  15. Multi-scale heart rate dynamics detected by phase-rectified signal averaging predicts mortality after acute myocardial infarction

    PubMed Central

    Kisohara, Masaya; Stein, Phyllis K.; Yoshida, Yutaka; Suzuki, Mari; Iizuka, Narushi; Carney, Robert M.; Watkins, Lana L.; Freedland, Kenneth E.; Blumenthal, James A.; Hayano, Junichiro

    2013-01-01

    Aims Acceleration and deceleration capacity (AC and DC) for beat-to-beat short-term heart rate dynamics are powerful predictors of mortality after acute myocardial infarction (AMI). We examined if AC and DC for minute-order long-term heart rate dynamics also have independent predictive value. Methods and results We studied 24-hr Holter electrcardiograms in 708 post-AMI patients who were followed up for up to 30 months thereafter. Acceleration capacity and DC was calculated with the time scales of T (window size defining heart rate) and s (wavelet scale) from 1 to 500 s and compared their prognostic values with conventional measures (ACconv and DCconv) that were calculated with (T,s) = [1,2 (beat)]. During the follow-up, 47 patients died. Both increased ACconv and decreased DCconv predicted mortality (C statistic, 0.792 and 0.797). Concordantly, sharp peaks of C statistics were observed at (T,s) = [2,7 (sec)] for both increased AC and decreased DC (0.762 and 0.768), but there were larger peaks of C statistics at around [30,60 (sec)] for both (0.783 and 0.796). The C statistic was greater for DC than AC at (30,60) (P = 0.0012). Deceleration capacity at (30,60) was a significant predictor even after adjusted for ACconv (P = 0.020) and DCconv (P = 0.028), but the predictive power of AC at (30,60) was no longer significant. Conclusion A decrease in DC for minute-order long-term heart rate dynamics is a strong predictor for post-AMI mortality and the predictive power is independent of ACconv and DCconv for beat-to-beat short-term heart rate dynamics. PMID:23248218

  16. The effect of acute stress exposure on ischemia and reperfusion injury in rat heart: role of oxytocin.

    PubMed

    Moghimian, Maryam; Faghihi, Mahdieh; Karimian, Seyed Morteza; Imani, Alireza

    2012-07-01

    Previous studies showed the protective effects of oxytocin (OT) on myocardial injury in ischemic and reperfused rat heart. Moreover, exposure to various stressors not only evokes sudden cardiovascular effects but also triggers the release of OT in the rat. The present study was aimed to evaluate the possible cardioprotective effects of endogenous OT released in response to stress (St), and effects of administration of exogenous OT on the ischemic-reperfused isolated heart of rats previously exposed to St. Wistar rats were divided into six groups: ischemia/reperfusion (IR); St: rats exposed to swim St for 10 min before anesthesia; St+atosiban (ATO): an OT receptor antagonist, was administered (1.5 mg/kg i.p.) prior to St; St+OT: OT was administered (0.03 mg/kg i.p.) prior to St; OT: OT was administrated prior to anesthesia; ATO was given prior to anesthesia. Isolated hearts were perfused with Krebs buffer solution by the Langendorff method and subjected to 30 min of regional ischemia followed by 60 min of reperfusion. The infarct size (IS) and creatine kinase MB isoenzyme (CK-MB) and lactate dehydrogenase (LDH) in coronary effluent were measured. Hemodynamic parameters were recorded throughout the experiment. The plasma concentrations of OT and corticosterone were significantly increased by St. Unexpectedly St decreased IR injury compared with the IR alone group. OT administration significantly inhibited myocardial injury, and administration of ATO with St abolished recovery of the rate pressure product, and increased IS and levels of CK-MB and LDH. These findings indicate that activation of cardiac OT receptors by OT released in response to St may participate in cardioprotection and inhibition of myocardial IR injury. PMID:22044052

  17. Estrogen Regulates Angiotensin II Receptor Expression Patterns and Protects the Heart from Ischemic Injury in Female Rats.

    PubMed

    Xue, Qin; Xiao, Daliao; Zhang, Lubo

    2015-07-01

    Previous studies have shown that female offspring are resistant to fetal stress-induced programming of ischemic-sensitive phenotype in the heart; however, the mechanisms responsible remain unclear. The present study tested the hypothesis that estrogen plays a role in protecting females in fetal programming of increased heart vulnerability. Pregnant rats were divided into normoxic and hypoxic (10.5% O2 from Day 15 to 21 of gestation) groups. Ovariectomy (OVX) and estrogen (E2) replacement were performed in 8-wk-old female offspring. Hearts of 4-mo-old females were subjected to ischemia and reperfusion injury in a Langendorff preparation. OVX significantly decreased postischemic recovery of left ventricular function and increased myocardial infarction, and no difference was observed between normoxic and hypoxic groups. The effect of OVX was rescued by E2 replacement. OVX decreased the binding of glucocorticoid receptor (GR) to glucocorticoid response elements at angiotensin II type 1 (Agtr1) and type 2 (Agtr2) receptor promoters, resulting in a decrease in Agtr1 and an increase in Agtr2 in the heart. Additionally, OVX decreased estrogen receptor (ER) expression in the heart and inhibited ER/GR interaction in binding to glucocorticoid response elements at the promoters. Consistent with the changes in Agtrs, OVX significantly decreased Prkce abundance in the heart. These OVX-induced changes were abrogated by E2 replacement. The results indicate that estrogen is not directly responsible for the sex dimorphism in fetal programming of heart ischemic vulnerability but suggest a novel mechanism of estrogen in regulating cardiac Agtr1/Agtr2 expression patterns and protecting female hearts against ischemia and reperfusion injury. PMID:25972014

  18. Estrogen Regulates Angiotensin II Receptor Expression Patterns and Protects the Heart from Ischemic Injury in Female Rats1

    PubMed Central

    Xue, Qin; Xiao, Daliao; Zhang, Lubo

    2015-01-01

    Previous studies have shown that female offspring are resistant to fetal stress-induced programming of ischemic-sensitive phenotype in the heart; however, the mechanisms responsible remain unclear. The present study tested the hypothesis that estrogen plays a role in protecting females in fetal programming of increased heart vulnerability. Pregnant rats were divided into normoxic and hypoxic (10.5% O2 from Day 15 to 21 of gestation) groups. Ovariectomy (OVX) and estrogen (E2) replacement were performed in 8-wk-old female offspring. Hearts of 4-mo-old females were subjected to ischemia and reperfusion injury in a Langendorff preparation. OVX significantly decreased postischemic recovery of left ventricular function and increased myocardial infarction, and no difference was observed between normoxic and hypoxic groups. The effect of OVX was rescued by E2 replacement. OVX decreased the binding of glucocorticoid receptor (GR) to glucocorticoid response elements at angiotensin II type 1 (Agtr1) and type 2 (Agtr2) receptor promoters, resulting in a decrease in Agtr1 and an increase in Agtr2 in the heart. Additionally, OVX decreased estrogen receptor (ER) expression in the heart and inhibited ER/GR interaction in binding to glucocorticoid response elements at the promoters. Consistent with the changes in Agtrs, OVX significantly decreased Prkce abundance in the heart. These OVX-induced changes were abrogated by E2 replacement. The results indicate that estrogen is not directly responsible for the sex dimorphism in fetal programming of heart ischemic vulnerability but suggest a novel mechanism of estrogen in regulating cardiac Agtr1/Agtr2 expression patterns and protecting female hearts against ischemia and reperfusion injury. PMID:25972014

  19. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction).

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-05-01

    Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes. PMID:27056419

  20. β Blocker treatment and other prognostic variables in patients with clinical evidence of heart failure after acute myocardial infarction: evidence from the AIRE study

    PubMed Central

    Spargias, K; Hall, A; Greenwood, D; Ball, S

    1999-01-01

    Objectives—To examine clinical outcomes associated with optional β blockade in a population of patients with evidence of heart failure after myocardial infarction.
Design and patients—Data from the acute infarction ramipril efficacy (AIRE) study were analysed retrospectively. At baseline 22.3% of the patients were receiving a β blocker. To minimise confounding, β blocker and diuretic treatments, presence of clinical signs of heart failure, left ventricular ejection fraction, and 16 other baseline clinical variables were simultaneously entered in a multivariate Cox regression model. In addition, the same analysis was repeated separately within a high and a low risk group of patients, as defined according to the need for diuretic treatment.
Results—β Blocker treatment was an independent predictor of reduced risk of total mortality (hazard ratio 0.66, 95% confidence interval (CI) 0.48 to 0.90) and progression to severe heart failure (0.58, 95% CI 0.40 to 0.83) for the entire study population. There were similar findings in high risk patients requiring diuretics (0.59, 95% CI 0.40 to 0.86; and 0.58, 95% CI 0.38 to 0.89).
Conclusions—β Blocker treatment is associated with improved outcomes in patients with clinical evidence of mild to moderate heart failure after myocardial infarction. Most importantly, high risk patients with persistent heart failure appear to benefit at least as much as lower risk patients with transient heart failure.

 Keywords: myocardial infarctionheart failure;  left ventricular dysfunction;  β blockers PMID:10220541

  1. Acute arrhythmogenesis after myocardial infarction in normotensive rats: influence of high salt intake.

    PubMed

    Baldo, Marcelo Perim; Teixeira, Anna Késia Guerrat; Rodrigues, Sérgio Lamêgo; Mill, José Geraldo

    2012-03-01

    A high salt diet is a known risk factor for cardiovascular diseases that leads to cardiac hypertrophy and creates a substrate for arrhythmias and sudden death. However, acute arrhythmogenesis after infarction has not been studied. Male Wistar rats (21 days) received drinking water (MI) or 1% NaCl solution (MI-Salt-C) for 4 weeks. Water was given to another group for 4 weeks, and on the day before surgery, animals received a 1% NaCl solution (MI-Salt-A). Non-invasive systolic blood pressure (SBP) was obtained before surgery. Myocardial infarction (MI) was produced by permanent occlusion of the left coronary artery. Electrocardiogram was monitored during the first 30 min post-occlusion to evaluate arrhythmias. Although SBP was not altered by salt intake (SHAM: 114±2, MI: 112±2, MI-Salt-C: 115±2, MI-Salt-A: 116±4 mm Hg), ventricular hypertrophy was observed in the animals receiving chronic salt diet (SHAM: 0.22±0.008, MI: 0.23±0.007, MI-Salt-C: 0.28±0.01; MI-Salt-A: 0.23±0.01 g/cm; P<0.05). Ventricular premature beats increased in both salt-loaded groups compared to MI group (MI: 805±81, MI-Salt-C: 1145±98; MI-Salt-A: 1023±77; P<0.05). Atrioventricular blockade was only observed in animals subjected to high salt intake (MI-Salt-C: 38.9%; MI-Salt-A: 42.1%). High salt intake was associated with increased post-infarct arrhythmias; however, this effect was unrelated to ventricular hypertrophy. PMID:22142697

  2. Targeted NGF siRNA Delivery Attenuates Sympathetic Nerve Sprouting and Deteriorates Cardiac Dysfunction in Rats with Myocardial Infarction

    PubMed Central

    Wang, Ye; Xue, Mei; Suo, Fei; Li, Xiaolu; Cheng, Wenjuan; Li, Xinran; Yin, Jie; Liu, Ju; Yan, Suhua

    2014-01-01

    Nerve growth factor (NGF) is involved in nerve sprouting, hyper-innervation, angiogenesis, anti-apoptosis, and preservation of cardiac function after myocardial infarction (MI). Positively modulating NGF expression may represent a novel pharmacological strategy to improve post-infarction prognosis. In this study, lentivirus encoding NGF short interfering RNA (siRNA) was prepared, and MI was modeled in the rat using left anterior descending coronary artery ligation. Rats were randomly grouped to receive intramyocardial injection of lentiviral solution containing NGF-siRNA (n = 19, MI-SiNGF group), lentiviral solution containing empty vector (n = 18, MI-GFP group) or 0.9% NaCl solution (n = 18, MI-control group), or to receive thoracotomy and pericardiotomy (n = 17, sham-operated group). At 1, 2, 4, and 8 wk after transduction, rats in the MI-control group had higher levels of NGF mRNA and protein than those in the sham-operated group, rats in the MI-GFP group showed similar levels as the MI-control group, and rats in the MI-SiNGF group had lower levels compared to the MI-GFP group, indicating that MI model was successfully established and NGF siRNA effectively inhibited the expression of NGF. At 8 wk, echocardiographic and hemodynamic studies revealed a more severe cardiac dysfunction in the MI-siRNA group compared to the MI-GFP group. Moreover, rats in the MI-siRNA group had lower mRNA and protein expression levels of tyrosine hydroxylase (TH) and growth-associated protein 43-positive nerve fibers (GAP-43) at both the infarcted border and within the non-infarcted left ventricles (LV). NGF silencing also reduced the vascular endothelial growth factor (VEGF) expression and decreased the arteriolar and capillary densities at the infarcted border compared to the MI-GFP group. Histological analysis indicated a large infarcted size in the MI-SiNGF group. These findings suggested that endogenous NGF silencing attenuated sympathetic nerve sprouting and

  3. Short-term vagal nerve stimulation improves left ventricular function following chronic heart failure in rats

    PubMed Central

    LI, YAN; XUAN, YAN-HUA; LIU, SHUANG-SHUANG; DONG, JING; LUO, JIA-YING; SUN, ZHI-JUN

    2015-01-01

    Increasing numbers of animal and clinical investigations have demonstrated the effectiveness of long-term electrical vagal nerve stimulation (VNS) on chronic heart failure (CHF). The present study investigated the effects of short-term VNS on the hemodynamics of cardiac remodeling and cardiac excitation-contraction coupling (ECP) in an animal model of CHF following a large myocardial infarction. At 3 weeks subsequent to ligation of the left coronary artery, the surviving rats were randomized into vagal and sham-stimulated groups. The right vagal nerve of the CHF rats was stimulated for 72 h. The vagal nerve was stimulated with rectangular pulses of 40 ms duration at 1 Hz, 5 V. The treated rats, compared with the untreated rats, had significantly higher left ventricular ejection fraction (54.86±9.73, vs. 45.60±5.51%; P=0.025) and left ventricular fractional shortening (25.31±6.30, vs. 15.42±8.49%; P=0.013), and lower levels of brain natriuretic peptide (10.07±2.63, vs. 19.95±5.22 ng/ml; P=0.001). The improvement in cardiac pumping function was accompanied by a decrease in left ventricular end diastolic volume (1.11±0.50, vs. 1.54±0.57 cm3; P=0.032) and left ventricular end systolic volume (0.50±0.28, vs. 0.87±0.36 cm3; P=0.007). Furthermore, the expression levels of ryanodine receptor type 2 (RyR2) and sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2) were significantly higher in the treated rats compared with the untreated rats (P=0.011 and P=0.001 for RyR2 and SERCA2, respectively). Therefore, VNS was beneficial to the CHF rats through the prevention of cardiac remodeling and improvement of cardiac ECP. PMID:25873055

  4. Continuous inhibition of poly(ADP-ribose) polymerase does not reduce reperfusion injury in isolated rat heart.

    PubMed

    Nishizawa, Kenya; Yanagida, Shigeki; Yamagishi, Tadashi; Takayama, Eiichi; Bessho, Motoaki; Kusuhara, Masatoshi; Adachi, Takeshi; Ohsuzu, Fumitaka

    2013-07-01

    Poly(ADP-ribose) polymerase (PARP), an enzyme that is important to the regulation of nuclear function, is activated by DNA strand breakage. In massive DNA damage, PARP is overactivated, exhausting nicotinamide adenine dinucleotide and leading to cell death. Recent studies have succeeded in reducing cellular damage in ischemia/reperfusion by inhibiting PARP. However, PARP plays an important part in the DNA repair system, and its inhibition may be hazardous in certain situations. We compared the short-time inhibition of PARP against continuous inhibition during ischemia/reperfusion using isolated rat hearts. The hearts were reperfused after 21 minutes of ischemia with a bolus injection of 3-aminobenzamide (3-AB) (10 mg/kg) followed by continuous 3-AB infusion (50 μM) for the whole reperfusion period or for the first 6 minutes or without 3-AB. At the end of reperfusion, contractile function, high-energy phosphate content, nicotinamide adenine dinucleotide content, and infarcted area were significantly preserved in the 3-AB 6-minute group. In the 3-AB continuous group, these advantages were not apparent. At the end of reperfusion, PARP cleavage had significantly proceeded in the 3-AB continuous group, indicating initiation of the apoptotic cascade. Thus, continuous PARP inhibition by 3-AB does not reduce reperfusion injury in the isolated rat heart, which may be because of acceleration of apoptosis. PMID:23846805

  5. Medication regimen complexity and readmissions after hospitalization for heart failure, acute myocardial infarction, pneumonia, and chronic obstructive pulmonary disease

    PubMed Central

    Abou-Karam, Nada; Bradford, Chad; Lor, Kajua B; Barnett, Mitchell; Ha, Michelle; Rizos, Albert

    2016-01-01

    Objectives: Readmission rate is increasingly being viewed as a key indicator of health system performance. Medication regimen complexity index scores may be predictive of readmissions; however, few studies have examined this potential association. The primary objective of this study was to determine whether medication regimen complexity index is associated with all-cause 30-day readmission after admission for heart failure, acute myocardial infarction, pneumonia, or chronic obstructive pulmonary disease. Methods: This study was an institutional review board–approved, multi-center, case–control study. Patients admitted with a primary diagnosis of heart failure, acute myocardial infarction, pneumonia, or chronic obstructive pulmonary disease were randomly selected for inclusion. Patients were excluded if they discharged against medical advice or expired during their index visit. Block randomization was utilized for equal representation of index diagnosis and site. Discharge medication regimen complexity index scores were compared between subjects with readmission versus those without. Medication regimen complexity index score was then used as a predictor in logistic regression modeling for readmission. Results: Seven hundred and fifty-six patients were randomly selected for inclusion, and 101 (13.4%) readmitted within 30 days. The readmission group had higher medication regimen complexity index scores than the no-readmission group (p < 0.01). However, after controlling for demographics, disease state, length of stay, site, and medication count, medication regimen complexity index was no longer a significant predictor of readmission (odds ratio 0.99, 95% confidence interval 0.97–1.01) or revisit (odds ratio 0.99, 95% confidence interval 0.98–1.02). Conclusion: There is little evidence to support the use of medication regimen complexity index in readmission prediction when other measures are available. Medication regimen complexity index may lack

  6. Cornin ameliorates cerebral infarction in rats by antioxidant action and stabilization of mitochondrial function.

    PubMed

    Jiang, Wang-Lin; Zhang, Shu-Ping; Zhu, Hai-Bo; Tian, Jing-Wei

    2010-04-01

    This study was conducted to investigate the efficacy of cornin, an iridoid glycoside, in an experimental cerebral ischemia induced by middle cerebral artery occlusion (MCAO) and reperfusion (I/R), and to elucidate the potential mechanism. Adult male Sprague-Dawley rats were subjected to MCAO for 1 h, then reperfusion for 23 h. Behavioral tests were used to evaluate the damage to central nervous system. The cerebral infarct volume and histopathological damage were assessed to evaluate the brain pathophysiological changes. Spectrophotometric assay methods were used to determine the activities of superoxide dismutase (SOD) and glutathione-peroxidase (GPx). Contents of malondialdehyde (MDA), the generation of reactive oxygen species (ROS) as well as respiratory control ratio and respiratory enzymes of the brain mitochondria were also determined. The results showed that cornin significantly decreased neurological deficit scores, and reduced cerebral infarct volume and degenerative neurons. Meanwhile, cornin significantly increased the brain ATP content, improved mitochondrial energy metabolism, inhibited the elevation of MDA content and ROS generation, and attenuated the decrease of SOD and GPx activities in brain mitochondria. These findings indicate that cornin has protective potential against cerebral ischemia injury and its protective effects may be due to amelioration of cerebral mitochondrial function and its antioxidant property. PMID:20041427

  7. Eplerenone attenuates cardiac dysfunction and oxidative stress in β-receptor stimulated myocardial infarcted rats

    PubMed Central

    Reddy, Navya M; Mahajan, Umesh B; Patil, Chandragouda R; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N

    2015-01-01

    Eplerenone is a competitive antagonist of the aldosterone receptor with an additional PI3K-Akt activity. The existing cram has been intended to explore, whether eplerenone treatment attenuates the expansion of myocardial infarction in isoproterenol treated rats by restoring hemodynamic, biochemical, and histopathological changes. Isoproterenol induced cardiotoxicity was evidenced by marked ST elevation, decrease in systolic, diastolic, mean arterial pressures. Maximal positive rate of developed left ventricular pressure (+LVdP/dt max, a indicator of myocardial contraction), maximal negative rate of developed left ventricular pressure (-LVdP/dt max, a meter of myocardial relaxation) and an increase in left ventricular end-diastolic pressure (LVEDP, a marker of pre-load) were also shown. In addition, a significant reduction in activities of myocardial creatine kinase-MB isoenzyme, lactate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione level along with increase in malondialdehyde content were observed. Oral pre-treatment with eplerenone (50, 100 and 150 mg/kg) daily for a period of 14 days, constructively modulated the studied parameters in isoproterenol-induced myocardial injury. The protective role of eplerenone on isoproterenolinduced myocardial damage was further confirmed by histopathological examinations. Eplerenone at doses of 100 mg/kg and 150 mg/kg produced more pronounced protective effects than 50 mg/kg body weight. Together, our study provides evidence for protective effects of eplerenone on myocardium in experimentally induced myocardial infarction. PMID:26550459

  8. Impact of Heart Rate on Myocardial Salvage in Timely Reperfused Patients with ST-Segment Elevation Myocardial Infarction: New Insights from Cardiovascular Magnetic Resonance

    PubMed Central

    Arcari, Luca; Cimino, Sara; De Luca, Laura; Francone, Marco; Galea, Nicola; Reali, Manuela; Carbone, Iacopo; Iacoboni, Carlo; Agati, Luciano

    2015-01-01

    Background Previous studies evaluating the progression of the necrotic wave in relation to heart rate were carried out only in animal models of ST-elevated myocardial infarction (STEMI). Aim of the study was to investigate changes of myocardial salvage in relation to different heart rates at hospital admission in timely reperfused patients with STEMI by using cardiovascular magnetic resonance (CMR). Methods One hundred-eighty-seven patients with STEMI successfully and timely treated with primary coronary angioplasty underwent CMR five days after hospital admission. According to the heart rate at presentation, patients were subcategorized into 5 quintiles: <55 bpm (group I, n = 44), 55–64 bpm (group II, n = 35), 65–74 bpm (group III, n = 35), 75–84 bpm (group IV, n = 37), ≥85 bpm (group V, n = 36). Area at risk, infarct size, microvascular obstruction (MVO) and myocardium salvaged index (MSI) were assessed by CMR using standard sequences. Results Lower heart rates at presentation were associated with a bigger amount of myocardial salvage after reperfusion. MSI progressively decreased as the heart rates increased (0.54 group I, 0.46 group II, 0.38 group III, 0.34 group IV, 0.32 group V, p<0.001). Stepwise multivariable analysis showed heart rate, peak troponin and the presence of MVO were independent predictor of myocardial salvage. No changes related to heart rate were observed in relation to area at risk and infarct size. Conclusions High heart rates registered before performing coronary angioplasty in timely reperfused patients with STEMI are associated with a reduction in salvaged myocardium. In particular, salvaged myocardium significantly reduced when heart rate at presentation is ≥85 bpm. PMID:26716452

  9. Neurogenesis and angiogenesis within the ipsilateral thalamus with secondary damage after focal cortical infarction in hypertensive rats.

    PubMed

    Ling, Li; Zeng, Jinsheng; Pei, Zhong; Cheung, Raymond T F; Hou, Qinghua; Xing, Shihui; Zhang, Suping

    2009-09-01

    Neurogenesis and angiogenesis in the subventricular zone and peri-infarct region have been confirmed. However, newly formed neuronal cells and blood vessels that appear in the nonischemic ipsilateral ventroposterior nucleus (VPN) of the thalamus with secondary damage after stroke has not been previously studied. Twenty-four stroke-prone renovascular hypertensive rats were subjected to distal right middle cerebral artery occlusion (MCAO) or sham operation. 5'-Bromo-2'-deoxyuridine (BrdU) was used to label cell proliferation. Rats were killed at 7 or 14 days after the operation. Neuronal nuclei (NeuN), OX-42, BrdU, nestin, laminin(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+), nestin(+)/GFAP(+)(glial fibrillary acidic protein), and BrdU(+)/laminin(+) immunoreactive cells were detected within the ipsilateral VPN. The primary infarction was confined to the right somatosensory cortex. Within the ipsilateral VPN of the ischemic rats, the number of NeuN(+) neurons decreased, the OX-42(+) microglia cells were activated, and BrdU(+) and nestin(+) cells were detected at day 7 after MCAO and increased in number at day 14. Moreover, BrdU(+)/nestin(+) cells and BrdU(+)/NeuN(+) cells were detected at day 14 after MCAO. In addition, the ischemic rats showed a significant increase in vascular density in the ipsilateral VPN compared with the sham-operated rats. These results suggest that secondary damage with neurogenesis and angiogenesis of the ipsilateral VPN of the thalamus occurs after focal cortical infarction. PMID:19536072

  10. Excess Salt Increases Infarct Size Produced by Photothrombotic Distal Middle Cerebral Artery Occlusion in Spontaneously Hypertensive Rats

    PubMed Central

    Yao, Hiroshi; Nabika, Toru

    2014-01-01

    Cerebral circulation is known to be vulnerable to high salt loading. However, no study has investigated the effects of excess salt on focal ischemic brain injury. After 14 days of salt loading (0.9% saline) or water, spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) were subjected to photothrombotic middle cerebral artery occlusion (MCAO), and infarct volume was determined at 48 h after MCAO: albumin and hemoglobin contents in discrete brain regions were also determined in SHR. Salt loading did not affect blood pressure levels in SHR and WKY. After MCAO, regional cerebral blood flow (CBF), determined with two ways of laser-Doppler flowmetry (one-point measurement or manual scanning), was more steeply decreased in the salt-loaded group than in the control group. In SHR/Izm, infarct volume in the salt-loaded group was 112±27 mm3, which was significantly larger than 77±12 mm3 in the control group (p = 0.002), while the extents of blood-brain barrier disruption (brain albumin and hemoglobin levels) were not affected by excess salt. In WKY, salt loading did not significantly increase infarct size. These results show the detrimental effects of salt loading on intra-ischemic CBF and subsequent brain infarction produced by phototrhombotic MCAO in hypertensive rats. PMID:24816928

  11. Heart Alterations after Domoic Acid Administration in Rats

    PubMed Central

    Vieira, Andres C.; Cifuentes, José Manuel; Bermúdez, Roberto; Ferreiro, Sara F.; Castro, Albina Román; Botana, Luis M.

    2016-01-01

    Domoic acid (DA) is one of the best known marine toxins, causative of important neurotoxic alterations. DA effects are documented both in wildlife and experimental assays, showing that this toxin causes severe injuries principally in the hippocampal area. In the present study we have addressed the long-term toxicological effects (30 days) of DA intraperitoneal administration in rats. Different histological techniques were employed in order to study DA toxicity in heart, an organ which has not been thoroughly studied after DA intoxication to date. The presence of DA was detected by immunohistochemical assays, and cellular alterations were observed both by optical and transmission electron microscopy. Although histological staining methods did not provide any observable tissue damage, transmission electron microscopy showed several injuries: a moderate lysis of myofibrils and loss of mitochondrial conformation. This is the first time the association between heart damage and the presence of the toxin has been observed. PMID:26978401

  12. Effect of suprachiasmatic lesions on diurnal heart rate rhythm in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Winget, C. M.

    1977-01-01

    Heart rate and locomotor activity of rats kept under 12L/12D illumination regimen were recorded every six minutes for ten days using implantable radio transmitters. Some of the rats then received bilateral RF lesions into the suprachiasmatic nucleus (SCN). Control sham operations were performed on the rest of the animals. After recovery from surgery, recording of heart rate and locomotor activity was continued for ten days. SCN-lesioned rats showed no significant diurnal fluctuation in heart rate, while normal and sham-operated rats showed the normal diurnal rhythm in that function. The arrhythmic diurnal heart-rate pattern of SCN rats appeared to be correlated with their sporadic activity pattern. The integrity of the suprachiasmatic nucleus is therefore necessary for the generation and/or expression of diurnal rhythmicity in heart rate in the rat.

  13. Diminishing impairments in glucose uptake, mitochondrial content, and ADP-stimulated oxygen flux by mesenchymal stem cell therapy in the infarcted heart.

    PubMed

    Hughey, Curtis C; James, Freyja D; Ma, Lianli; Bracy, Deanna P; Wang, Zhizhang; Wasserman, David H; Rottman, Jeffrey N; Shearer, Jane

    2014-01-01

    A constant provision of ATP is of necessity for cardiac contraction. As the heart progresses toward failure following a myocardial infarction (MI), it undergoes metabolic alterations that have the potential to compromise the ability to meet energetic demands. This study evaluated the efficacy of mesenchymal stem cell (MSC) transplantation into the infarcted heart to minimize impairments in the metabolic processes that contribute to energy provision. Seven and twenty-eight days following the MI and MSC transplantation, MSC administration minimized cardiac systolic dysfunction. Hyperinsulinemic-euglycemic clamps, coupled with 2-[(14)C]deoxyglucose administration, were employed to assess systemic insulin sensitivity and tissue-specific, insulin-mediated glucose uptake 36 days following the MI in the conscious, unrestrained, C57BL/6 mouse. The improved systolic performance in MSC-treated mice was associated with a preservation of in vivo insulin-stimulated cardiac glucose uptake. Conserved glucose uptake in the heart was linked to the ability of the MSC treatment to diminish the decline in insulin signaling as assessed by Akt phosphorylation. The MSC treatment also sustained mitochondrial content, ADP-stimulated oxygen flux, and mitochondrial oxidative phosphorylation efficiency in the heart. Maintenance of mitochondrial function and density was accompanied by preserved peroxisome proliferator-activated receptor-γ coactivator-1α, a master regulator of mitochondrial biogenesis. These studies provide insight into mechanisms of action that lead to an enhanced energetic state in the infarcted heart following MSC transplantation that may assist in energy provision and dampen cardiac dysfunction. PMID:24196528

  14. Diminishing impairments in glucose uptake, mitochondrial content, and ADP-stimulated oxygen flux by mesenchymal stem cell therapy in the infarcted heart

    PubMed Central

    James, Freyja D.; Ma, Lianli; Bracy, Deanna P.; Wang, Zhizhang; Wasserman, David H.; Rottman, Jeffrey N.; Shearer, Jane

    2013-01-01

    A constant provision of ATP is of necessity for cardiac contraction. As the heart progresses toward failure following a myocardial infarction (MI), it undergoes metabolic alterations that have the potential to compromise the ability to meet energetic demands. This study evaluated the efficacy of mesenchymal stem cell (MSC) transplantation into the infarcted heart to minimize impairments in the metabolic processes that contribute to energy provision. Seven and twenty-eight days following the MI and MSC transplantation, MSC administration minimized cardiac systolic dysfunction. Hyperinsulinemic-euglycemic clamps, coupled with 2-[14C]deoxyglucose administration, were employed to assess systemic insulin sensitivity and tissue-specific, insulin-mediated glucose uptake 36 days following the MI in the conscious, unrestrained, C57BL/6 mouse. The improved systolic performance in MSC-treated mice was associated with a preservation of in vivo insulin-stimulated cardiac glucose uptake. Conserved glucose uptake in the heart was linked to the ability of the MSC treatment to diminish the decline in insulin signaling as assessed by Akt phosphorylation. The MSC treatment also sustained mitochondrial content, ADP-stimulated oxygen flux, and mitochondrial oxidative phosphorylation efficiency in the heart. Maintenance of mitochondrial function and density was accompanied by preserved peroxisome proliferator-activated receptor-γ coactivator-1α, a master regulator of mitochondrial biogenesis. These studies provide insight into mechanisms of action that lead to an enhanced energetic state in the infarcted heart following MSC transplantation that may assist in energy provision and dampen cardiac dysfunction. PMID:24196528

  15. Comparative Analysis of the Cardioprotective Properties of Opioid Receptor Agonists in a Rat Model of Myocardial Infarction

    PubMed Central

    Maslov, Leonid N.; Lishmanov, Yury B.; Oeltgen, Peter R.; Barzakh, Eva I.; Krylatov, Andrey V.; Naryzhnaya, Natalia V.; Pei, Jian-Ming; Brown, Stephen A.

    2010-01-01

    Objectives This study was conducted to test the hypothesis that opioid receptor (OR) mediated cardioprotection is agonist-specific when administered prior to coronary artery occlusion and reperfusion in a rat model. Methods Anesthetized open-chest male Wistar rats were subjected to 45 minutes of left coronary artery occlusion and 2 hours of reperfusion. Opioid agonists were infused 15 minutes prior to coronary artery occlusion. Two control groups and 15 opioid treated groups were studied. Controls were infused with either saline alone (n = 16) or dimethyl sulfoxide (DMSO) plus hydroxypropyl-β-cyclodextrin in saline (n = 19). The μ selective agonist DAMGO was infused at either 150 nmol/kg (n = 15) or 1500 nmol/kg (n = 14), and Dermorphin-H was infused at 150 nmol/kg (n = 14). The δ1 selective agonist D-Pen2,5 Enkephalin (DPDPE) was infused at 150 nmol/kg (n = 16) or 1500 nmol/kg (n = 14). The δ2 selective agonists Deltorphin II (n = 16), Deltorphin-Dvariant (n = 15) and Deltorphin-E (n = 14) were infused at 150 nmol/kg. The selective κ1 opioid agonist U-50488 was infused at 240 nmol/kg (n = 14), 1500 nmol/kg (n = 14), and 2,400 nmol/kg (n = 14). The selective κ2 opioid agonist GR-89696 was infused at 150 nmol/kg (n = 14) and 1500 nmol/kg (n = 15). Orphinan FQ (Nociceptin), also referred to as OR Ligand1 (ORL1), was infused at 220 nmol/kg (n = 15) and 1500 nmol/kg (n = 15). The infarct size/area at risk (IS/AAR) ratio was determined after reperfusion by negative staining with patent blue violet dye. Hemodynamic parameters including heart rate, mean arterial blood pressure (MAP), and rate pressure product (RPP) were determined. Results Pretreatment with the δ2 OR agonist Deltorphin II (150 nmol/kg) significantly reduced the IS/AAR ratio, while Deltorphin-Dvariant and Deltorphin-E did not exhibit an infarct sparing effect at that treatment dose. Activation of δ1 OR by DPDPE, κ1 OR by U-50488, κ2 OR by U-50488, μ OR by DAMGO, Dermophin-H, and Nociceptin had

  16. New therapeutic approach to heart failure due to myocardial infarction based on targeting growth hormone-releasing hormone receptor

    PubMed Central

    Schally, Andrew V.; Takeuchi, Lauro M.; Popovics, Petra; Jaszberenyi, Miklos; Vidaurre, Irving; Zarandi, Marta; Cai, Ren-Zhi; Block, Norman L.; Hare, Joshua M.; Rick, Ferenc G.

    2015-01-01

    Background We previously showed that growth hormone-releasing hormone (GHRH) agonists are cardioprotective following myocardial infarction (MI). Here, our aim was to evaluate the in vitro and in vivo activities of highly potent new GHRH agonists, and elucidate their mechanisms of action in promoting cardiac repair. Methods and Results H9c2 cells were cultured in serum-free medium, mimicking nutritional deprivation. GHRH agonists decreased calcium influx and significantly improved cell survival. Rats with cardiac infarction were treated with GHRH agonists or placebo for four weeks. MI size was reduced by selected GHRH agonists (JI-38, MR-356, MR-409); this accompanied an increased number of cardiac c-kit+ cells, cellular mitotic divisions, and vascular density. One week post-MI, MR-409 significantly reduced plasma levels of IL-2, IL-6, IL-10 and TNF-α compared to placebo. Gene expression studies revealed favorable outcomes of MR-409 treatment partially result from inhibitory activity on pro-apoptotic molecules and pro-fibrotic systems, and by elevation of bone morphogenetic proteins. Conclusions Treatment with GHRH agonists appears to reduce the inflammatory responses post-MI and may consequently improve mechanisms of healing and cardiac remod eling by regulating pathways involved in fibrosis, apoptosis and cardiac repair. Patients with cardiac dysfunction could benefit from treatment with novel GHRH agonists. PMID:25797248

  17. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction

    PubMed Central

    Hatzistergos, Konstantinos E; Paulino, Ellena C; Dulce, Raul A; Takeuchi, Lauro M; Bellio, Michael A; Kulandavelu, Shathiyah; Cao, Yenong; Balkan, Wayne; Kanashiro-Takeuchi, Rosemeire M; Hare, Joshua M

    2015-01-01

    Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target. PMID:26178404

  18. A comparison of cryodestruction with excision or infarction of an implanted tumor in rat liver.

    PubMed

    Jacob, G; Li, A K; Hobbs, K E

    1984-04-01

    In this study a malignant tumor was implanted in rat livers and treated by infarction, excision, or cryodestruction. Survival and the pattern of metastases was studied in each group. Walker carcinomas were induced by the inoculation of a tumor cell suspension into the livers of male Sprague-Dawley rats. Ten days after inoculation a solitary tumor had formed. This was treated by (i) mobilization of the tumor-bearing lobe (controls); (ii) ischemic infarction by ligation of the vascular pedicle to the lobe; (iii) excision of the tumor-bearing lobe; or (iv) cryodestruction of the tumor and surrounding liver using a clinical liquid nitrogen probe. A double freeze/thaw cycle to - 180 degrees C at a mean cooling rate of 94 degrees C/min was performed. Autopsy was performed at death or after 110 days, when the experiment was terminated. In general, deaths within 5 weeks of treatment were from recurrent tumor growth in the liver and, after this time, from metastatic disease. A statistically significant increase in survival was noted in the cryotherapy group when compared with the other treatment groups (P less than 0.01 logrank ) and controls (P less than 0.001 logrank ). No real difference in local tumor control was noted between the groups. The improved survival in the cryotherapy group was attributed to a statistically significant reduction in deaths from metastatic disease (P less than 0.05 Chi-square). This finding may be related to an immunological response and warrants further study. PMID:6713944

  19. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods

    NASA Astrophysics Data System (ADS)

    Pop, Mihaela; Ghugre, Nilesh R.; Ramanan, Venkat; Morikawa, Lily; Stanisz, Greg; Dick, Alexander J.; Wright, Graham A.

    2013-08-01

    Many have speculated that MRI signal characteristics can be used to identify regions of heterogeneous infarct associated with an arrhythmogenic substrate; however, direct evidence of this relationship is limited. The aim of this study was to demonstrate the remodelling characteristics of fibrosis by means of histology and high-resolution MR imaging. For this purpose, we performed whole-mount histology in heart samples (n = 9) collected from five swine at six weeks post-infarction and compared the extent of fibrosis in the infarcted areas delineated in these histological images with that obtained ex vivo by MRI using late gadolinium-enhancement (LGE) and diffusion-weighted imaging (DWI) methods. All MR images were obtained at a submillimetre resolution (i.e., voxel size of 0.6×0.6×1.2 mm3). Specifically, in the histology images, we differentiated moderate fibrosis (consisting of a mixture of viable and non-viable myocytes, known as border zone, BZ) from severe fibrosis (i.e., the dense scar). Correspondingly, tissue heterogeneities in the MR images were categorized by a Gaussian mixture model into healthy, BZ and scar. Our results showed that (a) both MRI methods were capable of qualitatively distinguishing sharp edges between dense scar and healthy tissue from regions of heterogeneous BZ; (b) the BZ and dense scar areas had intermediate-to-high increased values of signal intensity in the LGE images and of apparent diffusion coefficient in the DWI, respectively. In addition, as demonstrated by the Picrosirius Red and immunohistochemistry stains, the viable bundles in the BZ were clearly separated by thin collagen strands and had reduced expression of Cx43, whereas the core scar was composed of dense fibrosis. A quantitative analysis demonstrated that the comparison between BZ/scar extent in LGE and DWI to the corresponding areas identified in histology yielded very good correlations (i.e., for the scar identified by LGE, R2 was 0.96 compared to R2 = 0.93 for the

  20. Effect of a multivitamin preparation supplemented with phytosterol on serum lipids and infarct size in rats fed with normal and high cholesterol diet

    PubMed Central

    2013-01-01

    Background Although complex multivitamin products are widely used as dietary supplements to maintain health or as special medical food in certain diseases, the effects of these products were not investigated in hyperlipidemia which is a major risk factor for cardiovascular diseases. Therefore, here we investigated if a preparation developed for human use containing different vitamins, minerals and trace elements enriched with phytosterol (VMTP) affects the severity of experimental hyperlipidemia as well as myocardial ischemia/reperfusion injury. Methods Male Wistar rats were fed a normal or cholesterol-enriched (2% cholesterol + 0.25% cholate) diet for 12 weeks to induce hyperlipidemia. From week 8, rats in both groups were fed with a VMTP preparation or placebo for 4 weeks. Serum triglyceride and cholesterol levels were measured at week 0, 8 and 12. At week 12, hearts were isolated, perfused according to Langendorff and subjected to a 30-min coronary occlusion followed by 120 min reperfusion to measure infarct size. Results At week 8, cholesterol-fed rats showed significantly higher serum cholesterol level as compared to normal animals, however, serum triglyceride level did not change. VMTP treatment significantly decreased serum cholesterol level in the hyperlipidemic group by week 12 without affecting triglyceride levels. However, VMTP did not show beneficial effect on infarct size. The inflammatory marker hs-CRP and the antioxidant uric acid were also not significantly different. Conclusions This is the first demonstration that treatment of hyperlipidemic subjects with a VMTP preparation reduces serum cholesterol, the major risk factor for cardiovascular disease; however, it does not provide cardioprotection. PMID:24063587

  1. Exogenous Hydrogen Sulfide Postconditioning Protects Isolated Rat Hearts From Ischemia/Reperfusion Injury Through Sirt1/PGC-1α Signaling Pathway.

    PubMed

    Hu, Ming-Zhu; Zhou, Bo; Mao, Hong-Ya; Sheng, Qiong; Du, Bin; Chen, Jun-Liang; Pang, Qing-Feng; Ji, Yong

    2016-07-27

    Sirt1 is a highly conserved nicotinamide adenine dinucleotide (NAD(+)) dependent histone deacetylase which plays an important role in heart diseases. Studies performed with Sirt1 activators indicated that it protects cells from ischemia/ reperfusion (I/R) injury. The protective effects of H2S against I/R injury also have been recognized. Hence, the present study was designed to explore whether Sirt1/PGC-1α participates in the protection of exogenous H2S postconditioning against I/R injury in isolated rat hearts. Isolated rat hearts were subjected to 30 minutes of global ischemia followed by 60 minutes of reperfusion after 20 minutes of equilibrium. During this procedure, the hearts were exposed to NaHS (10 μmol/L) treatment in the absence or presence of the selective Sirt1 inhibitor EX-527 (10 μmol/L). NaHS exerted a protective effect on isolated rat hearts subjected to I/R, as shown by the improved expression of Sirt1/PGC-1α associated with restoration of Sirt1 nuclear localization, cardiac function, decreased myocardial infarct size, decreased myocardial enzyme release, and several biochemical parameters, including up-regulation of the ATP and SOD levels, and down-regulation of the MDA level. However, treatment with EX-527 could partially prevent the above effects of NaHS postconditioning. These results indicate that H2S confers protective effects against I/R injury through the activation of Sirt1/PGC1α. PMID:27357440

  2. Antiapoptotic effect of exercise training on ovariectomized rat hearts.

    PubMed

    Huang, Chih-Yang; Lin, Yi-Yuan; Hsu, Chih-Chao; Cheng, Shiu-Min; Shyu, Woei-Cherng; Ting, Hua; Yang, Ai-Lun; Ho, Tsung-Jung; Lee, Shin-Da

    2016-08-01

    The purpose of this study was to evaluate the effects of exercise training on cardiac Fas receptor-dependent and mitochondria-dependent apoptotic pathways in ovariectomized rats. Histopathological analysis, TUNEL assay, and Western blotting were performed on the excised hearts from three groups of Sprague-Dawley rats, which were divided into a sham-operated group, a bilaterally ovariectomized group (OVX), and a bilaterally ovariectomized group that underwent treadmill running exercise for 60 min/day, 5 sessions/wk, for 10 wk (OVX-EX). The abnormal myocardial architecture, cardiac trichome-stained fibrosis and cardiac TUNEL-positive apoptotic cells in ovariectomized rats improved after exercise training. The protein levels of tumor necrosis factor-α, tumor necrosis factor receptor 1, Fas ligand, Fas receptors, Fas-associated death domain, activated caspase-8 and activated caspase-3 (Fas receptor-dependent apoptotic pathways), as well as t-Bid, Bad, Bak, Bax, cytosolic cytochrome c, activated caspase-9, and activated caspase-3 (mitochondria-dependent apoptotic pathways) were decreased in the OVX-EX group compared with the OVX group. Exercise training suppressed ovariectomy-induced cardiac Fas receptor-dependent and mitochondria-dependent apoptotic pathways in ovariectomized rat models. These findings might indicate a new therapeutic effect for exercise training to prevent cardiac apoptosis in menopausal or bilaterally oophorectomized women. PMID:27339185

  3. Traditional Formula, Modern Application: Chinese Medicine Formula Sini Tang Improves Early Ventricular Remodeling and Cardiac Function after Myocardial Infarction in Rats

    PubMed Central

    Liu, Jiangang; Peter, Karoline; Shi, Dazhuo; Zhang, Lei; Dong, Guoju; Zhang, Dawu; Breiteneder, Heimo; Ma, Yan

    2014-01-01

    Sini Tang (SNT) is a traditional Chinese herbal formula consisting of four different herbs: the root of Aconitum carmichaelii, the bark of Cinnamomum cassia, the rhizome of Zingiber officinale, and the root of Glycyrrhiza uralensis. This study aims to evaluate the improvement of early ventricular remodeling and cardiac function in myocardial infarction (MI) rats by SNT. A MI model was established by ligation of the left anterior descending coronary artery. Following treatment for 4 weeks, ultrasonic echocardiography was performed. Myocardial histopathological changes were observed using haematoxylin and eosin staining. Collagens (type I and type III), transforming growth factor-β1 (TGF-β1), and Toll-like receptors (TLR-2 and TLR-4) were measured in plasma, serum, and myocardial tissue. SNT treatment decreased the infarct size, the left ventricular cavity area/heart cavity area ratio, and the left ventricle dimension at end systole and increased the left ventricular ejection fraction. SNT reduced the levels of TLR-2 and TLR-4 in myocardial tissue significantly and decreased the collagens content in serum and in myocardial tissue. SNT could partially reduce the level of TGF-β1 in serum and in myocardial tissue. Our data suggest that the Chinese medicine formula SNT has the potential to improve early ventricular remodeling and cardiac function after MI. PMID:24971143

  4. The structurally novel Ca sup 2+ channel blocker Ro 40-5967, which binds to the ( sup 3 H) desmethoxyverapamil receptor, is devoid of the negative inotropic effects of verapamil in normal and failing rat hearts

    SciTech Connect

    Clozel, J.P.; Veniant, M.; Osterrieder, W. )

    1990-06-01

    Ro 40-5967 is a structurally novel Ca{sup 2+} channel blocker that binds to the verapamil-type receptor of cardiac membranes but that has been shown in isolated guinea-pig hearts to be about ten times less potent a negative inotropic agent than verapamil. The goals of the present study were to confirm these findings in vitro in isolated perfused rat hearts as well as in vivo in conscious rats and to compare Ro 40-5967 to verapamil. The effects of Ro 40-5967 and verapamil were tested not only in normal rats, but also in rats with heart failure induced by chronic myocardial infarction. In isolated Langendorff hearts (without heart failure), no decrease of contractility was observed with Ro 40-5967 up to complete AV block. In contrast, verapamil decreased contractility with an IC50 of 100 nM. In isolated, electrically stimulated rat papillary muscles, the IC50 values for the decrease of contractile force were 15,000 and 440 nM for Ro 40-5967 and verapamil, respectively. In vivo, Ro 40-5967 did not decrease left ventricular contractility (as assessed by changes of dP/dt max +) in rats without and with heart failure. In contrast, verapamil was markedly negative inotropic in both conditions.

  5. Arterial baroreceptor reflex control of renal sympathetic nerve activity following chronic myocardial infarction in male, female, and ovariectomized female rats.

    PubMed

    Pinkham, Maximilian I; Whalley, Gillian A; Guild, Sarah-Jane; Malpas, Simon C; Barrett, Carolyn J

    2015-07-15

    There is controversy regarding whether the arterial baroreflex control of renal sympathetic nerve activity (SNA) in heart failure is altered. We investigated the impact of sex and ovarian hormones on changes in the arterial baroreflex control of renal SNA following a chronic myocardial infarction (MI). Renal SNA and arterial pressure were recorded in chloralose-urethane anesthetized male, female, and ovariectomized female (OVX) Wistar rats 6-7 wk postsham or MI surgery. Animals were grouped according to MI size (sham, small and large MI). Ovary-intact females had a lower mortality rate post-MI (24%) compared with both males (38%) and OVX (50%) (P < 0.05). Males and OVX with large MI, but not small MI, displayed an impaired ability of the arterial baroreflex to inhibit renal SNA. As a result, the male large MI group (49 ± 6 vs. 84 ± 5% in male sham group) and OVX large MI group (37 ± 3 vs. 75 ± 5% in OVX sham group) displayed significantly reduced arterial baroreflex range of control of normalized renal SNA (P < 0.05). In ovary-intact females, arterial baroreflex control of normalized renal SNA was unchanged regardless of MI size. In males and OVX there was a significant, positive correlation between left ventricle (LV) ejection fraction and arterial baroreflex range of control of normalized renal SNA, but not absolute renal SNA, that was not evident in ovary-intact females. The current findings demonstrate that the arterial baroreflex control of renal SNA post-MI is preserved in ovary-intact females, and the state of left ventricular dysfunction significantly impacts on the changes in the arterial baroreflex post-MI. PMID:25994953

  6. Protection by Nitric Oxide Donors of Isolated Rat Hearts Is Associated with Activation of Redox Metabolism and Ferritin Accumulation

    PubMed Central

    Grievink, Hilbert; Zeltcer, Galina; Drenger, Benjamin; Berenshtein, Eduard; Chevion, Mordechai

    2016-01-01

    Preconditioning (PC) procedures (ischemic or pharmacological) are powerful procedures used for attaining protection against prolonged ischemia and reperfusion (I/R) injury, in a variety of organs, including the heart. The detailed molecular mechanisms underlying the protection by PC are however, complex and only partially understood. Recently, an ‘iron-based mechanism’ (IBM), that includes de novo ferritin synthesis and accumulation, was proposed to explain the specific steps in cardioprotection generated by IPC. The current study investigated whether nitric oxide (NO), generated by exogenous NO-donors, could play a role in the observed IBM of cardioprotection by IPC. Therefore, three distinct NO-donors were investigated at different concentrations (1–10 μM): sodium nitroprusside (SNP), 3-morpholinosydnonimine (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP). Isolated rat hearts were retrogradely perfused using the Langendorff configuration and subjected to prolonged ischemia and reperfusion with or without pretreatment by NO-donors. Hemodynamic parameters, infarct sizes and proteins of the methionine-centered redox cycle (MCRC) were analyzed, as well as cytosolic aconitase (CA) activity and ferritin protein levels. All NO-donors had significant effects on proteins involved in the MCRC system. Nonetheless, pretreatment with 10 μM SNAP was found to evoke the strongest effects on Msr activity, thioredoxin and thioredoxin reductase protein levels. These effects were accompanied with a significant reduction in infarct size, increased CA activity, and ferritin accumulation. Conversely, pretreatment with 2 μM SIN-1 increased infarct size and was associated with slightly lower ferritin protein levels. In conclusion, the abovementioned findings indicate that NO, depending on its bio-active redox form, can regulate iron metabolism and plays a role in the IBM of cardioprotection against reperfusion injury. PMID:27447933

  7. Protection by Nitric Oxide Donors of Isolated Rat Hearts Is Associated with Activation of Redox Metabolism and Ferritin Accumulation.

    PubMed

    Grievink, Hilbert; Zeltcer, Galina; Drenger, Benjamin; Berenshtein, Eduard; Chevion, Mordechai

    2016-01-01

    Preconditioning (PC) procedures (ischemic or pharmacological) are powerful procedures used for attaining protection against prolonged ischemia and reperfusion (I/R) injury, in a variety of organs, including the heart. The detailed molecular mechanisms underlying the protection by PC are however, complex and only partially understood. Recently, an 'iron-based mechanism' (IBM), that includes de novo ferritin synthesis and accumulation, was proposed to explain the specific steps in cardioprotection generated by IPC. The current study investigated whether nitric oxide (NO), generated by exogenous NO-donors, could play a role in the observed IBM of cardioprotection by IPC. Therefore, three distinct NO-donors were investigated at different concentrations (1-10 μM): sodium nitroprusside (SNP), 3-morpholinosydnonimine (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP). Isolated rat hearts were retrogradely perfused using the Langendorff configuration and subjected to prolonged ischemia and reperfusion with or without pretreatment by NO-donors. Hemodynamic parameters, infarct sizes and proteins of the methionine-centered redox cycle (MCRC) were analyzed, as well as cytosolic aconitase (CA) activity and ferritin protein levels. All NO-donors had significant effects on proteins involved in the MCRC system. Nonetheless, pretreatment with 10 μM SNAP was found to evoke the strongest effects on Msr activity, thioredoxin and thioredoxin reductase protein levels. These effects were accompanied with a significant reduction in infarct size, increased CA activity, and ferritin accumulation. Conversely, pretreatment with 2 μM SIN-1 increased infarct size and was associated with slightly lower ferritin protein levels. In conclusion, the abovementioned findings indicate that NO, depending on its bio-active redox form, can regulate iron metabolism and plays a role in the IBM of cardioprotection against reperfusion injury. PMID:27447933

  8. The Influence of a High Salt Diet on a Rat Model of Isoproterenol-Induced Heart Failure

    EPA Science Inventory

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4 weeks) isoproterenol (ISO) infusion exacerbated cardiomyopathy in Spontaneously Hypertensive Heart Failure (SHHF) rats. Others have shown...

  9. Neuroprotective mechanism of HIF-1α overexpression in the early stage of acute cerebral infarction in rats

    PubMed Central

    SUN, YUHUA; HE, WEIYA; GENG, LIJIAO

    2016-01-01

    The present study aimed to explore the expression and neuroprotective mechanism of hypoxia inducible factor (HIF-1α) in the brain tissue of a rat model of early acute cerebral infarction. A total of 64 Sprague Dawley rats were randomly divided into surgery and sham groups and the model of focal cerebral infarction was established by the suture-occluded method. In the sham group, blood vessels were separated but not occluded. Rats in the surgery and sham groups were subdivided into eight groups (n=4/group). Blood samples was collected at 8 time points including 30 min and 1, 3, 6, 12, 48, 24 and 72 h, respectively, and HIF-1α content was detected using ELISA. Brain tissues of rats in all groups were harvested following blood collection. HIF-1α protein expression was detected by immunohistochemistry and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling was used to analyze the brain cell apoptosis index. ELISA results demonstrated that rats in the surgery group began to express HIF-1α within 30 min, and HIF-1α expression levels gradually increased, peaking at 12 h. HIF-1α expression levels were significantly increased in the surgery group at all time points, as compared with the sham group (P<0.05). The concentration of HIF-1α decreased rapidly in 12 h. At various time points, HIF-1α protein expression in the brain tissue of rats in the sham group was negative. HIF-1α protein expression was significantly increased in the surgery group (P<0.05), peaking at 12 h, and decreasing after this point. As compared with the sham group, the apoptosis indices of the brain tissue of rats in the surgery group exhibited a gradual increasing trend with significant decreases observed after 12 h (P<0.05). Intra-group comparison of all indices in the surgery group, indicated that there was a statistically significant difference between postoperative 12 h and other time points (P<0.05). In conclusion, the present study demonstrated that HIF-1α was highly

  10. β-Blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature

    PubMed Central

    DiNicolantonio, James J; Fares, Hassan; Niazi, Asfandyar K; Chatterjee, Saurav; D'Ascenzo, Fabrizio; Cerrato, Enrico; Biondi-Zoccai, Giuseppe; Lavie, Carl J; Bell, David S; O'Keefe, James H

    2015-01-01

    β-Blockers (BBs) are an essential class of cardiovascular medications for reducing morbidity and mortality in patients with heart failure (HF). However, a large body of data indicates that BBs should not be used as first-line therapy for hypertension (HTN). Additionally, new data have questioned the role of BBs in the treatment of stable coronary heart disease (CHD). However, these trials mainly tested the non-vasodilating β1 selective BBs (atenolol and metoprolol) which are still the most commonly prescribed BBs in the USA. Newer generation BBs, such as the vasodilating BBs carvedilol and nebivolol, have been shown not only to be better tolerated than non-vasodilating BBs, but also these agents do not increase the risk of diabetes mellitus (DM), atherogenic dyslipidaemia or weight gain. Moreover, carvedilol has the most evidence for reducing morbidity and mortality in patients with HF and those who have experienced an acute myocardial infarction (AMI). This review discusses the cornerstone clinical trials that have tested BBs in the settings of HTN, HF and AMI. Large randomised trials in the settings of HTN, DM and stable CHD are still needed to establish the role of BBs in these diseases, as well as to determine whether vasodilating BBs are exempt from the disadvantages of non-vasodilating BBs. PMID:25821584

  11. A RAT MODEL OF HEART FAILURE INDUCED BY ISOPROTERENOL AND A HIGH SALT DIET

    EPA Science Inventory

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4wk) isoproterenol (ISO) infusion in Spontaneously Hypertensive Heart Failure (SHHF) rats caused cardiac injury with minimal hypertrophy. O...

  12. Role of orthotopic heart transplantation in the management of patients with recurrent ventricular tachyarrhythmias following myocardial infarction

    PubMed Central

    Bourke, J; Loaiza, A; Parry, G; Hilton, C; Furniss, S; Dark, J; Forty, J

    1998-01-01

    Objective—To report the outcome of an intention to treat by heart transplantation strategy in two groups of patients after infarction, one with both left ventricular failure (LVF) and ventricular tachyarrhythmias (VTA) (group A) and the other with progressive LVF following antiarrhythmic surgery for VTA (group B). 
Patients and methods—Group A comprised 17 consecutive patients for whom transplantation was considered the best primary non-pharmacological treatment; group B comprised five consecutive patients assessed and planned for transplantation after antiarrhythmic surgery.
Results—In group A, eight patients underwent transplantation and all survived the first 30 day period. At median follow up of 55 months (range 11 to 109) seven of this subgroup were still alive. Five patients died of recurrent VTA before transplantation, despite circulatory support. In the face of uncontrollable VTA, four of these underwent "high risk" antiarrhythmic surgery while awaiting transplantation: three died of LVF within 30 days and one was saved by heart transplantation two days after arrhythmia surgery. Mortality for the transplantation strategy in group A patients was 47% by intention to treat analysis. Quality of life in the eight actually transplanted, however, was good and only one died during median follow up of 56 months. The five patients in group B were accepted for transplantation for progressive LVF at a median of 21 months (range 12 to 28) after antiarrhythmic surgery. One died of LVF before transplantation, 22 months after initial surgery; another died of high output LVF three days after transplantation. Thus mortality of the intended strategy was 40%. The three transplanted patients are alive and well at 8-86 months.
Conclusions—Although the short and medium term outcome in category A or B patients who undergo transplantation is good, the overall success of the transplantation strategy in category A patients is limited by lack of donors in the

  13. Mitochondrial respiration in hearts of copper-deficient rats

    SciTech Connect

    Bode, A.M.; Saari, J.T. USDA/ARS, Grand Forks, ND )

    1991-03-11

    Morphological observations indicate that dietary copper deficiency causes structural damage of cardiac mitochondria. The purpose of this study was to determine whether mitochondrial function is impaired as well. Male, weanling Sprague-Dawley rats were fed diets deficient or sufficient in copper for 4 wks. Copper deficiency was verified by measurement of plasma (ND (CuD) vs 0.46 {plus minus} 0.15 {mu}g/ml (CuS)) and kidney copper. Mitochondria were isolated and P/O ratio, state 3 and state 4 respiration rate and acceptor control index (ACI) were determined using succinate or pyruvate/malate as substrate. Determinations were made polarographically at 30C in a reaction medium consisting of 0.25 M sucrose, 0.1 mM EDTA, 200 mM MgCl and 200 mM sodium phosphate buffer. State 3 respiration rate in mitochondria from CuD hearts was 30% lower than in CuS mitochondria when succinate was used as substrate and 28% lower when pyruvate/malate was used. Copper deficiency reduced state 4 respiration rate by 31% when succinate was used and 16% when pyruvate/malate was used. P/O ratio and ACI were not significantly affected by copper deficiency. The observed decreases in respiration rates are consistent with decreased cytochrome c oxidase activity shown by others to occur in mitochondria isolated from hearts of copper-deficient rats.

  14. The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-ɛ and p38 MAPK

    PubMed Central

    Weber, Nina C; Toma, Octavian; Wolter, Jessica I; Obal, Detlef; Müllenheim, Jost; Preckel, Benedikt; Schlack, Wolfgang

    2004-01-01

    Xenon is an anesthetic with minimal hemodynamic side effects, making it an ideal agent for cardiocompromised patients. We investigated if xenon induces pharmacological preconditioning (PC) of the rat heart and elucidated the underlying molecular mechanisms. For infarct size measurements, anesthetized rats were subjected to 25 min of coronary artery occlusion followed by 120 min of reperfusion. Rats received either the anesthetic gas xenon, the volatile anesthetic isoflurane or as positive control ischemic preconditioning (IPC) during three 5-min periods before 25-min ischemia. Control animals remained untreated for 45 min. To investigate the involvement of protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK), rats were pretreated with the PKC inhibitor calphostin C (0.1 mg kg−1) or the p38 MAPK inhibitor SB203580 (1 mg kg−1). Additional hearts were excised for Western blot and immunohistochemistry. Infarct size was reduced from 50.9±16.7% in controls to 28.1±10.3% in xenon, 28.6±9.9% in isoflurane and to 28.5±5.4% in IPC hearts. Both, calphostin C and SB203580, abolished the observed cardioprotection after xenon and isoflurane administration but not after IPC. Immunofluorescence staining and Western blot assay revealed an increased phosphorylation and translocation of PKC-ɛ in xenon treated hearts. This effect could be blocked by calphostin C but not by SB203580. Moreover, the phosphorylation of p38 MAPK was induced by xenon and this effect was blocked by calphostin C. In summary, we demonstrate that xenon induces cardioprotection by PC and that activation of PKC-ɛ and its downstream target p38 MAPK are central molecular mechanisms involved. Thus, the results of the present study may contribute to elucidate the beneficial cardioprotective effects of this anesthetic gas. PMID:15644876

  15. Radiation-Induced Alterations in Mitochondria of the Rat Heart

    PubMed Central

    Sridharan, Vijayalakshmi; Aykin-Burns, Nukhet; Tripathi, Preeti; Krager, Kimberly J.; Sharma, Sunil K.; Moros, Eduardo G.; Corry, Peter M.; Nowak, Grazyna; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Radiation therapy for the treatment of thoracic cancers may be associated with radiation-induced heart disease (RIHD), especially in long-term cancer survivors. Mechanisms by which radiation causes heart disease are largely unknown. To identify potential long-term contributions of mitochondria in the development of radiation-induced heart disease, we examined the time course of effects of irradiation on cardiac mitochondria. In this study, Sprague-Dawley male rats received image-guided local X irradiation of the heart with a single dose ranging from 3–21 Gy. Two weeks after irradiation, left ventricular mitochondria were isolated to assess the dose-dependency of the mitochondrial permeability transition pore (mPTP) opening in a mitochondrial swelling assay. At time points from 6 h to 9 months after a cardiac dose of 21 Gy, the following analyses were performed: left ventricular Bax and Bcl-2 protein levels; apoptosis; mitochondrial inner membrane potential and mPTP opening; mitochondrial mass and expression of mitophagy mediators Parkin and PTEN induced putative kinase-1 (PINK-1); mitochondrial respiration and protein levels of succinate dehydrogenase A (SDHA); and the 70 kDa subunit of complex II. Local heart irradiation caused a prolonged increase in Bax/Bcl-2 ratio and induced apoptosis between 6 h and 2 weeks. The mitochondrial membrane potential was reduced until 2 weeks, and the calcium-induced mPTP opening was increased from 6 h up to 9 months. An increased mitochondrial mass together with unaltered levels of Parkin suggested that mitophagy did not occur. Lastly, we detected a significant decrease in succinate-driven state 2 respiration in isolated mitochondria from 2 weeks up to 9 months after irradiation, coinciding with reduced mitochondrial levels of succinate dehydrogenase A. Our results suggest that local heart irradiation induces long-term changes in cardiac mitochondrial membrane functions, levels of SDH and state 2 respiration. At any time after

  16. Nickel chloride inhibits metabolic coronary vasodilatation in isolated rat hearts

    SciTech Connect

    Edoute, Y.; Rubanyi, G.M.; Vanhoutte, P.M.

    1986-03-01

    Nickel is a potent coronary vasoconstrictor and it is released from ischemic myocardium. To determine whether or not nickel ions cause coronary vasoconstriction when local vasodilator mechanisms are stimulated the authors studied the inter-relation between exogenous nickel chloride (NiCl/sub 2/) and metabolic coronary vasodilatation in isolated rat hearts perfused by a modified Langendorff technique. NiCl/sub 2/ induced dose-dependent (10/sup -7/-10/sup -5/M) increases in coronary vascular resistance in spontaneously beating hearts. Pacing of the hearts (380/min) and infusing adenosine (10/sup -6/M) evoked comparable increases in coronary flow but did not affect the coronary vasoconstriction caused by NiCl/sub 2/. At concentrations (> 10/sup -7/M) which evoked vasoconstriction, NiCl/sub 2/ significantly reduced vasodilator responses evoked by pacing, transient coronary occlusion and adenosine. Lower concentrations, which did not cause vasoconstriction, had no effect on these vasodilator responses. Thus, at relative low concentrations NiCl/sub 2/ inhibits metabolic dilatation of the coronary vessels which may contribute to the increased vascular resistance caused by the trace metal under ischemic/hypoxic conditions.

  17. Circadian changes in autonomic function in conscious rats with heart failure: effects of amiodarone on sympathetic surge.

    PubMed

    Ohori, Takashi; Hirai, Tadakazu; Joho, Shuji; Kameyama, Tomoki; Nozawa, Takashi; Asanoi, Hidetsugu; Inoue, Hiroshi

    2011-01-20

    Cardiovascular events are characterized by circadian periodicity with a peak prevalence during the awakening period, which suggests a morning surge in sympathetic activity. We developed an experimental system to determine circadian changes in heart rate (HR), blood pressure (BP), locomotor activity (Loc), respiratory rate and autonomic function in conscious, unrestrained rats. The effects of amiodarone on circadian variation of these variables were determined in rats with myocardial infarction and subsequent congestive heart failure (CHF). We continuously recorded BP, HR and Loc for 24h in rats with CHF (n=16) or after a sham operation (Sham; n=7). To determine circadian changes in sympathovagal balance, digitized BP and HR data throughout 24h were analyzed based on maximum entropy. The study was repeated after 3 weeks of oral amiodarone (50mg/kg/day) or saline administration. Baseline HR, mean BP, and Loc were higher in the dark period than in the light period (all p<0.05) in both CHF and Sham rats, which is consistent with the circadian periodicity of nocturnal animals. Low-frequency components of diastolic BP variability (LFdp), an index of sympathetic tone, were significantly higher during the awakening period (16:00-20:00) than during the sleeping period (08:00-14:00), a finding analogous to the sympathetic morning surge in men. Amiodarone suppressed this transient increase in LFdp power during the awakening period. Our experimental system could detect sympathetic surge in conscious rats. Amiodarone suppressed the sympathetic surge, which could explain, at least in part, beneficial effects of amiodarone in patients with CHF. PMID:20674512

  18. Relationships of valve histology and mitochondrial and myofibril volume densities to hypertrophy of copper-deficient rat hearts

    SciTech Connect

    Medeiros, D.M.; McCormick, R. Univ. of Wyoming, Laramie )

    1991-03-15

    Twenty-four male weanling rats were fed either copper-adequate or -deficient diets until 9 or 11 weeks of age. Deficient rat hearts had increased mitochondria: myofibril compared to adequate rats. Eleven week old deficient rat hearts had decreased mitochondria: myofibril as the hearts increased in weight, but the larger hearts had greater myofibril volume densities. Cardiac mitochondria of deficient rats appeared vacuolated with fragmented cristae and translucent matrix. Valves from copper deficient rats appeared to have less connective tissue and were fragmented in areas. For deficient rats, heart:body weights of 9 wk old rats were negatively correlated with bicuspid valve pathology scores, whereas tricuspid valve scores from 11 wk old rats were negatively correlated with myofibril volume densities. These data suggest that the enlargement of the copper-deficient rat heart is due to: larger (1) mitochondria and (2) myofibril volume densities.

  19. Curcumin ameliorates streptozotocin-induced heart injury in rats.

    PubMed

    Abo-Salem, Osama M; Harisa, Gamaleldin I; Ali, Tarek M; El-Sayed, El-Sayed M; Abou-Elnour, Fatma M

    2014-06-01

    Heart failure (HF) is one of diabetic complications. This work was designed to investigate the possible modulatory effect of curcumin against streptozotocin-induced diabetes and consequently HF in rats. Rats were divided into control, vehicle-treated, curcumin-treated, diabetic-untreated, diabetic curcumin-treated, and diabetic glibenclamide-treated groups. Animal treatment was started 5 days after induction of diabetes and extended for 6 weeks. Diabetic rats showed significant increase in serum glucose, triglycerides, total cholesterol, low-density lipoprotein-cholesterol, very low density lipoprotein-cholesterol, nitric oxide, lactate dehydrogenase, cardiac malondialdehyde, plasma levels of interleukin-6, and tumor necrosis factor-alpha, and also showed marked decrease in serum high-density lipoprotein-cholesterol, cardiac reduced glutathione, and cardiac antioxidant enzymes (catalase, superoxide dismutase, and glutathione-S-transferase). However, curcumin or glibenclamide treatment significantly mitigated such changes. In conclusion, curcumin has a beneficial therapeutic effect in diabetes-induced HF, an effect that might be attributable to its antioxidant and suppressive activity on cytokines. PMID:24760747

  20. Silent broken heart (Can shortness of breath be the only presentation of myocardial infarction?).

    PubMed

    Waleed, Mohammad; Sachpekidis, Vasileios; Bragadeesh, Thanjavur; Clark, Andrew L

    2015-01-01

    A 55-year-old previously healthy man was referred to our cardiology outpatient department (by the respiratory team) due to shortness of breath that started 2-3 months prior. He suddenly became breathless after changing a car wheel with no other associated symptoms. Specifically, he denied ever having had chest pain. His breathlessness got gradually worse preventing him from performing simple everyday activities, such as climbing stairs, and a couple of weeks before presentation, the patient noticed ankle oedema. He was an ex-smoker and drank 3-4 units of alcohol daily. There was a family history of hypertension. He worked as a contract manager in the construction industry. After clinical examination, a transthoracic echocardiogram was performed and the patient was admitted for further investigations. Clinical examination and investigation confirmed missed myocardial infarction with a complication of ventricular aneurysm. The patient was referred to cardiothoracic surgeons for surgical correction of the defect. PMID:26113615

  1. The efficiency coefficient of the rat heart and muscular system after physical training and hypokinesia

    NASA Technical Reports Server (NTRS)

    Alyukhin, Y. S.; Davydov, A. F.

    1982-01-01

    The efficiency of an isolated heart did not change after prolonged physical training of rats for an extreme load. The increase in oxygen consumption by the entire organism in 'uphill' running as compared to the resting level in the trained rats was 14% lower than in the control animals. Prolonged hypokinesia of the rats did not elicit a change in the efficiency of the isolated heart.

  2. Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats.

    PubMed

    Dong, Da-Wei; Zhang, Yu-Sheng; Yang, Wan-Yong; Wang-Qin, Run-Qi; Xu, An-Ding; Ruan, Yi-Wen

    2014-01-16

    Hyperphosphorylation of tau has been considered as an important risk factor for neurodegenerative diseases. It has been found also in the cortex after focal cerebral ischemia. The present study is aimed at investigating changes of tau protein expression in the ipsilateral thalamus remote from the primary ischemic lesion site after distal middle cerebral artery occlusion (MCAO). The number of neurons in the ventroposterior thalamic nucleus (VPN) was evaluated using Nissl staining and neuronal nuclei (NeuN) immunostaining. Total tau and phosphorylated tau at threonine 231 (p-T231-tau) and serine 199 (p-S199-tau) levels, respectively, in the thalamus were measured using immunostaining and immunoblotting. Moreover, apoptosis was detected with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay. It was found that the numbers of intact neurons and NeuN(+) cells within the ipsilateral VPN were reduced significantly compared with the sham-operated group, but the levels of p-T231-tau and p-S199-tau in the ipsilateral thalamus were increased significantly in rats subjected to ischemia for 3 days, 7 days and 28 days. Furthermore, the number of TUNEL-positive cells was increased in the ipsilateral VPN at 7 days and 28 days after MCAO. Thus, hyperphosphorylated tau protein is observed in ipsilateral thalamus after focal cerebral infarction in this study. Our findings suggest that the expression of hyperphosphorylated tau protein induced by ischemia may be associated with the secondary thalamic damage after focal cortical infarction via an apoptotic pathway. PMID:24216136

  3. Overexpression of angiopoietin-1 increases CD133+/c-kit+ cells and reduces myocardial apoptosis in db/db mouse infarcted hearts.

    PubMed

    Zeng, Heng; Li, Lanfang; Chen, Jian-Xiong

    2012-01-01

    Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts. PMID:22558265

  4. Protective Effects of Crocin on Ischemia-reperfusion Induced Oxidative Stress in Comparison With Vitamin E in Isolated Rat Hearts

    PubMed Central

    Dianat, Mahin; Esmaeilizadeh, Mahdi; Badavi, Mohammad; Samarbaf-zadeh, Ali Reza; Naghizadeh, Bahareh

    2014-01-01

    Background: Myocardial Injury caused by ischemia-reperfusion leads to cardiac dysfunction, tissue injury and metabolic changes. The production of reactive oxygen species (ROS) and lipid peroxidation are accompanied by ischemia-reperfusion injury. Objectives: The aim of this study was to assess the cardio protective potential effects of crocin in comparison with vitamin E on antioxidant capacity in ischemia-reperfusion of isolated rat hearts. Materials and Methods: Seventy male Sprague-Dawley rats were randomly divided into seven groups, including: sham, control and experimental groups treated with different doses of crocin (10, 20 and 40 mg/kg) or vitamin E (100 mg/kg) and a combination of crocin (40 mg/kg) with vitamin E (100 mg/kg) that were administrated orally for 21 days. The heart was quickly excised, transferred to a Langendorff apparatus at constant pressure and subjected to 30 minutes of global ischemia followed by 60 minutes of reperfusion. Cardiac damage markers and antioxidant enzymes were measured. Results: The results showed that superoxide dismutase and catalase enzyme activities increased and Mallon de aldehyde (MDA) decreased in animals pretreated by crocin (40 mg/kg) and vitamin E (100 mg/kg). Moreover, there was a significant improvement in post ischemic recovery of antioxidant capacity during reperfusion in rats receiving a combination of crocin (40 mg/kg) and vitamin E (100 mg/kg). Conclusions: The results demonstrated the protective role of crocin on antioxidant capacity, which may partially be related to stability or amplification of antioxidant systems. Like vitamin E, crocin may be beneficial for prevention or treatment of cardiac dysfunction and myocardial infarction in patients with ischemic heart disease. PMID:24872945

  5. S100A1 transgenic treatment of acute heart failure causes proteomic changes in rats.

    PubMed

    Guo, Yichen; Cui, Lianqun; Jiang, Shiliang; Wang, Dongmei; Jiang, Shu; Xie, Chen; Jia, Yanping

    2016-08-01

    S100 Ca2+-binding protein A1 (S100A1) is an important regulator of myocardial contractility. The aim of the present study was to identify the underlying mechanisms of S100A1 activity via profiling the protein expression in rats administered with an S100A1 adenovirus (Ad‑S100A1‑EGFP) following acute myocardial infarction (AMI). LTQ OrbiTrap mass spectrometry was used to profile the protein expression in the Ad‑S100A1‑EGFP and control groups post‑AMI. Using Protein Analysis Through Evolutionary Relationships (PANTHER) analysis, 134 energy metabolism‑associated proteins, which comprised 20 carbohydrate metabolism‑associated and 27 lipid metabolism associated proteins, were identified as differentially expressed in the Ad‑S100A1‑EGFP hearts compared with controls. The majority of the differentially expressed proteins identified were important enzymes involved in energy metabolism. The present study identified 12 Ca2+‑binding proteins and 22 cytoskeletal proteins. The majority of the proteins expressed in the Ad‑S100A1‑EGFP group were upregulated compared with the control group. These results were further validated using western blot analysis. Following AMI, Ca2+ is crucial for the recovery of myocardial function in S100A1 transgenic rats as indicated by the upregulation of proteins associated with energy metabolism and Ca2+‑binding. Thus, the current study ascertained that energy production and contractile ability were enhanced after AMI in the ventricular myocardium of the Ad‑S100A1‑EGFP group. PMID:27357314

  6. S100A1 transgenic treatment of acute heart failure causes proteomic changes in rats

    PubMed Central

    Guo, Yichen; Cui, Lianqun; Jiang, Shiliang; Wang, Dongmei; Jiang, Shu; Xie, Chen; Jia, Yanping

    2016-01-01

    S100 Ca2+-binding protein A1 (S100A1) is an important regulator of myocardial contractility. The aim of the present study was to identify the underlying mechanisms of S100A1 activity via profiling the protein expression in rats administered with an S100A1 adenovirus (Ad-S100A1-EGFP) following acute myocardial infarction (AMI). LTQ OrbiTrap mass spectrometry was used to profile the protein expression in the Ad-S100A1-EGFP and control groups post-AMI. Using Protein Analysis Through Evolutionary Relationships (PANTHER) analysis, 134 energy metabolism-associated proteins, which comprised 20 carbohydrate metabolism-associated and 27 lipid metabolism associated proteins, were identified as differentially expressed in the Ad-S100A1-EGFP hearts compared with controls. The majority of the differentially expressed proteins identified were important enzymes involved in energy metabolism. The present study identified 12 Ca2+-binding proteins and 22 cytoskeletal proteins. The majority of the proteins expressed in the Ad-S100A1-EGFP group were upregulated compared with the control group. These results were further validated using western blot analysis. Following AMI, Ca2+ is crucial for the recovery of myocardial function in S100A1 transgenic rats as indicated by the upregulation of proteins associated with energy metabolism and Ca2+-binding. Thus, the current study ascertained that energy production and contractile ability were enhanced after AMI in the ventricular myocardium of the Ad-S100A1-EGFP group. PMID:27357314

  7. Cardiomyocyte and Vascular Smooth Muscle-Independent 11β-Hydroxysteroid Dehydrogenase 1 Amplifies Infarct Expansion, Hypertrophy, and the Development of Heart Failure After Myocardial Infarction in Male Mice

    PubMed Central

    White, Christopher I.; Jansen, Maurits A.; McGregor, Kieran; Mylonas, Katie J.; Richardson, Rachel V.; Thomson, Adrian; Moran, Carmel M.; Seckl, Jonathan R.; Walker, Brian R.; Chapman, Karen E.

    2016-01-01

    Global deficiency of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), an enzyme that regenerates glucocorticoids within cells, promotes angiogenesis, and reduces acute infarct expansion after myocardial infarction (MI), suggesting that 11β-HSD1 activity has an adverse influence on wound healing in the heart after MI. The present study investigated whether 11β-HSD1 deficiency could prevent the development of heart failure after MI and examined whether 11β-HSD1 deficiency in cardiomyocytes and vascular smooth muscle cells confers this protection. Male mice with global deficiency in 11β-HSD1, or with Hsd11b1 disruption in cardiac and vascular smooth muscle (via SM22α-Cre recombinase), underwent coronary artery ligation for induction of MI. Acute injury was equivalent in all groups. However, by 8 weeks after induction of MI, relative to C57Bl/6 wild type, globally 11β-HSD1-deficient mice had reduced infarct size (34.7 ± 2.1% left ventricle [LV] vs 44.0 ± 3.3% LV, P = .02), improved function (ejection fraction, 33.5 ± 2.5% vs 24.7 ± 2.5%, P = .03) and reduced ventricular dilation (LV end-diastolic volume, 0.17 ± 0.01 vs 0.21 ± 0.01 mL, P = .01). This was accompanied by a reduction in hypertrophy, pulmonary edema, and in the expression of genes encoding atrial natriuretic peptide and β-myosin heavy chain. None of these outcomes, nor promotion of periinfarct angiogenesis during infarct repair, were recapitulated when 11β-HSD1 deficiency was restricted to cardiac and vascular smooth muscle. 11β-HSD1 expressed in cells other than cardiomyocytes or vascular smooth muscle limits angiogenesis and promotes infarct expansion with adverse ventricular remodeling after MI. Early pharmacological inhibition of 11β-HSD1 may offer a new therapeutic approach to prevent heart failure associated with ischemic heart disease. PMID:26465199

  8. The Cardioprotective Actions of Hydrogen Sulfide in Acute Myocardial Infarction and Heart Failure

    PubMed Central

    Polhemus, David J.; Calvert, John W.; Butler, Javed; Lefer, David J.

    2014-01-01

    It has now become universally accepted that hydrogen sulfide (H2S), previously considered only as a lethal toxin, has robust cytoprotective actions in multiple organ systems. The diverse signaling profile of H2S impacts multiple pathways to exert cytoprotective actions in a number of pathological states. This paper will review the recently described cardioprotective actions of hydrogen sulfide in both myocardial ischemia/reperfusion injury and congestive heart failure. PMID:25045576

  9. A novel highly selective adenosine A1 receptor agonist VCP28 reduces ischemia injury in a cardiac cell line and ischemia-reperfusion injury in isolated rat hearts at concentrations that do not affect heart rate.

    PubMed

    Urmaliya, Vijay B; Pouton, Colin W; Devine, Shane M; Haynes, John M; Warfe, Lyndon; Scammells, Peter J; White, Paul J

    2010-09-01

    The cardioprotective effects of a novel adenosine A1 receptor agonist N6-(2,2,5,5-tetramethylpyrrolidin-1-yloxyl-3-ylmethyl) adenosine (VCP28) were compared with the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) in a H9c2(2-1) cardiac cell line-simulated ischemia (SI) model (12 hours) and a global ischemia (30 minutes) and reperfusion (60 minutes) model in isolated rat heart model. H9c2(2-1) cells were treated with CPA and VCP28 at the start of ischemia for entire ischemic duration, whereas isolated rat hearts were treated at the onset of reperfusion for 15 minutes. In the H9c2(2-1) cells SI model, CPA and VCP28 (100 nM) significantly (P < 0.05, n = 5-6) reduced the proportion of nonviable cells (30.88% +/- 2.49% and 16.17% +/- 3.77% of SI group, respectively) and lactate dehydrogenase efflux. In isolated rat hearts, CPA and VCP28 significantly (n = 6-8, P < 0.05) improved post-ischemic contractility (dP/dt(max), 81.69% +/- 10.96%, 91.07% +/- 19.87% of baseline, respectively), left ventricular developed pressure, and end diastolic pressure and reduced infarct size. The adenosine A1 receptor antagonist abolished the cardioprotective effects of CPA and VCP28 in SI model and isolated rat hearts. In conclusion, the adenosine A1 receptor agonist VCP28 has equal cardioprotective effects to the prototype A1 agonist CPA at concentrations that have no effect on heart rate. PMID:20571427

  10. Cardioprotective Effects of Total Flavonoids Extracted from Xinjiang Sprig Rosa rugosa against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart.

    PubMed

    Hou, Xuejiao; Han, Jichun; Yuan, Changsheng; Ren, Huanhuan; Zhang, Ya; Zhang, Tao; Xu, Lixia; Zheng, Qiusheng; Chen, Wen

    2016-01-01

    This study evaluated the antioxidative and cardioprotective effects of total flavonoids extracted from Xinjiang sprig Rosa rugosa on ischemia/reperfusion (I/R) injury using an isolated Langendorff rat heart model. The possible mechanism of Xinjiang sprig rose total flavonoid (XSRTF) against I/R injury was also studied. XSRTF (5, 10, and 20 µg/mL) dissolved in Krebs-Henseleit buffer was administered to isolated rat heart. The XSRTF showed remarkable scavenging effects against 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and superoxide anion radicals in vitro. XSRTF pretreatment improved the heart rate, increased LVDP, and decreased CK and LDH levels in coronary flow. This pretreatment also increased SOD activity and GSH/GSSG ratio but decreased MDA, TNF-α, and CRP levels and IL-8 and IL-6 activities. The infarct size and cell apoptosis in the hearts from the XSRTF-treated group were lower than those in the hearts from the I/R group. Therefore, the cardioprotective effects of XSRTF may be attributed to its antioxidant, antiapoptotic, and anti-inflammatory activities. PMID:25617974

  11. Calcium Activation Profile In Electrically Stimulated Intact Rat Heart Cells

    NASA Astrophysics Data System (ADS)

    Geerts, Hugo; Nuydens, Rony; Ver Donck, Luc; Nuyens, Roger; De Brabander, Marc; Borgers, Marcel

    1988-06-01

    Recent advances in fluorescent probe technology and image processing equipment have made available the measurement of calcium in living systems on a real-time basis. We present the use of the calcium indicator Fura-2 in intact normally stimulated rat heart cells for the spatial and dynamic measurement of the calcium excitation profile. After electric stimulation (1 Hz), the activation proceeds from the center of the myocyte toward the periphery. Within two frame times (80 ms), the whole cell is activated. The activation is slightly faster in the center of the cell than in the periphery. The mean recovery time is 200-400 ms. There is no difference along the cell's long axis. The effect of a beta-agonist and of a calcium antagonist is described.

  12. Evaluation of General Toxicity, Anti-Oxidant Activity and Effects of Ficus Carica Leaves Extract on Ischemia/Reperfusion Injuries in Isolated Heart of Rat

    PubMed Central

    Allahyari, Saeideh; Delazar, Abbas; Najafi, Moslem

    2014-01-01

    Purpose: This study was aimed to evaluate general toxicity, anti-oxidant activity and effects of Ficus carica leaves extract on ischemia/reperfusion injuries. Methods: Antioxidant activity, total phenolic and flavonoid compounds of 70% methanolic extract of Ficus carica leaves were measured. The general toxicity test was carried out by brine shrimp lethality assay. Isolated hearts of male rats were mounted on a Langendorff apparatus and perfused with modified Krebs-Henseleit solution. In control group, the hearts were perfused with normal Krebs solution, however, treatment groups received enriched solution with the extract (0.04, 0.2 and 1 mg/ml) during stabilization and reperfusion (after 30 min global ischemia), respectively. Cardiac arrhythmias were analyzed and TTC method was used for infarct size determination. Results: The extract displayed antioxidant activity in the DPPH assay (RC50=0.06666 mg/ml). Total phenolic content was 12.29 mg GAE/100 g dry sample and the amount of flavonoids was calculated 40.729 mg/g. LD50 value by brine shrimp test was 0.158 mg/ml. The extract decreased number of VEBs, incidence and duration of Rev VF with clear reduction in infarct size and infarct volume (P<0.001). Conclusion: Ficus carica decreased ischemia/reperfusion-induced injuries. These protections are probably due to antioxidant capacity and the existence of flavonoid and phenolic compounds in the extract. PMID:25671192

  13. Resistance to Reperfusion Injury Following Short Term Postischemic Administration of Natural Honey in Globally Ischemic Isolated Rat Heart

    PubMed Central

    Vaez, Haleh; Samadzadeh, Mehrban; Zahednezhad, Fahimeh; Najafi, Moslem

    2012-01-01

    Purpose: Results of our previous study revealed that preischemic perfusion of honey before zero flow global ischemia had cardioprotective effects in rat. The present study investigated potential resistance to reperfusion injury following short term postischemic administration of natural honey in globally ischemic isolated rat heart. Methods: Male Wistar rats were divided into five groups (n=10-13). The rat hearts were isolated, mounted on a Langendorff apparatus, allowed to equilibrate for 30 min then subjected to 30 min global ischemia. In the control group, the hearts were reperfused with drug free normal Krebs-Henseleit (K/H) solution before ischemia and during 120 min reperfusion. In the treatment groups, reperfusion was initiated with K/H solution containing different concentration of honey (0.25, 0.5, 1 and 2%) for 15 min and was resumed until the end of 120 min with normal K/H solution. Results: In the control group, VEBs number was 784±199, while in honey concentration of 0.25, 0.5, 1 and 2%, it decreased to 83±23 (P<0.001), 138±48 (P<0.01), 142±37 (P<0.001) and 157±40 (P<0.01), respectively. Number and duration of VT and time spent in reversible VF were also reduced by honey. In the control group, the infarct size was 54.1±7.8%, however; honey (0.25, 0.5, 1 and 2%) markedly lowered the value to 12.4±2.4, 12.7±3.3, 11.3±2.6 and 7.9±1.7 (P<0.001), respectively. Conclusion: Postischemic administration of natural honey in global ischemia showed protective effects against ischemia/reperfusion (I/R) injuries in isolated rat heart. Antioxidant and radical scavenging activity, lipoperoxidation inhibition, reduction of necrotized tissue, presence of rich energy sources, various type of vitamins, minerals and enzymes and formation of NO-contain metabolites may probably involve in those cardioprotective effects. PMID:24312792

  14. Effect of Acute Mental Stress on Heart Rate and QT Variability in Postmyocardial Infarction Patients

    PubMed Central

    Magrì, Damiano; Piccirillo, Gianfranco; Quaglione, Raffaele; Dell'Armi, Annalaura; Mitra, Marilena; Velitti, Stefania; Di Barba, Daniele; Lizio, Andrea; Maisto, Damiana; Barillà, Francesco

    2012-01-01

    Emotionally charged events are associated with an increased risk of sudden cardiac death (SCD). In this study we assessed RR and QT variability index (QTVI) at baseline during anger recall test (AR). We calculated QTVI from a 5-min ECG recording and from a 10-beats segment around the presumed maximum sympathetic activation in thirty post-myocardial infarction patients under β-blocker therapy and 10 controls underwent. In all groups, the low-frequency component of RR and SBP increased during AR. In all recordings, the QTVI calculated on a 5-min ECG recording and the QTVI10 beats were higher in patients than in controls (P < 0.05). The QTVI during AR remained unchanged from baseline within each group. Conversely, during AR, the QTVI10 beats in controls diminished significantly (P < 0.05) from baseline whereas in patients remained unchanged. The inability to buffer an acute stress-induced increase in sympathetic activity could explain why events charged with acute stress are associated with an increased risk of ventricular arrhythmias in this setting of patients and support the role of cognitive behavior stress management strategies. PMID:22844616

  15. Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure.

    PubMed

    Pinto, Tomás O C Teixeira; Lataro, Renata M; Castania, Jaci A; Durand, Marina T; Silva, Carlos A A; Patel, Kaushik P; Fazan, Rubens; Salgado, Helio C

    2016-04-01

    Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12-13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective β1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control (n = 12) and CHF (n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive. PMID:26843582

  16. Respiratory control and substrate effects in the working rat heart.

    PubMed Central

    Jeffrey, F M; Malloy, C R

    1992-01-01

    31P n.m.r. spectroscopy was used to measure the concentration of phosphates commonly proposed to control oxidative phosphorylation. The effect of loading conditions, beta-adrenergic stimulation and different substrates (acetate, pyruvate or glucose) was examined under steady-state conditions in the isolated working rat heart. Oxygen consumption and haemodynamic variables were monitored continuously. In response to a 2-fold increase in afterload, there were no significant changes in [ADP], [ATP]/[ADP], or [ATP]/[ADP][Pi]. In the presence of isoprenaline, these variables also tended not to change from afterload. However, isoprenaline, at identical perfusion pressures, consistently decreased the phosphorylation potential and [ATP]/[ADP], but had little effect on [ADP]. Substrates altered the phosphate metabolites in a manner independent of oxygen consumption, and had only minor effects on the relationship between phosphates and work, in contrast with other studies. Thus, metabolites of ATP synthesis are not normally involved in respiratory control. The 31P n.m.r. spectrum can vary greatly, but does not predict oxygen consumption in this preparation. Substrates have no effect on the mechanism of respiratory control. Thus the normal control of respiration in the heart at steady state cannot occur at the level of its substrates. Rather, there must be concerted regulation of the numerous pathways, involving allostery and covalent modification. The attention of future research should be shifted away from the metabolites of ATP and towards identifying the effectors of such regulation. PMID:1417763

  17. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) Improve Heart Function in Swine Myocardial Infarction Model through Paracrine Effects

    PubMed Central

    Cai, Min; Shen, Rui; Song, Lei; Lu, Minjie; Wang, Jianguang; Zhao, Shihua; Tang, Yue; Meng, Xianmin; Li, Zongjin; He, Zuo-Xiang

    2016-01-01

    Stem cells are promising for the treatment of myocardial infarction (MI) and large animal models should be used to better understand the full spectrum of stem cell actions and preclinical evidences. In this study, bone marrow mesenchymal stem cells (BM-MSCs) were transplanted into swine heart ischemia model. To detect glucose metabolism in global left ventricular myocardium and regional myocardium, combined with assessment of cardiac function, positron emission tomography-computer tomography (PET-CT) and magnetic resonance imaging (MRI) were performed. To study the changes of glucose transporters and glucose metabolism-related enzymes and the signal transduction pathway, RT-PCR, Western-blot, and immunohistochemistry were carried out. Myocardium metabolic evaluation by PET-CT showed that mean signal intensity (MSI) increased in these segments at week 4 compared with that at week 1 after BM-MSCs transplantation. Moreover, MRI demonstrated significant function enhancement in BM-MSCs group. The gene expressions of glucose transporters (GLUT1, GLUT4), glucose metabolism-related enzymes phosphofructokinase (PFK), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) and 70-kDa ribosomal protein S6 kinase (p70s6k) in BM-MSCs injected areas were up-regulated at week 4 after BM-MSCs transplantation and this was confirmed by Western-blot and immunohistochemistry. In conclusions, BM-MSCs transplantation could improve cardiac function in swine MI model by activation of mTOR signal transduction pathway. PMID:27321050

  18. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart

    PubMed Central

    Singla, Dinender; Wang, Jing

    2016-01-01

    We hypothesized that fibroblast growth factor-9 (FGF-9) would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p < 0.05). Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p < 0.05). Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p < 0.05). Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p < 0.05). Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function. PMID:26682010

  19. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) Improve Heart Function in Swine Myocardial Infarction Model through Paracrine Effects.

    PubMed

    Cai, Min; Shen, Rui; Song, Lei; Lu, Minjie; Wang, Jianguang; Zhao, Shihua; Tang, Yue; Meng, Xianmin; Li, Zongjin; He, Zuo-Xiang

    2016-01-01

    Stem cells are promising for the treatment of myocardial infarction (MI) and large animal models should be used to better understand the full spectrum of stem cell actions and preclinical evidences. In this study, bone marrow mesenchymal stem cells (BM-MSCs) were transplanted into swine heart ischemia model. To detect glucose metabolism in global left ventricular myocardium and regional myocardium, combined with assessment of cardiac function, positron emission tomography-computer tomography (PET-CT) and magnetic resonance imaging (MRI) were performed. To study the changes of glucose transporters and glucose metabolism-related enzymes and the signal transduction pathway, RT-PCR, Western-blot, and immunohistochemistry were carried out. Myocardium metabolic evaluation by PET-CT showed that mean signal intensity (MSI) increased in these segments at week 4 compared with that at week 1 after BM-MSCs transplantation. Moreover, MRI demonstrated significant function enhancement in BM-MSCs group. The gene expressions of glucose transporters (GLUT1, GLUT4), glucose metabolism-related enzymes phosphofructokinase (PFK), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) and 70-kDa ribosomal protein S6 kinase (p70s6k) in BM-MSCs injected areas were up-regulated at week 4 after BM-MSCs transplantation and this was confirmed by Western-blot and immunohistochemistry. In conclusions, BM-MSCs transplantation could improve cardiac function in swine MI model by activation of mTOR signal transduction pathway. PMID:27321050

  20. Rehabilitative Training Promotes Rapid Motor Recovery but Delayed Motor Map Reorganization in a Rat Cortical Ischemic Infarct Model

    PubMed Central

    Nishibe, Mariko; Urban, Edward T.R.; Barbay, Scott; Nudo, Randolph J.

    2014-01-01

    Background In preclinical stroke models, improvement in motor performance is associated with reorganization of cortical motor maps. However, the temporal relationship between performance gains and map plasticity is not clear. Objective This study was designed to assess the effects of rehabilitative training on the temporal dynamics of behavioral and neurophysiological endpoints in a rat model of focal cortical infarct. Methods Eight days after an ischemic infarct in primary motor cortex, adult rats received either rehabilitative training or were allowed to recover spontaneously. Motor performance and movement quality of the paretic forelimb was assessed on a skilled reach task. Intracortical microstimulation mapping procedures were conducted to assess the topography of spared forelimb representations either at the end of training (post-lesion day 18) or at the end of a three week follow-up period (post-lesion day 38). Results Rats receiving rehabilitative training demonstrated more rapid improvement in motor performance and movement quality during the training period that persisted through the follow-up period. Motor maps in both groups were unusually small on post-lesion day 18. On post-lesion day 38, forelimb motor maps in the rehabilitative training group were significantly enlarged compared with the no-rehab group, and within the range of normal maps. Conclusions Post-infarct rehabilitative training rapidly improves motor performance and movement quality after an ischemic infarct in motor cortex. However, training-induced motor improvements are not reflected in spared motor maps until substantially later, suggesting that early motor training after stroke can help shape the evolving post-stroke neural network. PMID:25055836

  1. MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine.

    PubMed

    Moon, Hyung-Ho; Joo, Min Kyung; Mok, Hyejung; Lee, Minhyung; Hwang, Ki-Chul; Kim, Sung Wan; Jeong, Ji Hoon; Choi, Donghoon; Kim, Sun Hwa

    2014-02-01

    Mesenchymal stem cells (MSCs) have attracted much attention in regenerative medicine owing to their apparent usefulness as multi-potent replacement cells. The potential of MSC therapy can be further improved by transforming MSCs with therapeutic genes that maximize the efficacy of gene therapy and their own therapeutic ability. Since most conventional transfection methodologies have shown marginal success in delivering exogenous genes into primary cultured cells, efficient gene transfer into primary MSCs is a prerequisite for the development of MSC-based gene therapy strategies to achieve repair and regeneration of damaged tissues. Herein, facially amphipathic bile acid-modified polyethyleneimine (BA-PEI) conjugates were synthesized and used to transfer hypoxia-inducible vascular endothelial growth factor gene (pHI-VEGF) in MSCs for the treatment of rat myocardial infarction. Under the optimized transfection conditions, the BA-PEI conjugates significantly increased the VEGF protein expression levels in rat MSCs, compared with traditional transfection methods such as Lipofectamine™ and branched-PEI (25 kDa). Furthermore, the prepared pHI-VEGF-engineered MSCs (VEGF-MSCs) resulted in improved cell viability, particularly during severe hypoxic exposure in vitro. The transplantation of MSCs genetically modified to overexpress VEGF by BA-PEI enhanced the capillary formation in the infarction region and eventually attenuated left ventricular remodeling after myocardial infarction in rats. This study demonstrates the applicability of the BA-PEI conjugates for the efficient transfection of therapeutic genes into MSCs and the feasibility of using the genetically engineered MSCs in regenerative medicine for myocardial infarction. PMID:24280192

  2. Effects of quinapril on myocardial function, ventricular remodeling and cardiac cytokine expression in congestive heart failure in the rat.

    PubMed

    We, Ge Cheng; Siroi, Martin G; Qu, Rong; Liu, Peter; Roulea, Jean L

    2002-01-01

    Inflammatory cytokines have been shown to be activated in congestive heart failure (CHF). This activation is likely the result of the convergence of a number of factors, several of which could be attenuated with the use of an Angiotensin converting enzyme (ACE) inhibitor. In order to assess this, rats had a myocardial infarction (MI) created by coronary artery ligation and were followed for 28 days without treatment to permit the development of CHF. At that time, the ACE inhibitor quinapril was started, or rats remained untreated and were followed a further 56 days for a total of 84 days. Half of the untreated rats had quinapril started 3 days prior to sacrifice, on day 81. Starting quinapril at either 28 or 81 days had little effect on cardiac hemodynamics, or ventricular remodeling. Quinapril did however attenuate the MI-induced rise in cardiac cytokine expression (tumor necrosis factor-alpha [TNF-alpha], interleukin-1beta, -5 and -6). Thus, in CHF, ACE inhibitors attenuate the rise in cardiac cytokine expression. This study helps to identify a new mechanism by which ACE inhibitors may exert their beneficial effects in CHF. PMID:12085975

  3. Effect of tromethamine (THAM) on infarct volume following permanent middle cerebral artery occlusion in rats.

    PubMed

    Kiening, K L; Schneider, G H; Unterberg, A W; Lanksch, W R

    1997-01-01

    This study investigates the influence on tromethamine (THAM) on ischemic volume induced by permanent middle cerebral artery occlusion (MCAO) in rats. 14 male Sprague Dawley rats underwent left sided permanent MCAO by electro coagulation. Animals were treated either by 3-M THAM given intravenously in a single dosage of 0.6 mmol/kg body weight (THAM group: n = 7) 10 min following MCAO and again 1, 2, 3, 4 and 5 hours later or by NaCl 0.9% (placebo group: n = 7) in the same mode. Mean arterial blood pressure (MABP) was monitored for 30 min post MCAO and arterial blood gases were taken 10 min after the first injection. The extent of ischemia volume was assessed by planimetry of coronal sections stained with triphenyl-tetrazolium chloride (TTC) and with hematoxilin/eosin (HE). Tests for significance were accomplished by ANOVA on ranks. A difference of p < 0.05 was considered significant. The THAM group showed an insignificant decrease in MABP 1 min after injection (THAM: 75 +/- 11 mmHg, placebo: 86 +/- 10 mmHg). Arterial pH was significantly different (THAM: 7.46 +/- 0.04; placebo: 7.32 +/- 0.03). In TTC staining, the ischemia volume--given in absolute values and percentage of the total left volume--was significantly reduced in the THAM group (THAM: 43.9 +/- 8.3 mm3/7.0 +/- 1.3%; placebo: 95.2 +/- 13.8 mm3/14.2 +/- 2.0%). In HE staining, the reduction of ischemia, volume did not reach statistical significance (THAM: 49.1 +/- 9.9 mm3/9.6 +/- 1.8%; placebo: 66.3 +/- 14.5 mm3/13.1 +/- 2.8%). Based on these results, a moderate neuroprotective effect of THAM in experimental cerebral infarction could be demonstrated. PMID:9416318

  4. Correlation between echocardiographic endocardial surface mapping of abnormal wall motion and pathologic infarct size in autopsied hearts.

    PubMed

    Wilkins, G T; Southern, J F; Choong, C Y; Thomas, J D; Fallon, J T; Guyer, D E; Weyman, A E

    1988-05-01

    We previously developed a cross-sectional echocardiographic technique for quantitatively mapping the endocardial surface of the left ventricle and on which regions of abnormal wall motion can be superimposed in their correct spatial distribution. This endocardial mapping technique (EMT) provides a measure of the left ventricular endocardial surface area (ESA in cm2), the area of abnormal wall motion (AWM in cm2), and the overall percent dysfunction (%AWM) as a measure of the functional "infarct size." To test this approach, we compared the EMT measurements with the actual endocardial surface area (in cm2) and pathologic infarct size (both percent infarct by volume and percent endocardial surface overlying infarct) measured at later autopsy in 20 adults (14 men, six women) ranging in age from 47 to 76 years (mean 64 +/- 9.6 years). The median interval from echocardiographic study to death was 19 days (range 1 to 269 days). Patients were divided into two groups based on the age of their infarcts at the time of death: (1) recent (infarct age less than 14 days; mean age 5.3 +/- 4.6 days) and (2) old (infarct age greater than 6 months; mean age 3.6 +/- 3 years). When the left ventricular endocardial surface area at autopsy was compared with the EMT-derived ESA, a close correlation was found (EMT area = 1.17 X autopsy area + 20.4; r = .94, p = .0001), with the systematic difference in the measurements accounted for by systolic arrest, loss of distending pressure, and specimen shrinkage. The echocardiographic measure of infarct size (%AWM) correlated well with the autopsy percent infarction by volume (%AWM = 1.1 X infarct volume + 5.5; r = .82, p = .0001). Similarly, a good correlation was found for the percent abnormal wall motion and the autopsy percent endocardial surface area overlying infarction (%AWM = 0.89 X infarct area - 0.9; r = .89, p = .0001). When the data were examined in relation to the age of the myocardial infarct, the echocardiographic %AWM appeared to

  5. Hospital admissions of hypertension, angina, myocardial infarction and ischemic heart disease peaked at physiologically equivalent temperature 0°C in Germany in 2009-2011.

    PubMed

    Shiue, Ivy; Perkins, David R; Bearman, Nick

    2016-01-01

    We aimed to understand and to provide evidence on relationships of the weather as biometeorological and hospital admissions due to hypertension, angina, myocardial infarction and ischemic heart disease in a national setting in recent years that might help indicate when to expect more admissions for health professionals and the general public. This is an ecological study. Ten percent of daily hospital admissions from the included hospitals (n = 1618) across Germany that were available between 1 January 2009 and 31 December 2011 (n = 5,235,600) were extracted from Statistisches Bundesamt, Germany. We identified I11 hypertensive heart disease, I13 hypertensive heart and renal disease, I15 secondary hypertension, I20 angina pectoris, I21 acute myocardial infarction and I25 chronic ischemic heart disease by International Classification of Diseases version 10 as the study outcomes. Daily weather data from 64 weather stations that covered 13 German States including air temperature, humidity, wind speed, cloud cover, radiation flux and vapour pressure were obtained and generated into physiologically equivalent temperature (PET). Two-way fractional-polynomial prediction was plotted with 95% confidence intervals. Hospital admissions of hypertension, angina, myocardial infarction, heart disease peaked in winter and early spring when PETs were around 0°C. Admissions had an apparent drop when PETs reached 10°C. More medical resources could have been needed on days when PETs were around 0°C than on other days. While adaptation to such weather change for health professionals and the general public would seem to be imperative, future research with a longitudinal monitoring would still be needed. PMID:26286805

  6. Cordycepin, 3'-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3β/p70S6K signaling pathway and HO-1 expression.

    PubMed

    Park, Eun-Seok; Kang, Do-Hyun; Yang, Min-Kyu; Kang, Jun Chul; Jang, Yong Chang; Park, Jong Seok; Kim, Si-Kwan; Shin, Hwa-Sup

    2014-03-01

    Cordycepin (3'-deoxyadenosine) isolated from Cordyceps militaris, a species of the fungal genus Cordyceps, has been shown to exhibit many pharmacological functions, such as anticancer, anti-inflammatory, and antioxidant activities. In this study, we investigated the preventive role of cordycepin in ischemic/reperfusion (I/R) injury of isolated rat hearts and anesthetized rats. After Sprague-Dawley rats received cordycepin (3, 10, and 30 mg/kg) or control (0.5 % carboxyl methylcellulose) orally once a day for a week, hearts were isolated and mounted on Langendorff heart perfusion system. Isolated hearts were perfused with Krebs-Henseleit buffer for 15-min pre-ischemic stabilization period and subjected to 30-min global ischemia and 30-min reperfusion. Cordycepin administration (10 mg/kg, p.o.) significantly increased left ventricular developed pressure during the reperfusion period compared to that in the control group, but without any effect on coronary flow. Cordycepin (10 mg/kg, p.o.) significantly increased the phosphorylation of Akt/GSK-3β/p70S6K pathways, which are known to modulate multiple survival pathways. In addition, cordycepin decreased Bax and cleaved caspase-3 expression while increasing Bcl-2 expression, Bcl-2/Bax ratio, and heme oxygenase (HO-1) expression in isolated rat hearts. In anesthetized rats subjected to 30 min occlusion of left anterior descending coronary artery/2.5-h reperfusion, cordycepin (1, 3, and 10 mg/kg, i.v.) administered 15 min before the onset of ischemia dose-dependently decreased the infarct size in left ventricle. In conclusion, cordycepin could be an attractive therapeutic candidate with oral activity against I/R-associated heart diseases such as myocardial infarction. PMID:24178833

  7. Effects of thyroid state on respiration of perfused rat and guinea pig hearts

    SciTech Connect

    Read, L.C.; Wallace, P.G.; Berry, M.N. )

    1987-09-01

    The effects of thyroid state on the respiration of the isolated heart were investigated using retrograde perfused rat and guinea pig hearts. In both species, hypothyroidism caused a marked depression in circulating thyroid hormone concentrations and in the respiration of the isolated, retrograde perfused heart. Hypothyroidism was caused by injecting animals with Na{sup 131}I. The effects on myocardial respiration could be attributed to changes in the contraction frequency and in the oxygen consumption per beat, with little contribution from basal respiration. Treatment of animals with thyroxine elevated plasma thyroid hormones to a similar extent in rats and guinea pigs. In the latter, thyroxine treatment was associated with substantial increases in the contraction frequency and the oxygen consumption per beat of the isolated heart. In contrast, only small changes were apparent in the retrograde perfused rat heart, observations that were confirmed in rat hearts perfused at near physiological work loads. It was concluded that rat hearts isolated from normal animals function at near maximal thyroid state, in contrast to the guinea pig heart, which requires higher circulating concentrations of thyroid hormones to attain maximal responses.

  8. 31P-NMR analysis of congestive heart failure in the SHHF/Mcc-facp rat heart.

    PubMed

    Michael O'Donnell, J; Narayan, P; Bailey, M Q; Abduljalil, A M; Altschuld, R A; McCune, S A; Robitaille, P M

    1998-02-01

    31P-NMR was used to monitor myocardial bioenergetics in compensated and failing SHHF/MCC-fa(cp) (SHF) rat hearts. The SHHF/Mcc-fa(cp) (spontaneous hypertension and heart failure) rat is a relatively new genetic model in which all individuals spontaneously develop congestive heart failure, most during the second year of life. Failing SHF rat hearts displayed a pronounced decrease in resting PCr:ATP ratios (P<0.001), which was explained by a significant (P<0. 0001) drop in total creatine (47.2+/-3.1 nmol/mg protein) v age matched controls (106+/-3 nmol/mg protein). In end stage failure, NMR determined PCr was 2.9+/-0.1 micro mol/g wet weight under basal conditions. In contrast, 6- and 20-month-old controls and compensated SHFs had PCr values of 5.3+/-0.1, and 5.1+/-0.5 and 5. 1+/-0.2 micro mol/g wet weight. Both compensated and failing SHF hearts were metabolically compromised when the rate pressure product (RPP) was increased, as evidenced by an increase in Pi and a drop in PCr. Compensated SHF hearts, however, were able to increase rate pressure products (RRP, mmHg X beats/min) from 44.5+/-1.4 to 66.6+/-3. 4 K with dobutamine infusion, whereas hearts in end-stage failure were able to increase their RPP from baseline values of 27+/-4 K to only 37+/-7 K. The data indicate that a pronounced decline in PCr and total creatine signals the transition from compensatory hypertrophy to decompensation and failure in the SHF rat model of hypertensive cardiomyopathy. PMID:9515000

  9. Genome-Wide Association Study for Incident Myocardial Infarction and Coronary Heart Disease in Prospective Cohort Studies: The CHARGE Consortium

    PubMed Central

    Cupples, L. Adrienne; Trompet, Stella; Chasman, Daniel I.; Lumley, Thomas; Völker, Uwe; Buckley, Brendan M.; Ding, Jingzhong; Jensen, Majken K.; Folsom, Aaron R.; Kritchevsky, Stephen B.; Girman, Cynthia J.; Ford, Ian; Dörr, Marcus; Salomaa, Veikko; Uitterlinden, André G.; Eiriksdottir, Gudny; Vasan, Ramachandran S.; Franceschini, Nora; Carty, Cara L.; Virtamo, Jarmo; Demissie, Serkalem; Amouyel, Philippe; Arveiler, Dominique; Heckbert, Susan R.; Ferrières, Jean; Ducimetière, Pierre; Smith, Nicholas L.; Wang, Ying A.; Siscovick, David S.; Rice, Kenneth M.; Wiklund, Per-Gunnar; Taylor, Kent D.; Evans, Alun; Kee, Frank; Rotter, Jerome I.; Karvanen, Juha; Kuulasmaa, Kari; Heiss, Gerardo; Kraft, Peter; Launer, Lenore J.; Hofman, Albert; Markus, Marcello R. P.; Rose, Lynda M.; Silander, Kaisa; Wagner, Peter; Benjamin, Emelia J.; Lohman, Kurt; Stott, David J.; Rivadeneira, Fernando; Harris, Tamara B.; Levy, Daniel; Liu, Yongmei; Rimm, Eric B.; Jukema, J. Wouter; Völzke, Henry; Ridker, Paul M.; Blankenberg, Stefan; Franco, Oscar H.; Gudnason, Vilmundur; Psaty, Bruce M.; Boerwinkle, Eric; O'Donnell, Christopher J.

    2016-01-01

    Background Data are limited on genome-wide association studies (GWAS) for incident coronary heart disease (CHD). Moreover, it is not known whether genetic variants identified to date also associate with risk of CHD in a prospective setting. Methods We performed a two-stage GWAS analysis of incident myocardial infarction (MI) and CHD in a total of 64,297 individuals (including 3898 MI cases, 5465 CHD cases). SNPs that passed an arbitrary threshold of 5×10−6 in Stage I were taken to Stage II for further discovery. Furthermore, in an analysis of prognosis, we studied whether known SNPs from former GWAS were associated with total mortality in individuals who experienced MI during follow-up. Results In Stage I 15 loci passed the threshold of 5×10−6; 8 loci for MI and 8 loci for CHD, for which one locus overlapped and none were reported in previous GWAS meta-analyses. We took 60 SNPs representing these 15 loci to Stage II of discovery. Four SNPs near QKI showed nominally significant association with MI (p-value<8.8×10−3) and three exceeded the genome-wide significance threshold when Stage I and Stage II results were combined (top SNP rs6941513: p = 6.2×10−9). Despite excellent power, the 9p21 locus SNP (rs1333049) was only modestly associated with MI (HR = 1.09, p-value = 0.02) and marginally with CHD (HR = 1.06, p-value = 0.08). Among an inception cohort of those who experienced MI during follow-up, the risk allele of rs1333049 was associated with a decreased risk of subsequent mortality (HR = 0.90, p-value = 3.2×10−3). Conclusions QKI represents a novel locus that may serve as a predictor of incident CHD in prospective studies. The association of the 9p21 locus both with increased risk of first myocardial infarction and longer survival after MI highlights the importance of study design in investigating genetic determinants of complex disorders. PMID:26950853

  10. Effects of Statin Therapy on Clinical Outcomes of Survivors of Acute Myocardial Infarction with Severe Systolic Heart Failure

    PubMed Central

    Kim, Hyun Soo; Kim, Jin Bae; Kim, Woo-Shik; Kim, Kwon Sam; Jeong, Myung Ho; Kim, Weon

    2015-01-01

    Objective Large randomized trials have failed to show a beneficial effect of statin treatment in chronic HF. The investigators tried to evaluate the long-term effects of statin therapy in patients with new onset heart failure (HF) following acute myocardial infarction (AMI). Methods Between January 2008 and December 2011, a total of 13,616 AMI patients were enrolled in the Korea Acute Myocardial Infarction Registry (KAMIR) which was a prospective, multi-center, nationwide, web-based database of AMI in Korea. From this database, we studied 1,055 patients with AMI who had newly developed severe acute HF [left ventricular ejection fraction ≤ 40%] and were discharged alive. The patients were divided into two groups, a statin group (n = 756) and a no-statin group (n = 299). We investigated the one-year major adverse cardiovascular events (MACEs), including all-cause mortality, MI, and any revascularization of each group. We then performed a propensity-score matched analysis. Results In the original cohort, one-year MACEs were similar between the two groups (16.5% vs. 14.7% in the statin or no-statin groups; p = 0.47). Propensity-score matching yielded 256 pairs, and in that population we observed comparable results in terms of MACEs (18.0% vs. 12.5% in the statin or no-statin groups, p = 0.11) and mortality (5.1% vs. 3.5% in the statin or no-statin groups, p = 0.51). Cox-regression analysis revealed that statin therapy was not an independent predictor for occurrence of a MACE [Hazard ratio (HR) 1.11, 95% CI 0.79–1.57, p = 0.54] or all-cause mortality (HR 1.42, 95% CI 0.75–2.70, p = 0.28). Conclusion Statin therapy was not associated with a reduction in the long-term occurrence of MACEs or mortality in survivors of AMI with severe acute HF in this retrospective cohort study. PMID:26658751

  11. Effect of polyphenol-containing azuki bean (Vigna angularis) extract on blood pressure elevation and macrophage infiltration in the heart and kidney of spontaneously hypertensive rats.

    PubMed

    Sato, Shin; Mukai, Yuuka; Yamate, Jyoji; Kato, Jun; Kurasaki, Masaaki; Hatai, Asako; Sagai, Masaru

    2008-01-01

    1. Hypertension is a major risk factor for myocardial infarction and renal damage, and it has also been shown to have pro-inflammatory actions that increase the formation of reactive oxygen species. Macrophage infiltration has been suggested to play a role in the pathogenesis of hypertension. Azuki beans are known to contain pro-anthocyanidins, a group of polyphenolic bioflavonoids with remarkable radical-scavenging activities in vitro. Therefore, the aim of the present study was to investigate the effect of polyphenol-containing azuki bean extract (ABE) on systolic blood pressure (SBP) and macrophage infiltration in the heart and kidney of spontaneously hypertensive rats (SHR). 2. Spontaneously hypertensive rats and control normotensive Wistar-Kyoto (WKY) rats were divided into two groups fed either 0 or 0.8% ABE in their diets. Tail SBP and macrophage kinetics in the heart and kidney were examined. 3. The SBP of the SHR group was higher than that of age-matched WKY rats throughout the treatment period. After 8 weeks of treatment, the increased SBP in ABE-treated SHR was significantly less than that in untreated SHR. 4. Nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH)-stimulated superoxide (O2-) production was enhanced in the kidney and heart in SHR and WKY rats compared with levels in the absence of NADH or NADPH. The NADPH-stimulated superoxide (O2-) levels in the kidney in untreated SHR was significantly higher than that in untreated WKY rats. The (O2-) levels in ABE-treated SHR were significantly decreased compared with the untreated SHR group. 5. In immunohistochemical analyses, the number of macrophages in the heart and in the glomeruli and tubulointerstitium of the kidney was significantly higher in ABE-untreated SHR than in ABE-untreated WKY rats. Conversely, there was a significant decrease in the number of macrophages in ABE-treated SHR compared with the untreated SHR. There were significant positive

  12. α-Lipoic Acid Reduces Infarct Size and Preserves Cardiac Function in Rat Myocardial Ischemia/Reperfusion Injury through Activation of PI3K/Akt/Nrf2 Pathway

    PubMed Central

    Yi, Wei; Ma, Li; Zhao, Bijun; Cheng, Liang; Zhang, Jinzhou; Cao, Feng; Yi, Dinghua

    2013-01-01

    Background The present study investigates the effects and mechanisms of α-Lipoic acid (LA) on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in rat hearts subjected to in vivo myocardial ischemia/reperfusion (MI/R) injury. Methodology/Principal Findings Male adult rats underwent 30 minutes of ischemia followed by 3, 24, or 72 h of reperfusion. Animals were pretreated with LA or vehicle before coronary artery ligation. The level of MI/R- induced LDH and CK release, infarct size, cardiomyocyte apoptosis and cardiac functional impairment were examined and compared. Western blot analysis was performed to elucidate the mechanism of LA pretreatment. The level of inflammatory cytokine TNF-α released to serum and accumulated in injured myocardium as well as neutrophil accumulation in injured myocardium were also examined after MI/R injury. Our results reveal that LA administration significantly reduced LDH and CK release, attenuated myocardial infarct size, decreased cardiomyocytes apoptosis, and partially preserved heart function. Western blot analysis showed that LA pretreatment up-regulated Akt phosphorylation and Nrf2 nuclear translocation while producing no impact on p38MAPK activation or nitric oxide (NO) production. LA pretreatment also increased expression of HO-1, a major target of Nrf2. LA treatment inhibited neutrophil accumulation and release of TNF-α. Moreover, PI3K inhibition abolished the beneficial effects of LA. Conclusions/Significance This study indicates that LA attenuates cardiac dysfunction by reducing cardiomyoctyes necrosis, apoptosis and inflammation after MI/R. LA exerts its action by activating the PI3K/Akt pathway as well as subsequent Nrf2 nuclear translocation and induction of cytoprotective genes such as HO-1. PMID:23505496

  13. The effect of methyl-2-tetradecylglycidate (McNeil 3716) on heart mitochondrial metabolism in rats.

    PubMed

    Bachmann, E; Weber, E; Zbinden, G

    1984-06-15

    Methyl-2- tetradecylglycidate (MTG), one of a new class of hypoglycemic agents, given to healthy rats, prompted uncoupling of oxidative phosphorylation in heart mitochondria (measured ex vivo) without a concomitant effect on mitochondrial electron transfer reactions. At the same time heart creatinephosphate -kinase was inhibited and subsequently the semipermeability of the inner mitochondrial membrane was impaired as demonstrated by an influx of creatine. The triglyceride and total phospholipid content of heart tissue and its mitochondria showed a transient elevation. The hearts were enlarged, flabby and discoloured and had dilated ventricles. These effects could be the account of an adverse effect of MTG on the heart energy metabolism. PMID:6732853

  14. A Novel Technique for Image-Guided Local Heart Irradiation in the Rat

    PubMed Central

    Sharma, Sunil; Moros, Eduardo G.; Boerma, Marjan; Sridharan, Vijayalakshmi; Han, Eun Young; Clarkson, Richard; Hauer-Jensen, Martin; Corry, Peter M.

    2014-01-01

    In radiotherapy treatment of thoracic, breast and chest wall tumors, the heart may be included (partially or fully) in the radiation field. As a result, patients may develop radiation-induced heart disease (RIHD) several years after exposure to radiation. There are few methods available to prevent or reverse RIHD and the biological mechanisms remain poorly understood. In order to further study the effects of radiation on the heart, we developed a model of local heart irradiation in rats using an image-guided small animal conformal radiation therapy device (SACRTD) developed at our institution. First, Monte Carlo based simulations were used to design an appropriate collimator. EBT-2 films were used to measure relative dosimetry, and the absolute dose rate at the isocenter was measured using the AAPM protocol TG-61. The hearts of adult male Sprague-Dawley rats were irradiated with a total dose of 21 Gy. For this purpose, rats were anesthetized with isoflurane and placed in a custom-made vertical rat holder. Each heart was irradiated with a 3-beam technique (one AP field and 2 lateral fields), with each beam delivering 7 Gy. For each field, the heart was visualized with a digital flat panel X-ray imager and placed at the isocenter of the 1.8 cm diameter beam. In biological analysis of radiation exposure, immunohistochemistry showed γH2Ax foci and nitrotyrosine throughout the irradiated hearts but not in the lungs. Long-term follow-up of animals revealed histopathological manifestations of RIHD, including myocardial degeneration and fibrosis. The results demonstrate that the rat heart irradiation technique using the SACRTD was successful and that surrounding untargeted tissues were spared, making this approach a powerful tool for in vivo radiobiological studies of RIHD. Functional and structural changes in the rat heart after local irradiation are ongoing. PMID:24000983

  15. A novel technique for image-guided local heart irradiation in the rat.

    PubMed

    Sharma, Sunil; Moros, Eduardo G; Boerma, Marjan; Sridharan, Vijayalakshmi; Han, Eun Young; Clarkson, Richard; Hauer-Jensen, Martin; Corry, Peter M

    2014-12-01

    In radiotherapy treatment of thoracic, breast and chest wall tumors, the heart may be included (partially or fully) in the radiation field. As a result, patients may develop radiation-induced heart disease (RIHD) several years after exposure to radiation. There are few methods available to prevent or reverse RIHD and the biological mechanisms remain poorly understood. In order to further study the effects of radiation on the heart, we developed a model of local heart irradiation in rats using an image-guided small animal conformal radiation therapy device (SACRTD) developed at our institution. First, Monte Carlo based simulations were used to design an appropriate collimator. EBT-2 films were used to measure relative dosimetry, and the absolute dose rate at the isocenter was measured using the AAPM protocol TG-61. The hearts of adult male Sprague-Dawley rats were irradiated with a total dose of 21 Gy. For this purpose, rats were anesthetized with isoflurane and placed in a custom-made vertical rat holder. Each heart was irradiated with a 3-beam technique (one AP field and 2 lateral fields), with each beam delivering 7 Gy. For each field, the heart was visualized with a digital flat panel X-ray imager and placed at the isocenter of the 1.8 cm diameter beam. In biological analysis of radiation exposure, immunohistochemistry showed γH2Ax foci and nitrotyrosine throughout the irradiated hearts but not in the lungs. Long-term follow-up of animals revealed histopathological manifestations of RIHD, including myocardial degeneration and fibrosis. The results demonstrate that the rat heart irradiation technique using the SACRTD was successful and that surrounding untargeted tissues were spared, making this approach a powerful tool for in vivo radiobiological studies of RIHD. Functional and structural changes in the rat heart after local irradiation are ongoing. PMID:24000983

  16. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats

    PubMed Central

    Opie, L. H.; Mansford, K. R. L.; Owen, Patricia

    1971-01-01

    1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (`working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [14C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and 14CO2). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue

  17. Preconditioning cortical lesions reduce the incidence of peri-infarct depolarizations during focal ischemia in the Spontaneously Hypertensive Rat: interaction with prior anesthesia and the impact of hyperglycemia

    PubMed Central

    Zhao, Liang; Nowak Jr, Thaddeus S

    2015-01-01

    The relationship between peri-infarct depolarizations (PIDs) and infarction was investigated in a model of preconditioning by cortical freeze lesions (cryogenic lesions, CL) in the Spontaneously Hypertensive Rat. Small (< 5 mm3) lesions produced 24 hours before permanent focal ischemia were protective, without impacting baseline cerebral blood flow (CBF) and metabolism. Prior CL reduced infarct volume, associated with improved penumbral CBF as previously showed for ischemic preconditioning. The brief initial procedure avoided sham effects on infarct volume after subsequent occlusion under brief anesthesia. However, under prolonged isoflurane anesthesia for perfusion monitoring both sham and CL rats showed reduced PID incidence relative to naive animals. This anesthesia effect could be eliminated by using α-chloralose during perfusion imaging. As an additional methodological concern, blood glucose was frequently elevated at the time of the second surgery, reflecting buprenorphine-induced pica and other undefined mechanisms. Even modest hyperglycemia (>10 mmol/L) reduced PID incidence. In normoglycemic animals CL preconditioning reduced PID number by 50%, demonstrating associated effects on PID incidence, penumbral perfusion, and infarct progression. Hyperglycemia suppressed PIDs without affecting the relationship between CBF and infarction. This suggests that the primary effect of preconditioning is to improve penumbral perfusion, which in turn impacts PID incidence and infarct size. PMID:25757750

  18. Preconditioning cortical lesions reduce the incidence of peri-infarct depolarizations during focal ischemia in the Spontaneously Hypertensive Rat: interaction with prior anesthesia and the impact of hyperglycemia.

    PubMed

    Zhao, Liang; Nowak, Thaddeus S

    2015-07-01

    The relationship between peri-infarct depolarizations (PIDs) and infarction was investigated in a model of preconditioning by cortical freeze lesions (cryogenic lesions, CL) in the Spontaneously Hypertensive Rat. Small (< 5 mm(3)) lesions produced 24 hours before permanent focal ischemia were protective, without impacting baseline cerebral blood flow (CBF) and metabolism. Prior CL reduced infarct volume, associated with improved penumbral CBF as previously showed for ischemic preconditioning. The brief initial procedure avoided sham effects on infarct volume after subsequent occlusion under brief anesthesia. However, under prolonged isoflurane anesthesia for perfusion monitoring both sham and CL rats showed reduced PID incidence relative to naive animals. This anesthesia effect could be eliminated by using α-chloralose during perfusion imaging. As an additional methodological concern, blood glucose was frequently elevated at the time of the second surgery, reflecting buprenorphine-induced pica and other undefined mechanisms. Even modest hyperglycemia (>10 mmol/L) reduced PID incidence. In normoglycemic animals CL preconditioning reduced PID number by 50%, demonstrating associated effects on PID incidence, penumbral perfusion, and infarct progression. Hyperglycemia suppressed PIDs without affecting the relationship between CBF and infarction. This suggests that the primary effect of preconditioning is to improve penumbral perfusion, which in turn impacts PID incidence and infarct size. PMID:25757750

  19. [Complex study of the rat heart at isoproterenol damage].

    PubMed

    Kapel'ko, V I; Lakomkin, V L; Lukoshkova, E V; Gramovich, V V; Vyborov, O N; Abramov, V S; Undrovinas, N A; Ermishkin, V V; Lakomkin, S V; Veselova, S P; Zhdanov, V S; Shirinskiĭ, V P

    2014-01-01

    Introduction of isoproterenol (an agonist of beta-adrenoreceptors) to rats is one of the widespread experimental models of cardiac failure. It is caused by damage of cardiomyocytes with the subsequent development of substitutive fibrosis. The purpose of the given work was the complex characteristic of cardiac function by means of invasive and noninvasive (echocardiography and impedansometry) methods of research. Isoproterenol was injected twice with a daily interval in dozes 85, 120, 150 or 180 mg/kg. Echocardiographic study of the heart in 2 weeks revealed obvious attributes of cardiac failure (left ventricular dilatation, lowered ejection fraction) in the groups which have received high cumulative dozes of isoproterenol (300-360 mg/kg). The catheterization of the left ventricle in these groups has shown raised enddiastolic pressure, decreased maximal rate of pressure development and fall, and also lowered indices of myocardial contractility and relaxability. In the groups which have received smaller isoproterenol dozes, apparent decrease in relaxability parameters (constants of isovolumic and auxovolumic relaxation) has been revealed at only slightly changed parameters of contractility. A strong correlation between echocardiographic and invasive parameters of myocardial contractility has been found. The phase analysis of the cardiac cycle has shown a lengthening of isometric phases of contraction and relaxation, as well as duration of ejection due to shortening duration of filling of both ventricles. Cardiomyocytes isolated from hearts with obvious cardiac failure responded to electrostimulation by arrhythmic contractions and also by much slowed and incomplete removal of free Ca++ from the myoplasm. Results allow to conclude that relatively smaller extent of myocardial damage is accompanied by decreased relaxability at slightly changed contractility, while at greater degree of damage both processes fail, but delay of relaxation still prevails. PMID:25102749

  20. Digitoxin improves cardiovascular autonomic control in rats with heart failure.

    PubMed

    Fardin, Núbia Mantovan; Antonio, Ednei Luiz; Montemor, Jairo Augusto Silva; da Veiga, Glaucia Luciano; Tucci, Paulo José Ferreira; Campos, Ruy R

    2016-06-01

    The effects of chronic treatment with digitoxin on arterial baroreceptor sensitivity for heart rate (HR) and renal sympathetic nerve activity (rSNA) control, cardiopulmonary reflex, and autonomic HR control in an animal model of heart failure (HF) were evaluated. Wistar rats were treated with digitoxin, which was administered in their daily feed (1 mg/kg per day) for 60 days. The following 3 experimental groups were evaluated: sham, HF, and HF treated with digitoxin (HF + DIG). We observed an increase in rSNA in the HF group (190 ± 29 pps, n = 5) compared with the sham group (98 ± 14 pps, n = 5). Digitoxin treatment prevented an increase in rSNA (98 ± 14 pps, n = 7). Therefore, arterial baroreceptor sensitivity was decreased in the HF group (-1.24 ± 0.07 bpm/mm Hg, n = 8) compared with the sham group (-2.27 ± 0.23 bpm/mm Hg, n = 6). Digitoxin did not alter arterial baroreceptor sensitivity in the HF + DIG group. Finally, the HF group showed an increased low frequency band (LFb: 23 ± 5 ms(2), n = 8) and a decreased high frequency band (HFb: 77 ± 5 ms(2), n = 8) compared with the sham group (LFb: 14 ± 3 ms(2); HFb: 86 ± 3 ms(2), n = 9); the HF+DIG group exhibited normalized parameters (LFb: 15 ± 3 ms(2); HFb: 85 ± 3 ms(2), n = 9). In conclusion, the benefits of decreasing rSNA are not directly related to improvements in peripheral cardiovascular reflexes; such occurrences are due in part to changes in the central nuclei of the brain responsible for autonomic cardiovascular control. PMID:27082032

  1. Mechanism of sphingosine-1-phosphate induced cardioprotection against I/R injury in diabetic rat heart: Possible involvement of glycogen synthase kinase 3β and mitochondrial permeability transition pore.

    PubMed

    Rana, Ajay; Sharma, Saurabh

    2016-02-01

    There is growing evidence that diabetes mellitus causes attenuation of the bioactive metabolite of membrane sphingolipids, sphingosine-1-phosphate, and this may be a key mechanism in the decreased cardioprotective effect of ischaemic preconditioning (IPC) in the diabetic heart. Thus, this study has been designed to investigate the role and pharmacological potential of sphingosine-1-phosphate in diabetic rat heart. Diabetes was produced in Wistar rats by administration of a low dose of streptozotocin (STZ) (35 mg/kg, i.p., once) and feeding a high fat diet (HFD) for 6 weeks. Isolated rat heart was subjected to 30 min ischaemia followed by 120 min of reperfusion (I/R). The heart was subjected to pre-ischaemic treatment (before ischaemia for 20 min) and pharmacological preconditioning with the S1P agonist FTY720 (0.6 μmol/L) with and without atractyloside (an mPTP opener; in the last episode of reperfusion before I/R). Myocardial infarction was assessed in terms of increase in lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), myeloperoxidase (MPO) level and infarct size (triphenyltetrazolium chloride staining). Immunohistochemistry analysis was done for assessment of tumour necrosis factor (TNF)-α and glycogen synthase kinase (GSK)-3β level in cardiac tissue. Pre-ischaemic treatment and pharmacological preconditioning with FTY720 significantly decreased I/R-induced myocardial infarction, TNF-alpha, GSK-3β level and release of LDH and CK-MB as compared to control group. The cardioprotective effect of S1P agonist was significantly attenuated by atractyloside. It may be concluded that S1P agonist FTY720 prevents the diabetic heart from ischaemic reperfusion injury, possibly through inhibition of GSK-3β and regulation of opening of mitochondrial permeability transition pore. PMID:26582369

  2. [The effect of calcium channel blockers in experimental myocardial infarct in rats].

    PubMed

    Kuzelová, M; Svec, P

    1993-06-01

    The effect of the blockers of calcium channels on the development of myocardial ischaemia in rats with an occlusion of the coronary artery was examined. An occlusion of the coronary artery was carried out in rats anaesthetized with pentobarbital by tightening the ends of the ligature freely placed under the left coronary artery - ramus interventricularis seven days prior to ligation. The ischaemia-induced changes in the R-wave and ST-segment were recorded using ECG. The occlusion of the coronary artery produced arrhythmias, a significant elevation of the ST-segment and a slight increase in the heart rate. The blockers of calcium channels with different pharmacological properties - verapamil, nifedipine and diltiazem influenced the ischaemia-induced changes with different intensity. Nifedipine (0.02 mg.kg-1, i.v., 30 min prior to occlusion), verapamil (0.2 mg.kg-1, i.v., 10 mins prior to ischaemia), and diltiazem (0.3 mg.kg-1, i.v., 10 mins prior to ischemia) significantly reduced the increased elevation of the ST-segment. The highest effect on the above-mentioned model was shown by verapamil. PMID:8402964

  3. Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts

    PubMed Central

    Liao, Po-Hsiang; Hsieh, Dennis Jine-Yuan; Kuo, Chia-Hua; Day, Cecilia-Hsuan; Shen, Chia-Yao; Lai, Chao-Hung; Chen, Ray-Jade; Padma, V. Vijaya

    2015-01-01

    Aging is the most important risk factor in cardiovascular disease (CVD), which is the leading causes of death worldwide and the second major cause of death in Taiwan. The major factor in heart failure during aging is heart remodeling, including long-term stress-induced cardiac hypertrophy and fibrosis. Exercise is good for aging heart health, but the impact of exercise training on aging is not defined. This study used 3-, 12- and 18-month-old rats and randomly divided each age group into no exercise training control groups (C3, A12 and A18) and moderate gentle swimming exercise training groups (E3, AE12 and AE18). The protocol of exercise training was swimming five times weekly with gradual increases from the first week from 20 to 60 min for 12 weeks. Analyses of protein from rat heart tissues and sections revealed cardiac inflammation, hypertrophy and fibrosis pathway increases in aged rat groups (A12 and A18), which were improved in exercise training groups (AE12 and AE18). There were no heart injuries in young rat hearts in exercise group E3. These data suggest that moderate swimming exercise training attenuated aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts. PMID:26496028

  4. Heart rate dynamics before spontaneous onset of ventricular fibrillation in patients with healed myocardial infarcts

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Koistinen, J.; Jordaens, L.; Tulppo, M. P.; Wood, N.; Golosarsky, B.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1999-01-01

    The traditional methods of analyzing heart rate (HR) variability have failed to predict imminent ventricular fibrillation (VF). We sought to determine whether new methods of analyzing RR interval variability based on nonlinear dynamics and fractal analysis may help to detect subtle abnormalities in RR interval behavior before the onset of life-threatening arrhythmias. RR interval dynamics were analyzed from 24-hour Holter recordings of 15 patients who experienced VF during electrocardiographic recording. Thirty patients without spontaneous or inducible arrhythmia events served as a control group in this retrospective case control study. Conventional time- and frequency-domain measurements, the short-term fractal scaling exponent (alpha) obtained by detrended fluctuation analysis, and the slope (beta) of the power-law regression line (log power - log frequency, 10(-4)-10(-2) Hz) of RR interval dynamics were determined. The short-term correlation exponent alpha of RR intervals (0.64 +/- 0.19 vs 1.05 +/- 0.12; p <0.001) and the power-law slope beta (-1.63 +/- 0.28 vs -1.31 +/- 0.20, p <0.001) were lower in the patients before the onset of VF than in the control patients, but the SD and the low-frequency spectral components of RR intervals did not differ between the groups. The short-term scaling exponent performed better than any other measurement of HR variability in differentiating between the patients with VF and controls. Altered fractal correlation properties of HR behavior precede the spontaneous onset of VF. Dynamic analysis methods of analyzing RR intervals may help to identify abnormalities in HR behavior before VF.

  5. Intravenous Glial Growth Factor 2 (GGF2) Isoform of Neuregulin-1β Improves Left Ventricular Function, Gene and Protein Expression in Rats after Myocardial Infarction

    PubMed Central

    Murphy, Abigail; Smith, Holly M.; Galindo, Cristi L.; Pentassuglia, Laura; Peng, Xuyang; Lenneman, Carrie G.; Odiete, Oghenerukevwe; Friedman, David B.; Kronenberg, Marvin W.; Zheng, Siyuen; Zhao, Zhongming; Song, Yanna; Harrell, Frank E.; Srinivas, Maya; Ganguly, Anindita; Iaci, Jennifer; Parry, Tom J.; Caggiano, Anthony O.; Sawyer, Douglas B.

    2013-01-01

    Aims Recombinant Neuregulin (NRG)-1β has multiple beneficial effects on cardiac myocytes in culture, and has potential as a clinical therapy for heart failure (HF). A number of factors may influence the effect of NRG-1β on cardiac function via ErbB receptor coupling and expression. We examined the effect of the NRG-1β isoform, glial growth factor 2 (GGF2), in rats with myocardial infarction (MI) and determined the impact of high-fat diet as well as chronicity of disease on GGF2 induced improvement in left ventricular systolic function. Potential mechanisms for GGF2 effects on the remote myocardium were explored using microarray and proteomic analysis. Methods and Results Rats with MI were randomized to receive vehicle, 0.625 mg/kg, or 3.25 mg/kg GGF2 in the presence and absence of high-fat feeding beginning at day 7 post-MI and continuing for 4 weeks. Residual left ventricular (LV) function was improved in both of the GGF2 treatment groups compared with the vehicle treated MI group at 4 weeks of treatment as assessed by echocardiography. High-fat diet did not prevent the effects of high dose GGF2. In experiments where treatment was delayed until 8 weeks after MI, high but not low dose GGF2 treatment was associated with improved systolic function. mRNA and protein expression analysis of remote left ventricular tissue revealed a number of changes in myocardial gene and protein expression altered by MI that were normalized by GGF2 treatment, many of which are involved in energy production. Conclusions This study demonstrates that in rats with MI induced systolic dysfunction, GGF2 treatment improves cardiac function. There are differences in sensitivity of the myocardium to GGF2 effects when administered early vs. late post-MI that may be important to consider in the development of GGF2 in humans. PMID:23437060

  6. Effects of Rosuvastatin and MiR-126 on Myocardial Injury Induced by Acute Myocardial Infarction in Rats: Role of Vascular Endothelial Growth Factor A (VEGF-A).

    PubMed

    Fei, Ling; Zhang, Jun; Niu, Heping; Yuan, Chen; Ma, Xiaoli

    2016-01-01

    BACKGROUND The present study investigated the effects of VEGF-A targeted by miR-126 on myocardial injury after acute myocardial infarction (AMI) in rats, along with the contributions of rosuvastatin to the synergic effect. MATERIAL AND METHODS SD rats were obtained to construct AMI models by ligating their left anterior descending coronary arteries (LAD). We conducted echocardiography to check the 6 involved indexes: left ventricular ejection fractions (LVEF), fractional shortening (FS), left ventricular end-systolic volume (LVV), left ventricular end-diastolic volume (LVVd), cardiac output (CO), and heart rate (HR). Moreover, antibody sandwich enzyme-linked immunosorbent assay was carried out to determine MI markers: creatine kinase (CK), CK Isoenzyme (CK-MB), and Troponin I (cTn I). Dual-Luciferase Reporter Assay was performed to confirm the targeting of miR-126 and VEGF-A. MTT assay provided insight into the proliferation of myocardial fibroblasts. Finally, RT-RCR and Western blot were used for the detection of miR-126 and VEGF-A expressions in vivo and in vitro. RESULTS Luciferase activity assay showed that miR-126 transfection significantly decreased the relative luciferase activity in HEK293T cells when it was bound to normal 3' UTR of VEGF-A (P<0.05). In comparison to the control group, rats in the AMI model group had significantly lower LVEF, FS, and CO, and substantially higher LVVs, LVVd, HR, CK/U, CK-MB/U, and cTn-1/U (all P<0.05). Down-regulated miR-126 and up-regulated VEGF-A were also observed in MI models (P<0.05). CONCLUSIONS miR-126 and rosuvastatin have protective effects on AMI risk, and VEGF-A antagonizes effects on AMI is imposed by. PMID:27376405

  7. Effects of Rosuvastatin and MiR-126 on Myocardial Injury Induced by Acute Myocardial Infarction in Rats: Role of Vascular Endothelial Growth Factor A (VEGF-A)

    PubMed Central

    Fei, Ling; Zhang, Jun; Niu, Heping; Yuan, Chen; Ma, Xiaoli

    2016-01-01

    Background The present study investigated the effects of VEGF-A targeted by miR-126 on myocardial injury after acute myocardial infarction (AMI) in rats, along with the contributions of rosuvastatin to the synergic effect. Material/Methods SD rats were obtained to construct AMI models by ligating their left anterior descending coronary arteries (LAD). We conducted echocardiography to check the 6 involved indexes: left ventricular ejection fractions (LVEF), fractional shortening (FS), left ventricular end-systolic volume (LVV), left ventricular end-diastolic volume (LVVd), cardiac output (CO), and heart rate (HR). Moreover, antibody sandwich enzyme-linked immunosorbent assay was carried out to determine MI markers: creatine kinase (CK), CK Isoenzyme (CK-MB), and Troponin I (cTn I). Dual-Luciferase Reporter Assay was performed to confirm the targeting of miR-126 and VEGF-A. MTT assay provided insight into the proliferation of myocardial fibroblasts. Finally, RT-RCR and Western blot were used for the detection of miR-126 and VEGF-A expressions in vivo and in vitro. Results Luciferase activity assay showed that miR-126 transfection significantly decreased the relative luciferase activity in HEK293T cells when it was bound to normal 3′ UTR of VEGF-A (P<0.05). In comparison to the control group, rats in the AMI model group had significantly lower LVEF, FS, and CO, and substantially higher LVVs, LVVd, HR, CK/U, CK-MB/U, and cTn-1/U (all P<0.05). Down-regulated miR-126 and up-regulated VEGF-A were also observed in MI models (P<0.05). Conclusions miR-126 and rosuvastatin have protective effects on AMI risk, and VEGF-A antagonizes effects on AMI is imposed by. PMID:27376405

  8. Linear and nonlinear analysis of heart rate variability in healthy subjects and after acute myocardial infarction in patients

    PubMed Central

    Kunz, V.C.; Borges, E.N.; Coelho, R.C.; Gubolino, L.A.; Martins, L.E.B.; Silva, E.

    2012-01-01

    The objectives of this study were to evaluate and compare the use of linear and nonlinear methods for analysis of heart rate variability (HRV) in healthy subjects and in patients after acute myocardial infarction (AMI). Heart rate (HR) was recorded for 15 min in the supine position in 10 patients with AMI taking β-blockers (aged 57 ± 9 years) and in 11 healthy subjects (aged 53 ± 4 years). HRV was analyzed in the time domain (RMSSD and RMSM), the frequency domain using low- and high-frequency bands in normalized units (nu; LFnu and HFnu) and the LF/HF ratio and approximate entropy (ApEn) were determined. There was a correlation (P < 0.05) of RMSSD, RMSM, LFnu, HFnu, and the LF/HF ratio index with the ApEn of the AMI group on the 2nd (r = 0.87, 0.65, 0.72, 0.72, and 0.64) and 7th day (r = 0.88, 0.70, 0.69, 0.69, and 0.87) and of the healthy group (r = 0.63, 0.71, 0.63, 0.63, and 0.74), respectively. The median HRV indexes of the AMI group on the 2nd and 7th day differed from the healthy group (P < 0.05): RMSSD = 10.37, 19.95, 24.81; RMSM = 23.47, 31.96, 43.79; LFnu = 0.79, 0.79, 0.62; HFnu = 0.20, 0.20, 0.37; LF/HF ratio = 3.87, 3.94, 1.65; ApEn = 1.01, 1.24, 1.31, respectively. There was agreement between the methods, suggesting that these have the same power to evaluate autonomic modulation of HR in both AMI patients and healthy subjects. AMI contributed to a reduction in cardiac signal irregularity, higher sympathetic modulation and lower vagal modulation. PMID:22370707

  9. Paeonol Protects Rat Heart by Improving Regional Blood Perfusion during No-Reflow.

    PubMed

    Ma, Lina; Chuang, Chia-Chen; Weng, Weiliang; Zhao, Le; Zheng, Yongqiu; Zhang, Jinyan; Zuo, Li

    2016-01-01

    No-reflow phenomenon, defined as inadequate perfusion of myocardium without evident artery obstruction, occurs at a high incidence after coronary revascularization. The mechanisms underlying no-reflow is only partially understood. It is commonly caused by the swelling of endothelial cells, neutrophil accumulation, and vasoconstriction, which are all related to acute inflammation. Persistent no-reflow can lead to hospitalization and mortality. However, an effective preventive intervention has not yet been established. We have previously found that paeonol, an active extraction from the root of Paeonia suffruticosa, can benefit the heart function by inhibiting tissue damage after ischemia, reducing inflammation, and inducing vasodilatation. To further investigate the potential cardioprotective action of paeonol on no-reflow, healthy male Wistar rats were randomly divided into four groups: sham, ischemia-reperfusion (I/R) injury (left anterior descending coronary artery was ligated for 4 h followed by reperfusion for 8 h), and I/R injury pretreated with paeonol at two different doses. Real-time myocardial contrast echocardiography was used to monitor regional blood perfusion and cardiac functions. Our data indicated that paeonol treatment significantly reduces myocardial infarct area and no-reflow area (n = 8; p < 0.05). Regional myocardial perfusion (A·β) and cardiac functions such as ejection fraction, stroke volume, and fractional shortening were elevated by paeonol (n = 8; p < 0.05). Paeonol also lowered the serum levels of lactate dehydrogenase, creatine kinase, cardiac troponin T, and C-reactive protein, as indices of myocardial injury. Paeonol exerts beneficial effects on attenuating I/R-associated no-reflow injuries, and may be considered as a potential preventive treatment for cardiac diseases or post-coronary revascularization in which no-reflow often occurs. PMID:27493631

  10. Paeonol Protects Rat Heart by Improving Regional Blood Perfusion during No-Reflow

    PubMed Central

    Ma, Lina; Chuang, Chia-Chen; Weng, Weiliang; Zhao, Le; Zheng, Yongqiu; Zhang, Jinyan; Zuo, Li

    2016-01-01

    No-reflow phenomenon, defined as inadequate perfusion of myocardium without evident artery obstruction, occurs at a high incidence after coronary revascularization. The mechanisms underlying no-reflow is only partially understood. It is commonly caused by the swelling of endothelial cells, neutrophil accumulation, and vasoconstriction, which are all related to acute inflammation. Persistent no-reflow can lead to hospitalization and mortality. However, an effective preventive intervention has not yet been established. We have previously found that paeonol, an active extraction from the root of Paeonia suffruticosa, can benefit the heart function by inhibiting tissue damage after ischemia, reducing inflammation, and inducing vasodilatation. To further investigate the potential cardioprotective action of paeonol on no-reflow, healthy male Wistar rats were randomly divided into four groups: sham, ischemia-reperfusion (I/R) injury (left anterior descending coronary artery was ligated for 4 h followed by reperfusion for 8 h), and I/R injury pretreated with paeonol at two different doses. Real-time myocardial contrast echocardiography was used to monitor regional blood perfusion and cardiac functions. Our data indicated that paeonol treatment significantly reduces myocardial infarct area and no-reflow area (n = 8; p < 0.05). Regional myocardial perfusion (A·β) and cardiac functions such as ejection fraction, stroke volume, and fractional shortening were elevated by paeonol (n = 8; p < 0.05). Paeonol also lowered the serum levels of lactate dehydrogenase, creatine kinase, cardiac troponin T, and C-reactive protein, as indices of myocardial injury. Paeonol exerts beneficial effects on attenuating I/R-associated no-reflow injuries, and may be considered as a potential preventive treatment for cardiac diseases or post-coronary revascularization in which no-reflow often occurs. PMID:27493631

  11. microRNA-208a in an early stage myocardial infarction rat model and the effect on cAMP-PKA signaling pathway

    PubMed Central

    Feng, Gao; Yan, Zhang; Li, Chuanchuan; Hou, Yuemei

    2016-01-01

    The expression level of microRNA-208a (miR-208a) in a rat model with myocardial infarction and the effect of cAMP-PKA signaling pathway in early stage of myocardial infarction in rats were investigated. The early myocardial infarction model was established in 12 male Sprague-Dawley rats by ligation of the anterior descending coronary artery, and 12 rats were selected as the control group (sham operation group). Reverse-transcription quantitative PCR was conducted to detect the expression levels of miR-208a in the myocardium of and the expression levels of miR-208a in the serum of rats in the two groups. Western blot analysis was used to evaluate the expression levels of cAMP-PKA protein in the rat tissues in the two groups. After stimulating high levels of miR-208a expression in human myocardial cells (HCM), western blot analysis was used to detect the cAMP-PKA protein levels. The expression levels of miR-208a in myocardial tissues in rats with myocardial infarction were significantly higher than those in the control group, and the difference was statistically significant (P<0.05). The expre